

GGIG Graphical Interface Generator

Wolfgang Britz, August 2010

- Version May 2013 -

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 2

The following report is the outcome of a collaborative effort of University Bonn and the

author. Larger parts of the Java code underlying GGIG had been developed over the years in

the content of the CAPRI modelling system, which receive considerably funds from the EU

research framework programs. Following the general policy in CAPRI, the GGIG pre-

compiled code can be used for other scientific projects as well.

The author would like to acknowledge the contribution of Alexander Gocht, vTI

Braunschweig, to the CAPRI GUI coding efforts. All errors remain with the author.

http://www.capri-model.org/gui.htm

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 3

Content

GGIG Graphical Interface Generator ... 1

Content ... 3

Overview .. 5

Current applications of GGIG .. 9

An overview on the GUI .. 9

The interface generator ... 10

Tasks ... 10

Mapping controls setting to GAMS ... 10

Basic concept of the control definition file .. 11

Worksteps ... 13

Tasks ... 13

Use of filters for exploitations .. 14

Order of the controls and layout ... 17

Fields for each definition line ... 19

Type of controls ... 20

Tab .. 21

Separator ... 22

Text ... 23

Checkbox .. 24

Singelist .. 25

filesel .. 26

Multilist / MultiListNonZero ... 27

Slider .. 30

Spinner ... 31

Table ... 32

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 4

Starting GAMS from GGIG ... 35

General interface settings ... 36

GAMS and R related settings ... 36

SVN related settings ... 37

Settings linked to the exploitation tools ... 37

Meta data handling ... 38

Why meta data? .. 38

Technical concept ... 38

Exploitation .. 40

Selecting scenarios ... 40

Menu bar .. 41

Design hints for structured programming in GAMS with GGIG ... 42

Using information passed from GGIG ... 42

Structure your program by tasks .. 42

One entry points for run specific settings ... 43

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 5

Overview

The GAMS Graphical Interface Generator (GGIG) is a tool to generate a basic Graphical User

Interface (GUI) for a GAMS project with five main functionalities:

1. Generation of user operable graphical controls from XML based definitions. The

XML file defines the project specific layout of the GUI. The user can then interact

with the GUI to change the state of the controls. The state of each control component

such as a checkbox can then be mapped to GAMS code ($SETGLOBALS, Set

definitions, settings for parameters). It combines hence the basic functionality of a

GUI generator and a rudimentary GAMS code generator.

2. Generation of GAMS compatible meta data from the state of the control which can

be stored in GAMS GDX format and later accessed, so that scenario definitions are

automatically stored along with results.

3. Execution of a GAMS project while passing the state of the control to GAMS as a

include file.

4. Exploitation of results from GAMS runs by providing an interface to define the

necessary interfacing definitions in text file to load results from a GAMS into the

CAPRI exploitation tools.

5. Access to a set of GAMS related utilities. This include e.g. a viewer for GDX files, a

utility to build a HTML based documentation of the GAMS code or a batch execution

utility.

GGIG is steered with text file and does not require knowledge in a higher programming

language

GGIG was developed to overcome a typical problem when economic models are implemented

in GAMS. GAMS itself, not at least to ensure platform portability, does not allow for

graphical user input. Run specific settings for GAMS need therefore to be introduced either

by changes to the GAMS project code itself or by adding settings of environment variables to

the GAMS call. Experienced model users – typically the code developers themselves – know

how to change run specific settings in the GAMS code, and do so typically quite efficiently.

As a consequence, they seldom feel the need to invest resources in the development of a GUI

steering their GAMS project. The need to invest in GUI development might have even

decreased as the GAMS IDE now offers some basic functionality often found in project

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 6

specific GUIs. The IDE allows inter alia starting GAMS, inspecting parameters found in the

listing file or viewing the context of a GDX file.

However, a GAMS code only solution for an economic model typically poses a serious entry

barrier to newcomers for two reasons. Firstly, possible users are often not familiar with

GAMS. But even with some elementary knowledge of the language, they might face problems

understanding code making use of advanced GAMS features. Secondly, they face the

challenge to familiarize themselves with the specific code of the project. They would need to

learn enough to know exactly which specific code changes are necessary to implement e.g.

scenarios in a given project. In some cases, the large and/or complex GAMS code of projects

basically excludes their usage beyond some core developers. Accordingly, institutions or tool

developers often observe that promising tools are only used by a few specialists, reducing

returns to their investment in tool development and maintenance. Possible other users often

shy away from the high learning costs and/or fear to generate, analyse and present results

based on a black box where it is unclear how to enter exactly a scenario and how to access

their results.

It is therefore not astonishing that some tools based on GAMS (and also on other modelling

languages) have developed their specific GUIs. These GUIs let the user steer the tool with a

touch & feel comparable to other programs running on modern windowed operating systems.

However, writing a GUI for a larger project firstly requires considerable programming skills,

often not found with the economic modellers themselves. Secondly, developing a good

design, coding, debugging and maintaining a GUI can be a rather costly exercise. As a

consequence, typically only rather large and well funded tools have found and invested the

necessary resources to develop such GUIs. CAPRI and runGTAP provide some examples.

These project specific GUIs are typically very powerful, but tend also to be tool specific.

They can typically not be modified easily to fit to another GAMS project.

That renders it inviting to think about generic tools able to generate a GUI which can interface

to GAMS. The coding effort can then be shared across projects, and user might even reduce

learning costs if they use similar GUIs for different tools. A well-established example for such

a tool is the “GAMS Simulation Environment (GSE)” by Wietse Dol. GSE is quite general: it

incorporates features of an Integrated Development Interface (IDE) as well as exploitation

features. It is based on specific “tags” introduced in the GAMS code. GGIG is certainly not a

competitor to GSE: GSE offers more functionality and is more IDE oriented. It might

however be easier to embed some simple steering settings with GGIG into an existing project

http://www.capri-model.org/gui.htm
https://www.gtap.agecon.purdue.edu/products/rungtap/default.asp
http://www3.lei.wur.nl/gse/

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 7

compared to the tag based concept of GSE. GSE was in the past a commercial product

distributed with a license but can now be downloaded for free.

An example of a completely different approach to a GUI for modelling tools offers

SEAMLESS-IF with its focus on component linkage. Based on OpenMI, it however requires

the development of an OpenMi compatible wrapper around the GAMS project itself.

Concepts such as the SEAMLESS-IF are therefore probably only suitable for larger projects

focusing on combining components based on different programming languages. SEAMLESS-

IF is further on based on a client/server implementation and requires specific software

licences for deployment.

GGIG might hence be seen as a quite simple and easy to use tool to generate GUIs for GAMS

projects. If all GGIG features are used, it can however host quite complex projects. The new

GUI for CAPRI built with GGIG offers an example for a rather complex implementation.

As mentioned above, a second important contribution of GGIG is to mechanize to the largest

extent the generation, storage and later inspection of meta data underlying a scenario and the

related result set, overcoming an often encountered weakness in (economic) models.

And thirdly, GGIG offers a bridge between the powerful CAPRI exploitation tools and other

GAMS based models. It draws on the experiences with BenImpact, MIVAD and the village

CGEs developed in Advanced-Eval, GAMS tools models resp. Java based GUIs where the

CAPRI exploitation tools had been used. These GAMS based projects used the CAPRI

exploitations, but did not add any GUI functionalities to also steer their models. The

experiences with these examples can hence be seen as the starting point for the development

of GGIG in order to expand beyond a pure, project adjusted implementation of the CAPRI

exploitation tools.

Some specific skills and eventually serious refactoring of the reporting part of an existing

model are necessary to benefit from the full functionality of the CAPRI exploitation tool. It

therefore pays typically off to start using GGIG for exploitation from the beginning. But at

least, no skills in coding in a higher programming language such as Java are necessary to

define the necessary interfaces between the GAMS project and the exploitation part. The

latter offers interlinked tables (with selections, sorting, outlier control, pivoting), different

type of graphs, maps and flow maps.

Additionally, GGIG features a set of utilities originally developed for CAPRI such as HTML

based documentation of the GAMS code or a GDX viewer.

http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.capri-model.org/gui.htm
http://www.impetus.uni-koeln.de/fileadmin/content/veroeffentlichungen/projektberichte/IMPETUS_Zwischenbericht_2008.pdf
http://www.impetus.uni-koeln.de/en/morocco/livelihood-security/pk-ma-e1.html
http://www.advanced-eval.eu/

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 8

The development of GGIG would have been impossible without the continued funding for the

maintenance and development of CAPRI by the EU Commission, which also let to the

emergence of the CAPRI GUI and exploitation tools. That code base was the starting point for

GGIG. I would also like to mention the contribution of Alexander Gocht over the last years to

the code of the interface.

The main parts of GGIG are graphically depicted below. At its core stands the GGIG Control

generator, based on Java code. Based on a XML based definition file, it generates a project

specific GUI which can be operated by the user. The state of these controls such as numerical

settings, on/off settings or n of m selection can be passed to GAMS in automatically

generated include file, including automatically generated meta data. The user can also execute

GAMS from the GUI. The GUI can equally load numerical results and meta data in a specific

GDX viewer. The latter supports “view definition”, i.e. pre-defined reports to exploit the

results. The details of the different elements are discussed below.

GGIG

Control

Generator

GGIG

Controls and Settings

definition file

Project specific

GUI

User

input

GAMS

include file

GAMS

project code

GAMS

executable

GDX

Exploitation

tools

Meta data

Numerical results

Diagram: Overview on information flow in GGIG

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 9

Current applications of GGIG

Since the first prototype, GGIG has been successfully implemented in a number of projects:

 DairyDyn: an fully dynamic single farm model focusing on the impact of Green House

Gas emission indicators on allocation and investment decision

 A small, spatial multi-commodity model for world trade of cooked and uncooked

poultry meat with a focus on trade bans related to Avian Influenca

 A EU wide layer of regional CGEs with a focus on Rural Development measures on

the second pillar of the CAP

 LANA-HERBAMO: A Hydro-Economic model for the lake Naivasha in Kenya.

These projects has helped to clarify some requirement and triggered the implementation of

new and expanded features. Since 2013, CAPRI uses GGIG. Further applications are already

underway, e.g. in the context of the FADNTOOL project.

An overview on the GUI

As shown above, the GUI consists a few elements:

http://www.ilr.uni-bonn.de/agpo/rsrch/dfg-ghgabat/dfgabat_e.htm
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9701.2012.01461.x/abstract
http://www.ilr.uni-bonn.de/agpo/publ/techpap/LANA-HEBAMO-documentation.pdf
http://www.fadntool.eu/

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 10

1. A menu bar which allows to change some settings (see the section on general

interface settings)

2. A workstep and task selection panel on the left hand side where the user can select

between different tasks belonging to the project.

3. A right hand side panel which either shows:

i. The generated controls, a button panel to start GAMS and a windows in

which the message log from GAMS is shown

ii. A panel to select scenario and to start the exploitation

iii. The exploitation tools

4. A small window in the left lower corner which present a logo.

Whereas the elements 1. and 3.ii and 3iii. are not project specific, the worksteps and tasks

available in 2. and the controls shown to the user in 3.i. are generated in a project specific

initialisation file. The details of that file – which is core of GGIG – are discussed below.

The interface generator

Tasks

Tasks are central elements in GGIG. Each control can belong to one or several task, and each

task might have its own GAMS process. That allows steering even rather complex GAMS

installations with one GUI. It allows supports a structured development of the GAMS code as

either separate GAMS files with a clear purpose are generated or a GAMS file consists of

blocks which belong to certain tasks.

When the user selects a task, only the controls belonging to that task are shown to the user,

easing the handling of the GUI.

Mapping controls setting to GAMS

Controls are user operable, graphical elements. A few examples are shown below.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 11

Diagram: Example of controls generated with GGIG

In the case of GGIG, the controls are used by the user to define textual and numerical settings

which in turn define run specific settings for a GAMS project. GGIG offers five

functionalities related to these controls and their interactions with a GAMS project:

1. It generates the controls from a definition file on a windowed program interface.

2. It offers the necessary code to intercept user operations on the controls.

3. It maps the settings of the controls based on the user input to as sequence of GAMS

statements, which can be included into a GAMS project to generate a specific run.

4. It allows execution of GAMS.

5. It offers a GDX viewer which supports the definition of pre-defined reports.

The overview on the process is shown in the diagram above.

In order to allow the run specific settings to enter a specific GAMS project, the generated

include file should define the sole entry point of run specific information. The state of the

controls – passed to the include file - should hence define all the necessary information for a

specific run. The GAMS code should accordingly not allow for or require additional changes

to generate a “scenario”, i.e. a specific run. It is however easily to use a text control to enter

the directly the name of a include file.

The generated include file is overwritten each time the user starts the GAMS project.

Basic concept of the control definition file

GGIG support two format for definitions file: XML based property files or standard Java

property files. The later are only supported for backward compatibility and should no longer

be used for new GGIG projects.

XML property file

The core of GGIG consists of the control definition file. The XML property file allows

breaking up the settings for a control, task etc. into several XML tags, and these tags can

additional by stored in different lines, see example below:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 12

The keywords are discussed in detail below.

Standard Java property files

It follows the basic implementation of a property file in Java. Each line thus consists of a key

– value pair, separated by an equal sign. The definition of the controls is stored in the same

file along with general settings such as the name of the GAMS project, directories, the user

name etc..

For each control, one line is used. That line comprises all the necessary information to

generate the control, as well as to store the current setting.

The control definition file is text based and can hence be edited with any text editor. Most of

the settings – with the exemption of the definitions of the controls themselves – can also be

entered by the user via the controls on the GGIG interface. These project independent controls

are to a larger extent borrowed from the CAPRI user interface. On top, a first rudimentary

control editor is embedded in the tool.

Call of GGIG

In a normal installation there are two ini files:

1. One default file with the control definitions and related default values. That file should

be typically under version control. It can be un XML or ini file format.

2. A second file which is installation specific, it will store the values entered by the user

and will be in the ini format

A typical call will therefore look like:

Gig.jar project.ini project_default.ini or Gig.jar project.ini project_default.xml

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 13

It is hence possible to host several GGIG based installations in one directory where the jars

etc., are stored.

Worksteps

Worksteps allow to group tasks. The following attributes are possible

Name Name of the workstep shown as selectable radio button (required)

Tasks List of tasks

Tasks

The control definition file defines a list of task (such as calibrating the model and running the

model). A task can have its own GAMS file to start, its own result directories and its own set

of controls. Each control can be shared by several tasks.

The tasks are put on the interface in alphabetical order:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 14

The following attributes are possible for a task

Name defines the name of task, shown on interface (required)

gamsFile defines the name of the GAMS project to start (optional)

resDir result directory where the results are stored (optional)

filemask regex string used filter the files shown in the scenario exploitation

boxes for the task

incFile defines the name of include file used by the task (optional)

gdxsymbol defines the GAMS symbol (set,parameter) to load for exploitation

{logical}dim position of the logical dim in gdxsymbol, where logical=region,

 activity, product, year, scen, dim5

filters filters for scenario input, see below

If no gamsFile or resDir are given, the general ones defined in the ini-file are used.

Use of filters for exploitations

Filters are used to

1. To let the user select from the GDX files which are potentially generated by the task

based on a specific content selection, .e.g. only files from a specific year

2. To introduce a filter on the GDX element loaded in the viewer, e.g. to only load

records for a specific country

A filter definition consist of 3 or 4 fields:

1. The logical dimension to which it is applied: {region, activity, product, year, scen,

dim5}

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 15

2. The selection control which is used for the filter

3. The type of filter:

a. “Starts_with” or “ends_with” for GDX element filters, i.e. only such

records will be loaded where the item describing the logical dimension starts

with one of the selected keys.

b. Otherwise, a pair of integer values which describe on which position of the file

names the selected key should be found plus either “skip” for only using

selecting files or “merge” to merge records from the chosen GDXs.

The screenshot below shows an example with the following filters:

The first filter “starts_with” does not affect the file selection, but will affect the records

loaded in the viewer. In our example, only records where the region key starts with “DE” or

“BL” will be available.

The other two filters will skip files where the base and simulation years do not match the

selection. In our example, the base year is stored as a two digit key on position 7 and 8, and

only files with a “04” are in the drop down box for the scenarios. Similarly, only results for

the simulation year “20” are selected.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 16

Normally, the name of the file will be used to characterize the “scenario”. The “merge” is

made for the case where several GDX files should be combined and the file name does not

distinguish model runs. An example offers the downscaling component of CAPRI: it

produces in separate GAMS run for the same scenario one file for each country which

comprise rather huge data sets. The “merge” mode allows combining these result sets

together.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 17

Order of the controls and layout

The controls will be placed in alphabetical sorted order of their keys on the interface.

Normally, each control copies one line. If the keys for a range of controls end with

consecutive numbers (such A110, A111, A112 …), the controls are put in the same line.

The following definition statements

will hence show on the interface as seen in the screen shots below. All controls following a

“tab” control will be put on that tab (until the next one).

With the XML-based definition, the order field is used.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 18

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 19

Fields for each definition line

The necessary information to control is stored in a line of the control definition file. The

following fields are available:

Type defines type of control (required). The different types are discussed below in

detail.

Title defines description of control as seen by user (required)

GamsName defines names of global settings resp. SET name (optional)

Value pre-selected setting (optional)

Options list of available options (required where applicable)

Range Min, max, increment, major ticks; or number of rows shown (required where

applicable)

Tasks List of tasks to which the control belongs. If empty, it belongs to all tasks

Tooltip A tooltip text hovering over the control

Pdflink Link to a pdf file and chapter to open on mouse over

Selgroups Selection list opened by pop-up menu (see Multilist control)

Disable Control is blocked for input – useful to show settings on interface which are

should be sent to GAMS for a specific task.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 20

Type of controls

The following types of controls are available. The related JAVA swing JComponent is shown

in bracket.

Tab Introduces a new tab on the tabbed plane hosting the controls

Separator to structure a pane with control (JLabel in an JPanel with a border)

Panel the next controls are shown together on a panel

Text to enter a free text (JTextField)

Checkbox for on-off type of settings (JCheckBox)

Singlelist for 1 of n selections (JList in a JScrollPane)

RadioButtons for 1 of n selections (Group in JButton, vertically aligned)

Filesel for 1 of n selections of a list of files (JList in a JScrollPane)

Multilist for n of m selections (n=0..m), (non editable JComboBox)

MultilistNonZero for n of m selections (n=1...m), (non editable JComboBox)

Slider for integer value selection from a range of values (JSlider)

Spinner for floating or integer value selection from a range of values (JSpinner)

Table to enter floating point variables in a two-dimension parameter (JTable)

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 21

Tab

Purpose

Used to structure the interface by grouping controls on an input pane: introduces a

new tabbed plane to which controls following are then added

Applicable fields:

Title, Tasks

Control optic:

Remark:

The user can only see one of the tab pane at any time – care should hence be given to keep the

number of tabs and the assignment of controls to tabs such that a user can easily check all key

inputs.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 22

Separator

Purpose

Used to structure the interface, gives a title for the next block of controls

Applicable fields:

Title, Value, Tasks

Control optic:

Example definition:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 23

Text

Purpose

To enter text. Typically used to parse the name of the scenario to GAMS

Applicable fields:

Title, Value, Tasks

Control optic:

Possible value:

Any text allowed

User action:

Edit with keyboard

Example definition:

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 24

Checkbox

Purpose

Used for on/off settings, i.e. in cases where one of two options must be chosen, e.g.

in cases of project modules which can be used or not (1 of 2). Should not be used for

1 of n selections where n > 2 – use a List instead.

Applicable fields:

Title, GamsName, Value, Tasks

Control optic:

Possible value:

true, false

User action:

tick / untick box with mouse

Example definition:

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 25

Singelist

Purpose

Used for 1 of n selections. Used in cases where more then 2 mutually exclusive

values for a setting are available.

Applicable fields:

Title, GamsName, Value, Options, Tasks

Control optic:

Note: Drop down list will appear if the user clicks on arrow.

Possible value:

Defined by options field

User action:

tick / untick one of the selection possibilities with mouse

Example definition:

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 26

filesel

Purpose

Used for 1 of n selections of a list of files. That is e.g. interesting when the user can

chose from a list of pre-existing scenario definitions in GAMS files.

Applicable fields:

Title, GamsName, Value, Options, Tasks

Control optic:

Note: Drop down list will appear if the user clicks on arrow.

Possible value:

Defined by the file selection string in options field, .e.g

..\\gams\\pol_input\\cge_*.gms. The file extension fill be automatically removed from

the items.

User action:

tick / untick one of the selection possibilities with mouse

Example definition:

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 27

Multilist / MultiListNonZero

Purpose

Used for m of n selections, i.e. in cases where features are not mutually exclusive.

Multilist allows m = 0, i.e. also empty selection. MultiListNonZero requires m > 0, i.e. at least

one element must be selected.

Applicable fields:

Title, GamsName, Value, Options, range, Tasks

Control optic:

Notes:

 left hand side: range=0 right hand side: range = 3

 Drop down list will appear if the user clicks on arrow, and number of elements >

range and range<>0

Possible value:

Defined by options field

User action:

tick / untick box fields in the control with mouse

Example definition:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 28

Output to GAMS:

Selection groups

The multilist control features a pop-up menu which without selection groups only allows to

clear the selection or to select all items (see below).

Selection groups can be added which allow for groups of items to select them or add

respectively remove from the selection. Each selection group starts with a forward slash “/”

following by the name of the group. The items are and the next selection group are then

comma separated as shown below. Commas can be skipped if the next item is on a different

line.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 29

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 30

Slider

Purpose

Used to selected one integer value from a given range of allowed ones. The

increments must also be defined.

Applicable fields:

Title, GamsName, Value, Options, range, Tasks

Control optic:

Note: Selectable values will be restricted according to the increment definition.

Possible value:

Defined by range field

User action:

Select value by pressing up/down arrows or by editing the field with keyboard

Example definition:

Type=spinner;title=Set substitution elasticity;range=0,10,0.5;value=5

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 31

Spinner

Purpose

Used to selected a integer value from a range of allowed ones . The increment is

always unity. Could be internally used as a floating value, e.g. by using it for shares

in percentages terms.

If the range of the spinner is large, it might be hard for the user to pick a specific value. In that

case, a spinner is easier to control.

Applicable fields:

Title, GamsName, Value, Options, range, Tasks

Control optic:

Possible value:

Defined by range field

User action:

Select value by moving slider

Example definition:

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 32

Table

Purpose

Define a table with floating point values passed to GAMS.

Applicable fields:

Title, GamsName, Value, Columns, Rows, Dim3s, Range, Tasks

Control optic:

User action:

 Edit single fields with numerical values. Cut/Paste via clipboard possible

 Edit default values for all visible rows in the row “Defaults” and press “Apply

defaults” button. The defaults for each columns will be copied over.

 Use the filter with * and ?? to select specific rows

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 33

Example definition:

Notes:

 The range field might comprise several tuples of “low-up-increment” which will then

be assigned to the columns of the tables. If there is only one tuple, it will be used for

all columns.

 If a range is given, a spinner will be used as the cell editor and values outside the range

will be rejected.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 34

Output to GAMS:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 35

Starting GAMS from GGIG

GGIG allows starting the GAMS project directly from the interface, either in compile or run

mode. A break request can also be sent to GAMS (“stop GAMS”):

Once started, the GAMS project routes its output to the console back to lower right part of the

interface:

The pane with the content can be scrolled by a right mouse click in the pane to open a popup

menu. If an editor is added under “opther options”, the GAMS and the listing file can be

opened as well:

The pane can hence be “frozen” so that e.g. the status of a model solve can be inspected while

the project continues to run. In order to successfully start a project, the ini file for GGIG must

comprise the information where the GAMS executable can be found, but also where the

GAMS code of the project to start is stored.

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 36

General interface settings

The interface has a few standard settings which can also be accessed via the “edit

settings dialogue”. These are:

 Certain file locations: the directory where GDX files for results are assumed

to be stored (resDir), and three directories which can be used to adjust the

specific model application: the root of the GAMS file (workDir in GAMS), called

modelDir, a directory for restart files and one for data files.

Note: The name of the system (here TRIMAG) is defined in the „GGIG.INI“ file

GAMS and R related settings

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 37

SVN related settings

The SVN settings can be used to perform checkout and updates in cases where the model

code with related data, restart files or result files is under versioning control on a SVN server.

If the model is not under version control, the settings “svn=no” renders the tabbed plan

invisible.

Settings linked to the exploitation tools

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 38

Meta data handling

Why meta data?

Meta data are data about data. In many GAMS projects, it is impossible or cumbersome to tell

exactly based on which shocks and settings results of a model run had been generated. That is

due to the fact that run specific settings are not stored at all or not stored together stored with

the results of the run. Later on, result users are often left guessing what exactly the settings

underlying the run might have been.

In order to overcome that problem, the GGIG, drawing on CAPRI GUI concepts, passes all

interface settings, plus the user name and the current time, forward to GAMS in one SET

called META.

A correctly defined interface with GGIG should allow to steer all run specific settings. If that

is the case, the meta data generated by GGIG will provide an exact and sufficient definition of

all run specific inputs, ensuring that all relevant meta data about a run are stored along with

quantitative results in the same GDX file. Accordingly, GDX files shipped to other desks or

committed e.g. to a SVN server still carry all necessary information to identify exactly the

run.

Technical concept

The meta handling is straight forward. The state of the different control is mapped into pairs

of set elements and related long text descriptions as shown below from an example

application:

and, might with one GAMS statement as shown below, stored in the GDX files along with the

results:

http://www.capri-model.org/docs/meta.pdf

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 39

The user might then select some scenario:

And then, by pressing “show meta”, view the settings used for these scenarios:

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 40

Exploitation

The basic strategy of the GGIG exploitation tools roots in the CAPRI exploitation tools,

which require that all model results are stored on an up to 10 dimensional cube, which is then

stored in a GDX as a sparse matrix. Additional dimension can be added if several files are

loaded, e.g. to compare scenarios or years. A specific XML dialect defines views (filters,

pivots, view types) into the cube, and allows the user to load several result sets – typically

from different scenarios – in parallel.

If no table definition file is present, GIGG offers a GDX viewer which some interesting

possibilities not found in the standard GDX viewer (such as numerical sorting, statistics,

selections). For details, the CAPRI GUI user manual should be consulted.

Selecting scenarios

When the user clicks on “Exploit scenarios” in the task selection panel, five drop boxes are

shown on the right hand side. Each box comprises the list of GDX files found in the result

director. The user can select in each box a file, or leave it empty.

http://www.capri-model.org/gui.htm

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 41

At the bottom of the panel, pressing the “show results” button will open the exploitation tools

The full functionality is only available if a table definition file (see http://www.capri-

model.org/docs/Gui2010.pdf, section on Editing the table definitions underlying the

exploitation tools) matching the structure of the parameters in the GDX file is provided.

Menu bar

GGIG allows to add two types of menu items to the menu bar: HTML links and e-mail sent.

http://www.capri-model.org/docs/Gui2010.pdf
http://www.capri-model.org/docs/Gui2010.pdf

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 42

Design hints for structured programming in GAMS with

GGIG

Using information passed from GGIG

As seen above, GGIG passes information mostly via $SETGLOBAL settings. That has the

advantage that the GAMS coder is rather free how to use the information. Take the following

example (which could be generated from a slider):

There a several ways to use that information in GAMS code, below are a few examples:

1. Round the setting to an integer with $eval in GAMS and use it in a set definition:

2. Use it in an combined definition and declaration statement for a scalar

3. Use it in assignment

4. Use it for pre-compiler conditions:

5. Use for GAMS program controls

Structure your program by tasks

The following example shows how the concepts of tasks can be used on conjunction with

includes to structure a top-level program

GGIG Graphical Interface Generator - Documentation

Wolfgang Britz, Version May 2013 43

The basic idea is to have a common a part which is shared by many tasks and then blocks

which perform task specific operations. As the “$iftheni ... $endif are working at compile

time, not used code is excluded even from compilation which helps to save memory and

reduce the size of the listing.

One entry points for run specific settings

A typical problem with more complex economic simulation models defined in GAMS is the

steering of scenarios. GGIG pushes the GAMS developer to a code structure where all run

specific settings are entered via the single include file generated by GGIG. That does not

imply that all data for a specific scenario are comprised in the include file. It could e.g. mean

that the user has selected via the interface the include file(s) with specific settings and that the

names of these files are passed via the include file to GAMS.

