

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

FAST SHIPPING AND DELIVERY

- TENS OF THOUSANDS OF IN-STOCK ITEMS
- EQUIPMENT DEMOS
- HUNDREDS OF MANUFACTURERS SUPPORTED
- LEASING/MONTHLY RENTALS
- ITAR CERTIFIED
 SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS

Experienced engineers and technicians on staff at our full-service, in-house repair center

WE BUY USED EQUIPMENT

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins **www.artisantg.com/WeBuyEquipment** *>*

Instra View REMOTE INSPECTION

Remotely inspect equipment before purchasing with our interactive website at **www.instraview.com** *>*

LOOKING FOR MORE INFORMATION?

Visit us on the web at <u>www.artisantg.com</u> for more information on price quotations, drivers, technical specifications, manuals, and documentation

DSCDP

Hardware Manual

Copyright ETEL SA. All rights reserved. Reproduction, adaptation or translation of this document is prohibited without prior written permission. ETEL SA retains the right to make any change to these specifications at any time, without notice. THIS PAGE IS INTENTIONALLY LEFT BLANK

3

Table of contents

1.	Intro	duction	6
1	.1 Sa	fety	6
1	.2 DS	CDP presentation	7
	1.2.1	Working principle	7
	1.2.2	Applications	7
	1.2.3	General operating conditions	7
	1.2.4	Transport and storage conditions	7
	1.2.5	Interfaces possibilities	7
2.	Mode	els characteristics	10
2	.1 Ra	ck format	10
	2.1.1	Outline and dimensions	10
	2.1.2	Block schematics	11
	2.1.3	Ratings	12
	2.1.4	Mounting systems – Installation requirements	14
2	.2 Ho	used format with power supply	16
	2.2.1	Outline and dimensions	16
	2.2.2	Block schematics	17
	2.2.3	Ratings	18
	2.2.4	Mounting systems – Installation requirements	19
2	.3 Or	dering information	21
3.	Elect	trical interface	22
3	.1 En	coder connectors	23
	3.1.1	Connectors JC5 and JC6: Position encoders	23
3	.2 Inp	outs / outputs connectors	27
	3.2.1	Connectors JC9 and JC10: Customer inputs / outputs	27
3	.3 Co	mmunication connectors	30
	3.3.1	Connector JC1: Turbo-ETEL-Bus input	31
	3.3.2	Connector JC2: Turbo-ETEL-Bus output	31
	3.3.3	Connector JC3: ETEL-Bus-Lite2 serial communication	31
	3.3.4	Connector JC4: Download key	32
3	.4 Mo	otor connectors	33
	3.4.1	ETEL motor cables numbering system	33
	3.4.2	Connector JC7 and JC11: Motor connection	33
3	.5 Po	wer connectors	34
	3.5.1	Connector JC15: Rack format, power supply input	34
	3.5.2	Connector JC13: Housed format, power supply input	35
	3.5.3	Connector JC12: Housed format, auxiliary supply input	36

ETEL Doc. - Hardware Manual # DSCDP / Ver G / 6/1/11

	IOTION TECHNOLOGY
3.5.4 Connector JC14: Housed format, brake resistor	. 37
3.6 Optional boards connector	37
3.6.1 Connector JC8: Depends on the type of board	. 37
3.7 Cables	38
3.7.1 Manufacturing	. 38
3.8 Axis number selection	39
3.9 LEDs meaning	40
4. Service and support	. 41

Record of revisions concerning the DSCDP manual:

	Document revisions									
Issue (x)	Date	Modified								
Ver A	05.06.02	First version								
Ver B	24.09.03	Updated version - New housed format (see §2.2 and §3.5) - Brake resistor as well as power stage and short-circuit relays on housed model (see §3.5.2, §3.5.3 and §3.5.4) - New signals on JC4 connector (§3.3.4) - Additional safety precautions in accordance with the UL and CE standards								
Ver C	19.12.03	Updated version - Housed format is UL certified								
Ver D	31.03.04	Updated version - Housed format dimensions modified (see <u>§2.2.1</u>)								
Ver E	01.11.04	Updated version -Digital Hall effect sensor implemented (see <u>\$3.2.1.1</u>)								
Ver F	19.12.05	Updated version - Additional detailed descriptions								
Ver G	06.01.11	Updated version: - New UL certification laboratory (TUV)								

Documentation concerning the DSCDP:

•	DSCDP Hardware Manual	(Specifications & electrical interfaces)	# DSCDP 904 G
•	Operation & Software Manual	(DSCDP's setup, use & programming)	# DSC2P 903 x
•	DSO-PWS User's Manual	(Power module installation and specifications)	# DSOPWS 902 x
•	DSO-RAC2 Hardware Manual	(DSO-RAC2 principle)	# DSORAC2 904 x
•	EBL2 Communication Manual	(EBL2 principle, messages mapping)	# EBL2 908 x

The DSCDP position controllers have been successfully tested and evaluated to meet the UL 508C for US market and CSA-C22.2 N°14-05 for canadian market.

This standard describes the fulfillment by design of minimum requirements for electrically operated power conversion equipment which is intended to eliminate the risk of fire, electrical shock, or injury to persons being caused by such equipment.

Remark: By default, the DSCDP is delivered without UL recognition.

1. Introduction

This document concerns a two axes digital position controller of ETEL's DSCxx family: **the DSC Dual position controller** or **DSCDP** also called 'controller' in this document.

The purpose of this manual is to give details regarding the specifications, installation, interfacing and hardware items. All details for proper connections (power supply, motor, encoder connection, etc...) are provided herein. Detailed information concerning the programming of the controller is provided in the corresponding **'Operation & Software Manual'**.

The information given in this manual is valid for type # D S C D P x x x - x x x E and later.

Remark: The updates between two successive versions are highlighted with a modification stroke in the margin of the manual.

1.1 Safety

Please, read all the safety precautions listed in this manual before handling the DSCDP:

- Never use the DSCDP for purposes other than those described in this manual.
- A competent and trained technician must install and operate the DSCDP, in accordance with all specific regulations of the respective country concerning both safety and EMC aspects.
- Troubleshooting and servicing are permitted only by ETEL's technicians and agreed distributors.
- Operating the DSCDP will make the motor move. Keep away from all moving parts to avoid injuries!
- The safety symbols placed on the DSCDP or written in the manuals must be respected.
- If the DSCDP is integrated into a machine, the manufacturer of this machine must establish that it fulfils the 89/336/EEC directive on EMC before operating the controller.

Warning:Signals a danger of electrical shock to the operator. Can be fatal for a person.

Caution: Signals a danger for the DSCDP. Can be destructive for the material. A **danger** for the operator can result from this.

Caution: Indicates electrostatic discharges (ESD), dangerous for the DSCDP. The components must be handled in an ESD protected environment only.

Remark: The DSCDP associated to its motor connector complies with the 89/336/EEC directive on EMC and the 73/23/EEC low voltage directive.

6

1.2 DSCDP presentation

1.2.1 Working principle

The DSCDP is a digital position controller. It has been designed for direct drive applications. Its power bridge PWM switching is determined by the motor position encoder. The DSCDP includes on a single board, the control circuits, the power bridge and all the necessary interfaces for the communication, the encoders and the inputs/outputs for two motors. The housed model includes also a power supply on the same board, inside the same housing.

1.2.2 Applications

The DSCDP can drive two, single-phase, two-phase or/and three-phase motors. You can obtain brushless torque and linear motors from ETEL, as well as moving coils and moving magnets. The DSCDP can drive these motors and also brushless motors, DC motors, steppers (only if three-phase motors are star-connected). They must also be implemented with analog (incremental or absolute (EnDat 2.1)) or TTL encoders available on the market. Digital Hall effect sensor can also be connected to the controller (with firmware from version 1.12A). It is also possible to drive stepper motors in open loop (no need of encoder in this case) with firmware from version 1.14A.

1.2.3 General operating conditions

The DSCDP is designed to operate in a non-aggressive and clean environment, with a humidity rate ranging between 10% and 85%, an altitude < 2000m (6562 ft), and a temperature ranging between +15°C (59°F) and +40°C (104°F) for the rack format or +30°C (86°F) for the housed format. The DSCDP must be connected to an electrical network of overvoltage category 2 (refer to EN 50178 and UL 840 standards for more information) and is suitable for use on a circuit capable of delivering not more than 5000 Arms, symmetrical amperes, 400 volts maximum. The electronics must be in an enclosure respecting a pollution degree of 2 (refer to UL 508C and EN 50178 standards for more information). The DSCDP is not designed or intended for use in the on-line control of air traffic, aircraft navigation and communications as well as critical components in life support systems or in the design, construction, operation and maintenance of any nuclear facility.

1.2.4 Transport and storage conditions

During the transport and the storage, the controller must remain inside its original packaging. The transport conditions must respect the class 2K3 of the IEC 60721-3-2 standard (temperature between -25°C and +70°C, and humidity < 95% without condensation) and the storage conditions must respect the class 1K2 of the IEC 60721-3-1 standard (temperature between +5°C and +45°C, and humidity between 5 and 85% without condensation).

1.2.5 Interfaces possibilities

Motor and its position encoder

To control the position (in closed loop) of a rotary and/or linear motor, the DSCDP needs a signal coming from an analog (incremental or absolute (EnDat 2.1)) or a TTL encoder linked to this or these motor(s). It is also possible to drive stepper motors in open loop (no need of encoder in this case).

Communication

The user can set the DSCDP with a PC (Win 9x/2000/NT/XP) using the ETEL Tools (ETT) software through the ETEL-Bus-Lite2 (RS232 / RS422) communication port. Refer to the **'EBL2 Communication Manual'** for more information.

The DSCDP also includes ETEL's Turbo-ETEL-Bus (TEB) which is a high speed field bus based on an Ethernet 100 Mbps chip. It includes all features to interpolate complex movements with several synchronized DSCDPs, if ETEL's DSMAX motion controller is installed in a PC and linked to the TEB. If ETEL Tools is installed on the same PC than the DSMAX (or DSTEB) board, all the DSCDPs can be set through the TEB. The user can 'daisy chain' up to 31 nodes on the TEB (15 DSCDPs (30 axes) and one DSMAX (or DSTEB) board).

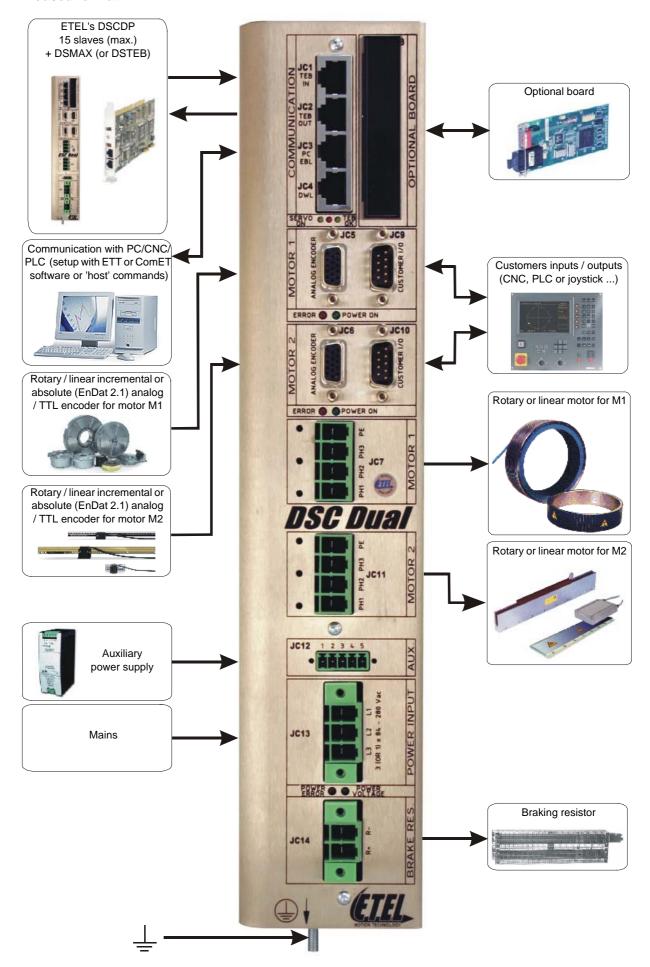
Caution: The TEB is not compatible with Ethernet boards available on the market. Therefore, do not connect the TEB on the Ethernet port of your PC.

Inputs / outputs

The customer's inputs / outputs are digital signals coming from a CNC machine-tool, a PLC or a joystick for example (refer to the connection diagram next page).

The electrical interface details are given in §3.

Artisan Technology Group - Quality Instrumentation ... Guaranteed | (888) 88-SOURCE | www.artisantg.com



Connection diagram:

Rack format

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

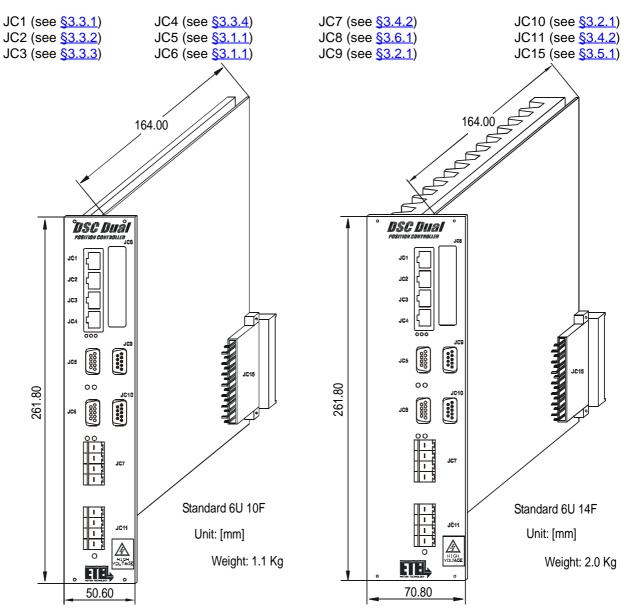
2. Models characteristics

Three models of DSCDP are available, according to the needs:

- 1. Rack format with plate heat sink (refer to §2.1)
- 2. Rack format with extruded heat sink (refer to §2.1)

These 2 models are dedicated to be mounted inside a standard 6U rack case. They do not include any power supply board and need to be powered through their DC power connector (JC15) by an external power supply (the ETEL DSO-PWS power module, e.g.), ideally installed inside the rack case.

3. Housed format with power supply (refer to §2.2)

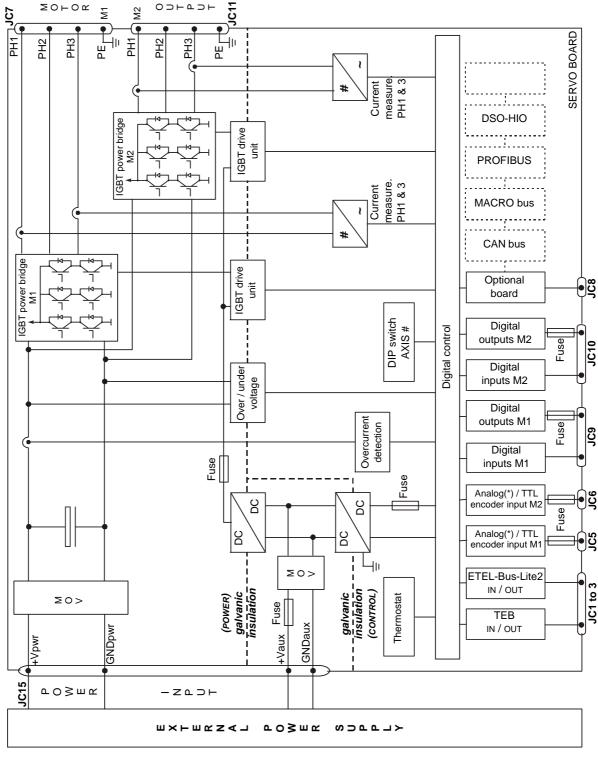

This controller is a 'stand alone' controller. It includes a complete controller with its power supply inside the same housing. The main difference between the rack formats and the housed format concerns the power supply connectors.

2.1 Rack format

There are two different sizes of DSCDP rack format: the DSCDPxx1-xxx (10F wide) and the DSCDPxx2-xxx (14F wide).

2.1.1 Outline and dimensions

Refer to the following chapters for more details about the connectors:



ETEL Doc. - Hardware Manual # DSCDP / Ver G / 6/1/11

2.1.2 Block schematics

In the DSCDP rack formats, all parts are on a single board: the servo board. They need to be powered by an external power supply. The power supply developed by ETEL (refer to the **'DSO-PWS User's Manual'** for more information) is designed to fit most applications. If you use another power supply, it must meet all the specifications written on the next page. On the servo board, the power part and the control part are galvanically separated. The inputs and outputs are insulated from the control part by opto-couplers.

M1 and M2 represent the motor 1 and the motor 2 respectively.

(*): it is possible to plug an EnDat 2.1 encoder (D-Sub 15 pins high density connector) but only with the DSCDP**3**xx-xxx version.

Caution: The GND is internally connected to the DSCDP front panel which is connected to the ground (PE).

The power GND is not connected to the ground (PE).

11

2.1.3 Ratings

To meet the specifications listed below, it is recommended to use an ETEL power supply (DSO-PWS). There are two different types of 10F wide rack formats (the DSCDPx**21**-xxx and the DSCDPx**31**-xxx) and one type of 14F wide rack format (the DSCDPx**32**-xxx).

All the specifications are given for an ambient temperature ranging from +15°C (59°F) to +40°C (104°F) and with an air flow of 2 m/s (400 LFM) inside the rack case:

Remark: The values given in the following table are valid for each motor.

DSCDP POWER FEATURES for RACK FORMAT									
Cha	racteristics	DSCDPx21-xxx	DSCDPx31-xxx	DSCDPx32-xxx					
	Voltage (up to)	400 VDC							
	Current range on product label	3 Arms / 7.5 Arms (1s)	3.5 Arms / 15 Arms (1s)	7 Arms / 15 Arms (1s)					
	Three-phase motor Max. full load current PWM at 18 kHz	4.9 ⁽¹⁾ A (3.5 Arms)	4.9 ⁽¹⁾ A (3.5 Arms)	11 ⁽¹⁾ A (7.5 Arms)					
Three-phase motor11 A21 AMax. overload current11 A21 Aduring 2 seconds(7.5 Arms)(14.9 Arms)PWM at 18 kHz11 KHz11 A		21A (14.9 Arms)							
Output to the motor	Two-phase motor 4.9 ⁽¹⁾ A Max. full load current 4.3 ⁽¹⁾ A Output to the motor PWM at 18 kHz	4.9 ⁽¹⁾ A (3.5 Arms)	11 ⁽¹⁾ A (7.5 Arms)						
(per motor)	Two-phase motor Max. overload current during 2 seconds PWM at 18 kHz	9 A (6.4 Arms)	19 A (13.5 Arms)	19A (13.5 Arms)					
	One-phase motor Max. full load current PWM at 18 kHz	4.9 ⁽¹⁾ A (3.5 Arms)	4.9 ⁽¹⁾ A (3.5 Arms)	11 ⁽¹⁾ A (7.5 Arms)					
	One-phase motor Max. overload current during 2 seconds PWM at 18 kHz	11 A (7.5 Arms)	21 A (14.9 Arms)	21A (14.9 Arms)					
	Current ripple frequency								
Power supply input	DC voltage		24 - 400 VDC						
	DC voltage		120 - 340 VDC						
Auxiliary supply input for DSCDPxxx-x1x	Max. current at 120 VDC		200 mA ⁽²⁾						
	Max. current at 340 VDC		70 mA ⁽²⁾						
	DC voltage		24 - 55 VDC						
Auxiliary supply input for DSCDPxxx-x2x	Max. current at 24 VDC		1 A ⁽²⁾						
	Max. current at 55 VDC		500 mA ⁽²⁾						
Maximum current n	neasurable by the controller	12.5 A	25 A	25 A					

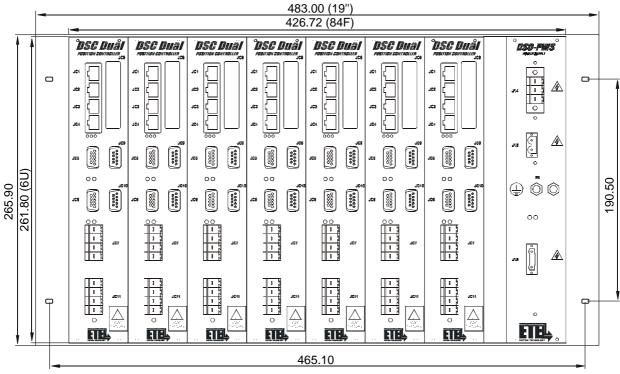
⁽¹⁾: Continuous current can be reached only with forced air cooling (external fan necessary: refer to $\underline{\$2.1.4}$). ⁽²⁾: With optional board mounted on the DSCDP, no external device connected to the I/O. The current can change depending on the type(s) of encoder(s) used.

Note: for DSCDPxxx-x2x, the DC current is equal to 450 mA at 48 VDC.

Remark: With PWM at 18 kHz, the current ripple in the motor is at 36 kHz.

With two-phase motor, the current in 'motor phase 1- / 2-' (pin 3 of JC7 and JC11 connectors) is equal to ($\sqrt{2}$ x motor phase 1+) or ($\sqrt{2}$ x motor phase 2+). Be careful to use the suitable cable diameter.

DSCDP CONTROL FEATURES for RACK FORMAT									
	Motion profile and command management sampling time	500 µs							
	Current loop sampling time	55.56 µs							
General	Position loop sampling time	55.56 µs							
	Motion profiles	Trapezoidal / S-curve / sine / look-up table / interpolated (DSMAX)							
	32 bits floating point DSP	Dual SHARC Digital Signal Processor							
	ETEL-BUS-LITE 2 host (PC) communication	RS232 or RS422 / 115'200 bps							
	Turbo-ETEL-Bus multi-axis communication	100 Mbps (based on Ethernet components)							
Standard interfaces	CAN interface option	with DSO-CAN board							
	PROFIBUS interface option	with DSO-PRO board							
	MACROBUS interface option	with DSO-MAC board							
Position	Analog 1Vptp TTL encoder possible	Max. 400kHz in. / up to 2'048 (x4) interpol. factor (per motor) Max. 400KHz (per motor)							
encoders interfaces	EnDat 2.1 compatible input (EDT + ECL)	RS485 (from rack format version DSCDP3xx-xxxE)							
	Encoder limit switch (EHO + ELS)	TTL signal (from rack format version DSCDP 3 xx-xxx E)							
	Digital input, insulated	4 per motor (+ 8 with DSO-HIO optional board but shared between both motors							
User's	Digital output, insulated	2 per motor (+ 8 with DSO-HIO optional board but shared between both motor							
inputs / outputs	Analog input	0 (+ 4 depending on the DSO-HIO optional board version but shared between both motors)							
	Analog output	0 (+ 4 depending on the DSO-HIO optional board version but shared between both motors)							
	ETEL Tools software for setting / monitoring	Windows 9x / 2000 / NT / XP							
Software /	DLL files (C / C++ / VB / LV)	Windows 9x / 2000 / NT / XP / QNX4 / QNX6							
programmability	User's programmable sequence	4096 lines per axis							
	Firmware update	RS232, Turbo-ETEL-Bus							


2.1.4 Mounting systems – Installation requirements

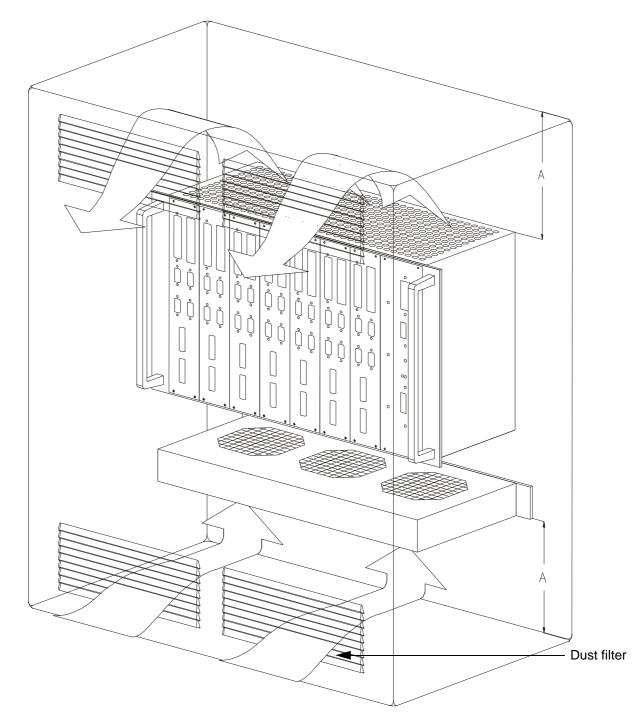
The DSCDP rack formats are dedicated to be mounted inside a rack case system.

Warning: The rack case with the controllers and the power supply has the following electrical safety degree: IP 20 (according to EN 60529 standard). To respect this degree, each empty slot (if a controller is not present in the rack case) must be closed by a front panel. The rack case must be in an enclosure respecting a pollution degree of 2 (refer to UL 508C and EN 50178 standards for more information).

The rack formats are mounted vertically inside a rack case. Here is an example

Rack case depth: 240 (without the depth of the handle)

Unit: [mm]

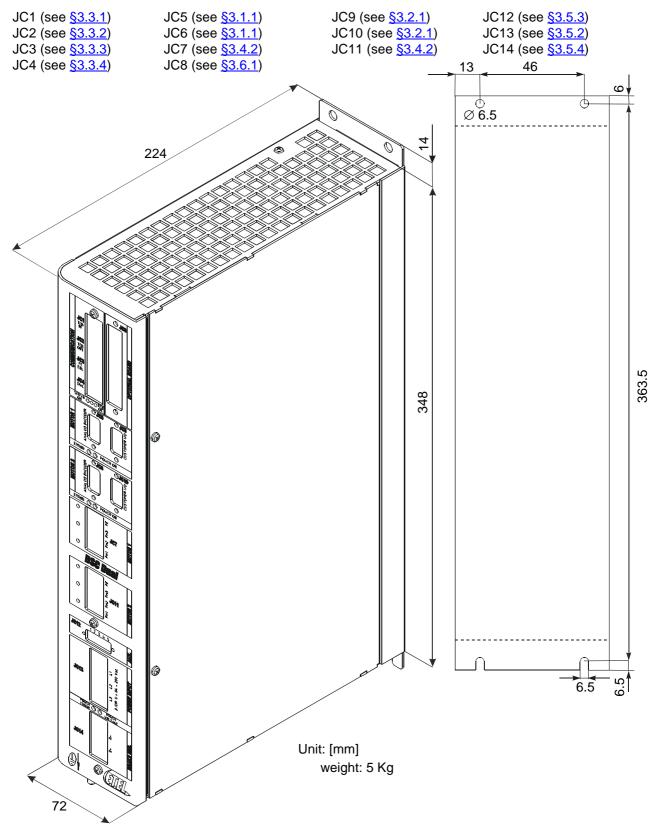

In the solution outlined above, seven DSCDPxx1-xxx are powered by a DSO-PWS (ETEL's power supply).

The rack case systems should be protected against any splashes of liquid and any contacts with smoke and dust. It must be installed inside a closed cabinet and screwed on a metallic plate, connected to the ground, where no vibration will occur.

Fresh air is necessary to cool the controllers inside the rack case (the flow depends on the user application). It is recommended to install fans in the cabinet to guarantee an air flow (the fan power depends on the user application). Caution: some fans may perturb the current measurement of the controller if they are too close to the rack case. If this problem occurs, use another type of fan or increase the distance between the fan and the rack case while ensuring the air flow mentioned hereafter. The air flow inside ETEL's rack cases with fans is equal to minimum 2 m/s (400 LFM) (the fans, used with the rack case, have an air flow of 94.2 CFM). Refer to the 'DSO-RAC2 Hardware Manual' for more information about the rack case.

This drawing shows a rack case with rack formats, inside a cabinet:

The following distances are recommended: A = 100 [mm] (drawing out of scale).

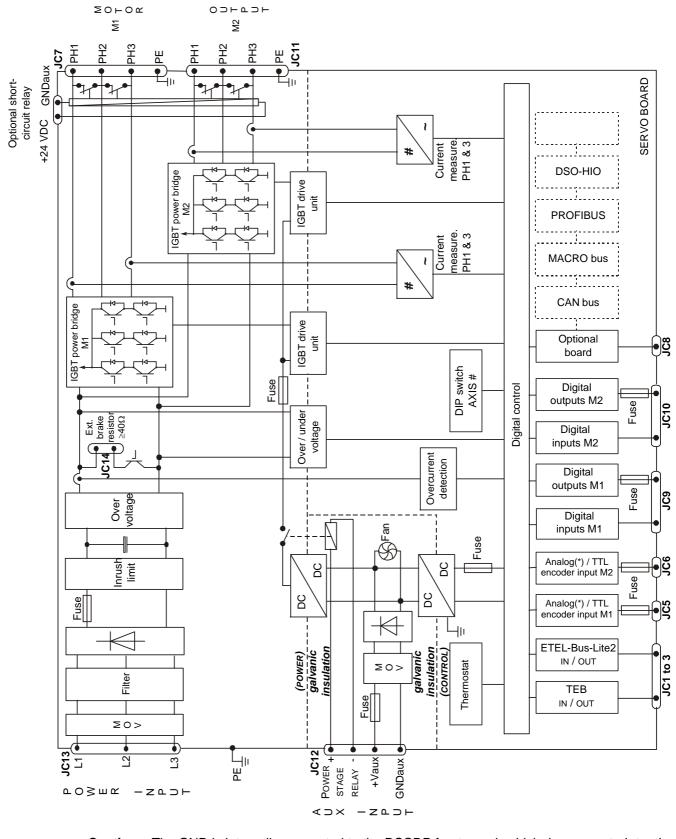


2.2 Housed format with power supply

There is one size of DSCDP housed format: the DSCDPxx4-xxx (72 x 224 x 376 mm).

2.2.1 Outline and dimensions

Refer to the following chapters for details about the connectors:



Remark: 2 mm must be added to the above-mentioned width of the controller to take the screw heads into account.

2.2.2 Block schematics

The housed format contains two boards: the servo board and the power supply board. On the servo board, the power part and the control part are galvanically separated. The inputs and outputs are insulated from the control part by opto-couplers.

Caution: The GND is internally connected to the DSCDP front panel which is connected to the ground (PE). The power GND is not connected to the ground (PE).

2.2.3 Ratings

There are two different types of DSCDP housed formats: the DSCDPx24-xxx and the DSC2Px34-xxx.

All the specifications are given for an ambient temperature ranging from +15°C (59°F) to +30°C (86°F):

Remark: The values given in the following table are valid for each motor.

DSCDP POWER FEATURES for HOUSED FORMAT									
	Characteristics	DSCDPx24-xxx DSCDPx34-xxx							
	Voltage (up to)	400	VDC						
	Current range on product label	3 Arms / 7.5 Arms (1s)	7 Arms / 15 Arms (1s)						
	Three-phase motor Max. full load current PWM at 18 kHz	4.9 A (3.5 Arms)	10 A (7 Arms)						
	Three-phase motor Max. overload current during 2 seconds PWM at 18 kHz	11 A (7.7 Arms)	21 A (14.9 Arms)						
Output to the motor (per motor)	Two-phase motor Max. full load current PWM at 18 kHz	4.9 A (3.5 Arms)	9 A (6.3 Arms)						
(,)	Two-phase motor Max. overload current during 2 seconds PWM at 18 kHz	9 A (6.4 Arms)	18 A (12.7 Arms)						
	One-phase motor Max. full load current PWM at 18 kHz	4.9 A (3.5 Arms)	8 A (5.6 Arms)						
	One-phase motor Max. overload current during 2 seconds PWM at 18 kHz	11 A (7.7 Arms)	16 A (11.3 arms)						
	Current ripple frequency	36	kHz						
	AC voltage (single or three-phase)	84 - 28	30 VAC						
Power supply input	Max. AC current at 1x or 3x 84 - 280 VAC	1x or	3x 6 A						
	Max. inrush current per phase at 280 VAC	15 Apeak							
A	DC voltage	24 \	VDC						
Auxiliary supply input	Max. current at 24 VDC	1 /	A ⁽¹⁾						
Maximum cu	rrent measurable by the controller	12.5 A 25 A							

(1): With optional board mounted on the DSCDP, no external device connected to the I/O. The current can change depending on the type(s) of encoder(s) used. A current equal to about twice the above-mentioned value can be necessary to switch on the controller (because of the trigger pulse).

Remark: With PWM at 18 kHz, the current ripple in the motor is at 36 kHz.

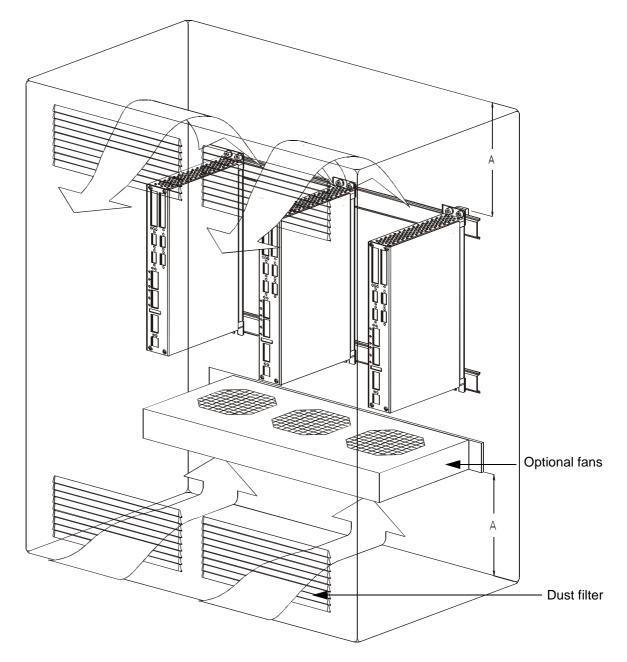
With two-phase motor, the current in 'motor phase 1- / 2-' (pin 3 of JC7 and JC11 connectors) is equal to ($\sqrt{2}$ x motor phase 1+) or ($\sqrt{2}$ x motor phase 2+). Be careful to use the suitable cable diameter.

For an ambient temperature exceeding +30°C, a derating of 0.3 A per degree must be applied on the above-mentioned current values

The values given in the above-mentioned table are given for a sinusoidal output current with a frequency higher than 0.5 Hz. The losses induced by a AC current are shared between the transistors. A DC current heat up only some of the IGBTs and can induce their breakdown after 10 minutes if the current is near the maximum full load.

DSCDP CONTROL FEATURES for HOUSED FORMAT								
	Motion profile and command management sampling time	500 µs						
	Digital current loop sampling time	55.56 µs						
General	Position loop sampling time	55.56 µs						
	Motion profiles	Trapezoidal / S-curve / sine / look-up table / interpolated (DSMAX)						
	32 bits floating point DSP	Dual SHARC Digital Signal Processor						
	Power stage relay	Relay cutting the + 15 VDC voltage of the power part						
	Brake resistor	External > 40Ω with thermal switch protection						
	ETEL-BUS-LITE 2 host (PC) communication	RS232 or RS422 / 115'200 bps						
	Turbo-ETEL-Bus multi-axis communication	100 Mbps (based on Ethernet components)						
Standard interfaces	CAN interface option	with DSO-CAN board						
	PROFIBUS interface option	with DSO-PRO board						
	MACROBUS interface option	with DSO-MAC board						
Position	Analog 1Vptp TTL encoder possible	Max. 400kHz in. / Up to 2'048 (x4) interpolation factor (per motor) Max. 400kHz (per motor)						
encoders interfaces	EnDat 2.1 compatible input (EDT + ECL)	RS485						
	Encoder limit switch (EHO + ELS)	TTL signal						
	Digital input, insulated	4 per motor (+ 8 with DSO-HIO optional board but shared between both motors						
User's	Digital output, insulated	2 per motor (+ 8 with DSO-HIO optional board but shared between both motors)						
inputs / outputs	Analog input	0 (+ 4 depending on the DSO-HIO optional board version but shared between both motors)						
	Analog output	0 (+ 4 depending on the DSO-HIO optional board version but shared between both motors)						
	ETEL Tools software for setting / monitoring	Windows 9x / 2000 / NT / XP						
Software /	DLL files (C / C++ / VB)	Windows 9x / 2000 / NT / XP / QNX4 / QNX6						
programmability	User's programmable sequence	4096 lines per axis						
	Firmware update	RS232 / Turbo-ETEL-Bus						
Option	Motor's short-circuit relay	Relay short-circuiting the motor's phases						

2.2.4 Mounting systems – Installation requirements


Warning: The housed format has the following electrical safety degree: IP 20 (according to EN 60529 standard).

The housed format must be installed in an enclosure respecting a pollution degree of 2 (refer to UL 508C and EN 50178 standards for more information).

The controllers should be protected against any splashes of liquid and any contacts with smoke and dust. They must be installed inside a closed cabinet and screwed on a metallic plate, where no vibration will occur. The ground of the controller(s) must be connected prior to any other connections.

A fan is already present in the housing of the housed format. Nevertheless, it is recommended to install fans in the cabinet to guarantee an air flow (the fan power depends on the user application).

The following distance is recommended: A = 100 [mm] (drawing out of scale).

2.3 Ordering information

Here is the ordering information describing the meaning of each digit present on the label of the DSCDP:

	D	S	С	D	Ρ	3	2	1	-	1	1	1	Х	-	0	0	0
Family product: DSCDP: 400VDC position controller	1																
Encoder type: 1 = Analog (1Vptp) or TTL 3 = Analog (1Vptp) or absolute (EnDat 2.1) or TTL																	
Power output: 2 = 3 Arms / 7.5 Arms (1s) 3 = 3.5 Arms (for 10F rack) or 7 Arms (for 14F rack or housed format) / 15 Arms (1s)							l										
Assembly: 1 = Rack format with plate heat sink and frontplate of 10F (available with power output 2 and 3, with relay option 1) 2 = Rack format with extruded heat sink and frontplate of 14F (available with power output 3 and with relay option 1) 4 = Housed format (available with power output 2 and 3, with relay option 3 or 4, with auxiliary supply input 2 and necessarily with encoder type 3)																	
Relay option: 1 = Without relay (only for rack format assembly 1 and 2) 3 = With power stage relay (only for housed format assembly 4) 4 = With motor's short-circuit relay AND power stage relay (only for housed format assembly 4)																	
Auxiliary supply input: 1 = 120 - 340VDC 2 = 24 - 55VDC (only +24VDC for housed format assembly 4)											Į						
Standard option: 1 = Not UL recognized 2 = UL recognized												ı					
By default, the DSCDP is delivered without UL recognition																	

Remark: Not all the combinations are possible.

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

3. Electrical interface

This chapter describes the pin assignment for every connector. More detailed explanations for proper connections are given in each case.

There are six groups of connectors, according to their function:

Encoders connectors (see §3.1).

Inputs / outputs connectors (see <u>§3.2</u>).

Communication connectors (see §3.3).

Motor connectors (see <u>§3.4</u>).

Power connectors (see §3.5).

Optional boards connector (see <u>§3.6</u>).

Warning: High voltage may be present on the power and motor connectors. Before connecting or disconnecting a cable on one of these connectors or touching the controller, turn off all the power supplies and wait 10 minutes to allow the internal DC bus capacitors to discharge.

Caution: All the inputs/outputs cables must be insulated (no contact) from the power and the mains. The inputs and outputs must be connected to an Extra Low Voltage circuit only

(SELV).

Most inputs and outputs are not galvanically insulated from the GND.

The motor connectors must always be correctly screwed onto the DSCDP.

Caution: All the connectors must be handled in an ESD protected environment, only.

Remark: In the next paragraphs, connectors with male pins are indicated with the • symbol (full), and female pins are represented with the o symbol (empty).

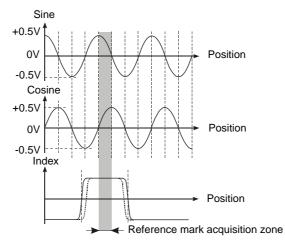
3.1 Encoder connectors

3.1.1 Connectors JC5 and JC6: Position encoders

Caution: The encoder cable(s) must be insulated (no contact) from the power and the mains. The inputs and outputs of this connector are not galvanically insulated from the GND. The inputs and outputs must be connected to an Extra Low Voltage circuit only (SELV).

Caution: The encoder connectors must be handled in an ESD protected environment, only.

Remark: The encoder cable(s) connected to the DSCDP must be shielded (see <u>§3.7.1</u>).


Depending on the version of the DSCDP rack format, two types of encoder connector can be found:

- a D-Sub, 9 pins, connector on the DSCDP1xx-xxx where an incremental analog encoder 1 Vptp or a TTL encoder can be connected.
- a D-Sub 15 pins high density connector on the DSCDP3xx-xxx and later where an incremental analog encoder 1 Vptp, or an analog absolute encoder (EnDat 2.1) or a TTL encoder can be connected.
 The DSCDP housed format includes only a D-Sub 15 pins high density encoder connector.

Remark: JC5 is used to connect the encoder of motor 1 and JC6 for the one of motor 2.

3.1.1.1 Incremental analog encoder (1 Vptp)

The incremental analog encoder has 1Vptp signals with a load resistor $R_0=120\Omega$. It determines the motor position thanks to two sinusoidal signals with a 90° phase-shift (sine and cosine). A third signal, the index (also called reference mark) gives the absolute motor position:

The D-Sub 9 pins connector is **only** available on the DSCDP1xx-xxx.

		D-SUB, 9 pins, female								
Pin #	Signal	Function	Interface							
1	SIN -	Sine - signal input								
2	GND	Encoder supply output (0V)	DSCDP C							
C6 3 COS - Cos	Cosine - signal input									
4	4 GND Encoder supply output (0V)	SIN+ IDX+								
5	IDX -	Index - signal input								
6	SIN + Sine + signal input SIN-									
7	+5VDC	Encoder supply output (protected by F3 1A)								
8	COS +	Cosine + signal input								
9	IDX +	Index + signal input]							
	2 3 4 5 6 7 8	2 GND 3 COS - 4 GND 5 IDX - 6 SIN + 7 +5VDC 8 COS +	2 GND Encoder supply output (0V) 3 COS - Cosine - signal input 4 GND Encoder supply output (0V) 5 IDX - Index - signal input 6 SIN + Sine + signal input 7 +5VDC Encoder supply output (protected by F3 1A) 8 COS + Cosine + signal input							

Remark: The +5VDC encoder supply output is protected by the fuse F3 (1A) on JC5 and JC6.

23

D-SUB, 15 pins, high density, female								
ANALOG ENCODER	Pin #	Signal	Function	Interface				
	1	Reserved	Do not connect					
	2	Reserved	Do not connect					
	3	Reserved	Do not connect					
	4	+5VDC	Encoder supply output (protected by fuse F3 of 1A)					
	5	GND	Encoder supply output (0V)					
JC5 & JC6	6	COS -	Cosine - signal input					
ANALOG ENCODER 11 0 0 0 0 0 0 0 0 0 0 0 0 0	7	SIN -	Sine - signal input	COS + R				
ОО 15 NH 0000 S	8	IDX -	Index - signal input					
1 ^ا لمح	9	Reserved	Do not connect					
ANA	10	EHO	Encoder home switch input (TTL signal)					
	11	ELS	Encoder limit switch input (TTL signal)					
	12	GND	Encoder supply output (0V)					
	13	COS +	Cosine + signal input]				
	14	SIN +	Sine + signal input]				
	15	IDX +	Index + signal input]				

The D-Sub 15 pins high-density connector is only available on the DSCDP3xx-xxx.

Remark: The +5VDC encoder supply output is protected by the fuse F3 (1A) on JC5 and JC6.

Refer to the corresponding '**Operation & Software Manual**' for more information about the use of the EHO and ELS signals.

JC5 is used to connect the encoder of motor 1 and JC6 for the one of motor 2.

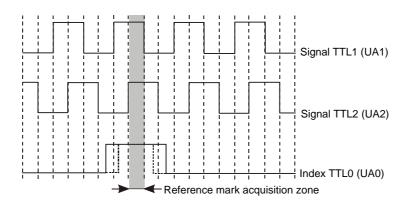
3.1.1.2 Absolute analog encoder (EnDat 2.1)

The EnDat 2.1 is an **absolute encoder**. It has 1Vptp signals with a load resistor $R_0=120\Omega$. Its signals are similar to the incremental encoders (without the index), but it additionally includes a RS485 serial link (EIA standard, EnDat 2.1 interface) for the absolute position measure: EDT (serial data) and ECL (clock). The ECL (clock) signal is received from the DSCDP. From its first falling edge (latch signal), the **absolute position will be defined within one incremental signal period** (depends on the encoder type).

The D-Sub 15 pins high-density connector is **only** available on the DSCDP**3**xx-xxx.

D-SUB, 15 pins, high density, female									
ANALOG ENCODER	Pin #	Signal	Function	Interface					
	1	EDT +	EnDat serial data I/O + / RS485						
	2	ECL +	EnDat clock output + / RS485						
	3	ECL -	EnDat clock output - / RS485						
	4	+5VDC	Encoder supply output (protected by fuse F3 of 1A)						
	5	GND	Encoder supply output (0V)						
JC5 & JC6	6	COS -	Cosine - signal input						
	7	SIN -	Sine - signal input						
O 15 O 15 O 0 000 O 11	8	Reserved	Do not connect						
O S S S S S S S S S S S S S	9	EDT -	EnDat serial data I/O - / RS485						
ANA	10	Reserved	Do not connect						
	11	Reserved	Do not connect						
	12	GND	Encoder supply output (0V)						
	13	COS +	Cosine + signal input						
	14	SIN +	Sine + signal input						
	15	Reserved	Do not connect						

Remark: The +5VDC encoder supply output is protected by the fuse F3 (1A) on JC5 and JC6.


The cable used with an absolute analog encoder (EnDat 2.1) must have power wires with a minimum diameter to guarantee a sufficient voltage at the terminals of the encoder (refer to the data sheet of the encoder for more information).

JC5 is used to connect the encoder of motor 1 and JC6 for the one of motor 2.

3.1.1.3 TTL encoder

Caution: It is possible to connect a TTL encoder on this connector but the input frequency is limited to 400KHz because the interface is an analog one.

TTL encoders measure the motor position with 2 phase-shifted TTL signals. Each change of state of one of the signals corresponds to an increment of the motor position. A third signal (index) gives the motor absolute position. The encoder TTL signals have to be compatible with the EIA standard RS422. These signals have the following form:

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

The D-Sub 9 pins connector is only available on the DSCDP1xx-xxx.

D-SUB, 9 pins, female					
ANALOG ENCODER		Pin #	Signal	Function	Interface
		1	UA1 -	TTL 1 - signal input	
		2	GND	Encoder supply output (0V)	
JC5&J ⊈	$\begin{array}{c c} & & & \\ 9 & & \\ 0 & &$	UA2 -	TTL 2 - signal input		
		GND	Encoder supply output (0V)	UA0 + R	
0 0 0 0 0 0 0 0 0 0		UA0 -	TTL 0 - signal input		
		UA1 +	TTL 1 + signal input		
ANP O		7	+5VDC	Encoder supply output (protected by F3 1A)	UA2 - R
		8	UA2 +	TTL 2 + signal input	
		9	UA0 +	TTL 0 + signal input	

Remark: The +5VDC encoder supply output is protected by the fuse F3 (1A) on JC5 and JC6.

D-SUB, 15 pins, high density, female					
ANALOG ENCODER	Pin #	Signal	Function	Interface	
	1	Reserved	Do not connect		
	2	Reserved	Do not connect		
	3	Reserved	Do not connect		
	4	+5VDC	Encoder supply output (protected by fuse F3 of 1A)		
	5	GND	Encoder supply output (0V)		
JC5 & JC6	6	UA2 -	TTL 2 - signal input		
	7	UA1 -	TTL 1 - signal input	UA0 + R R	
00 15 0000 00000000000000000000000000000	8	UA0 -	TTL 0 - signal input		
ANALOG ENCODER 11 0 0 0 0 0 0 0 0 0 0 0 0 0	9	Reserved	Do not connect	UA0 - + + + + + + + + + + + + + + + + + +	
ANA	10	EHO	Encoder home switch input (TTL signal)		
	11	ELS	Encoder limit switch input (TTL signal)		
	12	GND	Encoder supply output (0V)		
	13	UA2 +	TTL 2 + signal input		
	14	UA1 +	TTL 1 + signal input		
	15	UA0 +	TTL 0 + signal input		

Remark: The +5VDC encoder supply output is protected by fuse F3 (1A) on JC5 and JC6.

Refer to the corresponding '**Operation & Software Manual**' for more information about the use of the EHO and ELS signals.

JC5 is used to connect the encoder of motor 1 and JC6 for the one of motor 2.

3.2 Inputs / outputs connectors

3.2.1 Connectors JC9 and JC10: Customer inputs / outputs

Caution: The inputs/outputs cable must be insulated (no contact) from the power and the mains The inputs and outputs must be connected to an Extra Low Voltage circuit only (SELV).

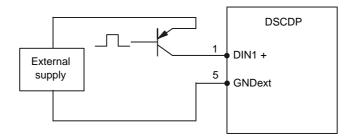
> The digital inputs and outputs are galvanically insulated from the GND by optocouplers.

Caution: These connectors must be handled in an ESD protected environment, only.

Remark: The inputs/outputs cable(s) connected to the DSCDP must be shielded (see <u>§3.7.1</u>).

The DSCDP has 4 digital inputs (DIN1, DIN2, DIN9 and DIN10) and 2 digital outputs (DOUT1 and DOUT2) per motor. Every digital input and output is opto-coupled. DIN2 is opto-coupled through a **high speed** opto-couplers (100 ns).

Only inputs and outputs **interface** is considered here. Refer to the corresponding **'Operation & Software Manual'** for more information about the use of these inputs and outputs.

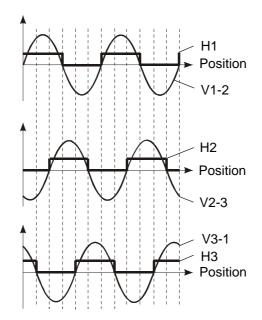

3.2.1.1 Digital inputs

The digital inputs switch to '1' when a voltage ranging between +12VDC and +28VDC is applied between pins DIN+ of the corresponding input and GNDext.

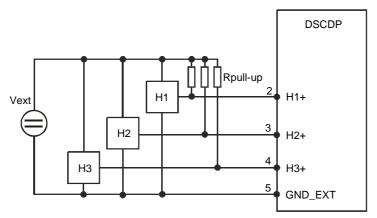
The digital inputs switch to '0' when a zero voltage is applied between pins DIN+ of the corresponding input and GNDext.

Remark: When using an external 'positive limit switch', connect it to DIN10. When using an external 'negative limit switch', connect it to DIN9. When using an external 'home switch', connect it to DIN2.

The auxiliary supply can be external to the controller, as shown below:

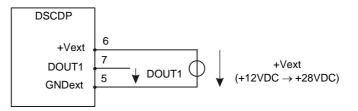


Digital Hall effect sensor


3 digital inputs (H1+, H2+ and H3+) are used to connect a digital Hall effect sensor. This sensor is used for the motor commutation thanks to three digital signals (one for each Hall effect sensor). The digital Hall effect sensor is available with the firmware from version 1.12A. On the following graph, the Hall signals and the sine voltages between the motor phases are displayed:

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

The digital Hall effect sensors (H1, H2 and H3) must be connected as shown below:



An external pull-up (resistor) must be added per sensor. A resistor of 1.5 k Ω (1/4 W) must be used if Vext is equal to +15VDC. If the user needs to supply the Hall effect sensor with another voltage, please contact ETEL to define the value of the resistor.

3.2.1.2 Digital outputs

To use a digital output, a voltage should previously be supplied to the external auxiliary supply (+Vext). This voltage should range between +12VDC and +28VDC. The maximum total current provided by the digital outputs is limited to 500 mA (limited by fuse F2).

It is recommended to use an external auxiliary supply (+Vext) as shown below (in this case, the logical value '1' will correspond to +Vext and '0' to GND ext).

Remark: This diagram shows the use of DOUT1, but it is the same with DOUT2.

D-S	D-SUB, 9 pins, male					
С	USTOMER I/O	Pin #	Signal	Function	Interface	
		1	DIN1 +	Digital input 1 +	DIN1+ DIN2+	
		2	DIN2 +	Digital input 2 + (High speed: 100 ns) (H1+)	DIN9+ DIN10+ or/and	
		3	DIN9 +	Digital input 9 + (H2+)	H1+ H2+	
Q	JC9 & JC10 O	4	DIN10 +	Digital input 10 + (H3+)	H3+	
CUSTOMER I/O	6 1	5	GNDext	External supply input (0V) for DIN and DOUT		
CUSTO	9 5	6	+Vext	External supply input for digital outputs (fuse F2, 500mA - limits user's input current)	DSCDP +Vext	
		7	DOUT1	Digital output 1 +	BSP450 DOUT1	
		8 DOUT:	DOUT2	Digital output 2 +	DOUT2 333 kΩ GNDext	
		9	Reserved	Do not connect		

Remark: JC9 is used to connect the inputs/outputs of motor 1 and JC10 for the ones of motor 2.

The commutation times of the above-mentioned inputs and outputs are as follows:

	Status	Typical	Maximum	Unit
DOUTs	0 => 1	50	55	μs
20013	1 => 0	300	330	μs
DIN 2 (high speed)	0 => 1	100	110	ns
	1 => 0	600	660	ns
DINs 1, 9 and 10	0 => 1	4	5	μs
Dirvs 1, 5 and 10	1 => 0	40	50	μs

Remark: The above-mentioned times takes only the hardware into account. To have the entire time, a delay (max. 1 STI) must be added to these times, to take the treatment of the command by the software into account.

3.3 Communication connectors

Caution: The communication connectors must be insulated (no contact) from the power and the mains.
 The inputs and outputs of these connectors are not galvanically insulated from the GND.
 The inputs and outputs must be connected to an Extra Low Voltage circuit only.

The inputs and outputs must be connected to an Extra Low Voltage circuit only (SELV).

Caution: The communication connectors must be handled in an ESD protected environment, only.

Remark: The communication cables connected to the DSCDP must be shielded (see <u>§3.7.1</u>).

The communication between a host (PC) and a DSCDP is obtained via the ETEL-Bus-Lite2 (EBL2) protocol (refer to the **'EBL2 Communication Manual'** for more information). The communication between the DSCDPs is obtained via the Turbo-ETEL-Bus (TEB) protocol which needs a TEB master (DSMAX or DSTEB).

The ETEL-Bus-Lite2 protocol is open to the user. It is configured as follows:

Transmission rate	115'200 bps
Data length	8 bits
Start bit	1
Stop bit	1
Parity	No
Handshaking	No

The Turbo-ETEL-Bus protocol is closed to the user who cannot have direct access to it.

ETEL-Bus-Lite2 (communication	between the PC and the DSCDP)	Turbo-ETEL-Bus (communication between DSCDPs)	
RS 232	RS 422	Turbo-ETEL-Bus (communication between DSCDFS)	
Normal connection between a PC and a DSCDP for communication purposes (with ETEL Tools software,		The Turbo-ETEL-Bus works at 100 Mbps and is based on Ethernet components.	

The user can select the RS232 type of ETEL-Bus-Lite2 communication by connecting the **EBL2_select_232/ 422** pin to the GND (0V). If this connection is not made, RS422 type is automatically selected (default status).

Remark: If the cables provided by ETEL are used, the communication type by default is RS232.

The communication connectors are JC1, JC2, JC3 and JC4 (see the following tables).

The JC1 connector is used for the TEB data input and JC2 for the TEB data output. They are used to make a daisy chain between controllers, simply with standard RJ-45 cables. The JC3 connector allows both types of ETEL-Bus-Lite2 communication (RS232 or RS422), and the selection between them. The JC4 connector is used, for the download key, to set the controller to the 'wait for program' mode; it also includes TTL signals to indicate the states of the encoder's sine and cosine.

Remark: The download key of the DSCDP is compatible with the DSC2P key.

3.3.1 Connector JC1: Turbo-ETEL-Bus input

RJ-45, 8 pins, female				
TEB IN	Pin #	Signal	Function	
	1	RX +	TEB data reception + (Ethernet 100 Mbps)	
	2	RX -	TEB data reception - (Ethernet 100 Mbps)	
JC1	3	SNI +	DSCDP synchronization input +	
	4	RSI +	DSCDP TEB reset input +	
	5	RSI -	DSCDP TEB reset input -	
	6	SNI -	DSCDP synchronization input -	
	7	AUXO +	Output reserved for a future TEB application	
	8	AUXO -	Output reserved for a future TEB application	

Remark: The TEB cable must meet the following characteristics: 1:1 shielded cable, category 5 with 8 wires.

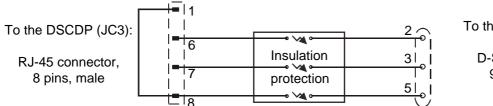
3.3.2 Connector JC2: Turbo-ETEL-Bus output

RJ-45, 8 pins, female				
TEB OUT	Pin #	Signal	Function	
	1	TX +	TEB data transmission + (Ethernet 100 Mbps)	
	2	TX -	TEB data transmission - (Ethernet 100 Mbps)	
JC2	3	SNO +	DSCDP synchronization output +	
	4	RSO +	DSCDP TEB reset output +	
	5	RSO -	DSCDP TEB reset output -	
TEB	6	SNO -	DSCDP synchronization output -	
	7	AUXI +	Input reserved for a future TEB application	
	8	AUXI -	Input reserved for a future TEB application	

Remark: The TEB cable must meet the following characteristics: 1:1 shielded cable, category 5 with 8 wires.

3.3.3 Connector JC3: ETEL-Bus-Lite2 serial communication

RJ-45, 8 pins, female				
PC-EBL	Pin #	Signal	Function	
	1	EBL2_select422/232	Select EBL2 transmission type (open \Rightarrow RS422 / connected to GND \Rightarrow RS232)	
	2	EBL2_RXD422 +	EBL2 Data reception RS422 + from the PC (host)	
JC3	3	EBL2_RXD422 -	EBL2 Data reception RS422 - from the PC (host)	
	4	EBL2_TXD422 +	EBL2 Data transmission RS422 + to the PC (host)	
C-EBL2	5	EBL2_TXD422 -	EBL2 Data transmission RS422 - to the PC (host)	
	6	EBL2_TXD232	EBL2 Data transmission RS232 to the PC (host)	
	7	EBL2_RXD232	EBL2 Data reception RS232 from the PC (host)	
	8	GND	Auxiliary supply output (0V)	


ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

Caution: To respect the 'Standard safety of information technology equipment' standard (EN 60950, UL 60950), the serial cable used between the controller and the computer must have an insulation protection (except if the auxiliary and power input are lower than 50 VDC).

If you want to manufacture your own RS232 communication cable, you should wire it as shown below:

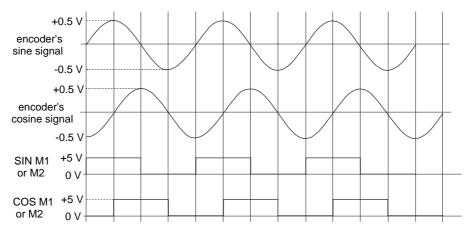
To the PC (serial port):

D-SUB connector, 9 pins, female

3.3.4 Connector JC4: Download key

This connector is used for the download key. If the DSCDP does not switch to 'wait for program', there is an hardware override possibility to force this mode. To do so, plug the download key into the JC4 connector, switch off and on the controller, and the DSCDP will switch to 'wait for program' in order to download a new firmware in the DSCDP.

A download key is a 8 pins RJ-45 male connector, with a bridge between pins 5-6:


Download key (JC4) : 5 RJ-45 connector, 6 8 pins, male L

RJ-45, 8 pins, fe	RJ-45, 8 pins, female				
DOWNLOAD KEY	Pin #	Signal	Function		
	1	SIN M1(*)	Indicates when the analog encoder's sine signal of motor M1 goes through 0 (TTL signal)		
	2	COS M1(*)	Indicates when the analog encoder's cosine signal of motor M1 goes through 0 (TTL signal)		
JC4	3	SIN M2(*)	Indicates when the analog encoder's sine signal of motor M2 goes through 0 (TTL signal)		
	4	COS M2(*)	Indicates when the analog encoder's cosine signal of motor M2 goes through 0 (TTL signal)		
	5	DWL +	Sets the DSCDP to 'wait for program' (download) if connected to 0V		
	6	GND	Auxiliary supply output (0V)		
	7	SLOW INT.(*)	STI (Slow Time Interrupt) signal (2 kHz) active on a low state (TTL signal)		
	8	FAST INT.(*)	FTI (Fast Time Interrupt) signal (18 kHz) active on a low state (TTL signal)		

Remark: (*): these signals are only available from the DSCDP**3**xx-xxx**F** version and later.

The download key of the DSCDP is compatible with the DSC2P, DSC2V and DSCDL key.

Refer to the corresponding 'Operation & Software Manual' for more information about the STI and FTI.

3.4 Motor connectors

Warning: High voltage may be present on the motor connector.

Before connecting or disconnecting the motor cable or touching the controller, **turn** off all the power supplies and wait 10 minutes to allow the internal DC bus capacitors to discharge.

Caution: The motor connectors must be insulated (no contact) from the power and the mains. The motor connectors must always be correctly screwed onto the DSCDP to respect the EMC standard.

Caution: The motor connectors must be handled in an ESD protected environment, only.

Remark: The motor cables connected to the DSCDP must be shielded (see <u>§3.7.1</u>).

3.4.1 ETEL motor cables numbering system

ETEL standard motors cables are numbered according to the following system:

Three-phase motors				
Designation	Function			
1 or U1	Motor phase 1			
2 or VV2	Motor phase 2			
3 or WWW3	Motor phase 3			
Green / Yellow	Protective earth			

3.4.2 Connector JC7 and JC11: Motor connection

The DSCDP can drive single-phase, two-phase and three-phase motors. Connectors JC7 and JC11 enable the supply of the motor phase(s).

Phoenix Contact PC 4/4-G-7,62 (plastic connector)						
Motor	Pin #	Signal	Functions			
CONNECTION	1111#	Signal	Single-phase motor	Two-phase motor	Three-phase motor	
JC7	1	PE_M1	Protective earth	Protective earth	Protective earth	
	2	PH3_M1	Do not connect	Motor phase 2 +	Motor phase 3	
	3	PH2_M1	Motor phase -	Motor phase 1 - / 2 - (*)	Motor phase 2	
	4	PH1_M1	Motor phase +	Motor phase 1 +	Motor phase 1	
4 JC11 JC11	1	PE_M2	Protective earth	Protective earth	Protective earth	
	2	PH3_M2	Do not connect	Motor phase 2 +	Motor phase 3	
M2	3	PH2_M2	Motor phase -	Motor phase 1 / 2 - (*)	Motor phase 2	
	4	PH1_M2	Motor phase +	Motor phase 1 +	Motor phase 1	

(*): With two-phase motor, the current in 'motor phase 1- / 2-' is equal to ($\sqrt{2}$ x motor phase 1+) or ($\sqrt{2}$ x motor phase 2+). Be careful to use the suitable cable diameter.

Remark: JC7 is used to connect the motor 1 and JC11 for the motor 2.

33

3.5 **Power connectors**

Warning: High voltage may be present on the power connectors.

Before plugging or unplugging a controller (in/from the rack case), connecting or disconnecting the power cables (for the housed format) or touching the controller, **turn off all the power supplies and wait 10 minutes** to allow the internal DC bus capacitors to discharge. Always connect the ground prior to any other connection.

Caution: This connector must be handled in an ESD protected environment, only.

Remark: The power cables connected to the DSCDP must be shielded (see $\frac{\$3.7.1}{1}$).

3.5.1 Connector JC15: Rack format, power supply input

You have the possibility to power the DSCDPs:

3.5.1.1 With an ETEL power supply

The most practical way is to use an ETEL power supply (with an ETEL back panel) because all the necessary connections are already realized according to the table below. Just plug the power module and the controller at the right place (refer to the **'DSO-RAC2 Hardware Manual'** for more information).

3.5.1.2 With a power supply from the market

If you are using a power supply from the market, it must include: an UL recognized filter for the EMC (refer to the 89/336/EEC directive), UL recognized MOVs (Epcos, SIOV-S14K320G5S5 (Vclamp=840V) for the power input and a SIOV-S14K275G5S5 (Vclamp=710V) for the auxiliary input, or equivalent (CCN XUHT2)), an inrush limiter (according to the size of the capacitor bank) and UL listed fuses (Little fuse, KLKD, F20AH 600VDC or equivalent on the power input and a F2AL, 250V on the auxiliary input).

The signal sent to the DSCDP pin d14 (INRUSH) has to be:

- +15VDC (loading or error): the power supply delivers the current to load the DSCDP DC bus capacitors (+15VDC between d14 (inrush) and z16 (GNDpwr)).
- 0V (ready): the power supply has finished to load the DSCDP DC bus capacitors (shorted to z16 (GNDpwr)).

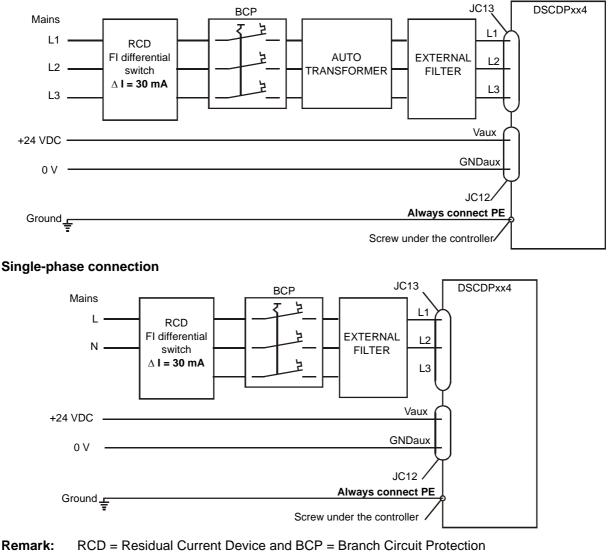
DIN 41612-H15, 15 pins, male				
POWER SUPPLY I	NPUT	Pin #	Signal	Function
		z4	Reserved	Do not connect!
JC15		d6	+15VDC	Do not connect!
d	z	z8	Reserved	Do not connect!
	4	d10	Reserved	Do not connect!
	8	z12	+Vaux	Auxiliary supply input, 24 to 55VDC or 120 to 340VDC, depending on controller model
	12	d14	INRUSH	Inrush input (0V = OK / +15VDC = loading) Connected to ETEL power supply
	16	z16	GNDpwr	Power supply input (0V)
18	20	d18	GNDpwr	Power supply input (0V)
22	20	z20	+Vpwr	Power supply input, 24 to 340VDC - Always connect z20 and d22
	24	d22	+Vpwr	Power supply input, 24 to 340VDC - Always connect z20 and d22
	28	z24	GNDaux	Auxiliary supply input (0V)
30	32	d26	GNDpwr	Power supply input (0V)
		z28	PE	Protective earth - Must always be connected for safety!
		d30	PE	Protective earth - Must always be connected for safety!
		z32	PE	Protective earth - Must always be connected for safety!

For safety reasons, always connect first the protective earth (PE) to the dedicated pins!

Connector JC13: Housed format, power supply input 3.5.2

This connector is only present on the DSCDPxx4-xxx format.

This is a product of the restricted distribution class according to IEC61800-3. In a Caution: domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.


It is recommended to supply the power with an external transformer, whose characteristics depend on the user's application and on the mains supply characteristics. The transformer must meet the standard in force in the corresponding country.

Examples of transformers:

Three-phase connection

- With European mains: Primary 3 x 380 V ∇ Secondary 3 x 220 V Y; the transformer adapts the mains voltage to the controller and prevents possible disturbances from invading the mains (meet CE standard).
- With US mains: Primary 3 x 220 V ∇ Secondary 3 x 220 V Y; the insulation transformer prevents possible disturbances from invading the mains (meet UL standard).

For example, a Branch Circuit Protection (BCP) or a circuit breaker on the power line (JC13) allows the user to switch off the motor (in case of emergency) without loosing the position reading data. So, a new homing process will not be necessary after an emergency stop.

If the DSCDP is used in an UL compatible system, the manufacturer of this system must use a BCP (ABB, S283UX, 13A, UL 489 listed or equivalent) otherwise a 16A circuit breaker is suitable for non-UL system.

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

For the motor wiring, refer to the EN 60204/1 or NEC (UL) standard in order to use the adequate cable section.

The DSCDP housed format already includes an in-built filter. An additional filter can be added (for example (Schaffner FN2070-16-06) or a 'common mode choke' of 3mH (Schaffner RD6127-16-3m0)) to reduce further electromagnetic disturbances.

Phoenix Contact PC 4/3-G-7.62 (plastic connector)					
Power Input	POWER INPUT Signal Function				
	L1	Mains input for power supply (84 to 280 VAC MAX, between L1-L2)	Mains L1	Mains L1	
	L2	Mains input for power supply (84 to 280 VAC MAX, between L2-L3)	Mains L2	Mains L2	
	L3	Mains input for power supply (84 to 280 VAC MAX, between L3-L1)	Mains L3	Do not connect	

For safety reasons, always connect first the protective earth (PE) to the screw under the DSCDP!

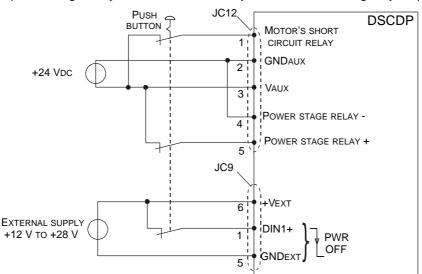
Remark: The tightening torque for the screws of the power input connector is 0.6 Nm max.

3.5.3 Connector JC12: Housed format, auxiliary supply input

This connector is only present on the DSCDPxx4-xxx format.

Phoenix Contact MC 1.5/5-STF-3.81 (plastic connector)						
AUXILIARY INPUT	Y INPUT Pin # Signal Function					
	1	Optional short-circuit relay	Motor's short-circuit relay supply input (24 VDC (referred towards GNDaux))			
JC12	2	GNDaux	Auxiliary supply input (0 V)			
	3	Vaux	Auxiliary supply input (24 VDC)			
1 2 3 4 5	4	Power stage relay -	Relay supply input (0 V)			
	5	Power stage relay +	Relay supply input (24 VDC)			

For safety reasons, always connect first the protective earth (PE) to the screw under the DSCDP!


Remark: The tightening torque for the screws of the auxiliary input connector is 0.25 Nm max.

- The power stage relay (24 VDC / 2880 Ω) allows the user to cut the +15 VDC voltage supplying the IGBT gate driver, when the +24 VDC supply input of this relay is stopped.
 If the power stage relay is not powered, the IGBT gate driver is deactivated (IGBT opened) and no power is present on the motor's output. The power stage relay must then be powered (pin 4 to 0 V and pin 5 to +24 VDC) to have power on the motor's output (otherwise an 'Inrush error' will appear).
- The motor's short-circuit relay (+ 24 VDC / 490 Ω), which is optional, allows the user to short-circuit the motor's phases.
 If this relay is not powered, the meter's phases are shorted. The meter's short circuit relay must then be

If this relay is not powered, the motor's phases are shorted. The motor's short-circuit relay **must** then be powered (pin 1 to +24 VDC) to have power on the motor's output.

Example of a power stage relay and short-circuit relay used with an emergency stop push button:

Remark: If the motor's short-circuit relay is not powered (motor's phases shorted) and if the user performs a 'PWR ON' on the controller, the 'hardware overcurr' error will occur (which must be avoid). If this relay is not powered while the controller is in 'PWR ON', the same error will occur. To avoid this problem, the DIN1+ can be used as described in the above-mentioned diagram. Refer to the corresponding **'Operation & Software Manual'** for more information about the use of DIN1+ (K33 parameter).

3.5.4 Connector JC14: Housed format, brake resistor

This connector is only present on the DSCDPxx4-xxx format.

- **Warning:** High power may be present on this connector, depending on the application.
- **Caution:** Use only resistor with thermal shutdown protection. The resistor minimal value is 40Ω. The use of an undersized power and energy withstand capability resistor could generate an explosion.

If you determine that a regeneration resistor is necessary, select it to fit your application (refer to the **'Braking resistor' technical note** to calculate the value of this resistor). This resistor **must** include a thermal switch. Example of resistor used by ETEL: Frizlen GmbH (Germany), cemented, double pipe resistor, type FZZCQU-400x65, 39 Ω , 1200 W at 300°C. Metallic case protection (shielding), shielded connector.

Phoenix Contact PC 4/2-G-7.62 (plastic connector)					
BRAKE RESISTOR	Signal	Function			
JC14 si	R -	External brake resistor			
BRAKE RES. R+ R-	R +	External brake resistor			

Remark: The tightening torque for the screws of the brake resistor connector is 0.6 Nm max.

3.6 Optional boards connector

3.6.1 Connector JC8: Depends on the type of board

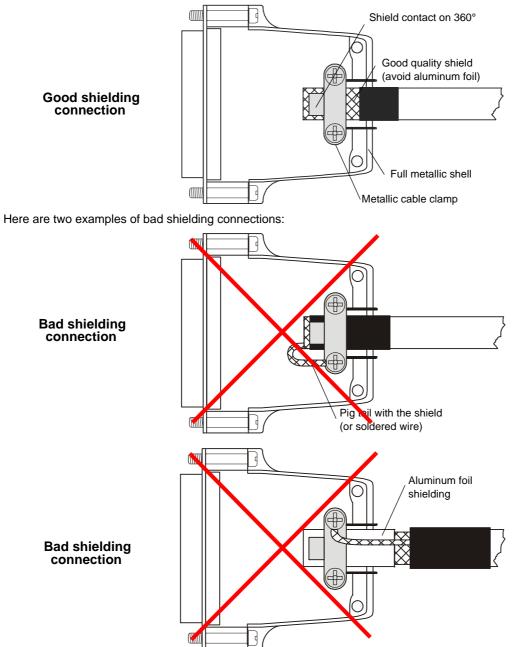
OPTIONAL BOARD	
optional board °	Refer to the specific documentation if you have an optional board.

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

3.7 Cables

3.7.1 Manufacturing

If you do not use the cables delivered by ETEL, follow the shield recommendations below for those cables:

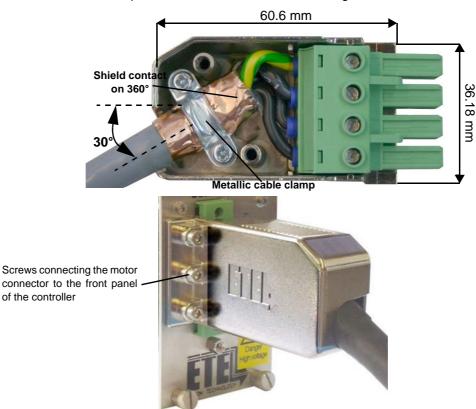

- The encoder cables: JC5 and / or JC6.
- The motor cables: JC7 and / or JC11.
- The inputs/outputs cables: JC9 and / or JC10.

Simple shielded cable must be linked to the connector shells on both cable ends. Only full metallic conductive shells connector must be used. Shield with only aluminum foil (metallized plastic film) is forbidden!. Use only copper braid (85% covering shield). The shield must entirely cover all wires. 'Pig tails' connections are forbidden! The shield contact on 360° and a metallic cable clamp is necessary.

Remark: All the cables connected to the controller must have copper conductors only and an insulation standing at least 75°C.

3.7.1.1 The encoder and inputs/outputs cables

Here is an example of good shielding connection:



ETEL Doc. - Hardware Manual # DSCDP / Ver G / 6/1/11

3.7.1.2 The motor cable

Remark: The cable's radius of curvature must be taken into account to adjust the distance between the front plate of the controller and the cabinet.

If a motor cable with a small diameter is used, turn the metallic clamp over to maintain the shield continuity.

3.8 Axis number selection

It is possible to assign or to change the axes number of the controller with a DIP switch. After each starting, the controller takes the axis number given by the DIP switch except when all the white switches are in the high position which means set to 1 (like in the picture below). In this case the axis number is set by the AXI command or the value previously saved in the controller or by the default value always equal to 1 (this default value is used when no AXI command has been executed or no save has been done).

The value given on the DIP switch represents a binary value (16 possibilities).

As there are 16 possible values on the DIP switch for 30 axes maximum (0 to 29), the number of the first axis of a controller will be equal to the value given by the DIP switch multiplied by 2. The second axis' number of the same controller will be automatically incremented by one.

Example:

The axis number given by this DIP switch is equal to: $2^0 + 2^1 = 3$. Then, the first axis of this controller will have the number 6 and the second one the number 7.

3.9 LEDs meaning

The different LEDs present on the controller have the following meaning:

LED	Status	Meaning
Green LED 'TEB OK'	ON	The communication through the TEB is running
GIEEN LED TED OK	OFF	The communication through the TEB is not running => check the wiring or/and the master
Green LED 'SERVO ON'	ON	Controller without error
Green LED SERVO ON	OFF	Controller in error or not ON
Red LED	ON	Controller in error => check monitoring M64
Realed	OFF	Controller without error

Remark: The green LED 'SERVO ON' and the red LED cannot be ON together.

LED regarding motor 1	Status	Meaning
Red LED 'ERROR M1'	ON	Error on motor 1 => check monitoring M64
Rea LED ERROR MIT	OFF	No error on motor 1
Green LED 'POWER ON M1'	ON	Motor 1 is in 'power ON'
GIEEN LLD FOWER ON MI	OFF	Motor 1 is in 'power OFF'

Remark: The red LED 'ERROR M1' and the green one 'POWER ON M1' cannot be ON together (except during the starting phase of the controller). The red LED 'ERROR M1' and the green one 'POWER ON M1' can be OFF together when the motor 1 is without error and in power OFF.

LED regarding motor 2	Status	Meaning
Red LED 'ERROR M2'	ON	Error on motor 2 => check monitoring M64
Red LED ERROR MZ	OFF	No error on motor 2
Green LED 'POWER ON M2'	ON	Motor 2 is in 'power ON'
GIEEN LED FOWER ON MZ	OFF	Motor 2 is in 'power OFF'

Remark: The red LED 'ERROR M2' and the green one 'POWER ON M2' cannot be ON together (except during the starting phase of the controller). The red LED 'ERROR M2' and the green one 'POWER ON M2' can be OFF together when the motor 2 is without error and in power OFF.

LED regarding the power supply Status		Meaning
Green LED 'POWER VOLTAGE'	ON	If the red LED is off, both power and auxiliary supply are switched on If the red LED is on, only the power supply input is switched on
FOWER VOLIAGE	OFF	If the red LED is off, only the auxiliary supply input is switched on
	ON	If the green LED is on, only the power supply input is switched on
Red LED 'POWER ERROR'	OFF	If the green LED is on, both power and auxiliary supply are switched on If the green LED is off, only the auxiliary supply input is switched on

Remark: The power supply's LEDs are present on the DSCDP housed format and on the DSO-PWS supplying the DSCDP rack format.

4. Service and support

For any inquiry regarding technical, commercial and service information relating to ETEL products, please contact your ETEL representative:

HEADQUARTER / SWITZERLAND	AMERICAS	AUSTRIA (Representative)
ETEL S.A. Zone industrielle CH-2112 Môtiers Phone: +41 (0)32 862 01 00 Fax: +41 (0)32 862 01 01 E-mail: etel@etel.ch http://www.etel.ch FRANCE	ETEL Inc. 333 E. State Parkway US - Schaumburg IL USA 60173-5337 Phone: +1 847 519 3380 Fax: +1 847 490 0151 E-mail: info@etelusa.com GERMANY	I+L ELEKTRONIK GmbH Vibrütteweg 9 AT-6840 Götzis Phone: +43 55 23 645 42 Fax: +43 55 23 645 424 E-mail: b.hoerburger@iul-elektronik.at GREAT-BRITAIN
ETEL S.A.		
Carré Haussmann 4 allée du Trait d'Union FR-77127 Lieusaint Phone: +33 (0)1 60 60 20 92 Fax: +33 (0)1 60 02 26 38 E-mail: etel@etel.fr	ETEL GmbH Schillgasse 14 DE-78661 Dietingen Phone: +49 (0)741 17453-0 Fax: +49 (0)741 17453-99 E-mail: etel@etelgmbh.de	HEIDENHAIN (GB) Ltd. 200 London Road, GB - Burgess Hill, West Sussex RH 15 9RD Phone +44 (0)1444 247711 Fax +44 (0)1444 870024 E-mail: sales@heidenhain.co.uk
ISRAEL (Representative)	ITALY	KOREA
MEDITAL COMOTECH Ltd. 7 Leshem St 3rd floor PO Box 7772 - Ramat Siv IL-49170 Petach Tikva Phone: +972 3 923 3323 Fax: +972 3 923 1666 E-mail: comotech@medital.co.il	ETEL S.A. Piazza della Repubblica 11 IT-28050 Pombia Phone: +39 0321 958 965 Fax: +39 0321 957 651 E-mail: etel@etelsa.it	HEIDENHAIN KOREA Ltd. 2F Namsung Plaza (9th Ace Techno Tower), 345-30, Gasan-Dong, Geumcheon-Ku, Seoul, Korea 153-782 Phone + 82 2 2028-7430 Fax +82 2 2028-7431 E-mail: info@heidenhain.co.kr
SINGAPORE	SPAIN (Representative)	SWITZERLAND
ETEL MOTION TECHNOLOGY (SINGAPORE) PTE. LTD. 51 Ubi Crescent, Singapore 408593 Phone : +65 6742 6672 Fax : +65 6749 3922 E-mail: info@etel.sg	Farresa Electronica, S.A. C/ Les Corts, 36 bajos ES-08028 Barcelona Phone: +34 93 409 24 93 Fax: +34 93 339 51 17 E-mail: farresa@farresa.es	ETEL S.A. Zone industrielle CH-2112 Môtiers Phone: +41 (0)32 862 01 33 Fax: +41 (0)32 862 04 12 E-mail: sales@etelsa.ch
TAIWAN	THE NETHERLANDS	
HEIDENHAIN CO., LTD. No. 29, 33rd road, Taichung Industrial Park Taichung 40768, Taiwan, R.O.C. Phone : +886 4 2358 8977 Fax : +886 4 2358 8978 E-mail: service@etel.tw	ETEL B.V. Copernicuslaan 34 NL-6716 BM Ede Phone: +31 (0)318 495 200 Fax: +31 (0)318 495 210 E-mail: etel@etelbv.nl	

The technical hotline, based in ETEL's headquarters, can be reached:

- by phone: +41 (0)32 862 01 12.
- by fax: +41 (0)32 862 01 01.
- by e-mail: support@etel.ch

All marketing and technical documentation as well as firmware and software can be downloaded from ETEL's web site: www.etel.ch. ETEL organizes training courses for customers on request, including theoretical presentations of our products and practical demonstrations at our facilities.

ETEL Doc.- Hardware Manual # DSCDP / Ver G / 6/1/11

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

FAST SHIPPING AND DELIVERY

- TENS OF THOUSANDS OF IN-STOCK ITEMS
- EQUIPMENT DEMOS
- HUNDREDS OF MANUFACTURERS SUPPORTED
- LEASING/MONTHLY RENTALS
- ITAR CERTIFIED
 SECURE ASSET SOLUTIONS

SERVICE CENTER REPAIRS

Experienced engineers and technicians on staff at our full-service, in-house repair center

WE BUY USED EQUIPMENT

Sell your excess, underutilized, and idle used equipment We also offer credit for buy-backs and trade-ins **www.artisantg.com/WeBuyEquipment** *>*

Instra View REMOTE INSPECTION

Remotely inspect equipment before purchasing with our interactive website at **www.instraview.com** *>*

LOOKING FOR MORE INFORMATION?

Visit us on the web at <u>www.artisantg.com</u> for more information on price quotations, drivers, technical specifications, manuals, and documentation