

42372A-MCU-10/2015

RELEASE NOTES

GNU Toolchain for Atmel AVR8 Embedded
Processors

Introduction

The Atmel AVR 8-bit GNU Toolchain (3.5.0.1662) supports all AVR 8-bit devices.
The AVR 8-bit Toolchain is based on the free and open-source GCC compiler.
The toolchain includes compiler, assembler, linker and binutils (GCC and
Binutils), Standard C library (AVR-libc) and GNU Debugger (GDB).

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

2

Table of Contents

Introduction .. 1

1. Installation Instructions .. 3
1.1. System requirements ... 3

1.1.1. Hardware requirements .. 3
1.1.2. Software Requirements .. 3

1.2. Downloading, Installing and Upgrading 3
1.2.1. Downloading/Installing on Windows 3
1.2.2. Downloading/Installing on Linux 3
1.2.3. Upgrading from previous versions 3

1.3. Layout .. 3

2. Toolset Background .. 5
2.1. Component Versions .. 5
2.2. Compiler .. 5
2.3. Assembler, Linker, Librarian and More 5
2.4. C Library ... 6
2.5. Debugging ... 6
2.6. Source Code .. 6

3. Bugs and New Features ... 7
3.1. New Features ... 7
3.2. Notable Bugs Fixed ... 8
3.3. Known Issues ... 9

4. Supported Devices .. 10

5. Contact Information and Disclaimer 12
5.1. Disclaimer .. 12

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

3

1. Installation Instructions

1.1 System requirements

1.1.1 Hardware requirements

● Minimum processor Pentium 4, 1GHz

● Minimum 512 MB RAM

● Minimum 500 MB free disk space

AVR 8-bit GNU Toolchain has not been tested on computers with less resources, but may run satisfactorily
depending on the number and size of the projects and the user's patience.

1.1.2 Software Requirements

● Windows 2000, Windows XP, Windows Vista, Windows 7 (x86 or x86-64) or Windows 8 (x86 or x86-64)

● AVR 8-bit GNU Toolchain is not supported on Windows 98, NT or ME.

● The toolchain should work on the Linux distributions Fedora, RedHat Enterprise, Arch Linux and Ubuntu for
both 32-bits and 64-bits architecture. AVR 8-bit GNU Toolchain may very well work on other distributions.
However those are untested and unsupported.

1.2 Downloading, Installing and Upgrading
The AVR8 GNU toolchain provided by Atmel is available for download and install in one of the following ways.

1.2.1 Downloading/Installing on Windows

● If you want to try the Atmel AVR8 GNU toolchain alone, you can download it from here1

● If you want to try the Atmel AVR8 GNU Toolchain along with Atmel studio, you can download and install
Atmel studio 6.0 or (newer) which will also install the Atmel AVR8 GNU toolchain. See Atmel studio release
notes for more details.

1.2.2 Downloading/Installing on Linux
For Linux, the Atmel AVR8 GNU Toolchain is available as a tar.gz archive which can be extracted using the
tar utility. In order to install, simply extract to the location from where you want to run it from. Linux builds are
available from here2.

1.2.3 Upgrading from previous versions
If the Atmel AVR8 GNU Toolchain is installed by Atmel studio installation, refer Atmel Studio documentation to
upgrade.

If the toolchain is installed separately using one of the (Windows, Linux, Mac) installers, upgrading is not
supported. You can install the new package side-by-side of the old package and use it.

1.3 Layout
Listed below are some directories you might want to know about.

`<install_dir>` = The directory where you installed AVR 8-bit GNU Toolchain.

● <install_dir>\bin
The AVR software development programs. This directory should be in your `PATH` environment variable.
This includes:

● GNU Binutils

● GCC

1 http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORWINDOWS.aspx
2 http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORLINUX.aspx

http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORWINDOWS.aspx
http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORLINUX.aspx
http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORWINDOWS.aspx
http://www.atmel.com/tools/ATMELAVRTOOLCHAINFORLINUX.aspx

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

4

● GDB

● <install_dir>\avr\lib
avr-libc libraries, startup files, linker scripts,and stuff.

● <install_dir>\avr\include
avr-libc header files for AVR 8-bit.

● <install_dir>\avr\include\avr
header files specific to the AVR 8-bit MCU. This is where, for example, #include <avr/io.h> comes from.

● <install_dir>\lib
GCC libraries, other libraries, headers and stuff.

● <install_dir>\libexec
GCC program components

● <install_dir>\doc
Various documentation.

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

5

2. Toolset Background
AVR 8-bit GNU Toolchain is a collection of executable, open source software development tools for the Atmel
AVR 8-bit series of microcontrollers. It includes the GNU GCC compiler for C and C++.

2.1 Component Versions
GCC: 4.9.2

binutils: 2.25

avr-libc: "1.8.0svn"

gdb: 7.8 7.8

2.2 Compiler
The compiler is the GNU Compiler Collection, or GCC. This compiler is incredibly flexible and can be hosted on
many platforms, it can target many different processors/operating systems (back-ends), and can be configured
for multiple different languages (front-ends).

The GCC included in AVR 8-bit GNU Toolchain is targeted for the AVR 8-bit microcontroller and is configured
to compile C or C++.

CAUTION: There are caveats on using C++. See the avr-libc FAQ. C++ language is not fully supported and
has some limitations. libstdc++ is unsupported.

Because this GCC is targeted for the AVR 8-bit MCUs, the main executable that is created is prefixed with the
target name: `avr-gcc` (with '.exe' extension on MS Windows). It is also referred to as AVR GCC.

`avr-gcc` is just a "driver" program only. The compiler itself is called `cc1.exe` for C, or `cc1plus.exe` for C+
+. Also, the preprocessor `cpp.exe` will usually automatically be prepended with the target name: `avr-cpp`.
The actual set of component programs called is usually derived from the suffix of each source code file being
processed.

GCC compiles a high-level computer language into assembly, and that is all. It cannot work alone. GCC is
coupled with another project, GNU Binutils, which provides the assembler, linker, librarian and more. Since
'gcc' is just a "driver" program, it can automatically call the assembler and linker directly to build the final
program.

2.3 Assembler, Linker, Librarian and More
GNU Binutils is a collection of binary utilities. This also includes the assembler, as. Sometimes you will see it
referenced as GNU as or gas. Binutils includes the linker, ld; the librarian or archiver, ar. There are many other
programs included that provide various functionality.

Note that while the assembler uses the same mnemonics as proposed by Atmel, the "glue" (pseudo-ops,
operators, expression syntax) is derived from the common assembler syntax used in Unix assemblers, so it is
not directly compatible to Atmel assembler source files.

Binutils is configured for the AVR target and each of the programs is prefixed with the target name. So you
have programs such as:

● avr-as: The Assembler.

● avr-ld: The Linker.

● avr-ar: Create, modify, and extract from archives (libraries).

● avr-ranlib: Generate index to archive (library) contents.

● avr-objcopy: Copy and translate object files.

● avr-objdump: Display information from object files including disassembly.

● avr-size: List section sizes and total size.

● avr-nm: List symbols from object files.

● avr-strings: List printable strings from files.

● avr-strip: Discard symbols.

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

6

● avr-readelf: Display the contents of ELF format files.

● avr-addr2line: Convert addresses to file and line.

● avr-c++filt: Filter to demangle encoded C++ symbols.

● avr-gdb: GDB, the GNU debugger, allows you to see what is going on `inside' another program targeted to
AVR, while it executes.

See the binutils user manual for more information on what each program can do.

2.4 C Library
avr-libc is the Standard C Library for AVR 8-bit GCC. It contains many of the standard C routines, and many
non-standard routines that are specific and useful for the AVR 8-bit MCUs.

In addition to avr-libc libraries, Host IO library (libhostio.a) is integrated to this toolchain. This Host IO library
allows allows the target to use the host's file system and console I/O to perform various avr I/O operations.

NOTE: The actual library is currently split into two main parts, libc.a and libm.a, where the latter contains
mathematical functions (everything mentioned in <math.h>, and a bit more). Also, there are additional libraries
which allow a customization of the printf and scanf function families. avr-libc contains documentation on how to
use (and build) the entire toolset, including code examples. The avr-libc user manual also contains the FAQ on
using the toolset.

2.5 Debugging
Atmel Studio provides a debugger and also provides simulators for the parts that can be used for debugging
as well. Note that `Atmel Studio` is currently free to the public, but it is not Open Source. The GNU debugger is
now shipped along with the toolchain.

2.6 Source Code
Atmel AVR 8-bit GNU Toolchain uses modified source code from GCC, Binutils and AVR-LibC. The source
code and the build scripts used for building the packaged binaries are available here1.

Please refer to the README for the instructions on how to use the supplied script to build the toolchain.

1 http://distribute.atmel.no/tools/opensource/Atmel-AVR-GNU-Toolchain/3.5.0

http://distribute.atmel.no/tools/opensource/Atmel-AVR-GNU-Toolchain/3.5.0
http://distribute.atmel.no/tools/opensource/Atmel-AVR-GNU-Toolchain/3.5.0

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

7

3. Bugs and New Features

3.1 New Features

Issue #AVRTC-714:

Optimize wdt_enable expression by avoiding un-necessary loads

Issue #AVRTC-726:

The compiler no more supports individual devices like ATmega8. Specifying, say, -mmcu=atmega8 triggers
the usage of the device-specific spec file specs-atmega8 which is part of the installation and describes options
for the sub-processes like compiler proper, assembler and linker. You can add support for a new device -
mmcu=mydevice as follows:

In an empty directory /someplace, create a new directory device-specs.

Copy a device spec file from the installed device-specs folder, follow the comments in that file and then save
it as /someplace/device-specs/specs-mydevice.

Add -B /someplace -mmcu=mydevice to the compiler's command-line options. Notice that /someplace must
specify an absolute path and that mydevice must not start with "avr".

Provided you have a device-specific library libmydevice.a available, you can put it at /someplace, dito for a
device-specific startup file crtmydevice.o.

The contents of the device spec files depend on the compiler's configuration, in particular on --with-avrlibc=no
and whether or not it is configured for RTEMS.

Issue #AVRTCDEV-626:

Add python scripting enabled gdb (avr-gdb-py)

Issue #AVRTCDEV-653:

Add 32-bit PC relative relocation is added to support diff expressions for symbols from different sections. AVR
assembler now can generate dwarf-debug-sections.

Issue #AVRTCDEV-704:

Move device specific functions from standard library to new device library

Issue #AVRTCDEV-719:

Upgrade gcc to version 4.9.2

Issue #AVRTCDEV-741:

Allow symbols in MEMORY region specification of Linker script

Issue #AVRTCDEV-743:

Add device memory details in a note section of device startup file

Issue #AVRTCDEV-744:

Rewritten wdt_enable/disable macros so that it doesn't require device name macro

Issue #AVRTCDEV-745:

Remove device specific macro in sleep.h, Instead use sleep mode conditions from device header file

Issue #AVRTCDEV-747:

Remove device specific macro in power.h, Instead use power reduction conditions from device header file.

Issue #AVRTCDEV-748:

Let io.h identify the device header file without needing to hard code the device name macro

Issue #AVRTCDEV-796:

Remove device specific macro definition in power.h. Instead use power reduction conditions that will be
available from device header files.

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

8

Issue #AVRTCDEV-825:

Implemented fopen and fclose functions using avr-libc call backs to FILE IO

Issue #AVRTCDEV-826:

Implemented a serial protocol using which the IO operations information are sent via UART

Issue #AVRTCDEV-828:

Remove device specific information from standard library and headers

Issue #AVRTCDEV-847:

Add Host IO library that emulates IO operations in host machine.

(Use Host IO Server application (Atmel Studio extension) to handle the serial data sent by device for IO
operations)

Issue #AVRTCDEV-850:

Make avr-libc backward compatible with gcc < 5.1.0

Issue #AVRTCDEV-861:

Let linker remove all debug sections for a function if that function is garbage collected

Issue #AVRTCDEV-866:

Device library (lib<device>.a) and startup object files (crt<device>.o) are installed in multilib location

Issue #AVRTCDEV-868:

Binutils upgraded to version 2.25

Issue #AVRTCDEV-888:

Added object file wise memory usage details to map file. This shall be enabled using '--detailed-mem-usage'
linker option.

3.2 Notable Bugs Fixed

Issue #AVRTC-365:

RJMP and RCALL in avr-libc assembly functions are changed to XJMP/XCALL macros that will expand to jmp/
call if the selected device has jmp instruction. When optimization/ relax enabled Linker can relax jmp instruction
to rjmp if possible.

Issue #AVRTC-708:

Incorrect values for label diff expression in assembly code. Assembler now emits a DIFF reloc, which
subsequently gets resolved to the correct value at link time.

Issue #AVRTC-735:

Incorrect constraint in wdt_enable/disable macros corrected

Issue #AVRTC-737:

wdt_enable/disable: Update constraints for inline assembler arguments. Mask wdt value to avoid overwritting
un-intended bits.

Issue #AVRTC-738:

Avoid unintended reset when using wdt_disable

Issue #AVRTC-741:

Backport: Device specs changes in gcc-5.1

Issue #AVRTC-742:

Update library build option -mtiny-stack to -msp8

Issue #AVRTC-743:

Update Documentation for memory sections that require __attribute__ ((used))

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

9

Issue #AVRTC-746:

Fix incorrect register clobber when reading a __memx parameter.

Issue #AVRTC-747:

Backport: Alias entry to sqrt function

Issue #AVRTC-748:

PR 43011 (iom128rfa1.h): Removed SPI mode only bits from struct definition of __reg_UCSR1C and
__reg_UCSR0C. Removed duplicate defines of UCPHA0, UDORD0, UCPHA1 and UDORD1.

Issue #AVRTC-751:

Remove reserved IO address defines for ATmega32U4 (iom32u4.h) (PR 45539)

Issue #AVRTC-752:

Define SLEEP_MODE_PWR_SAVE in iotn167.h (ATtiny167) for power-save sleep mode (PR 45551)

Issue #AVRTC-753:

Fix documentation typo in wdt.h

Issue #AVRTC-782:

Fix ICE when using attributs 'address' and 'io_low' (PR 65210)

Issue #AVRTC-757:

avr-gdb: Fix memory write failure for restore command

Issue #AVRTC-784:

Fix bit addressable instruction generation for invalid memory address

3.3 Known Issues

Issue #AVRTC-731:

For AVRTINY architecture, libgcc implementation has some known limitations.

Standard C / Math library implementation is very limited or not present.

Issue #AVRTC-732:

Program memory images beyond 128KBytes are supported by the toolchain, subject to the limitations
mentioned in "3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash" at http://gcc.gnu.org/
onlinedocs/gcc/AVR-Options.html

Issue #AVRTC-733:

Named address spaces are supported by the toolchain, subject to the limitations mentioned in "6.16.1 AVR
Named Address Spaces" at http://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html#AVR%20Named
%20Address%20Spaces

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

10

4. Supported Devices
avr2
at90s2313 at90s2343 at90s4414 at90s8515
at90s2323 attiny22 at90s4433 at90c8534
at90s2333 attiny26 at90s4434 at90s8535

avr25
ata5272 attiny4313 attiny85 attiny87
ata6616c attiny44 attiny261 attiny48
attiny13 attiny44a attiny261a attiny88
attiny13a attiny441 attiny461 attiny828
attiny2313 attiny84 attiny461a attiny841
attiny2313a attiny84a attiny861 at86rf401
attiny24 attiny25 attiny861a
attiny24a attiny45 attiny43u

avr3
at43usb355 at76c711

avr31
atmega103 at43usb320

avr35
ata5505 at90usb82 atmega16u2 attiny1634
ata6617c at90usb162 atmega32u2
ata664251 atmega8u2 attiny167

avr4
ata6285 atmega48a atmega88pa at90pwm2b
ata6286 atmega48p atmega88pb at90pwm3
ata6289 atmega48pa atmega8515 at90pwm3b
ata6612c atmega48pb atmega8535 at90pwm81
atmega8 atmega88 atmega8hva
atmega8a atmega88a at90pwm1
atmega48 atmega88p at90pwm2

avr5
ata5702m322 atmega168pa atmega329 atmega649
ata5782 atmega168pb atmega329a atmega649a
ata5790 atmega169 atmega329p atmega649p
ata5790n atmega169a atmega329pa atmega6490
ata5791 atmega169p atmega3290 atmega16hva
ata5795 atmega169pa atmega3290a atmega16hva2
ata5831 atmega16hvb atmega3290p atmega32hvb
ata6613c atmega16hvbrevb atmega3290pa atmega6490a
ata6614q atmega16m1 atmega32c1 atmega6490p
ata8210 atmega16u4 atmega32m1 atmega64c1
ata8510 atmega32a atmega32u4 atmega64m1
atmega16 atmega32 atmega32u6 atmega64hve
atmega16a atmega323 atmega406 atmega64hve2
atmega161 atmega324a atmega64 atmega64rfr2
atmega162 atmega324p atmega64a atmega644rfr2
atmega163 atmega324pa atmega640 atmega32hvbrevb
atmega164a atmega325 atmega644 at90can32
atmega164p atmega325a atmega644a at90can64
atmega164pa atmega325p atmega644p at90pwm161
atmega165 atmega325pa atmega644pa at90pwm216
atmega165a atmega3250 atmega645 at90pwm316
atmega165p atmega3250a atmega645a at90scr100
atmega165pa atmega3250p atmega645p at90usb646
atmega168 atmega3250pa atmega6450 at90usb647
atmega168a atmega328 atmega6450a at94k
atmega168p atmega328p atmega6450p m3000

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

11

avr51
atmega128 atmega1281 atmega128rfa1 at90can128
atmega128a atmega1284 atmega128rfr2 at90usb1286
atmega1280 atmega1284p atmega1284rfr2 at90usb1287

avr6
atmega2560 atmega2561 atmega256rfr2 atmega2564rfr2

avrxmega2
atxmega8e5 atxmega32a4 atxmega16a4u atxmega32e5
atxmega16a4 atxmega32c3 atxmega16c4
atxmega16d4 atxmega32d3 atxmega32a4u
atxmega16e5 atxmega32d4 atxmega32c4

avrxmega4
atxmega64a3 atxmega64a3u atxmega64b1 atxmega64c3
atxmega64d3 atxmega64a4u atxmega64b3 atxmega64d4

avrxmega5
atxmega64a1 atxmega64a1u

avrxmega6
atxmega128a3 atxmega128d3 atxmega192d3 atxmega256c3
atxmega128a3u atxmega128d4 atxmega256a3 atxmega256d3
atxmega128b1 atxmega192a3 atxmega256a3b atxmega384c3
atxmega128b3 atxmega192a3u atxmega256a3bu atxmega384d3
atxmega128c3 atxmega192c3 atxmega256a3u

avrxmega7
atxmega128a1 atxmega128a1u atxmega128a4u

avrtiny
attiny4 attiny9 attiny20
attiny5 attiny10 attiny40

avr1
at90s1200 attiny12 attiny28
attiny11 attiny15

GNU Toolchain for Atmel AVR8 Embedded Processors [RELEASE NOTES]
42372A-MCU-10/2015

12

5. Contact Information and Disclaimer
For support on Atmel AVR 8-bit GNU Toolchain, visit design support1.

Users of AVR 8-bit GNU Toolchain are also welcome to discuss on the AVRFreaks website forum for AVR
Software Tools.

5.1 Disclaimer
AVR 8-bit GNU Toolchain is distributed free of charge for the purpose of developing applications for Atmel AVR
processors. AVR 8-bit GNU Toolchain comes without any warranty.

1 http://www.atmel.com/design-support/

http://www.atmel.com/design-support/
http://www.atmel.com/design-support/

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: 42372A-MCU-10/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR®, XMEGA®, megaAVR® , and others are registered trademarks or

trademarks of Atmel Corporation in U.S. and other countries. Windows®, and others, are registered trademarks of Microsoft Corporation in U.S. and or other countries.
Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted
by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE,
ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION,
OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products
descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable
for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure
of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent. Safety-Critical
Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed
nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military- grade. Atmel products are not designed nor intended for use in
automotive applications unless specifically designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com

	Introduction
	Table of Contents
	1. Installation Instructions
	1.1. System requirements
	1.1.1. Hardware requirements
	1.1.2. Software Requirements

	1.2. Downloading, Installing and Upgrading
	1.2.1. Downloading/Installing on Windows
	1.2.2. Downloading/Installing on Linux
	1.2.3. Upgrading from previous versions

	1.3. Layout

	2. Toolset Background
	2.1. Component Versions
	2.2. Compiler
	2.3. Assembler, Linker, Librarian and More
	2.4. C Library
	2.5. Debugging
	2.6. Source Code

	3. Bugs and New Features
	3.1. New Features
	3.2. Notable Bugs Fixed
	3.3. Known Issues

	4. Supported Devices
	5. Contact Information and Disclaimer
	5.1. Disclaimer

