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Chapter 1

Introduction

The Biochemical Simulation Environment (BISEN) software package is a suite of tools for generating equa-
tions and associated computer programs for simulating biochemical systems. The Version 1.0 package can
be used to generate appropriate systems of differential equations for user-specified multicompartment sys-
tems of enzymes and transporters accounting for detailed biochemical thermodynamics, rapid equilibria of
multiple biochemical species, and dynamic proton and metal ion buffering. The basic theory and method-
ology associated with this tool is outlined briefly in chapter 6, but described in some detail in Vinnakota et
al. [7]. Biochemical system components are specified using a human read/writeable biochemical scripting
language; model outputs are in the form of a MATLAB M-file that computes the differential equations for
the systems.

The package was constructed and is maintained and distributed by the computational biology group in
the Biotechnology and Bioengineering Center at the Medical College of Wisconsin. The package, updates,
and other information can be obtained at the URL http://bbc.mcw.edu/Bisen. When reporting on work
that makes use of this package, please cite the following reference:

Vanlier J, Wu F, Qi F, Vinnakota KC, Han Y, Dash RK, Yang F and Beard DA. BISEN: Biochemical
Simulation Environment. Bioinformatics 25(6):836-837, 2009.

The following sections of this manual provide step-by-step instructions on how to use the package
based on tutorial examples at different levels of complexity, and further information on how the package
is maintained and updated.

1.1 MATLAB Programming Environment

The current version of the BISEN Package utilizes the propriety MATLAB (Mathworks Inc.) programming
environment. Running the package requires that the user have MATLAB installed with a current license.
The BISEN package has been tested on MATLAB Release R2008a.

1.2 Setting Paths

All of the files associated with the package must be in the MATLAB path or in the current working direc-
tory in order for the model building engine to work. In the archive in which the package is distributed, the
package is organized to include seven subdirectories ‘Transporters’ and ‘BiochemicalReactions’, in which
model modules are stored, ‘Warnings’, in which error warnings are stored, ‘Databases’, in which reaction,



transport and reactant databases are stored, ‘BuilderFiles’, in which builder files are stored, ‘Experimen-
talData’, in which experimental data required by computational simulation are stored,'Examples’, in which
all the examples are stored. If this file structure is maintained and all files and directories exist in the
current working directory, then paths can be set in MATLAB with the following commands.

For Windows-Based Systems:

path(path,’..\Warnings’);
path(path,’..\BiochemicalReactions’);
path(path,’..\Transporters’);
path(path,’..\Databases’) ;
path(path,’..\BuilderFiles’);
path(path,’..\ExperimentalData’) ;
path(path,’..\Examples’);

For Linux-Based Systems:

path(path,’.\Warnings’);
path(path,’.\BiochemicalReactions’);
path(path,’.\Transporters’) ;
path(path,’.\Databases’);
path(path,’.\BuilderFiles’);
path(path,’.\ExperimentalData’);
path(path,’.\Examples’);




Chapter 2

Overview of Package and Description of
Files

The BISEN package uses a text parsing algorithm to translate a simple list of biochemical system compo-
nents into a set of differential equations in a MATLAB M-file. This section provides a reference list of file
types used and constructed by the BISEN package. User-constructed input files make use of a Biochem-
ical Scripting Language (BSL), described below in Section 3 along with detailed instructions on how to
construct models using the package.

2.1 Biochemical Thermodynamic Data and Reaction and Transporter
Stoichiometry

Physicochemical data on biochemical reactants and reactions are stored in the three Excel spreadsheet
files listed below. These files provide data on more than 50 reactions and transport processes and over
100 associated biochemical reactants along with their respective references denoted in the cell comments.
The reactants and reactions included in these databases define the scope of possible models that can be
constructed with the package. Users may add additional reactants and reactions to these databases in
order to be able to expand the package’s capabilities for their specific applications. When doing so, users
are urged to proceed with appropriate care and caution.

ReactantDatabase.xls. This file specifies the basic thermodynamic and ion binding data for biochemical
reactants. For each reactant entry the following information is provided:

1. Detailed name of reactant.

2. Abbreviation used for model description.

3. Gibbs free energy of formation for reference species associated with reactant.
4. Enthalpy of formation for reference species.

5. Charge of references species.

6. Number of protons in reference species.

7. First proton dissociation constant, given as pK, the negative of the base-10 logarithm of the dissoci-
ation constant.



8. Reaction enthalpy of the first proton dissociation

9. First potassium ion dissociation constant, given as pK.
10. Reaction enthalpy of the first potassium dissociation
11. First magnesium ion dissociation constant, given as pK.
12. Reaction enthalpy of the first magnesium dissociation

The symbol ‘#’ is used to indicate lack of data for a particular entry. When not specified, the pK’s are
assumed to be infinite (no binding) with corresponding dissociation constants equal to zero. Gibbs energies,
enthalpies and dissociation constants are tabulated at 298.15 K, while reactants are tabulated at 0 M ionic
strength and dissociation constants at 0.1 M ionic strength. The sources of the constants are given in the
cell comments.

ReactionDatabase.xls. This file specifies the reference stoichiometry associated with chemical reactions
available in the database. For each reaction, the following information is provided:

1. Detailed name of reaction.

2. Abbreviation used for model description.
3. Stoichiometry of reaction.

4. E. C. Number.

It is important to note three important features regarding the reaction stoichiometries provided in this
file: (1.) the specification is for reference reactions, in terms of the reference species defined in the
reactant database (ReactantDatabase.xls); (2.) protons (designated by ‘H’ in the reaction equations)
appear explicitly as chemical species in reference reactions; (3.) the reactions use the abbreviations defined
in the reactant database (ReactantDatabase.xls). Mismatches between abbreviations used here and those
used in the reactant database will lead to errors; (4.) when specifying the reference reaction one should be
careful that all the operators, coefficients and reactants are separated by spaces.

TransportDatabase.xls. This file specifies the reference stoichiometry associated with chemical trans-
porters available in the database. For each reaction, the following information is provided:

1. Detailed name of reaction.

2. Abbreviation used for model description.
3. Stoichiometry of reaction.

4. Charge translocated by the transporter.
5. E. C. Number.

Each reference transport reaction involves two compartments. The two compartments are specified in
the stoichiometric equation using the identifiers ‘(1) and ‘(2)’ following each species abbreviation. For
example, the stoichiometric equation

ATP(1) = ATP(2)



indicates that ATP is transported from the first to the second compartment. The charge entry indicates
how many charges are transported from compartment 2 to compartment 1. Therefore, for example, the
stoichiometric equation

ATP(2) + ADP(1) = ATP(1) + ADP(2)

has associated with it a charge translocation value of —1, meaning that one charge is translocated from
compartment 1 to 2 every time this transport reaction turns over. This reaction actually involves exchang-
ing an ATP (with charge —4) for an ADP (with charge —3), for an overall transfer of —1 from compartment
2 to 1. Please note that when a transport process occurs at a porous membrane, which is highly permeable
to small-size ions, the charge entry for that transport process is adjusted to 0.

When a transporter transports a reactant that is bound to an ion use square brackets to include the ion
transport. An example of this is the proton transported along with glutamate in the glutamate/aspartate
anti-transporter.

[H](2) + glutamate(2) + aspartate(1) = [H](1) + aspartate(2) + glutamate(1)

2.2 Model Component Modules for Enzymes and Transporters

The directories ‘BiochemicalReactions’ and ‘Transporters’ contain files that provide computational models
to simulate the kinetics of individual enzymes and transporters. The format and specifications of these
files are described below.

Biochemical Reactions

This directory contains a file for each reaction specified in the reaction database ReactantDatabase.xls.
The file names are the reaction abbreviations with the file extension ‘.txt’. For example, the kinetic model
module for the creatine kinase reaction is provided in the text file ‘CK.txt’.

Each of these reaction files list the equations required to simulate the kinetics of the enzyme. To ac-
count for multiple model versions and allow for nonreacting allosteric species to influence reaction kinetics,
the model syntax makes use of a number of keywords. These keywords are listed below:

Keyword Meaning

model This keyword indicates the beginning of a new model version for a particu-
lar enzyme or transporter. The keyword ‘model’ is followed by an identifier
associated with the model. A few lines of text can optionally be specified to
describe the model, as long as they do not contain any keywords.

allosteric_reactants Reactants that do not appear in the biochemical reaction but may influence the

reaction’s kinetics must be listed as allosteric reactants following this keyword.
equations The model equations, using matlab syntax are listed following this keyword.
EOF Indicates the end of the file




In addition the protected variable names used in the model equations are listed below:

Protected Variable Meaning

J This variable is use to specify the flux through the reaction. Each submodel
must specify the resulting flux.

Keq This variable references the apparent equilibrium constant for the reaction or
transporter.

unspecified This keyword, when appearing in the model equations, indicates the introduc-
tion of an unspecified model parameter.

Kyx This variable indicates the dissociation constant of species X with ion Y. For
example Kh_ATP will refer to the proton dissociation constant of ATP.

Px This variable indicates the binding polynomial of reactant x. The binding
polynomial can be used to compute a specific species concentration.

h, m, k These variables reference the proton, magnesium and potassium concentration.

\% The volume of this compartment

Reactant Abbreviations | Each reactant concentration is referenced by its abbreviation.

To illustrate how these keywords and protected variable names are applied, consider the following
examples.

The file ‘CK.txt’ contains the following text:

model E.CK.O
equations

k1_CK = unspecified;
J = k1_CK*(phosphocreatine*ADP - creatine*ATP/Keq);

model E.CK.1
equations

x_CK = 1e7;

CRtot = 42.7e-3;

K_CK = exp(50.78/RT);

Cr_c = CRtot - phosphocreatine;

ATP_c1 ATP * 1/P_ATP; % Mg2+ unbound species;

ADP_c1 = ADP * 1/P_ADP; Y, Mg2+ unbound species;

J = x_CK * (K_CK*ADP_clxphosphocreatine*h - ATP_c1*Cr_c );

EQF

In this case, there are two possible models of this enzyme, E.CK.0 and E.CK.1, that may be invoked when
building a model including creatine kinase. The first one is a simple mass action model, while the second
model invokes more complex reaction kinetics.

In model E.CK.0 the apparent rate constant for the reaction ‘k1_CK’ is a parameter with an unspecified
value. Model E.CK.1 invokes no unspecified parameters.



The E.CK.0 model invokes the protected variable name Keq, which the model-builder will recognize
as the apparent equilibrium constant for the CK reaction. That means that the variable Keq in the
flux expression will be replaced with the apparent equilibrium constant, computed as a function of ionic
strength, temperature, pH, and metal ion concentrations in the kinetic model. The second model uses
a user-specified equilibrium constant variable K_CK, which is set to a constant value, and therefore not
computed using the built-in thermodynamic database or adjusted for the possibly variable biochemical
state of the model.

The dissociation constants and binding polynomials can be used to compute specific species. For
example, the magnesium bound ATP concentration can be calculated as follows:

MgATP = (ATP/P_ATP)*(m/10" (-Km_ATP))) .

Transporters

The transporter files are similar in terms of structure and keywords. However, in the case of a transporter,

each state variable name is followed by a compartment number. In these equations, the compartment

number is defined so that (1) refers to the from compartment and (2) refers to the destination compartment.
An example of this is a model for the permeation of glutamate.

model T.GLUPERM.O
equations

x_GLUPERM = unspecified;
J = gamma * x_GLUPERM * (glutamate(l) - glutamate(2));

EQF

2.3 MATLAB Scripts for Generating Models

The M-files included with the BISEN model-building package are listed in Table 2.1. The file names in
italics are files required by the builder. These files are organized in sub-folders in the package distribution
and should be in the current path wherever the user chooses to work.



File Name

Description

BuildDXDT.m

setParameter.m

generateParameterset.m

validateParameters.m

checkPools.m
validateParameters.m

IndextPHMK.m

conservationMatriz.m
readReactionEntry.m

read TransportEntry.m
str2array.m
IonTempCorr.m

convertKi.m

getISCEF.m
BISENlogo.m
appendCompName.m

This is the main program for parsing a model described in the modular
Biochemical Scripting Language (BSL) into a set of differential equa-
tions coded in a MATLAB M-file function. The syntax for running this
program and the syntax and features of the input and output files are
described in Section 3.

This file can be used for adjusting model constants and setting initial
conditions by name rather than index.

This file can be used to generate a human-readable m-file that returns
the supplied parameter vector.

This file can be used to check a parameter or initial condition vector for
validity.

This file is used for checking the conserved pools of a model.

Checks whether the current parameter set is sufficient for the model.
It will throw an error when something is missing and identify what is
missing.

Used by the builder to replace binding polynomials and dissociation
constants with the correct variables when parsing submodels.
Computes the conservation matrix

Reads a reaction submodel and parses the content replacing the equi-
librium constant keyword with the equilibrium constant variable name
specific for the current reaction. Also substitutes the flux and 0¥ vari-
ables in a similar manner.

Similar to readReactionEntry, parses transporter submodel however.
Convert a string into a cell array.

Corrects Gibbs energy change of reaction for temperature and ionic
strength.

Computes the equilibrium constant from pKa taking into account the
desired ionic strength and temperature.

Computes the factors needed for IonTempCorr.m and computeKi.m
Used for displaying the BISEN logo

Used by the builder to append the compartment names to state variables
in equations.

Table 2.1: M-files included in the BISEN package
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Chapter 3

Creating Biochemical Systems Models

Systems models are specified using the Biochemical Scripting Language (BSL), which facilitates simple
flexible and modular specification of complex models.

A BSL file lists the compartments that make up a model, along with the enzymes present in each
compartment and transporters that transport mass between compartments. BSL files use several keywords
that demarcate different input sections of the file:

11



Keyword Meaning

ionic_strength This keyword is followed by a value which specifies the ionic strength of the
solution. If omitted an ionic strength of 0.17 M (estimated from a muscle cell)
is assumed. Note that this optional keyword has to be specified at the start
of the bsl file.

temperature This keyword is followed by a value which specifies the experimental tempera-
ture in Celsius. If omitted a temperature of 37.0°C (i.e. 298.15°K)) is assumed.
Note that this optional keyword has to be specified at the start of the bsl file.
globals The first lines after the optional ionic strength and/or temperature setting
can be used for parameters that can be accessed by all submodels. Regular
matlab code is acceptable in this first section. Here the keyword unspecified,
specifies that value will become a model parameter (e.g. Ca = unspecified;).
export The keyword export can be used at the end of the section where globals are
specified to export any internal variables. The model will only export the
value that was assigned to the variable last.

compartment Entries following this keyword define a compartment name and volume fol-
lowed by a list of the enzymes to be included in the specified compartment.
transport Entries following this keyword define two linked compartments and list the

transporters to be included in the model. Note that all compartments have to
be defined before defining transporters.

clamped After specifying the list of reactions or transporters, in a compartment or
transport block certain concentrations can be specified as clamped using this
keyword. Clamping a variable means manually setting the time derivative to
zero. In the case of a transport field, this will clamp the state variable in
both compartments. If the parser is unable to find the value that needs to be
clamped it will throw a warning, but continue parsing nontheless.

permeate This keyword is used to specify species or ions that passively permeate across
compartment barriers. These species are not affected by the compartimental-
ization.

EOF This keyword indicates the end of a file.

3.1 Example 1: ATP Hydrolysis

As a fist simple example, consider building a one-compartment model including the ATP hydrolysis reac-
tion. A model of this system is specified in the BSL model file ‘Examplel.bsl’, which is distributed with
the BISEN Package. This file contains the following entries:

compartment A 1.0 1.0
ATPASE E.ATPASE.O
EQF

Since no commands appear between the start of the file and ‘compartment’, no global model variables are
declared. The ‘compartment’ command declares a compartment, labeled ‘A’, with water content 1.0 and
fractional region volume 1.0. Following the compartment declaration, one reaction (ATPase) is listed, with
the kinetic model E.ATPASE.O specified.

The ATPASE reaction is found in the Reaction Database, and the model E.ATPASE.O is specified in
the biochemical reaction module ATPASE.txt. The model generating engine is called to parse this BSL
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model into a MATLAB ordinary differential equation script using the following syntax.

modelInfo = BuildDXDT(’Examplel.bsl’,’dXdT.m’);

The program BuildDXDT.m is passed two input strings, specifying the input BSL file and the name of the
output M-file that is to be built. In this case, the automatically constructed output M-file dXdT.m has
the following contents.

% function [f,J,] = dXdT(t,x,T,BX,K_BX,par)
yA

b

yA

% Output parameters:

% f time derivatives of the model
hooJ flux

yA

b

% Mandatory input parameters:

hoot time
hoox state variables at t=0
h T temperature in degreesCelcius

% BX buffer sizes

% K_BX proton buffer dissociation constants ( A )
% par parameter vector for the free parameters
b

h

i State Variables:

% [ATP_A , ADP_A , Pi_A ]

b

h

% Free Parameters:

% [k1_ATPASE ]

function [f,J,varargout] = dXdT(t,x,T,BX,K_BX,par)
%% GLOBAL VARIABLES

%% LIST OF STATE VARIABLES

% 1 ATP_A

% 2 ADP_A

% 3 Pi_A

% 4 h_A

% 5 m_A

% 6 k_A

Ok WN -

% PARTIAL VOLUME FRACTIONS
VWater_A = 1; % [=] 1 water (1 region)~{-1}, Vinnakota and Bassingthwaighte, AJP, 2004
VRegion_ A = 1; % [=] 1 region (1 tissue) {-1}, Vinnakota and Bassingthwaighte, AJP, 2004

13



%7 THERMODYNAMIC DATA

RT = 8.314%(T+273.15)/1e3; % kJ mol~{-1}
F = 0.096484; % kJ mol~{-1} mv~{-1}

%% STATE VARIABLES

% Concentrations of Reference Species

ATP_A = x(1);

ADP_A = x(2);

Pi_A = x(3);

% Concentrations of H, Mg, and K
h_A = x(4);

m_A = x(5);

k_A = x(6);

% Membrane potentials

%% DISSOCIATION CONSTANTS

% ATP_A

Kh(1) = 2.7990983755242071e-007;
Km(1) = 0.00010815244062499601;
Kk(1) = 0.097055055483606045;

% ADP_A

Kh(2) = 4.1856568564882887e-007;
Km(2) = 0.00088211913575503352;
Kk(2) = 0.13114858875318428;

% Pi_A

Kh(3) = 2.1306351186738022e-007;
Km(3) = 0.032137949367841569;
Kk(3) = 0.37888645618434613;

%% BINDING POLYNOMIALS

P(1) =1 + h_A/Kh(1) + m_A/Km(1) + k_A/Kk(1);
P(2) =1 + h_A/Kh(2) + m_A/Km(2) + k_A/Kk(2);
P(3) =1 + h_A/Kh(3) + m_A/Km(3) + k_A/Kk(3);

%% THERMODYNAMIC EQUATIONS
DGro_ATPASE =4.5083;

Keq_ATPASE_A = exp(-DGro_ATPASE/RT)/P(1)*P(2)*P(3)/h_A;
%% FLUX EQUATIONS

%ATPASE_A

k1_ATPASE=par (1) ;
J_ATPASE_A=k1_ATPASE*(ATP_A—ADP_A*Pi_A/Keq_ATPASE_A);

%% REACTANT TIME DERIVATIVES

14



£(1,:)
£(2,:)
£(3,:)

%% ION

= (0 - 1*xJ_ATPASE_A ) / VWater_A; % ATP_A
(0 + 1xJ_ATPASE_A ) / VWater_A; % ADP_A
(0 + 1xJ_ATPASE_A ) / VWater_A; % Pi_A

EQUATIONS

% COMPARTMENT A:
ii = [1 2 3]; % Indices of SVs in compartment A
% PARTIAL DERIVATIVES

pHBpM = -sum( (h_A*x(ii)’./Kh(ii))./Xm(ii).*P(ii)."2) );

pHBpK = -sum( (h_A*x(ii)’./Kh(ii))./(Kk(ii).*P(ii)."2) );

pHBpH = +sum( (1+m_A./Km(ii)+k_A./Kk(ii)).*x(ii)’./(Kh(ii).*P(ii)."2) );
pMBpH = -sum( (m_A*x(ii)’./Km(ii))./(Xh(ii).*P(ii)."2) );

pMBpK = -sum( (m_A*x(ii)’./Km(ii))./(Kk(ii).*P(ii)."2) );

pMBpM = +sum( (1+h_A./Kh(ii)+k_A./Kk(ii)) .*x(ii)’./(Km(ii).*P(ii)."2) );
pKBpH = -sum( (k_A*x(ii)’./Kk(ii))./(Kh(ii).*P(ii)."2) );

pKBpM = -sum( (k_A*x(ii)’./Kk(ii))./Xm(ii).*P(ii)."2) );

PKBpK = +sum( (1+h_A./Kh(ii)+m_A./Km(ii)).*x(ii)’./(Kk(ii).*P(ii)."2) );
% PHIs

J_H = (0 + 1xJ_ATPASE_A) / VWater_A;

J_M = (0) / VWater_A;

J_K = (0) / VWater_A;

Phi_H = J_H - sum( h_A*f(ii)’./(Kh(ii).*P(ii)) );

Phi_M = -sum( m_A*f(ii)’./(Km(ii).*P(ii)) );

Phi_K = J_K -sum( k_A*f(ii)’./(Kk(ii).*P(ii)) );

% ALPHAs

aH = 1 + pHBpH;

aM

1 + pMBpM;

aKk = 1 + pKBpK;

% ADDITIONAL BUFFER for [H+]

aH = 1 + pHBpH + BX(1)/K_BX(1)/(1+h_A/K_BX(1))"2; % M

% DENOMINATOR

D = aH*pKBpM*pMBpK + aK*xpHBpM*pMBpH + aM*xpHBpK*pKBpH - ...
aM*xaK*aH - pHBpK*pKBpM*pMBpH - pHBpM*pMBpK*pKBpH;

% DERIVATIVES for H,Mg,K

£f(4,:)

£(5,:) =

f(6,:) =

= ( (pKBpM*pMBpK - aM*aK)*Phi_H + ...
(aK*pHBpM - pHBpK*pKBpM)*Phi_M + ...
(aM*pHBpK - pHBpM*pMBpK)*Phi_K ) / D;
(aK*pMBpH - pKBpH*pMBpK)*Phi_H + ...
(pKBpH*pHBpK - aH*aK)*Phi_ M + ...
(aH*pMBpK - pHBpK*pMBpH)*Phi_K ) / D;
(aM*pKBpH - pKBpM*pMBpH)*Phi_H + ...
(aH*pKBpM - pKBpH*pHBpM)*Phi_M + ...
(pMBpH#*pHBpM - aH*aM)*Phi_K ) / D;

|
~

|
~

%% ELECTROPHYS EQUATIONS
%% FLUX VECTOR:
J = [ J_ATPASE_A];

15



This file describes a complete model to simulate ATP hydrolysis in a well-mixed aqueous solution. The
function accepts several input variables and outputs the time derivatives of the state variables and the
flux for the chemical reaction, as detailed in the function header. For this example BISEN model builder
creates a model with six state variables: the three reactant concentrations, ATP, ADP, and Pi, and the
three ion concentrations, [H*], [Mg?*], and [K*]. These state variables and there indices are listed in the
comments generated for the model file. (See ‘LIST OF STATE VARIABLES’.)

Using one of the built-in ordinary differential equation solvers in MATLAB, it is fairly straightforward
to simulate this model. The steps are: (1.) Set buffering constant and biochemical state parameters; (2.)
Specify initial values for the state variables; (3.) Run the simulation; and (4.) Plot the results. For this
model, to generate the simulations results illustrated in [6], the following commands are used.

%% Setting up and running Example 1
% (1.) Setting parameter values (no buffering)

B.X =0; % Additional proton buffering capacity

K_BX = 1le-7; % Dissociation constant of additional proton buffer
par(1) = 0.1; % k (kinetic constant for ATP hydrolysis)

T = 25; % Temperature

% (2.) Setting initial values

xo(1) = 10e-3; % [ATP] (M)
x0(2) = 0; % [ADP] (M)
x0(3) = 0; % [Pil (M)
xo(4) = 1le-7; % [H] (D
xo(5) = 1e-3; % [Mg]l (D
x0(6) = 150e-3; % [K] (M)

% (3.) Running for 15-second time course

[t,x] = ode45(@dXdT, [0 15],xo0,[],T,B_X,K_BX,par);

% (4.) Plotting results

figure(1); p = plot(t,x(:,1)*1e3,’k-",t,x(:,2)*1e3,’k-",t,x(:,5)*1e3,’k-");
set(p,’linewidth’,1.5);

text (2,9, [ATP]’, Fontsize’,14);
text(2,3.5,° [ADP]’, ’Fontsize’,14);

text (5,2.3,° [Mg~{2+}]’, ’Fontsize’,14);
ylabel(’Concentration (mM)’,’Fontsize’,14);

xlabel (’Time (sec)’,’Fontsize’,14);

set(gca, ’Fontsize’,14);

figure(2); plot(t,-logl0(x(:,4)),’k-’,’linewidth’,1.5);
ylabel (’pH’, ’Fontsize’,14);

xlabel (’Time (sec)’,’Fontsize’,14);

set(gca, ’Fontsize’,14);

Note that this script uses the built-in MATLAB ODE integrator function ode45, which is reasonable suited
to this application. Other integrator functions are available in MATLAB and from third-party sources.
More information can be found, for example, by typing doc ode45 at the MATLAB command prompt.
For debugging purposes, a file with the extension .log is also generated, which describes the computa-
tion of the Gibbs energies of reaction and the applied temperature and ionic strength corrections. Here,
the values of the indicated variables are denoted between the square brackets and the stoichiometry is
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shown between parentheses. This can be helpful when problems arise when new data is added to the re-
actant database. The initial lines show the untransformed Gibbs energies of formation and the associated
stoichiometries of the reactions. These are followed by the ionic strength correction on both the enthalpy
change of the reaction and the Gibbs energy change of the reaction. Finally temperature correction is done
using the transformed enthalpy.

Reaction: ATPASE
0 + (-1)dG_ATP[-2768.100] + (-1)dG_H20[-237.190] + (1)dG_ADP[-1906.130] +
(1)dG_Pi[-1096.100] + (1)dG_H[0.000]
0 + (-1)dH_ATP[-3619.210] + (-1)dH_H20[-285.830] + (1)dH_ADP[-2626.540] +
(1)dH_Pi[-1299.000] + (1)dH_H[0.000]
Ionic strength correction: DrG[3.060000] - beta_G[0.724132] * Q[-2.000000]
= 4.508263
Ionic strength correction: DrH[-21.973592] - beta_H[0.368398] * Q[-2.000000]
= -21.236796
Temp correction: drG = (1-Tn[298.15]/To[298.15]) * drH[-21.2368]
+ (Tn[298.15]1/T0o[298.15]) * drG = 4.508263

This section is followed by a section outlining the temperature and ionic strength corrections on each of
the pK values.

ATP
pKH
Tonic strength correction: pKa_in[6.710] + beta_K[-0.020] * z[8.000] = 6.553
Ionic strength correction: dHr[-2.000] + beta_H2[0.057] * z[8.000] = -1.544
Temperature correction: pKa + (1/T_new[298.150]1-1/T_01d[298.150]) *
drH[-1.544]/2.3026%R = 6.553
pK = 0.000
pKM
Ionic strength correction: pKa_in[4.280] + beta_K[-0.020] * z[16.000] = 3.966
Tonic strength correction: dHr[-18.000] + beta_H2[0.057] * z[16.000] = -17.088
Temperature correction: pKa + (1/T_new[298.150]1-1/T_01d[298.150]) *
drH[-17.088]/2.3026*R = 3.966
pK = 0.000
pKK

Ionic strength correction: pKa_in[1.170] + beta_K[-0.020] * z[8.000] = 1.013
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Tonic strength correction: dHr[-1.000] + beta_H2[0.057] * z[8.000] = -0.544
Temperature correction: pKa + (1/T_new[298.150]1-1/T_01d[298.150]) =*
drH[-0.544]/2.3026%R = 1.013

pK = 0.097

Methods behind these calculations are explained in section 6.5.
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Chapter 4

More Examples

This chapter presents two more examples of increasing complexity. This first is a two-compartment systems
with two enzymes and two transporters; the second is the large-scale model of mitochondrial metabolism
of Wu et al. [9].

4.1 Example 2: A Two-Compartment System with a Membrane Po-
tential

In this section we detail how to build and simulate the model illustrated in Figure 4.1 described in [6].
This model includes two compartments: Two reactions occur in the top compartment, ATP hydrolysis
and the creatine kinase (CK) reaction. Protons (HT) and adenine nucleotides (ATP*~ and ADP3~) are
transported between the two compartments via the F1Fy-ATPase and the adenine nucleotide translocase
(ANT), which are described in the transporter database.
To build the model, we construct the following BSL file (‘Example2.bsl’) that defines two compart-
ments, labeled cytoplasm and matrix:

compartment cytoplasm 0.8425 0.4970
ATPASE E.ATPASE.O
CK E.CK.O

compartment matrix 0.6514 0.2106
transport cytoplasm matrix
ANT T.ANT.1

F1FOATPASE T.F1FOATPASE.O

EQF

Again, there are no global model parameters. The first line defines a compartment called ‘cytoplasm’
with water content 0.8425 mL water/(mL cytoplasm) and fractional volume 0.4970 mL cytoplasm/(mL
cardiac tissue). Please note that the users may define water content and volume fraction values in an
alternative way, as long as it is consistent with the units of reaction/transport fluxes and reactant con-
centrations in different compartments. The enzymes ATPASE and CK are specified in this compartment.
A second compartment called ‘matrix’ is defined after the list of enzymes belonging to the compartment

19



‘cytoplasm’. There are no non-transport reactions defined in this compartment. The transport line in the
BSL file defines a list of transporters between the cytoplasm and matrix compartments.

transport cytoplasm matrix

The list of transporters that follow the transport declaration defines the ANT and F1FOATPASE
transporters, with kinetic modules T.ANT.1 and T.F1IFOATPASE.O, respectively.
The BSL file can be used to generate an M-file model:

ModelInfo = BuildDXDT(’Example2.bsl’,’dXdT.m’);

The constructed M-file (dXdT.m), which is not listed here, has 265 lines. Thus even for a relatively
simple model, the utility generating complex code from relatively simple BSL-based declaration is appar-
ent. The generated model can be simulated using the following commands.

%% Simulating Example 2
% (1.) Setting parameter values (no buffering)

B_X(1:2) = 1; % Buffer capacity in both compartments
K_BX(1:2) = le-7; % Buffer dissoc. constant in both compartments
T = 25; % Temperature

% Enzyme and transporter activities:

par(1) = 0.1; % k_ATPase (cytoplasm)

par(2) = 100.0; % k_CK (cytoplasm)

par(3) = le-4; % k_ANT

par(4) = le-3; % F1FO ATPase

par(5) = le-5; % membrane capacitance

% (2.) Setting initial values
xo (1) 10e-3; % ATP_cytoplasm
x0(2) = 0; % ADP_cytoplasm
x0(3) = 0; % Pi_cytoplasm

x0(4) = 10e-3; % phosphocreatine_cytoplasm
xo(5) = 10e-3; % creatine_cytoplasm

x0(6) = 0; % ATP_matrix

xo(7) = 10e-3; % ADP_matrix

x0(8) = 5e-3; % Pi_matrix

x0(9) = le-7; % h_cytoplasm

x0(10) = 1le-3; % m_cytoplasm

xo(11) = 100e-3; % k_cytoplasm

x0(12) = 1e-7; % h_matrix

x0(13) = 1e-3; % m_matrix

x0(14) = 100e-3; % k_matrix

x0(15) = 0; % DPsi_cytoplasm_to_matrix

% (3.) Running for 15-second time course

[t,x] = ode23s(@dXdT, [0 60],x%0,[]1,T,B_X,K_BX,par);
figure(1); plot(t,x(:,15))
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Figure 4.1: Example 2: Top left shows the two-compartment system with ATP hydrolysis, F1Fy-ATPase,
adenine nucleotide translocase (ANT), and creatine kinase (CK). This model is built from the BSL file
‘Example2.bls’, as described in Section 4.1. Top right and bottom left show the time courses of ADP and

ATP in the matrix and cytoplasm respectively. Bottom right shows the time course of the membrane
potential.

The simulated timecourses of several of the variables are illustrated in figure 4.1. In the initial state,
there is a concentration gradient driving ATP into the matrix and ADP out. An exchange of cytoplasmic
ATP for matrix ADP is associated with the reverse operation of the ANT transporter. Subsequent build-up
of ATP in the matrix leads to reverse operation of the F1F0-ATPase transporter. (The forward operation
direction is defined by the arrow directions in the model diagram in the top left panel of 4.1). ANT and
F1F0-ATPase operating in reverse mode both lead to a net transfer of positive charge from the matrix side
to the cytoplasmic side of the membrane, resulting in an increase in AW, which is defined as the potential
difference, cytoplasm potential minus matrix potential. Eventually, as ATP is consumed in the cytoplasm,
the membrane potential begins to diminish.
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4.2 Example 3: Computer Model of Mitochondrial TCA Cycle and
Oxidative Phosphorylation

In this example the BISEN implementation of the large scale computational model of mitochondrial ox-
idative phosphorylation by Wu et al. [9] is presented. Kinetic modules based on the original paper were
constructed and the reaction, reactant and transport databases were set up using thermodynamic data
from [9] and [1].

The model contains the following compartments and associated water contents and fractional volumes
as shown in Table 4.1. W, is the ratio of buffer volume to mitochondrial volume and equal to 80 for
the LaNoue experiments and 800 for the Bose experiments. An overview of the included reactions is

Compartment ‘ Water content ‘ Fractional volume
Matrix (matrix) 0.6514 (Mhuater) [1/(1 + W) (Hpmita)
Intermembrane Space (IM) 0.0724 L(%ﬁ) 1/(1+ W) (%”%Z)
Cytoplasm/Buffer (cytoplasm) | 1.0 (m) We/(1+We) (Frpmte)

Table 4.1: Model compartments, water contents and fractional volumes

given in table 4.2, while the transporters are given in tables 4.3 and 4.4. Aside from these reactions, the
intermembrane space is permeable to ADP, ATP, AMP, Pi, pyruvate, citrate, alpha-ketoglutarate, malate,
succinate, aspartate and glutamate. Since these permeable species all depend on the same mitochondrial
membrane area per cell volume ratio, this was set to be a global model parameter in the model. Depending
on the actual experimental conditions, the ionic strength and temperature are set at the start of the model
file.

Reaction Abbrev Stoichiometry

Pyruvate Dehydrogenase PDH pyruvate + COAS + NAD + H20 = CO2tot + acetylcoA + NADH + H
Citrate Synthase CTS acetylcoA + oxaloacetate + H20 = COAS + citrate + 2 H

Aconitatse ACON citrate = isocitrate

Isocitrate Dehydrogenase IDH isocitrate + NAD + H20 = ketoglutarate + NADH + CO2tot + 2 H

«a ketoglutarate dehydrogenase | AKGDH | ketoglutarate + COAS + NAD 4 H20 = CO2tot + succinylcoA + NADH + H
Succinyl-CoA synthetase SCS succinylcoA + GDP + Pi = succinate + GTP + COAS + H

Succinate dehydrogenase SDH succinate + coQ = coQH2 + fumarate

Fumarase FUM fumarate + H20 = malate

Malate Dehydrogenase MDH malate + NAD = oxaloacetate + NADH + H

Nucleoside Diphosphokinase NDK GTP + ADP = GDP + ATP

Aspartate Aminotransferase AAT ketoglutarate + aspartate = oxaloacetate + glutamate

Hexokinase HK glucose + ATP = glucose6phos + H

Adenylate kinase AK 2 ADP = ATP + AMP

Table 4.2: The chemical reactions

The membrane between intermembrane space and buffer is fully permeable to protons, potassium and
magnesium. C'Os is clamped in the matrix. Magnesium and potassium are clamped in the buffer, which
causes them to be clamped in the intermembrane space as well (due to the permeate command). In a
similar manner, oxygen is clamped in the entire model.

This leads to the following BSL file for the LaNoue experiments (‘Example3_LaNoue.bsl’):

temperature 28

% Global model parameters
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Name Abbreviation | Out In
Pyruvate/H+ co-transporter PYRH pyruvate + H

Glutamate/H+ co-transporter GLUH glutamate + H
Citrate/Malate anti-transporter CITMAL citrase malate
Ketoglutarate/Malate anti-transporter AKGMAL malate ketoglutarate
Malate/Pi MALPI anti-transporter MALPI malate pi
Aspartate/H-Glutamate anti-transporter | ASPGLU glutamate aspartate
Succinate/Malate anti-transporter SUCMAL succinate malate
Adenine Nucleoside Translocate ANT ADP ATP

Table 4.3: Transporters that merely transport and do not alter the transported species

Name ‘ Abbreviation ‘ Transport

Complex I ETC1 NADH;, + Qin +5H;, = NAD;y, + QHo iy, + 4H e

Complex III ETC2 QHa i, + 2cytotoxoys + 2H;p = Qin + 2cytocredoys + 4H ous
Complex IV ETC3 2cytocredoyt + 0.502 4g,in + 4H;pn = 2cytoredoyys + HoO + 2H oy

F1F0 ATPase | FIFO ATPase | ADP;, + Pi;, + 3H)

U

t + Hm = AT-Pm + HQOout + SHm

Table 4.4: Transporters that do alter the species involved

% mito membrane area per cell volume micron~{-1};

gamma = 5.99;

% minimal parameter value
MinCon = 0;

compartment matrix 0.6514 1/81

PDH E.PDH.1

CTS E.CTS.0
ACON E.ACON.O
IDH E.IDH.O
AKGDH E.AKGDH.O
SCS E.SCS.0
SDH E.SDH.O
FUM E.FUM.O
MDH E.MDH.O
NDK E.NDK.O
AAT E.AAT.O

clamped CO2tot
compartment cytoplasm 1 80/81
HK E.HK.1

clamped M
clamped K
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compartment im 0.0724 1/81

transport im matrix

F1FOATPASE T.F1FOATPASE.O
PYRH T.PYRH.O
GLUH T.GLUH.O
CITMAL T.CITMAL.O
AKGMAL T.AKGMAL.O
MALPI T.MALPI.O
SUCMAL T.SUCMAL.O
ASPGLU T.ASPGLU.O
ETC1 T.ETC1.0
ETC3 T.ETC3.0
ETC4 T.ETC4.0
PIH T.PIH.1

KH T.KH.O

ANT T.ANT.O
HLEAK T.HLEAK.O

clamped 02aq

transport  cytoplasm im

PYRPERM T.PYRPERM. O
CITPERM T.CITPERM.O
MALPERM T.MALPERM. O
AKGPERM T.AKGPERM. O
SUCPERM T.SUCPERM. O
GLUPERM T.GLUPERM.O
ASPPERM T.ASPPERM. O
FUMPERM T.FUMPERM. O
ICITPERM T.ICITPERM.O
ADPPERM T.ADPPERM. O
ATPPERM T.ATPPERM.O
AMPPERM T.AMPPERM. O
PIPERM T.PIPERM.O

permeate H
permeate K
permeate M

EQF

Analogous to [9] datasets from two independent experiments were used to determine the unknown
model parameters. The LaNoue et al. [4] data were measured from isolated rat heart mitochondria in
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resting (state 2) and active state (state 3) with pyruvate and malate or only pyruvate as substrates. The
Bose et al. [3] data were measured from isolated pig heart mitochondria in state 2 and 3, using glutamate
and malate as substrates. The temperature and buffer volume are not the same in both experiments there-
fore both experiments need separate BSL files (‘Example3_LaNoue.bsl’ and ‘Example3_Bose.bsl’, respec-
tively). One can build and carry out both models by running the matlab files Fzample3-LaNoue_state2.m,
Exmaple3_LaNoue_state3.m, and Example3_Bose_state23.m.

4.2.1 Interacting with large scale models

Since large scale models tend to involve many parameters, it is wise to use the routines for managing pa-
rameters supplied with the BISEN package. When a model is built a MATLAB mat file is also generated.
This file contains a structure named modellnfo. This structure relates internal parameters, state variables
and flux indices to their respective names in the model by storing their indices. Using the routine setPa-
rameter enables the user to set and reference model parameters by name rather than index. When the
number of parameters of a submodel change, users will not need to shift parameters or initial conditions
around since the modellnfo structure changes accordingly.
For example, setting the pyruvate concentration in the buffer to 2 mM can be done as follows:

x0 = setParameter( x0, modelInfo.SVarID, ’pyruvate_cytoplasm’ , 2e-3 );

Unspecified parameters can be set in an analogous manner. The activity of hexokinase is an unspecified
parameter named x_HK in the hexokinase submodel. The following line of code turns off hexokinase
activity:

params = setParameter( params, modelInfo.ParID, ’x_HK’, 0 );

If the parameter does not exist, this function will display a warning, but not break execution. Obtaining
the value of a specific parameter, flux or state variable can be done manually using the modellnfo structure.
For example, obtaining the pyruvate concentration in the cytoplasm from a solution vector x can be done
as follows:

pyr = x( :, modelInfo.SVarID.pyruvate_cytoplasm ) ;

If one wishes to store a whole set of parameters in the form of a human readable M-file the routine
generateParameterSet can be used. This uses the modellnfo structure, and a user supplied vector to
generate a m-file which returns the parameter or initial condition vector as output.

To obtain fluxes one needs to simulate the system in a first step and then use the result of such a
simulation to compute the internal fluxes. When additional export parameters are specified in the BSL
file, then the values of these during simulation can be acquired in a similar manner. The following code
shows how to obtain the complex IV flux. Here t and x are the time vector and state variable matrix (the
solution matrix).

for a = 1 : length( t )
[y,J(a,:)] = dXdT( t(a), x(a,:).’, T, BX, K_BX, params );
J_ETC4(a) = J( a, modelInfo.FluxID.ETC4_im_to_matrix );
end

The *.mat’ file is useful in the sense that one does not need to rebuild the model every time MATLAB
is restarted. Simply loading the ’.mat’ file will supply the user with the modellnfo structure.
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4.2.2 Simulating the experiments

To be able to simulate the experiment, the simulation files used in the original paper were ported to
the new framework. These are heavily commented and available in the files Example3_LaNoue_state2.m,
Exmaple3_LaNoue_state3.m, and Example3_Bose_state23.m. As shown in 4.2, 4.3 and 4.4, the model sim-
ulations reproduce both sets of experiments quite well.
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Aside from the differences in physicochemical constants, a few notable differences between the two
model implementations are listed in table 4.5.

BISEN implementation Implementation according to [8]

pH held constant by large proton buffer pH clamped

Temperature correction of metabolite Gibbs en- | No temperature correction of the metabolite
ergy of formation and pKa’s done separately for | Gibbs energy of formation and pKa’s for differ-
both experimental temperatures ent experimental temperatures.

Redundant state variables present Some state variables derived off of total concen-
tration pools.

Table 4.5: Differences between implementations of the model of the TCA cycle and oxidative phosphory-
lation

4.3 Conserved pools

Reaction stoichiometry imposes a constraint on the system, namely that of conserved pools. Conserved
pools always appear as linearly dependent rows in the stoichiometry matrix. Checking the conserved pools
can be beneficial to diagnose problems with the model. The absence of expected conserved pools can
indicate a problem, while fluctuations of pools that should have been conserved can indicate unadequate
solver accuracy.

To be able to check the conserved pools, the conservation matrix of the system is computed in the
builder according to the method proposed by [5]. To be able to use this matrix one can use the command
checkPools. 1f supplied with the modellnfo matrix, this command gives a list of conserved pools. Supplying
the routine with a solution matrix results in an actual estimation of the conserved pool concentration, based
on the summation of its constituents.

checkPools( modelInfo );

For example, after running example 2, one can use the following line of code to inspect the list of conserved
pools and their respective time course (which should be constant).

checkPools( ModelInfo, x, 1, t );

The command, aside from the graphs produced outputs a list of pools and their respective concentration.
As shown below, these concentrations correspond to the initial pool concentrations.

Pool 1 (Avg value: 0.02, Max change: 3.469e-018)
phosphocreatine_cytoplasm
creatine_cytoplasm

Pool 2 (Avg value: 0.01, Max change: 1.735e-018)
ATP_cytoplasm
ADP_cytoplasm

Pool 3 (Avg value: 0.01, Max change: 1.735e-018)
ATP_matrix
ADP_matrix

Pool 4 (Avg value: 0.025, Max change: 6.536e-015)
ATP_cytoplasm
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ATP_matrix
Pi_cytoplasm
phosphocreatine_cytoplasm
Pi_matrix

Max pool change: 6.53644e-015
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Figure 4.2: Comparison of model simulations to state-2 kinetic data. Here measured data points
are shown along with model simulations (solid lines).
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Chapter 5

Further Information

5.1 Where to Get BISEN

BISEN is available from the following location: http://bbc.mcw.edu/BISEN

5.2 Bug Reporting and Tracking

Please report bugs at the following location: http://bbc.mcw.edu/BISEN

5.3 Future Plans

This version of the builder is a first step in the direction of a thermodynamic framework for simulating
biochemical reactions. However, there is some work left to be done.

5.3.1 Additional ion binding

Currently, the framework is set up for 3 ions namely protons, magnesium and potassium. In the current
version the solution of the linear system of equations for computing the time derivatives of these ions is
hard coded. In the future, it could be possible to incorporate an automatic solver for these equations in the
builder to automatically compute the ion equations for 4 or more ions. This way Ca?T and Na*t could be
taken into account. Additional ion binding could be implemented by using the MATLAB symbolic toolbox
to generate the actual expressions or by using an implementation of Cramer’s rule.

5.3.2 Model reduction

Many models contain conserved pools or moieties. A conserved pool effectively means that one of the
variables of the pool is redundant and can be replaced by a linear combination of the other variables. It
is worth investigating whether such a reduction in state variables improves computational performance of
the generated models.

Furthermore, the 'permeate’ command specifies the permeation of two compartments. When this
occurs, only one of the state variables actually has a value associated with it. In the current version the
redundant state variable is not removed from the state variable vector.
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Chapter 6

Thermodynamics of biochemical
reactions

This section gives a very brief overview of the thermodynamics involved in biochemical reactions. It is
based on the theory in [2], [1] and [7].

6.1 Definitions

To be able to treat the theory unambiguously, the following definitions are used throughout this report. A
reactant (e.g. ATP) is basically a compound that can be subdivided into species with a specific binding
(e.g. MgATP?~, ATP*~, HATP3~ etc). A biochemical reaction is a reaction mechanism that is not
stoichiometrically balanced in terms of mass or charge (6.1).

ATP = ADP + PI (6.1)
A reference reaction however is stoichiometrically balanced (6.2).

ATP* 4+ HyO = ADP3~ + HPO> + H* (6.2)

6.2 NPT Ensemble

Biochemical reactions in a biological system are best understood in a constant pressure setting, hence the
choice of the NPT ensemble is made. The relative probability of a state in the NPT system is expressed
in terms of enthalpy (6.3). Here H represents the enthalpy, T the temperature, P the pressure and p the

chemical potential.
dH =TdS —VdP + pudN (6.3)

The probability law for an NPT system is given by (6.4).

Z
Z =Y e (6.5)

p="°
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The average enthalpy of the NPT system is computed as (6.6). And the Gibbs free energy is defined as
G=E-TS+PV or G=H-TS.

. H.e—BH:
H = ZZHW = —%zn[; e PHi| = —%an. (6.6)
H = G- T(mny = -T2 (Dlvy = (5or Dy (©.7)

Using the manipulation briefly outlined in (6.7) it can be derived that the Gibbs free energy can be expressed
as (6.8). Hence a system that minimizes the Gibbs free energy, maximizes Z (probability weighted sum of
states). NPT systems thrive to decrease G.

G = —kgTinZ (6.8)

A general chemical reaction can be expressed in terms of species A; and stoichiometric coefficients v;.
Negative stoichiometric coefficients refer to reactants, while positive ones refer to products. For example
for (6.9), the stoichiometric coefficients would be vy = =5, vy =4 and v3 = 2.

Hence the associated change in Gibbs free energy at constant temperature and pressure would be (6.10)
where ¢ represents the number of times the reaction has progressed. Based on this equation, definition
(6.11) is made.

N
(dG)pr =Y vipds (6.10)
i=1
N,
dG >
ATG = (d_¢)P7T = ;thz (611)

If one assumes that the molecules do not interact in such a way that the energy associated with a given
conformation of one molecule is influenced by the conformation of another molecule in the system then the
following expression can be derived for p (6.12) leading to the expression shown in (6.13). Using Avogadro’s
constant this can be expressed as (6.14) where A,G" is given by (6.15) where A;GY is the free energy of
formation of species i at a specific temperature, pressure and ionic strength.

0 €]
= + kpTin—= 6.12
o=t kpTing (6.12)
3 Cl:
AG=AG+ ) vikpTin [C]l (6.13)
i—1 0
.- (off
AG=AG"+ Y RTIn—" 6.14
2 T (6.14)
Ns
AGY =D 1iAsGY (6.15)
i=1

At equilibrium A, G equates to zero, which results in the well known expression (6.16) for the equilibrium

constant.
N

Keq = =570 _ T[Sy (6.16)
i=1
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Fluxes obey the relationship given in (6.17).
— = eRT (6.17)

6.3 Electrophysiology

Another important phenomenon in biological reactions is the electrostatic potential across cell membranes.
The thermodynamic potential of a chemical process with movement of charge across a membrane is given
by (6.18). Here z; denotes the valence of the charged species, v; the number of ions transported and AV the
electrostatic potential difference between the two compartments separated by the membrane. Furthermore,
N, and kp are the Coulomb and Boltzmann constants.

AV
Ap = A,uo + T Z ViZi + ,ICBTZ Vzl’rl[C]Z (618)

i€inside

Similar to the derivation of (6.14), the equation for the Gibbs free energy can be written as (6.19) and
the apparent equilibrium becomes (6.20). In this equation F' is the Faraday constant which is defined as
the Avogadro constant divided by the Coulomb constant.

N )
AG=AG° —|—Zz/iRTln € + FAU Z ViZi (6.19)
i—1 [Clo iCinside
N,
_ _FAV 1. [Cli
K, = o-acorr-ir 7 [Chiyw 6.20

The biological membrane itself is treated as a capacitor with constant capacitance, leading to the fol-
lowing expression for the membrane potential (A¥) (6.21). This equation assumes a linear current/voltage
relationship and can be used to calculate the change in membrane potential using the charge fluxes across
the membrane.

dAT
Cm? - - Z Ioutward (621)

6.4 Proton and ion binding

Tabulated versions of the equilibrium constant of a reaction are valid for a specific defined state ([HoO =
55.5M and pH = 7|. These concentrations are implicitly incorporated in the standard Gibbs energies. In
an in vitro system however, pH is often not constant. Nor are ion concentrations in the solution. Therefore
the framework needs to take proton and ion binding into account.

The state with ¢ protons bound to reactant L shall be referred to as [LH;]. Considering only proton
binding, the total concentration of L is given by (6.22) and the concentration of L with just one protonation
is given by (6.23). Here K denotes the dissociation constant.

N

[L] = [LH] (6.22)
=0

L) = (L ] (6.23)
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Iteratively accounting for N protonations leads to the general equation (6.24).

[H)'
ngi Kj

The total concentration is then given by (6.25), which relates the total concentration with the least
protonated form of the reactant. This conversion is known as the binding polynomial. In this framework,
the model state variables correspond to the reactants, the sum of all species. Therefore the amount of
proton-bound ATP can be computed as (6.26), where [AT P] corresponds to the model state variable.

[LH;] = [LHo] (6.24)

(L] = [LH) HZH Ly L) Py () (6.25)
ATP]  [H*]

3—
[HATP™) = Parp([HT]) Kii™"

(6.26)

Calculating the K., for the reaction shown in (6.27) results in expression (6.28) with A,G° the Gibbs
free energy change for the reaction.

ATP*” + HyO = ADP* + HPO} + H* (6.27)

8,0 [ADP*|[HPOY|[HY], _ [ADP|[PI][H+] Parp([H*])

Keg =i = (——yrpi— e = C—arp] B p () P ()

This expression can be written in terms of reactant concentrations (in this case [AT P, [PI] and [AT P],
which are state variables) using the binding polynomials. Equation (6.17) can then be used to relate the
forward to the backward flux.

(6.28)

/

Kl =

€q

ADP|[PI)\ . Papp([H))Ppi([HT]) (6.29)

TP e = K [P ()

This method can be extended to account for multiple ion binding by generalizing the binding polynomial
to the expression given in (6.30). Here [Mlz“L] corresponds to any ion.

P(HT), (M7 —HZH (6.30)

]<z i=1 1<t KMlv]

To be able to account for proton and ion binding, one needs to have their respective concentrations.
To be able to obtain an expression for this concentration one needs to consider mass conservation. The
conservation of metal ions can be written as (6.31).

M) = M7

+ +
jitotal jipree) T M hound + M ] (6.31)

j,bound

While the conservation of protons can be expressed as (6.32). Here [H " ],¢ference denotes the protons
present in the reference species and [H fluac] the flux into the compartment.

|Hy,

total] [H]—”’—ree] [Hb—t)und] [H:;ference] [H]—"}ux] (632)

Differentiation with respect to time results in equation (6.33).

+ + p
0= d[Hfree] d[Hl;gund] + d[Hreference] + d[Hflux]
dt dt di dt

(6.33)
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Using the chain rule, the second term can be expanded into (6.34) leading to an equation depending
on both the cation as well as the species derivatives.

diH g OH ) dIHY) | Ol ) AT (O ) dIL]
flt T = 8[Ibf+]d dt ;a[]\;?ﬁ? dt Z a[bLi]d dt (6:34)

J

The reference term is based on the proton stoichiometry of the individual reactions and the respective

flux of that reaction (6.35).
d[H+ ] Nreactions

reference
= — J] 6.35
dt ; Mk (6.35)

The flux term corresponds to the proton flux into the current compartment J/?. Substituting the ex-
panded terms and rearranging equation (6.33) results in differential equations for the proton concentration
(6.36). A similar approach can be used to obtain the differential equations governing the ion concentration
(6.37).

0 M ! Nspecies
d[H+] _ Z ions [Hbouﬁd}] g — Z P bzu]nd] d[L ] + Zk reactions nka + Jt
dt - 1 8[Hbound} (636)
+ =51
o O unal M) A Nopecies O nal d
dMPT) = a[z@bﬂ R gt +
= 6.37
dt 1 d[M bound] ( )
sl

If all the terms are known, then these equations can be solved as a linear system of equations to
obtain the uncoupled time derivatives of the protons and ions. Under the assumption that ion binding is a
rapid equilibrium process one can write the terms in front of the time derivatives in terms of dissociation
constants, reactant concentrations and binding polynomials. If one assumes higher order binding negligible
by choosing the reference state appropriately for the physiological range then the resulting terms will
become (6.38) to (6.42). Here [M]ZJ ] corresponds to the concentration of ion M7+

NTE(ZC ants [Ll} [H+]
O Hypunal _ Zt: ' K7 (6.38)
zi+ M ; Zx ’
oM o K (B([HT, [ME))?
Nions [MZJ+]
8[H+ ] Nreactants [L’L](]‘ + Zj:l Kjf\/fj )

Y T & RAG(ETLE )P (6:39)

=1
M hundl NZ [L][[(Lﬁ o
JHT T & KF(BR(HL M) '
oMt Nreactants %
] T L KR e (6.41)
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l+

_ . |
a lw ?J+ Nreactants [ ]( _|_ ! ons )

M, ounal = Z 2 KM 6.22)

oM7) = KN(P(HY] M)

Where the binding polynomial accounting for first order bindings only (6.43) is based on the general
expression (6.30).

+ Mt
+ Ze+1) [H] J
POHT] M) =14+ 2o + P (6.43)
) j i

In the present work, the system is set up for 3 ions namely H+, K+ and Mg**.

6.5 Temperature and ionic strength dependence

As mentioned earlier, the change in Gibbs energy of a reaction can be calculated according to (6.44).
Similarly the change in enthalpy can be calculated according to (6.45).

N,

= iG] (6.44)
N,

AH = v;ApH, (6.45)
=1

Assuming that the enthalpy is independent of temperature (which is reasonable over the physiological
range [1]), then the binding affinities can be temperature corrected by means of the enthalpy of the involved
reactants (6.46).

Kp,  AHYT, —Th)

l = 6.46

"Kr, RTlTQ (6.46)

Using the definition of pKa (6.47) and the fact that log Togio(e) = = 2.3026, this equation can be rearranged into
(6.48).

pKa = —logio(Ka) (6.47)

1 1) A, HO
T, T,’2.3026R

The effects of ionic strength on pK can be approximated using the relation (6.49). Here ) VZ'ZZZ refers
to the change in 222 due to the dissociation.

pKap, = pKar, + (= (6.48)

1 1
« 12 12
pKa[2 = pKah + s ( ! 1 2 1 ) Z Vizzz (6'49)
2.303 3 3
14+ 1.6I7 14 1.61;
ax = 1.10708 — 1.54508 % 10737 + 5.95584 % 10~ 572 (6.50)

The enthalpy itself is also a function of the ionic strength of the solution. The effect of ionic strength
can be described by the following empirical equation (6.51).

apl? S w22

AH = AHY(T =0) + .
14 1.612

= AHYI =0)+ Bp(T.1)> vz} (6.51)
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7 = —1.28466 * 107572 4 9.90399 107873 (6.52)
1

. OzH(T)15

1+ 1.62

The free energy of formation also depends on ionic strength. This dependence is approximated by
(6.54).

(6.53)

1
acl2 Y vz?

AGY = A,GY(I=0)— = AGUI =0) = Ba(T, 1)) vz (6.54)
14+1.612
ag = RTax = 9.20483 + 10737 — 1.28467 + 107°T% 4+ 4.95199 % 105 » T3 (6.55)
1
T)Iz
L)i (6.56)
1+ 1.612

These empirical formulas are based on the assumption that the heat capacities are zero [1].

The effect of temperature on the Gibbs energy, assuming that the enthalpies are approximately constant
is given by (6.57) [2]. Due to the linearity, one can substitute the reaction enthalpy and reaction Gibbs
energy change in this equation.

T: T:
AGTy) = (1 - Tj) AsH? + ?jAfG?(Tl) (6.57)

6.6 Carbon dioxide

Carbon dioxide does not significantly bind to metal ions or protons itself, but can be hydrolyzed to HoCOs3
via the reaction (6.58). Protons can dissociate from HoCOs.

COy + HyO = HyCOs (658)

It is convenient to express apparent thermodynamic properties in terms of total C'O2, which is defined as
(6.59)
) CO,) = [COs) + [HoCOs] + [HCO; | + [CO3] (6.59)

Writing down the expression containing the binding polynomial for carbon dioxide leads to (6.60), where
it can be seen that 3" COy is expressed in terms of [CO3].

[H+] [H*)? [H*)?
K KKy KpKiK»

) €O, =[CO57](1+ (6.60)
Here Kj, refers to the formation of Ho(C'O3 from water and carbon dioxide. Because of the fact that the
total carbon dioxide is now expressed in terms of [C’ng], the water and protons involved need to be taken

into account in terms of stoichiometry.
For the reaction (6.61) this would lead to the sum of (6.62) and (6.63), which is given by (6.64).

Y A=) B+ CO, (6.61)

A= B+CO, (6.62)
COy + HyO = CO3~ +2H™ (6.63)
A+ HyO=B+CO; +2H" (6.64)
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