

UNIVERSIDAD CARLOS III DE

MADRID

ESCUELA POLITÉCNICA SUPERIOR

APPLICATION DEVELOPMENT FOR

MANAGING AND MONITORING A DATA

CENTRE

Degree in Computer Engineering

Bachelor Thesis

Author: Aitor Pérez Cedrés

Reviewer: Óscar Pérez Alonso.

Date: 15/6/2012

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 2 de 97

Acknowledgements

In first place, I want to thank my family for their support not only during the project

but for my whole life. I would have reached so far without them.

 I want to thank my project tutor, Óscar Pérez for his support in this project; I really

have learnt a lot from him and from the people in the Lab; they have made this project

possible.

I have special thanks also for my friend Sergio Casillas; he was my first friend here

in Madrid and I think we will be friends for really long.

I have special thanks also to Adrián Cáceres, the first canary friend I found here in

Madrid. We have learnt many things from each other, and I think we have supported a

lot each other.

Special thanks to Miguel Pagán, one of my first’s friends as well in Madrid; although

he is in the dark path of Telematic Engineering, he is a much appreciated friend.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 3 de 97

Abstract
This document is a Bachelor Thesis report. In this document we can find an analysis

about the problem, a proposed solution and an evaluation about a coded prototype.

The name of the project is Application Development for Managing and Monitoring a

Data Centre. This project is an application for easing a common task in Lab of

Computer Science and Engineering Department.

The main problem of managing the Data Centre is the need of being physically

present there; for instance, to take note of room temperature, a person has to go

physically there to check out a thermometer. Moreover, maintaining an inventory can

become a hard problem because many people, from different departments, have their

machines and equipment there in the centre; there are two options then for maintaining

an inventory:

 Ask to every department what machines have them in the centre.

 Go inside the centre and count the machines one by one

The usage of a web application can solve those problems. Since web applications are

queried from a web browser; and nowadays everybody has a web browser integrated in

his/her Operating System; we can query the status of the centre from our office, without

having to being physically there.

An important advantage also is the possibility of connecting sensors and other

applications, so we can enhance our application with already implemented features; for

instance, connecting our application to an LDAP login server. Moreover, since this is a

web application, there is no need of a client installation; only a web browser is required.

In our case, it must have support for HTML 5 and CSS 3. In addition, web technologies

nowadays have many libraries for almost any task; for example, to display data in

charts. With this feature, we can visualize historical or statistical data.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 4 de 97

Index

LIST OF FIGURES ... 6

LIST OF TABLES ... 7

1 INTRODUCTION .. 8

1.1 MOTIVATION .. 8
1.2 OBJECTIVES .. 9

1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 9
1.4 OVERVIEW .. 10

2 STATE OF THE ART .. 12

2.1 WHAT IS A DATA CENTRE? ... 12

2.2 WEB TECHNOLOGIES .. 14
2.2.1 Web Servers .. 16
2.2.2 Web Browsers ... 17
2.2.3 Databases .. 18

2.2.3.1 Standard SQL .. 18
2.2.3.2 MySQL .. 19

2.2.4 Programming languages ... 19
2.2.4.1 JavaScript .. 19
2.2.4.2 AJAX ... 21
2.2.4.3 PHP .. 21
2.2.4.4 XML .. 22
2.2.4.5 JSON ... 22

2.3 ESA STANDARD ... 23

3 PROBLEM STATEMENT .. 24

3.1 MAIN CAPABILITIES AND CONSTRAINTS .. 24
3.1 ASSUMPTIONS AND DEPENDENCIES ... 25

3.1.1 User characteristics .. 25
3.1.2 Software development methodology ... 26

3.2 USER REQUIREMENTS ... 27

3.2.1 Functional requirements ... 27

3.2.2 Non-Functional requirements ... 33
3.3 SOFTWARE REQUIREMENTS .. 34

3.3.1 Functional requirements ... 34
3.3.2 Traceability matrix ... 42

4 DESIGN ... 43

4.1 INITIAL PROTOTYPE .. 45
4.2 ARCHITECTURAL DESIGN ... 52
4.3 DETAILED DESIGN .. 54

4.3.1 Presentation layer ... 54

4.3.2 Logic Layer ... 59
4.4 DATABASE DESIGN ... 62

4.4.1 Query example .. 66

5 RESULTS AND EVALUATION .. 67

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 5 de 97

5.1 USER MANUAL ... 67
5.1.1 Sections ... 67

5.1.1.1 Main Page .. 67
5.1.1.2 RACK view ... 69
5.1.1.3 Edit a RACK .. 71
5.1.1.4 Detailed machine view... 72
5.1.1.5 Edit a machine ... 73
5.1.1.6 Consumption view ... 74
5.1.1.7 Consumption graphs .. 75

5.2 SOFTWARE TRANSFER .. 76
5.3 SOFTWARE PROJECT MANAGEMENT ... 78

5.3.1 Software estimation ... 78
5.3.2 Planning .. 88
5.3.3 Budget ... 92

6 CONCLUSIONS ... 94

6.1 TECHNICAL KNOWLEDGE .. 94

6.2 PERSONAL CONCLUSIONS ... 95
6.3 FUTURE WORK ... 96

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 6 de 97

List of Figures

Figure 1 Marenostrum datacentre .. 12
Figure 2 Definition of URI .. 15

Figure 3 Apache logo .. 16
Figure 4 Top Languages in Github projects .. 20
Figure 5 Three layer model ... 43
Figure 6 Initial prototype login .. 45

Figure 7 Overview page .. 46
Figure 8 RACK view ... 47
Figure 9 Edit RACK view ... 48

Figure 10 Machine view .. 49
Figure 11 Edit Machine View ... 50
Figure 12 Consumption page ... 51
Figure 13 Presentation layer .. 53

Figure 14 Business Logic layer ... 54
Figure 15 Detailed Presentation layer ... 56

Figure 16 Detailed Business Logic layer ... 61
Figure 17 Relational model ... 62

Figure 18 Wardrobe relation ... 63
Figure 19 Phase relation .. 64
Figure 20 Consumption record relation ... 65

Figure 21 Machine relation.. 65
Figure 22 Overview page as admin ... 68

Figure 23 RACK view as admin ... 69
Figure 24 Edit RACK view ... 71
Figure 25 Machine view as admin ... 72

Figure 26 Edit machine view ... 73

Figure 27 Consumption page ... 74
Figure 28 Historical consumption ... 75

Figure 29 Directory tree .. 77
Figure 30 Login screen .. 79
Figure 31 Overview screen .. 79
Figure 32 Rack view screen... 80
Figure 33 Rack edition screen ... 80

Figure 34 Machine view screen ... 81
Figure 35 Machine edition screen ... 81
Figure 36 Consumption screen .. 82
Figure 37 COCOMO SLOC input ... 83
Figure 38 COCOMO scale factors .. 84

Figure 39 COCOMO Schedule ... 84
Figure 40 COCOMO Correction factors ... 85

Figure 41 COCOMO Final result .. 86

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 7 de 97

List of tables
Table 1 Requirement template ... 27

Table 2 FR_1001 Sign Up ... 27
Table 3 FR_1002 Login ... 28
Table 4 FR_1003 Change password .. 28
Table 5 FR_1004 Delete account .. 29
Table 6 FR_1005 Room distribution ... 29

Table 7 FR_1006 Room temperature .. 30

Table 8 FR_1007 Consumption ... 30

Table 9 FR_1008 Query RACK information .. 31
Table 10 FR_1009 Manage RACK ... 31
Table 11 FR_1010 Assign responsible .. 32
Table 12 FR_1011 User management ... 32
Table 13 FR_1012 Consumption statistics .. 33

Table 14 N-FR_0001 Secure connection .. 33
Table 15 SR Login form .. 34

Table 16 SR Check if logged ... 34
Table 17 SR User management view .. 35

Table 18 SR Overview page .. 35
Table 19 SR Phases distribution .. 36

Table 20 SR Temperature sensor... 36
Table 21 SR Consumption page .. 37

Table 22 SR Add new record .. 37
Table 23 SR RACK view .. 38
Table 24 SR Edit RACK view ... 38

Table 25 SR Delete RACK .. 39
Table 26 SR Add machine ... 39

Table 27 SR Query machine .. 40
Table 28 SR Consumption statistics .. 40
Table 29 SR TLS encryption ... 41

Table 30 Traceability matrix UR-S ... 42

Table 31 Summary function points ... 82
Table 32 PHP lines of code ... 87
Table 33 JavaScript lines of code .. 87

Table 34 Budget: Human resources .. 92
Table 35 Budget: Software costs ... 92
Table 36 Budget: Hardware costs .. 92
Table 37 Budget: Consumables ... 93
Table 38 Budget: Summary ... 93

Table 39 Budget: Final Budget .. 93

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 8 de 97

1 Introduction
This document describes the process of analysis, development and evaluation of a

Bachelor Thesis. In this document are included requirements and design of the project,

as well as an evaluation of the solution achieved; before start describing the analysis

process, a brief introduction is provided about the motivation to realize this project, its

main objectives, and the state of art of used technologies.

The next two chapters will describe the motivation of the project and its main

objectives. The next chapters are only a short introduction to the problem; the details

stating the problem itself are located in Section 3.

1.1 Motivation

The project was born from the need of monitoring the data centre; this data center

belongs to Computer Science and Engineering Department of University Carlos III, but

it is managed by the Lab of the Computer Department.

The common tasks related to the centre are, among others, checking the temperature

of the room, consulting historic data about electric consumption and checking the

machines inside a particular arbitrary RACK.

Actually, anyone who wants to carry out these tasks has to be physically present at

the data centre. The application is meant to change this and also to ease the tasks related

to managing and monitoring the data centre.

We want to apply the knowledge acquired from User Interfaces course to design,

implement and evaluate a web application prototype for easing the tasks mentioned

above. A web prototype also implies a client-server architecture, which leads to

communication between computers and the usage of protocols to communicate them.

Almost any application needs a source of data to work; in our case is not different.

We have to store information about the application, about the users, etc; so we will have

to analyze the problem using the knowledge acquired in Files and Databases course to

abstract the problem and design a solution.

The application is aimed to be used by several people, so we need an access control.

We will apply the knowledge from Security Engineering course to analyze the

problem, the environment and the potential users of the application to design a solution

which achieves an acceptable tradeoff between usability and security.

Since this is a Bachelor Thesis, we have to follow some software development

technique to analyze, design, track, develop, evaluate and track the state of the project.

For this purpose, we will apply the learning from Software Development Projects

Management.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 9 de 97

1.2 Objectives

The objectives for this project are to analyze, design and implement a web

application for managing and monitoring the data center of Computer Department. The

application has to ease the frequent tasks, such as query room temperature.

The application has to allow external users, who are (mostly) the owners of the

machines within the center, to check the state of their machines and the temperature of

the room.

We want to apply a software engineering process so we can ensure the quality and

the security of the application. Moreover, we want to build an usable, intuitive and rich

application, easy to use, not only by the people from the department, but by any people

related to the data centre.

The main objective is to build a web application prototype; we want the application

to work via web. The application has to be web based because we noticed about the

recent impact and increase of popularity of web applications; and we want to research a

bit on this area, increasing the knowledge learnt in the Bachelor and, at the same time,

applying what we already know to develop an effective solution to a real problem.

We want also to relate the project with the branch of Computer Engineer; so we want

to interconnect this application with another external system and put them to work

together.

Summarizing; the main objectives of the project are:

 Design and build a web application prototype

 Apply a software engineering methodology in a real world problem

 Connect our prototype with other systems and put them to work together

1.3 Definitions, acronyms and abbreviations

 RACK – Metallic support for storing computers. It is used in Data Centers.

 RACK Unit (U) – Standardized measure for RACKs. A RACK usually has a

size of 42 U.

 JS – JavaScript.

 KVM – Keyboard Video Mode switch.

 W3C – Word Wide Web Consortium.

 HTML – Hyper Text Markup Language.

 URI – Uniform Resource Identifier.

 SQL – Structured Query Language.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 10 de 97

 DML – Data Manipulation Language.

 DDL – Data Definition Language.

 GitHub – Web portal for storing your repositories using the tool Git.

 Git – Control version system created by Linus Torvald.

 AJAX – Asynchronous Javascript And XML.

 XML – Extensible Markup Language.

 SOAP – Simple Object Access Protocol.

 HTTP – Hyper Text Transfer Protocol.

 XMPP – Extensible Messaging and Presence Protocol.

 JSON – JavaScript Object Notation.

 ESA – European Space Agency.

 CSS – Cascading Style Sheet.

 SSL – Secure Socket Layer.

 TLS – Transport Layer Security.

 XSS – Cross Site Scripting.

 RDBMS – Relational Database Management System.

 LDAP – Lightweight Directory Access Protocol.

 COCOMO – Constructive Const Model.

 IIS – Internet Information Services.

 PDF – Portable Document Format.

 CD – Compact Disc.

 XSS: Cross Site Scripting.

1.4 Overview

This document presents the required documentation for developing, understanding

and evaluating the project. It starts introducing the project objectives and motivation,

setting its main objectives. Then we define the state of the art, where it is introduced the

definition of a Data Centre, its main characteristics, its common problems and typical

solutions to solve them; it is also defined some specific language used in Data Centers

(e.g. RACK)

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 11 de 97

In the document are defined as well what web technologies are. In some way, it

shows the evolution of technologies involved there; for instance, the first protocol to

share information through Internet, and how an extension of this protocol, adding

security features, was born from the need of protecting information and provide

confidentiality.

The document also introduces what programming languages will be used, its main

characteristics and why have we chosen them. It is also mentioned what software

methodology will be followed to analyze, design and evaluate the project. Then it is

stated the problem; in that section are defined the user characteristics, user and software

requirements, as well as a traceability matrix.

Then it is presented a proposed design for the application; an initial prototype is also

included to provide a preview of how the application will looks like. There is included a

special chapter for database design because the use of that technology is critical for our

application.

After the design, there is an evaluation of a prototype developed during the project.

In that section it is included a user manual, describing the basic functionality of the

prototype as an administrator user; it is also included some chapters to define the

requirements to deploy the application prototype; and a chapter about project

management, where is included an effort estimation and a budget.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 12 de 97

2 State of the art
In the next chapters we will define briefly what is a data center; what are web

technologies and the actual state of this technology. We consider important starting with

those definitions because our application is focused for working for that environment.

Web technologies are important to define since we are building a web prototype.

2.1 What is a Data Centre?

A Data Centre or Data Processing Centre is a special room prepared to hold a certain

number of "wardrobes", known as RACK. A RACK is a metallic structure ready to

hold communication or electronic equipment, as well as computers. The size and

measures of RACKs is normalized so they are compatible with any manufacturer.

These rooms require special conditions of refrigeration and temperature. The rooms

will hold many computers which are usually operative 24 hours, generating heat and

noise. The air conditioning equipment cannot be a common one, but a specific one,

designed and tested to work 24 uninterrupted hours. The consequences, if this

equipment is not the proper one, can vary from emergency shutdown of computers,

interrupting critical services, to computer breaking (hard disk are the main targets of

breakdown by overheat).

Figure 1 Marenostrum datacentre

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 13 de 97

This kind of centre requires a temperature sensor and monitoring tools to track the

changes of the room. This sensor is required because the equipment in the centre is

sensible to overheat; and it is also a valuable asset to protect. The most common way to

integrate this sensor in the room is by installing it in a machine; a machine the

administrators own and have full access; then automate the machine to send notification

(e.g. send an e-mail) and in case it is desired, take a response to protect the machine

from the overheat.

A Data Centre also requires a data network, because the machines held within are

not supposed to be accessed manually. An essential requirement is to be able to access

the machines remotely. Moreover, this data network is also used to retrieve data from

the machines without being physically present in the room.

The room also needs an electrical network to supply the RACKs, which supply

electrical power to each machine within a RACK. This electrical network is not

unlimited, and it is often to set electric consumption limit to each machine, so it cannot

left the other ones with less power supply, because it would provoke voltage drop,

harming the rest of the equipment.

The machines (in our case, computers) are not the typical desktop/laptop computers,

but special ones with more hardware features. The main difference between traditional

machines and these ones is the form. The machines in a RACK are wider and lower

than traditional. The size measure in these environments is different; it follows a

standard, which sets the RACK unit (U) as 482.6 mm (19 inches) wide and 1.75 inches

of height. The common RACK has around 41U or 42U; however they can have more or

even less Us.

In a few words, these rooms contain a certain number of RACKs, which hold

computers or electric equipment; these machines usually provide services, but they can

also be specific purpose and used in research, taking advantage of their computation

potency. The machines can be freely placed in the RACK as long as it has enough

potency to supply enough power to every machine.

The most common machines that can be placed into a RACK are:

 Servers. A specific purpose machine.

 Switch KVM. It is a device to control many computers with a single monitor,

keyboard and mouse.

 UPS. Uninterrupted Power Supply; it is a device with a battery to provide

power supply in case of voltage drop. It is an emergency device to give some

grace time to the servers to finish their tasks and shutdown cleanly if the

power supply runs out.

 Switch. It is a device to interconnect machines, so they can share information

between them.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 14 de 97

2.2 Web technologies

In the past decades, a new element called Internet has become more and more

popular. Internet is a decentralized set of networks which share information, documents

and media (but not only limited only to those ones). Internet is also known as The Web.

The most common element in Internet is the hypertext document; these kinds of

documents are linked between them, directly or indirectly.

The standard to define the hypertext document structure is HTML 4.01; HTML

stands for Hyper Text Markup Language. However, this standard is a W3C

Recommendation; which means the language is not standard at all. This language

describes the structure and complements the content with objects, such as images.

The HTML defines the content with tags, these tags are later interpreted by the web

browser and rendered in a page. The tags can define the structure where the content is

enclosed (e.g. define a paragraph for some text). However, in 2004 began the

development of the standard HTML 5. This new standard includes new tags for

supporting media features; it included some tags just to add semantic meaning (e.g.

footer tag, which is not present in HTML 4.01); it also includes canvas element, which

is used to render 2D/3D objects in the browser.

The canvas element in HTML can be used to draw using scripting. In a canvas you

can draw graphs, make photo composition or just do simple animations. Canvas was

introduced by Apple in Mac OS X Dashboard and later implemented in Safari and

Chrome. This element consists of a region defined in HTML code with width and height

attributes where you can draw whatever you want; it is a low level, procedural model.

In the Web we have two clear entities taking part in the information sharing process:

 The web browser in the client side: The web browser is an application to

interpret and render the content exchanged in Internet, the HTML documents.

This application also allows the access of the links to new documents. The

initial versions of these browsers only supported a simple version of HTML,

and due to the lack of a standard, some browser developed a variety of

HTML.

 The web server in the server side. We will describe in more detail this point

and its most common alternatives in the chapter Web Servers.

Internet has some standards to define how the information is shared, how the

documents are structured and defined; and how the elements are referenced within the

web. Hyper Text Transfer Protocol (HTTP) is the standard protocol to define how the

web browser communicates with the web server. It is a standard from World Wide Web

Consortium (W3C) and the Internet Engineering Task Force (IETF).

This protocol is implemented in the transport layer of the network and uses IP as

network protocol; inheriting his advantages and disadvantages (use of insecure

channel). Due to the use of insecure channels, HTTPS was born; this protocol is the

same as HTTP but it implements security in the transport layer by using Secure Socket

Layer (SSL) or Transport Layer Security (TLS).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 15 de 97

An HTTP transaction is composed by a header and, optionally, some data. The

header tells the server what action his required from him and the type of data expected

in the response. This is a way to interchange some extra information between the client

and the server, so it can elaborate a more accurate response. We can specify in the

header of the request the method to be used; in the last version, HTTP 1.1, there are

defined the methods OPTIONS, GET, HEAD, POST, PUT, DELETE and TRACE. A

web server can implement those methods, but it does not mean they are allowed. A

request header always has to start with the method, then the URI of the request and the

version of the protocol; then are included the headers; finally, and optionally, some

content or data.

Figure 2 Definition of URI

An HTTP response is a message sent from the server, in response of a request by the

client. This message has to start the protocol version, then the state number and an

clarifying message for this code. The code of a response is a three digit number; this

number tells if the request was successful or not, and in case it was not, it has to include

the reason. The most common response codes are:

 200, success

 403, forbidden (the request was valid but the server refuse to answer)

 404, not found

 500, internal server error

The method of a request specifies what action has to be performed on the identified

resource by the URI. A method is safe if it does not have side effects; the only methods

following that definition in the current protocol are GET and HEAD. The other methods

are supposed to be unsafe, because they are supposed to change something in the server,

producing side effects. However, GET method can also produce side effects; so it

totally depends on the server implementation.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 16 de 97

The most common request methods in web applications are:

 GET method requests information from the resource identified by a URI. If

the URI is a process who created or queries information, then it is sent the

information instead of the process.

 POST method is used to make requests to the server that accepts the content

as input parameter. This method was originally created to send data blocks

from forms; and it was designed also to add new records to a data base.

However, in the end, the action of the method depends on server

implementation; it usually depends on the URI.

2.2.1 Web Servers

As part of the client-server architecture, the application will be held in a server; so it

will be accessible by anyone. Moreover, we need something to serve content. Here is

where web servers make their entrance.

The most classical approach to web server is an application listening for requests,

and sending back responses with content. The protocol used for this communication is

HTTP (explained above). Since nowadays, static HTML content is no longer served

because it has a lot of limitations; and probably the requested content is not static; so

serving just HTML files is no longer an option. In order to offer dynamic content, we

need use a server-side programming language able to process incoming requests,

processing them, and responding with proper content.

A very popular open-source web server is Apache HTTP. Apache HTTP Server

Project is a collaborative software development effort aimed at creating a robust,

commercial-grade, and freely-available source code implementation of an HTTP (Web)

server.

Figure 3 Apache logo

This application has become very rich and robust because the amount of modules

developed to add functionality. By using the modules, almost anything can be done with

Apache; from administration modules to integration of new back-end languages (e.g.

PHP). The web server is responsible of compiling the server side code and providing the

result to the client as HTTP response.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 17 de 97

There are other alternatives to Apache; for instance, the Microsoft one: Internet

Information Services (IIS). IIS is a web server, together with a set of services for

Microsoft Windows servers. This web server offers FTP, SMTP, NNTP and HTTP.

This web server also allows modules to extend its functionality. By default it includes

modules for Active Server Pages (ASP), but it can include modules of external

manufacturers, as PHP or Perl. In opposite to Apache, IIS is private software (it belongs

to Microsoft) and it has the added cost of a paid license.

A new paradigm in web technologies is servlet. A servlet is an object running in the

context of a servlet container, extending its functionality. The main difference with

traditional server languages (e.g. PHP) is the persistence of servlets. A servlet do not die

after the request is responded. This fact offers a certain advantages over traditional

languages that just are executed to generate HTML and die; but it is at the cost of

heavier development process, and it is not very common the user of servlets unless the

business logic becomes very complex.

Servlets requires something different than a web server; they require a servlet-

container or an application server. The main difference between container and

application server is that servlet-container supports only Java Server Pages (JSP) and

servlets; by other hand, an application server supports beans as well; I cannot define

every term of this new paradigm because I will go out of topic. An example of servlet

container is Tomcat, a project developed under Apache Foundation.

2.2.2 Web Browsers

A web browser is a client side application to surf over Internet. The main task of this

browser is to render HTML code, with some CSS style rules, into a page readable for

humans. The web browser also includes a JS engine to run scripting code (almost any

browser has JavaScript as supported language).

Web browsers are the responsible of communicating with web servers through HTTP

protocol, and provide a proper response to the user; in the case of success, the HTML

code is rendered; in case of failure, the HTTP error code is often displayed together with

an error message.

The last versions of web browsers includes very robust and potent JS engines,

providing capabilities to render almost anything by using a low level procedural mode;

the canvas of this draws is canvas element, defined in HTML 5 standard by W3C. The

last versions of web browsers use the GPU to render the canvas element, achieving a

great performance, and providing the capability to render almost anything in the

browser. The main browsers nowadays, the most supported and with most number of

user are:

 Firefox. Open Source web browser; it was born in Mozilla Foundation.

 IE. Commonly known as Internet Explorer. It comes installed by default with

any Microsoft system. Some people defend “IE is useful only for

downloading Firefox”.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 18 de 97

 Chrome. This web browser belongs to Google; it is based in Open Source

project Chromium; it offers a lot of features for people who have a Google

account. Chrome made his entrance in the market obtaining 100/100 in Acid3

test.
1

2.2.3 Databases

A database is an application that manages data and allows fast storage and retrieval

of that data. There are different types of database but the most popular is a relational

database that stores data in tables where each row in the table holds the same sort of

information. In the early 1970s, Ted Codd, an IBM researcher devised 12 laws of

normalization. These apply to how the data is stored and relations between different

tables.

Databases are manipulated and queried by using a language called SQL, which will

be defined in the next chapter. We also will explain the relational RDBMS MySQL

because we have chosen to work with it.

2.2.3.1 Standard SQL

SQL stands for Structured Query Language. It was one of the first commercial

languages for Edgar F. Codd, the author of the relation model. However, it do not

respect at all the relational model proposed by Codd, it became the most widely used

database language. SQL is specific purpose for relational database management systems

(RDBMS).

SQL is a declarative language to provide access to databases. This language allows

declaring operations over the data, which can modify the state of the data, or just query

and serve it. The language also includes a Data Definition Language (DDL), which is

used to define the relations and the data type of those relations. DDL is also used for

altering or modifying the structure of the database. And it provides a Data Manipulation

Language (DML), which is used to declare the operations over the data in the relations

defined with the DDL.

1 http://acid3.acidtests.org/

http://acid3.acidtests.org/

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 19 de 97

2.2.3.2 MySQL

MySQL is a RDBMS; it was originally created by Sun Microsystems, who later on

was bought by Oracle. MySQL was created as open source and free to use. It also stills

being free, but now its popularity has decreased since Oracle bought it.

However, MySQL has a lot of drivers, libraries and interfaces to ease the access from

almost any language to MySQL database. In our case, we will use PHP Data Object

interface to abstract the use of MySQL driver, easing the interaction with the database

and adding security features by avoiding SQL injection thanks to prepared statements

from this interface.

Prepared statements are SQL queries that are previously negotiated with the

database. For instance, preparing this statement “SELECT name FROM allowed_users

WHERE name = ?”; it will result in the interface telling the RDBMS: “I am going to

execute a select on the table allowed users using a where condition; whatever I input in

where condition is a condition itself; I will not add any other query”. In this way, if we

try to inject SQL code, the database will know that is was not negotiated and it will take

that as condition in where clause.

2.2.4 Programming languages

In order to develop our application, we have to develop our web application by using

some back-end language, which can be integrated with Apache web server. For that

purpose, we have chosen PHP as server languages because we already have experience

from User Interfaces course and it allows us to develop applications in a short time.

Moreover, PHP has a lot of support from the community and it is easy to learn and to

use.

We have chosen to use JavaScript as client side language because it had a lot of

impact and increase of popularity in the last few years, becoming a trending topic. JS

also has a lot of libraries to support and ease the development of client side logic,

allowing us to create dynamic web pages with very little effort.

2.2.4.1 JavaScript

HTML documents can also contain a script (e.g. JavaScript); this script can change

the content of the web page or alter the behavior of the browser. This script allows

making HTML documents “dynamic” in some extent.

The use of JavaScript has become very popular in the last year, especially with the

emergence of Google Chrome browser and the improvements on Mozilla Firefox.

Microsoft Internet Explorer also made his improvements on his JavaScript engine

(Chakra), obtaining more performance than Firefox 4 (who uses SpiderMonkey), but it

stills being slower than Chrome (who uses V8).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 20 de 97

The popularity of JavaScript in the last few years can be also seen in the amount of

libraries that are being developed for the language; and some interesting statistics from

GitHub: 20% of the repositories from GitHub are in JavaScript language.
2

Figure 4 Top Languages in Github projects

The known library of JavaScript, jQuery, offers a lot of tools for manipulation

HTML content and elements in a very simple way, achieving efficient and effective

results; and making easier to build rich and usable interfaces. Nowadays, you can hear

the sentence: “Knowing JavaScript means knowing jQuery”. JavaScript follows the

EMACScript standard (more precisely, ECMA-262 specification and ISO/IEC 16262);

this fact gives a big feature to the language, very important in the nowadays

development paradigm: interoperability.

JS is interoperable between browsers, which means, a code developed for Chrome

also works on IE or in Firefox, and vice versa. Maybe exactly the same code is not

exactly functional in the same way, but this is due to a lack of standard in HTML, and

how the web browsers should render the HTML content.

JS is a multi-paradigm language; initially was designed for scripting, object oriented,

imperative and functional programming. From this fact, many libraries have emerged

for supporting and complementing the language. The most impacting one may be

node.js. This library allows executing JS in server side, when JS was designed to be

client side. This library has a lot of consequences; the first one: companies can recycle

people working for development in front-end (client side) and send them to back-end

(server side) using this library. The second one: reduce the asynchronous requests from

the browser, since now the server can send information to the browser asynchronously

without being requested by the client (e.g. instant message system, GTalk, TuentiChat

…).

2 https://github.com/languages

https://github.com/languages

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 21 de 97

We are providing some statistics features to the application; however, PHP and JS

does not have support for rendering charts by themselves, so in some way, with PHP we

can store the statistic data, but then we have to render it somehow in the web browser.

Here is where Google Charts come in scene. We will use this library, provided and

supported by Google. This library offers a set of tools and a variety of charts to render

statistic data on them. It also has a very well documented API; actually, using this

library is not difficult if you know the basis of JavaScript.

Among the chart types Google provides, we are just using a line chart and a pie

chart. In the line chart we will draw historical data from electrical consumptions,

ordered by insertion date. The pie chart will be used to display the percentage of

occupation of a RACK; the occupation of a RACK is basically the used by space by

current equipment vs. free space, where machine can be placed.

2.2.4.2 AJAX

AJAX stands for Asynchronous Javascript And XML. This web development

technique is very useful to create Rich Internet Applications. This technique consists on

executing asynchronous requests from the web browsers in background; so we can

update the web content without refreshing or loading again the whole page. In this way,

we increase the interactivity, the performance and the usability of web applications.

JavaScript is usually the language where AJAX requests are performed by sending

an XMLHttpRequest; this object is already implemented in modern browsers. If a web

browser does not implement this object, AJAX cannot be used on that browser. Even

the name of the object being XMLHttpRequest, it is not necessary that the content from

AJAX requests/responses is formatted in XML; actually, it can be formatted in JSON,

HTML or even plain text.

2.2.4.3 PHP

PHP is a general-purpose server side scripting language. It was designed for web

development to produce dynamic web pages. It was one of the first languages developed

for server-side, and one of the first able to be embedded into an HTML source code

document.

The code is interpreted by a web server with a PHP processor module. PHP can be

deployed on most Web servers and also as a standalone shell on almost every operating

system. It can be used with many databases (e.g. MySQL).

Vulnerabilities are caused mostly by not following best practice programming rules;

technical security flaws of the language itself or of its core libraries are not frequent.

PHPIDS (PHP Intrusion Detection System) adds security to any PHP application to

defend against intrusions. PHPIDS detects attacks based on cross-site scripting (XSS),

SQL injection, header injection, directory traversal, remote file execution, remote file

inclusion, and denial-of-service (DoS).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 22 de 97

PHP stores whole numbers in a platform-dependent range, either a 64-bit or 32-bit

signed integer equivalent to the C-language long type. PHP also implements object-

oriented programming functionality. Some common criticisms of the PHP language

include weak support for Object-oriented programming, thread safety, unit testing,

exception handling, step-through debugging, domain modeling, inconsistent naming and

poor performance when compared to rival frameworks and languages (e.g. JSP and

servlets)

2.2.4.4 XML

XML is stands for Extensible Markup Language. This language defines a set of rules

for encoding information. It is a structured language, using tags to define elements.

Anything can be defined in XML; the advantage of this language is that can be

understood by machines.

This language also allows validation against a schema; being able to check in this

way if a document is well-formed. From this language, many other languages has been

developed; for instance: XHTML and SOAP. Moreover, some office applications, such

as Open Office and Microsoft Office 2007 and higher, have adopted a XML-based

format. It also has taken part in a communication protocol, XMPP; this protocol is used

by Google GTalk chat service.

An XML document is well-formed when it satisfies a set of rules defined in a

schema, as well as a set of syntax rules provided in the language specification. XML

and its extensions have regularly been criticized for verbosity and complexity. Mapping

the basic tree model of XML to type systems of programming languages or databases

can be difficult, especially when XML is used for exchanging highly structured data

between applications, which was not its primary design goal.

2.2.4.5 JSON

JSON stands for JavaScript Object Notation. It is a lightweight text-based open

standard. It was designed for human-readable data exchange. It is derived from the

JavaScript scripting language for representing simple data structures and associative

arrays, called objects. Despite its relationship to JavaScript, it is language-independent,

with parsers available for many languages.

JSON is significantly simpler and more lightweight than XML; it is also easier to

read, making him a more interesting option than XML in many cases. Moreover, it has

libraries for many languages, so it ensures interoperability between languages of

generated strings of JSON. Although not always is needed a library for parsing JSON;

for instance, PHP and JS have native support for parsing JSON strings.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 23 de 97

2.3 ESA Standard

We are applying ESA Standard methodology to analyze, track, develop and evaluate

the project and its status.

ESA Standard methodology is a standard developed by the European Space Agency

(ESA). This methodology has a simplified version, called ESA LITE; this simplified

version is recommended for small projects. We are using this methodology, learnt in

Software Development Projects Management course.

A software project can be considered to be small if one or more of the following

criteria apply:

 Less than two man years of development effort is needed.

 A single development team of five people or less is required.

 The amount of source code is less than 10000 lines, excluding comments.

One or more of the following strategies are often suitable for small projects

producing non-critical software:

 Combine the software requirements and architectural design phases.

 Simplify documentation and plans

 Reduce the reliability requirements

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 24 de 97

3 Problem statement
This section describes the features and functionalities the application must include.

User and Software Requirements are included in this section as well, together with a

description of main capabilities. The name of the application, from now on, is Data

Center Guardian.

3.1 Main capabilities and constraints

Data Center Guardian is a software system created to ease one of the main tasks of

the Lab: monitoring and managing the data centre in the Lab. By using this application,

Lab administrators will be able to create new user accounts for regular users of the data

centre (i.e. people who has a machine in the centre) to allow them to use the application

as well.

The application will allow storing consumption (i.e. electric consumption) records so

they can be queried and drawn in a chart. However, administrators are the only ones

allowed to perform such operations. The application will present the last inserted record

in a table, together with some important information, such as electrical phase number

connected to RACK, the name of the RACK and the percentage of occupation. The

occupation can also be queried as a pie chart, which will show used and free

percentages.

The system distinguishes between three different types of users, with different

permissions and roles.

 Guest: A guest is a non-logged user. This user only must have access to the

login page. Any attempt of going to any other part of the system must be denied

and he should be redirected to login page.

 Regular user: A registered and logged user. This user can only see a RACK if

he has a machine inside it. This user cannot query the consumption page, or the

user management section. He can query his machine information and

monitoring statistics. Moreover, even if he can query a RACK, he can only see

the machines within that RACK if they belong to him (i.e. he is the responsible)

 Administrator: A system administrator. This user can see every RACK, he can

also query any machine information; add, delete or move any machine within a

RACK; query, add or delete consumption records; and manage the users of the

system.

The application allows querying the information of a machine within a RACK,

showing the contact information of the responsible of that machine. The personal

information gathered is the office phone number, the email and the office. The

username is, in many cases, the same as the real name of the user.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 25 de 97

The application also stores details of each machine, for instance, the Operating

System, the IP of the machine, the color of the machine (we only allow the cases

“Bright” and “Dark” machine colors), the kind of machine (it is also a closed field:

UPS, KVM, Switch, Server or Storage Server). We allow as well inserting some notes

about the machine; this notes has no actual limitation but length, which can be, as

maximum, 255 characters. We also store the position of a machine within the RACK

and the number of Us it takes.

3.1 Assumptions and dependencies

In this chapter we are analyzing the kind of user of our application and we will try to

gather as much information as possible we can from them in order to design a proper

interface.

We are also specifying the software development methodology.

3.1.1 User characteristics

It is assumed that the users will access the application with a browser that has a

reasonable support of HTML5. The browsers must also support JavaScript and jQuery

1.7, and must have cookies enabled.

In order to define our interface, we have to consider some important facts listed

below:

 Who users are

 What activities are being carried out

 Where the interaction is taking place

 Match activities and needs

The users of our system will be professors and technicians from the University, so

we can assume they will have some technical knowledge. This assumption let us design

an interface with less help message pop-outs and less indications, since users will have

knowledge enough to figure out what an element is just by including a tag or a short

description. This can provide a more lightweight interface because it will have fewer

elements. However, we have to use meaningful tags or descriptions related to our users’

knowledge; in this case, we expect the users to have computer engineering knowledge;

this fact allows us to use technical tags to describe some information (e.g. IP, instead of

Internet Protocol address).

The users of our system will perform three main activities:

1. Authenticate themselves into the system

2. Query RACKs information

3. Query machines information

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 26 de 97

By other hand, there is a special kind of user, the administrator, who will perform

some additional activities:

1. Edit RACK information

2. Add new RACK

3. Delete RACK

4. Edit machine information

5. Add new machine

6. Delete a machine

7. Access electrical consumption information

This is a special user with higher privileges, who is allowed to change the

information of the system. These users are people from the department; they have more

knowledge about the application and the elements related than the regular users.

However, we will build the same interface for both kinds of users. Although, the pages

where only an administrator has access will content fewer help tags or help descriptions;

they will have icons for certain actions instead of explicative buttons.

We also assume that users will have a web browser with a reasonable support for

HTML 5, CSS 3 and JavaScript. Actually, the application will be tested under Firefox

11+ and Google Chrome 18+.

3.1.2 Software development methodology

We are using ESA LITE methodology as analysis method. We will gather the

requirements using his recommendations and rules. The next chapters include the

requirements and design steps recommended by ESA LITE.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 27 de 97

3.2 User requirements

Along this section, a numeric scale for priority, stability, necessity and clarity has

been used. This scale ranges from 1 to 5 where 1 stands for very low and 5 stands for

the maximum.

ID Numeric id Type Functional or non-

functional

Name Meaningful name

Actors Who is using affected by this requirement

Description Brief description of the requisite

Source From who/what/where we got the requirement

Verifiability Yes or No Clarity { 1 , 5 }

Stability { 1 , 5 } Necessity { 1 , 5 }

Priority { 1 , 5 }

Notes Some notes to clarify the requirement if is not enough with the

description. Also used to describe ranges or possible values.

Table 1 Requirement template

3.2.1 Functional requirements

FR_1001 Sign up

ID FR_1001 Type Functional

Name Sign up

Actors Administrator

Description Data Center Guardian system shall provide the means for

administrators to register new users in the application.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 5

Notes User names and emails must be unique. The login credentials will

be the same as in LDAP server already set up in the lab.

Table 2 FR_1001 Sign Up

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 28 de 97

FR_1002 Login

ID FR_1002 Type Functional

Name Login

Actors Everybody

Description Data Center Guardian shall provide the means for any user to login

into the system using his username and password.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 5

Notes

Table 3 FR_1002 Login

FR_1003 Change password

ID FR_1002 Type Functional

Name Change password

Actors Administrator

Description Data Center Guardian shall provide the means for administrators to

change any user password at any time.

Source Project tutor

Verifiability Yes Clarity 5

Stability 4 Necessity 5

Priority 4

Notes

Table 4 FR_1003 Change password

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 29 de 97

FR_1004 Delete account

ID FR_1004 Type Functional

Name Delete account

Actors Administrator

Description Data Center Guardian shall provide the means for administrators to

delete a user account.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 4

Priority 3

Notes

Table 5 FR_1004 Delete account

FR_1005 Room distribution

 ID FR_1005 Type Functional

Name Room distribution

Actors Administrator, regular user

Description Data Center Guardian shall provide the means for administrators to see

the whole distribution of the RACKs inside the room. A regular user can

only see a RACK if he has a machine inside it.

It also has to show the phases which are connected to RACKs and the

connections, which are visible to any user.

This distribution must be dynamic and modifiable only by an

administrator. Administrators must be able to add or delete any RACK of

this scheme.

Source Project tutor

Verifiability Yes Clarity 5

Stability 4 Necessity 5

Priority 5

Notes

Table 6 FR_1005 Room distribution

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 30 de 97

FR_1006 Room temperature

 ID FR_1006 Type Functional

Name Room temperature

Actors Administrator, regular user

Description Data Center Guardian shall show the temperature of the room. The

application will receive the data from a sensor installed in the room.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 4

Notes

Table 7 FR_1006 Room temperature

FR_1007 Consumption

 ID FR_1007 Type Functional

Name Consumption

Actors Administrators

Description Data Center Guardian shall provide a section to insert consumption

records, query the last one, show historical records, and add/delete records.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 4

Priority 4

Notes

Table 8 FR_1007 Consumption

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 31 de 97

FR_1008 Query RACK information

 ID FR_1008 Type Functional

Name Query RACK information

Actors Administrator, regular user

Description Data Center Guardian shall provide the means for administrator users to

query any RACK information. A regular user can only query a RACK if he

has a machine inside it.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 4

Notes

Table 9 FR_1008 Query RACK information

FR_1009 Manage RACK

 ID FR_1009 Type Functional

Name Manage RACK

Actors Administrators

Description Data Center Guardian shall provide the means for administrator users to

add, to edit or delete any RACK information. The system shall also provide

a view to add, move, edit, query or delete a machine to a RACK schema.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 4

Notes

Table 10 FR_1009 Manage RACK

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 32 de 97

FR_1010 Assign responsible

 ID FR_1010 Type Functional

Name Assign responsible

Actors Administrators

Description Data Center Guardian shall provide the means for administrator users to

assign a user as responsible of a particular machine, so that user is able to

see the RACK in the room distribution.

Source Project tutor

Verifiability Yes Clarity 5

Stability 5 Necessity 4

Priority 4

Notes

Table 11 FR_1010 Assign responsible

FR_1011 User management

 ID FR_1011 Type Functional

Name User management

Actors Administrators

Description Data Center Guardian shall provide the means for administrator users to

manage system users. The administrator shall be able to sign up a new user;

delete a user; search a user by name and change the role of a user in the

system (assign him as a machine responsible or demote him from machine

responsible)

A user may be registered in the application, but it does not mean he is

responsible of a machine

Source Project tutor

Verifiability Yes Clarity 5

Stability 4 Necessity 4

Priority 4

Notes

Table 12 FR_1011 User management

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 33 de 97

FR_1012 Consumption statistics

 ID FR_1012 Type Functional

Name Consumption statistics

Actors Administrators

Description Data Center Guardian shall provide the means for administrator users to

query statistics and graphs about historical data of consumption records.

The graphs shall allow filter by date and time

Source Project tutor

Verifiability Yes Clarity 5

Stability 4 Necessity 4

Priority 4

Notes

Table 13 FR_1012 Consumption statistics

3.2.2 Non-Functional requirements

N-FR_0001 Secure connection

ID N-FR_0001 Type Non Functional

Name Secure connection

Actors N/A

Description Data Center Guardian requires the identification of every user, so an

authentication procedure needs to be developed. Therefore, this

authentication will be performed via HTTPS in order to prevent any

eavesdropping attacks.

 Source

Verifiability Yes Clarity 5

Stability 4 Necessity 5

Priority 3

Notes

Table 14 N-FR_0001 Secure connection

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 34 de 97

3.3 Software requirements

In this chapter we are describing the software requirements. We are following the

same template we used in User Requirements. At the end of the chapter it is also

included a traceability matrix mapping software requirements with user requirements.

3.3.1 Functional requirements

FR_2001 Login form

ID FR_2001 Type Functional

Name Login form

Actors Guests

Description The application must provide a form to input user credentials and a submit

method to send them to the server in order to authenticate themselves

Source FR_1001, FR_1002

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 5

Notes The password field must not show the password in plain text. A

submit button must be provided.

Table 15 SR Login form

FR_2002 Check if logged

ID FR_2002 Type Functional

Name Check if logged

Actors Web server

Description The application must check if the user is logged any time he tries to access a

private page (i.e. any page but login).

Source FR_1002

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 5

Notes The password field must not show the password in plain text. A

submit button must be provided.

Table 16 SR Check if logged

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 35 de 97

FR_2003 User management view

ID FR_2003 Type Functional

Name User management view

Actors Administrator

Description The application should provide a view for user management. In this view

the administrators can sign up new users, delete existing ones and change users

password.

Source FR_1001, FR_1003, FR_1004, FR1011

Verifiability Yes Clarity 5

Stability 4 Necessity 3

Priority 3

Notes There should be a way to manage users; from the application or from

other external application.

Table 17 SR User management view

FR_2004 Overview page

ID FR_2004 Type Functional

Name Overview page

Actors Regular users, administrators

Description The application must provide a page showing an overview of the room

distribution. This page also should display a small section with the temperature

of the room.

Source FR_1005

Verifiability Yes Clarity 5

Stability 5 Necessity 5

Priority 5

Notes The password field must not show the password in plain text. A

submit button must be provided.

Table 18 SR Overview page

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 36 de 97

FR_2005 Phases distribution

ID FR_2005 Type Functional

Name Phases distribution

Actors Regular users, administrators

Description The application must provide a picture with the phases and the connections

to RACKs. This picture is just a reference; it should not contain any interaction.

Source FR_1005

Verifiability Yes Clarity 4

Stability 5 Necessity 4

Priority 4

Notes

Table 19 SR Phases distribution

FR_2006 Temperature sensor

ID FR_2006 Type Functional

Name Temperature sensor

Actors Regular users, administrators

Description The application must provide in the overview page a section to display the

room’s temperature sent from a sensor installed in the room.

This sensor will send updates periodically to keep a meaningful value.

Source FR_1006

Verifiability Yes Clarity 4

Stability 3 Necessity 3

Priority 3

Notes

Table 20 SR Temperature sensor

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 37 de 97

FR_2007 Consumption page

ID FR_2007 Type Functional

Name Consumption page

Actors Administrators

Description The application must provide a page to show the last consumption record of

each RACK. The data will be displayed in a table. The phases are divided into

“groups” (Phase R, Phase S and Phase T). Each group is painted in a separated

table.

Source FR_1007

Verifiability Yes Clarity 4

Stability 4 Necessity 5

Priority 4

Notes

Table 21 SR Consumption page

FR_2008 Add new record

ID FR_2008 Type Functional

Name Add new record

Actors Administrators

Description Consumption page must contain a button to add a new record. This button

will display a form with two fields:

 RACK: This will be a list with the RACKs of the room

 Value: This field is a numeric input of four digits: two integers and

two decimals.

Source FR_1007

Verifiability Yes Clarity 4

Stability 5 Necessity 5

Priority 4

Notes

Table 22 SR Add new record

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 38 de 97

FR_2009 RACK view

ID FR_2009 Type Functional

Name RACK view

Actors Regular users, administrator

Description The application must show the RACK information of a wardrobe when it is

clicked in overview page. It must display the RACK information, such us

name, interfaces and subnets.

Source FR_1008

Verifiability Yes Clarity 4

Stability 4 Necessity 4

Priority 4

Notes This content should be rendered asynchronously in the main page

instead of refreshing the page or sending to another page.

Table 23 SR RACK view

FR_2010 Edit RACK view

ID FR_2010 Type Functional

Name Edit RACK view

Actors Administrators

Description The RACK view must provide a button to administrator so they can edit the

information of a RACK. The changes not committed shall be able to be

undone. This view must provide also a button to commit changes; and a button

to discard the changes.

Source FR_1009

Verifiability Yes Clarity 4

Stability 5 Necessity 4

Priority 4

Notes

Table 24 SR Edit RACK view

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 39 de 97

FR_2011 Delete RACK

ID FR_2011 Type Functional

Name Delete RACK

Actors Administrators

Description The application must provide a button in RACK view to delete the RACK.

The machines and consumptions associated to delete RACK shall be deleted as

well.

Source FR_1009

Verifiability Yes Clarity 4

Stability 4 Necessity 4

Priority 4

Notes

Table 25 SR Delete RACK

FR_2012 Add machine

ID FR_2012 Type Functional

Name Add machine

Actors Administrators

Description The application must provide a button in RACK view to add a new machine

to the RACK. This button should display a form to fulfill machine data and a

submit button to send the form to the server so it can commit changes.

Source FR_1009, FR_1010

Verifiability Yes Clarity 4

Stability 4 Necessity 5

Priority 4

Notes

Table 26 SR Add machine

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 40 de 97

FR_2013 Query machine

ID FR_2013 Type Functional

Name Query machine

Actors Administrators

Description RACK view must provide a schema to display the machines. Those

machines must be clickable to their information can be queried. The

information of a machine shall be displayed without closing RACK view.

Those machines shall be modifiable by clicking a button, allowing the user

to update the information of the machine.

Source FR_1009

Verifiability Yes Clarity 4

Stability 5 Necessity 5

Priority 5

Notes

Table 27 SR Query machine

FR_2014 Consumption statistics

ID FR_2014 Type Functional

Name Consumption statistics

Actors Administrators

Description Consumption page must provide a way to visualize statistical and historical

data about RACK consumption given a certain RACK.

Source FR_1012

Verifiability Yes Clarity 5

Stability 4 Necessity 4

Priority 4

Notes The application should display historical consumption data in a line

chart, and occupation in a pie chart.

Table 28 SR Consumption statistics

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 41 de 97

FR_2015 TLS encryption

ID FR_2015 Type Functional

Name TLS encryption

Actors System

Description We are forcing the application to run under HTTP with TLS 1.0

Source N-FR_0001

Verifiability Yes Clarity 4

Stability 4 Necessity 4

Priority 4

Notes

Table 29 SR TLS encryption

3.3.2 Traceability matrix

UR\SR FR_2001 FR_2002 FR_2003 FR_2004 FR_2005 FR_2006 FR_2007 FR_2008 FR_2009 FR_2010 FR_2011 FR_2012 FR_2013 FR_2014 FR_2015

FR_1001 X X

FR_1002 X X

FR_1003 X

FR_1004 X

FR_1005 X X

FR_1006 X

FR_1007 X X

FR_1008 X

FR_1009 X X X X

FR_1010 X

FR_1011 X

FR_1012 X

N-FR_0001 X

Table 30 Traceability matrix UR-S

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 43 de 97

4 Design
We have designed the system according a three layer one tier model (See next

figure). We have chosen this model because we already had experience and we worked

before with this model, which have given good results. In our design we include also

client-server architecture because we wanted to make the user interface dynamic.

Figure 5 Three layer model

The presentation layer is responsible of presenting processed information to the

user; it also has to send input events to logic layer, telling if the user requests new

information. This layer can be seen as the web browser, since it is there where the

information is presented. This layer has also some logic below JavaScript, but it is

limited to certain tools for locating, hiding and showing content within the HTML of the

browser page, so we can make HTML page dynamic in some way. In this layer is also

defined the layout of the HTML.

The communication between the presentation layer and the business logic layer is

performed through HTTP protocol.

The business logic layer is responsible of processing the events from the

presentation layer, query the data layer if needed, generate HTML code for the

presentation layer and send update events to the data layer. This layer has also to

prevent attacks over the data layer and has to ensure a safe use of the application from

the presentation layer; which means that it has to process and validate every user input

from the presentation layer, in order to avoid errors and malfunction or crashing of the

application. We can see this layer as the PHP code, executed in the server, which

generates the HTML code the web browser will render.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 44 de 97

The communication between the business logic layer and the data layer is performed

through the PHP Data Object interface, included by default in PHP 5.3.

The data layer is responsible of efficient and effective storage of the information

and data of the application. It also has to allow querying information. This layer holds a

relational schema and a clear definition of the objects stored within. It also holds some

logic to preserve the integrity of the data and to avoid inconsistencies between relations.

This layer can be seen as the relational database used to store the data.

We designed as well a relational database to store our important data for the

application. We chose relational SQL data bases because we worked before with them,

and in the course of Files and Databases we had an assignment where we had to work

with an SQL data base and to build optimized queries.

Since this is a web application, we are using the last innovation technologies, for

instance: HTML 5, CSS 3, and JavaScript with jQuery, jQuery UI and Google Charts

libraries as a requirement to build our application.

We have to find a way to communicate the business layer with the presentation

layer. In a first instance, we decided to use XML because it is a robust markup

language, which allows validation against a schema and it is wildly extended and

supported. However, we found that XML did not fit to our needs at all because we

barely needed most of their futures, and it lacked in a very basic one: easy integration

with JavaScript, the client side language. Therefore, we changed our mind and started to

use JSON (JavaScript Object Notation), which has native conversion between raw data

and JavaScript objects.

We designed, in some measure, the user interface using a technique called

Responsive Web Design. The basis of this technique establishes that the layout and the

images of a web site have to be fluid and flexible. The main objective of this technique

is to build a layout capable of presenting the content in devices and resolutions it was

not primarily designed for; for instance, presenting the application in a mobile device.

Actually it has some problems to work properly on mobile devices, but this is due to

jQuery library for JavaScript; I would have to adapt the application by using jQuery

mobile library instead.

We presented above three roles within the system. We actually simplified the model,

and now instead of having users with roles, we have a specific account for

administrator, and any other registered account is considered a regular user. We

simplified the model of permissions because we noticed that only people belonging to

the department will access as administrator; in other words, we will not have external

administrator, so the capability of granting administrator privileges to specific user

accounts loses priority and necessity, which allows us to simplify the model and set an

administrator account, and suppose that any other account is a regular user one.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 45 de 97

4.1 Initial prototype

We build an initial prototype using the application Axure RP Pro 6
3
. This application

provides tools to develop very fast rich and interactive prototypes without having to

code anything; moreover, it generates your prototypes in HTML, so no need of using

special player. We chose this tool because is really easy to use, it has a lot of examples

and documentation to get started, and in very few time you can build a prototype, so

developer and client can agree on what the product must be.

These are some images about how we expected the application to looks like:

Figure 6 Initial prototype login

This is the login page, which provides a basic header and footer, which set the width

of the page. We can see that from the basic prototype we already have decided that the

content must be centered in the page, and that it must follow the current Lab theme. The

Lab theme is a combination of soft blue colors, which give a sensation of “relaxed

content”; these combination of colors do not borrow the attention of the user from the

main content (in this case, entering the user credentials) while providing an aesthetic

page.

3 http://www.axure.com/

http://www.axure.com/

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 46 de 97

Figure 7 Overview page

The figure above is the main page; it is also called Overview. This page is shown

right after successful login, and it provides an overview of the room distribution, where

each “big” rectangle represents a RACK; the small ones represent electric phases. In

this prototype we did not connect the RACKs to electric phases because the tool (Axure

RP Pro 6) did not provide any tool to draw arbitrary lines between elements, since it is

one of the current limitations of HTML 4.

In this view, you can click in any RACK to make the wardrobe view fade in. Then

you can edit the wardrobe information, add a new machine, or click in "Jean Luc

Picard" machine to switch to Machine View.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 47 de 97

The next figure shows the RACK view:

Figure 8 RACK view

The RACK view now substitutes the phases but it keeps visible the RACKs, so any

other RACK can be clicked and queried; in that case, the current rack view will be

hidden and then substituted by the new one. In this view, the possible interactions are:

add new machine, edit rack information, query specific machine, hide the current view

and go back to phase’s picture, or query a different RACK.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 48 de 97

Now let’s suppose that we click on “Edit” button, which allows us to edit the RACK

information:

Figure 9 Edit RACK view

This view is very similar to RACK view, but now the fields to show the information

of the RACK are editable text boxes. The idea of this view to be similar to RACK view

is that the user can feel that he can change the information he was just watching a few

ago, so we can avoid having formularies in a different view or overloading the page

with a complete different view. However, later on testing phase, we found that this

approach was not intuitive at all, so in next versions there is included some more

information about what each thing is. In Edit Wardrobe view, you can change: name of

wardrobe or/and information of wardrobe. Once editing, you can also discard the

changes.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 49 de 97

The next figure shows the “Machine view”:

Figure 10 Machine view

This view maintains the design of a small frame between the RACKs. Machine view

contains more information than the other views and it may be a bit overloaded; this

issue will be solved in the next prototype. This view presents the information about the

responsible user assigned to this machine, the operating system of the machine, the IP of

the machine, the color, the type of machine, some notes and the measures of the

machine, which are the starting position in the RACK and how many Us takes going

upward. In this view it is also shown some charts with memory usage, CPU usage and

temperature, which are statistics about usage. This feature is optional, and it will require

the installation of a daemon in the target machine.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 50 de 97

The next figure shows the “Edit Machine view”:

Figure 11 Edit Machine View

In Edit Machine view, you can change the name of the machine, pick a responsible

from a list, change the name of the OS, change the IP, set the color or the machine

(bright or dark), set the type of machine (Server, Storage server, KVM, switch or UPS);

and also change the starting position of the machine, and the number of U's it needs.

In the prototype, if you change the position, nothing happens in the schema on

Wardrobe view, but in the final system, it will check if it's possible the movement, and

will change the schema in case that is possible.

The main difference between “Add machine view” and “Edit machine view” is that

edit machine button loads the previous values from the view into the editable fields,

while add new machine just sets them to blank or loads some default values.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 51 de 97

The next view shows the consumption page:

Figure 12 Consumption page

This page will show the last record of electric consumption inserted for each RACK.

The data is separated per phase group. We have three different groups:

1. Phase R

2. Phase S

3. Phase T

Those are arbitrary names, which contain a group of electrical phases. The

consumption unit is the Watt. Each RACK has a theoretical limit, that in case that is

reached, it will produce a blackout. It is important to keep tracking of each RACK

consumption so we can ensure this limit is far to be reached. Next to the consumption, it

is also shown the current occupation of the RACK; this means, the percentage of used

space (this basically is, the sum of Us occupied by machines divided by the RACK size,

which is 42 in most cases).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 52 de 97

In this page will be also an option to show historical records in a line chart of a

particular RACK, and a pie chart will show the percentage of free and occupied space.

This initial prototype does not include a section for this feature because the tools used to

create the prototype do not support charts or storing persistent data. In this prototype is

also missing a button to insert new records, which will be added for the first version of

the system.

4.2 Architectural Design

As we said above, we are using a three layer design, where the three layers are:

presentation layer, business logic layer and data layer.

The presentation layer has the components User Interface, css, static and

javascript.

The User Interface component is responsible of showing the data received from the

business logic layer in an organized way. It also has to show the information effectively,

which means it has to left clear what each thing means, and the possible interactions

with the application. The User Interface takes advantage of css component for defining

the layout and the presentation rules.

The css component is the Cascade Style Sheets which defines rules for rendering the

data in the HTML, as well as providing layout definition for HTML elements.

The static component holds some static files, which means, they do not change over

the time or by an interaction from user; and it provides static content (e.g. images and

user manual).

The javascript component has classes and some logic to make the content of the

HTML (User Interface) pseudo-dynamic; it is pseudo-dynamic because it is not actually

changing the content of the user interface, but just showing and hiding it. However, this

component can also asynchronously change the content of the web page in response of a

user interaction (e.g. pressing a button); but it respects the design restriction that only

the business logic layer can access the data layer, so this component just sends "input

events" from the user interface to the logic layer, which are processed and sent back;

then the javascript component changes only specific parts of the web page with the new

data received from the logic layer.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 53 de 97

The next figure shows the presentation layer component diagram:

Presentation Layer

User InterfaceJavascript

css

+user_manual
+images

static

1 1

1

1

1
1

Figure 13 Presentation layer

The business logic layer has two components. One is the logic, responsible of

processing, filtering and sanitizing user inputs. It also is responsible of accessing safety,

efficiently and effectively the data layer to update the application data. In this layer we

can find server side logic to process the data, even from the user or from the data layer,

and transforming it into HTML code interpretable by the web browser. This component

handles everything within the application.

This logic component is also a "security layer" to avoid accessing the data layer from

the user interface; because accessing data layer without using this logic component is

unsafe and it can danger the integrity of the application, provoking malfunction or even

crashing of the application.

The user does not have to know about the functionality of this layer; this layer is

accessed from the presentation layer, which handles the user input and sends pre-

processed data to this layer, so it can understand what the user was trying to achieve;

serving in this way the necessary data to the user to complete his goals within the

application.

The component includes has logic functionality which is used several times by logic

component. This component itself does not provide any useful logic functionality to the

user interface, because it only has generic functions, ready to be included in any other

logic component to ease their processing. In this component is included, for instance,

filter functions to validate and sanitize the input received from the user interface. It is

supposed that component javascript in presentation layer should pre-process the input

and send only clean inputs to business logic, but this statement is not always true, so we

have to add some filtering functionality to this layer.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 54 de 97

This component also has data structure definition for certain abstractions the logic

components uses. For instance, it defines a class for a consumption record. These

definitions ease some processing of the data and the process of converting the raw data

into something the presentation layer can understand.

Business Logic layer

logic includes

Figure 14 Business Logic layer

The last layer is the data layer. This layer is responsible of storing/querying

efficiently and effectively the data used by the application. It will be explained in detail

in chapter 4.4 Database Design. This layer basically holds a relational model and the

relations between its entities. In its corresponding chapter is included a figure about this

layer.

4.3 Detailed Design

We are now introducing the detailed design. In the next sections we will explain in

detail each component. Moreover, we will explain how works each class and its

responsibility, as well as associating them with the real word (e.g. associate user

interface with web browser).

4.3.1 Presentation layer

In this chapter we are describing in detail each component defined in architectural

design, providing a more accurate description on how each class works. The

components will be described by layer, starting from Presentation layer and finishing

with data layer.

In order to perform any activity the user have to login. A guest user is not allowed to

take any interaction with the system but to authenticate. Certain activities are

sometimes an intermediate activity to guide the user to his real goal; for instance, query

machine activity. For a user to query a machine, first he has to query the RACK where

the machine he wants to query is placed at.

We have designed our interface to take almost all the interaction through overview

page. We think it is more intuitive if the user performs a sequence of activities which

change his main view, so during the sequence he is continuously getting feedback on

how the interaction is going. However, we have to take care that any activity do not take

very long to perform, because in that case, the process will be hard to learn and

remember, making the interface not very intuitive and less usable.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 55 de 97

In our “worst case”, the longest task to perform is editing an existing machine.

Assuming the user is logged as administrator, first he will have to query the RACK

where the machine is; then he has to click the machine, so a dialog pops out with the

machine information and the proper button to edit it; and then the user has to update the

desired fields of the machine, and click the proper button to save the changes. Following

this sequence just takes four interactions with the application; it may seem a bit long,

but it actually is not, because some intermediate steps are also final goals (e.g. query

RACK and query machine), so those middle steps are easy to learn and remember, so

learning this new long activity, is just doing two more interactions with the system.

Each activity is designed to fulfill a user need.

We have decided to implement a main page for managing RACKs and machines.

Instead of moving through pages to visualize a RACK, we are taking advantage of

JavaScript to generate a dynamic interface. The main idea is to put the RACKs in the

edges of the interface, and leave the middle space for presenting different content

depending on user interaction.

In this way, we are creating a rich and interactive application, where the user can

explore just by clicking elements of the interface. However, not every element is

interactive; in order to make distinction between interactive and not-interactive, the

mouse pointer will change when it enters a region of interactive element, giving a hint

of what can be the result of the interaction. For instance, when the mouse enters hover a

RACK element, the mouse pointer changes to a magnifying glass, providing the

sensation of “I can explore this element”.

However, we do not want to overload the main page; to avoid this, we are using

dialogs: pop-out dialogs within the page. This dialog is not a classical pop out spam,

which opens in a new window and takes focus. Our dialogs are open as “internal

frames”. The main difference between RACK view and these pop-outs is the drag-able

property of dialogs; moreover, dialogs are overlaid (i.e. over the rest of elements).

This approach of dialogs presents a problem: dirty terminated interactions. For

instance, imagine we query a RACK, then we query a machine and we decide to edit its

information; however, we miss-clicked and queried a different RACK. Let us analyze

now the state of the application: we have a dialog with a form to edit a machine from a

RACK that no longer exists in our interface context.

This situation creates a lack of integrity in the interface, and as consequence, a lack

of integrity in the logic of the application. In order to prevent this risky inconsistent

state, we are creating our dialogs as modal. This basically means: while there exists an

opened dialog, none of the overlaid elements by the dialog are accessible. Now, to

cancel the flow of the action, we have to “cancel” the interaction with the proper button;

so now, the interface knows the interaction was canceled, and it can returns to a

previous state, preserving consistency in the logic.

We can achieve this dynamic main page using a technology called AJAX (described

above in section AJAX. Almost every interaction implies a background asynchronous

request to the server, completely transparent to the user. This approach gives the

sensation of interactive application, instead of web site surfing, becoming easier to

remember and learn how to use the application; since the user does not have to

remember web pages, but interactions (intuitive in many cases), it is easier to learn.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 56 de 97

We are providing a figure with the class diagram; we want to provide a quick

overview just by watching the diagram; then we will go into details. This is the class

diagram for the presentation layer:

javascript

User interface

css

static

canvas_boxes

show_things

filters consumption_tools

machine-tools rack-tools

login

overview consumption

1

1

«uses» «uses»

«uses»

overview css loginpage css

main

header_footer css

consumption jQuery cupertino css

1 1

user manual

images

1

1

Figure 15 Detailed Presentation layer

We have three main components, and the fourth one (static) just holds static content,

such as images and the user manual.

The component user interface is the one responsible of interacting with the user and

presenting the content from the logic layer. The user interface is composed by the

components css and javascript. We can imagine, in other words, the user interface

component as the web page rendered in the browser, with his style rules defined in CSS

and some JS functionality to make the page dynamic.

Login is the page that is firstly presented to any non-logged user. In this page is

presented the header and the footer that will be present in any other page of the

interface. This page has in the middle a login form. It has a field for the user name, a

field for the password, and a login button. The login is a required process to complete

successfully to obtain access to the application. Any non-logged user (guest) who tries

to access any other page will be redirected to login page without showing him any

content. This page can also show an error message in case the user inputs a wrong

username-password combination. In that case, the error will be highlighted in a red box

with an error message describing the error.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 57 de 97

The user is redirected to overview page once he successfully logins into the server. In

this page takes place almost every possible interaction with the prototype. From this

page we can query RACK’s information, machine’s information and the user manual; in

this page it is also included a left menu to navigate to consumption page.

RACK view will be displayed when any RACK is clicked and the user has enough

privileges to see it; a user has enough privileges to query a RACK if he has one or more

machines in that RACK; having a machine means being the responsible of that machine.

This action requires the logic layer to process the input interaction; in other words,

when a RACK is clicked, the interface asynchronously sends a request to logic layer to

generate the content of the RACK view; then the user interface will update the content

between the RACKs and it will print there the content received from logic layer about

RACK view.

If a RACK is clicked twice, then its RACK view will be hidden and the canvas with

phases will be displayed again. If any other RACK is clicked, that RACK information

will be requested and rendered in place of the old one. If a RACK is hidden, either by

clicking it twice, or by closing the view with the cross button, it is not destroyed, it is

just hidden; in case the RACK view is hidden and requested again, it is just shown,

instead of sending again a request to logic layer. This was an optimization to avoid

flooding the server with asynchronous requests; it has the limitation that if another user

updates that RACK, and our user do not request it again, he will not see the updates;

however, we do not expect to have multiple administrators changing the information of

the same RACK concurrently.

A machine can be queried from a RACK view by clicking on that machine; in that

case, the machine view will be shown in a dialog frame, overlaying the rest of

elements, making them inaccessible until the interaction with the dialog finishes. From

this view, we can edit or delete the machine from the schema. In case we want to edit;

our dialog will be substituted by a new dialog with the fields of machine view, but this

time being editable and holding the last value before the edition. The edition and

deletion of machines is a privileged process; so the only one allowed to perform this

operation is administrator.

Finishing the user interface description, consumption page is the one responsible of

presenting electrical consumption data. In this page, the last inserted record for each

RACK is displayed in a table, tagging each column to avoid confusions in value

meanings. Consumption data is grouped by phase group name; at the moment, there are

three group phases:

 Phase R

 Phase S

 Phase T

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 58 de 97

In consumption page, we also allow to visualize historical data in a line chart. In this

chart we can appreciate increase or decrease of RACK consumption. Moreover, a pie

chart displays the occupation percentage; presenting free vs. occupied space. These

charts are also generated dynamically, and the consumption records are ordered by

insertion date, showing first (most to the left) the oldest.

As we can see in the figure above, user interface is composed by components css and

javascript. Those components add client-side logic and interactive tools (JavaScript);

CSS stylize and defines the layout of the interface.

Javascript component has separated class by general functionality. For instance,

machine-tools.js provides supporting tools to handle and process the interaction with

machines. Rack-tools.js provides the same utility, but for RACK elements. Some

example of machine tool is: query_machine(). This function is responsible of handling a

user click on a machine, sending the data pre-processed to logic layer, and render the

response in HTML elements already present in the page.

There are more general purpose scripts; for instance show_things.js; this script

provides tools for showing an element given his id, and optionally, hiding another one

in the same call if a second element id is provided. This script also has a function to

expand or compact a RACK schema. Since the schema (where the machines are placed

in a RACK) is too big (42 positions) and it goes out from the page, we have a compact

view for it; the compact view consists on drawing one “gap” in the schema per each 10

“gaps”. Expanded view of the RACK shows the whole RACK, machines and gaps.

Css component has cascade style sheets which contain rules for defining layout and

style. In this component we define every style detail of the interface. This component,

although it does not contain any logic, it is responsible if making the interface attractive

and intuitive; for instance, we cannot change the cursor pointer when the mouse enters a

RACK without this component. This component also allows us to color in red

“dangerous buttons” (e.g. Delete machine).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 59 de 97

4.3.2 Logic Layer

The Logic Layer is responsible of processing the data send from the interface and

generating a proper response. The response can take several formats, listed below:

 XML: canvas-boxes.php sends an XML as response defining the connections

between RACKs and phases.

 JSON: query_machine.php sends machines as JSON object. The advantage of

JSON is its native conversion between string and object; an object is much

easier to deal with than a string (XML case, we deal with a string unless we

manually parse it into object)

 HTML: when we want to just receive a render into a container; for instance,

wardrobe_view.php

Logic component has all the business logic to process inputs from user interface; and

it also has an interface to work with MySQL driver for PHP. This interface abstracts the

process of connecting, manipulating and querying the database through the driver. This

interface is called PHP Data Object (PDO); and it really simplifies the process of

dealing with the database because using the driver directly can become hard, tedious

and it will slow the development process.

This component also separates its classes depending on their purpose. In addition,

this component separates the classes for querying from the ones for committing. In our

case, the classes for querying are:

 Wardrobe_view.php; this one generates the HTML for the requested

RACK, so the interface only has to render the content in the proper place.

 Phases-xml.php; this class generates the XML for representing the

connections between RACKs and electrical phases. It will be used by JS to

render the phases and their connection with a RACK in the canvas element.

 Consumption_query.php; this class generates a JSON object with an array

of records to populate the line chart of historical records.

 Query_machine.php; this class also generates a JSON with the information

of a machine, which can very easily access to retrieve the information from.

This object is destroyed after the content is rendered to avoid unauthorized

access.

We have as well classes for just committing the data from a form; for instance, from

a machine form. We can use this class for adding a machine or editing an existent one,

since the action of gather the data of a machine and commit it into database is abstracted

here.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 60 de 97

Then we have some utility classes, for instance, logout.php, which is responsible of

freeing the resources from a PHP session once the user logs out. Then we also have

check_if_logged.php; this class is responsible of checking if the user is properly logged

in the system. And finally we have check_login.php; this class is responsible of logging

users into the system if they provide a valid username and password; as well as creating

a proper session instance for this user to identify him.

We have by other hand, the component includes, who is responsible of defining very

common general operations in the system; for instance, connecting to database. All

“committers” in logic component connect to database by using PDO interface. We

extracted some steps that are always performed, and instead of writing them again and

again, we just “include” them using a PHP directive to include code from other PHP

files.

A very important class is filter_functions.php, which is responsible of providing

essential functions for validating, filtering and sanitizing all the user inputs from user

interface. This class is also a security measure to avoid XSS attacks and SQL injection.

We have to highlight that SQL injection is prevented in the three layers: JS escapes the

content before sending; PHP filters and escape the content as well; PDO interface

provides prepared statements, which are theoretically immune to SQL injection.

Many classes depends on check_if_logged class because they do not carry out their

requested operation is the user does not have a valid session initiated.

Some other classes in includes component are just some content almost static, but we

included it as PHP because if it changes in one site, it changes in the other places as

well. For instance, the footer: maintaining changes is really easy if we use include

directive of PHP because then we only have to change one file in the whole system, and

it will be different in every page.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 61 de 97

Here we include a figure with the detailed business logic layer:

logic

Includes

add_rack check_if_logged check_login

consumption_query

logout

machine_commit

machine_editionphases-xml

query_machine

rack_commit

wardrobe_view

connect_DB ConsumptionRecordClassfilter_functions

footer header machine_class

leftmenu

Figure 16 Detailed Business Logic layer

The last layer is the data layer, but this layer is just the Database, which will be

explained in detail in chapter Database Design.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 62 de 97

4.4 Database Design

We are using a relational data model to design our database. We have chosen to use

this model because we have worked before with him and it gave good results.

Moreover, we have some experience working with this kind of data bases from an

assignment from Files and Databases course.

A relational model is a data model used to afford problems and state the problem

using predicate logic and set theory. In our model, a relation is a set of data describing

objects (machines) or representing data (electrical consumption record). A relational

schema is a definition of relations and the kind of information they will hold. Every

schema has the name of each relation and the name of its attributes. An instance is a

particular finite set of tuples of a given relation at a time instant. We can see the schema

as the structure definition; and the instances as the data itself in that schema. A set of

schemas is called DataBase.

Relational data bases use a language called Structured Query Language (SQL),

which is a declarative language to provide access to databases. This language allows

declaring operations over the data, which can modify the state of the data, or just query

and serve it. The language also includes a Data Definition Language (DDL), which is

used to define the relations and the data type of those relations. DDL is also used for

altering or modifying the structure of the database.

The next figure shows the relational data model for the data base:

Figure 17 Relational model

allowed_users

PK name

 password
 email
 office
 phone

consumption_record

PK,FK1 rack
PK record_timestamp

 electric_current

phase

PK pos_x
PK pos_y

U1 id
 group_name

wardrobe

PK position

 name
FK1,I1 phase
 iface1
 iface2
 iface3
 ip1
 ip2
 ip3

machine

PK name
PK,FK1,I2 responsible

FK2,I1 wardrobe
 os
 ip
 color
 type
 notes
 starting_pos
 num_u

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 63 de 97

The relation allowed_users stores the information about users which have permitted

access to the system. The field password stores a SHA-1 string of the password, so we

never store a password in plain text. It also contains fields to store user personal

information. The primary key of this relation is the username, which is also the user real

name.

The common approach to this problem is to set a unique username, and by other

hand, store the user real name. This approach is commonly used because in a real

problem, you will have users with the same name (e.g. Javier is a very common name),

so you have to define a univocal identifier for each user. This identifier can be a

numeric ID, a random number appended to the user’s name or whatever identifies

univocally the user. In our problem scope, we will not have a big volume of users, and

this problem of repeated user’s name loses relevance. In our scope, if we found two

users whose name is Javier, we can avoid this problem just by assigning one of them his

surname as username. We know we are losing some semantic here, but it is a lose we

can afford, and in back we avoid dealing with user name modification and mismatching

between username and name; moreover, we are planning to use the name of the user as

a field in the machine relation; joining username and user’s name in a single field makes

easier to update and maintain integrity.

Figure 18 Wardrobe relation

The relation wardrobe stores information about each RACK in the data centre. An

explicit requisite is the number of interfaces/subnets assigned to a RACK is limited up

to three. If a subnet is associated to a RACK, then that RACK must have, at least, one

interface per subnet open. However, an interface can be connected to a RACK but it

may have not assigned any subnet; in that case, we say the interface is “open”. In the

case an interface is open, the value of the subnet will be “___”. Otherwise, the syntax

of the subnet is the following: “163.117.C.X”, where C is a number between 0 and 255.

The X remains, meaning it can take any value since it will belong anyway to the subnet.

wardrobe

PK position

 name
FK1,I1 phase
 iface1
 iface2
 iface3
 ip1
 ip2
 ip3

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 64 de 97

The name of a wardrobe is a string with maximum length of 20 characters. This

name has not to be unique; we do not care if we have RACKs with repeated name;

because the name is not going to identify our RACKs. For the purpose of identifying

RACKs, we will use a numeric ID, called position, which actually tells the position of

the RACK in the web page. This number later on will let us layout the elements

representing each RACK in the web page. This ID is unique and it is also part of the

primary key.

The last field of wardrobe relation is phase, which is a numeric type, referencing and

connecting wardrobe relation with phases one. In this way we relate data from phases

directly with the RACK they belong to. This field itself describes what phase the RACK

is connected to. It is not unique because it has to cover a limitation of the user interface,

which do not allow swapping phases connection between two RACKs; they way to

“swap” the phase connection between two RACKs is by assigning first two RACKs

two the same phase, and then assign to the second RACK, the ”empty” phase.

Figure 19 Phase relation

The relation phase is mostly used to store the coordinates to draw the phase element

in a canvas in the web page. This relation’s primary key are the fields pos_x and pos_y;

those fields are numeric and store the (X,Y) position where the phase identified by id

has to be rendered in the web page. The field id is unique in this case, but it is not

included in the primary key because in a first instance, what identified the relation was

the position of the element; later on we included two fields: id and group_name; then, in

order to avoid refactoring, we left it as it was since it still being working. Then to

optimize some queries to id, we built an index for the field.

phase

PK pos_x
PK pos_y

U1 id
 group_name

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 65 de 97

Figure 20 Consumption record relation

The relation consumption_record has a field rack, which is related to wardrobe

relation and means to what RACK a particular consumption record belongs to. There is

another field called record_timestamp, which is a date field to store the timestamp

where a new record is inserted. Those two fields are the primary key of this relation.

This provides an explicit semantic: we cannot take two records for the same RACK at

the same time instant. This semantic is loyal to the reality; in the case that two different

administrators insert a record at the same, into the same RACK, the system will not

allow the operation and an error will be sent to the user through the interface. And this

relation has, of course, a numeric field to store the electrical consumption of a RACK in

a given time.

Figure 21 Machine relation

The relation machine relation is, along with wardrobe, the main focus of the problem

and the design. This relation has a field name, which refers to machine name; it is a

string of 20 characters max length; it can content almost any character of a string to

define the name of the machine. It has also another field called wardrobe, which is also

a foreign key referencing the wardrobe relation. This field has the mean to tell us to

what RACK the machine belongs to. Following the data type of wardrobe's primary

key, it is a small integer and it refers to his parent primary key. Then we have a field

responsible; it makes reference to the name of the user responsible of this machine (i.e.

the user who can see the machine). This field is a foreign key referencing allowed_user

primary key. This field, together with name, are the primary key of this relation,

machine.

consumption_record

PK,FK1 rack
PK record_timestamp

 electric_current

machine

PK name
PK,FK1,I2 responsible

FK2,I1 wardrobe
 os
 ip
 color
 type
 notes
 starting_pos
 num_u

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 66 de 97

The relation also has some other non-null fields to gather the information of a

particular machine:

 os: Operating System

 ip: IP address. It is validated against a regular expression to check that only

valid addresses of IPv4 are stored.

 color: the color of the machine. This field is an enumerated type { 'Bright',

'Dark' }

 type: this defines the kind of machine. It is also an enumerated type { 'UPS',

'Switch', 'KVM', 'Server', 'Storage Server' }

 notes: this field allows to introduce some arbitrary text with a maximum

length of 255 characters.

The last two fields are starting_pos and num_u. These fields mean: at what position

within the RACK does the machine start? And, how many rack units does it take going

upward? For example, a machine of a single U, placed at the top of the RACK, will start

at position 42 and it will take 1U. Those fields are both tiny integers (just use one

unsigned byte to store each of them).

4.4.1 Query example

Now let us put in example some optimized queries taking advantage of this model.

The next query is solving the next statement: Get the position of a RACK and the

coordinates of the electrical phase associated to it.

This query is required to print the lines that join the RACK with each electrical phase

in the overview. First we will present the relation algebra, and then the SQL query:

∏ ∏ ())))

))

SELECT wardrobe, pos_x, pos_y FROM

 (SELECT wardrobe, phase FROM machine A

 JOIN wardrobe B ON(A.wardrobe = B.position) WHERE responsible=’aitor’) C

 JOIN phase D ON(C.phase=D.id);

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 67 de 97

5 Results and evaluation
The coding phase took place, but we do not consider relevant including code details

in the report. Due to our limitation of time, we only developed a prototype of the

application, which can be extended and improved, as specified in chapter Future Work.

In this chapter we include a user manual for administrator; we consider more

complex the possible interactions of administrators, so we just focused on add a User

Manual for them. The activities of a regular user are much fewer and never take more

than two interactions; actually, a regular user can read the User Manual and he will find

it helpful, but he will not be able to perform most of the activities.

We included here chapters for Software Transfer Document, describing the

environment and how it should be configured. A Software Project Management,

including effort estimation, planning and budget.

5.1 User Manual

This document is a user manual of the web application prototype “Data Center

Guardian” sited in http://cpd.lab.inf.uc3m.es.

The document specifies main capabilities and main operations administrators/users

can do.

5.1.1 Sections

This section describes the main views in the application, shown the main options and

specifying main operations that administrators or users can do.

5.1.1.1 Main Page

Overview page is the key point in the application because almost all interaction is

done from here. In this page is presented the distribution of the room (i.e. the RACK

distribution in the room). Depending on who is the user (administrator or regular user),

a certain number of RACKs will be displayed and accessible. If the user is the

administrator, every RACK is displayed and accessible. If the user is a regular one, only

are displayed and accessible the RACKs where he has a machine (i.e. he is responsible

of a machine within that RACK). This page also has a left menu to allow navigation

between the different parts of the application; as well as a link to user manual.

http://cpd.lab.inf.uc3m.es/

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 68 de 97

The next figure shows the distribution of the room seen by the administrator:

Figure 22 Overview page as admin

RACKs are the boxes at the edge, the ones which has name, and in some cases an

interface with an associated subnet. These RACKs are connected to an electrical phase,

which provides power supply to the machines they hold. The boxes in the middle of the

screen are the electrical phases of the room. The lines connecting the RACKs with the

phases are the connections between them; the boxes of the phases have different colors

because they belong to different “groups”. The grey boxes belong to Phase R; the black

ones, to Phase S; and the white ones, to Phase T.

The grey big boxes in the edges means that there is no RACK there, that spot is free.

However they have a “default connection” to a phase; in case a new RACK is added,

that will be the default connection to the phase.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 69 de 97

5.1.1.2 RACK view

In this page we can interact with two elements: the RACKs on the edges and the left

menu. In the case we click on any RACK, the interface will send an event (i.e. HTTP

request) to web server, asking for the information of the clicked wardrobe. The server

will process the request and will send back the response as HTML ready to

asynchronously be rendered in the page, but without refreshing the page itself.

The second possible interaction is with the left menu. This menu allows navigation

between different parts of the application. As administrator, it will provide a reference

to overview (the main page); a reference to consumption, the page where historical

records are displayed; and a reference to User Manual. The user manual will be opened

in a new tab as a PDF object. The reference to consumption will be offered only if the

user is an administrator.

Now let us assume the user has taken the first possible interaction and he querying a

RACK. The next image shows the resulting view:

Figure 23 RACK view as admin

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 70 de 97

Now we have five additional possible interactions:

 Add machine: this button opens a dialog with en empty form to fulfill and

create a new machine. Only administrator has rights to perform this

operation. This interaction of showing the dialog to add a new machine does

not require the participation of web server.

 Query machine: this interaction triggers when clicking on a machine in the

schema (the table to the left). This interaction produces an event, which send

to the server; then the logic layer process this request and sends back the

information of requested machine; after that, the user interface displays the

new information in a machine dialog.

 Edit RACK: This button changes the fields Rack name and network by

editable fields, so the current information can be changed. It is also added a

list with possible connections of this rack to an electric phase.

 Delete RACK: This button sends an event to logic layer, telling that a RACK

must be deleted. The logic layer will execute the proper update to data layer

and then it will return the new HTML without the deleted RACK.

 Close view: This cross in the top right corner of the view hides the current

RACK view. This action does not require interaction with web server.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 71 de 97

5.1.1.3 Edit a RACK

Let us now suppose the user click "Edit RACK". The next figure shows the view:

Figure 24 Edit RACK view

Now the view has editable fields. We can criticize here that the format for the subnet

is not intuitive at all and there are no help text; however, this will be explained in User

Manual, and it should be easy to remember for future interactions.

Moreover, the field connected to appears, meaning the number of electric phase the

RACK is connected to. This field is a list with the possible values for an electric phase.

Once we are in this view, we can commit the changes; committing changes implies

sending the new information to logic layer so it can send the update to data layer. Or we

can discard the changes; in that case, the old values are restored without sending

anything to logic layer. Discarding in this case does not send request to server because it

uses the session storage provided by the web browser to store the original information

of the rack.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 72 de 97

From this view we still can delete the RACK. It is not very intuitive to have this

option here as well, but we did not find any strong reason to remove from here. And we

can expand the RACK, which will give a detailed view of machines' schema.

5.1.1.4 Detailed machine view

Now let us suppose we are back in RACK view, but now we chose to query a

machine; for instance, let us click on "Database Server". The next figure shows the

result of the interaction:

Figure 25 Machine view as admin

Now a dialog pops out, overlaying the screen (i.e. disabling any other interaction

with the overlaid elements). In this view we can see the information of the machine, and

in the case we are administrator, we will have buttons to edit the machine and to delete

the machine.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 73 de 97

5.1.1.5 Edit a machine

In the case we choose to edit the machine, a new dialog will open with a form to

update the current machine data; the next figure shows an example:

Figure 26 Edit machine view

This view is a form with a field per machine information field. The responsible field

is a list with the users registered in the application. Color and type fields are also a list

because they are enumerated fields and they can only take certain values. Every field in

the form is validated before sending them to the logic layer; the fields are also escaped

to avoid Cross Site Scripting attacks and SQL injections. In this form, the two possible

interactions are Save and Cancel.

The view in the case of adding a new machine is the same as editing a machine, but

in this case, the fields contain some default sampling data. In the case of adding a new

RACK, it follows the same behavior as editing RACK, again with some sample data.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 74 de 97

5.1.1.6 Consumption view

Now let us move to consumption page. This page is accessible only by the

administrator. In this page it is displayed a table with the last stored consumption

records. This page differs from the initial prototype since it did not look well and

intuitive at all, and it lacked on data explanation; it means, there were many data and

nothing explained what each field was.

The new design is presenting each phase (Phase R, S and T) in a separated table,

with tags to explain what each field is. The table also has a button to query historical

data. The next figure shows an example of consumption page:

Figure 27 Consumption page

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 75 de 97

5.1.1.7 Consumption graphs

In the prototype we have only data for one RACK, so now the table is almost empty.

However, it was tested with some false data to check that it was displayed properly.

Now if we click in the button at the left of the consumption record, it will display a line

chart with historical data and a pie chart with occupation data. The next figure is an

example:

Figure 28 Historical consumption

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 76 de 97

5.2 Software Transfer

Our application prototype has a server side installation. The client side only needs a

web browser. We recommend using Firefox 11+ or Chrome 17+, since the application

has been tested and validated under these browsers. The application also works on Inter

Explorer 9, but with many limitations, for instance, in CSS 3 style; IE9 is not supporting

gradient rule, so most of our application look & feel is just not working there.

The server side must gather the hardware requirements listed below:

 Dual-core processor at 1.2GHz

 1 GB of RAM

 120 GB of hard disk storage

 LAN Adapter 100MB/s

By other hand, it should gather the following software requirements:

 Apache 2 or IIS web server (Apache recommended. Tests performed on him)

 PHP 5.3

o Php_mysql

o Php_pdo

o Php_pdo_mysql

 PHP module for web server

 MySQL 5.X as database server

 Support for SSL/TLS

We have already a prototype version of the application deployed under

https://cpd.lab.inf.uc3m.es/; our machine has a Debian Squeeze as Operating System,

and it fulfills the recommended software requirements listed above.

https://cpd.lab.inf.uc3m.es/

The application has to follow the next directory tree:

Figure 29 Directory tree

This tree must be followed because the prototype has relative routes to access images and scripts.

Root
Document

images

includes

css

logic

static

js

*.css

Images-jquery

*.png
*.gif
*.jpg

*.png

*.php

*.php

*.pdf

*.js

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 78 de 97

5.3 Software Project Management

In this chapter we are making an effort estimation using COCOMO
4
 and function

points
5
. COCOMO stands for Constructive Cost Model; it is an algorithmic software

cost estimation model. The model uses a basic regression formula with parameters that

are derived from historical project data and current project characteristics.

We are including here a Gantt chart for planning the development process, based on

the estimation obtained from COCOMO. And we also include a budget of the project.

5.3.1 Software estimation

We have made the estimation from the initial prototype built with Axure RP Pro 6.

For effort estimation, we are using COCOMO; and we are getting function points by

identifying the following elements for each screen:

 External Inputs

 External Inquiry: External queries to the system

 External Output

 Internal Logical Files. Files or tables developed and consulted

 External Interface File: External files (e.g. LDAP query)

We have identified seven main screens from the initial prototype: Login screen,

overview page, rack view, rack edition view, machine view, machine edition view, and

consumption page. Now let us analyze the screens:

4 http://en.wikipedia.org/wiki/Cocomo

5 http://en.wikipedia.org/wiki/Function_points

http://en.wikipedia.org/wiki/Cocomo
http://en.wikipedia.org/wiki/Function_points

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 79 de 97

 Login: Login screen.

Figure 30 Login screen

o External Inputs: None.

o External Inquiry: One with a low complexity, include two data types

(user and password) and one file (users table)

o External Output: None.

o Internal Logical Files: One low, users table.

o External Interface File None.

 Overview: Main page and overview of the datacenter.

Figure 31 Overview screen

o External Input: None

o External Inquiry: None

o External Output:

 Map view: One with a high complexity, several data types and

several files involved.

 Temperature: One with a low complexity.

o Internal Logical Files: Four of low complex (wardrobe, users, temp and

machine)

o External Interface File: None.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 80 de 97

 Rack view: Rack details.

Figure 32 Rack view screen

o External Input: Two, low complexity: add machine and edit machine.

o External Inquiry: One of medium complex (view of wardrobe)

o External Output: None.

o Internal Logical Files: Three of low complex (wardrobe, users, machine)

o External Interface File: None.

 Rack edit: Update Rack information.

Figure 33 Rack edition screen

o External Input:

 Rack data: One of medium complexity.

 Buttons: Two of low complexity (discard an save)

o External Inquiry: None.

o External Output: None.

o Internal Logical Files: Three of low complex (wardrobe, users, machine)

o External Interface File: None.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 81 de 97

 Machine view: Machine details.

Figure 34 Machine view screen

o External Input: Three of low complex (Buttons edit, delete and back)

o External Inquiry: One of medium complex (view of Machine)

o External Output: None.

o Internal Logical Files: Three of low complex (wardrobe, users, machine)

o External Interface File: None.

 Machine edit: Update Machine information.

Figure 35 Machine edition screen

o External Input:

 Machine data: One of high complexity.

 Buttons: Two of low complex (Save, discard)

o External Inquiry: None.

o External Output: None.

o Internal Logical Files: Two of low complex (wardrobe, machine)

o External Interface File: None.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 82 de 97

 Consumption: Display consumption data.

Figure 36 Consumption screen

o External Input: None.

o External Inquiry: One of low complex (only one table and a few fields)

o External Output: None.

o Internal Logical Files: One of low complexity (one table, consumption)

External Interface File: None.

Now we are gathering all this results into a table, so we can have a more general

view of the data:

Module

External

Input

External

Inquiry

External

Output

Internal

Logical

Files

External

Interface

File

Login 0 1L 0 1L 0

Overview 0 0 1L, 1H 4L 0

Rack View 2L 1M 0 3L 0

Rack Edit 2L, 1M 0 0 3L 0

Machine View 3L 1M 0 3L 0

Machine Edit 2L, 1H 0 0 2L 0

Consumption 0 1L 0 1L 0

Total 9L, 1M, 1H 2L,2M 1L, 1H 17L 0

Table 31 Summary function points

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 83 de 97

Now we have to input this data into COCOMO application
6

Figure 37 COCOMO SLOC input

In this table we have to input the data we gathered into the table. Since the

application does not have PHP as Language, we are choosing HTML 3.0 because it has

a similar change multiplier with PHP and JS.

We have a total of 181 function points, with a change multiplier of 15; COCOMO

estimates 2715 lines of code.

6 http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.html

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 84 de 97

Now we have to adjust the scale factors:

Figure 38 COCOMO scale factors

 Precedents: We consider that we are experienced programming PHP and

JavaScript, also we have experience designing user interfaces and databases.

 Development Flexibility: We consider that we have a lot of flexibility in the

project. However, project requirements may change during the development.

 Architecture: We do not have to take actions to risk resolution.

 Team cohesion: Extra high cohesion because the team has only one member.

Now let us go for the schedule:

Figure 39 COCOMO Schedule

We have a strict deadline for the project, so we consider a very low schedule.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 85 de 97

Now let us move to correction factors:

Figure 40 COCOMO Correction factors

 Reuse: We don’t have additional considerations in system reusability (referred to

the code, not the interfaces)

 Pdif: We consider that it is easy to program in Javascript and php.

 Pers: We think it is very high because we are only the responsible of the project.

 Prex: We have experience in this type of software development.

 Fcil: We use an IDE and tools to ease the development.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 86 de 97

The final result of the calculation is:

Figure 41 COCOMO Final result

Summarizing the data on this table, the application will take 2715 lines of code; it

actually has 2300 in the prototype, but this mismatch of 400 lines of code is produced

by PHP include statement, which allows to add PHP code defined in other file into the

file where include is called; reducing in this way the number of lines of code.

Remember that we have one component just for this purpose: defining generic functions

to be included many times in many places (e.g. connect_DB.php).

The schedule is estimated to take around 3,9 months. This estimation is also correct

since we have just one semester to work on Bachelor Thesis. This fact implies that no

delays are allowed, because it would provoke a great impact; and we will go out of time.

The estimated staff is 1,2 persons. Since we cannot divide a person, let us conclude

that this project will need more than one person, but less than two; this means that one

person will have to work hard, and probably will go with almost no time to deliver the

project; by other hand, two persons will be too much, and it would be a waste of

resources; however, the project will end earlier, but with a higher cost.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 87 de 97

The next two tables show the lines of code of the prototype:

PHP Lines

./errorPage.php 23

./includes/connect_DB.php 45

./includes/consumptionRecordClass.php 9

./includes/error_frame.php 4

./includes/filter_functions.php 46

./includes/machine_class.php 18

./includes/header.php 4

./includes/footer.php 13

./includes/leftmenu.php 9

./logic/add_rack.php 55

./logic/check_if_logged.php 18

./logic/check_login.php 32

./logic/consumption_query.php 42

./logic/logout.php 6

./logic/machine_commit.php 87

./logic/machine_edition.php 65

./logic/phases-xml.php 40

./logic/query_machine.php 84

./logic/rack_commit.php 95

./logic/wardrobe_view.php 143

./index.php 48

./overview.php 204

./consumption.php 259

TOTAL 1349

Table 32 PHP lines of code

Javascript Lines

./js/canvas_boxes.js 134

./js/consumption-
tools.js 130

./js/filters.js 85

./js/machine-tools.js 309

./js/rack-tools.js 206

./js/show_things.js 77

TOTAL 941

Table 33 JavaScript lines of code

5.3.2 Planning

Now we are presenting a Gant chart, generated using the tool Microsoft Visio 2010:

Note: In CD documentation exists a PDF document for a better view of Gant chart.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 92 de 97

5.3.3 Budget

Human resources

The total number of hours to spend during the life of the project was estimated using

the tool COCOMO

Category Cost/Hour #Hours Total €

Project Manager 60,00€ 16 960€

Analyst 50,00€ 76 3.800€

Designer 40,00€ 20 800€

Developer 30,00€ 304 9.120€

TOTAL 416 14.680€

Table 34 Budget: Human resources

Software costs

This table shows the costs for the software required to generate prototype and the

documentation.

Concept Cost

Microsoft Office 2010 379€

Axure RP Pro 6 466€

TOTAL 845€

Table 35 Budget: Software costs

Hardware costs

This table shows the server required to deploy our application and the laptop to

develop the project.

Concept Cost

Asus laptop P52JC 620€

Super Micro 2U 1.900€

TOTAL 2.520€

Table 36 Budget: Hardware costs

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 93 de 97

Consumables

This table shows the costs of consumables, for instance, the papers and CDs. It is

also included a printer to print the documentation.

Concept Cost

Other expenses 180€

Printers HP LaserJet 1020 214€

TOTAL 394€

Table 37 Budget: Consumables

Summary:

Concept Cost

Human resource 14.680€

Hardware 845€

Software 2.520€

Consumables 394€

TOTAL 18.439€

Table 38 Budget: Summary

Final budget

We consider a 10% risk because the requirements are not fixed and may change,

since they are not strict at all; moreover, the deadline is also fixed and it is a very short

period of time.

Concept Cost

Cost 18.439 €

Indirect cost (5%) 912 €

Profit (10%) 1.843 €

Risk (10%) 1.843 €

TOTAL before taxes 23.039 €

Taxes (18%) 4.147 €

TOTAL 27.186 €

Table 39 Budget: Final Budget

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 94 de 97

6 Conclusions
In the next chapter I am summarizing technical and personal aspects of the project.

For instance in technical knowledge, I quote some of the knowledge and courses where

I learnt important technologies I have applied in the project.

Although there is some knowledge I did not have when I started the project, but I had

to learn in order to complete the project successfully. I would like to point out the strict

deadline for the project is a very serious constraint; which has a negative impact of the

quality of some projects, because it is impossible to solve some problems in just four

months, while at the same time the students has courses and lectures to attend.

6.1 Technical knowledge

For the development of this project I had to use almost everything I learnt during

these four years of Bachelor. By one hand, I had to apply my knowledge of software

engineering to make a shape of the problem. I also had to apply analysis concepts to

realize what the project actually need and what I actually thought.

By other hand, I had to apply my knowledge from Files and Databases because this

project is big enough to discard the option of storing application data in a text file. In

other words, for this application I had to design a database, fitting to problem needs in a

efficient way. However, the project has some constraints, and since the main focus of

the project are not databases, I made some simplifications in the relational model, just to

make my coder life easier.

I also had to apply the knowledge from User Interfaces course, where I learnt web

technologies; like HTML and CSS, JavaScript and PHP. Moreover, I learnt about

evaluating interfaces, and I realized also the importance of a good interface design, the

usability and simplicity of interfaces.

My knowledge in Distributed Systems also helped me to understand how web

technologies works. My courses about Security Engineering also has been a great help

during the whole Bachelor because there I learnt about the importance of protecting

your application; moreover, in that courses I learnt about the importance of

implementing security from the beginning; and how to protect your web application

against the most common attacks: XSS and SQL injection.

In the project I also have learnt about installing and configuring a web server;

moreover, I had to configure the web server to work under SSL, applying concepts from

different courses (SSL from security, web servers from Web Information Technologies)

to solve a problem.

The application should have taken 2715 lines of code; it actually has 2300 in the

prototype, but this mismatch of 400 lines of code is produced by PHP include statement,

which allows to add PHP code defined in other file into the file where include is called;

reducing in this way the number of lines of code. Remember that we have one

component just for this purpose: defining generic functions to be included many times

in many places (e.g. connect_DB.php).

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 95 de 97

Related to web technologies, I had to learn some key concepts of JavaScript, for

instance, its native support for JSON. I had to learn JSON as well because I read it had

better performance than XML, moreover if it is using JS. AJAX is an important

technology I had to learn in depth. I knew what AJAX was but I barely worked with it

before; so I had to read some documentation to understand and being able to apply the

technology in the project.

Very important as well is the knowledge about using canvas element from HTML 5

specification. I never have worked before with that element; so I had to read some

examples and look for a good API to use it.

6.2 Personal conclusions

In this project I found very interesting the usage of many different technologies

working together properly; offering a solution to a real problem. It was also an

important change the way of getting into the problem; I mean, in a course assignment,

when you had doubts, you simply go to Problem_Statement.pdf and read it again

looking for your answer. But in this case, this was a real world problem, nobody tells

you how to solve it. This change of environment was really interesting, and I think I

adapted properly.

In this project I also had to make some memories and rescue some knowledge from

past courses of the Bachelor. For instance, I had to remember my knowledge from SQL

and databases in general, because there was a long past year not using that technology,

while at the same time, having to learn new things. However, at its moment I learnt

them well, so it was not very difficult to remember in the end.

I would like to point out the strict deadline for the project is a very serious constraint;

which has a negative impact of the quality of some projects, because it is impossible to

solve some problems in just four months, while at the same time the students has

courses and lectures to attend.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 96 de 97

6.3 Future Work

The application right now is a prototype, but it has the basic functionality for

working properly in the lab as it was intended

The future works are listed below:

 Add temperature sensor to the room

A sensor of temperature in the room which sends records about the

temperature of the room; so the application will be able to display the current

temperature at that moment. The application will be also capable of storing those

records, so they can be later on shown in a chart.

 Machine monitoring

If the user allows it, we can install a daemon to monitor some basic

parameters of his machine, for instance, CPU usage, percentage of free disk and

RAM usage. The daemon must send to the application periodically these data, so

we can keep an updated tracking of the machine to print a relevant value. We

could also store those records and later on print them in a chart.

 User management

In the prototype, the user management is done through the application

phpMyAdmin, installed in the server. We can create a page for administrators to

manage the users registered in the application from the application; that will be

much more comfortable than accessing phpMyAdmin, which is actually a

database management application.

 Login through LDAP

Connect the application to log the users through LDAP, so we delegate the

task of authenticating users to a centralized login server. The LDAP server is

already installed and working in the Lab. Making these two platforms work

together is an interesting point for building an application that can be integrated

with other services.

 Mobile devices

Creating an application for Android to allow querying information from the

smart phone. It could be included a notification system to alert the user

depending on some parameters (temperature or machine disk usage). This future

work requires first to integrate a temperature sensors and the possibility of

monitoring a machine.

APPLICATION DEVELOPMENT FOR MANAGING AND

MONITORING A DATA CENTRE

Aitor Pérez Cedrés Página 97 de 97

 Translation to Spanish

Translating the page to Spanish and offer both versions. This option is

interesting because the mother tongue in the Lab is Spanish.

 Custom alerts

Allow users to set some conditions that in case they happen, they get notified,

by email for instance. This requires, at least, the temperature sensors and the

monitoring daemon working.

 ACLs

Implement ACL in the system. This feature allows to set roles to users, so we

will not need anymore the account for administrator. Moreover, this can allow

other users to query a machine even if they are not responsible. For instance, you

are responsible of maintaining a mail server, but your boss wants to query that

machine information as well. With ACLs is possible because the person not

responsible of the machine would be allowed to query the machine.

 Customization of room distribution through XML specification

Adapt the application to read an XML file where the distribution is defined, so

the application will be flexible to be used in other Data Centers without the need

of changing the source code.

 Export/import configurations

Export the information of the system to XML file. For instance, the machines

within a RACK; this helps a lot for loading many machines at once, instead of

adding one by one from the application. The same can be done for RACK

information.

 Development of API to allow users to build their own modules or features to

their machines.

The creation of an API to allow users to develop for our application; the main

idea is users to develop their own features for their machines. For instance, an

SSH command to shutdown the machine from our application.

 Widget for controlling your own machines

The creation of a Windows Desktop widget to allow some basic tasks to be

performed from the desktop, without having to open the web browser for

interacting with the application.

