
Robbie the Robot User Manual  version 2001.08.31 

  Page 1 of 7 

Robbie the Robot 
 
Robbie is the entry-level model in the RUR line, offering simple mobility and a single claw for grabbing and 
carrying objects that weigh up to 10 kg.   
 
Robbie may be controlled by programs written in the Robbie Language, described later in this document.  Robbie 
can store and execute Robbie Language programs of any length.  Unfortunately, Robbie does not deal well at all 
with incorrect programs.  In fact, if Robbie attempts to execute a program that contains a syntax error, Robbie will 
explode.  Such failure is NOT covered by the warranty, nor is RUR liable for any resulting environmental 
contamination. 
 
 
Robbie Features 
 
 
 
 
 
 
 
 
 
Robbie is powered by a small quantum reactor, which provides enough energy for Robbie to operate for an 
essentially unlimited amount of time.  For movement, Robbie has four independent drive wheels, which incorporate 
the latest in high traction technology, enabling Robbie to climb surfaces at any angle (including ceilings).  Robbie 
has two sensors, mounted fore and aft, for detecting contact with immovable objects. 
 
Robbie has a dorsal control module, which includes optical sensors and communications antennas.  A ventrally 
mounted claw allows Robbie to pick up objects that lie beneath his central body, carry those objects, and put them 
down.  The claw can be extended to any distance below Robbie, and can lift and carry weights up to 10 kg.  An 
integrated scale allows Robbie to determine the weight of an object, in 1g increments. 
 
Robbie also includes a simple sound system, which can generate frequencies in the range 60Hz to 30,000Hz. 
 
 
A Sample Program in Robbie Language 
 
The Robbie Language, RL for short, allows the user to program Robbie to perform a variety of tasks.  RL bears 
some resemblance to traditional high-level languages, such as Pascal or C, but is much simpler.  The following RL 
program causes Robbie to pace back and forth in a straight line forever (not terribly useful, really): 
 

program "Pace Forever" ; 1: program name
start ; 2: begin executing the program

while true do ; 3: do the following instruction forever:
forward 50 ; 4: move forward 50 cm
turn left 180 ; 5: turn right 180 degrees (about-face)

endwhile ; 6:
stop ; 7: stop executing the program

 
RL programs may contain comments as shown above.  Any text that follows a semi-colon on a line is considered to 
be a comment (useful to human readers, but not part of the instructions Robbie will execute). 
 
Line 1 begins the RL program, specifying a name for the program.  The name has no special significance in RL, and 
is actually optional, but it is good practice to give RL programs descriptive names. 
 
Lines 2 and 7 mark the beginning and end of execution of the RL program body.  Both are required for every RL 
program.  An RL program may contain multiple stop instructions, but only one start instruction. 



Robbie the Robot User Manual  version 2001.08.31 

  Page 2 of 7 

 
Line 3 begins a while loop, and line 6 marks the end of the while loop.  The body of the while loop (the 
instructions between lines 3 and 6 here, is executed repeatedly as long as the condition specified in the while loop 
header (line 3) is true.  Lines 4 and 5 specify the actions that Robbie should take during each pass through the 
while loop. 
 
This example program illustrates only a small part of the RL language.  The following section provides a more 
detailed look at the various elements of RL. 
 
 
RL: the Robbie Language 
 
Typographical convention:  RL reserved words are shown in Courier font, expressions that must be defined by 
the user are shown in brackets: <expression>. 
 
RL includes two commands for starting and stopping the execution of a RL program: 
 

start
stop

 
RL includes three simple movement commands: 
 

forward <integer distance>
back <integer distance>
turn [ left | right ] <integer rotation>

 
The forward command causes Robbie to move forward the specified distance (in cm), if possible.  If Robbie 
encounters an obstruction, he will stop moving forward.  The back command is similar.  The turn command  
causes Robbie to turn the specified angle (in degrees) in the specified direction.  Robbie cannot be blocked from 
turning through any specified angle.  Distance and rotation values must be non-negative. 
 
Examples: 

forward 20 ; move forward 20 cm
back 8 ; move backward 8 cm
turn left 45 ; turn 45 degrees to the left

 
 
RL includes two commands for the claw hand: 
 

grab
drop

 
The first causes Robbie to extend his claw downward until either an object is found.  If the object can be picked up, 
Robbie will close the claw to pick up that object and retract to its original location.  If the object cannot be picked up 
(a bare surface, too heavy, etc.) then the claw automatically releases and retracts to its original location. The second 
causes Robbie to put the object down (gently despite the name), and retract the claw.   
 
RL includes two tests that use Robbie’s internal sensors: 
 

blocked
weight

 
The former is true if there is an object blocking Robbie’s path in the forward direction, and false otherwise.  The 
second equals the weight of the object the claw is holding, to the nearest gram.  If the claw is not holding an object, 
the weight test will equal zero. 
 



Robbie the Robot User Manual  version 2001.08.31 

  Page 3 of 7 

RL includes two miscellaneous commands: 
 

beep <time> <frequency>
pause <time>

 
The first causes Robbie to emit a sound for the specified time (in milliseconds) at the specified frequency (in Hertz).  
The second causes Robbie to pause all activities for the specified time. 
 
Examples: 

beep 2000 4000 ; beep at 4000 Hz for 2 seconds
pause 500 ; pause for 0.5 seconds

 
 
Robbie includes an essentially unlimited number of internal registers, or memory locations, each of which can be 
used to store a single value.  RL programs can include named variables, each of which is associated with one of 
Robbie’s registers.  Registers can hold integer values, real numbers (decimal values), character strings, or Boolean 
values (true or false).  Before using a variable in an RL program, you must “register” it: 
 

register [ integer | real | boolean | string ] <name>
 
The command causes Robbie to associate one of his registers with the given name.  The name can then be used in 
the program and Robbie will automatically store its value in the associated register.  Variable names may consist of 
any sequence of letters and numbers; it is strongly recommended that variable names NOT be entirely lower case. 
 
Examples: 

register integer Counter
register real NetPay
register boolean Empty
register string CompetitorName

 
 
 
RL uses several reserved words, and arithmetic symbols, for Boolean expressions and operations.  A Boolean 
expression is simply an expression whose value is true or false, rather than numerical.  Any of the standard 
arithmetic symbols may be used: 
 

+ – / * < <= > >= =
 
The usual precedence rules apply, and parentheses may be used for grouping.  In addition, the following reserved 
words may be used to combine Boolean terms: 
 

and or not
 
Also, the reserved words true and false may be used with their usual significance. 
 
 
RL provides the set command for assigning a value to a variable: 
 

set <name> <value>
 
The name must be that of a variable that has already been registered, and the value may be any valid algebraic or 
arithmetic expression, including the use of registered variable names. 
 
Examples: 

set Counter 0
set Empty true
set CompetitorName “ACME Robot Corporation”



Robbie the Robot User Manual  version 2001.08.31 

  Page 4 of 7 

Finally, RL provides control structures.  To select between different courses of action, RL provides the if-then 
command: 
 

if <Boolean expression> then
<commands>

endif
 
and the if-then-else command: 
 

if <Boolean expression> then
<commands>

else
<commands>

endif
 
The first form allows the user to program Robbie to decide whether or not to carry out a command, or list of 
commands, depending on whether the Boolean expression is true when the if-then statement is reached.  The second 
form allows Robbie to chose between two possible courses of action. 
 
Examples: 
 

if Empty then
grab

endif

if Counter < 10 then
grab
forward 100
drop

else
beep 1000 80

endif
 
RL also provides two control structures for repetition of commands.  The while-do command causes Robbie to carry 
out the commands in its body as long as the Boolean expression is true: 
 

while <Boolean expression> do
<commands>

endwhile
 
Example: 

while true do
forward 50
turn left 90
forward 15
turn left 90

endwhile
 
 
The repeat command causes Robbie to carry out the command in its body the specified number of times: 
 

repeat <integer expression> times
<commands>

endrepeat
 



Robbie the Robot User Manual  version 2001.08.31 

  Page 5 of 7 

Example: 
repeat 10 times

forward 2
beep 500 1000
back 1
beep 500 2000

endrepeat
 
 
In RL, spacing is up to the user, as long as things that should be separate are not “run together”.  Unlike some 
programming languages, RL does not have any special notation to mark the end of a command.  Instead, each line 
that is not blank or a comment, or a control structure line, is treated as being a single command. 
 
 
 
RL Reserved Words 
 
A reserved word is a word that has a special meaning in the language and cannot be used for any other purpose.  RL 
uses the following reserved words (all lower case): 
 
and
back
beep
blocked
do
drop
else
endif
endwhile

endrepeat
false
forward
grab
if
integer
left
not
or

pause
program
real
register
repeat
right
set
start
stop

string
then
times
true
turn
weight
while 

 
 
Users may not use any of these words as variable names.  Because all RL reserved words are lower case, it is 
recommended that users use mixed case or upper case variable names.  This will help to avoid accidental collisions 
with the reserved word list, and make it easier to identify user variables in an RL program. 
 



Robbie the Robot User Manual  version 0.99 

  Page 6 of 7 

More Sample Programs 
 
The following sample programs illustrate some of Robbie’s capabilities.  
 
This makes Robbie pace in a 50 by 15 cm rectangle forever: 
 

program "Pace Forever in a Rectangle"
start

while true do
forward 50
turn left 90
forward 15
turn left 90

endwhile
stop

 
 
 
This makes Robbie pace back and forth on a 50 cm line ten times: 
 

program "Pace Laps"
start

register integer Laps ; register a counter variable
set Laps 0 ; set it to zero initially

while Laps < 10 do ; do these commands until Laps
; reaches ten

forward 50 ; move forward 1/2 meter
turn left 180 ; reverse course
set Laps Laps + 1 ; count this lap

endwhile
stop

 
 
 
This makes Robbie pick up and move ten items a distance of one meter: 
 

program "Move Ten Things"
start

register integer numMoved ; to count the items
set numMoved 0 ;

while numMoved < 10 do
grab ; pick up an item
turn left 180 ; turn around
forward 100 ; move 1 meter forward
drop ; put the item down
turn left 180 ; turn back
forward 100 ; move back to starting point
set numMoved numMoved + 1 ; count the item

endwhile

beep 10000 500 ; beep 10 seconds at 50 Hz
stop

 



Robbie the Robot User Manual  version 0.99 

  Page 7 of 7 

Here, we assume that each item to be moved will be at the same location initially, perhaps being fed down an 
assembly line, and that each is dropped at the same location. 
 
This makes Robbie demand attention until an object is available for him to pick up: 
 

program "Bother"
start

register boolean Ignored ; is there an item yet?
set Ignored true ; not yet . . .
register integer Beeps ; number of beeps issued
set Beeps 0 ; no beeping yet

while Ignored do ; keep it up ‘til you get an item

set Beeps Beeps + 1 ; count beep

if Beeps < 3 then ; short beep first two times
beep 1000 500

else ; then out of patience
beep 5000 500

endif

grab ; try to pick up item

if weight > 0 then ; see if you got one
set Ignored false ; if so, quit the loop

endif

endwhile
stop

 
Here, we assume that each item to be moved will be at the same location initially, perhaps being fed down an 
assembly line, and that each is dropped at the same location. 
 
  
 
 
 


