

CDN36X Series
DeviceNet Gateway

User Manual

CDN366 – 1 isolated RS232 channel
CDN367 – 1 isolated RS422/RS485 channel

CDN36X User Manual revision 1.30

Table of Contents
CHAPTER 1 – OVERVIEW..4

CHAPTER 2 – INSTALLATION ..5
MOUNTING ..5
WIRING ...6

DeviceNet Interface ...6
Serial Channel Interface ..6
Wiring Examples..7

CHAPTER 3 – THEORY OF OPERATION..8

CHAPTER 3 – THEORY OF OPERATION..9
GATEWAY OPERATION ..9

DeviceNet Object Model ..9
DeviceNet Object Model ..10
DeviceNet Interface ...10
Serial Channel Interface ..13

Serial Stream Object ... 13
Serial Receive Object.. 14
Serial Transmit Object .. 17
Asynchronous Serial Communictaion... 18
Data Conversion.. 19
Serial Receive Example .. 22
Serial Transmit Example... 24
Synchronization .. 25

Receive Synchronization ... 25
Transmit Synchronization.. 26

CHAPTER 4 – GATEWAY CONFIGURATION..28
CONFIGURE DEVICENET INTERFACE ...28

DeviceNet Baud Rate Switch..28
MAC ID Switches...28

POWER UP GATEWAY..29
DeviceNet Status LEDs ..29
Serial Channel Status LEDs...29
Register EDS File ..30

CONFIGURE SERIAL CHANNEL ..31
SERIAL RECEIVE OBJECT SETTINGS...34
SERIAL TRANSMIT OBJECT SETTINGS..37
CONFIGURE DEVICENET MASTER SCANLIST...40

I/O Consume Size...40
I/O Produce Size ..41

CHAPTER 5 – DEVICENET SPECIFICATIONS ..42
DEVICENET MESSAGE TYPES..42
DEVICENET CLASS SERVICES..42
DEVICENET OBJECT CLASSES ...42
IDENTITY OBJECT ..43
ROUTER OBJECT...44
DEVICENET OBJECT ..45
ASSEMBLY OBJECT..46
CONNECTION OBJECT...47
SERIAL STREAM OBJECT..49
SERIAL RECEIVE OBJECT ...50

MKS Instruments, Inc. D.I.P. Products Group 2

CDN36X User Manual revision 1.30

SERIAL TRANSMIT OBJECT..51
CHAPTER 6 – RSNETWORX™ CONFIGURATION EXAMPLE...52

CONFIGURE DEVICENET INTERFACE ...53
CONNECT & REGISTER EDS FILE ..53
CONFIGURE SERIAL CHANNEL ..61
CONFIGURE SERIAL RECEIVE OBJECT INSTANCES...69
CONFIGURE SERIAL TRANSMIT OBJECT INSTANCES ..72
CONFIGURE DEVICENET MASTER SCANLIST...75

CHAPTER 7 – CONFIGURATION EXAMPLES...82
EXAMPLE 1 – RECEIVING DATA ..82

Barcode Scanner..82
CDN366 Gateway ..82

EXAMPLE 2 – RECEIVING DELIMITED DATA..84
Barcode Scanner..84
CDN366 Gateway ..84

EXAMPLE 3 – TRANSMITTING DATA..86
Serial Printer ...86
CDN366 Gateway ..86

EXAMPLE 4 – TRANSMITTING DELIMITED DATA ...88
Serial Printer ...88
CDN366 Gateway ..88

CHAPTER 8 – TROUBLESHOOTING ...90

APPENDIX A – PRODUCT SPECIFICATIONS ..91
DEVICENET INTERFACE...91
SERIAL CHANNEL ..91
ENVIRONMENTAL ..91

APPENDIX B – DEVICENET TEMPLATE..92

APPENDIX C – ASCII CHARACTER CODES ..93

MKS Instruments, Inc. D.I.P. Products Group 3

CDN36X User Manual revision 1.30

Chapter 1 – Overview

This document describes how to install, configure, and operate the CDN36X series of serial to
DeviceNet gateways. The following products are covered in this user manual:

Part Number FW Rev. Serial Channel
CDN366 2.04 or higher RS232 full duplex
CDN367 2.04 or higher RS422 full duplex / RS485 half duplex

The CDN36X gateways allow you to easily interface a wide variety of serial devices to any
DeviceNet industrial control network. Each gateway contains the feature-packed D.I.P.
DeviceNet core. Standard CDN36X products are tightly packaged and sealed in a rugged
industrial case. Board-level and customized gateways are also available upon request.

 Isolated Serial Channel

(male DB9 connector)
Serial Status LEDs

(RX, TX)

Mounting Holes

DeviceNet MAC ID
Rotary Switches

DeviceNet Baud Rate

DeviceNet Status LEDs
(NET, MOD)

Rotary Switch

DeviceNet Channel
(male 5-pin micro connector)

Product Features CDN366 CDN367
• 500V isolated serial channel X X
• RS232 with RTS/CTS flow control X
• RS422 full duplex (4-wire) with terminating resistors X
• RS485 half duplex (2-wire) with terminating resistor, repeater control signal X
• XON/XOFF software flow control X X
• 300, 1200, 2400, 4800, 9600, 19200 bps serial data rates X X
• Configurable data bits, stop bits, parity X X
• 128 byte transmit and 128 receive FIFO buffers X X
• Receives up to 8 different serial messages X X
• Transmits up to 8 different serial messages X X
• Powered from DeviceNet 24VDC X X
• Loss-of-ground protection circuitry X X
• DeviceNet slave mode supports POLL, COS, EXPLICIT messages X X
• Rotary switches set DeviceNet baud rate and MAC ID X X
• 4 bi-color status LEDs X X
• I/O Byte-swap I/O option for compatibility with PLC Scanners X X

MKS Instruments, Inc. D.I.P. Products Group 4

CDN36X User Manual revision 1.30

Chapter 2 – Installation

This chapter describes how to install and connect the CDN36X gateway to a DeviceNet network
and your serial device.

Mounting
Mount on a horizontal or vertical surface. While the RTV encapsulation protects its circuitry,
the CDN36X serial channel connector is not rated for NEMA4 / IP65 environments. Mount the
gateway in a suitable location or enclosure for your application. The gateway will generate up to
1.4W of heat, so provide sufficient clearance and airflow to maintain 0°C to 70°C operating
temperature range. Use two screws (not provided) in the 0.19 inch mounting holes shown below
to fasten the CDN36X to the mounting surface.

0.65 0.45

0.50

0.12
Mtg. Holes 1.225
(2) 0.19 DIA.

1.225

0.725
0.625 DIA. On Case Wall

0.70

1.10

 1.25

0.542

3.30
4.30
3.80

All dimensions
are inches

MKS Instruments, Inc. D.I.P. Products Group 5

CDN36X User Manual revision 1.30

Wiring
The CDN36X requires two connections – one to the DeviceNet network (male 5-pin micro
connector) and one to the target serial device (male DB9 connector). Follow all applicable
electrical codes in your area when mounting and wiring any electrical device.

All power is received from the DeviceNet network. The CDN36X draws up to 50mA from the
24VDC power supply. Select your DeviceNet cables and power supply so that it can provide
sufficient current for all networked devices at their peak operating power.

DeviceNet Interface

DRAINV+

V-
CAN_H

CAN_L

Male 5-Pin Micro Connector

PIN SIGNAL COLOR DESCRIPTION
1 DRAIN NONE Cable shield or drain wire.
2 V+ RED DeviceNet 24VDC(+) power.
3 V- BLACK DeviceNet 24VDC(-) power.
4 CAN_H WHITE Communication signal.
5 CAN_L BLUE Communication signal.

Serial Channel Interface

1

9

5

6

2 3

7 8

4

Male DB9 Serial Connector

CDN366 (RS232)
PIN SIGNAL DESCRIPTION
1 NC No Connect. Do not connect any wires to NC pins.
2 RXD Receive Data. RS232 input signal.
3 TXD Transmit Data. RS232 output signal.
4 NC No Connect.
5 GND Ground. Common for RS232 signals.
6 NC No Connect.
7 RTS Request To Send. RS232 output signal.
8 CTS Clear To Send. RS232 input signal.
9 NC No Connect.

MKS Instruments, Inc. D.I.P. Products Group 6

CDN36X User Manual revision 1.30

CDN367 (2-WIRE RS485 configuration)
PIN SIGNAL DESCRIPTION
1 RXA RS485 differential data I/O signal.
2 RXB RS485 differential data I/O signal.
3 TR Internal 120Ω Terminating Resistor, connected between pins 1 and 3. Connect

pin 2 to pin 3 to terminate DATA signals. Use at end of long twisted-pair cable.
4 NC No Connect. Do not connect any wires to NC pins.
5 GND Ground.
6 TXA Connect to pin 1 for 2-wire operation.
7 TXB Connect to pin 2 for 2-wire operation.
8 TR2 Internal 120Ω Terminating Resistor, connected between pins 6 and 8. Do not

connect in 2-wire operation.
9 +5VDC Auxiliary 5VDC supply generated by CDN36X.

CDN367 (4-WIRE RS422 configuration)
PIN SIGNAL DESCRIPTION
1 RXA RS422 differential receive data input signal.
2 RXB RS485 differential receive data input signal.
3 TR Internal 120Ω Terminating Resistor, connected between pins 1 and 3. Connect

pin 3 to pin 2 to terminal RX signals. Use at end of long twisted-pair cable.
4 NC No Connect. Do not connect any wires to NC pins.
5 GND Ground.
6 TXA RS422 differential transmit data output signal.
7 TXB RS422 differential transmit data output signal.
8 TR2 Internal 120Ω Terminating Resistor, connected between pins 6 and 8. Connect

pin 7 to pin 8 to terminate TX signals. Use at end of long twisted-pair cable.
9 +5VDC Auxiliary 5VDC supply generated by CDN36X.

Wiring Examples
The following are typical CDN36X gateway wiring configurations. Your RS232 or RS422/485
interface may vary. Refer to your device’s documentation for the required data and control
signals.

CDNx66

2
3
5

RXD
TXD
GND

1
2
3
4
5

DRAIN
VDC+
VDC-
CAN H
CAN L

RXD
TXD
GND

2
3
5RS232

Serial
Device

Simple RS232 Interface

MKS Instruments, Inc. D.I.P. Products Group 7

CDN36X User Manual revision 1.30

CDNx66

2
3
5

RXD
TXD
GND

1
2
3
4
5

DRAIN
VDC+
VDC-
CAN H
CAN L

RXD
TXD
GND

2
3
5RS232

Serial
Device

RS232 Interface, HW Flow Control

7
8

RTS
CTS

RTS
CTS

7
8

CDNx67

1
2

3

DATAB
DATAA

TR

1
2
3
4
5

DRAIN
VDC+
VDC-
CAN H
CAN L

DATAB
DATAA

RS485
Serial

Device

Simple RS485 Interface

120

Connect pins 2 & 3
to terminate cable

CDNx67

1
2
3

RXB
RXA
TR

1
2
3
4
5

DRAIN
VDC+
VDC-
CAN H
CAN L

TX B
TX A

RS422
Serial

Device

RS422 4-Wire Interface

120

RX A
RX B

4
5
6
7
8

LOOP
LOOP
TXB
TXA
TR2

120

Connect pins 2 & 3 (RX) and
pins 7 & 8 (TX) to terminate cables.
Connect pins 4 & 5.

MKS Instruments, Inc. D.I.P. Products Group 8

CDN36X User Manual revision 1.30

Chapter 3 – Theory of Operation

This chapter describes how the CDN36X gateway operates. You should have a working
knowledge of DeviceNet and asynchronous serial communications before continuing. The Open
DeviceNet Vendors Association (www.odva.com) is a good source for general DeviceNet
information. Refer to your serial device documentation for its protocol information.

Gateway Operation
The CDN36X gateway receives asynchronous serial messages over its serial channel, converts
them to data values, and returns the values as input data to the DeviceNet master. The gateway
receives output data from the DeviceNet master, converts them into serial messages, and
transmits the messages out its serial channel. The following diagram shows the major gateway
components.

Gateway Core
• microcontroller
• RAM
• Flash ROM

DC:DC Power Conversion
• 24VDC DeviceNet power input
• VDC for Core & DeviceNet channel
• isolated VDC for serial channel

DeviceNet Channel
• 24VDC power
• communications

Serial Channel
• c
• flow control

ommunications

5-pin male
micro connector

Male DB9
connector

Serial Stream Object Serial Transmit Object
(up to 8 Instances)

Serial Receive Object
(up to 8 Instances)

Devicenet I/O Response
input data

serial
messages

DeviceNet Object
or Rotary Switches

DeviceNet I/O Command
output data

Configures the DeviceNet
interface baud rate and
MAC ID address.

Converts output data from
DeviceNet master to message
packet. Transmits message
packet out the serial channel.

Converts received message
packet to input data. Input
data returned to DeviceNet
master.

Configures the serial channel.
Scans channel for valid message
packets, which are passed to
Serial Receive Object instances.

MKS Instruments, Inc. D.I.P. Products Group 9

CDN36X User Manual revision 1.30

DeviceNet Object Model
The DeviceNet Specification defines an Object Model that consists of Objects and Attributes.
An Object is a predefined software process, and an Object Attribute is a data value used or
created by that process. An Object can have multiple Instances, or the same process operating
with different sets of Attributes or data values. For the purpose of this document, an Object
Instance is an independent program or process, and its Attributes are configuration parameters
and data values that are unique to that specific Object Instance.

The CDN36X gateway has eight different Object Classes, or types. Five are standard objects
defined by the DeviceNet Specification (Identity, Router, DeviceNet, Assembly, Connection).
Three are specific objects defines for the CDN36X gateway (Serial Stream, Serial Receive,
Serial Transmit). The Serial Stream Object configures the serial channel, and scans the incoming
serial stream for valid message packets. The Serial Receive Object processes the received
message packet, converts it into input data, and returns it to the DeviceNet master. The Serial
Transmit Object receives output data from the DeviceNet master, converts it into a message
packet, and transmits it out the serial channel. You can configure up to 8 Instances each for the
Serial Receive Object and Serial Transmit Object. Chapter 5 contains detailed information on
each DeviceNet object class.

DeviceNet Interface
The CDN36X gateway operates as a DeviceNet slave. It supports Explicit Messages, Polled I/O
Messages, and Change-of-State (COS) I/O Messages of the predefined master/slave connection
set. The Explicit Unconnected Message Manager (UCMM) is not supported.

The I/O Messaging process consists of the DeviceNet master sending output data to the
CDN36X in the form of a Poll/COS Command Message, and the CDN36X returning input data
to the DeviceNet master in a Poll/COS Response Message. The difference between Poll and
Change-of-State is Polled I/O Messaging is initiated by the DeviceNet master and responded to
by the slave device. Change-of-State I/O Messaging is initiated by changes to the master’s
output data values or the slave’s input data values, causing the master or slave to immediately
transmit its new output or input data when it changes. Please refer to DeviceNet Specification
for detailed information on Polled I/O and Change-of-State I/O Messaging.

The output and input data bytes are typically mapped into data files inside the DeviceNet master.
These data files are exchanged with the user application program, which acts upon the received
input data and writes new output data to the DeviceNet master.

MKS Instruments, Inc. D.I.P. Products Group 10

CDN36X User Manual revision 1.30

Input File Inputs

DeviceNet I/O Response
input data Receive

Message Packet

Outputs
Output File DeviceNet I/O Command

output data Transmit
Message Packet

 DeviceNet

Master

CDN36X

Serial
Device

Gateway

 Application

Program

DeviceNet network

The first 2 output data bytes received from the DeviceNet master contain synchronization bits for
the gateway transmit and receive operations. The remaining output data bytes contain serial
message data to be transmitted out the serial channel. Up to 8 different output data values can be
sent in an I/O Command Message, one for each enabled Serial Transmit Object Instance.

The first 2 input data bytes sent from the gateway contain synchronization bits for the gateway
transmit and receive operations. The remaining input data bytes contain serial message data that
has been received and processed by the gateway. Up to 8 different input data values can be
returned in an I/O Response Message, one for each enabled Serial Receive Object Instance.

The following diagram shows how the gateway’s input and output data bytes map into the
DeviceNet I/O Response and I/O Command Messages. The diagram includes all 8 Serial
Receive Object Instances and 8 Serial Transmit Object Instances. If an instance is not enabled, its
data bytes are not mapped or present in the corresponding I/O Message. The total number of
input or output data bytes required for each Instance is defined by its configuration.

The gateway supports a maximum of 128 data bytes for all 8 Serial Receive Object Instances and
128 bytes for all 8 Serial Transmit Object Instances, regardless of whether an instance is enabled
or not. Unused instances should have their data size set to the smallest number of bytes.

MKS Instruments, Inc. D.I.P. Products Group 11

CDN36X User Manual revision 1.30

DeviceNet Master Mapping of DeviceNet I/O Command and I/O Response Data

DeviceNet Master Outputs DeviceNet I/O Command Message Data

output bytes
TX Toggle

Byte
RX Ack

Byte
STO Inst 1
TX Data

STO Inst 2
TX Data

STO Inst 3
TX Data

STO Inst 4
TX Data

STO Inst 5
TX Data

STO Inst 6
TX Data

STO Inst 7
TX Data

STO Inst 8
TX Data

output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte
output byte

output bytes TX Toggle Byte: bits 0-7 contains Transmit Toggle bits from Serial Transmit Object Instances 1-8 respectively.
RX Ack Byte: bits 0-7 contain Receive Acknowledge bits from Serial Receive Object Instances 1-8 respectively.
STO Inst = Serial Transmit Object Instance
TX Data = Serial Transmit Object Transmit Data attribute

DeviceNet Master Inputs DeviceNet I/O Response Message Data

input bytes
TX Ack

Byte
RX Toggle

Byte
SRO Inst 1
RX Data

SRO Inst 2
RX Data

SRO Inst 3
RX Data

SRO Inst 4
RX Data

SRO Inst 5
RX Data

SRO Inst 6
RX Data

SRO Inst 7
RX Data

SRO Inst 8
RX Data

input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte
input byte

input bytes TX Ack Byte: bits 0-7 contain Transmit Acknowledge bits from Serial Transmit Object Instances 1-8 respectively.
RX Toggle Byte: bits 0-7 contains Receive Toggle bits from Serial Receive Object Instances 1-8 respectively.
SRO Inst = Serial Receive Object Instance
RX Data = Serial Receive Object Receive Data attribute

MKS Instruments, Inc. D.I.P. Products Group 12

CDN36X User Manual revision 1.30

Serial Channel Interface
The CDN36X serial channel consists of an asynchronous serial transmitter and receiver. The
serial interface is configured and controlled by the Serial Stream Object, Serial Receive Object,
and Serial Transmit Object.

Serial Stream Object
The Serial Stream Object attributes configure the serial channel’s baud rate, number of data bits
and stop bits, parity, and flow control. This configuration applies to both the serial transmitter
and receiver. The gateway has separate 128-byte serial transmit and receive FIFO buffers,
allowing full duplex operation when supported by the physical layer media.

The Serial Stream Object also scans incoming serial data for valid message packets. A message
packet is determined by one of three Delimiter modes. List mode searches for Pre-Delimiter and
Post-Delimiter byte strings at the beginning and end of a message. Length mode captures a
specific number of message bytes, defined by Packet Length. Timeout mode uses an inter-byte
delay (Packet Timeout) to signal the end of a message. When a message packet is received, it is
processed by all enabled Serial Receive Object Instances. The following examples show the
three Serial Stream Object Delimiter modes.

 0x45 0x62 0x02 0x31 0x32 0x32 0x42 0x45 0x03 0x0D 0x11 <delay> 0x43 0x56 … Incoming data stream

 0x02 0x31 0x32 0x32 0x42 0x45 0x03 0x0D List Mode (delimiters)

Pre-Delimiter Message Packet Post-Delimiter

0x45 0x62 0x02 0x31 0x32 0x32 0x42 0x45Length Mode (fixed #bytes)

Message Packet Packet Length = 8

0x45 0x62 0x02 0x31 0x32 0x32 0x42 0x45 0x03 0x0D 0x11 Timeout Mode (inter-byte delay)
Packet Timeout = 100 msec Message Packet

MKS Instruments, Inc. D.I.P. Products Group 13

CDN36X User Manual revision 1.30

Serial Receive Object
The Serial Receive Object processes the Message Packet bytes, converting them into an input
data value that is returned to the DeviceNet master in an I/O Response Message. The Message
Packet bytes can be converted into a Short_String data type (byte array, with 1st byte = length).
ASCII characters within the Message Packet representing a numerical value can also be
converted into signed or unsigned integer or real number data types. The Serial Receive Object
can be configured to search for Pre-String and/or Post-String byte strings at the beginning and/or
end of the desired data bytes. The data bytes framed by the Pre-String and Post-String bytes are
then converted into a Short_String, integer, or real number. The following examples show how
the Serial Receive Object can be configured to process a Message Packet.

Pre-String Data Post-String

Received Message Packet

other bytes other bytes

 ‘VALUE = 100 F’ Message Packet Bytes (ASCII)

1) Short_String
data size = 14
Use Data Field

2) Short_String
data size = 5
Use Data Field

3) Short_String
data size = 4
Use Pre-String
Use Data Field
Use-Post-String

4) Integer (USINT)
data size = 1
Use Pre-String
Use Data Field
Use-Post-String

13, ‘VALUE = 100 F’ 4, ‘VALU’ 8, ‘VALUE = ‘ 3, ‘100’ 2, ‘ F’ 8, ‘VALUE = ‘ 0x64 2, ‘ F’

You can configure up to 8 Serial Receive Object Instances, allowing you to process a received
message packet against 8 different filters. Each enabled Instance parses through the message
packet, consuming bytes based on its configuration. When an Instance is finished, the remaining
message packet bytes are passed to the next enabled Instance. The Serial Receive Object
sequentially processes a message packet in order of Instance number, starting with Instance 1.
The processing continues until either all message packet bytes have been consumed or all the
enabled Instances are done. If an Instance cannot find a string of message bytes that matches its
configuration, no message packet bytes are consumed and are passed to the next Instance. The
following examples show how the Serial Receive Object Instances process a received message
packet.

 Received Message Packet

unused bytes unused bytes unused bytesData Data Pre-StringPost-StringDataPost-StringData Pre-String

Instance 1 bytes Instance 2 bytes Instance 3 bytes Instance 4 bytes

MKS Instruments, Inc. D.I.P. Products Group 14

CDN36X User Manual revision 1.30

Example 1
Serial Receive Object instances 1, 4, 5, 7 are configured to use portions of a received message packet.

1) Serial Stream Object configured to capture a 15

byte message packet (Length Mode, Packet Length
= 15).

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x452) Serial Receive Object Instance 1 configured to

convert 4 bytes into Short_String, Data Size = 5.
Short_String = [0x05 0x30 0x31 0x32 0x33]. Data

3) Serial Receive Object Instances 2 & 3 not enabled.

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x454) Serial Receive Object Instance 4 configured to
convert 2 bytes into 8-bit unsigned integer. [0x34
0x35] are ASCII chars ‘45’. Converted data = [
0x2D].

Data

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x455) Serial Receive Object Instance 5 configured to

locate 2 bytes bracketed by Pre-String ‘7’ (0x01
0x37) and Post-String ‘AB’ (0x02 0x41 0x42), and
convert them to 8-bit unsigned integer. [0x38
0x39] are ASCII chars ‘89’. Converted data =
[0x59]. Note 0x36 byte not used, but still
consumed by Instance 5.

Data Pre-String Post-String

6) Serial Receive Object Instance 6 not enabled.

0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x457) Serial Receive Object Instance 7 configured to
convert 2 bytes into Short_String, Data Size = 3.
Short_String = [0x02 0x43 0x44]. Data

8) Remaining message packet bytes are not used.

MKS Instruments, Inc. D.I.P. Products Group 15

CDN36X User Manual revision 1.30

Example 2
Serial Receive Object Instances 1 & 2 are configured to process two different ASCII message strings. Each instance
uses unique Pre-String and Post-String values to identify its message string in the message packet. Instance 1
message string = ‘VALUE = xxx U’. Instance 2 message string = ‘VAR B IS xxx’.

Serial Stream Object configured to capture a message packet delimited by STX (0x02) and ETX (0x03) characters.
Delimiter Mode = List Mode, Pre-Delimiter = 0x02, Post-Delimiter = 0x03. Delimiter characters are not saved in
the message packet.

Serial Receive Object Instance 1 configured to convert 3 ASCII bytes bracketed by Pre-String ‘VALUE = ‘ and
Post-String ‘ U’ into an 8-bit unsigned integer. Receive Mode = Use Pre-String, Use Data, Use Post-String fields.
Pre-String = [0x08, ‘VALUE = ‘], Post-String = [0x02, ‘ U’], Data Type = USINT, Conversion = Decimal.

Serial Receive Object Instance 2 configured to convert 3 ASCII bytes bracketed by Pre-String ‘VAR B IS ‘ into an
8-bit unsigned integer. Receive Mode = Use Pre-String, Use Data fields. Pre-String = [0x09 ‘VAR B IS ‘], Data
Type = USINT, Conversion = Decimal.

 Message Packet 1 = [0x02, ‘VALUE = xxx UNITS’, 0x03]
 Message Packet 2 = [0x02, ‘VAR B IS xxx’, 0x03]
 Message Packet 3 = [0x02, ‘VALUE = xxx UNITS’, ‘VAR B IS xxx’, 0x03]
 Message Packet 4 = [0x02, ‘VAR B IS xxx’, ‘VALUE = xxx UNITS’, 0x03]

‘VALUE = 100 UNITS’1) Serial Stream Object receives Message Packet 1.

Serial Receive Object Instance 1 finds matching Pre-String and Post-
String values, converts ‘100’ data field into [0x64]. ‘VALUE = 100 UNITS’

‘VALUE = 100 UNITS’Serial Receive Object Instance 2 does not find matching Pre-String field, so it

skips this message packet.

2) Serial Stream Object receives Message Packet 2. ‘VAR B IS 104’

Serial Receive Object Instance 1 does not find matching Pre-String and Post-
String values, so it skips this message packet. ‘VAR B IS 104’

Serial Receive Object Instance 2 finds matching Pre-String value, converts
‘104’ data field into [0x68].

‘VAR B IS 104’

3) Serial Stream Object receives Message Packet 3. ‘VALUE = 122 UNITSVAR B IS 080’

Serial Receive Object Instance 1 finds matching Pre-String and Post-String
values, converts ‘122’ data field into [0x7A]. ‘VALUE = 122 UNITSVAR B IS 080’

Serial Receive Object Instance 2 finds matching Pre-String value, converts
‘080’ data field into [0x50]. Note that Instance 2 consumes the bytes ‘NITS’
while parsing for its Pre-String.

‘VALUE = 122 UNITSVAR B IS 080’

‘VAR B IS 080VALUE = 122 UNITS’4) Serial Stream Object receives Message Packet 4.

Serial Receive Object Instance 1 finds matching Pre-String and Post-String
values, converts ‘122’ data field into [0x7A]. ‘VAR B IS 080VALUE = 122 UNITS’

‘VAR B IS 080VALUE = 122 UNITS’Serial Receive Object Instance 2 does not find matching Pre-String value, so

skips this message packet. Note that Instance 1 consumes the Instance 2
message string bytes when parsing for its message string.

MKS Instruments, Inc. D.I.P. Products Group 16

CDN36X User Manual revision 1.30

Serial Transmit Object
The Serial Transmit Object receives an output data value from the DeviceNet master in the I/O
Command Message. The object converts the output data into a serial message packet to transmit
out the serial channel. The output data format can be a Short_String (byte array, with 1st byte =
length), a signed or unsigned integer, or a real number data type. An integer or real number can
be converted into ASCII characters that represent the numerical value before it is transmitted.
String1 and String2 character strings can be placed before and/or after the converted data in the
message packet, allowing you to build and transmit complex messages. The following examples
show how the Transmit Serial Object can be configured to convert a data value into a message
packet.

You can configure up to 8 Serial Transmit Object Instances, allowing you to transmit up to 8
different serial messages. You can also build complex messages by linking together each
instance’s message packet. The Serial Transmit Object sequentially processes the I/O Command
Message output data in order of instance number, starting with Instance 1. Each enabled
instance converts its output data bytes into a message packet that is loaded into the transmit
buffer. The following examples show how the Serial Transmit Object Instances create
messages.

Instance Message Packet

String1 Data String2 String1 String2

0x03 0x41 0x42 0x43

‘ABC’

1) Output Data Bytes

Short_String, data size = 4.
Use Data Field.
[0x41 0x42 0x43] = ‘ABC’

Transmitted Message Packet

0x08

‘8’

2) Output Data Byte

USINT integer, data size = 1,
width = 1, conversion = D.
Use Data Field.
[0x08] ‘8’ (0x38)

Transmitted Message Packet

0xFF 0x47

‘VAL = -185 F’

3) Output Data Bytes

INT integer, data size = 2,
width = 4, conversion = D.
Use String1 Before [0x06, ‘VAL = ‘].
Use Data Field.
Use String2 After [0x02, ‘ F’].
[0xFF 0x47] = -185 ‘-185’

Transmitted Message Packet

Transmitted Message

String1 Before Data String2 After Data String2 AfterData String1 After String2 Before

Instance 1
message packet

Instance 2
message packet

Instance 3
message packet

Instance 4
message packet

MKS Instruments, Inc. D.I.P. Products Group 17

CDN36X User Manual revision 1.30

Example 1
Serial Transmit Object Instances 1 & 2 configured to transmit two different serial messages.

1) Serial Transmit Object Instance 1 configured to convert a Short_String data output value into message bytes.

 DeviceNet output bytes = [0x04 0x30 0x31 0x32 0x33]
 Transmitted message packet = [‘0123’]

2) Serial Transmit Object Instance 2 configured to convert an 8-bit unsigned integer (USINT) data output value into

3 ASCII characters. String1 ‘A EQUALS ‘ is placed before data, and String2 ‘ UNITS’ is placed after data.

DeviceNet output byte = [0x10]
Transmitted message packet = [‘A EQUALS 016 UNITS’]

Example 2
Serial Transmit Object Instances 1, 2, 3 are configured to transmit a complex serial message using 3 output data
values.

1) Serial Transmit Object Instance 1 Transmit Mode = Use String1 Before, Use

Data, Use String2 After. String1 = [0x02, ‘V ‘]. String2 = [0x01, ‘ =’].
Data Type = USINT, width = 1, conversion = D with no leading zeros.
Converts output data byte [0x08] into one ASCII char [0x38].

STX, ‘V8 = ’

2) Serial Transmit Object Instance 2 Transmit Mode = Use Data. Data Type =

USINT, width = 3, conversion = D with leading zeros. Converts output data
byte [0x22] into three ASCII chars [0x30 0x33 0x34].

‘034’

3) Serial Transmit Object Instance 3 Transmit Mode = Use String1 Before, Use

Data, Use String2 After. String1 = [0x04, ‘ REF ‘]. String2 = [0x01, 0x03].
Data Type = USINT, width = 2, conversion = D with leading zeros. Converts
output data byte [0x13] into two ASCII chars [0x31 0x39].

‘ REF 19’, ETX

The three message packets are transmitted sequentially, so complete message is: STX, ‘V8 = 034 REF 19’ ETX

Asynchronous Serial Communictaion
Devices communicating on an asynchronous serial link exchange information one bit at a time.
Each bit is transmitted for a specific period of time, defined by the baud rate. Devices use
internal timing circuitry to measure the baud rate. There is no clocking signal between devices
to synchronize the serial data flow, hence the term asynchronous serial communications.

Serial data bits are organized into bytes. When a data byte is asynchronously transmitted, it is
preceded by a start bit, followed by the data bits, an optional parity bit, and one or more stop bits.
There can be a variable transmission delay between successive serial data bytes, since each byte
is framed by its own start and stop bits. The receiver starts saving serial bits after is receives a
valid start bit (0), and stops when it receives the expected number of stop bits (1). The data
byte’s least-significant bit is transmitted first (data bit 0), and the most-signficant bit is
transmitted last (data bit N).

[start bit] [data bit 0] [data bit 1] … [data bit N] [optional parity bit] [stop bit(s)]

MKS Instruments, Inc. D.I.P. Products Group 18

CDN36X User Manual revision 1.30

The parity bit is used to detect single-bit errors in the transmission. The parity bit is
automatically calculated and inserted by the transmitter. The receiver calculates the parity of an
incoming byte, and compares it to the parity bit sent by the transmitter. If the two bit values do
not match, then at least one serial bit value was corrupted during transmission.

Flow control allows the receiving device to regulate the rate of incoming data. Hardware flow
control uses RTS/CTS signals between the devices to control the rate of transmission. Software
flow control uses serial characters XON/OFF to control the rate. Flow control helps protect
against lost data, if the receiving device cannot store incoming data fast enough, or if the
receiving device's buffer is full and cannot accept more data until it processes existing data.

Data Conversion
The CDN36X gateway can either pass through received serial message bytes to your application,
or pre-process an ASCII string into a numerical value. The gateway can transmit a string of
message bytes sent by the application, or it can convert a numerical value into an ASCII string to
be transmitted. Using the gateway’s data conversion feature offloads this cumbersome task from
your application program, especially if it is a PLC ladder-logic application. It also reduces the
required number of DeviceNet input and output bytes, since converted values instead of entire
message strings are transferred over DeviceNet.

The gateway conversion process supports the following data types:

Data Type Data Size Value Range
SINT signed 8-bit integer 1 -128 to 127
INT signed 16-bit integer 2 -32768 to 32767
USINT unsigned 8-bit integer 1 0 to 255
UINT unsigned 16-bit integer 2 0 to 65535
REAL 32-bit floating point 4 +1.175E-38 to +3.4028E+38
Short_String (byte array) 2 to 128 string of bytes, 1st byte defines length

The Serial Transmit Object and Serial Receive Object Instances’ attributes configure the
conversion process for transmitted and received messages. The Data Type attribute selects the
desired data type for an instance’s Receive Data or Transmit Data value. The Data Size attribute
represents the number of bytes used by the selected data type. You must select the maximum
data size expected for your application if using the Short_String data type. The Short_String
byte array format is a length byte followed by data bytes, so you must add one to the expected
number of bytes. The table above defines the data size for all other data types.

The CDN36X gateway supports a maximum of 128 bytes for the 8 Serial Transmit Object
Instances’ Transmit Data values and 128 for the 8 Serial Receive Object Instances’ Receive Data
values, regardless of whether an instance is enabled or not. Configure all unused instances to
USINT or SINT Data Type, because it has a 1 byte Data Size.

The Width attribute defines the number of ASCII bytes (1 to 16) used to represent a real or
integer number. For received messages, Width defines the number of ASCII bytes that will be
converted into a number. For transmitted messages, Width defines how many ASCII bytes will
be generated to represent the number. The Width value must include ASCII sign (+/-), exponent
(E), and decimal point (.) characters. Width is not used for Short_String data types.

MKS Instruments, Inc. D.I.P. Products Group 19

CDN36X User Manual revision 1.30

The Precision attribute is only used for transmitted messages. It defines the number of digits (1
to 6) after the decimal point for a floating-point number. The gateway will automatically add
trailing zeros to the converted number if needed. Precision is only used for the REAL data type.

The following examples show how to calculate the Data Size, Width, and Precision attributes for
the different Data Types. Remember to add a length byte to the Short_String Data Size.

 Data Type ASCII chars Data Size Width Precision

SINT ‘-12’ 1 3 not used
INT ‘-12345’ 2 6 not used
USINT ‘123’ 1 3 not used
UINT ‘1234’ 2 4 not used
REAL ‘1.23E+4’ 4 7 2
REAL ‘-1.1234E-12’ 4 11 4
Short_String ‘ABCDEF’ 7 (length=6) not used not used

The Conversion attribute is different for Serial Receive Object and Serial Transmit Object. For
the Serial Receive Object, the Conversion attribute denotes if the ASCII bytes represent a
decimal integer or a hexadecimal integer. If decimal is selected, then the gateway converts the
ASCII bytes as a decimal number. If hexadecimal is selected, then the gateway converts the
ASCII bytes as a hex number.

‘1234’ If decimal, integer = 1234.
‘1234’ If hexadecimal (0x1234), integer = 4660.

For the Serial Transmit Object, the Conversion attribute also denotes if the ASCII bytes
represent a decimal or hexadecimal integer. If decimal is selected, then the gateway converts the
integer into a decimal ASCII representation. If hexadecimal is selected, then the gateway
converts the integer into a hex ASCII representation.

Integer = 1234 If decimal, ASCII representation = ‘1234’
Integer = 1234 If hexadecimal, ASCII representation = ‘04D2’

The Serial Transmit Object Conversion attribute can also be used to insert leading zeros into a
converted number. If the ASCII representation of a number contains fewer characters than the
selected Width, then leading zeros can added in front of the number.

Integer = 1234, Width = 7 If leading zeros enabled, ASCII representation = ‘0001234’
Integer = 1234, Width = 7 If leading zeros disabled, ASCII representation = ‘1234’

The following examples show a variety of different gateway data conversions for received and
transmitted data values.

MKS Instruments, Inc. D.I.P. Products Group 20

CDN36X User Manual revision 1.30

Example 1 – Data Type = Short_String, Data Size = 9
Received ASCII data is ‘12345678’. The Serial Receive Object Instance coverts this to 9 bytes of Receive Data,
[0x08, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38] or [0x08, ‘12345678’]. The first byte defines the
Short_String length as 8 bytes.

Example 2 – Data Type = Short_String, Data Size = 5
Received ASCII data is ‘12345678’. The Serial Receive Object Instance converts this to 4 bytes of Receive Data,
[0x04, 0x31, 0x32, 0x33, 0x34] or [0x04, ‘1234’]. The first byte defines the Short_String length as 4 bytes. With
Data Size = 5, only the first 4 data bytes are used.

Example 3 – Data Type = Short_String, Data Size = 12
Received ASCII data is ‘ABCDEFGH’. The Serial Receive Object Instance converts this to 9 bytes of Receive
Data, [0x08, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48] or [0x08, ‘ABCDEFGH’]. The first byte defines the
Short_String length as 8 bytes. Even though Data Size = 12, only the 8 received bytes are returned.

Example 4 – Data Type = SINT, Width = 5, Conversion = Hex
Received ASCII data is ‘18’. The Serial Receive Object Instance converts this to 1 byte of Receive Data, [0x18].

Example 5 – Data Type = INT, Width = 4, Conversion = Decimal
Received ASCII data is ‘-25’. The Serial Receive Object Instance converts this to 2 bytes of Receive Data, [0xFF
0xE7]. The ASCII ‘-25’ decimal number converts to 0xFFE7.

Example 6 – Data Type = REAL, Width = 13
Received ASCII data is ‘-1.2345E-16’. The Serial Receive Object Instance converts this to 4 bytes of Receive Data,
[0xNN, 0xNN, 0xNN, 0xNN]. This is the 32-bit floating-point representation for ‘–1.2345E-16’.

Example 7 – Data Type = REAL, Width = 7
Received ASCII data is ‘-1.2345E-16’. The Serial Receive Object Instance converts this to 4 bytes of Receive Data,
[0xNN, 0xNN, 0xNN, 0xNN]. This is the 32-bit floating-point representation for ‘-1.2345’. With Width = 7, only
the first 7 ASCII bytes are converted.

Example 8 – Data Type = Short_String, Data Size = 8
Transmit Data is [0x08, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38]. The Serial Transmit Object Instance
converts this into 8 ASCII bytes ‘12345678’. Note the first Transmit Data byte defines the Short_String length in
bytes. This length byte is not transmitted.

Example 9 – Data Type = SINT, Width = 5, Conversion = Hex, Leading Zeros
Transmit Data is [0x18]. The Serial Transmit Object Instance converts this into 5 ASCII bytes ‘00018’. Leading
zeros are added to match the Width = 5.

Example 10 – Data Type = INT, Width = 6, Conversion = Decimal, No Leading Zeros
Transmit Data is [0xFF 0xE7]. The Serial Transmit Object Instance converts this into the ASCII string
‘-25’. The Width is 3 bytes greater than ‘-25’, but leading zeros are not selected.

Example 11 – Data Type = REAL, Width = 13, Precision = 6, Conversion = No Leading Zeros
Transmit Data is [0xNN 0xNN 0xNN 0xNN], representing the real number –1.2345E-16. The Serial Transmit
Object Instance converts this into the ASCII string ‘-1.234500E-16’. The Precision is 2 bytes greater than needed,
so trailing zeros are added after the decimal point.

MKS Instruments, Inc. D.I.P. Products Group 21

CDN36X User Manual revision 1.30

Serial Receive Example
The following example shows how the CDN36X gateway captures a serial message packet,
processes the packet, converts the data into a number, and returns it as a DeviceNet input value.

The gateway’s Serial Stream Object is configured for the List delimiter mode, with a one-byte
Pre-Delimiter string and a two-byte Post-Delimiter string. An incoming message must have
matching delimiter strings to be accepted as a valid message packet.

The Serial Receive Object Instance 1 has the Use Pre-String, Use Data, and Use Post-String
options selected for its Receive Mode. The message packet must have matching Pre-String and
Post-String values before Instance 1 will process the data. The Data Type is configured for
SINT, with a Width of 2 and Conversion set for decimal. The data field’s two-byte ASCII string
represents a decimal number, which Instance 1 converts into an 8-bit signed integer. The
converted number is saved as the instance’s new Receive Data value. The instance also toggles
its Receive Toggle bit to signal the reception of new data.

When the gateway receives a DeviceNet I/O Command Message, it builds and sends a
DeviceNet I/O Response Message. The Transmit Acknowledge bits from Serial Transmit Object
instances 1-8 are loaded in the first byte. The Receive Toggle bits from Serial Receive Object
instances 1-8 are loaded in the second byte. The Receive Data values from all enabled Serial
Receive Object instances are loaded in the rest of the I/O Response data field. The I/O Response
Message is sent to the DeviceNet master, where the data values are stored as DeviceNet inputs.

The user application receives the updated DeviceNet inputs. Program logic recognizes the state
change in the Serial Receive Object Instance 1 Receive Toggle bit, indicating that Instance 1 has
sent new data in the I/O Response Message. To acknowledge that it has read the new data, the
user application toggles the Instance 1 Receive Acknowledge bit, which gets sent back to the
gateway in the next I/O Command Message. When the Serial Receive Object Instance 1 gets the
updated Receive Acknowledge bit, it can then process the next incoming serial message.

MKS Instruments, Inc. D.I.P. Products Group 22

CDN36X User Manual revision 1.30

Serial Receive Process

STX ‘TEMP = 64 C’ CR ETX I/O RESPONSE MESSAGE DeviceNet
Master

CDN36X
Gateway

Serial
Device

 I/O COMMAND MESSAGE

1) Serial Device transmits message.

Serial Data (ASCII) <STX> T E M P <SP> = <SP> 6 4 <SP> C <CR> <ETX>
Serial Data (hex) 0x02 0x54 0x45 0x4D 0x50 0x20 0x3D 0x20 0x36 0x34 0x20 0x43 0x0D 0x03

2) Serial Stream Object receives message and

loads into rx buffer without delimiters.
Delimiter Mode = List 0x54 0x45 0x4D 0x50 0x20 0x3D 0x20 0x36 0x34 0x20 0x43
Pre-Delimiter = [0x01 0x02]
Post-Delimiter = [0x02 0x0D 0x03]

3) Serial Receive Object Instance 1 processes

message packet.
Pre-String = [0x07, ‘TEMP = ’] 0x54 0x45 0x4D 0x50 0x20 0x3D 0x20 0x36 0x34 0x20 0x43
Data = [‘64’]
Post-String = [0x02, ‘ C’]

4) Instance 1 converts ASCII data to Data Type value.

Data Type = SINT, Width = 2, Conversion = D 0x36 0x34

0x36 0x34 ⇒ ‘64’⇒ 64 decimal ⇒ 0x40 hex 0x40

5) Instance 1 Receive Data value sent to DeviceNet master.
I/O RESPONSE MESSAGE TA RT=xxxxxxx1 0x40 SRO3 Data SRO6 Data
TA = Transmit Acknowledge bits
RT = Receive Toggle bits (Instance 1 bit toggled 0-1)
0x40 = Instance 1 Receive Data

6) Application acknowledges reading new Receive Data.

I/O COMMAND MESSAGE TT RA=xxxxxxx1 STO Data …
TT = Transmit Toggle bits
RA = Receive Acknowldege bits (Instance 1 bit set to 1)

MKS Instruments, Inc. D.I.P. Products Group 23

CDN36X User Manual revision 1.30

Serial Transmit Example
The following example shows how the CDN36X gateway receives DeviceNet output data,
converts the data into an ASCII string, then builds and transmits a serial message using the
converted string.

The gateway receives an I/O Command Message from the DeviceNet master. The first byte in
the I/O Command data field contains the Transmit Toggle bits for Serial Transmit Object
instances 1-8. The second byte contains the Receive Acknowledge bits for Serial Receive Object
instances 1-8. The remaining data bytes are the Transmit Data for the enabled Serial Transmit
Object instances. In this I/O Command, Serial Transmit Object Instance 1 receives a toggled
Transmit Toggle bit, indicating the application has sent a new Transmit Data value to Instance 1.

Serial Transmit Object Instance 1 is configured for SINT Data Type, with Width of 2 and
Conversion set for decimal with no leading zeros. Instance 1 converts its new Transmit Data
value 0x52 into the ASCII string ‘82’. The Instance’s Transmit Mode attribute is set for String1
Before, Data, and String2 After. The resulting serial message that gets loaded into the gateway
transmit buffer consists of [String1, ‘82’, String2]. The message will be sent when the serial
channel transmitter is available.

When the new message is loaded in the transmit buffer, Instance 1 toggles its Transmit
Acknowledge bit, indicating that is it ready to receive the next Transmit Data value. The updated
Transmit Acknowledge bit is sent to the application in the next DeviceNet I/O Response
Message. There may have been subsequent DeviceNet I/O message transactions in between the
time Instance 1 received the new Transmit Data value and the time it toggles its Transmit
Acknowledge bit.

Serial Transmit Process

STX ‘SET T = 82 C’ CR ETX

I/O RESPONSE MESSAGE

I/O COMMAND MESSAGE

DeviceNet
Master

CDN36X
Gateway

Serial
Device

1) Transmit Data received from DeviceNet master.

I/O COMMAND MESSAGE TT=00000001 RA 0x52 STO4 Data STO7 Data
TT = Transmit Toggle bits (Instance 1 bit toggled 0-1)
RA = Receive Acknowledge bits
0x52 = Instance 1 Transmit Data

2) Serial Transmit Object Instance 1 converts data to ASCII.

Data Type = SINT, Width = 2, Conversion = D 0x52

0x52 hex 82 decimal ‘82’ or [0x38 0x32] 0x38 0x32

3) Instance 1 builds message & loads into transmit buffer.

String1 = [0x09 0x02 ‘SET T = ‘] 0x02 0x53 0x45 0x54 0x20 0x54 0x20 0x3D 0x20 0x38 0x32 0x20 0x43 0x0D 0x03
Data = [‘82’]
String2 = [0x04 ‘ C’ 0x0D 0x03]

4) Gateway transmits message.

Serial Data Stream (hex bytes) 0x02 0x53 0x45 0x54 0x20 0x54 0x20 0x3D 0x20 0x38 0x32 0x20 0x43 0x0D 0x03
Serial Data Stream (ASCII) <STX> S E T <SP> T <SP> = <SP> 8 2 <SP> C <CR> <ETX>

MKS Instruments, Inc. D.I.P. Products Group 24

CDN36X User Manual revision 1.30

Synchronization
There are four independent processes operating in a CDN36X gateway application. The first
process is the exchange of input and output data between the user application program and the
DeviceNet master. The second process is the exchange of input and output data between the
gateway and DeviceNet master, using Polled or Change-of-State I/O messaging. The third
process is receiving serial messages and converting it to input data. The fourth process is
converting output data and transmitting it as serial messages. To ensure that no information is
lost between the gateway’s serial channel and the user application program, the CDN36X
incorporates a receive synchronization feature and a transmit synchronization feature.

 I/O Exchange between

DeviceNet Master and
Application

I/O Exchange between
CDN36X gateway and

DeviceNet Master

 Convert serial message

into Input Data Input File Inputs
 DeviceNet I/O Response

Receive Synchronization
The gateway receive synchronization feature is optional for each Serial Receive Object instance.
It is enabled by the Sync Enable attribute. When enabled, the instance will not process a new
message packet until the last Receive Data value has been read and acknowledged by the
application program. When a Serial Receive Object Instance updates its Receive Data value, it
also toggles its Receive Toggle bit to indicate a new data value is available. The user application
monitors the Receive Toggle bit, and reads the Instance’s Receive Data value when the bit
changes state. Once the application has read and processed or stored the new Receive Data
value, it acknowledges receipt by setting the Instance’s Receive Acknowledge bit equal to the
Receive Toggle bit. The Instance is now able to start processing the next serial message packet.
The Receive Toggle and Receive Acknowledge bits are set to 0 at power-up.

CDN36X
Gateway

DeviceNet
Master

Application
Program

Output File

Serial
Device

DeviceNet network

Outputs

Receive
Message Packet

Transmit
Message Packet

DeviceNet I/O Command
output data

input data

Convert Output Data
into serial message

MKS Instruments, Inc. D.I.P. Products Group 25

CDN36X User Manual revision 1.30

The Receive Acknowledge bits are bit-mapped into the second byte of the DeviceNet I/O
Command Message. Serial Receive Object Instance 1 Receive Acknowledge bit maps to bit 0,
Instance 2 maps to bit 1, etc. The Receive Toggle bits are bit-mapped into the second byte of the
DeviceNet I/O Response Message. Serial Receive Object Instance 1 Receive Toggle bit maps to
bit 0, Instance 2 maps to bit 1, etc. This bit mapping makes it easy for ladder-logic applications
to implement the gateway’s receive-synchronization process. The following 2 ladder-logic rungs
show how an application program can monitor for an instance’s Receive Toggle, copy the new
Receive Data value to save it, and set the Receive Acknowledge bit equal to the Receive Toggle
bit. These rungs should be duplicated for each enabled Serial Receive Object instance.

| bit = 1 bit = 0 |
------[RX Toggle]-------[/RX Ack]--------------------	------------(copy RX Data to variable)--------
	--------------------(RX Ack)---------------------
bit =1	
bit = 0 bit = 1	
------[/RX Toggle]------[RX Ack]---------------------	------------(copy RX Data to variable)--------
	--------------------(/RX Ack)--------------------
bit =0	

Transmit Synchronization
The gateway transmit synchronization is always enabled for each Serial Transmit Object
instance. An instance will not process its Transmit Data output bytes until its Transmit Toggle
bit changes state. When the user application sends new Transmit Data to an instance, is must
toggle that instance’s Transmit Toggle bit. This enables the Instance to process the new output
value and load the resulting serial message into the transmit buffer. When the message is loaded
for transmission, the Instance acknowledges transmission by setting its Transmit Acknowledge
bit equal to the Transmit Toggle bit. The application can now send the next Transmit Data
value. The Transmit Toggle and Transmit Acknowledge bits are set to 0 at power-up.

The Transmit Toggle bits are bit-mapped into the first byte of the DeviceNet I/O Command
Message. Serial Transmit Object Instance 1 Transmit Toggle bit maps to bit 0, Instance 2 maps
to bit 1, etc. The Transmit Acknowledge bits are bit-mapped into the first byte of the DeviceNet
I/O Response Message. Serial Transmit Object Instance 1 Transmit Acknowledge bit maps to bit
0, Instance 2 maps to bit 1, etc. This bit mapping makes it easy for ladder-logic applications to
implement transmit synchronization. The following 2 ladder-logic rungs show how an
application program writes an instance’s Transmit Data value, toggles the Transmit Toggle bit,
and waits for the Transmit Acknowledge bit to equal the Transmit Toggle bit before writing the
next Transmit Data value. These rungs should be duplicated for each enabled Serial Transmit
Object instance.

MKS Instruments, Inc. D.I.P. Products Group 26

CDN36X User Manual revision 1.30

| bit = 0 bit = 0 |
------[/TX Toggle]-------[/TX Ack]-------------------	-----------(copy variable to TX Data)---------
	--------------------(TX Toggle)-----------------
bit =1	
bit = 1 bit = 1	
------[TX Toggle]-------[TX Ack]--------------------	------------(copy variable to TX Data)--------
	--------------------(/TX Toggle)----------------
bit =0	

MKS Instruments, Inc. D.I.P. Products Group 27

CDN36X User Manual revision 1.30

Chapter 4 – Gateway Configuration
This chapter describes how to configure and operate the CDN36X gateway. You configure the
gateway by reading and writing attribute values over its DeviceNet interface. There are a variety
of DeviceNet configuration tools available. Simple configuration tools use GET_ATTRIBUTE
and SET_ATTRIBUTE explicit message commands to read and write attribute values,
addressing each attribute by its Object, Instance, and Attribute numbers. This information is
contained in Chapter 5. More sophisticated configuration tools use EDS files to simplify
attribute configuration. You can configure the gateway using pull-down menus, buttons, and
data entry fields from the gateway’s Electronic Data sheet (EDS) file. Chapter 6 contains a
configuration example using the Rockwell Software RSNetworx™ program.

Configure DeviceNet Interface
Set the DeviceNet Baud Rate and MAC ID Address using the rotary switches. Configure
switches before connecting to the DeviceNet network. There is either a small triangular
indicator or white indicator on the switch. Use a small screwdriver to align that indicator with
the desired setting. Remove the CDN36X cover if necessary to access the rotary switches.

DeviceNet Baud Rate Switch
Valid settings are 125K, 250K, 500K, or PGM. When PGM is selected, the CDN36X uses the
baud rate saved in its retentive memory. To save a valid baud rate in memory, set the switch to
the desired baud rate and power up the CDN36X for a few seconds. Power down and set the
switch to PGM. You may also write to the DeviceNet Object Baud Rate attribute.

POSITION SETTING POSITION SETTING
0 125 Kbps 5 invalid
1 250 Kbps 6 invalid
2 500 Kbps 7 invalid
3 invalid 8 invalid
4 invalid 9 PGM

MAC ID Switches
The two MAC ID switches represent decimal numbers from 00 to 99. The LSB switch selects
the Ones digit and the MSB switch selects the Tens digit. Valid MAC IDs are 00 to 63. Setting
a MAC ID address greater than 63 forces the gateway to use the MAC ID saved in retentive
memory. To save a valid MAC ID in memory, set the switches to the desired MAC ID and
power up the CDN36X for a few seconds. Power down and set the switches to value greater
than 63. You may also write to the DeviceNet Object MAC ID attribute.

MSB LSB Address MSB LSB Address
0 0 to 9 00 to 09 6 4 to 9 stored address
1 0 to 9 10 to 19 7 0 to 3 stored address
2 0 to 9 20 to 29 8 0 to 9 stored address
3 0 to 9 30 to 39 9 0 to 9 stored address
4 0 to 9 40 to 49
5 0 to 9 50 to 59
6 0 to 3 60 to 63

MKS Instruments, Inc. D.I.P. Products Group 28

CDN36X User Manual revision 1.30

Power Up Gateway
Connect the gateway to a DeviceNet network to power up the gateway.

DeviceNet Status LEDs
The CDN36X gateway has two bi-color status LEDs (NET and MOD) that indicate operational
status. During power-up, the LEDs cycle through a sequence of alternating red and green. After
power-up, the NET LED should be flashing green (or solid green if allocated to a DeviceNet
master) and the MOD LED should be solid green. If this does not occur, disconnect from
DeviceNet and verify all the switch settings. See Chapter 8 for additional troubleshooting topics.

State DeviceNet Status LED (NET)
Off No power.
Flashing Red Configuration error. Check DeviceNet switch settings.
Solid Red Unrecoverable error.
Flashing Green Device not allocated to a DeviceNet master.
Solid Green Normal runtime, device allocated as a slave.

State Module Status LED (MOD)
Off No power.
Flashing Red Configuration error. Check object attribute settings.
Solid Red Unrecoverable error.
Flashing Green Not defined.
Solid Green Normal Operation.

Serial Channel Status LEDs
The gateway has two bi-color LEDs to indicate serial channel activity. The TX LED flashes
green when a packet is being transmitted. The RX LED flashes green when a packet is being
received. A fault is indicated by solid red. After power-up, both LEDs should be off.

State Transmit Status LED (TX)
Off No data being transmitted
Flashing Red Not defined
Solid Red Transmit error (parity or overrun error)
Flashing Green Data being transmitted
Solid Green Not defined

State Receive Status LED (RX)
Off No data being received
Flashing Red Not defined
Solid Red Receive error (parity or overrun error)
Flashing Green Data being received
Solid Green Not defined

MKS Instruments, Inc. D.I.P. Products Group 29

CDN36X User Manual revision 1.30

Register EDS File
If using a DeviceNet configuration tool that supports Electronic Data Sheet (EDS) files, you
should now register the gateway’s EDS file with the software. The latest EDS file versions can
be downloaded from www.mksinst.com. Select the EDS file that matches your gateway’s part
number and firmware version. Follow your configuration tool instructions to register EDS file.

MKS Instruments, Inc. D.I.P. Products Group 30

CDN36X User Manual revision 1.30

Configure Serial Channel
The Serial Stream Object attributes control the physical layer settings for the CDN36X serial
channel. These settings apply to all serial transmit and receive operations. The attributes also
configure the reception of message packets. Before you can set or change any gateway
configuration settings, make sure the gateway is not in the DeviceNet master scan list.

Serial Stream Object Instance Attributes (Class Code 64)
Number Name Data Type Value

3 Baud Rate UDINT 300, 1200, 2400, 4800, 9600, 19200 bps
4 Data Bits USINT 7, 8
5 Parity USINT 0 = no parity

1 = odd parity
2 = even parity
3 = mark
4 = space

6 Stop Bits USINT 1, 2
7 Flow Control USINT 0 = none

1 = XON / XOFF
2 = CTS / RTS

10 Delimiter Mode USINT Bit 0 – List mode
Bit 1 – Timeout mode
Bit 2 – Length mode

11 Pre-Delimiter List Short_String List mode – String of 1-9 bytes.
12 Post-Delimiter List Short_String List mode – String of 1-9 bytes.
13 Packet Timeout USINT Timeout mode – delay between received bytes (1-255 msec).
14 Packet Length USINT Length mode – Number of message bytes (1-128).
15 Serial Status USINT Bit 0 = RX buffer overrun error

Bit 1 = RX parity error
Bit 4 = TX buffer overrun error
Bit 5 = TX parity error

16 Byte Swap USINT 0 = disable.
1 = enable.

18 RS422 Mode USINT 0 = 4-wire mode (RS422 full duplex)
1 = 2-wire mode (RS485 half duplex)

20 I/O Produce Size UINT Number of data bytes returned in an I/O Response Message.
21 I/O Consume Size UINT Number of data bytes expected in an I/O Command Message.

Baud Rate – Sets the serial channel’s data or baud rate. Enter Baud Rate in bits-per-second
(bps) as a decimal number.

Data Bits – Selects the number of data bits in one serial byte. This number does not include
start, parity, or stop bits.

Parity – Selects the parity type used in the serial byte. Selecting any parity option other than
NONE adds 1 parity bit to the serial byte length.

Stop Bits – Selects the number of stop bits in one serial byte.

MKS Instruments, Inc. D.I.P. Products Group 31

CDN36X User Manual revision 1.30

Flow Control – Selects the method of flow control used across the serial interface.

NONE means there is no flow control over the serial data exchange. The transmitting device can
overflow the receiving device’s buffer.

XON/XOFF is a software flow control option. Receiving device sends an XOFF character to the
transmitting device when its buffer is full, stopping further transmission. It sends an XON
character when it can again receive data. The XOFF and XON characters are not saved as
message data.

CTS/RTS is an RS232 hardware flow control option, available only on the CDN366 gateway.
The RTS is an output and CTS is an input signal. The gateway keeps RTS active (low) when it
can receive data. It only transmits data when CTS is active (low).

Delimiter Mode – Defines how the gateway determines when it has received a message packet.
The three delimiter modes are List, Timeout, and Length. Setting the appropriate bit in the
Delimiter Mode byte selects the respective mode. The Delimiter Mode byte defines bits 0, 1, 2
only. Set the remaining bits 3 through 7 to zero.

List mode is used when a message packet is framed by a specific strings of Pre-Delimiter and
Post-Delimiter bytes. The Pre-Delimiter signals the start of a new packet. The Post-Delimiter
indicates the end of the packet. Each Pre-Delimiter and Post-Delimiter string can be from 1 to 9
bytes in length. When the gateway receives the Pre-Delimiter string, it saves the subsequent
data bytes until the Post-Delimiter string is received. The Pre-Delimiter and Post-Delimiter
bytes are not saved in the message packet. The following is a simple ASCII message example.

[STX] [data1] [data2] … [dataN] [ETX] [CR]

Pre-Delimiter Message Packet Post-Delimiter

Length mode is used when every message packet contains the same number of bytes. The
Packet Length attribute defines the packet size, from 1 to 128 bytes. The gateway saves serial
bytes until it receives the specified number, and saves them as one message packet.

Timeout mode uses a delay between received data bytes to determine the end of a message
packet. The Packet Timeout attribute defines the time-out period, from 1 to 255 milliseconds.

Pre-Delimiter List – Required for List Mode. Enter a string of 1 to 9 bytes that defines the start
of a new serial message. Use Short_String data format, with 1st byte = string length. Example
Pre-Delimiter is [0x01 0x02], where string length is 1 and delimiter character is 0x02 (STX).
You must use the RSNetworx™ Class Instance Editor (Set Attribute Single command) to write a
Short_String attribute value.

Post-Delimiter List – Required for List Mode. Enter a string of 1 to 9 bytes that defines the end
of a serial message. Use Short_String data format, with 1st byte = string length. Example Post-
Delimiter is [0x02 0x0D 0x03], where string length is 2 and delimiter characters are 0x0D (CR)

MKS Instruments, Inc. D.I.P. Products Group 32

CDN36X User Manual revision 1.30

and 0x03 (ETX). You must use the RSNetworx™ Class Instance Editor (Set Attribute Single
command) to write a Short_String attribute value.

Packet Timeout – Required for Timeout Mode. Defines the timeout period between received
bytes that indicates the end of a message packet (1-255 milliseconds).

Packet Length – Required for Length Mode. Defines the message packet size (1-128 bytes).

Serial Status – Serial transmitter and receiver error bits. To clear an error, you must either reset
the gateway or clear the error bit using a SET_ATTRIBUTE explicit message command.

Byte Swap – Defines if CDN36X gateway swaps I/O message bytes. When disabled, the
CDN36X I/O messages are mapped into the PLC DeviceNet Scanner module memory in low-
byte / high byte format. Many PLC processors use word-aligned data tables, so working with
ASCII strings in a low byte / high byte format is difficult. By enabling the CDN36X byte swap
feature, the gateway automatically swaps each pair of contiguous bytes in the I/O messages.
This allows you to send output message data in high byte / low byte format, and receive input
message data in high byte / low byte format.

The following example shows how the CDN36X byte-swap feature modifies the input bytes in a
DeviceNet I/O Response Message.

Normal Format: TX Ack Byte RX Toggle Byte SRO1 RXData 1 SRO1 RXData 2 SROx RXData N SROx RXData N+1……

Swapped Format:

The following example shows how the CDN36X byte-swap feature interprets the output bytes in
a DeviceNet I/O Command Message.

Normal Format:

Swapped Format:

RS422 Mode – CDN367 only. Selects between RS422 4-wire or RS485 2-wire operation.

I/O Produce Size – Read-only attribute is the number of input bytes sent in an I/O Response
Message. Gateway calculates based on enabled Serial Receive Object Instances’ Data Size.

I/O Consume Size – Read-only attribute is the number of output bytes expected in an I/O
Command Message. Gateway calculates based on enabled Serial Transmit Object Instances’
Data Size.

TX Toggle Byte RX Ack Byte STO1 TXData 1 STO1 TXData 2 STOx TXData N STOx TXData N+1……

RX Ack Byte TX Toggle Byte STO1 TXData 2 STO1 TXData 1 STOx TXData N+1 STOx TXData N……

RX Toggle Byte TX Ack Byte SRO RXData2 SRO RXData1 SROx RXData N+1 SROx RXData N ……

MKS Instruments, Inc. D.I.P. Products Group 33

CDN36X User Manual revision 1.30

Serial Receive Object Settings
There are eight identical Serial Receive Object instance attribute sets that can be configured in
the CDN36X gateway. This section describes how to configure a single Serial Receive Object
instance. Repeat this step for each desired instance.

Serial Receive Object Instance Attributes (Class Code 65)
Number Name Data Type Value

3 Receive Data Data Type Received message data. Returned in I/O Response Message.
4 Receive Toggle BOOL Gateway toggles (0-1, 1-0) to indicate new Receive Data value.
5 Receive Acknowledge BOOL When Sync Enabled, user application must set this bit to match

Receive Toggle before next message is processed.
6 Receive Mode USINT Bit 0 – use Data Field

Bit 1 – use Pre-String Field
Bit 2 – use Post-String Field

7 Pre-String Short_String String of 1-9 bytes.
8 Post-String Short_String String of 1-9 bytes.
9 Data Type USINT 194 (0xC2) = SINT (1 byte)

195 (0xC3) = INT (2 bytes)
198 (0xC6) = USINT (1 byte)
199 (0xC7) = UINT (2 bytes)
202 (0xCA) = REAL (4 bytes)
218 (0xDA) = Short String (Data Size bytes)

10 Data Size USINT 1-128
11 Width USINT 1-16
13 Conversion USINT ‘D’ (0x44) = decimal integer.

‘X’ (0x58) = hexadecimal integer.
14 Pad Char CHAR Pad byte value. Pad Poll Response if Rx data does not fill up Poll

response message data.
15 Data in I/O Response BOOL 0 = no, 1 = yes
16 Enabled BOOL 0 = disabled, 1 = enabled
17 Sync Enabled BOOL 0 = disabled, 1 = enabled

Receive Data – Data from the last valid message packet. Returned in I/O Response Message.

Receive Toggle – Toggles (0 to 1, or 1 to 0) when a message packet has been received,
processed, and saved as Receive Data. Indicates new input data in the I/O Response Message.

Receive Acknowledge – When Sync Enabled is set, User Application must set this bit equal to
Receive Toggle after it reads the Instance’s Receive Data from the I/O Response Message. The
Instance will not process the next message packet until the Receive Acknowledge bit equals the
Receive Toggle bit.

Receive Mode – Defines how the Instance processes message packet bytes. The Instance can
search for 3 fields – Pre-String, Data, and Post-String. Set associated bits (0, 1, 2) to use the
desired fields. Set the remaining bits 3 through 7 to zero.

[Pre-String] [Data] [Post-String]

MKS Instruments, Inc. D.I.P. Products Group 34

CDN36X User Manual revision 1.30

Pre-String attribute defines the byte string for the Pre-String field. Data Size attribute defines
the number of bytes expected in the Data field. Post-String attribute defines the byte string for
the Post-String field.

When Use Pre-String bit is set, the Instance searches the message packet bytes for a match to the
stored Pre-String. If a match is not found, the message packet is ignored.

When Use Data bit is set, the Instance converts the Data Size number of message bytes into a
value defined by Data Type, and saves it as Receive Data. If there are not enough message
bytes, the message packet is ignored. You must select Use Data in order to send input data to the
DeviceNet master.

When Use Post-String bit is set, the Instance searches the message packet bytes for a match to
the stored Post-String. If a match is not found, the message packet is ignored.

Pre-String – Required if Use Pre-String selected in Receive Mode. Enter a string of 1-9 bytes in
Short_String data format, with 1st byte = string length. Example Pre-String is [0x01 0x41],
where string length is 1 and pre-string character is 0x41 (‘A’). You must use the RSNetworx™
Class Instance Editor (Set Attribute Single command) to write a Short_String attribute value.

Post-String – Required if Use Post-String selected in Receive Mode. Enter a string of 1-9 bytes
in Short_String data format, with 1st byte = string length. Example Post-String is [0x02 0x42
0x43], where string length is 2 and post-string characters are 0x42 (‘B’) and 0x43 (‘C’). You
must use the RSNetworx™ Class Instance Editor (Set Attribute Single command) to write a
Short_String attribute value.

Data Type – The Instance converts received ASCII message data into the selected data type for
Receive Data.

Decimal

194
195

198
199
202

Hex. Date Size (byte) Value Range
0xC2 1 -128 ~ 127
0xC3 2 -32768 ~ 32767

0xC6 1 0 ~ 255
0xC7 2 0 ~ 65535
0xCA 4 +1.175E-38 ~ +3.4028E+38
0xDA

Data T

218

ype

Short_String Set by data size attribute, Max. 240 bytes
REAL (32-bit floating point value)
UINT (unsigned 16-bit integer)
USINT (unsigned 8-bit integer)

INT (signed 16-bit integer)
SINT (signed 8-bit integer)

Enter number from decimal (or hex) column to select the desired data type. Data Size column
defines the number of data bytes for Receive Data. For Short_String, set Data Size attribute to
the desired number of data bytes (plus 1 length byte). Set the Width attribute to the expected
number of ASCII bytes to be converted into a real or integer number.

Data Size – Required for Short_String Data Type. Defines the maximum number of bytes in a
Short-String, plus one length byte (2-128). The first byte in a Short_String defines the string
length.

MKS Instruments, Inc. D.I.P. Products Group 35

CDN36X User Manual revision 1.30

The Data Size attributes for all 8 Serial Receive Object instances must sum to a total less than or
equal to 128 bytes, regardless of whether an instance is enabled or not. Set unused instances’
Data Type attributes to USINT or SINT, which have 1-byte Data Size.

Width – Required for SINT, INT, USINT, UINT, REAL Data Types. Defines the number of
ASCII bytes (1-16) to be converted into an integer or real number.

Conversion – Required for SINT, INT, USINT, UINT Data Types. Denotes if the ASCII bytes
represent a decimal integer (‘D’ or 0x44) or a hexadecimal integer (‘X’ or 0x58).

Pad Char – Byte value to pad the RX Message bytes.

Data in I/O Response – Enables the Instance to send its Receive Data value as input data in the
I/O Response Message. Typically you would always have this attribute enabled when the
Instance is enabled. For more complex applications, the Instance’s Receive Data can be read
using the Get_Attribute command (explicit message), reducing the number of input bytes in the
I/O Response Message. All disabled Instances must have this attribute set to zero.

Enabled – Enables the Serial Receive Object instance. When enabled, the Instance processes
received messages based on its Receive Mode and Data Type. This attribute must be disabled for
all unused Serial Receive Object Instances.

Sync Enabled – Enables receive synchronization with the user application. When enabled, the
instance will not update its Receive Data until the Receive Acknowledge bit matches the Receive
Toggle bit. Enabling receive synchronization ensures that the user application does not miss any
received message data between polls.

MKS Instruments, Inc. D.I.P. Products Group 36

CDN36X User Manual revision 1.30

Serial Transmit Object Settings
There are eight identical Serial Transmit Object instance attribute sets that can be configured in
the CDN36X gateway. This section describes how to configure a single Serial Transmit Object
instance. Repeat this step for each desired instance.

Serial Transmit Object Instance Attributes (Class Code 66)
Number Name Data Type Value

3 Transmit Data Data Type Message data to transmit. Received in I/O Command Message.
4 Transmit Toggle BOOL User app toggles (0-1, 1-0) to indicate new Transmit Data value.
5 Transmit Acknowledge BOOL Gateway sets this bit to match Transmit Toggle when the latest

Transmit Data message has been sent.
6 Transmit Mode USINT Bit 0 – use Data

Bit 1 – use String1 before data
Bit 2 – use String2 before data
Bit 3 – use String1 after data
Bit 4 – use String2 after data

7 String1 Short_String String of 1-9 bytes.
8 String2 Short_String String of 1-9 bytes.
9 Data Type USINT 194 (0xC2) = SINT (1 byte)

195 (0xC3) = INT (2 bytes)
198 (0xC6) = USINT (1 byte)
199 (0xC7) = UINT (2 bytes)
202 (0xCA) = REAL (4 bytes)
218 (0xDA) = Short String (Data Size bytes)

10 Data Size USINT 1-128
11 Width USINT 1-16
12 Precision USINT 0-6
13 Conversion USINT Bit 0 – hex (0 for decimal, 1 for hex)

Bit 7 – use leading zeros to pad number
15 Data In I/O Command BOOL 0 = no, 1 = yes

Transmit Data – Data to be transmitted by this Instance as a serial message packet. The
Transmit Data value is typically received in the DeviceNet I/O Command Message.

Transmit Toggle – User application must toggle this bit when it sends a new Transmit Data
value in the I/O Command Message. Instance will only process and transmit a Transmit Data
value once after this bit is toggled.

Transmit Acknowledge – Gateways sets equal to Transmit Toggle when the current Transmit
Data message packet is queued in transmit buffer, indicating the Instance is ready new data.

Transmit Mode – Defines the message packet structure to be transmitted. The message packet
can consist of 5 fields – String1 Before, String2 Before, Data, String1 After, and String2 After.
Set associated bits (0, 1, 2, 3, 4) to enable the desired fields. Set the remaining bits 5-7 to zero.

[String1 Before] [String2 Before] [Data] [String1 After] [String2 After]

MKS Instruments, Inc. D.I.P. Products Group 37

CDN36X User Manual revision 1.30

String1 attribute defines the byte string for the String1 Before and String1 After fields. Data Size
attribute defines the number of bytes expected in the Data field. String2 attribute defines the
byte string for the String2 Before and String2 After fields. While the Data field is typically
selected, you can configure an Instance to transmit a predefined message using String1 and/or
String2, without requiring any output data bytes from the DeviceNet master.

When the String1 Before and/or String2 Before bits are set, the Instance places the respective
byte string(s) at the beginning of the message packet. If both options are selected, String1 is
placed before String2. The Instance then loads the converted data bytes in the Data field. If the
String1 After and/or String2 After bits are set, the Instance places the respective byte string(s) at
the end of the message packet. If both options are selected, then String1 is placed before String2.
The message packet is then loaded into the Transmit Buffer to be sent out the serial channel.

String1 – Required if String1 Before or String1 After selected in Transmit Mode. Enter a string
of 1-9 bytes in Short_String data format, with 1st byte = string length. Example String1 is [0x02
0x41 0x42], where string length is 2 and post-string characters are 0x41 (‘A’) and 0x42 (‘B’).
You must use the RSNetworx™ Class Instance Editor (Set Attribute Single command) to write a
Short_String attribute value.

String2 – Required if String2 Before or String2 After selected in Transmit Mode. Enter a string
of 1-9 bytes in Short_String data format, with 1st byte = string length. Example String2 is [0x03
0x43 0x44 0x45], where string length is 3 and post-string characters are 0x43 (‘C’), 0x44 (‘D’),
and 0x45 (‘E’). You must use the RSNetworx™ Class Instance Editor (Set Attribute Single
command) to write a Short_String attribute value.

Data Type – Defines the Transmit Data attribute data type.

Decimal

194
195

198
199
202

Hex. Date Size (byte) Value Range
0xC2 1 -128 ~ 127
0xC3 2 -32768 ~ 32767

0xC6 1 0 ~ 255
0xC7 2 0 ~ 65535
0xCA 4 +1.175E-38 ~ +3.4028E+38
0xDA Short_String Set by data size attribute, Max. 240 bytes

REAL (32-bit floating point value)
UINT (unsigned 16-bit integer)
USINT (unsigned 8-bit integer)

INT

218

(signed 16-bit integer)
SINT (signed 8-bit integer)

Data Type

Enter number from decimal (or hex) column to select the desired data type. Data Size column
defines the number of data bytes for Transmit Data. For Short_String, set Data Size attribute to
the desired number of data bytes (plus 1 length byte). Set the Width attribute to the expected
number of ASCII bytes to be converted into a real or integer number. Set the Precision attribute
to the desired number of digits after the decimal point in a real number.

Data Size – Required for Short_String Data Type. Defines the maximum number of bytes in a
Short-String, plus one length byte (2-128). The first byte in a Short_String defines the string
length

The Data Size attributes for all 8 Serial Receive Object instances must sum to a total of less than
or equal to 128 bytes, and all 8 Serial Transmit Object instances must sum to a total less than or

MKS Instruments, Inc. D.I.P. Products Group 38

CDN36X User Manual revision 1.30

equal to 128 bytes, regardless of whether an instance is enabled or not. Set unused instances’
Data Type attributes to USINT or SINT, which have a 1-byte Data Size.

Width – Required for SINT, INT, USINT, UINT, REAL Data Types. Defines the number of
ASCII bytes (1-16) that will represent the integer or real number.

Precision – Required for REAL Data Type. Defines the number of digits (0 to 6) after the real
number decimal point. Gateway adds trailing zeros to the converted value if needed.

Conversion – Selects Leading Zeros and Hex or Decimal representation. The following are
valid options for the Conversion byte.

bit 7 bit 0 decimal hex description
0 0 0 0x00 no leading zeros, decimal integer
0 1 1 0x01 no leading zeros, hexadecimal integer
1 0 128 0x80 leading zeros, decimal integer
1 1 129 0x81 leading zeros, hexadecimal integer

When bit 0 = 0, the ASCII bytes represent the Transmit Data integer number in a decimal
format. When bit 0 = 1, the ASCII bytes represent the integer number in a hexadecimal format.
This bit only applies to SINT, INT, USINT, and UINT Data Types.

When bit 7 = 1, leading zeros are added to real and integer numbers as needed to match the
Width setting. This bit only applies to SINT, INT, USINT, UINT, and REAL Data Types.

Data in I/O Command – Enables the Instance to use output data from the I/O Command
Message as its Transmit Data value. This bit must be set to enable the Serial Transmit Object
Instance. All unused instances must be disabled.

MKS Instruments, Inc. D.I.P. Products Group 39

CDN36X User Manual revision 1.30

Configure DeviceNet Master Scanlist
You must calculate the number of input and output bytes required by your CDN36X
configuration before you can add the gateway to the DeviceNet master scan list. You need to
configure the DeviceNet master to send the specific number of output bytes in its I/O Command
Message, and receive the specific number of input bytes in the gateway’s I/O Response Message.
Once the input and output bytes are mapped in the DeviceNet master, the user application
program will be able to read and write data values to the input and output bytes.

I/O Consume Size
The I/O Consume Size is the size (in bytes) of the I/O Command Message data field that is sent
by the DeviceNet master to the CDN36X.

I/O Command data:
[TX Toggle bits 1-8][RX Ack bits 1-8][TX Data Instance 1] … [TX Data Instance 8]

The first byte contains the Transmit Toggle bits for all 8 Serial Transmit Object Instances. The
second byte contains the Receive Acknowledge bits for all 8 Serial Receive Object Instances.
These two bytes are used by the CDN36X and application program to synchronize the transmit
and receive operations. The remaining bytes are the Transmit Data attributes for every enabled
Serial Transmit Object Instance. The number of bytes is determined by the Data Size configured
for each enabled Instance. For real and integer numbers, the Data Size is predefined by the
selected Data Type. For Short_String data type, the Data Size attribute is user-defined.

The following equation is used to calculate the CDN36X I/O Consume Size. Only include the
Data Size for enabled Serial Transmit Object Instances.

Transmit Toggle Byte 1
Receive Acknowledge Byte 1
Serial Transmit Object Instance 1 Data Size ____
Serial Transmit Object Instance 2 Data Size ____
Serial Transmit Object Instance 3 Data Size ____
Serial Transmit Object Instance 4 Data Size ____
Serial Transmit Object Instance 5 Data Size ____
Serial Transmit Object Instance 6 Data Size ____
Serial Transmit Object Instance 7 Data Size ____

+ Serial Transmit Object Instance 8 Data Size ____

I/O Consume Size ____

Once you have the gateway configured for your application, you can also read the Serial Stream
Object’s I/O Consume Size attribute to find out the required number of input bytes.

MKS Instruments, Inc. D.I.P. Products Group 40

CDN36X User Manual revision 1.30

I/O Produce Size
The I/O Produce Size is the size (in bytes) of the I/O Response Message data field that is sent
from the CDN36X to the DeviceNet master.

I/O Response data:
[TX Ack bits 1-8][RX Toggle bits 1-8][RX Data Instance 1] … [RX Data Instance 8]

The first byte contains the Transmit Acknowledge bits for all 8 Serial Transmit Object Instances.
The second byte contains the Receive Toggle bits for all 8 Serial Receive Object Instances.
These two bytes are used by the CDN36X and application program to synchronize the transmit
and receive operations. The remaining bytes are the Receive Data attributes for every enabled
Serial Receive Object Instance. The number of bytes is determined by the Data Size configured
for each enabled Instance. For real and integer numbers, the Data Size is predefined by the
selected Data Type. For Short-String data byte, the Data Size attribute is user-defined.

The following equation is used to calculate the CDN36X I/O Produce Size. Only include the
Data Size for enabled Serial Receive Object Instances.

Transmit Acknowledge Byte 1
Receive Toggle Byte 1
Serial Receive Object Instance 1 Data Size ____
Serial Receive Object Instance 2 Data Size ____
Serial Receive Object Instance 3 Data Size ____
Serial Receive Object Instance 4 Data Size ____
Serial Receive Object Instance 5 Data Size ____
Serial Receive Object Instance 6 Data Size ____
Serial Receive Object Instance 7 Data Size ____

+ Serial Receive Object Instance 8 Data Size ____

I/O Produce Size ____

Once you have the gateway configured for your application, you can also read the Serial Stream
Object’s I/O Produce Size attribute to find out the required number of output bytes.

MKS Instruments, Inc. D.I.P. Products Group 41

CDN36X User Manual revision 1.30

Chapter 5 – DeviceNet Specifications

This chapter describes the CDN36X gateway DeviceNet specifications.

DeviceNet Message Types
The CDN36X is a Group 2 Slave Device that supports the following message types.

 CAN IDENTIFIER GROUP 2 MESSAGE TYPE
 10xxxxxx111 Duplicate MAC ID Check Message
 10xxxxxx110 Unconnected Explicit Request Message
 10xxxxxx101 Master I/O Command Message
 10xxxxxx100 Master Explicit Request Message
xxxxxx = CDN36X MAC ID

DeviceNet Class Services
The CDN36X is a Group 2 Slave Device that supports the following class services and instance
services.

 SERVICE CODE SERVICE NAME
 05 (0x05) Reset
 14 (0x0E) Get Attribute Single
 16 (0x10) Set Attribute Single
 75 (0x4B) Allocate Group 2 Identifier Set
 76 (0x4C) Release Group 2 Identifier Set

DeviceNet Object Classes
The CDN366 device supports the following DeviceNet object classes.

CLASS CODE OBJECT TYPE
01 (0x01) Identity
02 (0x02) Router
03 (0x03) DeviceNet
04 (0x04) Assembly
05 (0x05) Connection
64 (0x40) Serial Stream Object
65 (0x41) Serial Receive Object
66 (0x42) Serial Transmit Object

MKS Instruments, Inc. D.I.P. Products Group 42

CDN36X User Manual revision 1.30

IDENTITY OBJECT
The Identity Object is required on all DeviceNet devices. It provides product identification of and
general information.

Identity Object Class Code 01 (0x01)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
2 Get Max Object Instance UINT 1
6 Get Max Class Identifier UINT 7
7 Get Max Instance Attribute UINT 7

Instance
Attribute

Access Name Type Value

1 Get Vendor UINT 59 = D.I.P. Products
2 Get Product Type UINT 12 = Communications
3 Get Product Code UINT 5856
4 Get Revision STRUCT of
 Major Revision USINT 1
 Minor Revision USINT 9

5 Get Device Status WORD bit 0 = owned (0 available, 1 allocated)
bit 2 = configured (0 no, 1 yes)
bit 4-7 = vendor specific (0)
bit 8 = minor configuration fault
bit 9 = minor device fault
bit 10 = major configuration fault
bit 11 = major device fault
bit 1, 3, 12-15 = reserved (0)

6 Get Serial Number UDINT unique serial number for every device
7 Get Product Name STRUCT of
 Length USINT 6
 Name STRING [6] CDN3xx

8 Get State USINT 0 = nonexistent
1 = device self-testing
2 = standby
3 = operational
4 = major recoverable fault
5 = major unrecoverable fault

Common Services
Service Code Class Instance Service Name
05 (0x05) No Yes Reset
14 (0x0E) Yes Yes Get_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 43

CDN36X User Manual revision 1.30

ROUTER OBJECT
The Message Router Object provides a messaging connection point through which a Client may
address a service to any object class or instance residing in the CDN36X device.

Router Object Class Code 02 (0x02)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
6 Get Max Class Identifier UINT 7
7 Get Max Instance Attribute UINT 2

Instance
Attribute

Access Name Type Value

2 Get Number of Connections UINT 2

Common Services
Service Code Class Instance Service Name
14 (0x0E) Yes Yes Get_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 44

CDN36X User Manual revision 1.30

DEVICENET OBJECT
The DeviceNet Object contains information about the CDN36X DeviceNet interface configuration.

DeviceNet Object Class Code 03 (0x03)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 2
Instance
Attribute

Access Name Type Value

1 Get/Set MAC ID USINT Settable only if MAC ID switches > 63.
Valid numbers are 0 to 63. Returns last
value or switch value.

2 Get/Set Baud Rate USINT Settable only if Baud switch = PGM.
Valid settings are 0=125K, 1=250K, 2=
500K. Returns last value or switch value.

3 Get/Set Bus Off Interrupt BOOL 0 = hold CAN in OFF state (default)
1 = reset CAN

4 Get/Set Bus Off Counter USINT Writing this attribute forces counter value
to zero.

5 Get Allocation Information STRUCT of
 Choice Byte BYTE bit 0 = explicit msg, set to 1 to allocate

bit 1 = polled IO, set to 1 to allocate
bit 2 = strobed IO, not supported
bits 3-7 = reserved, set to 0

 Master Node Address USINT Allocated to this DeviceNet master
6 Get MAC ID Switch

Changed
BOOL 0 = No Change.

1 = Changed since last Power-up or Reset.
7 Get Baud Rate Switch

Changed
BOOL 0 = No Change.

1 = Changed since last Power-up or Reset.
8 Get MAC ID Switch Value USINT Physical switch setting, 00 to 99.
9 Get Baud Rate Switch Value USINT Physical switch setting, 0 to 9.

Common Services
Service Code Class Instance Service Name
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single
75 (0x4B) No Yes Allocate Master/Slave
76 (0x4C) No Yes Release Master/Slave

MKS Instruments, Inc. D.I.P. Products Group 45

CDN36X User Manual revision 1.30

ASSEMBLY OBJECT
The Assembly Object instances bind attributes of multiple objects to allow data to or from each
object to be sent or received over a single connection.

Assembly Object Class Code 04 (0x04)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 2
2 Get Max Class ID UINT 2

Instance
Attribute

Access Name Type Value

3 Get Data Stream note 1 Instance 100 for input data stream.
Instance 101 for output data stream.

Common Services
Service Code Class Instance Service Name
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single

Instance 100 Input Data Stream and Instance 101 Output Data Stream are structured as either an
array of bytes or as a Short_String consisting of a single byte length field and N data bytes. The
Input Data Stream is the data returned in the I/O Response Message. The Output Data Stream is the
data returned in the I/O Command Message. See Chapter 3 for a complete description of the I/O
Format.

I/O Response:
[TX Ack bits 1-8][RX Toggle bits 1-8][RX Data Instance 1][RX Data Instance 2] … [RX Data Instance 8]

I/O Command:
[TX Toggle bits 1-8][RX Ack bits 1-8][TX Data Instance 1][TX Data Instance 2] … [TX Data Instance 8]

MKS Instruments, Inc. D.I.P. Products Group 46

CDN36X User Manual revision 1.30

CONNECTION OBJECT
The Connection Object instances manage the characteristics of each communication connection.
The CDN36X is a Group 2 Only Slave device that supports 1 Explicit Message Connection and 1
I/O Message Connection.

Connection Object Class Code 05 (0x05)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
Instance
Attribute

Access Name Type Value

1 Get State USINT 0 = non-existent
1 = configuring
2 = established
3 = timed out

2 Get Instance Type USINT 0 = Explicit Message
1 = I/O Message

3 Get Transport Class Trigger USINT 0x83 for Explicit Message
0x82 for I/O Message

4 Get Production Connection UINT Explicit Message:
 10xxxxxx011 = produced connection id
 10xxxxxx100 = consumed connection id
I/O Message:
 01111xxxxxx = produced connection id
 10xxxxxx101 = consumed connection id

5 Get Consumed Connection UINT
6 Get Initial Communication

Characteristics
USINT 0x21 for Explicit Message

0x01 for I/O Message
7 Get Production Size UINT 67 for Explicit Message

See Stream Object for I/O Message
8 Get Consumed Size UINT 71 for Explicit Message

See Stream Object for I/O Message
9 Get/Set Expected Packet Rate UINT Default 2500 msec

12 Get/Set Timeout Action USINT 0 = Timeout (Explicit Message default)
1 = Auto Delete
2 = Auto Reset (I/O Message default)

13 Get Production Path Length USINT 0 for Explicit Message
6 for I/O Message

14 Get Production Path STRUCT of Null for Explicit Message
STRUCT for I/O Message

 Log. Seg., Class USINT 0x20
 Class Number USINT 0x04
 Log. Seg., Instance USINT 0x24
 Instance Number USINT 0x01
 Log. Seg., Attribute USINT 0x30
 Attribute Number USINT 0x03

15 Get Consumed Path Length USINT 0 for Explicit Message
6 for I/O Message

MKS Instruments, Inc. D.I.P. Products Group 47

CDN36X User Manual revision 1.30

16 Get Consumed Path STRUCT of Null for Explicit Message
STRUCT for I/O Message

 Log. Seg., Class USINT 0x20
 Class Number USINT 0x04
 Log. Seg., Instance USINT 0x24
 Instance Number USINT 0x02
 Log. Seg., Attribute USINT 0x30
 Attribute Number USINT 0x03

17 Get Production Inhibit UINT 0

Common Services
Service Code Class Instance Service Name
05 (0x05) Yes Yes Reset
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 48

CDN36X User Manual revision 1.30

SERIAL STREAM OBJECT
The Serial Stream Object configures the CDN36X serial channel.

Serial Stream Object Class Code 64 (0x40)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
2 Get Max Object Instance UINT 1
6 Get Max Class Identifier UINT 7
7 Get Max Instance Attribute UINT 14

Instance
Attribute

Access Name Type Value

3 Get/Set Baud Rate UDINT 300, 1200, 2400, 4800, 9600, 19200 bits per sec.
4 Get/Set Data Bits USINT 7, 8
5 Get/Set Parity USINT 0 = no parity

1 = odd parity
2 = even parity
3 = mark
4 = space

6 Get/Set Stop Bits USINT 1, 2
7 Get/Set Flow Control USINT 0 = none

1 = XON / XOFF
2 = CTS / RTS

10 Get/Set Delimiter Mode USINT Bit 0 – List mode
Bit 1 – Timeout mode
Bit 2 – Length mode

11 Get/Set Pre-Delimiter List Short_String List mode – String of 1-9 bytes.
12 Get/Set Post-Delimiter List Short_String List mode – String of 1-9 bytes.
13 Get/Set Packet Timeout USINT Timeout mode – delay between received bytes

(1-255 msec).
14 Get/Set Packet Length USINT Length mode – Number of message bytes (1-128).

15 Get/Set Serial Status USINT Bit 0 = RX buffer overrun error
Bit 1 = RX parity error
Bit 4 = TX buffer overrun error
Bit 5 = TX parity error

16 Get/Set Byte Swap USINT 0 = disable
1 = enable

18 Get/Set RS422 Mode USINT 0 = 4-wire mode (RS422 full duplex)
1 = 2-wire mode (RS485 half duplex)

20 Get/Set I/O Produce Size UINT Number of data bytes returned in a I/O Response
Message.

21 Get/Set I/O Consume Size UINT Number of data bytes expected in a I/O Command
Message.

Common Services
Service Code Class Instance Service Name
05 (0x05) No Yes Reset
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 49

CDN36X User Manual revision 1.30

SERIAL RECEIVE OBJECT
The Serial Receive Object instances receive and process serial messages, and send the converted
data to DeviceNet master in the I/O Response Message.

Serial Receive Object Class Code 65 (0x41)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
2 Get Max Object Instance UINT 8
6 Get Max Class Identifier UINT 7
7 Get Max Instance Attribute UINT 17

Instance
Attribute

Access Name Type Value

3 Get/Set Receive Data Data Type Received message data. Returned in I/O Response
Message.

4 Get Receive Toggle BOOL Gateway toggles (0-1, 1-0) to indicate new Receive
Data value.

5 Get/Set Receive Acknowledge BOOL When Sync Enabled, user application must set this
bit to match Receive Toggle before next message is
processed.

6 Get/Set Receive Mode USINT Bit 0 – use Data Field
Bit 1 – use Pre-String Field
Bit 2 – use Post-String Field

7 Get/Set Pre-String Short_String String of 1-9 bytes.
8 Get/Set Post-String Short_String String of 1-9 bytes.
9 Get/Set Data Type USINT 194 (0xC2) = SINT (1 byte)

195 (0xC3) = INT (2 bytes)
198 (0xC6) = USINT (1 byte)
199 (0xC7) = UINT (2 bytes)
202 (0xCA) = REAL (4 bytes)
218 (0xDA) = Short String (Data Size bytes)

10 Get/Set Data Size USINT 1-128
11 Get/Set Width USINT 1-16
13 Get/Set Conversion USINT ‘D’ (0x44) = ASCII represents decimal integer.

‘X’ (0x58) = ASCII represents hex integer.
14 Get/Set Pad Char CHAR Pad byte value. Pad Poll Response if Rx data does

not fill up Poll response message data.
15 Get/Set Data in I/O Response BOOL 0 = no, 1 = yes
16 Get/Set Enabled BOOL 0 = disabled, 1 = enabled
17 Get/Set Sync Enabled BOOL 0 = disabled, 1 = enabled

Common Services
Service Code Class Instance Service Name
05 (0x05) No Yes Reset
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 50

CDN36X User Manual revision 1.30

SERIAL TRANSMIT OBJECT
The Serial Transmit Object instances receive data from DeviceNet master in the I/O Command
Message, convert it and transmit the resulting message out the serial channel.

Serial Transmit Object Class Code 66 (0x42)

Class
Attribute

Access Name Type Value

1 Get Revision UINT 1
2 Get Max Object Instance UINT 8
6 Get Max Class Identifier UINT 7
7 Get Max Instance Attribute UINT 15

Instance
Attribute

Access Name Type Value

3 Get/Set Transmit Data Data Type Message data to transmit. Received in I/O Command
Message.

4 Get/Set Transmit Toggle BOOL User app toggles (0-1, 1-0) to indicate new Transmit
Data value.

5 Get Transmit Acknowledge BOOL Gateway sets this bit to match Transmit Toggle when
the latest Transmit Data message has been sent.

6 Get/Set Transmit Mode USINT Bit 0 – use Data
Bit 1 – use String1 before data
Bit 2 – use String2 before data
Bit 3 – use String1 after data
Bit 4 – use String2 after data

7 Get/Set String1 Short_String String of 1-9 bytes.
8 Get/Set String2 Short_String String of 1-9 bytes.
9 Get/Set Data Type USINT 194 (0xC2) = SINT (1 byte)

195 (0xC3) = INT (2 bytes)
198 (0xC6) = USINT (1 byte)
199 (0xC7) = UINT (2 bytes)
202 (0xCA) = REAL (4 bytes)
218 (0xDA) = Short String (Data Size bytes)

10 Get/Set Data Size USINT 1-128
11 Get/Set Width USINT 1-16
12 Get/Set Precision USINT 0-6
13 Get/Set Conversion USINT Bit 0 – hex (0 for decimal, 1 for hex)

Bit 7 – use leading zeros to pad number
15 Get/Set Data In I/O Command BOOL 0 = no, 1 = yes

Common Services
Service Code Class Instance Service Name
05 (0x05) No Yes Reset
14 (0x0E) Yes Yes Get_Attribute_Single
16 (0x10) No Yes Set_Attribute_Single

MKS Instruments, Inc. D.I.P. Products Group 51

CDN36X User Manual revision 1.30

Chapter 6 – RSNetworx™ Configuration Example
This chapter shows how to set up configure a CDN366 gateway using the Rockwell Software
RSNetworx™ software and your gateway’s Electronic Data Sheet (EDS) file. The system
configuration uses an Allen-Bradley 1770-KFD DeviceNet adapter (MAC ID 62) to connect the
PC running RSNetworx™ to the DeviceNet network. A SLC500 system with a 1747-SDN
DeviceNet Scanner (MAC ID 00) is the DeviceNet master. CDN366 gateway has MAC ID 03.

Comm. Comm.
GND

DeviceNet network
24VDC Power Supply

+
120VAC 24VDC

--
GND

Pin

1

RS232 serial 3
communication 5

Pin

1

2
3

4
5

Pin Pin Pin
2 7 4 3 1
3 8 5 2
5 3

1 2 4

5

Figure 1. CDN366 Integrate with Allen Bradley SLC500

PS to DeviceNet Dist.

Color Description

red BUS+ (24vdc)

Func. Func.

9 pin DIN RS232 Serial

Interface to Barcode

Reader, Scanner
Weigh Scale or etc.

To PC RS232 9 pin
Serial Interface For

Used with RSLinx,

& RSNetWorx Prog.

V- (BUS-)
data high (CAN H)

Male Connector
DeviceNet

Color Description
clear
red

shield (Drain)
V+ (BUS+)

blue data low (CAN L)

Fuse 1A Fuse 6A

RXD
TXD
GND

RTS
CTS

DeviceNet Connector

black
white

to
 p

in
 1

 D
ev

ic
eN

et
 c

on
ne

ct
or

black

clear

data high (CAN H)
V+ (BUS+)

Terminal Connector

BUS- (0vdc)

Shield (Drain)

white

Description

red

V- (BUS-)

data low (CAN L)
shield (Drain)

black

blue
clear

CDN366

RS232-DeviceNet

DeviceNet

Gateway Module

PC Interface

Color

to
 p

in
 5

 D
ev

ic
eN

et
 c

on
ne

ct
or

1770-KFD

RS232-DeviceNet

PC Interface Mod.
DIP790 Device

Net Dist. Board

Slot 3Power Sup. Slot 2

8 pt. Input

Slot 0

 120/240VAC

Slot 1

1747-L524

DeviceNet
Scanner

1747-SDN
Input

SLC502
PLC CPUFuse 3A

24vdc output
1747-P1

Allen Bradley SLC500 4 Slot Rack, 1746-A4
NL

 Neutral

module
1746-IV8

8 pt.Output
module

1746-OB8

120VAC

Pin 1,4,6,9 are unused

1747-PIC

RS232-PLC

Module

RS232 Pin Layout

To PC RS232 25
Pin Serial Interface

For Used with

RSLogic Prog.

MKS Instruments, Inc. D.I.P. Products Group 52

CDN36X User Manual revision 1.30

Configure DeviceNet Interface
Follow instructions in Chapter 4 to set the gateway’s rotary switches to 125Kbps baud rate and
MAC ID to 03. Connect the gateway to the DeviceNet network to power it up. During power-
up, the NET and MOD LEDs cycle through a sequence of alternating red and green. After
power-up, the NET LED should be flashing green and the MOD LED should be solid green.

Connect & Register EDS File
1) Start up the RSNetworx program. Select the Online operation from the Network menu.

MKS Instruments, Inc. D.I.P. Products Group 53

CDN36X User Manual revision 1.30

2) The following text box should pop up, showing the networks connected to your computer.

3) Click on the 1770-KFD-1 + to show all connected DeviceNet devices. The gateway is at

MAC ID 03, verifying its DeviceNet connection. It is an Unrecognized Device until the
gateway’s EDS file is registered with RSNetworx.

MKS Instruments, Inc. D.I.P. Products Group 54

CDN36X User Manual revision 1.30

4) Click Cancel to close Browse for network window. Select the EDS Wizard… operation from
the Tools menu. Click Next> to continue.

5) Select the Register an EDS file(s) option and click Next>.

MKS Instruments, Inc. D.I.P. Products Group 55

CDN36X User Manual revision 1.30

6) Select Register a single file option. Browse for your gateway’s EDS file. You can download
the latest EDS and ICON files from the www.mksinst.com website. Click Next> when you
have the correct path and EDS file name in the Named: box.

7) The next screen shows the RSNetworx installation test results. Click View file… to view the

actual EDS file text. Click Next> to continue.

MKS Instruments, Inc. D.I.P. Products Group 56

CDN36X User Manual revision 1.30

8) The next screen allows you to customize the gateway’s icon for RSNetworx. Click on

Change icon…

9) The Change Icon screen pops up. Click Browse to enter path for CDN366 icon file. You can

download the icon file from www.mksinst.com.

MKS Instruments, Inc. D.I.P. Products Group 57

CDN36X User Manual revision 1.30

10) Enter the path to CDN366 icon file in the File name: box. Click Open to continue.

11) The CDN366 icon should have changed to the proper icon. Click Next to continue.

MKS Instruments, Inc. D.I.P. Products Group 58

CDN36X User Manual revision 1.30

12) The final step is to finish EDS file registration. Click Next> to complete the registration
process. Click Finish to close the EDS Wizard window.

MKS Instruments, Inc. D.I.P. Products Group 59

CDN36X User Manual revision 1.30

13) Repeat steps 1, 2, and 3 to browse the DeviceNet network. RSNetworx should now
recognize the device at MAC ID 03 as a CDN366 gateway, and display the CDN366 icon.
Click Cancel when finished.

MKS Instruments, Inc. D.I.P. Products Group 60

CDN36X User Manual revision 1.30

Configure Serial Channel
Once the gateway is connected to DeviceNet and communicating with RSNetworx, you can
configure its serial channel. Make sure the gateway is not in the DeviceNet master scanlist
before changing any attribute values.

The Serial Stream Object attributes control the physical layer settings for the gateway’s serial
channel. The following steps show how to configure the Serial Stream Object attributes using
the RSNetworx program.

1) Select the Online operation from the Network menu. Select the DeviceNet adapter (1770-

KFD-1 in this example) and click OK.

2) RSNetworx prompts you to upload the network configuration. Click OK to continue.

MKS Instruments, Inc. D.I.P. Products Group 61

CDN36X User Manual revision 1.30

3) RSNetworx displays the following text box while it uploads the network configuration.

4) The following screen displays the online nodes.

MKS Instruments, Inc. D.I.P. Products Group 62

CDN36X User Manual revision 1.30

5) Left-click on the CDN366 icon to select it. Right-click and select Properties from the pop-up
menu. You can also double-click on the CDN366 icon to open its properties box.

6) RSNetworx displaces the following text box while is reads CDN366 EDS file.

MKS Instruments, Inc. D.I.P. Products Group 63

CDN36X User Manual revision 1.30

7) The CDN366 Properties Box is displayed.

7) Select the Parameters tab. You will be prompted for the parameters source. Select the

Upload button to upload CDN366 parameters from the actual device. All the CDN366
parameters are now shown in the Properties window.

MKS Instruments, Inc. D.I.P. Products Group 64

CDN36X User Manual revision 1.30

The CDN36X gateway has three Object types. The Serial Stream Object is used to configure the
serial channel physical interface. This object will be configured in this section. The Serial
Receive Object and Serial Transmit Object are in the next sections.

MKS Instruments, Inc. D.I.P. Products Group 65

CDN36X User Manual revision 1.30

8) Select the Serial Stream Object from the Groups pull-down menu to view this object’s
parameters.

You may now edit the Serial Stream Object attributes in this window.

Note that the Pre-Delimiter List and Post-Delimiter List attributes are not listed. These
attributes use Short_String data type, which is not supported by RSNetworx EDS File interface.
Use the Class Instance Editor to configure Short_String attributes.

MKS Instruments, Inc. D.I.P. Products Group 66

CDN36X User Manual revision 1.30

Select the Set_Attribute_Single service code to write an attribute value, and the
Get_Attribute_Single service code to read an attribute value. Check Values in decimal box to
enter class, instance, attribute, and data values in decimal. The Pre-Delimiter List address is
Class 64, Instance 1 (in this example), Attribute Number 11. The Post-Delimiter List address is
Class 64, Instance 1 (in this example), Attribute Number 12. Enter the Short_String data as
length byte, then data bytes. Example is [0x01 0x02] for 1-byte Pre-Delimiter List of 0x02
(ASCII STX).

Enter the remaining Serial Stream Object attributes in the Parameters Box window.

Baud Rate – Click on the current value to change the baud rate. Enter the desired value in bits-
per-second as a decimal number.

Data Bits – Click on arrow to the right of the current value to select from pull-down menu.

Stop Bits – Click on the current value to change. Enter the desired number of stop bits as a
decimal number.

Parity – Click on arrow to the right of the current value to select from pull-down menu.

Flow Control – Click on arrow to the right of the current value to select from pull-down menu.

MKS Instruments, Inc. D.I.P. Products Group 67

CDN36X User Manual revision 1.30

Delimiter Mode – Click on … to open selection box. Click on check box to select the desired
option. The Delimiter Mode uses bits 0, 1, 2 of the byte. Ignore the remaining bits 3 through 7.

Timeout – Click on current value to change. Enter the desired timeout in milliseconds.

Packet Length – Click on current value to change. Enter the desired length in bytes.

Serial Status – Click on … to open up selection box. Click on check box to set or clear the
desired bit. The Serial Status byte uses bits 0, 1, 4, 5. Ignore the remaining bits 2, 3, 6, 7.

The serial status bits are set (bit = 1) by the CDN36X gateway when an error occurs. You must
acknowledge the receipt of an error by clearing the appropriate bit (bit = 0). Clearing an error bit
causes the gateway to clear that error condition and resume normal operation. You must either
reset the CDN36X or clear each error bit using a Set_Attribute explicit message command in
order to resume normal operation.

I/O Produce Size – This is a read only attribute. The value is the number of data bytes the
gateway returns in the I/O Response Message.

I/O Consume Size – This is a read only attribute. The value is the number of data bytes the
gateway expects to receive in the I/O Command Message.

MKS Instruments, Inc. D.I.P. Products Group 68

CDN36X User Manual revision 1.30

Configure Serial Receive Object Instances
There are eight identical Serial Receive Object instance parameter sets that can be configured in
the CDN366 gateway. The following describes how to configure Serial Receive Object Instance
1. Program the other instances using the same procedure.

1) Using RSNetworx, open the CDN366 gateway Properties window. Select the Parameters

tab. Select Rx Inst 1 from the Groups pull-down menu. You show see the 10 attributes for
this object instance.

You may now edit the Serial Receive Object Instance 1 attributes in this window.

Note that the Pre-String and Post-String attributes are not listed. These attributes use
Short_String data type, which is not supported by RSNetworx EDS File interface. Use the Class
Instance Editor to configure Short_String attributes.

MKS Instruments, Inc. D.I.P. Products Group 69

CDN36X User Manual revision 1.30

Select the Set_Attribute_Single service code to write an attribute value, and the
Get_Attribute_Single service code to read an attribute value. Check Values in decimal box to
enter class, instance, attribute, and data values in decimal. The Pre-String address is Class 65,
Instance 1 (in this example), Attribute Number 7. The Post-String address is Class 65, Instance 1
(in this example), Attribute Number 8. Enter the Short_String data as length byte, then data
bytes. Example is [0x01 0x41] for 1-byte Pre-String of 0x41 (ASCII ‘A’).

Enter the remaining Serial Receive Object attributes in the Parameters Box.

Receive Toggle – Read only attribute. Bit toggled (0 to 1, or 1 to 0) when a new data packet has
been received, indicating that it is ready to be read as DeviceNet inputs.

Receive Acknowledge – Click on current value to change. Enter 0 to clear, 1 to set.

Receive Mode – Click on … to open up selection box. Click on check box to set or clear the
desired bit. The Receive Mode bits are 0, 1, 2. Ignore the remaining bits 3 through 7.

MKS Instruments, Inc. D.I.P. Products Group 70

CDN36X User Manual revision 1.30

Data Type – Click on current value to change. Enter decimal number of desired data type.

Data Size – Click on current value to change. Enter the desired Short_String data size in bytes
(2-128). Do not enter a Data Size for integer or real number Data Types.

Width – Click on current value to change. Enter expected width as decimal number (1-16).

Conversion Type – Click on current value to change. Enter ‘D’ for decimal and ‘X’ for hex.

Data in I/O Response – Click on current value and select from pull-down menu.

Enabled – Click on current value and select from pull-down menu. Select Ignore this instance
to disable the Serial Receive Object instance. Select Search receive string to enable the Serial
Receive Object instance.

Sync Enabled – Click on current value and select from pull-down menu. Select Sync Off to
disable synchronization. Select Sync On to enable synchronization.

MKS Instruments, Inc. D.I.P. Products Group 71

CDN36X User Manual revision 1.30

Configure Serial Transmit Object Instances
There are eight identical Serial Transmit Object instance parameter sets that can be configured in
the CDN366 gateway. The following describes how to configure Serial Transmit Object
Instance 1. Program the other instances following the same procedure.

1) Using RSNetWorx, open the CDN366 gateway Properties window. Select the Parameters

tab. Select Tx Inst 1 from the Groups pull-down menu. You show see the 9 attributes for
this object instance.

You may now edit the Serial Receive Object Instance 1 attributes in this window.

Note that the String1 and String2 attributes are not listed. These attributes use Short_String
data type, which is not supported by RSNetworx EDS File interface. Use the Class Instance
Editor to configure Short_String attributes.

MKS Instruments, Inc. D.I.P. Products Group 72

CDN36X User Manual revision 1.30

Select the Set_Attribute_Single service code to write an attribute value, and the
Get_Attribute_Single service code to read an attribute value. Check Values in decimal box to
enter class, instance, attribute, and data values in decimal. The String1 address is Class 66,
Instance 1 (in this example), Attribute Number 7. The String2 address is Class 66, Instance 1 (in
this example), Attribute Number 8. Enter the Short_String data as length byte, then data bytes.
Example is [0x01 0x41] for 1-byte String1 of 0x41 (ASCII ‘A’).

Enter the remaining Serial Transmit Object attributes in the Parameters Box.

Transmit Toggle – Click on current value to change. Enter 0 to clear, 1 to set.

Transmit Acknowledge – Read only attribute. Bit toggled (0 to 1, or 1 to 0) after Instance loads
serial message packet into the transmit buffer, and is ready for the next message.

Transmit Mode – Click on … to open up selection box. Click on check box to set or clear the
desired bit. The Transmit Mode bits are 0, 1, 2, 3, 4. Ignore the remaining bits 5, 6, 7.

MKS Instruments, Inc. D.I.P. Products Group 73

CDN36X User Manual revision 1.30

Data Type – Click on current value to change. Enter decimal number of desired data type.

Data Size – Click on current value to change. Enter the desired Short_String data size in bytes
(2-128). Do not enter a Data Size for integer or real number Data Types.

Width – Click on current value to change. Enter expected width as decimal number (1-16).

Conversion Type – Click on current value to change. Enter decimal number (see Ch 4).

Precision – Click on current value to change. Enter desired precision in decimal (0-6).

Data in I/O Command – Click on current value and select from pull-down menu.

MKS Instruments, Inc. D.I.P. Products Group 74

CDN36X User Manual revision 1.30

Configure DeviceNet Master Scanlist
After all the object instances have been configured, the DeviceNet master can be configured for
Polled I/O or Change-of-State I/O messaging with the gateway. The following example shows
how to configure a Polled I/O connection.

1) Before using the RSNetworx to map the gateway’s I/O connection to 1747-SDN DeviceNet

master scanner, you must calculate the I/O Produce Size & I/O Consume Size. Chapter 4
describes how to calculate these values. You can also read them directly from the gateway
Serial Stream Object I/O Product Size and I/O Consume Size attributes. Follow the steps in
Configure Serial Channel section to read these attribute values.

2) Match sure all unused Serial Receive Object and Serial Transmit Object instances are

disabled. Follow the steps in Configure Serial Receive Object Instances and Configure
Serial Transmit Object Instances sections to disable unused instances.

3) Double click on the 1747-SDN icon to open its Properties box. You can also left click on

the icon to select it, right click for the pop-up menu, and select Properties.

MKS Instruments, Inc. D.I.P. Products Group 75

CDN36X User Manual revision 1.30

4) Select the Scanlist tab. RSNetworx prompts you for the Scanner Configuration. Click

Upload to upload current 1747-SDN configuration from the node. RSNetworx displays the
upload progress.

5) The next window shows the Available Devices: that can be added to the 1747-SDN Scanlist.

MKS Instruments, Inc. D.I.P. Products Group 76

CDN36X User Manual revision 1.30

6) Select the Automap on Add checkbox if you want RSNetworx to automatically map the

CDN366 input and output bytes into the 1747-SDN memory.

7) Select the CDN366 under Available Devices: and click the > button to transfer to Scanlist.

MKS Instruments, Inc. D.I.P. Products Group 77

CDN36X User Manual revision 1.30

8) RSNetworx warns that the CDN366 does not contain any I/O data. Click OK to continue.

8) Click on the Edit I/O Parameters button. Use the ∧ and ∨ buttons to set Rx Size: to the

calculated I/O Consume Size value and the Tx Size: to the calculated I/O Produce Size value.
Click OK to update I/O parameters.

9) RSNetworx prompts to Automap the new input and output data bytes. Select Yes to

automap. If you select No, then you must manually map the I/O bytes in the memory tables.

MKS Instruments, Inc. D.I.P. Products Group 78

CDN36X User Manual revision 1.30

10) RSNetworx prompts if you want to download the changes to the 1747-SDN. Click Yes.

11) Select the Input tab to view the automapped CDN366 input bytes.

MKS Instruments, Inc. D.I.P. Products Group 79

CDN36X User Manual revision 1.30

12) Click the Advanced… button to view current input mapping detail. Change the mapping to

suit your application. Click Apply Mapping button after you make changes. Click Yes at the
RSNetworx prompt to download any changes to the 1747-SDN. Click Close to continue.

13) Select the Output tab to view the automapped CDN366 output bytes.

MKS Instruments, Inc. D.I.P. Products Group 80

CDN36X User Manual revision 1.30

14) Click the Advanced… button to view current input mapping detail. Change the mapping to

suit your application. Click Apply Mapping button after you make changes. Click Yes at the
RSNetworx prompt to download any changes to the 1747-SDN. Click Close to continue.

MKS Instruments, Inc. D.I.P. Products Group 81

CDN36X User Manual revision 1.30

Chapter 7 – Configuration Examples

This chapter contains four example gateway configurations.

Example 1 – Receiving Data
Read UPC labels into a PLC using a serial barcode scanner, a CDN366 gateway, and a
DeviceNet scanner (master). The barcode scanner RS232 channel is connected to a CDN366
serial channel. The CDN366 DeviceNet channel is connected to the PLC DeviceNet scanner.
The DeviceNet network is powered by an external 24VDC power supply.

 Barcode Scanner PLC & DeviceNet Scanner

Power
Supply

CDN366
Gateway

 UPC labels
 RS232 DeviceNet network

Barcode Scanner
The barcode scanner’s RS232 channel is set for 9600 bps, 8 data bits, no parity, and 1 stop bit.
When it reads a UPC label, it transmits the following ASCII message format. The message
always begins with the ASCII STX start-of-text (0x02) character, and always ends with the
ASCII ETX end-of-text (0x03) and CR carriage return (0x0D) characters. The barcode data will
consist of a variable number of 1 to 12 ASCII characters, depending upon the UPC label being
scanned.

 [STX] [ASCII barcode data] [ETX] [CR]

CDN366 Gateway
The CDN366 gateway needs to be configured to receive this RS232 message format. The first
step is to determine the Delimiter Mode. The barcode scanner transmits a variable-length
message packet, so Length Mode cannot be used. Timeout Mode may be used, but without
specific timing information for the barcode scanner’s RS232 channel it may be difficult to derive
a suitable Packet Timeout value. List Mode is best suited for this application, because the serial
message always begins and ends with the same characters. The Serial Stream Object can now be
configured. The following shows the Serial Stream Object attribute settings for this application.
The 3rd column lists the address string if using Set_Attribute_Single commands to write the
attribute values. The last two attributes are Short_String data types.

Serial Stream Object Configuration (Class Code 64 or 0x40)
Attribute Data Class / Instance / Attribute / Data Description
3. Baud Rate 9600 0x40 0x01 0x03 0x25 0x80 9600 bps
4. Data Bits 8 0x40 0x01 0x04 0x08 8 data bits
5. Parity 0 0x40 0x01 0x05 0x00 no parity
6. Stop Bits 1 0x40 0x01 0x06 0x01 1 stop bit
7. Flow Control 2 0x40 0x01 0x07 0x02 CTS / RTS
10. Delimiter Mode 1 0x40 0x01 0x0A 0x01 List Mode
11. Pre-Delimiter String 0x01 0x02 0x40 0x01 0x0B 0x01 0x02 Short_String length = 1, STX
12. Post-Delimiter String 0x02 0x03 0x0D 0x40 0x01 0x0C 0x02 0x03 0x0D Short_String length = 2, ETX CR

MKS Instruments, Inc. D.I.P. Products Group 82

CDN36X User Manual revision 1.30

The next step is to configure the CDN366 gateway to return the ASCII barcode data to the
DeviceNet scanner. Because the content of the ASCII bytes is not known, the entire byte string
will be converted into a Short_String data type. With only one data variable to return, one Serial
Receive Object Instance is configured. The Data Type is Short_String, with a Data Size of 13
(maximum number of expected barcode data bytes is 12, plus the length byte). The Receive
Mode is Use Data Field.

Serial Receive Object Instance 1 Configuration (Class Code 65 or 0x41)
Attribute Data Class / Instance / Attribute / Data Description
6. Receive Mode 1 0x41 0x01 0x06 0x01 Use Data Field
9. Data Type 218 0x41 0x01 0x09 0xDA Short_String
10. Data Size 13 0x41 0x01 0x0A 0x0D 1 length byte, 12 data bytes
15. Data in I/O Response 1 0x41 0x01 0x0F 0x01 Enable data in I/O response
16. Enabled 1 0x41 0x01 0x10 0x01 Instance 1 enabled

Make sure Serial Receive Object instances 2-8 are disabled, since only Instance 1 is used in this
application. The gateway will return 15 input bytes to the DeviceNet scanner in the I/O
Response Message. The I/O Produce Size is 15, with the data organized as follows:

[Transmit Acknowledge bits] [Receive Toggle bits] [Instance 1 Short_String data]
 1 byte 1 byte 13 bytes

The gateway will always return 13 bytes in the I/O Response Message, even if the scanned
barcode data contains fewer bytes. The application should check the Short_String length byte to
determine the number of valid data bytes being returned in a particular I/O Response Message.

Receive synchronization may also be used by enabling the Sync Enabled attribute. The I/O
Produce Size can be verified by reading the Serial Stream Object’s I/O Produce Size attribute
(class 64, instance 1, attribute 20).

MKS Instruments, Inc. D.I.P. Products Group 83

CDN36X User Manual revision 1.30

Example 2 – Receiving Delimited Data
Using the same configuration as Example 1, the scanned UPC labels are printed in one of two
formats: [MODEL xxx A] and [SN: xxxxx]. The first format is a model number, and ‘xxx’
are 3 ASCII characters that represent a number from 1 to 100. The second format is a serial
number, and ‘xxxxx’ are 5 ASCII characters that represent a number from 1 to 60000. The
gateway is configured to read these two specific UPC label formats, convert the ASCII
characters into integers, and return them as DeviceNet inputs.

Barcode Scanner
The barcode scanner’s RS232 channel is set for 9600 bps, 8 data bits, no parity, and 1 stop bit.
When it reads a UPC label, it transmits the following ASCII message format. The message
always begins with the ASCII STX start-of-text (0x02) character, and always ends with the
ASCII ETX end-of-text (0x03) and CR carriage return (0x0D) characters. The barcode data will
consist of a variable number of ASCII characters, depending upon the UPC label being scanned.

 [STX] [‘MODEL xxx A’] [ETX] [CR] 14 bytes ASCII data
 [STX] [‘SN: xxxxx’] [ETX] [CR] 12 bytes ASCII data

CDN366 Gateway
The CDN366 gateway needs to be configured to receive this RS232 message format. The first
step is to determine the Delimiter Mode. The barcode scanner still transmits a variable length
message, so Length Mode cannot be used. Timeout Mode may be used, but without specific
timing information for the barcode scanner’s RS232 channel it may be difficult to derive a
suitable Packet Timeout value. List Mode is best suited for this application, because the serial
message always begins and ends with the same characters. The Serial Stream Object can now be
configured. The following shows the Serial Stream Object attribute settings for this application.
The 3rd column lists the address string if using Set_Attribute_Single commands to write the
attribute values. The last two attributes are Short_String data types.

Serial Stream Object Configuration (Class Code 64 or 0x40)
Attribute Data Class / Instance / Attribute / Data Description
3. Baud Rate 9600 0x40 0x01 0x03 0x25 0x80 9600 bps
4. Data Bits 8 0x40 0x01 0x04 0x08 8 data bits
5. Parity 0 0x40 0x01 0x05 0x00 no parity
6. Stop Bits 1 0x40 0x01 0x06 0x01 1 stop bit
7. Flow Control 2 0x40 0x01 0x07 0x02 CTS / RTS
10. Delimiter Mode 1 0x40 0x01 0x0A 0x01 List Mode
11. Pre-Delimiter String 0x01 0x02 0x40 0x01 0x0B 0x01 0x02 Short_String length = 1, STX
12. Post-Delimiter String 0x02 0x03 0x0D 0x40 0x01 0x0C 0x02 0x03 0x0D Short_String length = 2, ETX CR

The next step is to configure the CDN366 gateway to process the different label formats and
convert the ASCII characters into integer numbers, to be returned to the DeviceNet scanner.
With two different label formats, two Serial Receive Object Instances will be configured.

MKS Instruments, Inc. D.I.P. Products Group 84

CDN36X User Manual revision 1.30

Serial Receive Object Instance 1 is configured to process the 11-character model number UPC
label message packet. The Receive Mode is set to Use Pre-String, Use Data, and Use Post-
String fields. The Pre-String attribute is set to ‘MODEL ‘, and Post-String is set to ‘ A’. These
two strings are used to filter for the model-number message packet. The model number range is
1 to 100, so the Data Type is set for USINT with a Width of 3, and Conversion is set to decimal.
The Data Size is 1 byte for USINT.

Serial Receive Object Instance 1 Configuration (Class Code 65 or 0x41)
Attribute Data Class / Instance / Attribute / Data Description
6. Receive Mode 7 0x41 0x01 0x06 0x07 use Data, Pre-String, Post-String fields
7. Pre-String 0x06, ‘MODEL ‘ 0x41 0x01 0x07 0x06 0x4D 0x4F 0x44 0x45

0x4C 0x20
Short_String length = 6, ‘MODEL ‘

8. Post-String 0x02, ‘ A’ 0x41 0x01 0x08 0x02 0x20 0x41 Short_String length = 2, ‘ A’
9. Data Type 198 0x41 0x01 0x09 0xC6 USINT (8-bit unsigned integer)
11. Width 3 0x41 0x01 0x0B 0x03 3 ASCII bytes to be converted
13. Conversion ‘D’ 0x41 0x01 0x0D 0x44 ASCII bytes represent decimal number
15. Data in I/O Response 1 0x41 0x01 0x0F 0x01 Enable data in I/O response
16. Enabled 1 0x41 0x01 0x10 0x01 Instance 1 enabled

Serial Receive Object Instance 2 is configured to process the 9-character serial number UPC
label message packet. The Receive Mode is set to Use Pre-String and Use Data fields. The Pre-
String attribute is set to ‘SN: ‘. This string is used to filter for the serial-number message packet.
The serial number range is 1 to 60000, so the Data Type is set for UINT with a Width of 5, and
Conversion is set to decimal. The Data Size is 2 bytes for UINT.

Serial Receive Object Instance 2 Configuration (Class Code 65 or 0x41)
Attribute Data Class / Instance / Attribute / Data Description
6. Receive Mode 3 0x41 0x02 0x06 0x03 use Data, Pre-String fields
7. Pre-String 0x04, ‘SN: ‘ 0x41 0x02 0x07 0x04 0x53 0x4E 0x3A 0x20 Short_String length = 4, ‘SN: ‘
9. Data Type 199 0x41 0x02 0x09 0xC7 UINT (16-bit unsigned integer)
11. Width 5 0x41 0x02 0x0B 0x05 5 ASCII bytes to be converted
13. Conversion ‘D’ 0x41 0x02 0x0D 0x44 ASCII bytes represent decimal number
15. Data in I/O Response 1 0x41 0x02 0x0F 0x01 Enable data in I/O response
16. Enabled 1 0x41 0x02 0x10 0x01 Instance 2 enabled

Make sure Serial Receive Object instances 3-8 are disabled, since only Instances 1 and 2 are used
in this application. The gateway returns 5 input bytes to the DeviceNet scanner in the I/O
Response Message. The I/O Produce Size is 5, with the data organized as follows:

[Transmit Acknowledge bits] [Receive Toggle bits] [Instance 1 USINT data] [Instance 2 UINT data]
 1 byte 1 byte 1 byte 2 bytes

The gateway is now configured to receive the barcode message packets, convert the embedded
number into either an 8-bit or 16-bit unsigned integer number depending upon the scanned label
type, and return it as input bytes to the DeviceNet scanner.

Receive synchronization may also be used by enabling the Sync Enabled attribute. The I/O
Produce Size can be verified by reading the Serial Stream Object’s I/O Produce Size attribute
(class 64, instance 1, attribute 20).

MKS Instruments, Inc. D.I.P. Products Group 85

CDN36X User Manual revision 1.30

Example 3 – Transmitting Data
Print an ASCII string from a PLC to a serial printer, using a CDN366 gateway and a DeviceNet
scanner (master). The text message string can be from 1 to 64 characters long, including any
ASCII control characters. The serial printer RS232 channel is connected to a CDN366 serial
channel. The CDN366 DeviceNet channel is connected to the PLC DeviceNet scanner. The
DeviceNet network is powered by an external 24VDC power supply.

 PLC & DeviceNet Scanner
 CDN366

Gateway

DeviceNet network

Serial Printer

RS232

Power
Supply

Serial Printer
The serial printer’s RS232 channel is set for 300 bps, 7 data bits, even parity, and 2 stop bits. It
uses XON / XOFF software flow control.

CDN366 Gateway
The CDN366 serial channel is configured to transmit this RS232 message format. The Serial
Stream Object attributes are shown below for this application. The 3rd column lists the address
string if using Set_Attribute_Single commands to write the attribute values.

Serial Stream Object Configuration (Class Code 64 or 0x40)
Attribute Data Class / Instance / Attribute / Data Description
3. Baud Rate 300 0x40 0x01 0x03 0x01 0x2C 300 bps
4. Data Bits 7 0x40 0x01 0x04 0x07 7 data bits
5. Parity 2 0x40 0x01 0x05 0x02 Even parity
6. Stop Bits 2 0x40 0x01 0x06 0x02 2 stop bit
7. Flow Control 1 0x40 0x01 0x07 0x01 XON / XOFF

The next step is to configure the CDN366 gateway to transmit data received from the DeviceNet
scanner to the serial printer. To allow the printing of any text message, the gateway is
configured to pass through the ASCII data bytes from the scanner to the printer. The gateway
will receive a Short_String variable from the scanner. Only one Serial Transmit Object Instance
will be configured, to process the one data variable. The Data Type is Short_String, with a Data
Size of 65 (maximum text message size is 64, plus the length byte). The Transmit Mode is Use
Data.

Serial Transmit Object Instance 1 Configuration (Class Code 66 or 0x42)
Attribute Data Class / Instance / Attribute / Data Description
6. Transmit Mode 1 0x42 0x01 0x06 0x01 Use Data
9. Data Type 218 0x42 0x01 0x09 0xDA Short_String
10. Data Size 65 0x42 0x01 0x0A 0x41 1 length byte, 64 data bytes
15. Data in I/O Command 1 0x42 0x01 0x0F 0x01 Enable data in I/O command

MKS Instruments, Inc. D.I.P. Products Group 86

CDN36X User Manual revision 1.30

Make sure Serial Transmit Object instances 2-8 are disabled, since only Instance 1 is used in this
application. The gateway expects to receive 67 output bytes from the DeviceNet scanner in the
I/O Command Message. The I/O Produce Size is 67, with the data organized as follows:

[Transmit Toggle bits 0000000x] [Receive Acknowledge bits] [Instance 1 Short_String printer data]
 1 byte 1 byte 65 bytes

The gateway is now configured to receive ASCII text messages up to 64 characters in length and
send them to the serial printer. The DeviceNet scanner will always send 67 outputs in the I/O
Command Message, even if the text message is shorter than 64 characters. The gateway uses the
Short_String length byte to determine the number of valid characters to be transmitted.

Transmit synchronization must be used by the application. The application toggles the Instance
1 Transmit Toggle bit in the I/O Command Message when it sends a new text message, and
monitors the Instance 1 Transmit Acknowledge bit returned in the I/O Response Message. When
the Transmit Acknowledge bit equals the Transmit Toggle bit, then the application can send the
next text message.

The I/O Consume Size can be verified by reading the Serial Stream Object’s I/O Consume Size
attribute (class 64, instance 1, attribute 21).

MKS Instruments, Inc. D.I.P. Products Group 87

CDN36X User Manual revision 1.30

Example 4 – Transmitting Delimited Data
Using the same configuration as Example 3, the CDN366 gateway is configured to print two
specific text messages. For one message, the gateway converts two integer variables and inserts
it into the text. The second message contains no variables, but simply prints a fixed text
message. The two messages are listed below:

Message #1: ‘TEMP = xxx C, xxx F’, <CR>, <LF> (xxx is value, range of –50 to +400)
Message #2: ‘ALARM’, <CR>, <LF>

Serial Printer
The serial printer’s RS232 channel is set for 300 bps, 7 data bits, even parity, and 2 stop bits. It
uses XON / XOFF software flow control.

CDN366 Gateway
The CDN366 gateway is configured to transmit this RS232 message format. The Serial Stream
Object attributes are shown below for this application. The 3rd column lists the address string if
using Set_Attribute_Single commands to write the attribute values.

Serial Stream Object Configuration (Class Code 64 or 0x40)
Attribute Data Class / Instance / Attribute / Data Description
3. Baud Rate 300 0x40 0x01 0x03 0x01 0x2C 300 bps
4. Data Bits 7 0x40 0x01 0x04 0x07 7 data bits
5. Parity 2 0x40 0x01 0x05 0x02 Even parity
6. Stop Bits 2 0x40 0x01 0x06 0x02 2 stop bit
7. Flow Control 1 0x40 0x01 0x07 0x01 XON / XOFF

The next step is to configure the CDN366 gateway to transmit the specific messages. Three
Serial Transmit Object Instances are used, two for Message #1 (two variables) and one for
Message #2 (one text message).

Serial Transmit Object Instance 1 is configured to transmit the first part of Message #1 (TEMP =
xxx C, ‘). It receives an integer value from the DeviceNet scanner, converts it to 3 ASCII
characters, builds a message packet, and transmits it. The Transmit Mode is Use String1 Before
Data, Use Data, and Use String2 After Data. String1 is [‘TEMP = ‘]. String2 is [‘ C, ’]. The
Data Type is INT, to cover the –50 to 400 range. The Width is 3, and the Conversion is set for
decimal with no leading zeros.

Serial Transmit Object Instance 1 Configuration (Class Code 66 or 0x42)
Attribute Data Class / Instance / Attribute / Data Description
6. Transmit Mode 19 0x42 0x01 0x06 0x13 Use Data, String1 Before, String2 After
7. String1 0x07, ‘TEMP = ‘ 0x42 0x01 0x07 0x07 0x54 0x45 0x4D 0x50

0x20 0x3D 0x20
Short String length = 7, ‘TEMP = ‘

8. String2 0x04, ‘ C, ’ 0x42 0x01 0x08 0x04 0x20 0x43 0x2C 0x20 Short String length = 4, ‘ C, ’
9. Data Type 195 0x42 0x01 0x09 0xC3 INT (16-bit signed integer)
11. Width 3 0x42 0x01 0x0B 0x03 convert to 3 ASCII bytes
13. Conversion 1 0x42 0x01 0x0D 0x01 represent integer in decimal
15. Data in I/O Command 1 0x42 0x01 0x0F 0x01 enable data in I/O command

MKS Instruments, Inc. D.I.P. Products Group 88

CDN36X User Manual revision 1.30

Serial Transmit Object Instance 2 is configured to transmit the last part of Message #1 (‘xxx F’,
<CR>, <LF>). It receives an integer value from the DeviceNet scanner, converts it to 3 ASCII
characters, builds a message packet, and transmits it. The Transmit Mode is Use Data and Use
String1 After Data. String1 is [‘ F‘, <CR>, <LF>]. The Data Type is INT, to cover the –50 to
400 range. The Width is 3, and the Conversion is set for decimal with no leading zeros.

Serial Transmit Object Instance 2 Configuration (Class Code 66 or 0x42)
Attribute Data Class / Instance / Attribute / Data Description
6. Transmit Mode 9 0x42 0x02 0x06 0x09 Use Data, String1 After
7. String1 0x04 ‘ F‘ CR LF 0x42 0x02 0x07 0x04 0x20 0x46 0x0D 0x0A Short String length = 4, ‘ F‘ <CR> <LF>
9. Data Type 195 0x42 0x02 0x09 0xC3 INT (16-bit signed integer)
11. Width 3 0x42 0x02 0x0B 0x03 convert to 3 ASCII bytes
13. Conversion 1 0x42 0x02 0x0D 0x01 represent integer in decimal
15. Data in I/O Command 1 0x42 0x02 0x0F 0x01 enable data in I/O command

Serial Transmit Object Instance 3 is configured to transmit Message #2. It receives no data from
the DeviceNet scanner, but is instead triggered by the Transmit Toggle bit. Set the Data Type to
USINT, to minimize the Data Size to 1 byte, and Width to 1. The Transmit Mode is set to Use
String1 Before. String1 is [‘ALARM’, CR, LF].

Serial Transmit Object Instance 3 Configuration (Class Code 66 or 0x42)
Attribute Data Class / Instance / Attribute / Data Description
6. Transmit Mode 2 0x42 0x03 0x06 0x02 Use String1 Before
7. String1 0x07, ‘ALARM‘, CR,

LF
0x42 0x03 0x07 0x41 0x4C 0x41 0x52 0x4D
0x0D 0x0A

Short String length = 7, ‘ALARM‘
<CR> <LF>

9. Data Type 198 0x42 0x03 0x09 0xC6 USINT (8-bit unsigned integer)
11. Width 1 0x42 0x03 0x0B 0x01 convert to 1 ASCII bytes
15. Data in I/O Command 1 0x42 0x03 0x0F 0x01 Enable data in I/O command

Make sure the Serial Transmit Object instances 4-8 are disabled, since only Instances 1-3 are
used in this application. The gateway expects to receive 7 output bytes from the DeviceNet
scanner in the I/O Command Message. The I/O Produce Size is 7, with the data organized as
follows:

[TX Toggle bits 000000xx] [RX Acknowledge bits] [Inst 1 data] [Inst 2 data] [Inst 3 data]
 1 byte 1 byte 2 bytes 2 bytes 1 byte

The application should send Instance 1 and Instance 2 data bytes at the same time, so that the
values can be converted and transmitted sequentially to build Message #1. Instance 1 will build
its message packet first and load it into the transmit buffer. Instance 2 will build its message
next and load it into the transmit buffer. The result is the transmission of the entire Message #1
string, complete with temperature values in C and F. Because the gateway does not support a
NULL data byte, the scanner must still send a data value to Instance 3. The Instance does not
use the byte, but instead is triggered by its Transmit Toggle bit to send Message #2.

Transmit synchronization must be used. The application toggles Instance 1 and 2 Transmit
Toggle bits in the I/O Command Message when it sends new temperature values, and monitors
Instance 1 and 2 Transmit Acknowledge bits to tell when the message has been sent. The
application toggles Instance 3 Transmit Toggle bit to transmit Message #2, and monitors the
Instance 2 Transmit Acknowledge bit to tell when the message has been sent.

MKS Instruments, Inc. D.I.P. Products Group 89

CDN36X User Manual revision 1.30

MKS Instruments, Inc. D.I.P. Products Group 90

Chapter 8 – Troubleshooting

Problem Possible Cause
DeviceNet Configuration Program
does not recognize Gateway.

• Register Gateway EDS file with Configuration Program.

DeviceNet Configuration Program
does not recognize Gateway after
loading EDS file.

• Check Major and Minor Revisions for Gateway and EDS file, to see if you have
correct EDS file for your Gateway's firmware version.

Gateway does not appear on
DeviceNet network.

• Check wiring and cable connections.
• Check DeviceNet power supply voltage.
• Make sure Gateway baud rate matches network baud rate.
• Verify Gateway baud rate is set from rotary switches or retentive memory value.
• Make sure Gateway MAC ID is not used by another device.

After setting Gateway MAC ID,
DeviceNet Master does not
recognize Gateway.

• Disconnect Gateway from network before changing MAC ID.
• Make sure Gateway MAC ID is not used by another device.
• Verify Gateway MAC ID is set from rotary switches or retentive memory value.
• Verify DeviceNet baud rate.

NET LED is flashing red. • Gateway is removed from DeviceNet Master scanlist or network. Power cycle
Gateway to reset.

NET LED is solid red. • Make sure Gateway MAC ID is not used by another device. Possible DeviceNet
network failure.

NET LED is off. • Check wiring and cable connections.
• Check DeviceNet power supply voltage.
• Make sure Gateway baud rate matches network baud rate.
• Verify Gateway baud rate is set from rotary switches or retentive memory value.

MOD LED is flashing or solid red. • Gateway has failed. Cycle power to reset. Replace Gateway if necessary.

RX LED does not flash green when
data is sent to the Gateway.

• If Sync Enabled, make sure Receive Toggle and Receive Acknowledge bits are
being toggled. If application does not toggle Receive Acknowledge, Gateway
will not receive data. Verify data is being received in Receive Data.

• If Sync Enabled is disabled, verify data is being received in Receive Data.
• Verify source device is transmitting data to Gateway.

RX LED is solid red after Gateway
receives data.

• Check Serial Status for RX buffer Overflow or Parity Error. Reset Gateway or
clear Serial Status error bit if necessary.

• Make sure parity is set to match transmitting device.

TX LED is solid red after receiving
data from DeviceNet Master.

• Ceck Serial Status for TX buffer Overflow or Parity Error. Reset Gateway or
clear Serial Status error bit if necessary.

• Make sure parity is set to match receiving device configuration.

TX LED does not flash green when
Gateway should be transmitting
data.

• Make sure Transmit Toggle is being toggled. If applicatoin does not toggle
Transmit Toggle, Gateway will not transmit data.

• Verify data is being saved in Transmit Data.

1747-SDN Scanner displays error
code 77.

• Gateway I/O Produce Size and/or I/O Consume Size value do not match 1747-
SDN I/O Rx/Tx settings.

CDN36X User Manual revision 1.30

Appendix A – Product Specifications

DeviceNet Interface
Power Requirements: 11 - 28 Vdc @ 50 mA
Loss of Ground: Yes
Reverse Polarity: -30 Vdc
Signal Levels: ISO11898

Serial Channel
 Isolation: 500 Volts
 ESD Protection: +/- 10 kV
 Overload Protection: +/- 30 Volts
 Short Circuit: Indefinite
 RS232 Output Levels: +/- 7.9 Volts (unloaded, typical)

Environmental
 Operating Temperature: 0o C to 70o C
 Storage Temperature: -25o C to 85o C
 Size (inches): 3.25 x 2.37 x 1.08
 Mounting (inches) 0.5 tabs, 3/16 diameter mounting holes

PCB Encapsulation: RTV Silicon Compound

MKS Instruments, Inc. D.I.P. Products Group 91

CDN36X User Manual revision 1.30

Appendix B – DeviceNet Template

Class Instance Attribute Default Setting Unit Comments

MKS Instruments, Inc. D.I.P. Products Group 92

CDN36X User Manual revision 1.30

MKS Instruments, Inc. D.I.P. Products Group 93

Appendix C – ASCII Character Codes

 Non-Printable Characters Printable Characters

Hex Dec Char Name Kybd Hex Dec Char Hex Dec Char Hex Dec Char
0x00 0 NUL Null Ctrl @ 0x20 32 Space 0x40 64 @ 0x60 96 `
0x01 1 SOH Start of heading Ctrl A 0x21 33 ! 0x41 65 A 0x61 97 a
0x02 2 STX Start of text Ctrl B 0x22 34 " 0x42 66 B 0x62 98 b
0x03 3 ETX End of text Ctrl C 0x23 35 # 0x43 67 C 0x63 99 c
0x04 4 EOT End of transmit Ctrl D 0x24 36 $ 0x44 68 D 0x64 100 d
0x05 5 ENQ Enquiry Ctrl E 0x25 37 % 0x45 69 E 0x65 101 e
0x06 6 ACK Acknowledge Ctrl F 0x26 38 & 0x46 70 F 0x66 102 f
0x07 7 BEL Bell Ctrl G 0x27 39 ' 0x47 71 G 0x67 103 g
0x08 8 BS Backspace Ctrl H 0x28 40 (0x48 72 H 0x68 104 h
0x09 9 HT Horizontal tab Ctrl I 0x29 41) 0x49 73 I 0x69 105 i
0x0A 10 LF Line feed Ctrl J 0x2A 42 * 0x4A 74 J 0x6A 106 j
0x0B 11 VT Vertical tab Ctrl K 0x2B 43 + 0x4B 75 K 0x6B 107 k
0x0C 12 FF Form feed Ctrl L 0x2C 44 , 0x4C 76 L 0x6C 108 l
0x0D 13 CR Carriage return Ctrl M 0x2D 45 - 0x4D 77 M 0x6D 109 m
0x0E 14 SO Shift out Ctrl N 0x2E 46 . 0x4E 78 N 0x6E 110 n
0x0F 15 SI Shift in Ctrl O 0x2F 47 / 0x4F 79 O 0x6F 111 o
0x10 16 DLE Data line escape Ctrl P 0x30 48 0 0x50 80 P 0x70 112 p
0x11 17 DC1 Device control 1 Ctrl Q 0x31 49 1 0x51 81 Q 0x71 113 q
0x12 18 DC2 Device control 2 Ctrl R 0x32 50 2 0x52 82 R 0x72 114 r
0x13 19 DC3 Device control 3 Ctrl S 0x33 51 3 0x53 83 S 0x73 115 s
0x14 20 DC4 Device control 4 Ctrl T 0x34 52 4 0x54 84 T 0x74 116 t
0x15 21 NAK Negative acknowledge Ctrl U 0x35 53 5 0x55 85 U 0x75 117 u
0x16 22 SYN Synchronous idle Ctrl V 0x36 53 6 0x56 86 V 0x76 118 v
0x17 23 ETB End of transmit block Ctrl W 0x37 55 7 0x57 87 W 0x77 119 w
0x18 24 CAN Cancel Ctrl X 0x38 56 8 0x58 88 X 0x78 120 x
0x19 25 EM End of medium Ctrl Y 0x39 57 9 0x59 89 Y 0x79 121 y
0x1A 26 SUB Substitute Ctrl Z 0x3A 58 : 0x5A 90 Z 0x7A 122 z
0x1B 27 ESC Escape Ctrl [0x3B 59 ; 0x5B 91 [0x7B 123 {
0x1C 28 FS File separator Ctrl \ 0x3C 60 < 0x5C 92 \ 0x7C 124 |
0x1D 29 GS Group separator Ctrl] 0x3D 61 = 0x5D 93] 0x7D 125 }
0x1E 30 RS Record separator Ctrl ^ 0x3E 62 > 0x5E 94 ^ 0x7E 126 ~
0x1F 31 US Unit separator Ctrl _ 0x3F 63 ? 0x5F 95 _ 0x7F 127 DEL

