
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Qun Yu

Design and Implementation of Web-based Data and Network Management System for
Heterogeneous Wireless Sensor Networks

Master of Science

Yao Liang

Xukai Zou

Yuni Xia

Yao Liang

Shiaofen Fang 22th July 2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Design and Implementation of Web-based Data and Network Management System for
Heterogeneous Wireless Sensor Networks

Master of Science

QUN YU

07/23/2010

DESIGN AND IMPLEMENTATION OF WEB-BASED DATA AND NETWORK

MANAGEMENT SYSTEM FOR HETEROGENEOUS WIRELESS SENSOR

NETWORKS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Qun Yu

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2010

Purdue University

Indianapolis, Indiana

ii

ACKNOWLEDGMENTS

 This thesis would not have been possible without the help and support of

many people. I would like to express my deepest gratitude to my adviser, Prof.

Yao Liang. His supervision helped expedite my research progresses and open

the door to new discoveries.

 I also, would like to thank my committee members Prof. Yuni Xia and Prof.

Xukai Zou for their time and guidance. In addition, I would like to thank Prof.

Arjan Durresi, Prof. Yuni Xia, Prof. Xukai Zou and Prof. Rajeev Raje for their

wonderful courses. I learned a lot from these inspiring classes, and have applied

what I gained in these classes to my research work.

 I am also thankful to many department staff, including, but not limited to,

Joshua, Nicole, DeeDee and Scott and all people and students, especially Rui

Liu, Wei Zhao, from my department, for their patience and help as they came

along with me during this process.

 Finally, I would like to thank my parents for their love and support.

iii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... V
LIST OF FIGURES .. Vii
ABBREVIATIONS .. iX
ABSTRACT ... Xi
CHAPTER 1. INTRODUCTION .. 1

1.1. Research Background ... 1
1.2. Research Goal ... 2

CHAPTER 2. RELATED WORK ... 3
2.1. Current Sensor Network Platforms .. 3

2.1.1. MoteWorks Platform .. 3
2.1.2. Particle Platform .. 4
2.1.3. μNode Platform ... 4

2.2. Sensor Network Middleware Architectures .. 5
2.2.1. MoteView Framework .. 6
2.2.2. Atlantis Framework .. 6
2.2.3. Decentralized Enterprise Systems Framework 6

CHAPTER 3. H-WSNMS ARCHITECTURE ... 8
3.1. H-WSNMS System Framework Overview .. 8
3.2. Management Service and Application Layer .. 12

3.2.1. Service Components ... 13
3.2.2. MSA Metadata Repository ... 14

3.3. Unified Gateway Layer ... 16
3.3.1. UG Metadata Repository ... 18
3.3.2. Service Proxy .. 19
3.3.3. Gateway Access .. 19
3.3.4. Communication Mechanism .. 20

3.4. Mote Layer ... 20
3.5. H-WSNMS DB ... 20
3.6. System General Function Logical Flow .. 21

CHAPTER 4. H-WSNMS KEY TECHNOLOGIES AND IMPLEMENTATION 23
4.1. System Logical Architecture and Key Technologies Overview 23
4.2. Mapping Fame ... 24

4.2.1. Mapping Model Technology .. 24
4.2.2. Virtual Command Set Mapping Model ... 24
4.2.3. VCSMM Application Case Discussion ... 27

iv

 Page

4.3. Access Adaption .. 30
4.3.1. Unified Gateway Access Technology .. 30
4.3.2. Unified Gateway Access Model ... 32

4.4. H-WSNMS Implementation .. 33
4.4.1. H-WSNMS Software Architecture Overview 33
4.4.2. System User Interface Design ... 35
4.4.3. XML Template and Definition .. 35
4.4.4. Data Structure and Definition .. 40

CHAPTER 5. H-WSNMS CASE STUDY .. 42
5.1. Experiment Hardware .. 42
5.2. Software Platform .. 45

5.2.1. Client Tier .. 45
5.2.2. Specific Gateway Middleware ... 46

5.3. Main Functions Overview ... 48
5.3.1. Monitoring Function and Demo ... 50
5.3.2. Configuration Function and Demo ... 54
5.3.3. Reprogram Function and Demo .. 59
5.3.4. Data Collection Function and Demo .. 64

5.4. XServe’s Extension .. 69
CHAPTER 6. FUTURE WORK ... 72
LIST OF REFERENCES .. 74
APPENDICES

Appendix A ... 77
Appendix B ... 79
Appendix C ... 84
Appendix D ... 86
Appendix E ... 88

v

LIST OF TABLES

Table Page

Table 3.1 Virtual Command Category and Specification of VCS 15

Table 4.1 General Wrapped XML Format ... 29

Table 4.2 Wrapped XML Template File and Mapped Command String 36

Table 4.3 Specification of Code .. 37

Table 4.4 Data Collection Service Configuration XML Template File 39

Table 4.5 Monitoring Service Configuration XML Template File 40

Table 5.1 Sensor Boards and Motes .. 44

Table 5.2 Monitoring Request XML File and Mapped Command String 51

Table 5.3 Configuration Request XML File and Mapped Command String 56

Table 5.4 Reprogram Request XML File and Mapped Command String 61

Table 5.5 Data Collection Request XML File and Mapped Command String 66

Appendix Table

Table A.1 Parameters Definition ... 77

Table A.2 Command Category and Specification of VCS 78

Table B.1 XServe Command Line Parameters ... 79

Table B.2 XServe Configuration Command Line Parameters 80

Table B.3 XServeTerm Line Parameters .. 80

Table B.4 XServeTerm Available Parameters .. 81

Table B.5 XCommand Categories and Description .. 82

Table B.6 XServe Reprogram Line Parameters ... 82

Table B.7 XOtap Command Arguments ... 83

Table C.1 Monitoring ServiceID Definition .. 84

Table C.2 Configuration ServiceID Definition ... 84

vi

Appendix Table Page

Table C.3 Reprogram ServiceID Definition ... 85

Table C.4 Data Collection ServiceID Definition .. 85

Table D.1 DataTable H-WSNMS_ServicInfor ... 86

Table D.2 Datatable H-WSNMS_PlatformState.. 86

Table D.3 Datatable H-WSNMS_SocketInfor ... 87

Table D.4 Datatable H-WSNMS_GatewayConfig ... 87

vii

LIST OF FIGURES

Figure Page

Figure 2.1 Sensor Platform: MICAz .. 3

Figure 2.2 Sensor Platform: Particle ... 4

Figure 2.3 Sensor Platform: μNode .. 5

Figure 3.1 H-WSNMS System Architecture .. 9

Figure 3.2 H-WSNMS with Virtual Command Set ... 11

Figure 3.3 Management Service and Application Layer 13

Figure 3.4 Unified Gateway Layer .. 17

Figure 3.5 General control and status information flow for Generic Functions ... 22

Figure 4.1 H-WSNMS System Logic Architecture .. 23

Figure 4.2 Virtual Command Set Mapping Module (VCSMM) 26

Figure 4.3 VCSMM Mapping Flow .. 27

Figure 4.4 VCSMM Application ... 28

Figure 4.5 Comparison of Service Access Modes .. 30

Figure 4.6 H-WSNMS Software Design .. 34

Figure 5.1 Mote Hardware .. 43

Figure 5.2 Three-tier architecture instantiation based on XServe 45

Figure 5.3 Gateway Middleware: XServe ... 46

Figure 5.4 User Profile of H-WSNMS ... 49

Figure 5.5 “Monitoring” Command Logical Flow ... 50

Figure 5.6 “Monitoring” UI ... 52

Figure 5.7 Demo of “Monitoring” ... 53

Figure 5.8 “Configuration” Command Logical Flow .. 54

Figure 5.9 “Configuration” UI .. 58

viii

Figure Page

Figure 5.10 Demo of “Get Config” .. 58

Figure 5.11 “Reprogram” Command Logical Flow .. 59

Figure 5.12 “Reprogram” UI ... 63

Figure 5.13 Demo of “Query” .. 63

Figure 5.14 “Data Collection” Command Logical Flow 64

Figure 5.15 “Data Collection” UI ... 68

Figure 5.16 Demo of “Data Collection” ... 68

Figure 5.17 Demo of “New Data Collection” ... 69

Figure 5.18 XServe Command Flow Illustration [2] .. 70

Figure 5.19 XServe Configuration Command Extension 71

Appendix Figure

Figure E.1 the Whole Design of H-WSNMS ... 88

ix

ABBREVIATIONS

ABBREVIATIONS DESCRIPTION

GW Gateway

GWS Gateway Set

H-WSNMS Heterogeneous Wireless Sensor

Networks Management System

MR Metadata Repository

MSA Management Service and Application

OTAP Over-the-air Programming

SC Service Component

SOA Service Oriented Architecture

TC Target Command

TCS Target Command Set

UG Unified Gateway

UGA Unified Gateway Access

VC Virtual Command

VCA Virtual Command Attributes

x

VCAS Virtual Command Attributes Set

VCC Virtual Command Category

VCS Virtual Command Set

VCSMM Virtual Command Set Mapping Model

WSN Wireless Sensor Network

WSNs Wireless Sensor Networks

XML Extensible Mark-up Language

xi

ABSTRACT

Yu, Qun. M.S., Purdue University, August, 2010. Design and Implementation of
Web-based Data and Network Management System for Heterogeneous Wireless
Sensor Networks. Major Professor: Yao Liang.

 Today, Wireless Sensor Networks (WSNs) are forming an exciting new area

to have dramatic impacts on science and engineering innovations. New WSN-

based technologies, such as body sensor networks in medical and health care

and environmental monitoring sensor networks, are emerging. Sensor networks

are quickly becoming a flexible, inexpensive, and reliable platform to provide

solutions for a wide variety of applications in real-world settings. The increase in

the proliferation of sensor networks has paralleled the use of more

heterogeneous systems in deployment. In this thesis, our work attempts to

develop a new network management and data collection framework for

heterogeneous wireless sensor networks called as Heterogeneous Wireless

Sensor Networks Management System (H-WSNMS), which enables to manage

and operate various sensor network systems with unified control and

management services and interface.

 The H-WSNMS framework aims to provide a scheme to manage, query,

and interact with sensor network systems. By introducing the concept of Virtual

Command Set, a series of unified application interfaces and Metadata (XML

files) across multiple WSNs are designed and implement the scalability and

flexibility of the management functions for heterogeneous wireless sensor

networks, which is demonstrated though through a series of web-based WSN

management Applications such as Monitoring, Configuration, Reprogram, Data

xii

Collection and so on. The tests and application trials confirm the feasibility of our

approach but also still reveal a number of challenges to be taken into account

when deploying wireless sensor and actuator networks at industrial sites, which

will be considered by our future research work.

.

1

CHAPTER 1. INTRODUCTION

1.1. Research Background

 A wireless sensor network (WSN) [1] consists of spatially distributed

autonomous sensors cooperatively monitor physical or environmental conditions,

such as temperature, sound, vibration pressure motion or pollutants. The

development of wireless sensor networks (WSNs) was motivated by military

applications such as battlefield surveillance. They are now used in many

industrial and civilian application areas, including industrial process monitoring

and control, machine health monitoring, environment and habitat monitoring,

healthcare applications, home automation and traffic control and so on.

 Wireless Sensor Networks have become an emerging new research area in

the distributed computing environment. It plays an important role in the pervasive

computing to support a wide range of applications of the daily life in future. So

far, as heterogeneous WSNs are being widely deployed for various applications,

we are faced with a new challenge of network management for heterogeneous

WSNs. On one hand, current available WSN management tools are either

application specific, or platform specific, thus suffering from the lack of reusability

in heterogeneous WSNs management environment. On the other hand, to

develop a new WSN management system for heterogeneous WSNs from scratch

is time consuming and may not be feasible. Motivated by such a challenge, a

major impediment in the integration process is represented by the variety of

customized platforms and proprietary technologies. In this thesis, we propose a

unique, open, scalable and flexible WSN Management Comprehensive

Application Platform targeted for Heterogeneous WSNs Management System.

2

Our prototype system H-WSNMS provides a Web-based Data and Network

Management Environment for Heterogeneous Wireless Sensor Networks.

 This research topic is very important to allow large-scale heterogeneous

WSNs to be effectively and easily managed and operated in the real-world tasks

and applications.

1.2. Research Goal

 In this thesis, our main goal is to put forward a Heterogeneous WSNs

management system solution scheme and implement it based on a prototype

environment. This system should have the following features as described:

• A unique, open, scalable and flexible WSN Management Comprehensive

Application Platform Architecture

• A Service Oriented WSN management platform

• A scalable Unified Gateway across multiple WSNs

 In the design of our H-WSNMS architecture, some key component designs

are involved, such as Service Mapping design and Unified Gateway Access

design. In this thesis, we adopted the application of the Extensible Mark-up

Language (XML) which enables a new level of interoperability for heterogeneous

IT systems.

 Using a common reference model improves this process and leads to

Virtual Command Set Mapping Model (VCSMM): Service Mapping. The results

can be used immediately to configure mediation layers integrating services into

an overall service oriented architecture. Besides, the Unified Gateway Access is

designed for integrating various different wireless sensor platforms and

accessing the third part gateway interfaces with other standards, which is flexible

and extendable.

3

CHAPTER 2. RELATED WORK

2.1. Current Sensor Network Platforms

2.1.1. MoteWorks Platform

 Crossbow [4] was one of the first suppliers of the Berkeley-style MICA

motes [4] which employ the TinyOS operating system. Follow on products

include the MICA2 [4] (868/916 MHz) and MICAz (2.4 GHz) motes as shown in

Figure 2.1, and the Intel-designed IMOTE2. Crossbow also makes a software

design platform for its hardware called MoteWorks.

 The MICA2 Mote is a third generation mote module used for enabling low-

power, wireless sensor networks. The MICA2 processor radio is fully supported

by the MoteWorks Software Platform.

 MICAz is a wireless sensor network mote developed by Crossbow

Technology. The device is built upon the IEEE 802.15.4 standard. It is one of the

most commonly used mote system in the world.

Figure 2.1 Sensor Platform: MICAz

4

2.1.2. Particle Platform

 The Particle node [13], produced by Particle Computer, comprises a

communication board with the PIC18f6720 microcontroller and TR1001

transceiver. Various types of sensors can be attached to the communication

board. The wireless communication uses the AwareCon protocol [20], which is

designed to handle high mobility and density of nodes. This makes the Particle

platform as shown in Figure 2.2 well suited for equipping chemical containers

handled by human operators and checking potential dangerous situations.

Figure 2.2 Sensor Platform: Particle

2.1.3. μNode Platform

 The μNode platform [14] as shown in Figure 2.3, produced by Ambient

Systems, represents a low-power, general purpose sensor node, built around the

MSP430 microcontroller and a single- chip radio transceiver for the 433/868/915

MHz ISM band. After deployment, the μNodes self-organize into a multi-hop

network, through which data can be routed back and forth to a designated sink

node. This platform is ideal for building large-scale sensing infrastructures that

can function unattended for long periods of time. Since many chemicals must be

5

stored under specific ambient conditions, we use the μNode sensors for

continuously monitoring environmental conditions.

Figure 2.3 Sensor Platform: μNode

2.2. Sensor Network Middleware Architectures

 Some of the "hot" topics in WSN software research include such as

Security, Mobility (when sensor nodes or base stations are moving) and

Middleware (the design of middle-level primitives between the software and the

hardware). This thesis focuses on the research on sensor network middleware

architectures.

 Today, due to the unique challenge of WSN [2], typically the platforms are

specialized for specific purposes (e.g. data collection, target tracking), it is often

the case that complex applications require the combination of multiple proprietary

technologies and heterogeneous wireless sensor platforms. As a result, the

management, monitoring and administration of a system with highly distributed

logic are a very complex task. Without the right tools and architecture, it can

increase the total cost of ownership to a point where the deployment of this

technology becomes commercially uninteresting.

6

2.2.1. MoteView Framework

 MoteView [5][9] presents a scalable software framework for managing,

monitoring, and visualizing sensor network deployments developed by

Crossbow. It provides tools to the users to visualize results from a sensor

network. Readings arriving from the network are stored in a relational database.

The sophisticated interface is used to check the motes readings on the fly,

visualize the topology, produce graphs from selected motes, check their status

and export the readings to a spreadsheet.

2.2.2. Atlantis Framework

 The Atlantis Framework [15] is based on TinyML but addresses several of

its shortcomings. The basic elements are the same, i.e., it can describe fields,

platforms, and sensors. Additionally, the Atlantis Framework adds data handling

abstractions, and a query field for more detailed queries. It makes further

improvements by defining a field task object which can handle asynchronous

data retrieval. For this purpose, it adds an additional data broker which handles

the tasks, and specific broker behaviors to describe how to handle the task itself.

As a nice roundup, the Atlantis Framework adds data filters and event

subscription possibilities. On the downside, there is not a standard way to

manage the sensor systems since a registry does not exist.

2.2.3. Decentralized Enterprise Systems Framework

 The overall architecture of the Decentralized Enterprise Systems framework

[11][12] used a service-oriented architecture (SOA) as a platform construct.

 SOA architecture is very helpful in solving the issues in the design of the

management system. The integration efforts are minimized by hiding much of the

implementation details and exposing only the functionality of the WSN in use.

The management also is simplified because the logic is encapsulated in services

with a manageable granularity. The services can be deployed, removed, or

7

upgraded from a central location to adapt the system to the business

requirements. In this thesis, we focus on the integration of various WSN

platforms for management and operation purpose. SOA architecture based on

Web services technology recently have become popular for building complex yet

flexible enterprise Web-based Management Systems.

8

CHAPTER 3. H-WSNMS ARCHITECTURE

3.1. H-WSNMS System Framework Overview

 H-WSNMS is structured on various Wireless Sensor Networks, hiding the

heterogeneity of WSNs, and providing a basic WSN Service Management

platform to web_based WSNs Service and Application Users. This kind of

platform should satisfy three aspects:

• Open multi-function access oriented services system: the platform adopts

an open system architecture and technology scheme. In this platform, the

division of function entities, distribution of service functions and

corresponded interface should abide by open standard;

• Unify service support environment;

• Improve service search and generic fame component according to the

requirement: Quick deploy new services.

 Based on the discussion above, H-WSNMS presents a three-layer

architecture that accommodates different sensor platforms and exposes their

functionality in a uniform way to the business application.

• Management Service and Application layer

• Unified Gateway (or Platform Abstraction) layer

• Mote (or Device) layer

 These three layers are illustrated in Figure 3.1 and discussed in detail

throughout the following subsections.

9

Figure 3.1 H-WSNMS System Architecture

 From Figure 3.1, we can see, H-WSNMS System Architecture contains

three layers:

• Management Service and Application (MSA) Layer

This layer is the composition of different WSN management components,

each of which is tailored for application requirements and independently

10

performs some specific functions that are defined by Service and

Application Client and are described in Service Repository.

• Unified Gateway (UG) Layer

This layer is the core of our proposed H-WSNMS architecture that is

responsible for interpreting each Virtual Command from Virtual Command

Set (VCS) into a Target Command(s) for WSN gateway(s). In this layer,

the Service Proxy component provides a mapping function between

Service Components in MSA layer and WSN gateway Command

Service(s), displaying the multiple management functions accessing

multiple WSN applications. Besides, the two control components,

Gateway Access component and Communication Mechanism component,

build the communication bridge between MSA layer and Mote layer,

responsible for transmitting the Target Command(s) to WSN gateways.

• Mote Layer

This layer consists of, in general, multiple heterogeneous WSN gateways

associated with their preliminary management Command Services.

 During the above discussion H-WSNMS architecture, an important concept

should be introduced here: Virtual Commands Set (VCS). By VCS, each

management service component is deemed to be realized by a Virtual Command

or a sequence of Virtual Commands from the VCS, and each individual Virtual

Command could be either partially or completely mapped to a combination of

some existing Command Services under the given WSN gateway (with its

preliminary management Command Services), as shown by Figure 3.2.

11

Command
Service1

SC1 SC3SC2

VCSMM

Command
Service2

Command
Service n

MSA Layer with
components

UG Layer with
VCS

Mote Layer consisted
with n Command services

Figure 3.2 H-WSNMS with Virtual Command Set

 In Figure 3.2, each plane presents a concrete WSN gateway Command

Service, to which H-WSNMS maps some Virtual Commands. To realize the

mapping from a subset of Virtual Command Set to a concrete WSN gateway

Command Service, H-WSNMS adopts three-layer architecture. The top layer is

the composition of different WSN management components. The bottom layer

consists of multiple heterogeneous WSN gateways associated with their

preliminary management Command Services. The middle layer is the core of our

proposed H-WSNMS architecture that is responsible for interpreting and mapping

each Virtual Command from VCS into a concrete WSN gateway Command

Service(s), through this layer and the VCS, H-WSNMS can make management

components more reusable across heterogeneous WSN platforms and also

easier to develop, because developers can create management components

based on predefined VCS and be freed from handling the details early on with

the variety of WSN platforms, in the section 5.4 of Chapter 5, VCS reuse and

extension are studied and implemented.

12

 The advantage of VCS is that when a minor change on the commands

service happens, just update some parameters configuration or add new

parameters to complete new configuration in the interpreter. For understand this

better, the content and format of VCS is defined in the Table 3.1. For this

Wrapping and Interpreting procedure of VCS, we call it Virtual Command Set

Mapping Model (VCSMM), which is discussed as one of key technologies in

Chapter 4. The core UG layer in our proposed H-WSNMS architecture, working

as an extensible and scalable interface between management components and

concrete WSN gateway(s), provides an Access Adaption to specific WSN

gateways, which also is discussed as another key technology in Chapter 4.

 Besides, to illustrate implementation of the H-WSNMS architecture more

detail, in the Chapter 5, we will present an instantiation based on specific WSN

platform: Crossbow’s MoteWorks [6].

 In the following sections, the three-Layer structure is analyzed layer by

layer.

3.2. Management Service and Application Layer

 Management Service and Application (MSA) layer not only is able to provide

management functionality, but also benefit from the uniform interfaces offered by

the UG layer. In the Figure 3.3 gives us the detail about the MSA layer.

13

Figure 3.3 Management Service and Application Layer

 There are two main parts in this layer:

• Service Components

• MSA Metadata Repository

It contains a series of metadata documents in following components:

o VCS Configuration

o Gateway Service Configuration

o Service Wrapper

3.2.1. Service Components

 The MSA layer presents lots of various WSN management service

components, the arguments of which, i.e. User request, which is called as Virtual

Command in this system, are wrapped into Metadata XML file format stored in

Service Repository.

14

 The main service components involve Monitoring component, Configuration

component, Reprogram component, Data Collection components and so on. The

detail design and implementation will be introduced in Chapter 5.

3.2.2. MSA Metadata Repository

 MSA Metadata Repository (MSA MR) component is a DB of available

services configuration such as the VCS configuration, the target gateway service

configuration, and XML documents containing the service description and so on.

It is composed of the following parts:

• VCS Configuration

A available file to define Virtual Command Category (VCC), which has two

aims: one is to more conveniently describe service components from MSA

layer; the other one is to help to automatically create socket

communication port for management services with same type, i.e. the

same type management services with the same WSN platform and same

WSN gateway will share a same socket communication port. The code of

port is composed of the code of VCC, the code of WSN platform and the

code of WSN gateway. The latter two codes are described and defined in

the Metadata Repository in UG layer. The Table 3.1 shows us the

definition of VCC and Specification of VCS. The detail code of VCC, refer

the Appendix A, which includes more details.

15

Table 3.1 Virtual Command Category and Specification of VCS

VCS VC Command Function
Data
Collection
VCS
H_DataColl

H_DataColl Data
collection

Monitoring
VCS
H_Monitoring

H_Monitoring Monitoring
sensor data

Configuration
VCS
H_Config

H_Config_Reconfig_SpRate SET_RATE Set new
Sampling
Rate

H_Config_Reconfig_NID SET_NODEID Assign
Node ID

H_Config_Reconfig_GID SET_GROUP Assign a
Node to
new group

H_Config_Reconfig_CRate Set
collection
rate

H_Config_Reconfig_ECollect Immediately
perform a
data
collection
from WSN
and store it
to DB

…… …… ……
H_Config_PM_RESET RESET
H_Config_PM_SLEEP SLEEP
H_Config_PM_WAKEUP WAKEUP
…… …… ……

Reprogram
Set
H_Repro

H_Repro_Boot
H_Repro_Query
H_Repro_Load
……

Others …… …… ……

• Gateway Service Configuration

A series of available files with format “.xml” or “.txt” configuring various

WSN gateway status information, spatial information, the available

16

gateway communication port information, and gateway middleware

parameters information and so on. The detail design of XML template is

shown as Table 4.3, Table 4.4 in Chapter 4.

• Service Wrapper

It is a XML Wrapper responsible for describing service components in

MSA layer, i.e. wrapping VC(s) corresponding to these service

components with Metadata XML file format. The detail design of XML

template is shown as Table 4.2 in Chapter 4. These XML files in Service

Wrapper usually are sent to Service Proxy in UG layer to be mapped and

interpreted into a target command string authorized by specific WSN

gateways in the Mote layer.

3.3. Unified Gateway Layer

 Owing to the difference of WSN gateways and diversity of command

parameters indentified by motes in different WSNs, during the design of Unified

Gateway (UG) layer, the system developers should statistics enough integrated

information from Mote Layer, the purpose of which are to transfer various valid

command strings to motes smoothly, to achieve gateways configuration correctly,

and to guarantee gateway communication mechanism work successfully and so

on. The design and implement of UG layer is not only a challenge but also an

opportunity. The Figure 3.4 shows us the detail about the UG Layer.

17

Figure 3.4 Unified Gateway Layer

 UG layer is designed to harmonize different sensor platforms, i.e.

heterogeneous sensor platforms.

• Responsibilities:

o Handle the proprietary WSN mechanisms

o Expose the service-oriented functionality through a standard

interface

• Uniform Interface:

o Facilitates the integration of the new platforms via a simple

standardized mechanism

 There are three main components in this layer:

• UG Metadata Repository

It contains two type metadata documents as following:

o Platform Configuration

o Gateway Configuration

• Service Proxy

A series of XML files in Service Wrapper are sent to Service Proxy in UG

layer to be mapped and interpreted into a target command string

authorized by specific WSN gateways in the Mote layer.

18

• Gateway Access

It builds up the gateway middleware connection mechanism between UG

layer and Mote layer.

• Communication Mechanism

Socket Client- Server model is adapted in this system, which becomes the

communication channel between MSA layer and Mote layer.

3.3.1. UG Metadata Repository

 UG Metadata Repository (UG MR) is a series of available files to describe

the information about WSN platforms and their gateways. It has two functions:

one is to complete the respective configuration of WSN platforms, the

corresponding specific gateways and gateway middleware application interface,

and the other is to help to connect with mote layers through Gateway Access

component and Communication Mechanism component. As mentioned in

section 3.2.1, automatically created socket communication port for management

services with same type needs the information about the code of VCC, the code

of WSN platform and the code of WSN gateway. The latter two codes are

described and defined in the Metadata Repository in UG layer. The detail code

rules refer the Appendix A, which includes more details.

• Platform Configuration

The target platform information is defined such as Platform Name and

Platform ID and the corresponding Gateway Code in these metadata files

• Gateway Configuration

The corresponding Gateway Name, Gateway ID and Gateway middleware

application interface will be described in these metadata files

19

3.3.2. Service Proxy

 It is a XML Parser responsible for systematic parsing and interpreting of the

Virtual Command(s) with XML format wrapped by Service Wrapper to the target

command strings indentified by the specific WSN gateways in Mote layer.

 This Mapping processing is completed by Service Wrapper, presenting VCS

with XML format and Service Proxy, containing a group of Service Proxies, which

is command interpreter for a subset of VCS. That is to say, in H-WSNMS system,

the combination of Service Wrapper and Service Proxy is a key Mapping

Technology of H-WSNMS system implementation: Mapping Technology, which

will be discussed in section 4.2.

3.3.3. Gateway Access

 Through a series of available files configuring various WSN platforms, their

different gateways information and relative gateway middleware information and

so on, Gateway Access component builds up a connection mechanism with the

specific gateway middlewares. The combination of MR component and Gate

Access component is another key technology of H-WSNMS system

implementation: Unified Gateway Access Technology, which will be discussed in

section 4.3.

 It is responsible for connecting the available application interfaces from the

various different WSN gateway middlewares, take an instance of specific

gateway middleware XServe in Crossbow WSN platform MoteWorks, which

provides several different application interfaces such as XServe, XServterm and

XOtap and so on. Through these application interfaces, the mapped target

command(s) from Service Proxy is (are) sent to the specific WSN gateway(s) to

complete various WSN management or data collection functions. About Gateway

Middleware XServe will be introduced as an instantiation of system

implementation in Chapter 5.

20

3.3.4. Communication Mechanism

 Communication Mechanism component adopts Socket Client- Server Model

to realize the communication between MSA layer and Mote layer. After Service

proxy interprets and parses Virtual Command(s) described by XML file, the

output mapped target command string(s) will be sent to the WSN gateway

through this Communication Mechanism component. The socket port is

automatically created based on the code of VCC, the code of platform and the

code of WSN gateway, in another words, these code information should be

defined at the beginning by system developers as illuminated in the Table.3.1,

Appendix A and Appendix B, the detail definition of Port No. (i.e. Socket Port) will

be introduced in section 4.4.3.

3.4. Mote Layer

 The Mote Layer, the system hardware layer, building the real word wireless

sensor network or wireless sensor networks. Each wireless sensor network has

its own base gateway, communicating with its specific base station. The UG

Layer provides a Unified Interface and Communication Mechanism to access

every wireless sensor network to compete wireless sensor data and network

management.

3.5. H-WSNMS DB

 H-WSNMS Database is a DB of available services, storing the updated

information from Mote Configuration and the updated Platform status, and the

motes data that can be retrieved from Wireless Sensor Networks through Date

Collection function. The PostgreSQL database technology helps us to complete

this part.

21

3.6. System General Function Logical Flow

 After introduction of H-WSNMS Three-layer architecture and the

components in each layer, we can overview the whole system design like Figure

E.1 in Appendix E shows us.

 Now we give the general control and status information flow for generic

functions in H-WSNMS system as illustrated in Figure 3.5. At the beginning,

Users send a request to Function components in the MSA Layer, then the

requesting information, i.e. Virtual Command(s), is sent to the UG layer and is

wrapped into XML file(s) as attribute values in the Service Wrapper, which is(are)

parsed and interpreted by the Service Proxy into the target command string(s)

identified by WSN gateway(s) in Mode Layer, after its(their) own interpreter(s),

then the WSN gateway(s) send the authorized command streams with binary

format to the Base Station(s), which broadcast them into motes in WSNs. So far,

the Requesting processing as the solid line shown has been completed, after

mote(s) receives and executes the commands, they will response the

corresponding information back to the WSN Base Station, and then the Base

station transfers this information to WSN gateways to translate and send the data

and WSN information back to Users through Unified Interface. During the

Response processing as the dash line shown, the retrieved data from WSNs

motes and the updated information about platform status are stored into H-

WSNMS DB. We will overview several functions in detail such as Monitoring,

Reconfiguration and Reprogram one by one in the later Chapter 5 to show the

different logic flows of various management functions.

22

Figure 3.5 General control and status information flow for Generic Functions

23

CHAPTER 4. H-WSNMS KEY TECHNOLOGIES AND IMPLEMENTATION

4.1. System Logical Architecture and Key Technologies Overview

 This Chapter will focus on discussion of the key technologies and system

implementation. Figure 4.1 shows us the Logic Architecture of H-WSNMS, which

involves two key parts during the design and implement of H-WSNMS: Mapping

Fame and Access Adaption.

Figure 4.1 H-WSNMS System Logic Architecture

24

 Mapping Fame and Access Adaption are key parts in the design and

implementation of H-WSNMS, involving two main technologies as follows:

• Mapping Model Technology

• Unified Gateway Access Technology

4.2. Mapping Fame

4.2.1. Mapping Model Technology

 During the design, the goal of Mapping Model is to map concepts, command

elements and relationships from the virtual commands to the target command set

in order to implement a service from Client.

• Conceptual Mapping: Conceptual mapping is the listing of all existing

Virtual commands.

• Attribute mapping: This logical step is to identify similar attributes. At this

level special attention has to be paid to synonyms, homonyms and the

inherent context of attributes. Two attributes are said to be equal when

they describe the same real world property.

• Content Mapping: Most mapping efforts tend to conglomerate content

mapping with attribute mapping. Two values are said to be identical if they

can be derived from one another. At the attribute level, equivalence

between real world properties is established while the content level deals

with how attribute values are derived from one another.

 The complexity of any mapping effort is directly related to the complexity of

these individual components.

4.2.2. Virtual Command Set Mapping Model

 In previous traditional design, Command one-to-one Model was adopted in

the WSN management system. The flexibility and reuse have been neglected

25

and more efforts have been rightly directed at identifying and resolving mapping

issues. In order to avoid those same pitfalls, the Virtual Command Set Mapping

Model (VCSMM) multi-to-one-to-multi process must include rules and guidelines

addressing these issues. For the solution to be flexible and scalable, the

implementation of a valid Virtual Command Set multi-to-one-to-multi Mapping

must be included:

• Virtual Commands: For any Service Component (SC) containing a list of

independent enumerated Virtual Commands VC1, VC2…, VCn

susceptible of being exchanged based on definition of VCC, there must be

an exhaustive set VCS of unique enumerated values in the reference

function model (MSA service component) such that VCS = {VC1,VC2…,

VCn}. VC can be extended as more service components are added to the

federation.

• Properties: For any Service Component containing a list of independent

Virtual Command Attributes (VCA) referring the WSN gateway middleware

information, with XML file format, VCA1, VCA2,…, VCAn susceptible of

being exchanged based on the Attribute parameters, there must be an

exhaustive set VCAS of attributes in the reference service function model

such that VCAS = { VCA1, VCA2…, VCAn}. CAS can be extended based

on the updation of this function component.

• Associated Concepts: For any set of Objects GWS, linked through a

relationship describing the Target Command concepts TC1,TC2…, TCn,

there must be an exhaustive set TCS of concepts in the reference WSN

gateway model such that TCS = { TC1, TC2…, TCn}.

• Gateways: For real Gateway objects GW1, GW2…GWm susceptible of

being exchanged according to Gateway Configuration information, there

must be a set GWS of independent objects in the reference WSN platform

model such that GWS = {GW1, GW2…GWm}. Objects can be added as

new gateways join the federation.

26

 This extended framework advocates the creation of a VCSMM during the

implementation of Service function component. The main advantage of VCSMM

is the creation of a series of information exchange requirements with a specific

input/output command set and format to which all participating function models

have to abide. It becomes, in fact, the common language spoken and understood

by all members of a federation. In VCSMM, models interoperate through the

VCSMM. Each model understands the language of the VCSMM and can

therefore exchange information with any other model. A new model joining the

federation must only interface with the VCSMM and it automatically interfaces

with the rest of the federation.

Figure 4.2 Virtual Command Set Mapping Module (VCSMM)

 In the design of a heterogeneous WSNs management platform, the VCSMM

reduces the number of total interfaces in a federation of N VC from N interfaces

(one to one Model) in one-to-one model to 1 interface (multi to one to multi Model

as in Figure 4.2, VCSMM). The left picture in Figure 4.2 describes the wrapping

procedure of Virtual Commands {VC1,VC2,…VCn} formatted by Service

Wrapper into VCAS (XML file); The right picture in Figure 4.2 illustrates us the

27

parsing procedure of VCAS interpreted by Service Proxy into the scoped target

concepts {TC1, TC2…, TCn} which can indentified and interpreted by

heterogeneous WSN gateways.

 Figure 4.3 shows us the VCSMM mapping flow in the red break line. In

some sense, the VCSMM is a XML file Wrapping and Parsing Model from Virtual

Command to Target Command to achieve multiple management functions

accessing multiple WSN gateways, which is a kind of multi-to-one-to-multi

process.

Figure 4.3 VCSMM Mapping Flow

4.2.3. VCSMM Application Case Discussion

 During the application of VCSMM, considering providing Users a more

friendly and humanized management and maintenance of WSNs, H-WSNMS

system gives user several options to select:

• Saving Power Mode

• Speeding Mode

• Saving Power and Speeding Mode

 Usually, when monitoring WSNs, we should consider the above three

situations, for some certain type WSN platform, it is possible to use multiple

gateways to cover all motes, for example, the Speeding Mode in Figure 4.4, it will

give the multiple options (COM1, COM3, COM5, COM7) to select, every COMn

stands for a Wireless Sensor Network, the purpose of this Mode is to quickly

cover all possible motes in these four Wireless Sensor Networks if user can

select all Wireless Sensor Networks. But in this mode, plenty of power in WSNs

28

would be wasted and even lost without any benefit, although this way can

improve and increase the data link speed to get more information such as the

sampling data and other configuration and platform status than other modes,

there exists a potential flaw: power wastage. On the other hand, if just

considering power saving, only one WSN is selected, like the Saving mode

(COM5) shown in Figure 4.4, the limited motes covered by one WSN can be

visited, although this mode can save the power of this WSN, it cannot guarantee

to access all possible motes, so its limitation is obvious. Based on the analysis

on the previous two modes, the third mode “Saving Power and Speeding Mode”

becomes a comprehension option for users, which provides maybe a better not

the best option: COM3 and COM5 as shown in the picture. No matter which

method is best option, it depends on user requirement, so system provides

monitoring mode configuration to satisfy users. The mode configuration is

described by XML file. The available WSN gateway power situation and cover

performance should be done some statistics and represented in metadata file.

Figure 4.4 VCSMM Application

 Figure 4.4 gives us an example to statement these three options:

29

• “Saving Power Mode” has only one gateway port (COM5)

• “Speeding Mode” has four gateway ports (COM1, COM3, COM5, COM7):

recommend to select all at one time

• “Saving Power and Speeding Mode” has two gateway ports (COM3,

COM5): recommend to select these two at one time

 No matter how much the gateway ports to select, each function has one

XML file created by Service Wrapper with the following format in Table 4.1:

Table 4.1 General Wrapped XML Format

Request
XML
Format

….
<gateways>
 <gateway>
 <device>COM1<device>
 ……
 </gateway>
 <gateway>
 <device>COMi<device>
 ……
 </gateway>
</gateways>
….

 After interpreted by Service Proxy, output the number of target command

string is same as the number of gateways described in XML file.

 Table 4.4 in section 4.4 describes the Gateway Monitoring Service

Configuration XML file design, which provides a XML template of multi WSN

platforms with multi available specific gateway communication Ports under above

three different modes, displaying the system design flexible and scalable.

30

4.3. Access Adaption

4.3.1. Unified Gateway Access Technology

 H-WSNMS provides a Unified Interface in the Unified Gateway Layer,

completing a unified accessing of one or more gateways. Owning to the diversity

of senor network services provided by various gateways and the variety of

accessing protocol standard provided by different sensor networks, different type

services have their own functions such as monitoring, reconfiguration,

reprogram, data collection and so on.

Figure 4.5 Comparison of Service Access Modes

 Figure 4.5 displays the Traditional Service Access Mode and Unified Access

Mode, Traditional Service Access Mode (Access Mode A) make the interface

between Service Platform and WSN gateways over many, which obviously is not

good for service extension and update. Otherwise, Unified Access Mode (Access

31

Mode B) can overcome the above defect and undoubtedly bring the following

advantages to Service development.

 We call this Unified Access Mode as Unified Gateway Interface, which is

unique channel between the Service Management Platform and the Wireless

Sensor Networks, being responsible for interoperating between different service

and different service gateway and implementing the Adaptation of multi-service

and multi-gateway. UG provides a means of real-time two-way communication

between two data terminal installations: after the mapped target command

outputs from Service Proxy, the UG MR component, UG Access component and

Communication Mechanism component work together to complete the

processing of the target commands’ accessing heterogeneous WSNs, then the

specific gateways sends the request to the WSN motes, through this way

building a real-time interoperation.

• Reduce the implication on platform services from changes of GW:

From the services in platform, what they face is not complex multiple

gateway interfaces any longer, but a standard interface provided by a

Unified Gateway (UG). Thus, when a gateway with updated version or a

new gateway accesses, only revise and increase the corresponding

configuration component (Gateway Configuration) in UG based on the

updated or new gateway protocol, the platform services will not be

impacted;

• Improve the reliability of platform accessing: After applying the Unified

Access Technology to the service platform, UG becomes a unique

channel between the Comprehensive Application Platform and Wireless

Sensor Networks, which can better manage and monitor the relatively

messy interfaces in Traditional Access Mode and more effectively improve

the reliability of platform accessing;

• Promote the quick development and deployment of services: When

exploring new services, need not consider the compatibility of multi-

protocol based on a completed function Unified Gateway, thus, the period

32

of development and deployment of new applications is shortened along

with;

• Enhance the general applicability of developed services: The

development of new services does not involve the adaptable problem of

the specific gateway, which enhance the applicability of services.

• Reduce the number of the inner interface: Reduces the number of total

interfaces from N x M interfaces to M+1 interfaces, N is the number of the

services, M is the number of gateways.

 Based on the above research and analysis, there are several key points in

the design and implement of UG:

• UG Modular Design: having characters such as unity, scalability and so

on. UG is designed as a set of components, including Gateway

Configuration component, Service Repository component, and Socket

Communication component and so on.

• API Encapsulation: According to the access requirement, make

corresponding adaption of this Unified Gateway interface.

• Protocol Adaption:

o Socket: System adapted the Client-Server Socket Communication

Model to pass the target command string(s) mapped in UG layer

between MAS layer and the specific gateway(s) in Mote layer. The

Code design of Socket Port is discussed in

4.3.2. Unified Gateway Access Model

 Unified Gateway (UG) is one of the core components in H-WSNMS, one

side, it links to the service platform, other side, and it communicates with different

real wireless sensor gateways. UG adopts flexible Loosely-coupled Design

thinking, satisfying the requirement of extension and updation. The whole running

environment is divided into the following two parts:

33

• Gateway Configuration: a series of XML files which provide the

information of gateway interactivity and real-time monitoring and control, in

the future, the system developer can design a Web-based or MS

Window-based Virtualization Tool to complete gateway configuration;

• Gateway Access Loader: Through this Loader, some certain gateway

can be start-up, shut-down and configuration. When a gateway starts up,

through gateway configuration component, the configuration information or

the prescribed configuration files can be input manually.

• Third-Part Gateway Interface: For extension of other standard gateway

interface, this interface can be extended by the future developer, which

provides a flexible interface to other Wireless Sensor Management

Services and Applications Platforms.

4.4. H-WSNMS Implementation

4.4.1. H-WSNMS Software Architecture Overview

 A three-layer Architecture based on J2EE Frame is applied in the design of

H-WSNMS Service Comprehensive Application Platform. Figure 4.6 displays H-

WSNMS Software Architecture.

34

Figure 4.6 H-WSNMS Software Design

 Service Logic Layer is responsible for the implementation of all logical

functions in the whole management system, which is designed by Java

Technology. JSP Presentation layer is responsible for the implementation of all

Web pages such static User Interfaces and other dynamical web pages.

 J2EE Framework in Web-based Management Platform has following

features:

• Portability of Web-based component

o Over different vendor platform

o Over different operational environment

o Portability, Scalability, Reliability

• Leveraging existing J2EE programming models for service implementation

35

• Easy to program and deploy

o High-level Java APIs

o Use existing deployment model

4.4.2. System User Interface Design

 This section is mainly developed with JSP and Java Script technologies.

There are some demos displayed by an instantiation in the Chapter 5.

4.4.3. XML Template and Definition

 Based on the above the key technologies and core models, in this section,

we will focus on the implementation of the whole system.

 As we know, the design and implementation of VCSMM becomes the most

important part in H-WSNMS system, one side, the Service Wrapper is

responsible for wrapping the virtual commands, automatically creating XML

template file(s) based on different Management Service Components; another

side, the Service Proxy is responsible for interpreting the XML file into the target

commands. The Table 4.2 is an example of wrapped XML template about Virtual

Command Set and final Mapped Target Command String. This XML template is

specific for of “Data Connection” Function, through which system can get the

WSN Gateway information that is responsible for receiving the target

command(s) and sending them to Mote layer and Database information which is

responsible for storing the responded data from motes in WSNs.

36

Table 4.2 Wrapped XML Template File and Mapped Command String

Function Data Collection Request XML File
Request
Node
XML
Format

<?xml version="1.0" encoding="UTF-8"?>
< Datacollreq >
 <gateways>
 <gateway>
 <gatewayname>XServe</ gatewayname>
 <gatewayid>05</ gatewayid>
 <serviceID>105100</serviceID >
 <device>COM5</device >
 <interfaceboard> MIB520</interfaceboard>
 <baudrate >57600</baudrate >
 <dbinfor>
 <dbserver>149.166.32.252</dbserver>
 <dbport>5432</dbport>
 <dbname>IDAM</dbname>
 <dbuser>tele</dbuser>
 <dbpasswd>12345678</dbpasswd>
 <databaseparsed>l</databaseparsed>
 <xmlfile> XmlStream.xml</xmlfile>
 <xmlp></xmlp>
 <xmlport>9005</xmlport>
 </dbinfor>
 </gateway>
 <gateway>
 ……
 </gateway>
 </gateways>
</Dataconnreq >

Mapped
Target
Command
String

xserve –s=COM5 –b=57600 –dbserver=149.166.32.252 –
dbport=5432 –dbname=IDAM –dbuser=tele -l –
xmlfile=XmlStream.xml -xmlp –xmlport=9005

Note This is a General and Extendable file
Example: Available Command parameters for XServer
(Refer XServe Users Manual, in which there is the detail introduction
about various XCommand Arguments)
main parameters: xserve -s -b -dbserver -dbport -dbname -
dbuser -l -xmlfile -xmlp –xmlport

 After completing the mapping procedure, Socket in UG Layer has been

applied as the communication method between the MAS layer and Mote Layer. A

different type function has a different communication port for it. We design a

37

socket port management mechanism to achieve this aim. The method is

described as following:

 As mentioned in section 3.3.1, in which the Table 3.1 shows us the main

Command Category and Specification of VCS. The Table A.1 in Appendix A

gives us the detail definition of various parameters involved in the whole design

of H-WSNMS, including a series of code rules such as the code definition of

WSN platform, the code definition of WSN gateway and so on. The Based on the

Table A.1 or the following Table 4.2, we design the Definition of ServiceID, or

called as VCID, and Socket Port.

Table 4.3 Specification of Code

Parameters Definition
PlatformID (extendable) PlatformNo. N: 1~9
GatewayID (extendable) XX: 01~99
GatewayCode (extendable) Y:1~9
VCS Code (extendable) 00: H_DataColl

10: H_Monitoring
20: H_Config
60: H_Repro
70: H_others

 ServiceID code is composed of 6 digital numbers, which is used to tag each

VC:

PlatformID+GatewayID+GatewayCode+ VCC No.

 Socket Port Code is made up of 4 digital numbers, which is used to tag

Socket Port and the XML file name:

PlatformID+ GatewayCode + VCC No.

 Following the code rule in Table A.1 or Table 4.2, take “Data Collection”

Function based on XServe provided by MoteWorks platform with specific

communication port COM5 as an example:

ServiceID Code: 1 05 1 00
1: PlatformID: MoteWorks produced by Crossbow

05: GatwayID: XServe (COM Port=COM5)

1: Gateway Code of XServe

38

00: Data Collection Service VC code

105100: DataCollection Function based on XServe provided by

MoteWorks platform with communication port COM5.

Socket Port Code: 1 1 00
1: Platform Code or PlatformID: MoteWorks produced by Crossbow

1: Gateway Code of XServe

00: H_DataColl: Data Collection Service VCS code

1100: Socket Port

1100Req.xml: Data Collection Function XML file name

 Each application function for the same WSN platform has unique Socket

Port, so we name the wrapped XML file name of this function as Socket

Port+”Req.xml” and store this XML file into the corresponding folder with same

name as the name of WSN platform under the given path. The Service Proxy will

automatically find this XML file with name “Socket Port+”Req.xml” ” to interpret

and map it to the Target Command string.

 The code of ServiceID and the code of Socket Port are not limited the 6

digital numbers or 4 digital numbers, they can be extended according to design

requirement, From Table A.1 or Table 4.2, the PlatformID, GatewayID,

GatewayCode are extendable and the extension of them can be completed in the

corresponding configuration files, which displays the scalability and flexibility of

system design.

 In MSA layer, another component: Gateway Service Configuration

component, provides a series of XML files as shown in Table 4.3, Table 4.4 and

so on. The Table 4.3 describes Mote Data Collection Query Service information,

including sensor location, sensor status, sensor type, sampling rate, collection

rate and so on, the Table 4.4 describes available specific communication port for

some certain WSN platform under three different Monitoring modes discussed in

section 4.2.3. These XML files can be extended according to system sensor data

management requirement. This design is very flexible, based on which the future

system service developers can create new services.

39

Table 4.4 Data Collection Service Configuration XML Template File

Function Data Collection Service Configuration XML File
Config
XML
Format

<?xml version="1.0"?>
<sensorNet>
 <BasicInformation>
 <state>Indiana</state>
 <county>Indiana1</county>
 <siteName>Y_Indianapolis</siteName>
 <NetType>Other</NetType>
 <OriginalPoint Longitude="86" Latitude="39"/>
 </BasicInformation>
 <Scope>
 <North Longitude="86" Latitude="39" />
 <South Longitude="86" Latitude="38" />
 <East Longitude="87" Latitude="38" />
 <West Longitude="87" Latitude="39" />
 </Scope>
 <SensorNodes>
 <SensorNode>
 <NodeId>1465</NodeId>
 <NodeLocation x-coordinate="1" y-coordinate="1"/>
 <sensorType>model1</sensorType>
 <sensorStatus>work</sensorStatus>
 <canMeasure>
 <Parameter>
 <BaseTime>00:00:00</BaseTime>
 <SampleRate>5000</SampleRate>
 <CollRate></CollRate>
 </Parameter>
 </canMeasure>
 </SensorNode>
 <SensorNode>
 …….
 </SensorNode>
 </SensorNodes>
</sensorNet>

Note This is a General and Extendable file

40

Table 4.5 Monitoring Service Configuration XML Template File

Function Monitoring Service Configuration XML File
Config
XML
Format

<?xml version="1.0" encoding="UTF-8"?>
<MonitoringServiceConfig>
 <Platforms>
 <Platform>
 <PlatformName>MoteWorks</PlatformName >
 <GatewayName>XServe</GatewayName >
 <Modes>
 <Mode>Power</Mode>
 <AvailablePort>COM5</ AvailablePort >
 <Mode>Speed</Mode>
 <AvailablePort>COM1, COM3, COM5, COM7</ AvailablePort >
 <Mode>PowerSpeed</Mode>
 <AvailablePort>COM3, COM5</ AvailablePort >
 </Modes>
 </Platform>
 <Platform>
 <PlatformName>Praticle</PlatformName >
 <GatewayName>xxxx</GatewayName >
 <Modes>
 <Mode>Power</Mode>
 <AvailablePort>xxxx</ AvailablePort >
 <Mode>Speed</Mode>
 <AvailablePort>xxxx, xxxx, xxxx, xxxx</ AvailablePort >
 <Mode>PowerSpeed</Mode>
 <AvailablePort>xxx, xxx</ AvailablePort >
 </Modes>
 </Platform>
 <Platform>
 ……
 </Platform>
 </ Platforms >
</ MonitoringServiceConfig >

Note This is a General and Extendable file

4.4.4. Data Structure and Definition

 Considering that some certain function such as “Data Collection” function

need to synchronize the wireless sensor data, and “Configuration” function

maybe update platform or WSN gateway status information, these dynamical

data and status information management should stored in the system own

database. The HWSNMS DB is responsible for storing and maintaining these

41

data and configuration information, which is designed and implemented through

using the PostgreSQL database technology.

 Some Datatables are described in Appendix D.

42

CHAPTER 5. H-WSNMS CASE STUDY

5.1. Experiment Hardware

 In this chapter, we will discuss the H-WSNMS XServe [7] Instantiation

based on HIDE system in detail. Before the discussion of H-WSNMS Application

design, we should introduce the experiment environment.

 Hardware is composed of three parts: Mote, Sensor board and

Programming board, as shown in the Figure 5.1.

 Mote Type: Micaz

• Processor ATmega 128L

• Freq. 2400 MHz to 2483.5 MHz

• Range Outdoor/indoor 75 m to 100 m/20 m to 30 m

• Onboard Sensor /extend board None /Yes

 Sensor Board: MTS310

• Light, Temperature, Microphone, Buzzer, 2-axis Accelerometer and 2-axis

Magnetometer Sensor

• Compatible with IRIS/MICAz/ MICA2 Processor/ Radio Boards

 Gateways: MIB520+Mote

• Programming board MIB520 (Upload NesC file to mote (wire)

• Communicate with mote (wireless)

• Send NesC file to mote (wireless)

• Collect mote’s data

 Note:

• MIB520: Programming board

o Upload NesC file to mote (wire)

• MIB520+Mote: Base Station

43

o Communicate with mote (wireless)

o Send NesC file to mote (wireless)

o Collect mote’s data

• MIB520+Mote+PC/Server

o Store data to database

Figure 5.1 Mote Hardware

 The Table 5.1 shows the information of some Sensor boards and motes.

44

Table 5.1 Sensor Boards and Motes

Crossbow
Part name

Motes
supported

Sensors and Features

MTS101CA MICAz,MICA2,
MICA

Light, temperature, prototyping area

MTS300CA
MTS300CB

IRIS, MICAz
MICA2, MICA

Light, temperature, microphone, and buzzer

MTS310CA
MTS310CB

IRIS, MICAz
MICA2, MICA

Light, temperature, microphone, buzzer, 2-axis
accelerometer, and 2-axis magnetometer

MTS400CA
MTS400CB
MTS400CC

IRIS, MICAz
MICA2

Ambient light, relative humidity, temperature, 2-
axis accelerometer, and barometric pressure

MTS420CA
MTS420CB
MTS420CC

IRIS, MICAz
MICA2

Same as MTS400CA plus a GPS module

MTS510CA MICA2DOT Light, microphone, and 2-axis accelerometer
MDA100CA
MDA100CB

IRIS, MICAz
MICA2

Light, temperature, prototyping area

MDA300CA IRIS, MICAz
MICA2

Light, relative humidity, general purpose
interface for external sensors

MDA320CA IRIS, MICAz
MICA2

General purpose interface for external sensors

MDA500CA MICA2DOT Prototyping area

45

5.2. Software Platform

 Figure 5.2 shows us the Three-tier software architecture instantiated based

on Crossbow XServe.

Figure 5.2 Three-tier architecture instantiation based on XServe

 H-WSNMS Software Platform Deployment is composed of the two distinct

software layers, Client layer and Gateway layer. In above three-tier architecture,

the motes tier belongs to the hardware content we have introduced in section

5.1. In the following two sections, we will discuss the Clients Tier and Gateway

Tier respectively.

5.2.1. Client Tier

 The Client Tier provides the user visualization software and graphical

interface for managing the network and retrieving sensor data.

 In H-WSNMS system, we can directly acquire data through accessing

Wireless Sensor Network, which is an advantage displayed in the function “Data

Collection Function”, and manage the heterogeneous wireless sensor networks,

which is another advantage described in several familiar functions in the wireless

sensor networks management such as Monitoring, Configuration, Reprogram

46

and Data Collection and so on. In H-WSNMS, Client Tier is designed and

implemented with JSP and JavaScript Technologies.

5.2.2. Specific Gateway Middleware

 The Gateway Tier is an always-on facility that handles translation and

buffering of data coming from the wireless network and provides the bridge

between the wireless motes and the web-based Applications. In this Case,

XServe is a specific gateway middleware, as described in Figure 5.3, wherein

XServe and XOtap are server layer applications that can run on a PC or

Stargate.

 Crossbow XServe [7] is the glue layer that connects the wireless sensor

network to enterprise or industrial networks through standard XML. Due to the

low-power and memory footprint requirements in wireless sensor networks,

communication is streamlined through message formats and network protocols.

 A local database allows XServe to store and process sensor and network

information. Integration with back-end monitoring, control and management

systems delivers the full value of wireless sensor networks to enterprises and

makes the connection of the physical world with the internet a reality.

Figure 5.3 Gateway Middleware: XServe

47

 In higher level services for enterprise applications, Crossbow XServe can be

configured to parsing sensor packets into a series of name values pairs giving

richer meaning to the sensor data.

 Crossbow sensor applications allow users to query state variables. This

feature is called XCommand [7]. XServe provides two interfaces for enterprise

applications to send commands to the Mote Layer using XCommand. Users can

send and receive XCommands using XServeTerm, a terminal command

application. Applications can send and receive XCommands using an XML RPC

interface. XCommand and XServeTerm are commonly and regularly used in the

Management Application Functions such as Monitoring, Configuration and Data

Connection and so on.

 XServe [8] also implements the Over-the-air Programming (OTAP [8])

function, which feature allows users to reprogram any Mote within the XMesh [8]

network. OTAP allows one or more Motes to receive new programming images

from XServe (via XOtap), a server-side application via wireless communication.

The XOtap [8] application is a server side tool that works, either with XServe or

directly connected to the serial port of the XMesh Gateway, to communicate with

the XMesh network. It resides in the XServe Layer (in a remote or local server or

Stargate) of the XMesh Network landscape. Users use XOtap to download

program images to the Motes by having the application first read an IHEX image

file name and a list of Motes to download. Then the image is downloaded to each

Mote.

 Appendix B represents a series of various available command parameters

referring the XServe Manual [7] and Mesh Manual [8] provided by CrossBow

MoteWorks. Appendix C makes some definitions for different functions based on

the Code Rule in Appendix A and available command parameters statement in

Appendix B. Based on these XServe features, several web-based WSNs

management functions have been designed and developed, which will be

introduced in the following section.

48

 Crossbow’s XServe is used as one instance of specific WSN platform’s

gateway technology to be handled by the Unified Gateway in the H-WSNMS

architecture as shown in Figure 5.2. We demonstrate the design idea through

developing several management components: Monitoring, Reconfiguration,

Reprogram and so on. From the client tier point of view, these management

components execution details are hidden from users. In general, partial

functionality of commands required by management components can be mapped

to the Target Command already provided by XServe.

5.3. Main Functions Overview

 This section will discuss the main functions of H-WSNMS based on

CrossBow XServe.

 In this system, there are several main functions:

• Monitoring: supervises the status of Wireless Sensor Networks

• Configuration: completes Mesh Motes Configurations with XCommands

• Reprogram: uploads the OTAP program to the motes

• Data Collection: retrieves and displays the wireless sensor data from

HIDE own sensor data resource

 The general control and status information flow in H-WSNMS system has

been illustrated in Figure 3.2, the following sections we will one by one discuss

the control and status information of functions such as Monitoring,

Reconfiguration and Reprogram and so on.

 The screenshot shown in the Figure 5.4 is system user profile of H-WSNMS

WSN Management System, which provides a series of functions such as

Monitoring, Configuration, Reprogram and Data Collection and so on.

49

Figure 5.4 User Profile of H-WSNMS

50

5.3.1. Monitoring Function and Demo

 Figure 5.5 shows us the Logical Flow of Monitoring function.

Figure 5.5 “Monitoring” Command Logical Flow

 Function: User can use this function to view the real-time sensor data.

 Flow Description:

 When Users enter WSN Management system, Users send the “Monitoring”

function request, which will be wrapped to the virtual command string package,

then is interpreted and mapped to target command string and is sent to XServe,

then XServe judges whether the command string is valid; If not, return the

51

information about unavailable data to users, if yes, return the available data to

users.

 Monitoring Request XML File and Mapped Result:
Table 5.2 Monitoring Request XML File and Mapped Command String

Function Monitoring Request XML File
Request
Node
XML
Template

<?xml version="1.0" encoding="UTF-8"?>
<Monitoingreq>
 <gateways>
 <gateway>
 <gatewayid>05</ gatewayid>
 <serviceID>105110</serviceID >
 <gatewayname>XServe</ gatewayname>
 <device>COM5</device >
 <interfaceboard>MIB520</ interfaceboard >
 <baudrate >57600</baudrate >
 </gateway>
 <gateway>
……
 </gateway>
 </gateways>
</Monitoingreq >

Mapped
Target
Command
String

e.g
XServe –device=COM5 –baudrate=57600

Note This is a General and Extendable file
Example: Available Command Parameters for XServe
(Refer XServe Users Manual [7], in which there is the detail
introduction about various Command Arguments)
XServe –device –baudrate

 Function Information Description:
 Monitoring Service “Monitoring” based on XServe provided by MoteWorks

platform with communication port COM5.

Service Code: 1 05 1 10
1: MoteWorks PlatformID

05: Device: GatwayID (COM port=COM5)

1: Gateway Code of XServe

10: H_Monitoring: Monitoring Service (VC Code)

52

Socket Port Code: 1 1 10
1: Platform Code or PlatformID: MoteWorks produced by Crossbow

1: Gateway Code of XServe

00: Monitoring Service (VCS Code)

1110: Socket Port

1110Req.xml: Monitoring Function XML template file name

 Note: the code rules and definitions refer to the Appendix A-C.

 Demo:

Figure 5.6 “Monitoring” UI

53

Figure 5.7 Demo of “Monitoring”

54

5.3.2. Configuration Function and Demo

 Figure 5.8 shows us the Logical Flow of Configuration Function.

Figure 5.8 “Configuration” Command Logical Flow

 Function: User can send and receive XCommand to complete the

configuration using XServeTerm.

 Flow Description:

 When Users enter WSN Management system, Users send one

“Configuration” function request, which will be wrapped to the virtual command

XML package, then is interpreted and mapped to the target command

string(XCommand string) and is sent to XServe, then XServe judges whether the

target command string is valid or not; If not, return the information about

unavailable data to users, if yes, return the available data to users, at the same

55

time, the updated related information about platform or WSN gateway status

automatically is stored into the H-WSNMS own database.

 Configuration Request XML File and Mapped Result:

56

Table 5.3 Configuration Request XML File and Mapped Command String

Function Configuration Request XML File
Request
Node
XML
Template

<?xml version="1.0" encoding="UTF-8"?>
<Configurationreq>
 <gateways>
 <gateway>
 <gatewayname>XServe</ gatewayname>
 <gatewayid>05</ gatewayid>
 <serviceID>105121</serviceID >
 <device>COM5</device >
 <interfaceboard>MIB520</ interfaceboard >
 <baudrate >57600</baudrate >
 <xserveterm> xserveterm.exe</xserveterm>
 <xcommands>
 <reconfiguration>
 <xcommand> get_config</xcommand>
 <destinationnode>1458</destinationnode>
 <update></update>
 </reconfiguration>
 <powermanagement>
 <pmstatus></pmstatus>
 <pmdestinationnode></pmdestinationnode>
 </powermanagement>
 </xcommands>
 </gateway>
 <gateway>
 ……
 </gateway>
 </gateways>
</Configurationreq >

Mapped
Target
Command
String

e.g:
Xserve –s=COM5 –b=57600
Xserveterm> get_config 1458

Note This is a General and Extendable file
Example: Available Command Parameters for XServe
(Refer XServe Users Manual [7], in which there is the detail introduction
about various XCommand Arguments)
Reconfiguration includes following xcommands
H_ReConfig_GID set_default_group <group id>
H_ReConfig_GetID get_config <destination address>
H_ReConfig _SetID set_nodeid <destination address> <new
node id>
H_ReConfig _SpRate set_rate <destination address> <new

57

rate>
H_ReConfig _CRate set_collection_rate <destination
address> <new size>
H_ReConfig _ECollect set_manual_collection <destination
address> <Flag>
Power Management includes following xcommands
H_PM_WAKEUP wake <destination address>
H_PM _SLEEP sleep <destination address>
H_PM _RESET reset <destination address>
H_PM _SHUTDOWN xserve.shutdown

 Function Information Description:
 Configuration Service “Set NodeID” based on XServe provided by

MoteWorks platform with communication port COM5.

Service Code: 1 05 1 22
1: MoteWorks PlatformID

05: Device: GatwayID (COM port=COM5)

1: Gateway Code of XServe

22: H_ Config_Reconfig_GetID: Set NodeID Service (VC Code)

Socket Port Code: 1 1 20
1: Platform Code or PlatformID: MoteWorks produced by Crossbow

1: Gateway Code of XServe

20: Configuration Service (VCS Code)

1120: Socket Port

1120Req.xml: Configuration Function XML file name

 Note: the codes rule and definitions refer to the Appendix A~C.

58

 Demo:

Figure 5.9 “Configuration” UI

Figure 5.10 Demo of “Get Config”

59

5.3.3. Reprogram Function and Demo

 Figure 5.11 shows us the Logical Flow of the Reprogram Function.

Figure 5.11 “Reprogram” Command Logical Flow

 Function: Query, Boot and Download program to the motes through OTAP

method with format IHEX.

• Query: users can optionally query a node when it is running the OTAP

Image to get information about different slots.

• Boot: reboot all chosen nodes to OTAP specified Image.

60

• Download: specify the nodes we want to program and specify the slot.

Select the binary image of the app (main.ihex), which is implemented and

compiled by NesC language. As the OTAP progresses, you will see the

report in terms of number of pages downloaded into the flash.

 Flow Description:

 When Users enter WSN Management system, Users send the “Reprogram”

function request, which will be wrapped to the virtual command string XML

package, which is interpreted and mapped to the target command string, after

XOTAP receives the target command string and judges whether this mapped

command string is valid or not; If not, return the unsuccessful information to

users, if yes, return successful information, thus, users can use reprogram

function successfully to upload the programming into motes in WSNs.

 Reprogram Request XML File and Mapped Result:

61

Table 5.4 Reprogram Request XML File and Mapped Command String

Function Reprogram Request XML File
Request
Node
XML
Format

<?xml version="1.0" encoding="UTF-8"?>
<Reprogramreq>
 <gateways>
 <gateway>
 <gatewayid>05</ gatewayid>
 <vcid>110161</vcid>
 <COMport>COM5</COMport>
 <baudrate > 57600</baudrate >
 <interfaceboard>xserve</interfaceboard>
 <xotap> xotap.exe</ xotap>
 <commands>
 <ip:port>
 <cmd>-sf</cmd>
 <ip> localhost</ip>
 <port>9001 </port>
 <ip:port>
 <image_number>
 <cmd>-i</cmd>
 <number>2</number>
 </ image_number>
 <boot>
 <cmd>-p</cmd>
 <image_number> </image_number>
 </boot>
 <query>
 <cmd></cmd>
 </query>
 <load>
 <cmd></cmd>
 <file>C:/main.exe.ihex</file>
 </load>
 <threshold>
 <cmd>-v</cmd>
 <vantage>2.7</vantage >
 </threshold>
 </commands>
 <modes>
 <mode>1458</mote>
 </modes>
 </gateway>
 <gateway>
 ……

62

 </gateway>
 </gateways>
</Reprogramreq >

Mapped
Target
Comman
d String

e.g
C:/Crossbow/cygwin/opt/MoteWorks/tools/xotap/bin.cygwin.x86/;
xotap.exe –I 2 -p -v 2.7 -sf localhost:9001 1458

Note This is a General and Extendable file
Available Command Parameters for XServe
(Refer XMesh Users Manual [8], in which there is the detail introduction
about various XOTAP Command Arguments)
-f <image_file> Download the file.
-i <image_number> Image number
-q Query the Mote status
-v <threshold> Download if the voltage is above the threshold
(default 2.7v)
-p <image_number> Boot the image number.
-sf <ip:port> XServe host/port (default to localhost:9001)
-c <COM port> Serial port if connected directly (eg. -c COM1)
moteID [moteID…] List the Motes to download or check status.

 Function Information Description:
 Reprogram Service “BOOT” based on XServe provided by MoteWorks

platform with communication port COM5.

Service Code: 1 05 1 61
1: MoteWorks PlatformID

05: Device: GatwayID (COM port=COM5)

1: Gateway Code of XServe

61: H_Repro_BOOT: Boot Service (VC Code)

Socket Port Code: 1 1 60
1: Platform Code or PlatformID: MoteWorks produced by Crossbow

1: Gateway Code of XServe

60: Reprogram Service (VCS Code)

1160: Socket Port

1160Req.xml: Reprogram Function XML file name

 Note: the code rules and definitions refer to the Appendix A-C.

63

 Demo:

Figure 5.12 “Reprogram” UI

Figure 5.13 Demo of “Query”

64

5.3.4. Data Collection Function and Demo

 Figure 5.14 shows us the Logical Flow of WSN Data Collection Function.

Figure 5.14 “Data Collection” Command Logical Flow

 Function: user retrieves the wireless sensor data from H-WSNMS wireless

sensor network data source in its own DB.

 Flow Description:

 Users send a WSN “Data Collection” request, system will visit the H-

WSNMS DB to check whether the retrieved data existed or not, if yes, display the

result to users, if no, user send a send a WSN “Data Collection” function request

again, which will be wrapped to the virtual command XML package, then is

interpreted and mapped to the target command string sent to XServe, then

65

XServe judges whether the target command string is valid or not; If not, return

the information about unavailable data to users, if yes, the data coming from

motes in WSNs synchronizes into H-WSNMS DB, then response and display the

data to users according to users’ query time requirement, i.e. Under the

satisfaction of condition, the new data will be stored into DB; at the same time,

return a “Data Notification”. After receives the “Data Notification”, the system will

re-send DB query request. Thus, users retrieve the data with on-demand

method.

66

 Data Collection Request XML File and Mapped Result:
Table 5.5 Data Collection Request XML File and Mapped Command String

Function Data Collection Request XML File
Request
Node
XML
Format

<?xml version="1.0" encoding="UTF-8"?>
< Datacollreq >
 <gateways>
 <gateway>
 <gatewayname>XServe</ gatewayname>
 <gatewayid>05</ gatewayid>
 <serviceID>105100</serviceID >
 <device>COM5</device >
 <interfaceboard> MIB520</interfaceboard>
 <baudrate >57600</baudrate >
 <dbinfor>
 <dbserver>149.166.32.252</dbserver>
 <dbport>5432</dbport>
 <dbname>IDAM</dbname>
 <dbuser>tele</dbuser>
 <dbpasswd>12345678</dbpasswd>
 <databaseparsed>l</databaseparsed>
 <xmlfile> XmlStream.xml</xmlfile>
 <xmlp></xmlp>
 <xmlport>9005</xmlport>
 </dbinfor>
 </gateway>
 <gateway>
 ……
 </gateway>
 </gateways>
</Dataconnreq >

Mapped
Target
Command
String

xserve –s=COM5 –b=57600 –dbserver=149.166.32.252 –
dbport=5432 –dbname=IDAM –dbuser=tele -l –
xmlfile=XmlStream.xml -xmlp –xmlport=9005

Note This is a General and Extendable file
Example: Available Command parameters for XServer
(Refer XServe Users Manual [7], in which there is the detail
introduction about various XCommand Arguments)
main parameters: xserve -s -b -dbserver -dbport -dbname -
dbuser -l -xmlfile -xmlp –xmlport

67

 Function Information Description:

 Data Collection Service based on XServe provided by MoteWorks platform

with communication port COM5.

Service Code: 1 05 1 00
1: MoteWorks PlatformID

05: Device: GatwayID (COM port=COM5)

1: Gateway Code of XServe

00: H_DataColl: Data Collection (VC Code)

Socket Port Code: 1 1 00
1: Platform Code or PlatformID: MoteWorks produced by Crossbow

1: Gateway Code of XServe

00: Data Collection (VCS Code)

1100: Socket Port

1100Req.xml: Data Collection Function XML file name

 Note: the code rules and definitions refer to the Appendix A-C.

68

 Demo:

Figure 5.15 “Data Collection” UI

Figure 5.16 Demo of “Data Collection”

69

Figure 5.17 Demo of “New Data Collection”

5.4. XServe’s Extension

 This section is not the very important part in the design and implement of H-

WSNMS Architecture but worth mentioning, mainly considering the extension on

some specific WSN gateway middlewares such as XServe for the future system

developers, thus, H-WSNMS also can extend some new Virtual Command Sets it

needs. The following is our extension based on XServe, which displays the

flexibility and scalability of H-WSNMS.

 In Figure 5.2, Three-tier architecture instantiation based on XServe, in which

we put forward to an idea of extending the command library in XServe to improve

the Configuration function , Considering no any source code, we would not

extend the .dll file about XServe parameter command set. [2] proposes an

extension method based on the XServe configuration existing available

XCommand Set. XServe provides the only entry (i.e., port 9003 [7]) for

XCommand inputs. After a mapped target command is wrapped in a packet and

injected to wireless mesh network (XMesh), it will follow the flow shown in Figure

5.18, the command for configuring sampling rate will be finally executed and the

70

acknowledge packet will be sent back to base station. In our application, except

for periodic data collection on each mote, the following functions are needed from

the client side with XCommand:

• Set Collection Rate: push sampled data to a queue structure and

collect all sampled data at the end of each automatic collection period;

• Enforced Collection: send back all existing data samples in the queue.

 These two configuration functions have been implemented through

relocating the XCommand “SET_RATE” value field. In Figure 5.19, the highlight

with red line shows us the demo of above extended configuration functions.

Figure 5.18 XServe Command Flow Illustration [2]

71

Figure 5.19 XServe Configuration Command Extension

72

CHAPTER 6. FUTURE WORK

 We provide a scheme to manage sensor networks using XML schema,

Database technologies and Socket Communication technology. The fundamental

goal of the scheme is to be able to describe sensors in a simple, compact

manner while still having the ability to represent essential details such as the

general service functions (VCS), the type of sensor platforms that can be

provided, the various parameters and application interfaces of specific gateway

middlewares that are available in WSNs. Based on these technologies, we

present a three layer framework H-WSNMS that provides the basic capabilities

for locating, managing, and querying the heterogeneous Wireless Sensor

Networks, at the same time; XServe command extension over existing command

services has finished in this system. Consequently, the design and

implementation of H-WSNMS is not only a challenge but also a chance for web-

based heterogeneous Wireless Sensor Networks management system.

 The underlying idea of H-WSNMS is to decouple the development of

application-specific management functions from deployed heterogeneous WSN

platforms and gateway technologies including their associated preliminary

management command services. H-WSNMS architecture not only directly

supports network management for heterogeneous WSNs, but also facilitates the

reuse of each individual WSN’s preliminary management tool as much as

possible, and at the same time, presents to users a unified interface (UG) across

multiple WSNs. We illustrated the H-WSNMS using XServe mote network

through mapping H-WSNMS’ Virtual Commands to both the existing XServe

Command Service and the newly extended XServe Command Service to realize

the flexibility and scalability of H-WSNMS. Our current H-WSNMS prototype is

73

developed in Java. We plan to extend our prototype system to include two and

more different WSN platforms and gateway technologies at the Mote layer to

further study and verify our proposed new H-WSNMS architecture. We also plan

to create more sophisticated management functionality at the MSA layer by the

composition of a sequence of Virtual Commands.

LIST OF REFERENCES

74

LIST OF REFERENCES

[1] Chee-Yee Chong, SP Kumar., “Sensor Networks: Evolution,
Opportunities, and Challenges,” Proc. IEEE, vol.91, no. 8, 2003, pp.
1247–56.

[2] Wei Zhao, Yao Liang, Qun Yu, Yan Sui, "H-WSNMS: A Web-Based
Heterogeneous Wireless Sensor Networks Management System
Architecture," nbis, pp.155-162, 2009 International Conference on
Network-Based Information Systems, 2009.

[3] Akyildiz and I. Kasimoglu, “Wireless Sensor and Actor Networks:
Research Challenges,” Ad Hoc Networks J., vol. 2, no. 4, 2004, pp. 351–
67.

[4] MicaZ DataSheet, CrossBow Technology Inc., Available online
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Da
tasheet.pdf, accessed in March, 2009.

[5] MoteView User Manual, CrossBow Technology Inc., Available online at
http://www.xbow.com/Support/Support_pdf_files/MoteView Users
Manual.pdf, accessed in March, 2009.

[6] MoteWorks Getting Started Guide, CrossBow Technology Inc., Available
online at http://www.xbow.com/Support/Support_pdf_files/ MoteWorks
Getting Started Guide.pdf, accessed in March, 2009.

[7] XServe User Manual, CrossBow Technology Inc., Available online at
http://www.xbow.com/Support/Support_pdf_files/XServe Users
Manual.pdf, accessed in March, 2009.

[8] XMesh User Manual, CrossBow Technology Inc., Available online at
http://www.xbow.com/Support/Support_pdf_files/ XMesh Users
Manual.pdf, accessed in March, 2009.

[9] M.Turon, “Mote-View: A Sensor Network Monitoring and Management
Tool,” in Proc. of IEEE EMNET-II Workshop, May 2005, pp.11-18.

[10] R. M. Kling, “Intel Motes: Advanced Sensor Network Platforms and
Applications,” IEEE MTT-S Int’l. Microwave Symp., 2005.

[11] Marin-Perianu, M. Meratnia, N. Havinga, “Decentralized Enterprise
Systems: A Multiplatform Wireless Sensor Network Approach”, IEEE
WIRELESS COMMUNICATIONS, 2007, VOL 14; NUMB 6, pages 57-66

[12] Marin-Perianu, R. S. Scholten, J. Havinga, P. J. Hartel, P. H., “Cluster-
based service discovery for heterogeneous wireless sensor networks”,
INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND
DISTRIBUTED SYSTEMS, 2008, VOL 23; NUMBER 4, pages 325-346

[13] Particle Computer, http://www.particle-computer.de

75

[14] Y. Gsottberger et al., “Embedding Low-Cost Wireless Sensors into
Universal Plug and Play Environments,” 1st Euro. Wksp. Wireless Sensor
Networks, 2004, pp. 291–306.

[15] V. Arnaudov. Unified Management of Heterogeneous Sensor Networks In
the Atlantis Framework. Brown U, 2005.

[16] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D.
Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An Operating
System for Wireless Sensor Networks, ” In Ambient Intelligence, Springer-
Verlag, 2005.

[17] R. Tynan, D. Marsh, D. Okane, and G.M.P. Ohare, “Agents for Wireless
Sensor Network Power Management,” In Proc. of IEEE ICPPW Conf.,
June 2005.

[18] N. Ramanathan and M. Yarvis, “A Stream-oriented Power Management
Protocol for Low Duty Cycle Sensor Network Applications,” in Proc. IEEE
EMNET-II Workshop, May 2005.

[19] A. Boulis and M.B. Srivastava, “Node-level Energy Management for
Sensor Networks in the Presence of multiple Applications,” In Proc. IEEE
PERCOM Conf., Mar. 2003.

[20] L.B. Ruiz, I.G. Siqueira, L.B. e Oliveira, H.C. Wong, J.M.S. Nogueira, and
A.A.F. Loureiro, “Fault Management in Event-Driven Wireless Sensor
Networks,” In Proc. ACM MSWIM Conf., Oct. 2004.

[21] W. L. Lee, A. Datta, and R. Cardell-Oliver, “WinMS: Wireless Sensor
Network Management System, an Adaptive Policy-based management for
Wireless Sensor Networks,” Tech. Rep. UWA-CSSE-06-001, The
University of Western Australia, June 2006.

[22] C. Hsin and M. Liu, “A Two-Phase Self-Monitoring Mechanism for
Wireless Sensor Networks,” Journal of Computer Communications special
issue on Sensor Networks, vol.29, no. 4, 2006, pp. 462-476.

[23] T.H. Kim and S. Hong, “Sensor Network Management Protocol for State-
Driven Execution Environment,” In Proc. ICUC Conf., Oct. 2003.

[24] H. Cha and I. Jung, “RMTool: Component-Based Network Management
System for Wireless Sensor Networks” In Proc. 4th Consumer
Communications and Networking Conf., 2007, pp.614-618.

[25] G. Tolle and D.Culler, “Design of an Application-Cooperative Management
System for Wireless Sensor Networks,” In Proc. 2th European Workshop
on Wireless Sensor Networks (EWSN), Istanbul, Turkey, January, 2005.

[26] P.J. Marrón, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, and K.
Rothermel, “TinyCubus: A Flexible and Adaptive Framework for Sensor
Networks,” In Proc. 2th Europ. Workshop on Wireless Sensor Networks,
2005, pp.278-289.

[27] W.S. Jang, W.M. Healy, M.J. Skibniewski, “Wireless Sensor Networks as
Part of a Web-Based Building Environmental Monitoring System,”
Automation in Construction 17, 2008, pp. 729-736.

[28] F. Yang, "Enterprise Mashup Composite Service in SOA – User Profile
Use Case," in 2008 IEEE Congress on Services - Part I, 2008, pp. 97-98.

76

[29] J. C. Yelmo, J. M. del Alamo, R. Trapero, P. Falcarin, J. Yu, B. Carro, and
C. Baladron, "A user-centric service creation approach for Next
Generation Networks," in Innovations in NGN: Future Network and
Services, 2008. K-INGN 2008. First ITU-T Kaleidoscope Academic
Conference Geneva, Switzerland: IEEE, 2008, pp. 211-218.

[30] D. Woods and T. Mattern, Enterprise SOA Designing IT for Business
Innovation, O’Reilly, 2006.

[31] C. Bornhövd et al., “Integrating Smart Items with Business Processes: An
Experience Report,” Int’l. Conf. Sys. Sci., 2005.

[32] M. Beigl et al., “Awarecon: Situation Aware Context Communication,”
UbiComp, 2003, pp. 132–39.

[33] M. Marin-Perianu, T. J. Hofmeijer, and P. J. M. Havinga, “Implementing
Business Rules on Sensor Nodes,” 11th IEEE Int’l. Conf. Emerging
Technologies and Factory Automation, 2006, pp. 292–99.

[34] M. Marin-Perianu and P. J. M. Havinga, “RMD: Reliable Multicast Data
Dissemination within Groups of Collaborating Objects,” Local Comp.
Networks, 2006, pp. 656–63.

[35] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393–422, March
2002.

[36] T. Camp, J. Boleng, and V. Davies. “A survey of mobility models for ad
hoc network research”. Wireless Communications and Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483–502, 2002.

[37] N. Ramanathan, E. Kohler, and D. Estrin, “Towards a Debugging System
for Sensor Networks,” International Journal for Network Management,
vol.15, no. 4, 2005, pp. 223-234.

[38] S.Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, R. Han, “Mantis OS: An Embedded
Multithreaded Operating System for Wireless Micro Sensor Platforms,”
ACM/Kluwer Mobile Networks & Applications Special Issue on Wireless
Sensor Networks, vol. 10, no.4, Aug. 2005.

[39] D. Gay, P. Levis, R.V. Behren, M. Welsh, E. Brewer, D. Culler, “The NesC
Language: A Holistic Approach to Networked Embedded Systems,” In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, June, 2003.

[40] Donald Brutzman, Michael Zyda, J. Mark Pullen and Katherine L. Morse:
Extensible Modeling and Simulation Framework (XMSF): Challenges for
Web-Based Modeling and Simulation, Findings and Recommendations
Report of the XMSF Technical Challenges Workshop and Strategic
Opportunities Symposium, October 2002.

APPENDICES

77

Appendix A.

Table A.1 Parameters Definition

Parameters Definition
Platform Name Wireless Sensor Platform Name

Particle (produced by Particle Computer)
μNode (produced by Ambient Systems)
Sindrion (produced by Infineon Technologies)
MoteWorks (produced by CrossBow)

Platform ID (extendable) PlatformNo. N: 1~9
Gateway Name e.g XServe
Gateway ID (extendable) XX: 01~99
Gateway Code (extendable) Y:1~9
Communication Port COMx+1
Information send by users Command Information from Users
ReqString XML Stored in Service Repository

Be used to describe the command service
ServiceID (extendable) NXXY00~NXXY09 for H-DataColl VCS

NXXY10~NXXY19 for H_Monitoring VCS
NXXY20 for H_Config VCS
NXXY21~NXXY39 for H_Config_Reconfig subVCS
NXXY40~NXXY59 for H_Config_PM subVCS
NXXY60~NXXY69 for H_Repro VCS
NXXY70~ for H_Others VCS

VCS Category H_DataColl Data Collection
H_Monitoring Sernsor and gateway Information
Monitoring
H_Config Sernsor and gateway information
configuration
H_Repro Reprogram

SubVCS Category H_Config:
1. H_Config_Reconfig
2. H_Config_PM

VCS Code 00: H_DataColl
10: H_Monitoring
20: H_Config
60: H_Repro
70: H_Others

ReqString XML
(extendable)

1. Stored in Serviced Repository
2. Be parsed to Target Command String to send to
Mote layer
3. XML file name based on Socket Port No.
e.g: XML file for Data Collection
 NY00Req.xml

Socket IP Socket Server IP address: xxx.xxx.xxx.xxx
Socket Port (PortID)
(extendable)

NY00 for H_DataColl
NY10 for H_Monitoring
NY20 for H_Config
NY60 for H_Repro

78

Table A.2 Command Category and Specification of VCS

VCS Category VC Command Function
H_DataColl

H_DataColl Data connection

H_Monitoring H_Monitoring Monitoring
sensor data

H_Config

H_Config_Reconfig_SpRate SET_RATE Set new
Sampling Rate

H_ Config_Reconfig_NID SET_NODEID Assign Node ID
H_ Config_Reconfig_GID SET_GROUP Assign a Node

to new group
H_ Config_Reconfig_CRate Set collection

rate
H_Config_Reconfig_ECollect Immediately

perform a data
collection from
WSN and store
it to DB

…… …… ……
H_Config_PM_RESET RESET
H_Config_PM_SLEEP SLEEP
H_Config_PM_WAKEUP WAKEUP
…… …… ……

H_Repro

H_Repro_Boot
H_Repro_Query
H_Repro_Load
……

H_Others …… …… ……

79

Appendix B.

Table B.1 XServe Command Line Parameters

XServe Command Line Parameters
Usage: xserve <-?|r|a|p|c|xr|xp|xc|dbxmlr|xmlp|xmlc|v|alert|m>
<-l=tablename>
<-dbserver=servername> <-dbport=portnum>
<-dbname=database name> <-dbuser=username>
<-dbpasswd=password>
<-h=path,hostname,portnum,config_file>
<-m=com,baud,protocol,slaveaddress,defaultregistervaluesas>
<-xmlfile=filename> <-xmlport=portnum>
[<-sf=hostname:port> | <-fsf=hostname:port> | <-device=dev>]
<-port=num> <-baud=num> <-platform=plt>
<-debug=level>
<-configfiles=filename:filename:>
<-loadparsers=filename:filename:...>
<-loaddatasinks=filename:filename:...>
<-heartbeat=<num missed>
-? = display help [help]
-r = raw display of tos packets [raw]
-a = ascii display of tos packets [ascii]
-p = parsed display of tos packets [parsed]
-c = converted display of tos packets [conveted]
-xr = raw tos packets xported to file [export raw]
-xp = parsed tos packets exported to file [export parsed]
-xc = converted tos packets exported to file [export converted]
-db = parsed tos packets exported to db [database parsed]
-dbserver = database server name (default=localhost)
-dbport = database server port number (default=5432)
-dbname = database name (default=MoteView db)
-dbuser = database user (default=MoteView user)
-dbpasswd = database user password (default=MoteView user password)
-l = parsed tos packets exported to db
(deprecated) [database parsed]
-xmlr = raw tos packets exported to xml [xml raw]
-xmlp = parsed tos packets exported to xml [xml parsed]
-xmlc = converted tos packets exported to xml [xml converted]
-xmlfile = file name to store exported xml (default=screen)
-xmlport = port number to start the xml server
-v = show version of all modules
-h = display data through web server
-m = export data using modbus
-port = set server port <default = 9001>
-sf = connect to unframed serial forwarder
-fsf = connect to framed serial forwarder
-device = connect to serial device <default = /dev/ttyS0>
-baud = set serial baud rate <default = 57600>
-platform = set platform. <default = mica2>
values=mica2dot|mica2|mica|telos|micaz
-debug = set debug level. <default = DBG_WARNING>
-alert = alert when data values are above/below specified ranges
-daemon = run in daemon mode

80

-nomonitor = run without a system monitor
-configfiles = load xml configuration files.
-loadparsers = load only the listed parsers files.
(default=all files are loaded)
-loaddatasinks = load only the listed datasinks files.
(default=all files are loaded)
-heartbeat = turn on the heartbeat monitor and reset after <num missed>
-convZto2 = convert incoming network packets from micaZ headers to
mica2 headers and vice versa
-conv2toZ = convert incoming network packets from mica2 headers to
micaZ headers and vice versa

Table B.2 XServe Configuration Command Line Parameters

XServe Configuration Command Line Parameters
Usage: xserve <-?|r|a|p|c|xr|xp|xc|dbxmlr|xmlp|xmlc|v|alert|m>
-device = connect to serial device <default = /dev/ttyS0>
-baud = set serial baud rate <default = 57600>
-device = connect to serial device <default = /dev/ttyS0>

Table B.3 XServeTerm Line Parameters

XServeTerm Line Parameters
Usage: xcommand <-?> <-server=host:port> <-network=xmesh|xsensor>
-? = display help [help]
-server = xserve command port [host:port]
-network = network type (default = xmesh) [xmesh|xsensor]
-seq = starting sequence number (default=100)
-group = network group id (default=145)

81

Table B.4 XServeTerm Available Parameters

XServeTerm Available Parameters
Available Commands:
set_timeout <timeout ms>
set_starting_sequence <sequence number>
set_default_group <group id>
get_config <destination address>
set_rate <destination address> <new rate>
set_nodeid <destination address> <new node id>
set_groupid <destination address> <new group id>
set_rfchannel <destination address> <new rf channel>
set_rfpower <destination address> <new rfpower>
sleep <destination address>
wake <destination address>
reset <destination address>
xserve.shutdown
actuate <destination address> <device> <state>
device ids states

green led 0 off 0
yellow led 1 on 1
red led 2 toggle 2
all leds 3
sounder 4
relay1 5
relay2 6
relay3 7

82

Table B.5 XCommand Categories and Description

Command
Category

Command Arguments Description

Power
Management

RESET
SLEEP
WAKEUP

 To reset the sleep and
wakeup time.

Basic Update
Rate

SET_RATE To get or set the update
rate. The set_rate
command changes the
data acquisition duty
cycle of the mote. The
first argument is the new
timer interval in
milliseconds.

Mote
Configuration
Parameter
Settings

• GET_CONFIG
• SET_NODEID
• SET_GROUP
• SET_RF_POWER
• SET_RF_CHANNEL

 This set of commands
allows you to get and set
radio frequency and
power, including
channel.

Actuation ACTUATE
• SET_LED
• SET_SOUND
• SET_RELAY

0=OFF, 1=ON,
2=TOGGLE
0=OFF, 1=ON
0=OFF, 1=ON

This set of commands
actuates each individual
LED with the option to
operate on all three
LEDs.
This command turns the
sounder off or on.
This command turns the
relays on

Table B.6 XServe Reprogram Line Parameters

XServe Reprogram Line Parameters
Usage: xserve <-?|r|a|p|c|xr|xp|xc|dbxmlr|xmlp|xmlc|v|alert|m>
-? = display help [help]
-p = parsed display of tos packets [parsed]
-c = converted display of tos packets [conveted]
-v = show version of all modules
-port = set server port <default = 9001>
-sf = connect to unframed serial forwarder
-fsf = connect to framed serial forwarder
-device = connect to serial device <default = /dev/ttyS0>
-baud = set serial baud rate <default = 57600>
-platform = set platform. <default = mica2>
values=mica2dot|mica2|mica|telos|micaz

83

Table B.7 XOtap Command Arguments

Command Interface Description
-f <image_file> Download the file
-i <image_number> Image number
-q Query the Mote status
-v <threshold> Download if the voltage is above the

threshold (default 2.7v)
-p <image_number> Boot the image number
-sf <ip:port> XServe host/port (default to localhost:9001)
-c <COM port> Serial port if connected directly (eg. -c

COM1)
moteID [moteID…] List the Motes to download or check status

Note: The above parameters referring the XServe Manual and Mesh Manual

provided by CrossBow MoteWorks.

84

Appendix C.

Table C.1 Monitoring ServiceID Definition

H_Monitoring VCS (NXXY10: extendable)
ServiceID Description

105110 H_Monitoring: Monitoring WSN
xserve –s=COM5 –b=57600

…… ……

Table C.2 Configuration ServiceID Definition

H_Config_ReConfig VCS (NXXY20~ NXXY39: extendable)
ServiceID Description

105121 H_ Config_Reconfig_GID set_default_group
<group id>

105122 H_ Config_Reconfig_GetID get_config
<destination address>

105123 H_ Config_Reconfig_SetNID set_nodeid
<destination address> <new node id>

105124 H_ Config_Reconfig_SpRate set_rate
<destination address> <new rate>

105125 H_ Config_Reconfig_CRate
set_collection_rate <destination address>
<new size>

105126 H_ Config_Reconfig_ECollect
set_manual_collection <destination address>
<Flag>

…… ……
H_Config_PM VCS (NXXY40~ NXXY59: extendable)

ServiceID Description
105140 H_Config_PM_WAKEUP wake <destination

address>
105141 H_Config_PM_SLEEP sleep <destination

address>
105142 H_Config_PM_RESET reset <destination

address>
105143 H_Config_PM_SHUTDOWN xserve.shutdown
…… ……

85

Table C.3 Reprogram ServiceID Definition

H_Repro VCS (NXXY60~69: extendable)
ServiceID Description
105161 H_Repro_BOOT

C:/Crossbow/cygwin/opt/MoteWorks/tools/xotap/bin.cygwin.x86/;xotap.exe
–I 2 -p -v 2.7 -sf localhost:9001 1458

105162 H_Repro_QUERY
C:/Crossbow/cygwin/opt/MoteWorks/tools/xotap/bin.cygwin.x86/;xotap.exe
–I 2 -q -v 2.7 -sf localhost:9001 1458

105163 H_Repro_LOAD
C:/Crossbow/cygwin/opt/MoteWorks/tools/xotap/bin.cygwin.x86/;xotap.exe
–I 2 -f C:/main.exe.ihex -v 2.7 -sf localhost:9001 1458

…… ……

Table C.4 Data Collection ServiceID Definition

H_DataColl VCS (NXXY00: extendable)
ServiceID Description
105100 H_DataColl

xserve –s=COM5 –b=57600 –dbserver=149.166.32.252 –dbport=5432 –
dbname=HWSNMS –dbuser=tele -l –xmlfile=XmlStream.xml -xmlp –
xmlport=9005

…… ……

Note: The above definitions referring the parameters provided by XServe in

MoteWorks platform.

86

Appendix D.

Table D.1 DataTable H-WSNMS_ServicInfor

Table D.2 Datatable H-WSNMS_PlatformState

Parameter name Type Size Key Default
Value

Statement

ServiceID nVarChar Yes PlatformID+gatewayID+gat
ewaycode+ VCcode

PlatformName nVarChar e.g MoteWorks
PlatformID nVarChar Unique indentified number

for Wireless Sensor
Platform

gatewayName nVarChar e.g XServe
gatewayID VarChar X0 X:1~9
gatewayCode VarChar Type number of gateway

e.g XServe=1
ServiceCategory nVarChar Classified into monitoring,

configuration,
reprogramming and so on
e..g H_DataConn
 H_Config
 H_Repro

CategoryFirstNu
m

nVarChar 00 for H_DataConn
10 for H_Monitoring
20 for H_Config
60 for H_Repro

ServiceCode nVarChar Category number of
ServiceID

XMLfileName nVarChar XML file Name
SocketPort nVarChar Socket Port
Reserved1 nVarChar Null
Reserved2 nVarChar Null

Parameter
name

Type Size Key Default
Value

Statement

PlatformName nVarChar Yes Wireless Sensor Platform
PlatformID nVarChar Unique indentified number

for Wireless Sensor
Platform

GatewayName nVarChar Gateway Name
e.g XServe

GatewayID nVarChar COM port number
PlatformState nVarChar 0: set up

1: shut down
Reserved1 nVarChar Null
Reserved2 nVarChar Null

87

Table D.3 Datatable H-WSNMS_SocketInfor

Table D.4 Datatable H-WSNMS_GatewayConfig

Parameter name Type Size Key Default
Value

Statement

ServiceID nVarChar Yes PlatformID+gatewayID+gateway
code+ VCcode

ServiceCategory nVarChar Classified into monitoring,
configuration, reprogramming
and so on
e..g H_DataConn
 H_Config
 H_Repro

CategoryFirstNum nVarChar 00 for H_DataConn
10 for H_Monitoring
20 for H_Config
60 for H_Repro

SocektIP nVarChar xxx.xxx.xxx
SocektPort nVarChar Socket port number
Reserved1 nVarChar Null
Reserved2 nVarChar Null

Parameter
name

Type Size Key Default
Value

Statement

ServiceID nVarChar Yes PlatformID+gatewayID+gatewaycod
e+ VCcode

PlatformName nVarChar Wireless Sensor Platform
PlatformID nVarChar Unique indentified number for

Wireless Sensor Platform
OSplatform nVarChar Operation System
EfilePath Executable file Path
Efile nVarChar Executable file

e.g
XServe.exe
XServeterm.exe
XToap.exe

Reserved1 nVarChar Null
Reserved2 nVarChar Null

88

Appendix E.

Figure E.1 the Whole Design of H-WSNMS

	ETDForm9.pdf
	Binder1.pdf
	GSForm20.pdf
	Thesis_Format_07282010_thesis_1.2.11.14.pdf

