

Memorial University of Newfoundland
Engineering 4862 MICROPROCESSORS

Assignment 3 Solution

0. For each of the CF, PF, ZF, SF, and OF flags, briefly describe the meaning when it is set. Give

conditional jump instructions that can be used to test each one.

Flag Description (when set) Conditional Jumps
CF High-order bit carry or borrow JC, JNC, JAE, JNB, JB, JNAE
PF Low-order 8 bits or result contain even number

of 1-bits
JP, JPE, JNP, JPO

ZF Result is zero JE, JZ, JNE, JNZ
SF Result is positive (if a signed number) JS, JNS
OF Signed result cannot be expressed within the

number of bits of destination operand
JO, JNO

Notes:
a. The description for CF states a high-order bit carry because the bit examined depends on

whether the operands are 8-bit or 16-bit. On the addition of two 8-bit numbers, CF is set if
there is a carry out of bit 7 (where the bits are numbered from 0 to 7). For two 16-bit
numbers, the examined bit is number 15.

b. The microprocessor does not know if you are adding or subtracting two numbers that are
signed or unsigned. Thus OF is set or cleared whether or not signed numbers are used.
Since the range for an 8-bit signed number is from –128 to 127, if two 8-bit numbers are
added to get a value greater than 127, or less than –128, you will have to write code to
convert the result to a 16-bit signed number.

1. a. Determine the contents of register BX and the six conditional (status) flags after each of the

following instructions executes. If a flag or register contents are unknown, indicate with a ‘?’.
CLC
MOV BL, 4DH
SUB BL, 3EH
XOR BH, BH
MOV SI], BX

 BX CF PF AF ZF SF OF

CLC ?? 0 ? ? ? ? ?
MOV BL, 4DH ??4D 0 ? ? ? ? ?
SUB BL, 3EH ??0F 0 1 1 0 0 0
XOR BH, BH 000F 0 1 ? 1 0 0
MOV [SI], BX 000F 0 1 ? 1 0 0

Notes:
- XOR automatically sets the CF and OF to 0
- It does not matter what values is in BH, as XORing will set the result to 0!

 4DH = 0100 1101
 - 3EH = 0011 1110
 0000 1111

- AF is set to 1 because there is a borrow from high-order 4 bits to the low-order 4-bits
(between bits 3 and 4).

- CF is set to 0, because there is no borrow into the high-order bit (bit 7)

 1

b. Read how to use debug in appendix A of the textbook. For each instruction in (a), use DEBUG (or
some other program) to determine the equivalent machine code.

The machine code is given in bold in the following capture from DEBUG. Note that entering
numbers in DEBUG automatically defaults to hexadecimal. This can be seen in the first MOV
instruction, as the ‘4D’ is automatically translated into 4D as machine code.

12A7:0100 F8 CLC
12A7:0101 B34D MOV BL,4D
12A7:0103 80EB3E SUB BL,3E
12A7:0106 30FF XOR BH,BH
12A7:0108 891C MOV [SI],BX

The 8086/88 user manual also tells you how many bytes that the instruction will be turned into
and what machine code for each instruction.

2. Assume that the PUSH instruction does not exist in the 8086/8088 instruction set. Write a sequence of

instructions that function equivalently to PUSH DX. You may use any other valid instruction, but
restore any registers you change that PUSH DX does not.

First, read what the push instruction does (page 3-132): it decrements SP by two, and then
moves the source to the memory location given my SS:SP. The problem is that there is no
addressing mode that allows you to use SP directly. The effective addresses allow different
combinations of BP, BX, SI, and DI. We’ll use BP, as the microprocessor automatically uses the
SS as the segment. However, we must be careful to not lose the existing value in BP!

Attempt 1 (not quite right):
 SUB SP, 2 ; decrement stack pointer
 XCHG BP, SP ; save BP, and use value in SP
 MOV [BP], DX ; move data to memory at SS:[BP]
 XCHG BP, SP ; restore BP and SP

This is not bad, but unfortunately the SUB instruction modifies a number of flags, and PUSH
does not modify any flags. A correct method is to use an instruction we did not look at in class:
LEA (load effective address). Read page 3-114 of the Intel User’s Manual for details.
Essentially, you give the source as a valid memory reference, but the offset (not the value) is
placed into the destination. It affects no flags, and uses no push instructions of any kind.

Attempt 2:
 XCHG BP, SP ; save BP, get SP
 LEA BP, [BP] – 2 ; set BP to new memory location
 MOV [BP], DX ; move data to memory
 XCHG BP, SP ; restore BP and SP

Other solutions are trickier to implement. If you use SUB, then you must figure out how to
restore the flags to their original values. Note that PUSHF and POPF are available to your use.

Attempt 3:
 PUSHF ; save flags at (original SP)-2
 PUSHF ; save flags again at (orig SP)-4
 ADD SP, 2 ; change SP to (original SP) - 2
 XCHG BP, SP ; swap SP and BP
 MOV [BP], DX ; save DX
 XCHG BP, SP ; restore SP and BP
 SUB SP, 2 ; change SP to (original SP)-4
 POPF ; restore flags, SP = (orig SP)-2

 2

This final attempt is the simplest of all (so far): Use PUSHF to update SP, but then overwrite the
flags with DX – because none of the flags will actually be changed!

Attempt 4:
 PUSHF ; save flags on stack
 XCHG BP, SP ; swap SP and BP (SP has been updated)
 MOV [BP], DX ; save DX to SS:BP
 XCHG BP, SP ; restore SP and BP

3. Write a subroutine to replace the multiplication instruction MUL CX. You may use any valid

8086/8088 instructions other than MUL, but take care to properly handle the flags and restore any
registers that you use to store temporary values. Start your subroutine with the label mul_cx, and end
with the RET instruction.

MUL CX
Notes on implementation:
- Source is a word (CX), so result will be placed in DX (high word) and AX (low word)
- CF and OF are either set (if DX is non-zero) or cleared (DX is zero)
- AF, PF, SF, and ZF are undefined, but we’ll set them to zero
- We’ll take care not to affect the other 3 flags (TF, IF, and DF)
- The following algorithm is a simple, repetitive addition

 PUSH BX ; save registers and flags
 PUSH CX
 PUSHF

 MOV DX, 0 ; clear DX & AX, used to store product
 MOV BX, AX ; use BX to count the number of additions
 MOV AX, 0

 JCXZ Done ; If multiplier is zero, so is the product
Do_again: ADD AX, CX
 JNC Skip_hi
 INC DX ; Carry-out from AX, so increment DX
Skip_hi: DEC BX
 JNZ Do_again ; continue BX times

Done: POP CX ; Get flags
 ; Reset all flags except TF, IF, and DF
 AND CX, 0000011100000000b

 CMP DX, 0 ; is DX zero?
 JE Set_flags ; yes, so leave OF & CF as 0
 ; DX is not zero, so OF = CF = 1
 OR CX, 0000100000000001b

Set_flags: PUSH CX ; store flags
 POPF ; restore correct flag values
 POP CX ; restore registers
 POP BX
 RET ; Done

 3

4. Write a MUN-88-compatible program that reads the contents of the DIP switches, and then converts
the 8-bit decimal value into two 8-bit ASCII values representing each hex digit. Store the lower digit in
AL, and the upper digit in AH. This should be a full program, so include a title, segment definitions,
etc., as well as comments.

Example result: Suppose that after reading the input port for the DIP switches, AL is 9FH.
Your program should place 39H (ASCII for ‘9’) into AH, and 46H (ASCII for ‘F’) into AL.

DIPS equ 30h

TITLE DIP Converter
myseg SEGMENT
 ASSUME cs:myseg, ds:myseg, es:myseg

Main: mov ax, cs
 mov ds, ax
 mov es, ax

 in al, DIPS ; read switch values
 mov ah, al ; copy values
 and al, 0Fh ; mask out upper 4 bits
 call Convert ; subroutine to convert AL to ASCII

 xchg ah, al ; Swap AH and AL (for Convert)
 mov cl, 4
 shr al, cl ; Shift AL to right by 4
 call Convert ; Convert AL to ASCII
 xchg ah, al ; Swap AH and AL back

 int 6 ; Finished

; **
; Convert – converts AL to ASCII, and stores resulting byte in AL
; **

Convert: cmp al, 9 ; Is AL above 9?
 ja Letter ; Yes, so AL is a letter
 add al, 30h ; ASCII 30h to 39h are numeric
 jmp Done
Letter: add al, 37h ; ASCII 37h+Ah = 41h
 ; and ASCII 41h to 46h are ‘A’ to ‘F’
Done: ret

myseg ENDS
 END Main

 4

5. Write a program that subtracts two multi-digit ASCII numbers (Data1 – Data2). The result should be
saved back to Result in ASCII. The Data Segment is defined as following:

DTSEG SEGMENT
Data1 DB ‘3546882164’
Data2 DB ‘2345611245’
Result DB 10 DUP (?)

DTSEG ENDS

The approach I used is: first convert the ASCII numbers to packed BCD numbers (also
stored in memory), then perform multi-byte packed BCD number subtraction (result also
stored in memory), finally convert result to ASCII and save them to the location
RESULT as required. All these functions are placed in subroutines.

TITLE Subtracting ASCII Numbers
PAGE 60, 132
STSEG SEGMENT
 DB 64 DUP(?)
STSEG ENDS
;-----------------
DTSEG SEGMENT
 DATA1 DB ‘3546882164’
 DATA2 DB ‘2345611245’
 RESULT DB 10 DUP (?),”$”
 DATA1_BCD DB 5 DUP(?)
 DATA2_BCD DB 5 DUP(?)
 RESULT_BCD DB 5 DUP(?)
DTSEG ENDS
;-----------------
CDSEG SEGMENT
MAIN PROC FAR
 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG
 MOV AX, DTSEG
 MOV DS, AX

 MOV BX, OFFSET DATA1
 MOV DI, OFFSET DATA1_BCD
 MOV CX, 10
 CALL CONVERT_BCD

 MOV BX, OFFSET DATA2
 MOV DI, OFFSET DATA2_BCD
 MOV CX, 10
 CALL CONVERT_BCD

 CALL SUBTRACTION

 MOV SI, OFFSET RESULT_BCD
 MOV DI, OFFSET RESULT
 MOV CX, 5
 CALL CONVERT_ASC

 MOV AH, 4CH
 INT 21H
MAIN ENDP
;-------------------

 5

; SUBROUTINE CONVERT ASCII NUMBERS TO BCD NUMBERS
CONVERT_BCD PROC NEAR
REP0: MOV AX, [BX]
 XCHG AH, AL
 AND AX, 0F0FH
 PUSH CX
 MOV CL, 4
 SHL AH, CL
 OR AL, AH
 MOV [DI], AL
 ADD BX, 2
 INC DI
 POP CX
 LOOP REP0
 RET
CONVERT_BCD ENDP
;--------------------
; SUBROUTINE PERFORM PACKED BCD NUMBER SUBTRACTION
SUBTRACTION PROC NEAR
 MOV BX, OFFSET DATA1_BCD
 MOV DI, OFFSET DATA2_BCD
 MOV SI, OFFSET RESULT_BCD
 MOV CX, 5
 CLC
REP1: MOV AL, [BX]+4
 SBB AL, [DI]+4
 DAS
 MOV [SI]+4, AL
 DEC BX
 DEC DI
 DEC SI
 LOOP REP1
 RET
SUBTRACTION ENDP
;--------------------
; SUBROUTINE CONVERT BCD NUMBERS TO ASCII NUMBERS
CONVERT_ASC PROC NEAR
REP3: MOV AL, [SI]
 MOV AH, AL
 AND AX, 0F00FH
 PUSH CX
 MOV CL, 4
 SHR AH, CL
 OR AX, 3030H
 XCHG AH, AL
 MOV [DI], AX
 INC SI
 ADD DI, 2
 POP CX
 LOOP REP3
 RET
CONVERT_ASC ENDP
;--------------------
CDSEG ENDS
 END MAIN

 6

6. Write a program that converts an ASCII string saved by Old_String to its uppercase in ASCII and save
back to the New_String. Leave the space and period unchanged. The Data Segment is defined as
following:

DTSEG SEGMENT
Old_String DB ‘This is THE String to be converted.’
New_String DB 35 DUP (?)

DTSEG ENDS

TITLE COVERT LOWER CASE TO UPPER CASE
PAGE 60, 132
STSEG SEGMENT
 DB 64 DUP(?)
STSEG ENDS
;-----------------
DTSEG SEGMENT
 Old_String DB “This is THE String to be converted.”
 New_String DB 35 DUP (?), “$”
DTSEG ENDS
;-----------------
CDSEG SEGMENT
MAIN PROC FAR
 ASSUME CS:CDSEG, DS:DTSEG, SS:STSEG
 MOV AX, DTSEG
 MOV DS, AX

 MOV SI, OFFSET Old_String
 MOV BX, OFFSET New_String
 MOV CX, 35
REP0: MOV AL, [SI]
 CMP AL, 61H ;IF LESS THAN ‘a’, THEN EXIT
 JB OVER
 CMP AL, 7AH ;IF GREATER THAN ‘z’, THEN EXIT
 JA OVER
 AND AL, 11011111B ; MASK d5 TO CONVERT TO UPPER CASE
OVER: MOV [BX], AL
 INC SI
 INC BX
 LOOP REP0

 MOV AH, 4CH
 INT 21H
MAIN ENDP
;--------------------
CDSEG ENDS
 END MAIN

 7

	Engineering 4862MICROPROCESSORS
	
	Assignment 3 Solution
	
	CLC
	MOV BL, 4DH
	SUB BL, 3EH
	XOR BH, BH
	MOV SI], BX
	Data1DB�3546882164�
	Data2DB�2345611245�
	Old_StringDB�This is THE String to be converted.�
	New_StringDB35 DUP (?)

