
LxNETES

User's Manual

P.O: Box 1103
Kueferstrasse 8
Tel. +49 (7667) 908-0
sales@fsforth.de

• D-79200 Breisach, Germany
• D-79206 Breisach, Germany
• Fax +49 (7667) 908-200
• http://www.fsforth.de

LxNETES

2

 Copyright 2003:

FS Forth-Systeme GmbH
Postfach 1103, 79200 Breisach, Germany

Release of Document: October 31, 2003
Filename: LxNETES.doc
Author: M. Pietrek / N. James
Program Version: 2.3

All rights reserved. No part of this document may be copied or reproduced in any
form or by any means without the prior written consent of FS Forth-Systeme
GmbH.

LxNETES

3

Table of Contents

1. Documentation History ...6

2. Preface...7

3. Features ...8

4. Requirements ...9
4.1. Free Space ..9
4.2. Applications..9
4.3. Serial Port Nomenclature ...9
4.4. LxNETES CD...10

4.4.1. doc..10
4.4.2. images..10
4.4.3. images_digi ..10
4.4.4. images_unc20 ..10
4.4.5. images_unc20_rescue..11
4.4.6. software..11

5. Installation ..12
5.1. Minimal Installation...13
5.2. Full Installation ...14
5.3. Configuring The Network On The Host...14
5.4. Environment Variables ...15

6. Getting Started ...17
6.1. DHCP...17
6.2. Testing the System ..18
6.3. Demonstration Of The Standard System..19

7. Building A Project ...21
7.1. Directory Structure ...22
7.2. Kernel ..23
7.3. Applications..23
7.4. RootFS...23
7.5. JFFS2 ..24
7.6. CVS ...24

LxNETES

4

7.7. Rescue Kernel... 24

8. Updating Flash... 26
8.1. On A Running System ... 26
8.2. On A Corrupted System... 28

9. Modifying The Default Kernel Configuration ... 29
9.1. Default Configuration... 29
9.2. Kernel Configuration (xconfig) ... 30
9.3. RootFS .. 31

9.3.7. CRAMFS.. 31
9.3.8. NFSROOT ... 32
9.3.9. JFFS2 .. 33

9.4. Using Flash instead of Serial EEPROM... 33

10. Adding Applications To Your Project .. 34

11. The Kernel Boot Process ... 36
11.1.Overview ... 36
11.2.Phases .. 36

12. User Boot Process ... 37

13. Debugging Applications ... 38
13.1.Common Setup ... 38
13.2.gdbserver .. 38
13.3.Using Abatron’s BDI2000 ... 40

13.3.10. .. Installation 40
13.3.11. .. Debugging 40

14. Building The Toolchain... 43

15. Applications ... 45
15.1.busybox... 45
15.2.eraseall.. 45
15.3.telnetd ... 46
15.4. inetd .. 46
15.5.thttpd ... 46
15.6.ftp server ... 46

LxNETES

5

15.7.ftp client ...46
15.8.eeprom...47
15.9.update_flash ..48
15.10.dbgapp ...49
15.11.hello_c..49
15.12.hello_cc ..49
15.13.Watchdog ...49
15.14.Date and Time..50
15.15.LCD Demo ...50
15.16.PPP..50

16. What’s new in LxNETES v2.3? ...51
16.1.New Features...51
16.2.Minor Enhancements ...51

17. What’s new in LxNETES v2.2? ...51
17.1.New Features...51
17.2.Minor Enhancements ...52
17.3.Bug Fixes...52
17.4.Known Issues...53

18. FAQs..54
EEPROM.. 55

19. Links...55

20. Abbreviations..56

LxNETES

6

1. Documentation History

Date Version Responsible Description

2003-10-31 2.3 Nigel James Beta1 for v2.3

2003-06-13 2.2 Nigel James Released for v2.2

2003-03-21 2.1 Nigel James Released for v2.1

2003-02-27 2.0 Nigel James Beta1 for v2.1

2002-10-25 1.0 Markus Pietrek Released for v2.0

2002-10-11 0.3 Markus Pietrek Beta2 for v2.0

2002-09-24 0.2 Markus Pietrek Beta1 for v2.0

2002-09-09 0.1 Markus Pietrek Initial Version

Note: the numbers in the version column above refer to revision of this document
and not the LxNETES package.

LxNETES

7

2. Preface

The LxNETES package enables users to easily develop application software
under uClinux for the UNC20 and ModNET50 Developer’s Kits from FS Forth-
Systeme GmbH and the Digi Connect 50 from Digi International, Inc.

In general, this document describes LxNETES as it applies to both the UNC20
Developer’s Kit and the ModNET50 Developer’s Kit. In those cases where
something only applies to one of the Developer’s Kits it will be explicitly stated.

This document assumes that the reader has basic knowledge of Linux. In
addition, it is recommended that the reader has experience with compiling a
standard Linux on the host.

LxNETES

8

3. Features

With LxNETES the user has a platform with the following features:

• uCLinux 2.4.20 kernel

• uClibc 0.9.19 for user applications

• C and C++ supported for application development

• pre-built gdb, busybox and other applications

• Ethernet, flash and EEPROM support

• fast booting with reduced serial output possible

• root file system may be NFS, CRAMFS, JFFS2 or extfs2 (for CompactFlash)

• project-oriented workflow - kernel configuration, rootfs setup and
applications are separated from the kernel sources and the tool chain and
library sources, thus making it possible to maintain the project in a revision
control system.

• all building can be done without any root access.

LxNETES

9

4. Requirements

For development, a Linux x86 host with a recent distribution is required. This
documentation is based on a SuSE distribution installation, but it should work
with minor changes on the other distributions, too.

4.1. Free Space

For installation and building, the following free space is required on the partitions:

/usr/local 350 MB

/targets/LxNETES 60 MB

/targets/LxNETES/ewp 560 MB (only with full installation)

4.2. Applications

A full host development toolchain (make, gcc, binutils) is required for building the
project or the toolchain and Tcl/Tk is required for configuring the kernel and
installation of the packages. If a standard Linux 2.4 can be compiled on the
development platform, then all the required applications will have been installed
already.

For the serial console, a terminal client like "minicom" or "seyon" has to be
installed and configured for 38400 baud.

4.3. Serial Port Nomenclature

A word on the serial port nomenclature since this can be confusing!

The NET+ARM family of microcontrollers has 2 serial ports. These physical ports
on the Developer’s Kits are referred to as COM A and COM B. COM A is always
connected to Port A of the NET+ARM; COM B is connected to Port B on the

LxNETES

10

NET+50 microcontroller and Port C on the NS7520 chip (the NS7520 doesn’t
have a Port B).

On the ModNET50 Developer’s Kit both serial ports, COM A and COM B, are
available. The console, /dev/ttyS0, is on COM A and a second console, ttyS1, is
on COM B.

As delivered from the factory, the UNC20 Developer’s Kit only has 1 serial
interface, COM B, and this is used for the console /dev/ttyS0. The other serial
port, COM A, can be implemented in the wire-wrap area. Refer to the UNC20
Developer’s Kit User Manual on how to do this.

Summary: there is a fixed link between COM A/B and the pins of the UNC20 or
ModNET50 module. The console, /dev/ttyS0, can be assigned to either COM A
or COM B. Refer to section 9.2 “Kernel Configuration (xconfig)” on how to do
this.

4.4. LxNETES CD

The CD contains all the software and documentation needed for LxNETES.

4.4.1. doc

This User’s Manual as a PDF file and additional HOWTOs.

4.4.2. images

All pre-built images for the ModNET50, for example "linux.bin" and
"jffs2.img".

4.4.3. images_digi

All pre-built images for the Digi Connect 50, for example "linux.bin" and
"jffs2.img".

4.4.4. images_unc20

All pre-built images for the UNC20, for example "linux.bin" and
"jffs2.img".

LxNETES

11

4.4.5. images_unc20_rescue

A rescue image, “linux.bin”.

4.4.6. software

All software related specifically to the LxNETES. This can be installed by calling
"install.tcl" from the root directory of the CD.

LxNETES

12

5. Installation

The installation script provided on the CD will install the LxNETES kernel,
toolchain and sources in /usr/local/LxNETES-2.3 and the project
directories in /targets/LxNETES.

We recommend that you install as the default user, since then it will not be
necessary to do any builds as root. However, you have to be root to create a
sub-directory in "/usr/local" or to create the non-existing "/targets"
directory. So create these directories as superuser, change the owner to the
default user, and then do the installation as default user.

$ su
Password:
mkdir /usr/local/LxNETES-2.3 /targets
chown username:group /usr/local/LxNETES-2.3 /targets
exit

Since there will be many compilations done in "/targets" and its sub-
directories, it is recommended to have it as a partition of its own so as to reduce
fragmentation of the root file system.

Insert the LxNETES CD into the CD ROM drive and enter

mount /cdrom
cd /cdrom
./install.tcl

The script will ask you whether you'd like to have a full or minimal installation.
After selecting the type it calculates the estimated disk consumption for the
installation and then asks to continue. If yes, it copies and unpacks the files to
your hard disk.

LxNETES

13

***** LxNETES Installer *****

Do you want a full installation with toolchain sources (y/n)? n
Do you want to install the ModNET50 template project (y/n)? y
Do you want to install the UNC20 template project (y/n)? y
Do you want to install the DIGI Connect 50 template project (y/n)? y
Estimated disk usage:
/usr/local : 350 MB
/targets/LxNETES : 60 MB
/targets/LxNETES/ewp : 560 MB

You need to have write access to the directories
Proceed installation (y/n)? y

gunzip -c software/LxNETES_distribution.tgz|(cd /usr/local; tar xf -)
Don't forget to set LXNETES_NFSROOT if you want to use NFS as a rootfs
Have fun

Note that a check is made whether /targets/LxNETES/project* already exists and
you have the option of overwriting or aborting the installation. Therefore, when
upgrading, you should save any work already done in the project directory.

5.1. Minimal Installation

A minimal installation is recommended if the developer doesn't want to build the
toolchain, the libraries and the standard applications himself. This should be the
normal case. After the installation, the following new directories will have been
added:

/usr/local/LxNETES-2.3/arm-elf Toolchain with compiler, libraries and
include files for the target

/usr/local/LxNETES-2.3/apps The pre-built target applications

/usr/local/LxNETES-2.3/linux The kernel sources

/usr/local/LxNETES-2.3/bin Non-toolchain host applications needed
to create the project images such as
mkfs.jffs2

LxNETES

14

/targets/LxNETES/project The default project for the ModNET50

/targets/LxNETES/project_unc20 The default project for the UNC20

/targets/LxNETES/project_digi The default project for the Digi Connect
50

5.2. Full Installation

A full installation is necessary if the toolchain or the applications have to be
rebuilt, either because there are older or newer system libraries installed than on
SuSE 7.2 or the host platform is not an x86. This will create, in addition to the
minimal installation, the following directories:

/targets/LxNETES/ewp Contains unpatched kernel sources, the
standard toolchain, libraries and
applications as archives

/targets/LxNETES/ewp/LxNETES All patches and files necessary to
create the minimal installation out of the
standard applications downloaded from
the internet.

5.3. Configuring The Network On The Host

To simplify debugging on the target, we recommend using NFS so that
application directories can be mounted with read/write permissions on the target.
This requires the host to have an NFS server installed.

The configuration details are beyond the scope of this User’s Manual and are
very specific to the various distributions, therefore this Manual only describes the
modifications necessary for hosts running SuSE distributions.

For exporting a directory per NFS, "/etc/exports" must be modified to
specify the directory to be exported and to whom it should be exported.

LxNETES

15

/exports/bootdir 192.168.42.7(rw,all_squash)

In the example above, "/exports/bootdir" is the path of the NFS root
directory which is only exported to the target (specified as an IP address). Refer
to the Linux man pages for exports for a definition of the options.

After saving the file the NFS server needs to be restarted.

/etc/rc.d/nfsserver restart

See section 9.3.8 NFSROOT on how to configure the target so it uses an NFS
directory as the root file system.

5.4. Environment Variables

There are three environment variables which slightly modify the behavior of the
build flow of the LxNETES. They can be added to the file "~/.profile" or
"~/.bash_profile" for permanent storage.

Note that LXNETES_NFSROOT_project was new in LxNETES v2.2. It has the
same functionality as LXNETES_NFSROOT, which remains for reasons of
compatibility, and takes precedence over LXNETES_NFSROOT. The reason it
was added is to allow an NFSROOT directory for each project, for those users
who are working with more than one project.

LXNETES_NFSROOT_project If specified, a "make all" or "make install-
nfsroot" will copy the rootfs and the kernel to
the directory specified in this variable. In the
default configuration it should contain the path
/exports/bootdir_proj1

If specified, this variable will override the

LxNETES

16

LXNETES_NFSROOT setting.

LXNETES_NFSROOT If specified, a "make all" or "make install-
nfsroot" will copy the rootfs and the kernel to
the directory specified in this variable. In the
default configuration it should contain the path
/exports/bootdir

LXNETES_NOPROMPT When building a project, the prompt and the
terminal window title are changed to make it
visible that a modified environment is being
used. If this variable exists and contains the
value yes, this is suppressed.

As an example, if you’re using the bash shell, and are working with 2 targets,
then enter the following 2 lines in your ~/.bashrc file.

export LXNETES_NFSROOT_project_unc20=/exports/unc20boot
export LXNETES_NFSROOT_project_digi=/exports/digiboot

LxNETES

17

6. Getting Started

The Developer’s Kits are delivered with an image pre-installed in Flash on the
module. After the target is plugged in, boot messages are printed on the console
(38400Bd). Then after about 10 to 15s the kernel has been initialized and the
user may enter commands in the shell.

console=/dev/console
init started: BusyBox v0.60.3 (2003.03.14-12:32+0000) multi-call binary
Starting pid 9, console /dev/console: '/etc/init.d/rcS'
Setting hostname ...
Mounting other filesystems ...
Starting pid 23, console /dev/console: '/usr/bin/lcd_demo'
Starting pid 24, console /dev/console: '/sbin/inetd'
Starting pid 25, console /dev/console: '/sbin/thttpd'
Starting pid 26, console /dev/console: '/sbin/agetty'

BusyBox v0.60.3 (2003.03.14-12:32+0000) Built-in shell (msh)
Enter 'help' for a list of built-in commands.

#

6.1. DHCP

Per factory default the target tries to obtain an IP address via a DHCP request. If
a DHCP server cannot be found, the boot process will forever sit in a loop
waiting for a reply from the DHCP server. To break this loop do the following:

on the UNC20 Developer’s Kit hold the Port C4 button down while
resetting the board

on the ModNET50 Developer’s Kit switch SW10 to on before resetting the
target

PortC4/SW10 may only be released after the target has finished booting
and is awaiting commands on the shell

This will allow LxNETES to boot and the Ethernet interface will have taken the
default IP address as defined by the kernel command line options (see section

LxNETES

18

9.2). Then you should switch DHCP off by modifying the eeprom contents. Enter
the command “eeprom –d no”. Other options for the eeprom command can be
found in section 15.8. At the same time you can set the default IP address to suit
your network.

6.2. Testing the System

One of the first things you’ll want to do is verify that your system is working ok. If
you have a prompt on the serial console, then you can enter some commands.
Below are some useful commands and their typical output.

ls
bin etc jffs mnt proc sbin
dev htdocs lib nfs ram usr
mount
rootfs on / type rootfs (rw)
/dev/root on / type cramfs (ro)
none on /dev type devfs (rw)
proc on /proc type proc (rw)
ramfs on /ram type ramfs (rw)
eeprom
Current EEPROM contents:
Checksum: 154
Use DHCP: no
MAC Address: 00:04:f3:00:00:eb
IP Address: 192.168.42.7
Subnet Mask: 255.255.255.0
Gateway: 192.168.42.1
DNS: 0.0.0.0
Environment variables:

NFSMOUNT=192.168.42.1:/exports/bootdir
JFFSMOUNT=yes

#

If you don’t have a prompt on the screen, then there could be a problem with
either the serial cable or the configuration of the terminal client (minicom, seyon,
screen). Per factory default, an LED test is enabled. On the UNC20 this is called
bas_test. Pressing a button (other than Reset!!) causes the corresponding LED
to light. The LED is lit for as long as the button is held down. This test can be
disabled by entering “eeprom –x BASTEST” at the prompt (and later re-enabled
by entering “eeprom –a BASTEST=yes”).

LxNETES

19

Note: please allow sufficient time for the system to boot, ca. 15 secs, before
pressing the buttons, otherwise the action could be mistaken for “Invalidate
EEPROM contents” in the case of PortC4 or “Allow debugger to attach” in the
case of PortC0.

On the ModNET50 this test is called eva_test and has a similar functionality
except that there are now 4 buttons and 4 LEDs. Pressing all 4 buttons
simultaneously ends this test.

Caution: as with every Unix system, "halt" or "reboot" should be run before
turning power off if any file system is mounted read-write. Only if all file systems
are mounted read-only may the system be turned off immediately.

6.3. Demonstration Of The Standard System

LxNETES comes with a configuration that should demonstrate the use of

• kernel modules

• EEPROM usage

• JFFS2

• web server and ftp server

The demonstration requires the target to be attached to a network and
configured with a valid IP address. A web browser is required on the host.

Target (shell) Host (web browser)

eeprom -x "JFFSMOUNT"
reboot

ls /htdocs/jffs2
index.html
mount
/dev/root on / type cramfs (ro)
none on /dev type devfs
proc on /proc type proc

open
"http://192.168.42.7/jffs2/index.html"

Note that no JFFS2 file system is

LxNETES

20

ramfs on /ram type ramfs installed.

eeprom -a "JFFSMOUNT=yes"
reboot

ls /htdocs/jffs2
doc index.html
ls /htdocs/jffs2/doc
README.html
mount
/dev/root on / type cramfs
none on /dev type devfs
proc on /proc type proc
ramfs on /ram type ramfs
/dev/mtdblock/3 on /htdocs/jffs2 type
jffs2

reload
"http://192.168.42.7/jffs2/index.html"

Now with a JFFS2 installed a
document link is visible which points
to a directory "doc/" containing the file
"README.html"

cat >/htdocs/jffs2/doc/hello.txt
Hello World
reboot

Reload
"http://192.168.42.7/jffs2/doc/"

"hello.txt" should still be visible and
readable

eeprom -e ""
reboot

After a reload the page should not be
visible.

Also included in the webpage is a CGI demonstration which allows any file on
the target to be displayed in the browser. Per default the file “/proc/cpuinfo” is
entered. Changing this to “/proc/version” will display the kernel version, for
example: Linux version 2.4.20-uc0-fs6.

LxNETES

21

7. Building A Project

You probably started by using the default kernel image of the CD. The next step
is to rebuild it on the development host to familiarize yourself with the build
process. Before doing that, some project specific environment variables have to
be set. To do so, change into the project directory
"/targets/LxNETES/project", or "/targets/LxNETES/project_unc20"
if using the UNC20 Developer’s Kit, and enter ". LxNET.sh". The space
between the dot and "LxNET.sh" is important.

Csh users should enter “LxNET.csh”.

Note: sourcing LxNET.sh will change the prompt. If you don’t want this,
make sure that the variable LXNETES_NOPROMPT is set beforehand.

After that, the kernel and the application may be rebuilt by just entering "make".

tom@forth:~$ cd /targets/LxNETES/project
tom@forth:/targets/LxNETES/project$. LxNET.sh
Starting LxNETES Configuration
============================

$LXNETES_PROJECT = /targets/LxNETES/project
$LXNETES_KERNEL_PATH = /usr/local/LxNETES/linux
$LXNETES_TOOLCHAIN_PATH = /usr/local/arm-elf
$LXNETES_BIN_PATH = /usr/local/LxNETES/bin
$LXNETES_APPS_PATH = /usr/local/LxNETES/apps
$CC = arm-elf-gcc
$CXX = arm-elf-g++
$AS = arm-elf-as
$GDB = arm-elf-gdb

tom@forth!project:/targets/LxNETES/project$ make

The build may take some minutes and will create a file "bin/linux.bin" with
the kernel and the embedded root file system and a second file
"bin/jffs2.img" with a journaling flash file system. If the environment variable
LXNETES_NFSROOT is specified, the rootfs and the image are also copied to
that path. This can be enforced by doing "make install-nfsroot".

LxNETES

22

7.1. Directory Structure

The project consists of some files and directories.

LxNET.sh
LxNET.csh

Shell script to configure environment variables.

Makefile Rules to build the kernel, the applications, the
rootfs and install it to the destination directories.

bin/ Contains all files necessary for booting, such as
the kernel image and separate root file systems.

build.sh Script needed to build the rootfs.

etc/ The etc/ directory of the rootfs.

htdocs/ Sample web server documents for "thttpd".

jffs2/ Files to be stored in the JFFS2 file system.

linux/ Kernel configuration and object files.

prepare.sh After unpacking LxNETES_project.tgz or
checking out a project module from CVS, this
script has to be called to update the symbolic
links.

rootfs/ The rootfs is temporarily created in this directory.

apps/NAME/src/ The source files for the NAME user application.

LxNETES

23

7.2. Kernel

The kernel alone may be built by doing "make build-linux". The resulting
kernel image will be placed in the "bin" directory.

A successful compilation will be indicated by the following output:

[...]
Everything: 1468 kilobytes
Super block: 76 bytes
CRC: 160a2def
12+0 records in
12+0 records out
cp linux/linux.cramfs bin/linux.bin

or something similar.

To be able to debug the kernel it must be built with the –g flag, so that it contains
debug info. To do this, modify the kernel configuration as described in section
9.2 “Kernel Configuration (xconfig)”

7.3. Applications

The project-specific applications, which are located under "apps/", can be rebuilt
using the command "make build-subdirs".

7.4. RootFS

The rootfs is included in the kernel by default. It may, however, be desirable to
have the rootfs in a separate directory "rootfs/". This can be achieved with the
command "make build-rootfs". Currently this does not include building a
JFFS or standalone CRAMFS image.

Alternatively, the file "bin/rootfs.img" can be manually created by calling
"sh build.sh rootfs_image". This file may then be copied into a flash
partition and mounted as root.

LxNETES

24

7.5. JFFS2

The additional JFFS2 image "bin/jffs2.img" containing example HTML files
may be created with "make build-jffs2". The file has to be separately copied
to the flash.

7.6. CVS

If the project is being stored in CVS or any other revision control system not
maintaining symbolic links, then after each checkout "./prepare.sh" has to be
called in order to recreate the links to the kernel.

7.7. Rescue Kernel

Starting with v2.3 a rescue kernel was implemented for the UNC20 project to
avoid having to re-program the Flash via the JTAG interface should your new
kernel not boot. Note however, that the rescue kernel can only be activated if the
new kernel gets past the first few instructions (see console output below). If the
new kernel is completely corrupted, then you will have to resort to the JTAG
interface (see section 8.2).

To activate the rescue kernel on a UNC20, hold the PortC0 button pressed while
the board is reset.

LxNETES Bootloader $Revision: 1.18 $
ABCDEFGH
*** Using Rescue Image ***
INO@00001618
Bootstrap: 03ff

Linux version 2.4.20-uc0-fs8 (mpietrek@forkis) (gcc version 2.95.3
20010315 (release)(ColdFire patches - 20010318 from
http://fiddes.net/coldfire/)(-msep-data patches)) #1 Mon Oct 27 18:48:44
CET 2003
Processor: ARM/VLSI ARM 7 TDMI revision 0

LxNETES

25

NetSilicon Chip Revision: 0x29 (NS7520)
Architecture: UNC20

The first 2 lines of console output above are from the new kernel, meaning that it
has to at least get this far. The line “*** Using Rescue Image ***” means that it
has recognized that the PortC0 button was asserted and is now copying the
rescue kernel from MTD partition 5 into RAM.

The default image, as delivered with the Developer’s Kit already contains a
rescue kernel in MTD partition 5. If you have deleted your rescue image,
probably by programming the complete Flash instead of just the kernel in
partition 1, then you can program the rescue kernel into Flash using the following
command (assuming you have an NFS file system mounted – see section 0):

update_flash –f –q –c –t ram nfs/linux_r.bin 5

First copy the rescue kernel from the CD into the NFS directory. Here it has been
renamed to linux_r.bin so both images can reside in the NFS directory.

If you want to create you own rescue kernel, then you need to unpack the project
from the CD and install manually (it’s not done in the normal installation) and
then run the prepare script.

cd /targets/LxNETES
tar xvzf /media/cdrom/software/LxNETES_project_unc20_rescue.tgz
./prepare.sh

LxNETES

26

8. Updating Flash

After the compilation has succeeded, it's time to update the kernel or the rootfs
on the target.

8.1. On A Running System

To use the running kernel for faster updating, it is required that an NFS directory
on your host is mounted by the target. If the default mount line is not correct
because a different IP address is being used, then the mount can be done
manually by entering

mount -o nolock -t nfs 192.168.42.1:/exports/bootdir /nfs

Replace "192.168.42.1" with the IP address of the NFS Server and
"/exports/bootdir" with the exported path.

It is possible to automatically mount an NFS directory on booting by issuing

eeprom -e "NFSMOUNT=192.168.42.1:/exports/bootdir"

If a JFFS2 file system already exists on MTD partition 4, then this can also be
mounted on booting with the following eeprom command:

eeprom -e "NFSMOUNT=192.168.42.1:/exports/192.168.42.7\\aJFFSMOUNT=yes"

For the next step the compiled kernel (linux.bin) has to be copied to your
$LXNETES_NFSROOT directory as explained in chapter 7 “Building A Project”.

Now the kernel may be updated with the tool "update_flash" (the parameters
are explained in section 15.9).

update_flash -f –q -v -r -t ram nfs/linux.bin 1 nfs/jffs2.img 3
Processing nfs/linux.bin for /dev/mtd/1
Copying to ram/linux.bin

LxNETES

27

File copied: 1548 kB
Verifying ram/linux.bin to linux.bin
File verified: OK
Erased 2048 kB @ 0 -- 100% complete.
Copying to /dev/mtd/1
File copied: 1548 kB
Verifying /dev/mtd/1 to ram/linux.bin
File verified: OK

Processing jffs2.img for /dev/mtd/3
Copying to ram/jffs2.img
File copied: 1 kB
Verifying ram/jffs2.img to jffs2.img
File verified: OK
Erased 512 kB @ 0 -- 100% complete.
Copying to /dev/mtd/3
File copied: 1 kB
Verifying /dev/mtd/3 to ram/jffs2.img
File verified: OK

Done

The system is going down NOW !!
Sending SIGTERM to all processes.
Terminated
Sending SIGKILL to all processes.
Please stand by while rebooting the system.

This copies the file "nfs/linux.bin" to the temporary directory "ram/" and, if
successful, erases the flash partition 1 and copies "linux.bin" from the
temporary directory to the flash. Then the same is done with the JFFS2 image
which is copied to partition 4. Then the machine is rebooted.

If the kernel image is larger than the MTD partition 1, then the MTD partition 0
can also be used. But this erases the complete flash and destroys all other
partitions as well. In this case, the parameter "nfs/jffs2.img 3" must be
omitted and the image must be copied separately to the flash after a reboot.

"update_flash" is not restricted to the kernel and can be used to update
different partitions not only for the kernel but for flash file systems or other data
as well. Take a look at section 15.9 “update_flash” for parameters which improve
the speed of programming.

LxNETES

28

Another method is to enter:

eraseall /dev/mtd/1
Erased 1536 Kbyte @ 0 -- 100% complete.
cp /nfs/linux.bin /dev/mtd/1
#

However, this method is not recommended for the kernel since a network failure
while transferring data may result in a corrupted system. And if the rootfs has
been included in the kernel image, erasing this partition and trying to use it
afterwards may fail because the current rootfs has been destroyed. Actually this
small example only works due to the fact that cp is part of the running busybox.
But this may not always be the case.

After flashing a JFFS2 image the first boot may take longer since unused
flash partition nodes need to be marked as unused.

8.2. On A Corrupted System

If the flash has become corrupted, so that the system cannot boot, then the flash
must be re-programmed using the JTAG interface.

For the UNC20 Developer’s Kit use the on-board Parallel Port JTAG adapter
which will take several minutes to program a 1.6MB linux.bin image.

Alternatively the JTAG Booster can be used which will boost the programming
speed by a factor of approximately 8.

LxNETES

29

9. Modifying The Default Kernel Configuration

9.1. Default Configuration

The default configuration for LxNETES is:

• serial baudrate 38400 bps

• console messages from kernel enabled

• Ethernet enabled

• use EEPROM for TCP/IP configuration

• rootfs is CRAMFS

• MTD partitions for the flash as follows: (partition 0 being the full flash device)
partition 1 with 2048 Kbytes for the kernel, partition 2 with 2044 Kbytes
mapped into the kernel for the rootfs, partition 3 with 512 Kbytes for the
JFFS2 file system and partition 4 with 6656 Kbytes (partition 4 is currently
unused).

• uses devfs per default

• start inetd (for telnetd), thttpd and mount an NFS directory $NFSMOUNT if
the variable has been stored in eeprom.

• JFFS2 is supported by the loadable module "/lib/modules/jffs2.o"
only.

• if $JFFSMOUNT is "yes", /dev/mtdblock/3 is mounted to "/htdocs/jffs2"

• if $CUSTOMSCRIPT is set to a script name, then that script is executed

LxNETES

30

The default configuration is made up of 3 layers:

1. Kernel configuration (lowest priority)

2. Kernel command line parameters

3. EEPROM contents (highest priority)

The kernel configuration can be modified using the menu-driven xconfig.
Thereafter the kernel is rebuilt.

Kernel command line parameters can be used to overwrite some configurations.
However, in the absence of a bootloader, the only way they can be entered is by
compiling them into the kernel.

Finally, there are the EEPROM parameters which will override kernel
configurations.

For example, “Use DHCP” is disabled in the default kernel configuration but
enabled in EEPROM (factory default).

9.2. Kernel Configuration (xconfig)

To modify the kernel configuration, change from the project directory, e.g.
/targets/LxNETES/project_unc20, into the subdirectory "./linux/" and run
"make xconfig clean dep". After that, go back into the project directory and
build the kernel as usual (simply enter “make”).

To build a kernel without an embedded CRAMFS, in "Makefile" change the
variable KERNEL_IMAGE to "linux.bin" and in the kernel configuration menu
"System Type/Include CRAMFS in kernel" to no.

To build a kernel which includes debugging information you must set “Include
debugging information in kernel binary” to yes under “Kernel hacking”.

LxNETES

31

Compared to the standard uClinux kernel, unsupported kernel configuration
entries from "make xconfig" have been removed and new ones have been
added.

9.3. RootFS

9.3.7. CRAMFS

The compressed ROM file system is the most flash-efficient file system suitable
for use as a root file system. The file system occupies about 1/3 of the space of a
non-compressing file system using the default installation. It is also possible to
include the CRAMFS in the kernel image, meaning there is no need to place the
file system in its own partition which must start at the beginning of a flash sector.
This can save up to 64 Kbytes. Flash partition 2 has to be mapped into the
kernel partition at the start address of the CRAMFS.

The disadvantage is that access to files on the CRAMFS takes longer than when
using ROMFS, since the files have to be decompressed. Another disadvantage
of compressed file systems is that a single bit memory error often results in the
whole image not being readable, since it is no longer possible to decompress it.

To make use of CRAMFS, enable the following in the kernel configuration:

• "System Type"/"Include CRAMFS in Kernel"

• "Memory Technology Devices"/"Caching block device access to MTD
devices"

• "File systems"/"Compressed ROM file system support"

• the kernel command line must contain an entry "root=/dev/mtdblock2"

Then the kernel may be built either in the project directory with "make" or in the
"linux/" subdirectory with "make linux.cramfs"

If CRAMFS is not to be included in the kernel, disable the “Include CRAMFS in
Kernel” flag and then in the project directory do the following:

LxNETES

32

cd linux
make linux linux.bin
cd ..
build.sh rootfs_image

This creates the file "bin/rootfs.img" which may be copied to the rootfs
partition.

9.3.8. NFSROOT

During development it may be more comfortable to use an NFS directory as root
file system. This avoids unnecessary flash erases, which on a power failure will
result in the need to re-program the kernel into flash. It also increases the lifetime
of the module as the flash has a limited number of erase cycles. Initialization
scripts may be quickly modified since a failure will not result in an unusable
system, because it can be fixed on the host and the target just needs to be reset.

On the down side, the booting and launching of applications is much slower. The
configuration files, or the eeprom, have to be modified so as not to mount that
directory a second time by NFS.

To enable NFSROOT, configure the kernel to

• enable "File systems"/"Network File Systems"/"NFS file system support",
"Provide NFSv3 client support" and "Root file system on NFS"

• add "nfsroot=192.168.42.1:/exports/bootdir" to the kernel command line and
set "root=/dev/nfs". The kernel command line can be modified by disabling
“System Type”/”Default bootloader kernel arguments” and adding your
changes in the line below.

• in the Makefile in the project directory, change the default KERNEL_IMAGE
to linux.bin.

• enter “make” in the project directory and the new kernel will be built.

LxNETES

33

The root file system is installed to "/exports/bootdir" with "make install-
nfsroot" in the project directory. The kernel has to be flashed and then the
target should boot from NFS.

9.3.9. JFFS2

JFFS2 is not recommended for use as a root file system. It is not completely
failsafe, therefore a power failure may destroy the files required for booting. So it
should be used only for files that have to be changed frequently. It should also
be as small as possible because mounting a JFFS2 file system takes a long time
compared to other file systems since the journal information has to be read.

9.4. Using Flash instead of Serial EEPROM

By default the serial EEPROM is used for storing parameters such as the IP
address, etc. However, it is also possible to use the Flash for storing these
parameters, so freeing up the EEPROM, or alternatively not having to assemble
an EEPROM on your board.

There are other advantages to doing this:

• Kernel parameters can be passed without having to rebuild the kernel

• Boot time is reduced

The only disadvantage is that the last sector of Flash is not available for the
application program.

To enable the Flash to store parameters, configure the kernel to

• enable "Character devices"/"Flash EEPROM”

• optionally enable the “Kernel Command Line in EPROM”

• enter “make” in the project directory and the new kernel will be built.

LxNETES

34

10. Adding Applications To Your Project

The default project contains sample applications: "hello_world",
"pthread_test", “cgi-bin”, “stl_example” and some which are Developer’s Kit
dependent; “eva_test” for the ModNET50 and “lcd_demo” and “simple_driver” for
the UNC20. They are located under "./project/apps/eva_test/" and
"./project_unc20/apps/lcd_demo/". Each directory contains the following:

Makefile The central Makefile that controls in
which subdirectory binaries must be
compiled.

Makefile.in This is an include Makefile that
contains all the project dependencies
that are common to all build targets.

src/ This subdirectory contains all C and
C++ source files for the project.

lxnet/ This directory holds all object and
binary files that are created for the
LxNETES target. The Makefile includes
the application specific Makefile.in and
applications global Makefile_arm.in

lxnet_debug/ This directory holds all debug object
and binary files for the LxNETES target.
It is the same as lxnet/ with the
exception that some CFLAGS and
LDFLAGS have been modified.

host/ To improve application development
speed, this optional directory is
intended to contain object and binary
files executable on the host.

LxNETES

35

Note that "eva_test" only runs on the target since it uses the target’s hardware
interfaces, whereas the “hello world” applications run on the target (both in the
lxnet/ and lxnet_debug/ directories) and host.

Note that “lcd_demo” only runs on the UNC20 Developer’s Kit with an external
Character Display connected. The environment variable LCDDISPLAY=yes must
be set in order to load the device driver module.

The directories in lxnet and lxnet_debug contain binaries built with the standard
and very compact uClibc-0.9.8. More complex applications using pthreads or
network functions will use uClibc-0.9.19. These applications will be much larger
than the default ones.

A new application may be added by copying the subdirectory "hello_world" to
a new directory "my_app" and modifying the well-documented makefiles
"my_app/Makefile" and "my_app/Makefile.in".

The applications are created in the project directory "./project/" with "make
build-subdirs".

To include the applications in the rootfs image, the script
"./project/build.sh" has to be modified. Open it with an editor and in the
function "copy_files" add the files you want included.

**** add user files here ****
cp src/eva_test/lxnet/eva_test rootfs/usr/bin
cp src/hello_world/lxnet/hello_cc rootfs/usr/bin
cp src/hello_world/lxnet_debug/hello_c rootfs/usr/bin
cp src/my_app/lxnet/my_app rootfs/usr/bin

Then create a new rootfs which will include the applications. Use the script
build.sh or refer to section 7.4 RootFS for other means to create rootfs.

LxNETES

36

11. The Kernel Boot Process

11.1. Overview

The NET+ARM processor begins execution in Flash ROM at address
0x0000_0000. The first module of the kernel code executed is the bootloader
which is entered at _start. Control proceeds from start to the other higher-level
modules until all initializations are completed and the "init" kernel thread is
running. When tailoring the kernel to a specific hardware platform, the
implementation-specific files are most likely to require changes, the NET+ARM
generic files less likely, the ARM specific file less likely still and the kernel
generic files are least likely to require modification. The purpose and function of
the modules likely to require modification is documented below.

11.2. Phases

_start

The bootloader code performs four basic functions: configures memory,
configures serial debug, relocates kernel to RAM and initializes a temporary
stack. The default mapping of memory on the development board is depicted in
the table below. Once the memory is mapped correctly, the kernel code and data
are relocated to RAM and executed from there. The serial ports are configured
for the default baudrate (38400 bps). A temporary stack space is set aside so
that the C language kernel routines have temporary variable space available.
This temporary stack is only used until memory is sized and then the kernel
manages it's own stack space, reclaiming the temporary space. Once all
conditions are met, the kernel entry point "start_kernel" is called.

Base Address Size Chip Select Mapped Type
0x02000000 0x02000000 CS0 FLASH ROM
0x00000000 0x02000000 CS1 SDRAM
0x04000000 0x02000000 CS2 SRAM + CAN controller
0x06000000 0x02000000 CS3 Memory mapped IO
0x08000000 0x02000000 CS4 Memory mapped IO

LxNETES

37

setup_arch

Once start_kernel is called, it immediately calls "setup_arch”, which is
responsible for sizing memory, turning on the kernel serial console, and
programming the MAC address into the Ethernet controller. Additionally,
"setup_arch" processes the default values for the kernel which are normally
specified on the command line.

init

The "init" system thread is the main thread of the Linux kernel. All other
processes are started as a result of the "init" thread. Typically the application
functionality of the system will be loaded from the file system.

A much more detailed description can be found in the book "Linux Device
Drivers" published by O'Reilly.

12. User Boot Process

Once the kernel has booted and mounted the root file system, the "init" thread
can take several paths to start a running system. By default it will look for a
program called init ("/sbin/init", "/etc/init") and runs that. If the program
init fails or completes it will execute the shell script "/etc/rc". If the rc script
completes, the system will spawn a console shell using "/bin/sh". Any of these
applications can be customized to achieve the desired functionality.

LxNETES

38

13. Debugging Applications

Debugging applications on an MMU-less target is more complicated than
debugging on the host. There are two main differences compared to debugging
on a host

• The target is debugged remotely via the Ethernet or JTAG port. When using
Ethernet this is managed by the gdbserver; when using JTAG, a
development tool such as Abatron’s BDI2000 is required to connect the host
to the JTAG port on the target.

• Virtual addresses are the same as physical addresses in uClinux. Since the
host doesn't know the virtual address on the target, the host has to be
informed manually about the address relocation using "dbgapp".

13.1. Common Setup

Ensure that there is a working console on ttyS0 and that a second shell is
available, either on ttyS1 or via telnet. Then go into the directory
"./project/apps/hello_world/lxnet_debug" and type "make" to build
the debug flat binary "hello_c" and elf binary "hello_c.gdb". Then copy
"hello_c" to your "/exports/bootdir/" directory. If the standard makefiles
haven't been changed, then this step can be ignored since a debug flat binary
"hello_c" is already in the rootfs on the target in "/usr/bin/".

13.2. gdbserver

The gdbserver, which is included in "/usr/local/LxNETES/apps/bin", is the
preferred method for debugging applications when no JTAG debug tool, such as
the Abatron BDI2000, is available. The gdbserver runs on the target and
communicates with gdb on the host using the gdb protocol running over serial or
Ethernet.

 For example, to debug the “hello_c” application using gdbserver over the serial
interface, enter the following on the target:

LxNETES

39

gdbserver /dev/ttyS1 /usr/bin/hello_c

To debug the “hello_c” application using gdbserver over the Ethernet interface
enter the following on the target:

gdbserver 192.168.42.7:2001 /usr/bin/hello_c

On the host, create the file "gdbinit_lxnet50" in the directory where your
hello_c.gdb is, and edit the file so it contains the lines:

set remotebaud 38400
target extended-remote /dev/ttyS1

if you want to debug via the serial interface, or

target extended-remote 192.168.42.7:2001

for debugging via Ethernet, where the IP address is that of the target which is
connected to the host via Ethernet.

Then on the host the debugger can be started with

arm-elf-gdb hello_c.gdb

to use the command line debugger, or

ddd –debugger arm-elf-gdb hello_c.gdb

to use DDD as the graphical user interface to gdb.

Note: On the UNC20 Developer’s Kit there is only one serial interface,
/dev/ttyS0, which is normally the console. To use gdbserver over this interface
the console needs to be disabled. In the file /etc/inittab comment out the line
“::respawn:/sbin/agetty /dev/ttyS0 /bin/sh -1”.

LxNETES

40

13.3. Using Abatron’s BDI2000

13.3.10. Installation

If Abatron’s BDI2000 is being used for debugging, then some additional
configuration files have to be manually installed. They are to be found on the CD
in "/software/LxNETES_abatron.tgz". Please unpack this archive into the
tftpboot directory used by the BDI2000 (for example "/tftpboot"). Then
configure the BDI2000 to use these settings. For example:

$ bdisetup -c -p/dev/ttyS0 -b57 -i192.168.42.113 -h192.168.42.1 -
fabatron/modnet50t.cfg

where 192.168.42.113 is the IP address of the BDI2000. The BDI2000 should be
connected to the Developer’s Kit with the 20-pin JTAG connector.

Note. When using the BDI2000, make sure that the JTAG Booster is not
connected. Both devices use the processor’s JTAG interface and must not
be connected at the same time. On the UNC20 Developer’s Kit, jumper J1
must be inserted in order to use JTAG.

Then modify the configuration file "~/.gdbinit_lxnet50" for "arm-elf-gdb"
to contain the following line:

target remote 192.168.42.113:2001

If available, this file is automatically read by "arm-elf-gdb" on startup and
connects the debugger to the BDI2000.

13.3.11. Debugging

Launch the application to be debugged, here "hello_c", either from the rootfs
or with "nfs/hello_c" from the host. Don't press enter yet.

LxNETES

41

Now, on the second shell (ttyS1 or telnet session), run "dbgapp" to get the
address information.

On the host in the "lxnet_debug/" directory, run "arm-elf-gdb". This reads
the file "~/.gdbinit_lxnet50" and connects to the BDI2000, so the target is
now stopped, probably somewhere in the kernel code (if the initial connection
fails, then the BDI2000 needs to be reset).

LxNETES

42

Now copy the output from "dbgapp", beginning with "add-symbol-file", to the gdb
input line and press enter. Confirm changing of address relocation with "y" (this
question is avoided when the file "~/.gdbinit_lxnet50" contains the line
"set confirm off").

Set a breakpoint with "br printMessage" which is the next command
executed after waiting for input (as of "../src/hello_c.c"). Continue
execution on the target with "c". Now, on ttyS0 press Enter so the application can
continue. The debugger now stops and you may inspect variables and step
through the code.

When the debug session has ended, don't quit "arm-elf-gdb" from the
command line but kill the "arm-elf-gdb" process to keep the target running.

LxNETES

43

14. Building The Toolchain

If a full installation has been performed, it is possible to rebuild the compiler
toolchain, the target libraries, the applications and some helper applications on
the host. This should only be necessary if

• there are library incompatibilities between the installation host and the pre-
built binaries

• the development host is not an x86-based system

• patches must be installed for the toolchain, the libraries or the applications

• the busybox has to be reconfigured to support different "applets"

The compilation may be started by entering:

$ cd /targets/LxNETES/ewp/LxNETES
$. LxNET.sh
Starting LxNETES Configuration
[...]
$ make

This will use the directory "/targets/LxNETES/ewp/build" for compilation
and after that will install the toolchain, libraries and applications to
"/usr/local/arm-elf" and "/usr/local/LxNETES". The contents of these
directories are not erased first.

In addition, the default project image and rootfs will be created in
"/targets/LxNETES/ewp/build/project".

The compilation error messages will be logged in the file "build.log" which
should be sent to FS Forth-Systeme GmbH if errors have occurred
(support@fsforth.de).

After building, the distribution package files can be installed in a different
directory, eg. for creating a CD image, by entering

LxNETES

44

$./build.sh install /targets/install
*** Installing packages to /targets/install/software ****
[...]
$

LxNETES

45

15. Applications

All applications except "eeprom", "update_flash" and “dbg_app” are
standard Linux applications. The detailed documentation on them is located in
the "/targets/LxNETES/build/apps" directory which will only be present if
you have done a full installation and build, so the alternative is to unpack this by
hand. The following short descriptions explain only the most common uses.

15.1. busybox

The "busybox" includes all standard shell applications like "cat", "chmod",
"echo", "mount", "sh" and some more. They are all linked into one static
application to save flash memory, at the cost of a larger RAM footprint for each
application, so this is not recommended for daemons.

LxNETES has stripped off the less important applications in order to obtain a
small busybox binary. But the user may change that by modifying
"apps/busybox-0.60.3/Config.h" and using that binary instead of the pre-
compiled one.

15.2. eraseall

"eraseall" from the MTD utils has been added to the busybox. It erases a full
flash partition, for example "eraseall /dev/mtd/1" erases the kernel
partition.

Usage: eraseall flash_device [-q]

eraseall erases a flash partition.
Options:
-q, --quiet don't display progress messages

--silent same as --quiet
--help display this help and exit
--version output version information and exit

LxNETES

46

15.3. telnetd

A simple telnet daemon is launched by "inetd" as configured in
"/etc/inetd.conf". No usernames and passwords are used for login.

15.4. inetd

"inetd" launches other network daemons in case someone wants to connect to
it. This way only those network daemons are running that are really being used.
It is configured by the file "/etc/inetd.conf"

15.5. thttpd

A small and simple web server. It cannot be launched by "inetd", therefore it is
launched from "/sbin/init" after each reboot. This can be turned off in the file
"/etc/inittab".

15.6. ftp server

The troll-ftpd, which provides anonymous login, is available and per default is
started by “/etc/inetd.conf”.

15.7. ftp client

In order to have access to network services without NFS having to be enabled,
the ftp client program can be installed on the target for use by the console or by
telnet.

As the ftp client is still very large, it is not copied to the root file system per
default. To enable this, edit the file "build.sh" in the project directory and
uncomment the line

#cp $LXNETES_APPS_PATH/bin/ftp rootfs/bin

LxNETES

47

15.8. eeprom

This tool is used to display or modify the contents of the EEPROM. If used
without any arguments, it displays the contents. Otherwise it modifies the given
fields in the EEPROM.

eeprom [-d yes|no] [-m mac] [-i ip] [-g ip] [-n ip] [-s ip] [-e env] [-a
env] [-x env] [-c mode] [-r app]

eeprom v1.2 Copyright FS Forth-Systeme GmbH.

Dumps or modifies the contents of the builtin EEPROM
Options:
-d : enable DHCP (yes|no)
-m : set MAC address (xx:xx:xx:xx:xx:xx)
-i : set IP address (ddd.ddd.ddd.ddd)
-g : set gateway IP address (ddd.ddd.ddd.ddd)
-n : set DNS IP (ddd.ddd.ddd.ddd)
-s : set subnet mask (ddd.ddd.ddd.ddd)
-c : configures the ethernet mode (auto|(<bps>:<duplex>)) mode for

either auto-negotiation or
<bps>:<duplex> mode with <bps> is one of "10" or "100" and
<duplex> is "half" or "full"

-e : stores the environment variables in EEPROM
-a : appends the environment variables to EEPROM
-x : removes the environment variable starting with apps from EEPROM
-r : reads the environment variables from EEPROM and runs the

application

It is also possible to store environment variables in the EEPROM with the option
"-e". An empty string as argument will clear existing environment variables,
otherwise the specified environment variables are stored. Multiple environment
variables are separated with "\a". Note that for the shell "\" must also be masked
with "\".

So to store two environment variables NFSMOUNT and JFFSMOUNT, use

eeprom -e "NFSMOUNT=192.168.42.1:/exports/192.168.42.7\\aJFFSMOUNT=yes"

LxNETES

48

The environment variables may be used by running "eeprom -r <script>"
where "script" is a shell script or an application using those environment
variables. This is necessary since a process cannot modify the environment
variables of the process which has called it.

15.9. update_flash

This tool provides an interface to update the flash. It may flash one or more
partitions, independent of whether devfs is used or not. It checks whether the
images fit into the partitions, optionally copies them from the network to a
temporary directory and may reboot the target.

The command line syntax is

#update_flash
BusyBox v0.60.3 (2003.03.14-12:32+0000) multi-call binary

Usage: update_flash [-f] [-v] [-r] [-q] [-c] [-t dir] <file> <part>
[<file> <part>]

update_flash v1.1 Copyright FS Forth Systeme GmbH.

Copies one or more files to flash partitions
The partitions are erased before doing the copy and the filesize
is being checked
-f : erases the complete flash partition
-v : verify copying
-r : reboot after copying the files
-t : copy file to temp directory before doing an erase
-q : quick mode, copy only sectors modified
-c : create a 32-bit checksum and print it
file : file to be copied to flash
part : flash partition to be copied to (only number)

#

To copy a JFFS2 image to a flash partition it is recommended to use "-f" in order
to erase the full partition. Otherwise it may be omitted and will save erase time.

LxNETES

49

15.10. dbgapp

"dbgapp" prints all process information that is necessary to tell gdb how to
remap debug binaries of the application. The only accepted parameter is the
process name (without the path).

For example:

dbgapp hello_c
hello_c (pid=28): add-symbol-file hello_c.gdb 0xe84040 -s .data 0xe85e50
-s .bss 0xe87f68

pid is the process id of the application, all text after the colon must be copied and
pasted to the "arm-elf-gdb".

15.11. hello_c

This is a sample "hello world" C application that has been compiled with
debugging enabled. It just waits until ENTER is pressed and then exits. This
application is included in the project under
"./project/src/hello_world/src/hello_c.c"

15.12. hello_cc

This is a sample "hello world" C++ application. It creates some static and
dynamic instances and tests exception throwing. The source is stored under
"./project/src/hello_world/src/hello_cc.cc".

15.13. Watchdog

The watchdog device driver is a module and will be loaded if the environment
variable WATCHDOG=yes is set. The factory default sets the watchdog timeout
to 10s after which a reset is generated.

LxNETES

50

15.14. Date and Time

The date and time can be set with the command “date –s MMDDHHMMYYYY”.
For example, “date –s 032109502003” sets date and time to March 21, 2003
09:50. This time can then be stored in the Real-Time Clock (RTC) on the
ModNET50 module with the command “hwclock –systohc”.

15.15. LCD Demo

The UNC20 Developer’s Kit has a header which allows a simple character
display, e.g. 20 chars by 2 lines, to be connected. LxNETES contains a device
driver module which is loaded if the environment variable LCDDISPLAY=yes is
set.

15.16. PPP

PPP support is a relatively large application at 280kB.

The pppd just needs to be started with the following command on the host:

#pppd crtscts lock 192.168.41.1:192.168.41.7 /dev/cua0 115200

and the following command on the target:

#pppd crtscts lock 192.168.41.7:192.168.41.1 /dev/ttyS0 115200

Where 192.168.41.7 is the desired IP address on the target (note that this should
be a different IP address to that used on the Ethernet interface) and /dev/ttyS0 is
the serial interfac used on the target. On a UNC20 this will be /dev/ttyS0 since
there is only one assembled. It is therefore best to disable the console on this
serial interface by commenting out the following line in /etc/inittab
“::respawn:/sbin/agetty /dev/ttyS0 /bin/sh –1”

Once a connection has been established, it is possible to ping the host from the
target and vice-versa.

LxNETES

51

16. What’s new in LxNETES v2.3?

16.1. New Features

Added support for a new target, the Digi Connect 50.

Added basic support for the UNCBAS_FP baseboard.

Added a rescue image for the UNC20 project.

Flash can be used instead of serial EEPROM.

Standard Template Library (STL) supported, which includes support for
iostreams.

16.2. Minor Enhancements

The update_flash routine has an option to calculate and print a 32-bit checksum.

17. What’s new in LxNETES v2.2?

17.1. New Features

Added support for UNC20 rev.1 (P/N 352 and 355). Code starts in big-endian
mode and switches to little-endian.

PPP support now enabled

nohup added

CGI progam display added to thttpd

rdate now included in busybox

More than 1 telnet connection allowed to telnet daemon.

LxNETES

52

LxNETES is now installed in /usr/local/LxNETES-2.2 and arm-elf toolchain now
installed under this directory.

Updated toolchain to support setjmp/longjmp.

17.2. Minor Enhancements

On UNC20 disabled serial hardware handshake as default

Now only use CFI chip driver for flash devices

Adjusted memory chip selects so that they are all 32MB in size. Flash base
address now 0x0400_0000

Memory test now performed by default.

New kernel version numbering scheme to clearly show which version of uClinux
patches is being used, e.g. kernel version 2.4.20-uc0-fs6.

17.3. Bug Fixes

On UNC20 fixed Ethernet race condition.

Fixed endless DHCP requests (Bug_ID#185)

Fixed DHCP requests (Bug_ID#203)

IrDA utils and drivers fixed for kernel v2.4.20

Fixed kernel’s ptrace function for gdbserver

On ModNET50 fixed Ethernet link LED usage

LxNETES

53

17.4. Known Issues

When numerical values in the kernel configuration are changed (e.g. the flash
size), they are reset to zero the next time the configuration menu is called.

LxNETES

54

18. FAQs

Mounting Issues

Q Why does it take so long to mount an NFS directory?
A The lock daemon is not running on the target. Add the option "-o nolock"
 to the mount command line to prevent locking of files.

Q Why does mounting an MTD partition return the error message
 "cramfs: wrong magic"?
A You are probably trying to mount a JFFS partition. To mount a JFFS partition,
 first load the module "/lib/modules/jffs2.o" and then mount using the
 option "-t jffs2"

Network Problems

Q Why do I have problems with my Ethernet network after connecting the
running target to a different switch or host?
A The running hardware doesn't recognize changes from full-duplex to half-
duplex and vice versa. The target has to be rebooted.

Serial Port

Q How can I access both serial ports on a ModNET50 Developer’s Kit?
A "COM A" may be accessed with "/dev/ttyS0" and "COM B" with
"/dev/ttyS1". After booting they are both configured for the same baudrate.
"COM B" doesn't support any hardware handshake at all and "COM A" only if not
a console, otherwise the target wouldn't boot if no terminal were attached.

Q How do I get rid of the shell on "/dev/ttyS1"?
A Edit "/etc/inittab" and remove the entry

::respawn:/sbin/agetty /dev/ttyS1 /bin/sh -l

Q Why is Ctrl-C no longer working in the session?
A You may have pressed Ctrl-C while in the shell. The shell has a bug which
disables Ctrl-C after the first time on the command line. Ctrl-\ (Kill) will continue
to work.

LxNETES

55

Compilation

Q Why do the kernel images differ in size if compiled from different locations or
at different times?
A Some files include bug messages that refer to its absolute filename or a
compilation time.

Q Where can I find the math library "libm.a"?
A Use uClibc-0.9.19.

EEPROM

Q Why do I see this message after copying the new image to a target where
LxNETES v1.x was previously installed?

Environment string too long. At max 254 bytes with zeros

A The new default image checks for environment variables in the EEPROM
(which wasn't possible in LxNETES v1.x) resulting in random data being
recognized. Run the following command to initialize the environment variables.

eeprom -e ""

19. Links

These links represent the current status as of the printing of this documentation
and may have changed when you read this.

http://www.unc20.net UNC20 home page for more FAQs

http://www.fsforth.de Manufacturer of UNC20 and
ModNET50

http://www.uclinux.org Home page of the uClinux port of Linux
for embedded systems

LxNETES

56

http://www.uclibc.org Home page of the user library and user
applications

http://www.abatron.ch Manufacturer of the BDI2000 for
debugging via JTAG

http://www.netsilicon.com Manufacturer of NET+ARM processors

If you have a Support Contract, please send any requests for technical support
to support@fsforth.de

20. Abbreviations

RootFS Root File system

DHCP Dynamic Host Configuration Protocol (RFC 2131)

CRAMFS Compressed ROM File system

JFFS Journaling Flash File system

NFS Network File system

