

User's manual

$\begin{array}{c} \text{Digital} \\ \text{control relay} \\ \end{array} \\ SVA \end{array}$

DISIBEINT ELECTRONIC S.L, has been present in the field of the manufacture of components for the industrial automation for more than 35 years, and maintains in constant evolution their wide range of products structured in five families:

· Sensors, magnetic switches and transducers

- · Level relays for liquids and solids
- **·**Timers
- · Control, surveillance and logic relays
- · Digital control relay
- · Data transmission

Our permanent preoccupation is to give a suitable answer to the problems that appear in the automation of the different industrial processes, providing the most suitable material for each application.

GUARANTEE

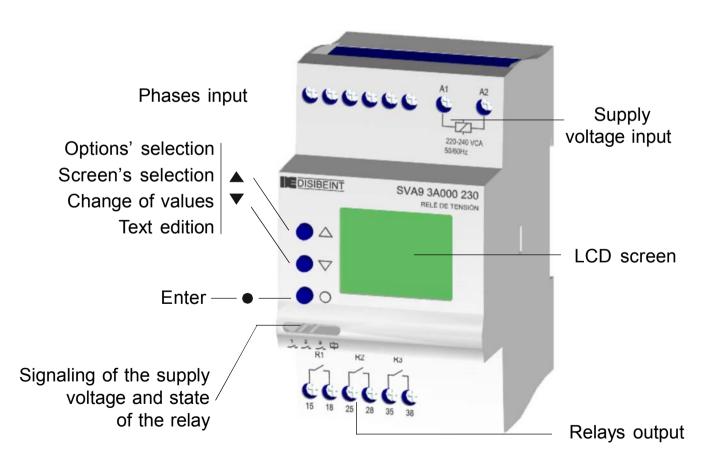
The products provided by DISIBEINT has a guarantee period of two years, against all defect due to the materials or to the manufacture of the equipment. It does not cover the defects caused during the transport or by a bad application, neither the elements subject to wearing down, nor the direct or indirect consequences caused in the installation by the inadequate use of the equipment.

INDEX

Description and parts of the equipment	2
Technical data	
Quality certificate	5
Conventions used in this manual	6
General concepts	7
Types of screen	8
Fast guide for beggining	13
User programs	14
Advanced programming	17

MENUS AND SCREENS

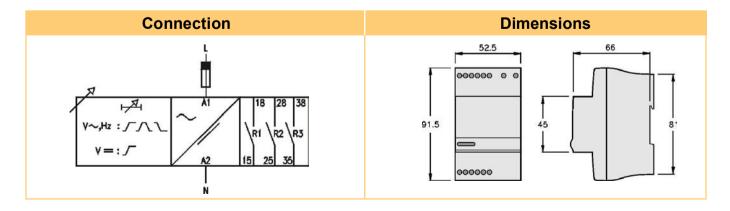
Set up menu	18
	19
State of the relay's contact	20
State of the relay in alarm mode	21
Detection/Release by modules	23
Detection and release module	25
Detection and/or release timing	27
Reading units	30
Top of scale	32
Loop 4-20 mA	33
RS485	34
Options menu	35
Save program	36
User program	37
Programs 1 and 2	38
See screen	39
Edition of the user screen	40
Information of the model and version	41
Screen refresh	42
	43
Language	44
Complementary functions	45
Error messages	49
Outputs communication	50
Your notes	52
Edition of the user screen Information of the model and version Screen refresh Locking parameters Language Complementary functions Error messages Outputs communication	40 41 42 43 44 45 49 50


DESCRIPTION OF THE EQUIPMENT

The model SNI is a controller of the level for liquids.

The detection and control system is based on the combination of the MPS sensor with the controller SNI. In the sensor MPS there is a certain quantity of modules (from 1 to 80) connected in series and separated among themselves for the distance that the user decides.

A float that moves along of the guide tube takes care of activate or to deactivate the contact placed in each module. The signal generated by this effect is processed in the controller SNI in such a way that is possible to configure the actions to perform when the float goes to the position of a determined module. These actions can be associated to three relays, to 4-20mA loop or to a communication series RS232 or RS485.


PARTS OF THE EQUIPMENT

TECHNICAL DATA (1/2)

Function	Voltage relay for single-phase lines.
	Control of own supply voltage.
Working mode	User configurable. Each of the three relays available can be assigned its drive
	for one or more magnitudes, making it the first situation to occur.
Display to	By the following status displays:
read value	
	FREQUENCY: Frequency of the line.
	DC COMPONENT: continuous component of the line
Output	- From 1 3 independent relays
· · · · · · · · · · · · · · · · · · ·	- Analog 4-20 mA (optional)
	- Communication RS232 - RS485 (optional)
Detection/	All figures may be designated the detect and/or replacement value.
Release	
Timer	It is associated with the action of the relay. Adjustable detection and/or
	replacement. Multiple functions.
Repeatibility	± 30 ppm
Time range	
	0,0199,99 m
	0,1999,9 h
Precision	
VAC	
Frequency	
Precision	1% additional to the equipment value.
4-20 mA	

TECHNICAL DATA (2/2)

Output relays		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Supply voltage	A1 A2 N	
Resistive	AC	6 A / 240 V	Galvanic isolation	No	
load	DC	6 A / 24 V	Frequency	4370 Hz	
Inductive	AC	3 A / 240 V	Operating margins	±10% -15%	
load	DC	3 A / 24 V	Consumption	2,5 VA	
Mechani	cal life	> 10 ⁶ oper.	Power on time	100 ms 96,6 ms	
Mech. switchin	g rate	18.000 oper. / hour	Detection time	25 ms 21,6 ms	
Elect. life at fu	III load	360 oper. / hour	Reset	1 net cycle or -30% to	
Contact m	aterial	AgSnO Alloy		nominal voltage	
Operating v	oltage	240 VAC (85 °C)	Indication	Greenled	
Volt. between contacts		1000 VAC			
Volt. coil/contact		4000 VAC			
Isolation resistance		> 100 MW (500 VDC)			
Indi	cation	1 red led for relay			

Constructives and ambientals dats

Overvoltage category	III (EN61010)
Rated impulse voltage	4 kV
Pollution degree	2 (EN61010)
Protection	IP 20
Approximate weight	280 g
Storage temperature	-30+80°C
Operating temperature	-20+50°C
Humidity	< 95% HR
Housing	Cycoloy - Light grey
Socket	Lexan - Transparent
Leds cover	Technyl - Dark blue
Button, terminal block, clip	Brass
Pins of the terminal block	0,8 Nm
Approvals	Designed and manufactured under EEC standards.
	Electromagnetic compatibility , directives 89/366/EEC and 92/31/EEC. Electric safety, directive 73/23/EEC. Plastics: UL 91 V0

QUALITY CERTIFICATE

The company

DISIBEINT ELECTRONIC S.L. Segle XX, 91 E08032 Barcelona (Spain) CIF: B60893849

declares unders its sole responsability that all the products included in its general catalogueand grouped under the generic denominations

- Sensors
- Level Relays
- Timers
- Control Relays
- Programmable Controllers

and with the brand name

DISIBEINT

are manufactured following the company's quality and procedures manuals, which are drawn up according to the ISO9001 standards' specifications.

Additionally, the above-mentioned products are marked with the CE logo and are in conformity with the Directive of Electromagnetic Compatibility EMC 89/366/EEC and with the Low Voltage Directive LVD 73/23/EEC.

EMILIO JOLIS OLIVA Director L. | <

Barcelona, 1st October, 2005

CONVENTIONS USED IN THIS MANUAL

Symbols	
(i)	It refers to the information own of the theme that is treated.
	Indicate important warnings to take into account.
\	It refers to how the keys must be pressed to perform the actions indicated in the examples.
٨	General information about the controller or about this manual, too.

Screens	
	In the pages where is explained how to access to the different screens and menus (pages 1844), it is shown the way to come to the resolution of every option. This way is highlighted by a dark background of the of the screens related in that option.
	The union of several screens by means of a dashed line, means that the option is valid for all of them.

GENERAL CONCEPTS

Loop 4-20 mA (optional): The value sent by the 4-20mA loop can be whichever of the following ones:

- Voltage
- Frequency
- DC component

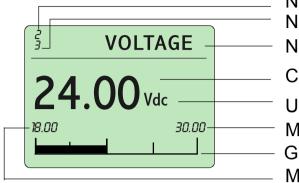
See the page 30-31 to associate a value to the current loop.

Communication with PC (optional): It is possible to communicate to the controllers SVO and SVP with a computer via the serial port RS232 for its remote programming or to process the data that it generates. For a standing-alone communication, the programming interface CBPZ is required. For a multiple communication (up to 31 equipments) an RS232-RS485 conversor must be used, reference SBAZ.

Display's illumination: The display remains illuminated while its is accessed to the different screens. If a key is not pressed for longer than 30 seconds, the light turns off. In order to turn the light on, it is enough to press any key once only.

Working mode: After setting up the controller's parameters, it can be back to the normal working mode by executing the option RETURN from the SET UP menu. The status screens can be also visualized if any key is not pressed for longer than 3 minutes.

Interactive menus: Only those options that can be configured are accessible in menus, being the rest of the they no visible. This characteristic is interactive, this is, that it's produced automatically in function of the active options at each moment.

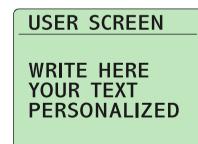

Change of values: The screens used to change a numerical value contain the margins between that value can be adjusted. These margins can depend on another options, so that they can visualize different values in function of another previous relations.

Assignation of magnitudes: Each relay can be activated by the control of one or various magnitudes. For exemple, it can be assigned to RELAY 1 the action by maximum voltage and minimum frequency, although when the relay is activated, it's not possible to know which magnitude has provoked it.

TYPES OF SCREENS (1/5)

1.1 Status screen

SVA


Number to current screen Number to total screens Name of the magnitude Current value Units Maximum limit Graphical bar Minimum limit

The status screens show the actual values of the magnitudes that the equipment controls . In the normal working mode, the equipment shows the status screen that the user has chosen like preferring magnitude of visualization.

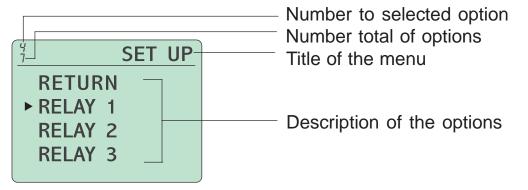
In order to move around among the different status screens of status, press ▲ ▼. By pressing ● from anyone, it is entered to the set up menu.

The default status screen is the one shown when the equipment is powered or when any key is pressed for longer than 3 minutes. To select it, execute the option SEE SCREEN (see page 37).

1.2 User screen

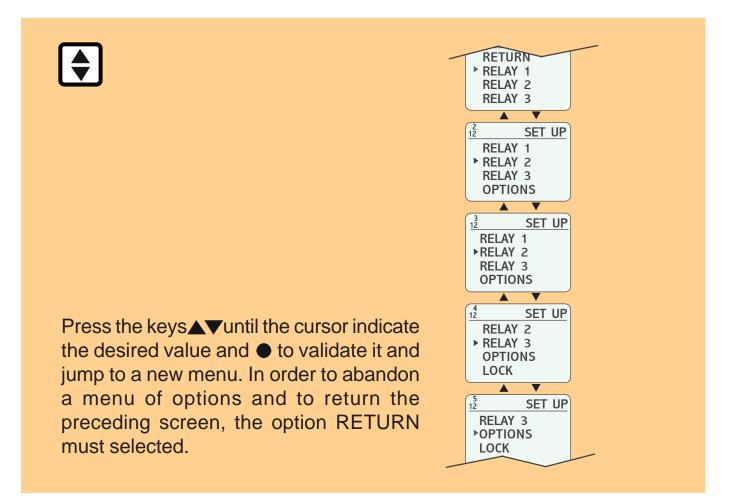
The text edited in the user screen is the one that will be shown next to the status screens when the equipment is i the normal working mode. The characters that can be used are the following:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Å Æ ß Ç Ñ Ø - / # % < = > 0 1 2 3 4 5 6 7 8 9

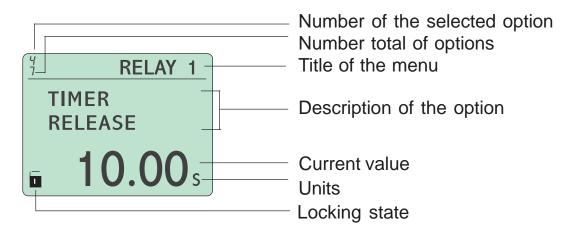

\	Pressing \bigvee and \bigwedge the desired character is selected and becomes validated by pressing \bigoplus , moving up to the follow- ing position of the right hand or to the line below. The repeated pulsation of \bigoplus provokes the advance of the cursor.

L	!	$\mathbf{\nabla}$			

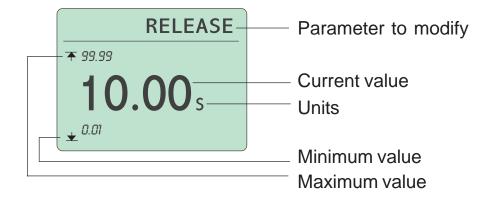
A validated character can not get modified, that means that is not possible to move back. In order to modify a text, is necessary to enter again into the edition screen. In order to abandon this screen is essential to advance until the last position of the last row.


TYPES OF SCREEN (2/5)

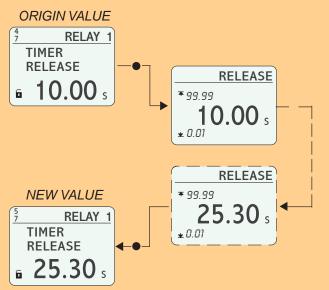
2.1 Screen of options menu


2.2 Selection of options menu

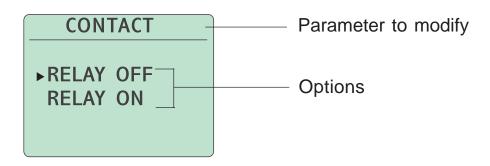
Are those in which a series of options is visualized, line by line. The selection of one option carries to a new menu. The digits placed at the top of the screen indicate, from top to down, the number of the selected option and the total number of options. The options are disposed in an endless loop, in such a way than after the last option it comes to the first one of the series. In the same way, moving back from the first option it comes to the last one of the series.



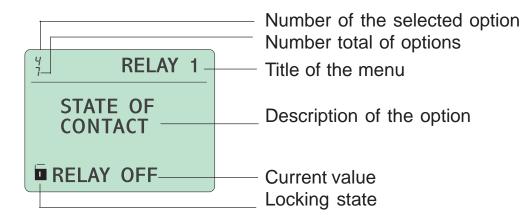
TYPES OF SCREENS (3/5)


3.1 Informative screen of numerical value

3.2 Screen for changing a numerical value

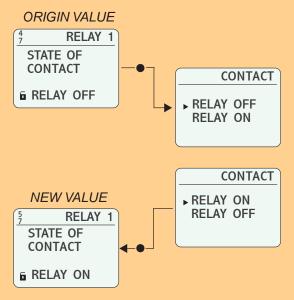


Once placed on the screen that shows the parameter we want to modify its value, press • in order to access to the screen for changing the value. Since the modification is done digit by digit and not like a complete value, the first digit at left remains blinking. Press \blacktriangle to modify the value and • to validate it and to advance to the following digit. When the last digit becomes validated the preceding screen is visualizated again.



TYPES OF SCREENS (4/5)

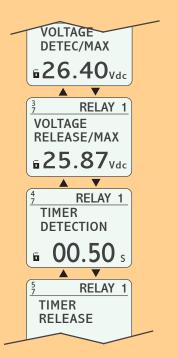
4.1 Informative screen of alphanumeric value



4.2 Screen for changing an alphanumerical value

Once placed on the screen that shows the parameter we want to modify its value, press ● in order to access to the screen for changing the value.

Press \blacktriangle \checkmark until the cursor indicates the desuired value and \blacklozenge to validate it and return to the preceding screen.



TYPES OF SCREENS (5/5)

5.1 Screens menus

Are those in which is visualized a series of screens, all them related under the same concept. The digits placed at the top of the screen indicate, from top to down, the number of the selected screen and the total number of screens. The screens are disposed in an endless loop, in such a way than after the last screen it comes to the first one of the series. In the same way, moving back from the first screen it comes to the last one of the series.

Each one of the screens usually displays the definition of a parameter and its actual value. Press the keys $\blacktriangle \checkmark$ to move to a new screen and \blacklozenge to modify the value visualized in it. If no-one value is visualized on the screen, pressing \bullet it is accessed to a new menu. In order to abandon a screens menu and return to the preceding one, the RETURN screen must be selected.

QUICK START

- 1 Apply supply voltage to terminals A1 and A2. Be sure to match with the value marked on the equipment. The green LED is lit. Now it does not matter if the red LEDs for relays or not illuminated.
- ² Set the parameters that your application needs. You can now choose between two solutions: set each parameter individually (see Advanced Programming, pg. 17) or use the "user programs" which, by way of example, contain most of the parameters already configured for some applications "type" and where you only need to modify those that do not fit your application. Please read the description of these programs to see if it suits your needs. (See pages 14 .. 16).
- 3 Verify that the relay status is desired, checking the red LEDs on the front.
- ⁴ If correct, disconnect the power supply and connect the output relays under the terms of their application. Reapplying voltage, the team will be ready to work.

USER PROGRAMS (1/3)

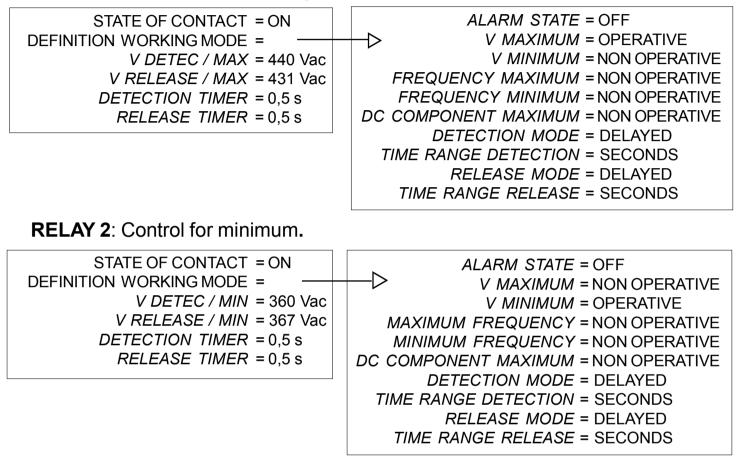
User programs are permanent in the device SVA.

In order to modify them, load the program you desire (for example, number 1) into memory by means of the sequence SET UP-OPTIONS-PROGRAM 1. Modify the parameters, values, timers, etc. and do the opportune checkings until everything work correctly.

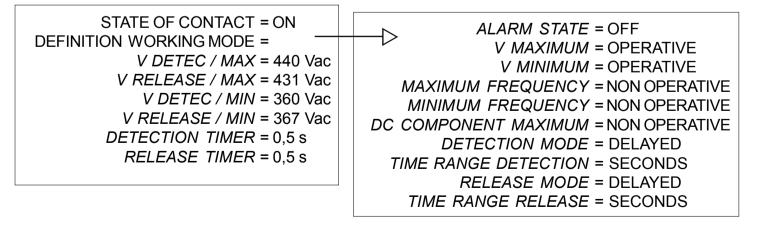
Bear in mind that the disconnection of the supply voltage <u>does not provoke</u> the loss of data. For your safety, save your changes by means of the sequence SET UP-OPTIONS-SAVE PROG. (see page 34).

Remember than every time that Program 1 is loaded into memory, the default factory parameters will be restored. If the User Program is loaded (SET UP-OPTIONS-PROG USER), you will obtain the parameters that you modified (see page 35).

It is not required to load any user program when the equipment turns on: it is kept the same configuration that was operative the last time that the equipment was turned off.


SVA

DISIBEINT

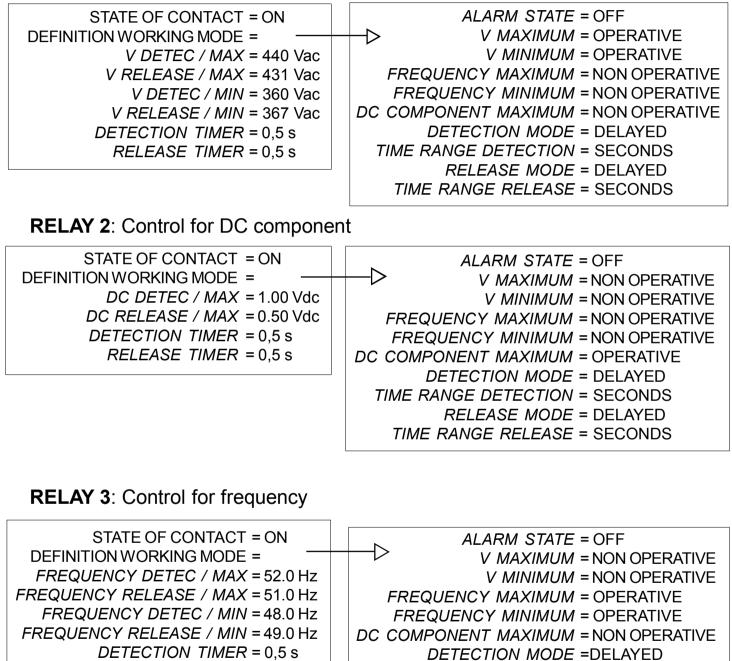

USER PROGRAMS (2/3)

PROGRAM 1: Control for overvoltage and undervoltage. It is suposed a voltage of 400 v.

RELAY 1: Control for overvoltage.

RELAY 3: Control for overvoltage and minimum

NOTE: Options in italics are only available according to the ones selected in DEFINITION WORKING MODE.


SVA

DISIBEINT

USER PROGRAMS (3/3)

PROGRAM 2: Control for overvoltage, DC component, undervoltage and frequency. It is supose a voltage of 400 v.

RELAY 1: Control for overvoltage and minimum.

RELEASE TIMER = 0,5 s

TIME RANGE DETECTION = SECONDS RELEASE MODE = DELAYED

TIME RANGE RELEASE = SECONDS

NOTE: Options in italics are only available according to the ones selected in DEFINITION WORKING MODE.

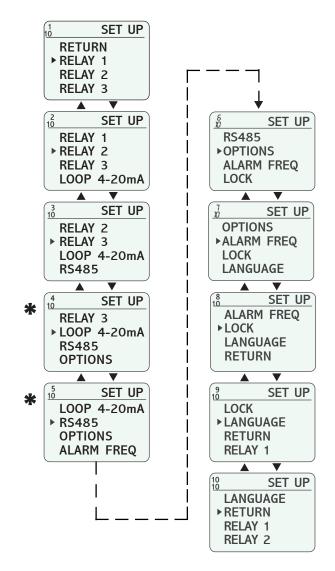
ADVANCED PROGRAMMING

If you want to program by your own the device SVA, it is not necessary to load any program. Set the parameters showed in the screens that appear when putting the equipment on for the first time. Follow the steps below before beginning to program:

1 - Determine what action will make each relay (Ex.: relay 1 to control the overvoltage, relay 2 to control the phases cycle, ...). Bear in mind the following characteristics:

1.1 - Different relays can control relés the same magnitude (Ex.: To set up two set points for a minimum voltage, active the detection by minimum voltage for the relays 1 and 2, and set a different value to each one of them).

1.2 - Diferent magnitudes can be associated to the same relay.

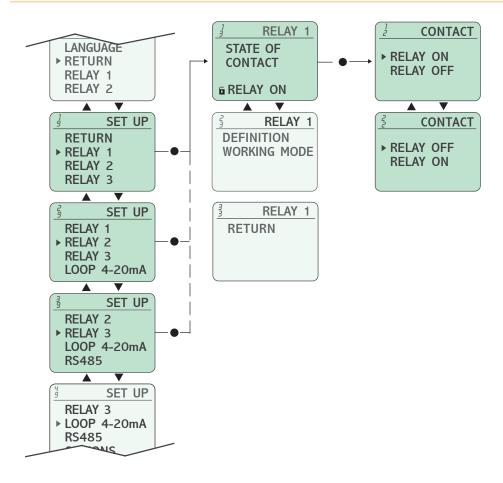

2 - Determine what actions will have timing (Ex.: 3 seconds when detecting overvoltage, 5 seconds if the phases are unbalanced, ...).

- Begin to program. Remember that certain options will be available according to which are settled in other previous options. Enter to the menu SET UP and select RELAY 1. Look for the screen DEFINITION WORKING MODE and select it. Active and deactive the options of the screens of this menu according to your previous planning. If you want to add timing to the detection or to the release, set the screens MODE DETECTION or MODE RELEASE like DELAYED, respectively. In the following screen you will be able to set the time units. Select the screen RETURN to return to the previous menu and program the rest of the options that you have actived for RELAY 1.
- 4 Proceed in the same way for the rest of relays, in case that you are going to use them.

5 - Consult the following pages to know the rest of programming possibilities offered by the devices SVA.

SVA SET UP MENU

DISIBEINT

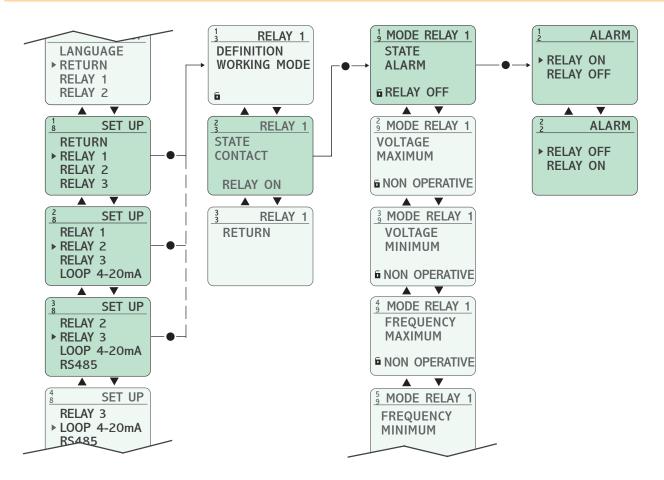

Is the main menu from which is possible to set up all the parameters involved in the equipment. It is accessed from the status screens when pressing the button "Enter". It is also possible to arrive by chosing the succesives options RETURN included in whichever of the rest of menus or screens.

These options depend on the selected equipment, it means that they cannot be available in the one you have.

*

STATE OF THE RELAY CONTACTS

SVA



٢	Existing information on this page and in the subsequent configuration referred RELAY 1, RELAY extend to RELAY 2 and 3, being necessary to set the parameters of each relay independently.
i	The state of the relay (OFF/ON) indicates the position of the contacts of the relay when the controller is turned on. The state of the contact of the relay must be set up according to the required operation you need to perform.

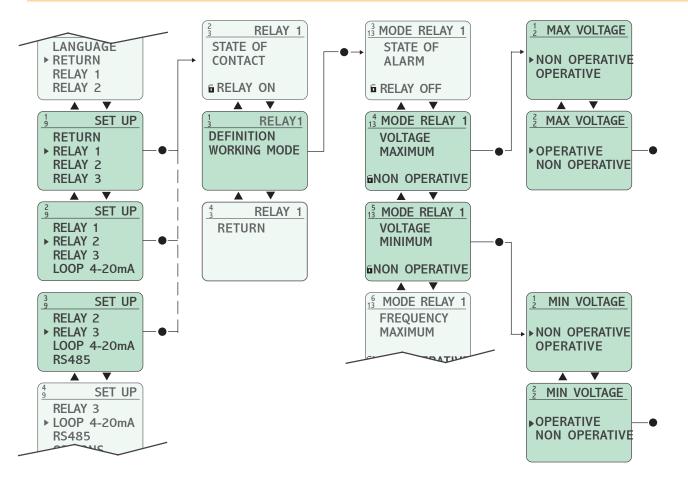
DISIBEINT

STATE OF CONTACT IN ALARM

SVA

Is defined as "alarm condition" that happens in any of the following cases:

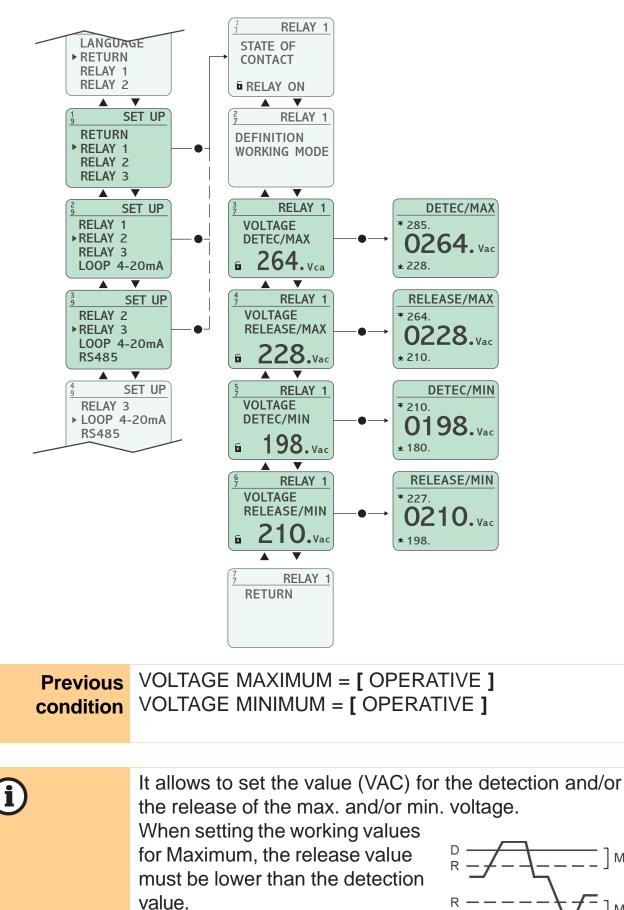
DISIBEINT


- There was an error in the internal memory of the computer or other component that alters the normal functioning.

- The frequency of the network varies to such an extent that it loses the accuracy of work indicated (See 'Technical Data' on page 3. This will put the relay in alarm only when it has any active voltage parameter, and the option of 'frequency deviation alarm is activated''. (See page 39)

Since the computer could be left with conflicting information using this option you can set the status relay contacts when there are such circumstances.

MAX. AND/OR MIN. VOLTAGE (1/2)



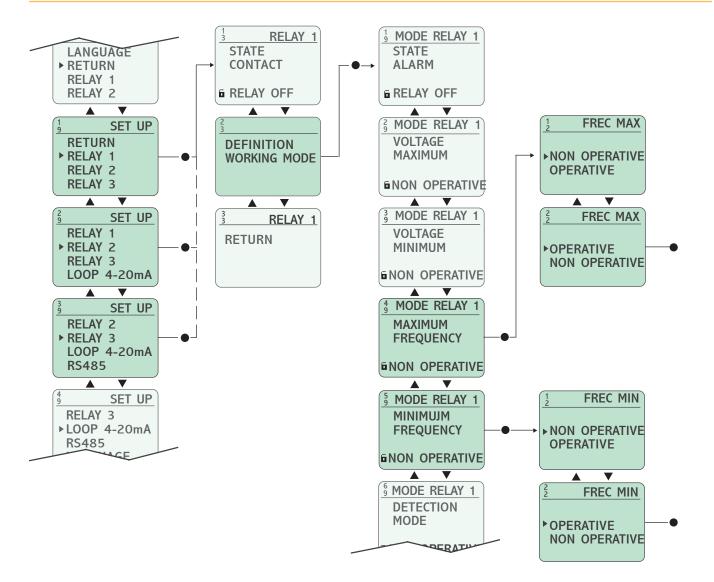
To make the relay operates when the controller detects a determinate maximum and/or minimum voltage, set this option as OPERATIVE.

Activation

SVA MAX. AND/OR MIN. VOLTAGE (2/2)

DISIBEINT

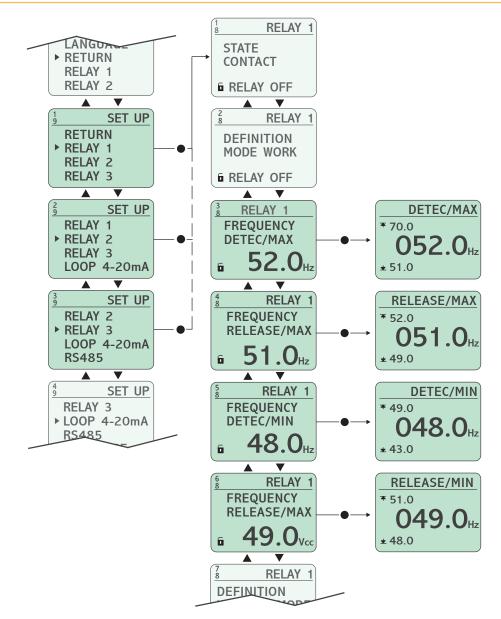
MAX


MIN

D

Adjustement

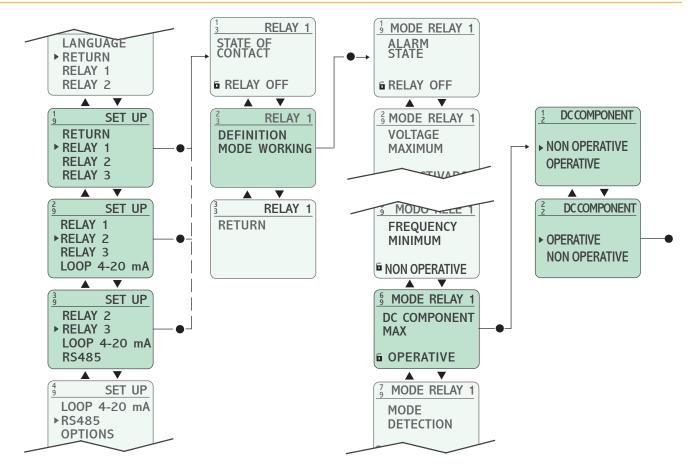
MAXIMUM AND/OR MINIMUM FREQUENCY (1/2)

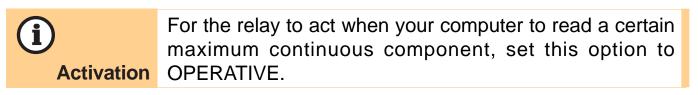

SVA

(i) Activation	For the relay to act when your computer to read a certain maximum frequency and/or minimum frequency, set this option to OPERATIVE.
	Regardless of the status of this option, if the frequency varies to such an extent that it loses the specified precision (see 'Technical Data' on page 3), the relay has an active tension parameter, and the option of 'frequency deviation alarm' is active, it switches to alarm state. See page 20 for details.

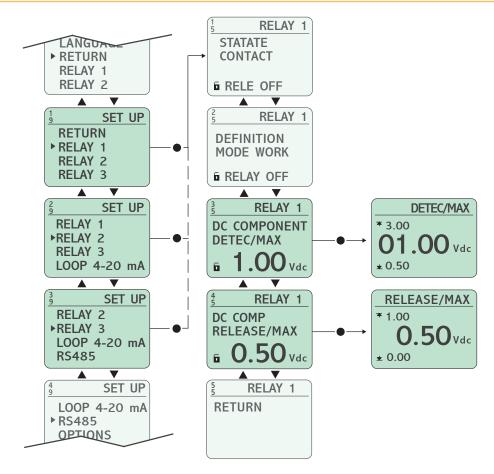
DISIBEINT

MAXIMUM AND/OR MINIMUM FREQUENCY (2/2)

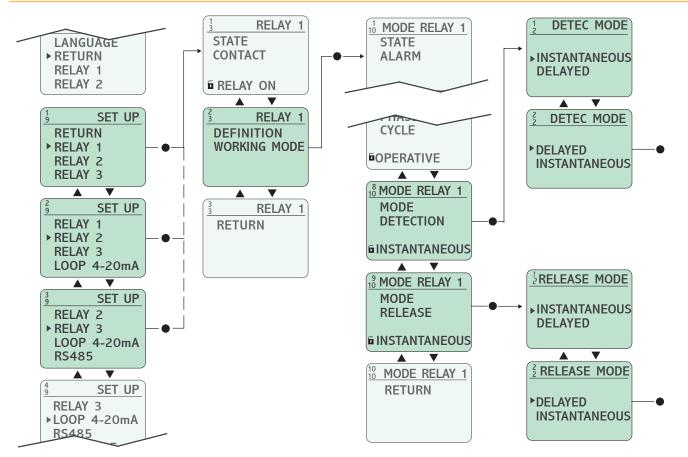



PreviousMAXIMUM FREQUENCY = [OPERATIVE]conditionsMINIMUM FREQUENCY = [OPERATIVE]

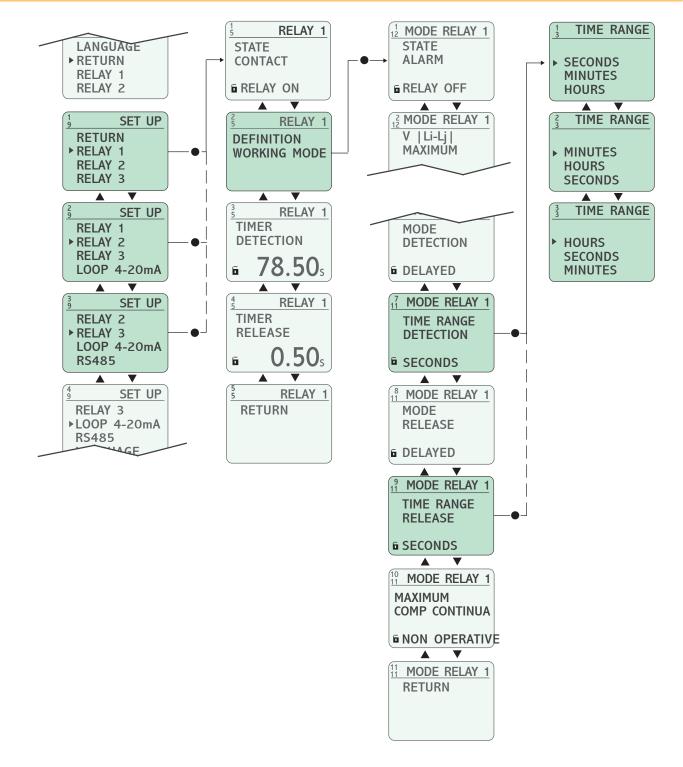
i	It allows to set the value (Hz) for the detection and/or the release of the maximum and/or minimum frequency. When setting the working values for		
	Maximum, the release value must be lower than the detection value. When setting the working values for	D R] MAX	
Adjustment	Minimum, the release value must be higher than the detection value.	R] MIN	



DC COMPONENT MAXIMUM (1/2)


DC COMPONENT MAXIMUM (2/2)

Previous conditions	MAXIMUM DC COMPONENT = [OPERATIVE]
(i) Ajuste	Set the value (Vdc) for the detection and/or replacement of the maximum continuous component. When you set values for maximum work, the replacement value should be below detection.

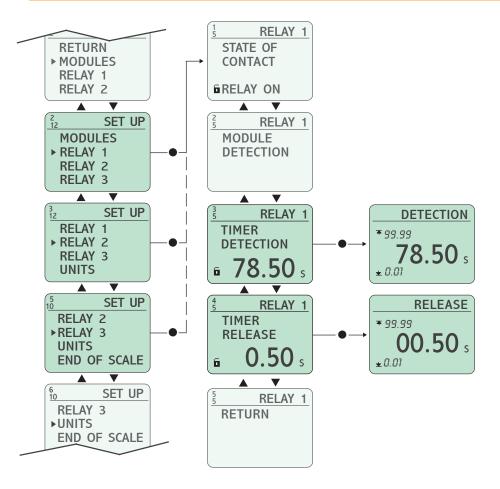

DELAY ON DETECTION AND/OR ON RELEASE (1/3)

(i) Activation	To incorporate a time delay to the detection and/or to the release the options MODE DETEC and/or MODE RELEASE must be set as DELAYED. The relay will not operate until the signal will be kept (at the detection) and/or lost (at the release) for a time longer than the adjusted one.
	The time delay is related to the relay and not to the magnitude associated to the relay. It means that a timed relay with two magnitudes associated (for example, overvoltage and frequency) will start the timer for whichever of them, the first who occurs. It means, too, that in the case that both magnitudes occurs at the same time, the delay will be unique.

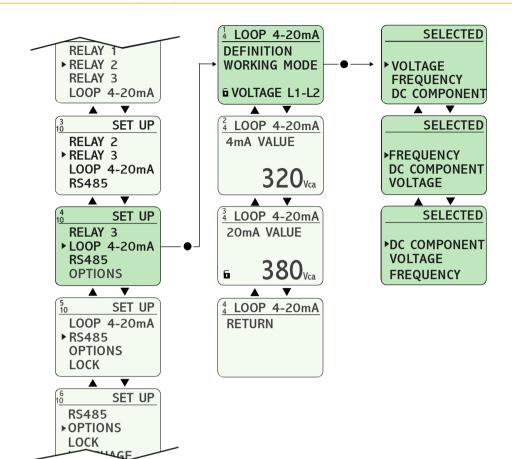
DELAY ON DETECTION AND/OR ON RELEASE (2/3)

SVA

DISIBEINT


(i) Ranges

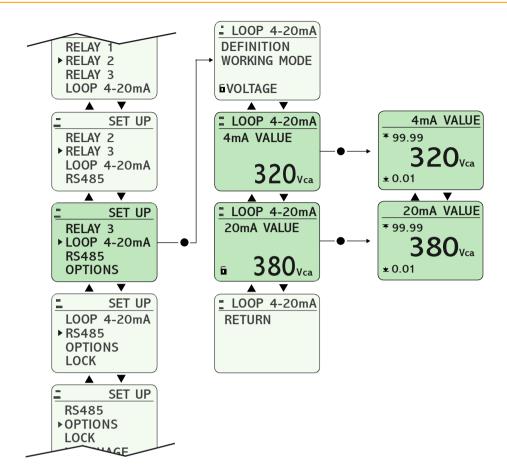
The time ranges for the detection and/or for the release can be set as SECONDS, MINUTES or HOURS.


DELAY ON DETECTION AND/OR ON RELEASE (3/3)

i	It allows to set the exact time for the detection and/or the release. The time margins depend on the previously selected range, and can be adjusted between the following values:
Time	0.0199.99 SECONDS 0.0199.99 MINUTES 0.1999.9 HOURS

LOOP 4-20 mA (1/2)

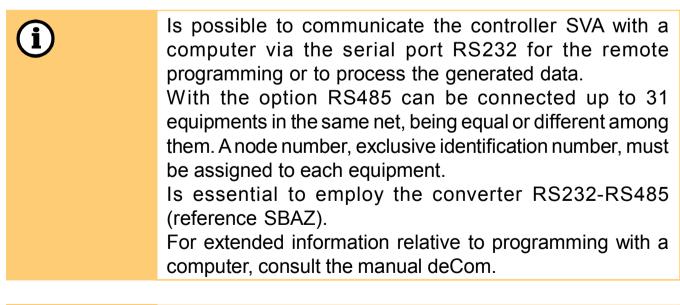
SVA



DISIBEINT

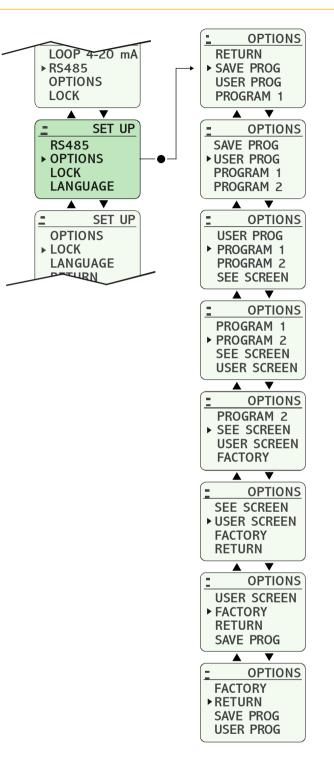
(i)	Throught this option is set the magnitude related with the 4-20 mA current loop, and it can be whichever of the following ones: • Voltage • Frequency • DC Component
Assignation	· DC Component
	This feature is unique to models with this method of communication.

LOOP 4-20 mA (2/2)


SVA

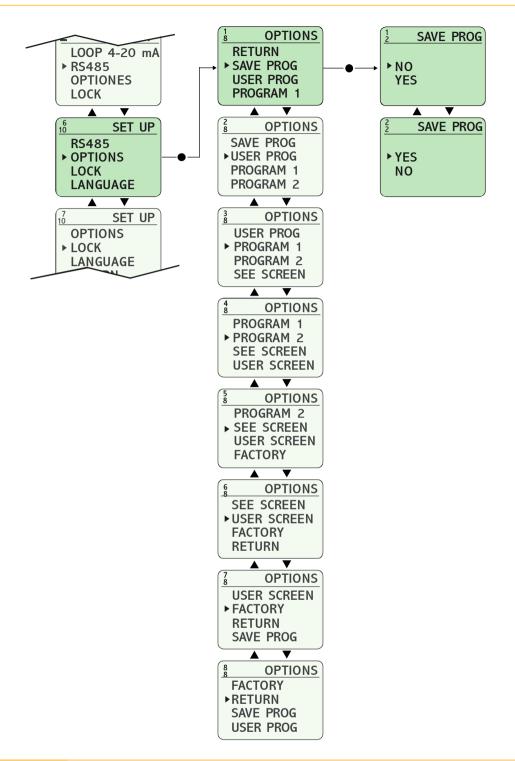
(i) Adjustment	This option allows to define the operating margins for the 4- 20 mA loop current. It is required to set by separate a countervalue for 4 mA and for 20 mA. It is possible to invert the loop sense by setting to 4 mA a countervalue higher than to 20 mA.
	This feature is unique to models with this method of communication.

SVA RS485 RS485 NODE ID. NODE ID. TOP OF SCALE **∓** 31 LOOP 4-20mA 001 RS485 1 **OPTIONS** Ē, ±1 ۸ SET UP RS485 LOOP 4-20mA RETURN ▶RS485 **OPTIONS** LOCK -SET UP RS485 ►OPTIONS LOCK LANGUAGE


EDISIBEINT

This feature is unique to models with this method of communication.

OPTIONS MENU


Using the menu options are configured parameters that are not basic to the functioning of the team.

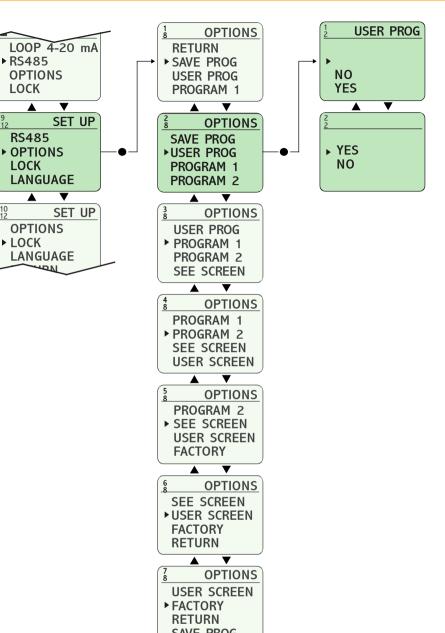
Screens are also accessed for information.

SAVE PROGRAM

SVA

í

It stores the changes done in the different parameters and options. Each time that SAVE PROGRAM is executed, the values stored in the user program are overwritten.



You will find more information related to the user program in the pages 14..16.

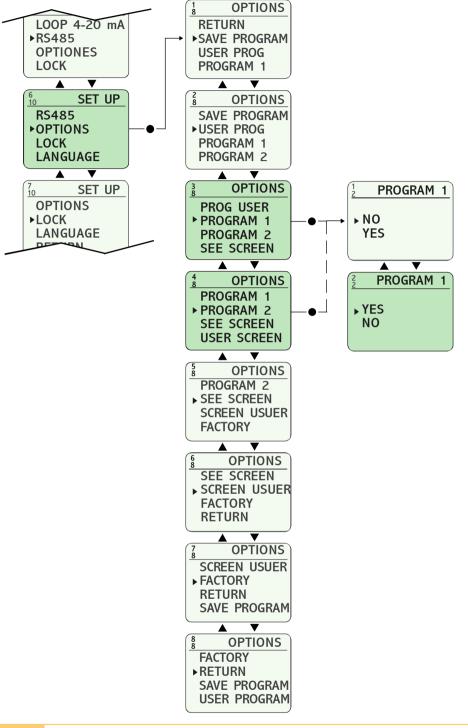
USER PROGRAMS

10 12

SVA

SAVE PROG T 8 **OPTIONS** FACTORY ►RETURN SAVE PROG **USER PROG**

It loads into memory the program that was stored with the option SAVE PROGRAM, becoming the working program. Each time that this option is executed, the values stored in the memory are overwrtten.



You will find more information related to the user program in the pages 14..16.

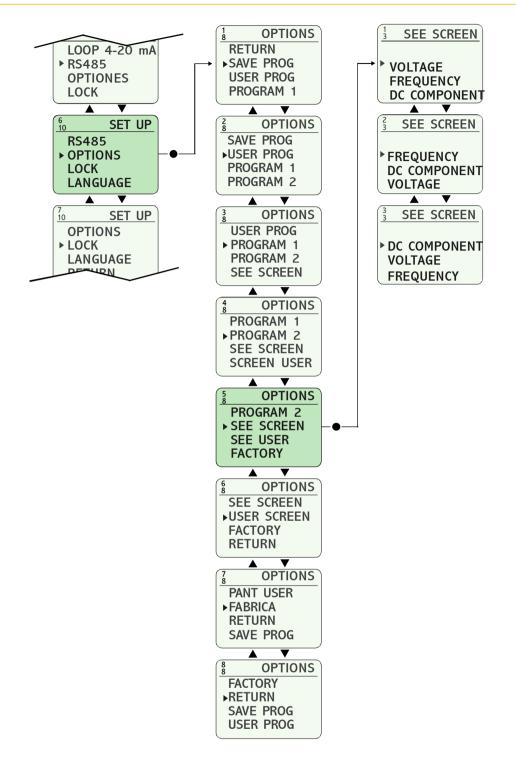
DISIBEINT

PROGRAM 1 AND 2

SVA

EDISIBEINT

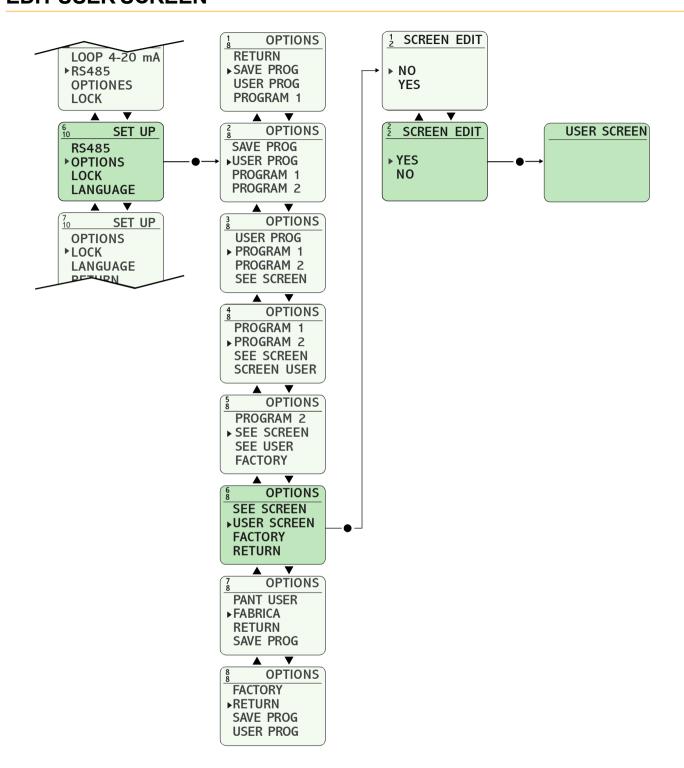
It loads into memory the selected program, becoming the working program. Each time that this option is executed, the values stored in the memory are overwritten.



You will find more information related to the user program in the pages 14..16.

SEE SCREEN

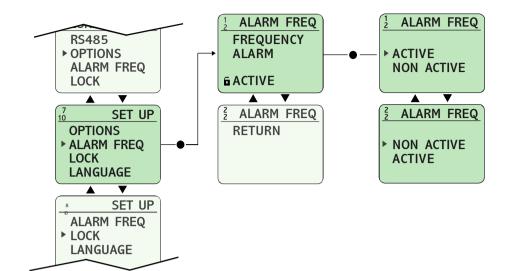
SVA


DISIBEINT

í

This option allows to set which will be the default screen in the status screens menus (normal working mode).

SVA EDIT USER SCREEN

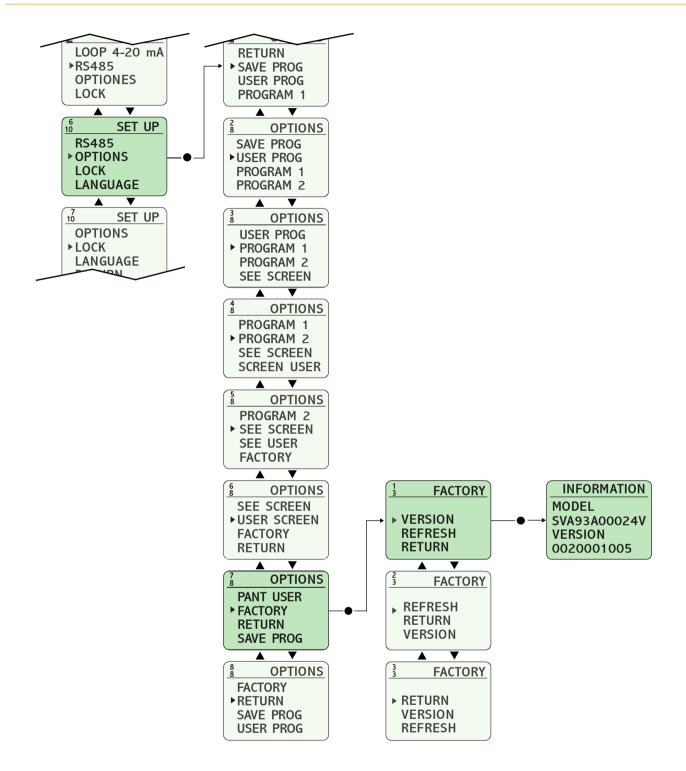

DISIBEINT

í

In this screen it can be edited any text to identificate the equipment. It can be used 4 lines and 13 characters each.

To learn which are the available characters and the way to edit them see "1.2 USER SCREEN" at page 8.

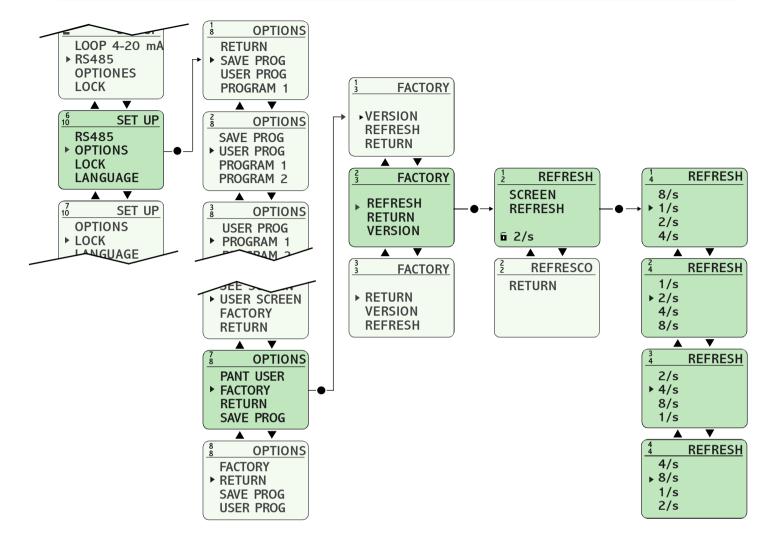
FREQUENCY DEVIATION ALARM

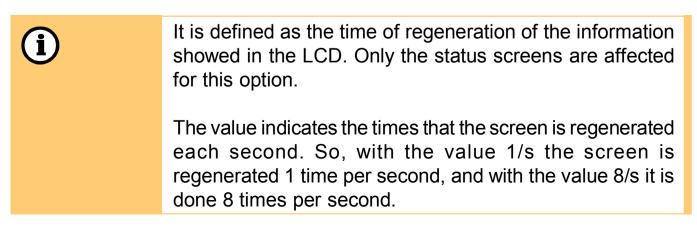


	Previous condition	This option affects the relays that have enabled some tension parameter. By default, this option is activated.
(i)		Place the relay in alarm when a frequency deviation of ± 0.4 Hz in the detection process, and ± 0.3 Hz for the replacement. For these deviations in the frequency of the network the working precision is reduced. A greater deviation in the frequency of the network, worse reading accuracy of your voltage.
		If this option is off, remember that reading the details of stress parameters decrease when the frequency wavers from their nominal values ($50 \text{ Hz} / 60 \text{ Hz}$). You should consider this reduction in accuracy when setting the values of detection and/or replacement.

DISIBEINT

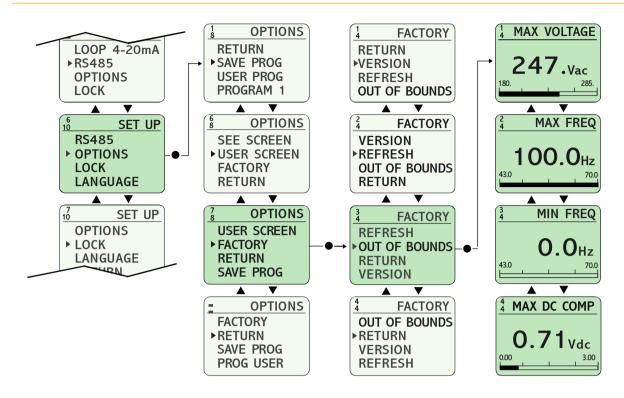
INFORMATION OF MODEL AND VERSION


DISIBEINT


í

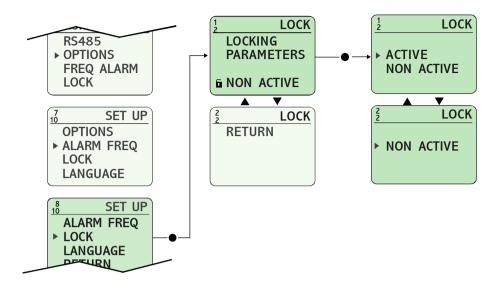
Access to this option if you want to know the exact reference of the model and the version of the built-in software.

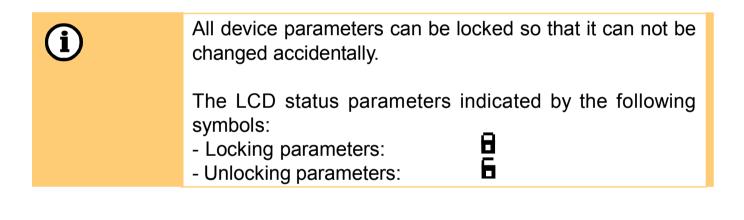
This is an informative screen. It is active for 3 seconds and returns automatically to the previous screen once the time has elapsed.


SCREEN REFRESH

OUT OF BOUNDS VALUES

SVA

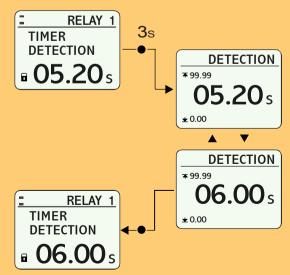

DISIBEINT

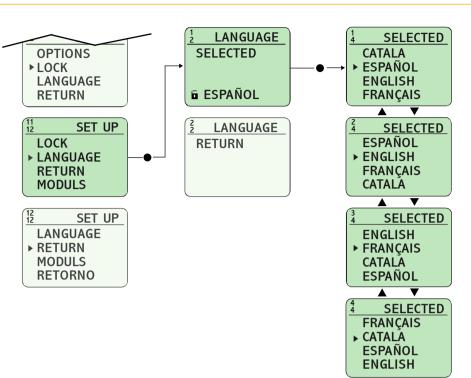

By means of this option is possible to read the highest values registered since the first time that the controller was turned on. A value higher than the stored one overwrites it. The magnitudes to be controlled are:

 Voltage
 Frequency

 The stored values do not depend of the controller's operation margins and they can be higher than them. If a value overtakes the displaying capacity of the controller, it will show the text 9999. in the case of the voltage and 99.99 in the case of the frequency.
 This screen's just informative and the values can't be modified using neither the buttons nor the programing software.

LOCKING PARAMETERS



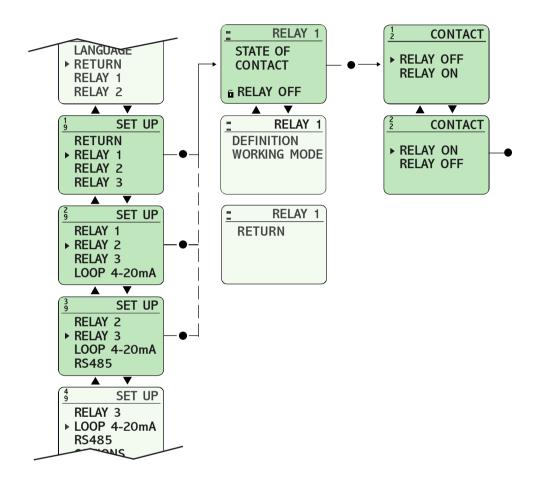

You can change the value of a parameter that is blocked without having to access the above sequence. To do this, once located on the screen that shows the parameter whose value has to change, hold the button \bullet for 3 seconds to access the screen for changing the value.

Once validated the change back to the screen from becoming blocked again parameter.

LANGUAGE

SVA

DISIBEINT

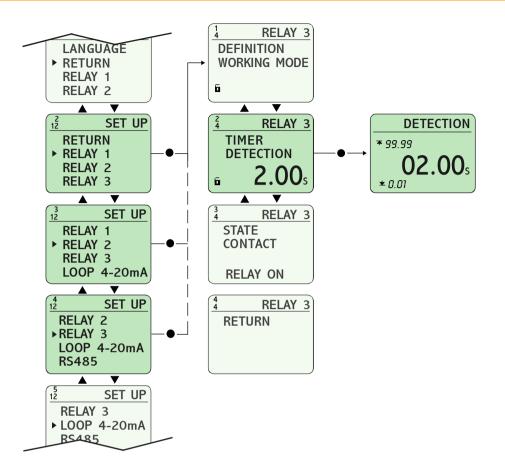

The SVA model incorporates four different languages with which to display the text on the screen. Three of them are always present in every team: English, Spanish and French, the fourth option on request.

DISIBEINT

Complementary Functions (1/4)

AUXILIARY CONTACT

The relays that are not related with the detection or the release by modules can be used to perform complementary functions (see pages 45..48).


Previous	STATE OF CONTACT = [RELAY ON]
conditions	VOLTAGE MAXIMUM = [NON OPERATIVE]
	VOLTAGE MINIMUM = [NON OPERATIVE]
	FREQUENCY MAXIMUM = [NON OPERATIVE]
	FREQUENCY MINIMUM = [NON OPERATIVE]
	MODE DETECTION = [CANCELLED]
	MODE RELEASE = [CANCELLED]
	MAXIMUM DC COMPONENT = [NON OPERATIVE]

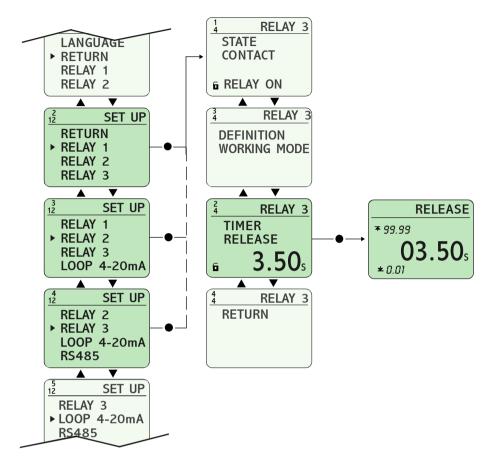
When the supply voltage is connect the contact of the relay operates instantaneously and will remain in this state until the supply voltage disconnected.

DISIBEINT

Complementary Functions (2/4)

DELAY ON CONNECTION

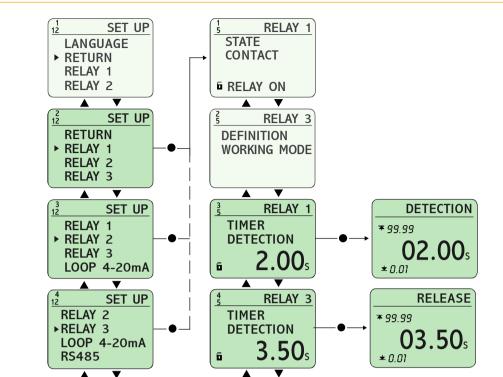
STATE CONTACT = [RELAY OFF] /OLTAGE MAXIMUM = [NON OPERATIVE] /OLTAGE MINIMUM = [NON OPERATIVE] FREQUENCY MAXIMUM = [NON OPERATIVE] FREQUENCY MINIMUM = [NON OPERATIVE] MODE DETECTION = [DELAYED] MODE RELEASE = [CANCELLED] MAXIMUM DC COMPONENT = [NON OPERATIVE]


(i)

When the supply voltage is connected the relay remains released and the time circuit starts up. Once the time has elapsed the relay operates. It can remain in this state for an undefined time.

Complementary Functions (3/4)

DELAY ON INTERVAL


DISIBEINT

Previous conditions	STATE CONTACT = [RELAY ON] VOLTAGE MAXIMUM = [NON OPERATIVE] VOLTAGE MINIMUM = [NON OPERATIVE] FREQUENCY MAXIMUM = [NON OPERATIVE] FRECUENCY MINIMUM = [NON OPERATIVE] MODE DETECTION = [DELAYED] MODE RELEASE = [CANCELLED] MAXIMUM DC COMPONENT = [NON OPERATIVE]
i	When the supply voltage is connected the relay operates instantaneously and the time circuits starts up. Once the time has elapsed the relay releases. It can remain in this

state for an undefined time.

Complementary Functions (4/4)

RELAY 3

RETURN

MODE DETECTION = [DELAYED]

MODE RELEASE = [DELAYED]

EDISIBEINT

RECYCLER TIMER

Cycle OFF-ON STATE OF CONTACT = [RELAY OFF]

Same as to page 47 except:

SET UP

RELAY 3

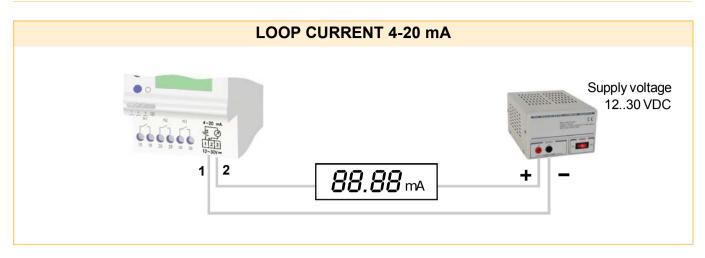
Previous

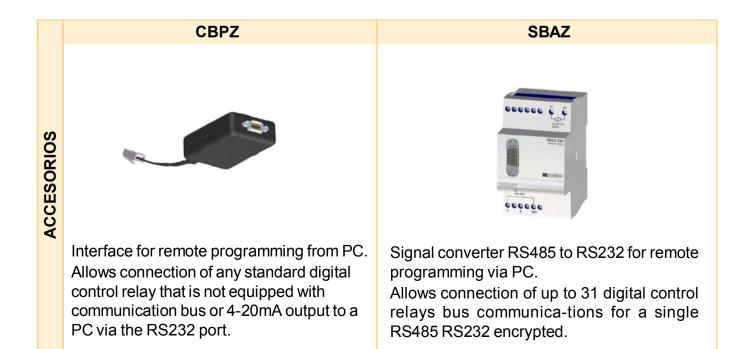
conditions

LOOP 4-20mA RS485

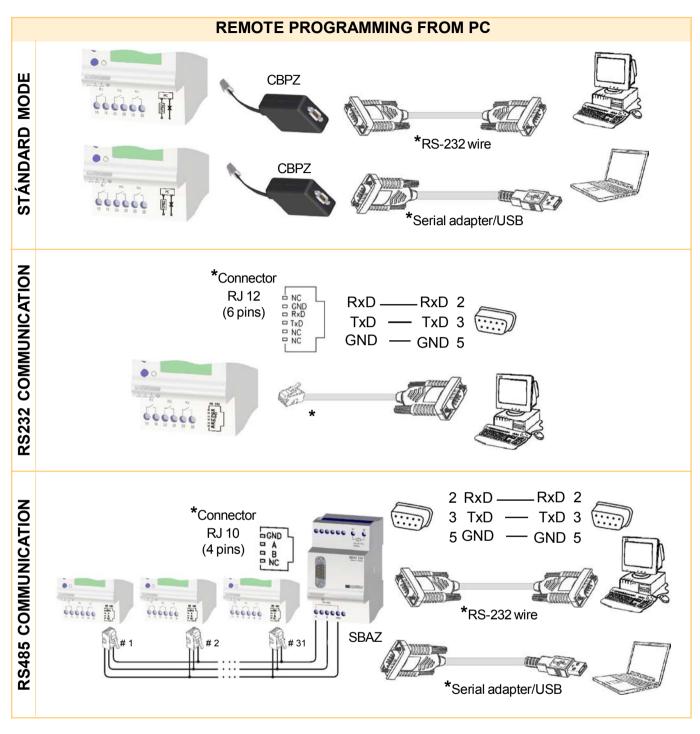
When the supply voltage is connected the time adjusted in TIMER DETECTION starts up. Once the time has elapsed the relay operates until the time adjusted in TIME RELEASE elapses. The cycle repeates non-stop itself.

Cycle ON-OFF	FF STATE OF CONTACT = [RELAY ON]	
	When the supply voltage is connected the relay operates	
	instantaneously and the time circuit adjusted in TIMER	
	DETECTION starts up. Once the time has elapsed the relay	
	releases and remains in this state until the time adjusted in	
	TIME RELEASE elapses.	
	The cycle repeates non-stop itself.	

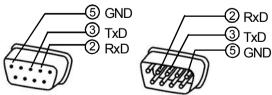

ERROR SCREENS AND INFORMATION

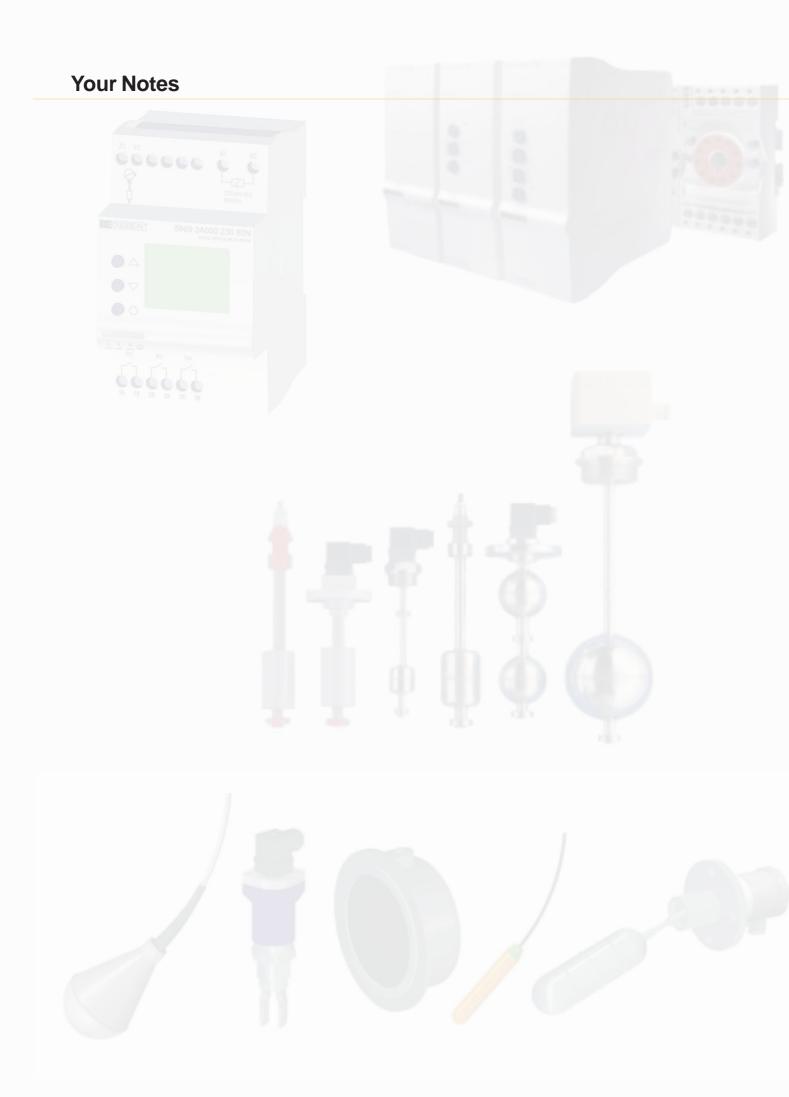

In front of certain situations the controller SNI displays informative screens, usually related with errors or unapropiated actions.

	Cause	Solution
INFORMATION OUT OF RANGE VALUE	It has been introduced a value out of the allowed limits in the magnitude which is being adjusted.	Introduce whichever value between the allowed limits.
INFORMATION PARA CARGAR PROG USUARIO ES NECESARIO GUARDAR PROG	It has attempted to load into memory the user program, but this was not loaded previously.	Save an user program.
ERROR MEMORY FAIL	An error in the internal memory of the controller has been produced.	Contact with the manu- facturer.



OUTPUTS COMMUNICATION (1/2)





OUTPUTS COMMUNICATION (2/2)

* Disibeint not supply cables or connectors. You can find these products in stores specializing in computer equipment.

Manufacturing program

	K
--	---

Sensors

A wide variety of types of sensors allows an easy way to find out the efficient solution for the control of the level in a large number of products.

Level relays

Its combination with the level sensors is the suitable complement for the control of the level in wells, tanks and reservoirs.

Timers

From the common functions of timing and passing through the multifunction models, it is arrived to elements with specific functions

Control relays

This wide family who contributes to confidence and yield in complex installations where the security is the essential element.

Digital control relays

This family of controllers combines the own characteristics of the classic relays and improve them by adding new benefits.

Data transmission

This family of controller combines the own characteristics of the classic relays and them improvement adding sophisticated benefits.

Segle XX, 91 E08032 - Barcelona

T: +34 934 560 995 F: +34 934 354 532

www.disibeint.com disibeint@disibeint.com