
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Rev.1.02 Aug 2013

16

www.renesas.com

RL78 Family

EEPROM Emulation Library Pack01
Japanese Release

ZIP file name : JP_R_EEL_RL78_P01_Vx.xx_x_E

16-Bit Single-Chip Microcontrollers

Target Devices

RL78/D1A

RL78/F12

RL78/G13

RL78/G14

RL78/G1A

RL78/I1A

RL78/L13

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a

reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise
from entering the device when the input level is fixed, and also in the transition period when the input level
passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately
after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately
for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up
power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.

HOW TO USE THIS MANUAL

Readers This manual is intended for user engineers who wish to understand the functions of the

RL78 microcontrollers EEPROM Emulation Library Pack 01 and design and develop

application systems and programs for these devices.

 The target products are as follows.

 RL78/D1A, RL78/F12, RL78/G13, RL78/G14, RL78/G1A, RL78/I1A, RL78/L13

Purpose This manual is intended to give users an understanding of the methods (described in the

Organization below) for using data flash memory library to rewrite the flash data memories.

Organization The RL78 EEPROM Emulation Library Pack 01 user’s manual is separated into the

following parts:

• Overview of EEPROM Emulation

• Using EEPROM Emulation

• EEPROM Emulation Function

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical

engineering, logic circuits, and microcontrollers.

• To gain a general understanding of functions:

 → Read this manual in the order of the CONTENTS.

• To know details of the RL78 Microcontroller instructions:

 → Refer to CHAPTER 3 EEPROM EMULATION FUNCTION.

 The mark <R> shows major revised points.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representations: ××× (overscore over pin and signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representations: Binary ... ×××× or ××××B

 Decimal ... ××××

 Hexadecimal ... ××××H

All trademarks and registered trademarks are the property of their respective owners.
EEPROM is a trademark of Renesas Electronics Corporation.

Index-1

CONTENTS

CHAPTER 1 OVERVIEW OF EEPROM EMULATION .. 6

1. 1 Basic Specifications of EEPROM Emulation .. 6
1. 2 EEPROM Emulation Operation Flow .. 13

1. 2. 1 EEPROM Emulation Blocks .. 16
1. 2. 2 Data structure .. 17
1. 2. 3 Block status flags .. 19
1. 2. 4 Number of stored user data items and total user data size... 20

1. 3 Initializing EEPROM Emulation Blocks ... 22
1. 4 Adjusting EEPROM Emulation Blocks .. 26

1. 4. 1 Adjusting blocks by using EEL_CMD_CLEANUP command .. 28
1. 4. 2 Adjusting blocks by using EEL_Handler function (maintenance mode) 30

CHAPTER 2 USING EEPROM EMULATION .. 35

2. 1 Caution Points ... 35
2. 2 Total Processing Time .. 38
2. 3 Software Resources .. 41
2. 4 Initial Values to Be Set by User ... 44

CHAPTER 3 EEPROM EMULATION FEATURES .. 47

3. 1 Data Flash Library Functions .. 47
FAL_Init .. 48

3. 2 EEPROM Emulation Library Functions ... 51
EEL_Init .. 52
EEL_Open .. 53
EEL_Close ... 54
EEL_Execute .. 55
EEL_Handler .. 60
EEL_TimeOut_CountDown .. 62
EEL_GetDriverStatus ... 63
EEL_GetSpace ... 65
EEL_GetVersionString ... 66

APPENDIX A REVISION HISTORY .. 67

A. 1 Major Revisions in This Edition .. 67

RL78 Family

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 6 of 70
Aug 02, 2013

R01US0054EJ0102
Rev.1.02

Aug 02, 2013

CHAPTER 1 OVERVIEW OF EEPROM EMULATION

1. 1 Basic Specifications of EEPROM Emulation

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as EEPROM.

During EEPROM emulation, the data flash library and EEPROM emulation library are used, and the data flash

memory is written to and read from.

The data flash library is a software library used to perform operations on the data flash memory. The

EEPROM emulation library is a software library used to execute EEPROM emulation from a user-created

program. The data flash library and EEPROM emulation library are placed in the code flash memory for use.

By calling the user access function processing (functions) provided by the EEPROM emulation library from a

user-created program, use is possible without the awareness of data flash memory operations.

For the EEPROM emulation library Pack01, a one-bye identifier (data ID: 1 to 255) is assigned by the user for

each data item, and reading and writing using any unit from 1 to 255 bytes are possible on an assigned identifier

basis. (Up to 255 data items assigned on an identifier basis can be handled.)

Note that four or more continuous block area of data flash memory are used to store the data. These blocks

are called EEPROM emulation blocks.

Data written by EEPROM emulation is divided into reference data and user-specified data, and the reference

data is written to the target blocks from the lower block address, while the user data is written from the higher

block address.

Figure 1-1 shows the relationship between the EEPROM emulation library and data flash library, Figures 1-2

and 1-3 show a memory map and data structure example, and Figures 1-4, 1-5, and 1-6 show block usage

method and transition examples. Table 1-1 shows each item to be specified for EEPROM emulation and the

range of the item.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 7 of 70
Aug 02, 2013

Figure 1-1. Relationship between EEPROM Emulation Library and Data Flash Library

User-created program

EEPROM emulation library (EEL)

Flash data library (FDL)

Hardware (data flash memory)

The flash data library must be initialized
before using the EEPROM emulation
library (by executing the FAL_Init
function).

Figure 1-2. Example of Memory Map
• The following shows an example for the R5F100 where the user-created program, data flash library, and

EEPROM emulation library are placed in the code flash memory, the EEPROM emulation blocks are specified
for the data flash memory, and the defined user data (user data A, user data B, and user data C) is written in
order to use the data flash memory as EEPROM emulation blocks.

Code flash memory

User-created program
+

EEPROM emulation library
+

flash data library

Not usable

00000H

Data is added
from both
directions

Special function registers (2nd SFR)

Data flash memory (4 KB)

Mirror

Internal high-speed RAM

Special function registers SFR

General-purpose registers

Not usable

Data flash memory
Block 3

Data flash memory
Block 2

Data flash memory
Block 1

Data flash memory
Block 0

1 KB/4 blocks

Block management area

Reference data A (1)

Reference data B (1)

Reference data C (1)

Reference data A (2)

Reference data C (2)

Reference data A (3)

User data A (1)

User data B (1)

User data C (1)

User data A (2)

User data C (2)

User data A (3)

EEPROM emulation block
(active block)

Unused area

Reference
area

Data area

Reserved area

F1FFFH

F1000H

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 8 of 70
Aug 02, 2013

Figure 1-3. EEPROM Emulation Block Details
• In this data structure example, user data of various defined sizes (user data A, user data B, and user data C) are

written in a specified sequence (write sequence: user data A → user data B → user data A → user data C).
User data is written from the higher address and management data is written from the lower address, and the
last written user data becomes valid.

User data A (1)

User data B (1)

User data A (2)

User data C (1)

1 byte 1 byte1 byte1 byte

4 bytes

800H

Data area

7E4H

Reference data B (1)/valid

Reference data A (2)/valid

Reference data C (1)/valid

00H

4 bytes

Reserved area

Reference data A (1)/invalid

1 byte 1 byte1 byte1 byte

Start of block

EEPROM emulation block
(Reference example of active

block)

20H

Block management
area

Block status flag

Unused area

Direction of adding data

Direction of adding data

Index number (widx) RCS Data ID (A)

DCS (data checksum)

Index number (widx) RCS Data ID (B)

DCS (data checksum)

Index number (widx) RCS Data ID (A)

DCS (data checksum)

Index number (widx) RCS Data ID (C)

DCS (data checksum)

Reference area

40H

Invalid data

Latest/valid data

Latest/valid data

Latest/valid data

DCS: Data Check Sum
RCS: Reference Check Sum
DRP: Data Reference Pointer

DCS

DRP

DCS

DRP

DCS

DRP

DCS

DRP

10H

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 9 of 70
Aug 02, 2013

Figure 1-4. Example of Expanding Active EEPROM Emulation Block
• When writing specified data, if there is not enough free space in the active block being used to write the data,

the number of active blocks is increased and the specified data is written to the new active block.

Block management area

Reference data A (1)

Reference data B (1)

Reference data C (1)

Reference data A (2)

Reference data C (2)

Reference data A (3)

User data A (1)

User data B (1)

User data C (1)

User data A (2)

User data C (2)

User data A (3)

EEPROM emulation block
(the first active block)

Reference
area

Data area

Reserved area

Unused area

.

.

.

.

.

.

Block management area

EEPROM emulation block
(the new active block resulting from

increasing the number of active blocks)

Reserved area

Unused area

Reference data B (latest)

User data B (latest)

User data B (latest)

Specified write data

×
There is not enough free
space in the first active
block to write the specified
user data.

The specified data is written
after increasing the number of
active blocks .

The prepared block is
changed to an active block
to increase the number of

active blocks .

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 10 of 70
Aug 02, 2013

Figure 1-5. EEPROM Emulation Block Usage Method (Four Blocks)
• For EEPROM emulation, blocks 0 to 3 of the data flash memory are added in order as active or prepared blocks,

and then, when the last block (block 3) is reached, the first block (block 0) is specified as the next block to loop
through the blocks.

When block 3 is reached, the next
block becomes block 0 (to loop

through the blocks).

EEPROM emulation block adding direction
(usage direction)

Active block adding
direction

Prepared block adding
direction

Active
block
(first)

Reserved
area

Management
data

Data
area

Reference
area

Unused

Prepared
block
(last)

Reserved
area

Management
data

Prepared
block
(first)

Reserved
area

Management
data

Unused

Active
block
(last)

Reserved
area

Management
data

Data
area

Reference
area

Unused

Block 0 Block 1 Block 2 Block 3

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Unused

 Block 0
First address

F1000H

Block 3
Last address

F1FFFH

Active block: The currently used block
Prepared block: A block that has been prepared and is ready for use

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 11 of 70
Aug 02, 2013

Figure 1-6 (A). EEPROM Emulation Block Transition Example
• The following shows an example of EEPROM emulation blocks to which nothing was written after initializing

them.

Unused
area

(ALL 0xFF)

Active
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

XXFigure 1-6XX (B). EEPROM Emulation Block Transition Example

• If only writing processing is executed continuously, the number of active blocks is increased until a certain
number of blocks (the number of active blocks such that there are two or fewer prepared blocks remaining) is
reached.

Active
block

Reserved
area

Management
data

Reserved
area

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Data
area

Reference
area

Unused

Active
block

Management
data

Data
area

Reference
area

Unused

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Active block adding direction

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 12 of 70
Aug 02, 2013

XXFigure 1-6XX (C). EEPROM Emulation Block Transition Example

• If only writing processing is executed continuously during EEPROM emulation, and the number of active blocks
is increased when two or fewer prepared blocks remain, the valid data in the oldest active block is copied to the
latest active block, and the oldest active block is erased.

Reserved
area

Unused
area

(ALL 0xFF)

Active
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Active
block

Management
data

Data
area

Reference
area

Unused

Data
area

Reference
area

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Erased The data is moved.
The specified
data is written.

Table 1-1. Settings of Written Data and Usable Ranges

Item Range Remark

User data length 1 to 255 −

Amount of stored user data Note 1 1 to 255 Number of data types

Data ID range 1 to 255 −

Number of EEPROM emulation blocks Note 2 4 to 255 −

Recommended user data size Note 1
980 × total number of blocks × 1/4 −

980/2 bytes

This also includes the

management reference data

provided during writing.

Notes 1. The total size of the user data must be such that it is possible to write all the data into within two

EEPROM emulation blocks. Therefore, the range used for the number of stored user data items differs

depending on the size of the stored user data. It is also necessary to consider the size of the reference

data provided for each data item for management use when determining the total size. For details about

the number of stored user data items and total size, see 1.2.4 Number of stored user data items and

total user data size.

 2. EEPROM emulation blocks cannot be set more than maximum number of blocks of on-board data flash

memory.

<R>

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 13 of 70
Aug 02, 2013

1. 2 EEPROM Emulation Operation Flow

To use EEPROM emulation from a user-created program, it is necessary to initialize the EEPROM emulation

library and execute functions that perform operations such as reading and writing on EEPROM emulation blocks.

Figure 1-7 shows the overall status transitions, and Figure 1-8 shows an operation flow for using basic features.

When using EEPROM emulation, incorporate EEPROM emulation into user-created programs by following this

flow.

Figure 1-7. EEPROM Emulation Status Transitions

FAL_Init()

EEL_Init()

closed

destroy RAM data

EEL_Open() EEL_Close()

opened

Format executing
busy

Startup executing
busy

EEL_CMD_FORMAT

EEL_CMD_STARTUP

status:OK
status:ERROR

started

status:OK

EEL_CMD_FORMAT

EEPROM commnad executing
busy

EEL_CMD_WRITE
EEL_CMD_READ
EEL_CMD_CLEANUP

status:OK
status:ERROR

Shutdown executing
busy

EEL_CMD_SHUTDOWN

status:ERROR

status:OK

status:ERROR

EEL_CMD_STARTUP

 Reset or Power ON uninitialized

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 14 of 70
Aug 02, 2013

[Overview of status transitions]

To use EEPROM emulation library to manipulate the data flash memory, it is necessary to execute the provided

functions in order to advance the processing.

(1) uninitialized

This is the status after turning the power on or resetting. The system also transitions to this status after
executing flash self programming library processing.

(2) closed

This is the status in which the data has been initialized (the status in which operations on the data flash
memory are stopped) to execute the FAL_Init() and EEL_Init() functions and then EEPROM emulation. To
execute flash self programming library, STOP mode, or HALT mode processing after executing EEPROM
emulation, execute EEL_Close in the opened status to switch to the closed status.

(3) opened

This status is switched to by executing EEL_Open in the closed status and makes it possible to perform
operations on the data flash memory. It is not possible to execute flash self programming library, STOP
mode, or HALT mode processing until EEL_Close is executed and the system switches to the closed status.

(4) started

This status is switched to by executing the EEL_CMD_STARTUP command in the opened status and makes
it possible to execute EEPROM emulation. Writes and reads that use EEPROM emulation are performed in
this status.

(5) busy

This is the status used when executing a specified command. The status that is switched to differs
depending on which command is executed and how it terminates.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 15 of 70
Aug 02, 2013

Figure 1-8. Basic Operation Flow of EEPROM Emulation (When Using Enforced Mode)

START

EEL_Init()

Start of EEPROM emulation

EEL_Open()

EEL_Execute()
EEL_CMD_STARTUP

command

EEL_Execute()
EEL_CMD_WRITE command

Start processing

End of operation

EEL_Execute()
EEL_CMD_SHUTDOWN

command

EEL_Close()

End processing

EEL_Execute()
EEL_CMD_READ command

Initialization
processing

<1>

<3>

<4>

<6>

<7>

<9>

Yes

No

Executable status loop

Processing (switch)

EEL_Execute()
EEL_CMD_READ command

Can continue as executable when
there is no need to end.

Write Read

<8>

<10>

Main processing<5>

RAM reset required when
restarting?

FAL_Init()

<2>

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 16 of 70
Aug 02, 2013

 [Overview of basic operation flow]

For EEPROM emulation, the method for executing the EEL_Execute function differs depending on the mode setting.

The following three modes are available: the enforced mode, timeout mode, and polling mode. For details about

the differences in the execution method for each mode, see EEL_Execute function in 3.2 EEPROM Emulation

Library Functions.

<1> data Flash library initialization processing (FAL_Init)

Because it is necessary to initialize the data flash library parameters (RAM) if using the EEPROM emulation
library to access the data flash memory, the FAL_Init function must be executed in advance. If flash self
programming library processing was executed after this initialization finished, the initialization processing
must be re-executed.

<2> EEPROM emulation library initialization processing (EEL_Init)

Initialize the parameters (RAM) used by the EEPROM emulation library.

<3> EEPROM emulation preparation processing (EEL_Open)

Set the data flash memory to a status (opened) for which control is enabled to execute EEPROM emulation.

<4> EEPROM emulation execution start processing (EEL_Execute: EEL_CMD_STARTUP command)

Set the system to a status (started) in which EEPROM emulation can be executed.

<5> EEPROM emulation data write processing (EEL_Execute: EEL_CMD_WRITE command)

Write the specified data to an EEPROM emulation block.

<6> EEPROM emulation data confirmation processing (EEL_Execute: EEL_CMD_READ command)

Read data, and then make sure that the data was written correctly by comparing it to the original data.

<7> EEPROM emulation data read processing (EEL_Execute: EEL_CMD_READ command)

Read written data.

<8> EEPROM emulation execution stop processing (EEL_Execute: EEL_CMD_SHUTDOWN command)

Set the EEPROM emulation operation to the stopped status (opened).

<9> EEPROM emulation end processing (EEL_Close)

Set the data flash memory to a status (closed) for which control is disabled to stop EEPROM emulation.

<10> Confirmation before re-executing EEPROM emulation

If reinitializing the RAM is necessary before re-executing EEPROM emulation, such as when executing flash
self programming after EEPROM emulation stops, use the FAL_Init function to re-execute the initialization
processing.

1. 2. 1 EEPROM Emulation Blocks

The EEPROM emulation library Pack01 uses four or more block data flash memory as EEPROM emulation

blocks.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 17 of 70
Aug 02, 2013

1. 2. 2 Data structure

The data flash memory is written to in word (four-byte) units. Therefore, when the EEPROM emulation

library writes to the data flash memory, the data length is always adjusted to word (four-byte) units.

In addition, when writing user data, because the reference data for managing data is also written, when

calculating the capacity required for writing, the two words (eight bytes) of management reference data must be

added to the size of the user data in words. Figures 1-9 to 1-11 show an example of the data structure used

when user data is written to the data flash memory.

Figure 1-9. Data Length and Data Structure Example 1 (When User Data Is 8 Bytes)

+

User data

1 byte 1 byte1 byte1 byte

4 bytes = 1 word

Total size: 4 words (16 bytes) = reference data: 2 words (8 bytes) + [user data (8 bytes)/word size (4 bytes)]
* Change the user data to word units.

Index number (widx) RCS Data ID

DCS (data checksum)Reference
data (8 bytes) DRP

DCS

User data: 8 bytes

Figure 1-10. Data Length and Data Structure Example 2 (When User Data Is 6 Bytes)

+

User data

1 byte 1 byte1 byte1 byte

4 bytes = 1 word

Total size: 4 words (16 bytes) = reference data: 2 words (8 bytes) + [user data (6 bytes)/word size (4 bytes)]
* Change the user data to word units. (Round any fractions up to the nearest integer.)

Index number (widx) RCS Data ID

DCS (data checksum)Reference
data (8 bytes) DRP

DCS

User data: 6 bytes
0xFF 0xFF

Invalid data

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 18 of 70
Aug 02, 2013

Figure 1-11. Data Length and Data Structure Example 3 (When User Data Is 21 Bytes)

+

User data

Total size: 8 words (32 bytes) = reference data: 2 words (8 bytes) + [user data (21 bytes)/word size (4 bytes)]
* Change the user data to word units. (Round any fractions up to the nearest integer.)

Index number (widx) RCS Data ID

DCS (data checksum)Reference
data (8 bytes) DRP

DCS

User data: 21 bytes

0xFF0xFF

Invalid data

0xFF

1 byte 1 byte1 byte1 byte

4 bytes = 1 word

(1) DRP

This stands for data reference pointer. This area records the ID of the recorded user data and the
reference position.

(2) Index number (widx)

This is the user data index number (reference position).

(3) RCS

This stands for reference checksum. This is the (8-bit) checksum value for the DRP.

(4) Data ID

This is a unique ID for the data being used during EEPROM emulation. User-specified IDsNote are
registered.

(5) DCS

This stands for data checksum. This is the (32-bit) checksum value for the user data and reference data.

Note Before specifying a data ID, it must be registered in the descriptor table.

For details, see 2.3 Initial Values to Be Set by User.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 19 of 70
Aug 02, 2013

1. 2. 3 Block status flags

The block status flags start at the beginning of the block and include the P flag, A flag, I flag, and X flag, each

of which is four bytes, for a total of 16 bytes of data. This data indicates the EEPROM emulation block status,

and the combination of flags indicates the block status.

Figure 1-12 shows the placement status of flags, and Table 1-2 shows the combination status of flags.

Figure 1-12. Block Status Flag Placement Positions

00H P flag

10H

4 bytes

A flag

I flag

X flag

Block status flags

Block start address

Table 1-2. Overview of Block Status Flags

Block Status Flag
Status Description

P Flag A Flag I Flag X Flag

55555555H FFFFFFFFH FFFFFFFFH FFFFFFFFH Prepared This block is ready to be written.

55555555H 55555555H FFFFFFFFH FFFFFFFFH Active This block is being used.

55555555H 55555555H 00000000H FFFFFFFFH
Inactive Inactive block

Data other than the above FFFFFFFFH

− − −
Other than

FFFFFFFFH

Use

prohibitedNote
This block cannot be written.

Note A block for which use has been prohibited cannot be reused.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 20 of 70
Aug 02, 2013

1. 2. 4 Number of stored user data items and total user data size

The following restriction applies to the total size of user data that can be used for EEPROM emulation: The

total size of the user data must be such that it is possible to write all the data into within two EEPROM

emulation blocks. Therefore, the number of stored data items that can be used differs depending on the size

of user data that is actually stored. In addition, because it is not possible to place stored user data such that

one data item extends across multiple blocks, if the total size necessary to write the user data exceeds one

block, it is also necessary to consider the maximum size of an area for which use might not be possible if one

block is exceeded.

The following shows how to calculate the size that can be used when actually writing user data, as well as

the total user data size, and Figure 1-13 shows the size concepts when the total user data size is more than

one blocks.

• Maximum usable size of one block that can be used to write the user data

Size of one block of data flash memory: 1, 024 bytes

Size required for EEPROM emulation block management: 32 bytes

Free space necessary as termination information (separator): 12 bytes

Maximum usable size of one block = 1, 024 bytes − 32 bytes − 12 bytes = 980 bytes

• Maximum size and recommended size

The maximum size is the total of the usable sizes of EEPROM emulation blocks. The recommended size is
less than the maximum size to account for problems such as writing not being possible due to momentary power
loss and other issues. It is recommended to only use within a value subtracting half a block capacity from the
overall capacity.

Maximum size = 980 bytes ×number of EEPROM emulation blocks ×1/4

Recommended size = maximum size − 980/2

• Calculating the size for writing each user data item Note

Size of each written user data item = data size (a size in bytes adjusted to word units) + reference data size (8
bytes)

• Calculating the basic total user data size

Basic total size = (user data 1 + 8) + (user data 2 + 8) ... + (user data n + 8)

• Calculating the total size when the basic total user data size exceeds the maximum size of one block

If the basic total user data size exceeds 988 bytes, the maximum usable size of one block, it is necessary to
include the maximum size that might become unusable in the calculation when increasing the number of active
blocks.

Total size when more than one blocks are used = basic total size + ((largest user data size + 8) − minimum
writing unit for EEPROM emulation (4 bytes)) × (number of

necessary blocks − 1)

Note For details, see 1.2.2 Data structure.

<R>

<R>

<R>

<R>

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 21 of 70
Aug 02, 2013

Figure 1-13. Size Concepts When Total User Data Size Is Two Blocks (Which Exceeds One Block)
• The size of the user data must fit within a quarter of EEPROM emulation blocks when recording all the data, but,

if the total user data size does not fit in one block, it is necessary to include the maximum size that might
become unusable in the calculation when increasing the number of active blocks.

The maximum size that might become unusable is equal to the size of the largest user data that cannot be
written.

Block management area

User data that has been
written

EEPROM emulation block
(the first used active block)

Reference
area

Data area

Reserved area

Block management area

EEPROM emulation block
(the first active block resulting from

increasing the number of active blocks)

Reserved area

Unused area

Reference data

Maximum size of user
data (including the

reference data)

Reference data that has
been written

Unused area

Maximum size of user
data

×

The data that did not fit in the first block is
written to the added active block, but the
free space that was in the first active block
before increasing the number of active
blocks becomes unusable.

This area becomes unusable when the
new active block is added.

Maximum size required for writing = largest user data size + reference data (8 bytes)
Maximum size that might become unusable = maximum size required for writing − size of the minimum writing unit for EEPROM

emulation (4 bytes)
Total size when 2 blocks are used = basic total size + maximum size that might become unusable

The number of active blocks is
increased to write new data.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 22 of 70
Aug 02, 2013

1. 3 Initializing EEPROM Emulation Blocks

To use the data flash memory for the EEPROM emulation library, it is necessary to initialize the blocks as

EEPROM emulation blocks. If there are blocks that need to be initialized, an

EEL_ERR_POOL_INCONSISTENT error occurs when the EEL_CMD_STARTUP command is executed because

there are no active EEPROM emulation blocks. To make the EEPROM emulation blocks usable, it is necessary

to initialize the blocks by executing the EEL_CMD_FORMAT command.

In addition, if it becomes necessary to change the initial settings, such as because the data flash memory area

is corrupted or because user data is added after initialization, or it otherwise becomes impossible to continue

using the EEPROM emulation blocks in their current status, or if you just want to perform initialization,

initialization can be performed at any time by executing the EEL_CMD_FORMAT command.

Figures 1-14 and 1-15 show the initialization flow and block status transitions used when the

EEL_ERR_POOL_INCONSISTENT error occurs upon executing the EEL_CMD_STARTUP command, and

Figures 1-16 and 1-17 show the flow and block status transitions used when performing initialization at an

arbitrary time.

Figure 1-14. Initialization Flow When EEL_ERR_POOL_INCONSISTENT Error Occurs

(When Using Enforced Mode)

START

EEL_Init()

EEL_Open()

EEL_Execute()
EEL_CMD_STARTUP

command

Command
execution status

FAL_Init()

Error: EEL_ERR_POOL_INCONSISTENT

EEL_Execute()
EEL_CMD_FORMAT

command

Command
execution status

Normal end: EEL_OK

Check the settings and device
status.

EEPROM emulation block
initialization processing

An error occurs.

Other

Perform the necessary
processing according to the
command execution status.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 23 of 70
Aug 02, 2013

Figure 1-15. Example Block Status Transitions When Initialization Is Performed Upon Occurrence of

EEL_ERR_POOL_INCONSISTENT Error

Unused
area

(ALL 0xFF)

Inactive
block

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Unused
area

(ALL 0xFF)

Inactive
block

Unused
area

(ALL 0xFF)

Inactive
block

Unused
area

(ALL 0xFF)

Inactive
block

Unused
area

(ALL 0xFF)

Active
block

Reserved
area

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Block status before using EEPROM emulation

Block status after executing the FORMAT command

The FORMAT command is
executed.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 24 of 70
Aug 02, 2013

Figure 1-16. Flow When Performing Initialization at Arbitrary Time (When Using Enforced Mode)

START

EEL_Init()

EEL_Open()

FAL_Init()

EEL_Execute()
EEL_CMD_FORMAT

command

Command
execution status

EEL_OK: Normal end An error
occurs.

EEPROM emulation block
initialization processing

To the next process
Check the settings and device

status.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 25 of 70
Aug 02, 2013

Figure 1-17. Example Block Status Transitions When Used EEPROM Emulation Blocks Are Initialized at

Arbitrary Time

 EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Unused
area

(ALL 0xFF)

Active
block

Reserved
area

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Example blocks used during
EEPROM emulation

Block status after executing the FORMAT command

The FORMAT command
is executed.

Reserved
area

Unused
area

(ALL 0xFF)

Active
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Active
block

Management
data

Data
area

Reference
area

Unused

Data
area

Reference
area

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 26 of 70
Aug 02, 2013

1. 4 Adjusting EEPROM Emulation Blocks

When writing to the EEPROM emulation blocks, a prepared block is erased each time an active block is added,

but, if it is necessary to add an active block when there are two or fewer prepared blocks remaining, the active

block is added, the valid data remaining in the old block is moved, and the old block is erased before writing the

specified data. If writing is performed when erasing a block is required, the time necessary to move the data and

erase the block is added to the time necessary for writing.

If this additional processing time is not permissible, it is possible to perform maintenance at a time that will not

adversely affect the system in order to avoid moving and erasing data at the same time when high-priority data

must be written.

To perform maintenance, either adjust blocks by executing the EEL_CMD_CLEANUP command or execute the

maintenance mode processing of the EEL_Handler function.

Figure 1-18 shows an example of the block status when moving and erasing data upon adding an active block,

and Figure 1-19 shows how the processing time is changed according to the block status when writing data.

Figure 1-18. Example Block Status When Moving and Erasing Data upon Adding Active Block

If there are few prepared blocks remaining when
an active block is added, the old block is erased.

Data is written to add the active block.

Reserved
area

Unused
area

(ALL 0xFF)

Prepared

Active
block

Reserved
area

Management
data

Unused
area

(ALL 0xFF)

Prepared
block

Reserved
area

Management
data

Active
block

Management
data

Data
area

Reference
area

Unused

Data
area

Reference
area

Unused
area

(ALL 0xFF)

Active

Prepared
block

Reserved
area

Management
data

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Data is erased to create a
prepared block, and

prepared block writing is
performed.

Data is moved.

After all the processing
finishes, the specified data

is written.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 27 of 70
Aug 02, 2013

Figure 1-19. Changes in Processing Time According to Block Status When Writing Data (When Using

Enforced Mode)

EEL_Execute()

WRITE command
processing

Active block creation

Processing to
write the specified

data

Active block creation

The valid data in
the old active

block is moved
(when the
processing

occurs).

Old block erasure
processing

Processing to
write the specified

data

WRITE command processing

Prepared block
creation

Processing to
write the specified

data

When only performing
writing

When performing writing
while adding an active block

When performing writing
while adding a block and
erasing data

When an active block is
added, how long it takes
for writing to finish differs
depending on the block
status.

Change in the writing operation and time according to the block status

Function execution timing

Processing completion timing

Difference compared to when only
writing is performed

Command execution status

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 28 of 70
Aug 02, 2013

1. 4. 1 Adjusting blocks by using EEL_CMD_CLEANUP command

Blocks can be adjusted by executing the EEL_CMD_CLEANUP command from the EEL_Execute function.

Because this feature moves all the data to the latest newly created active block even if there is capacity

remaining in the latest active block, the possible number of rewrites decreases by worth of data of blocks

necessary to store data, but the feature makes it possible to change to a status in which there is only valid data

(a status in which invalid data does not exist).

Figure 1-20 shows the flow when executing the EEL_CMD_CLEANUP command, and Figure 1-21 shows the

block status after executing the EEL_CMD_CLEANUP command.

Figure 1-20. Operation Flow of EEL_CMD_CLEANUP Command (When Using Enforced Mode)

START

EEL_Init()

EEL_Open()

EEL_Execute()
EEL_CMD_STARTUP

command

Command
execution status

FAL_Init()

Perform the necessary
processing according to the
command execution status.

Other

EEL_Execute()
EEL_CMD_CLEANUP

command

Command
execution status

Normal end: EEL_OK

Perform the necessary
processing according to the
command execution status.

Other

Normal end: EEL_OK

To the next process

Block adjustment
processing

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 29 of 70
Aug 02, 2013

Figure 1-21. Adjusting Blocks by Using EEL_CMD_CLEANUP Command

Reserved
area

Prepared
block

Unused
area
(ALL
0xFF)

Active
block

Reserved
area

Management
data

Prepared
block

Management
data

A new active block is added, and the valid data in all
the old active blocks is moved to the latest active

block. Blocks for which moving the data finishes are
erased and changed to prepared blocks.

Unused
area
(ALL
0xFF)

Prepared
block

Reserved
area

Management
data

Data area

Reference
area

The latest data is moved.

Erased Erased

Unused
area
(ALL
0xFF)

Reserved
area

Management
data

Unused
area
(ALL
0xFF)

Reserved
area

Unused
area
(ALL
0xFF)

Active
block

Reserved
area

Management
data

Prepared
block

Reserved
area

Management
data

Active
block

Management
data

Data area

Reference
area

Unused

Data area

Reference
area

Unused
area
(ALL
0xFF)

Prepared
block

Reserved
area

Management
data

Unused
area
(ALL
0xFF)

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Example block status before executing the
CLEANUP command

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

The CLEANUP
command is executed.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 30 of 70
Aug 02, 2013

1. 4. 2 Adjusting blocks by using EEL_Handler function (maintenance mode)

Block adjustment processing can be automatically performed by executing the EEL_Handler function while

no commands are executing. This is called the maintenance mode. When the EEL_Handler function is

executed while there are no commands to execute, the block status is checked, block adjustment is judged to

be necessary if the number of active blocks exceeds the specified initial value

EEL_REFRESH_BLOCK_THRESHOLD (described in 2.3 Initial Values to Be Set by User), all necessary

data in old active blocks is moved to the latest block, and the unnecessary blocks are erased and changed to

prepared blocks.

The processing can be interrupted in the maintenance mode. If a new command is executed by the

EEL_Execute function, the maintenance mode is paused, and executing the newly specified command is

prioritized. To judge whether maintenance mode processing is being executed, it is necessary to execute the

separate EEL_GetDriverStatus function and check the execution status of the EEL_Handler function. If

nothing is being performed even when the EEL_Handler function is executed four times, adjustment is finished

(the adjustment completion status).

Figure 1-22 and Table 1-3 show how to check the execution status of the EEL_Handler function, Figures

1-23 to 1-26 show an execution flow example, and Figure 1-27 shows the block transitions when the

maintenance mode processing finishes (the adjustment completion status).

Figure 1-22. Flow for Checking Execution Status of EEL_Handler Function

EEL_Handler()

EEL_GetDriverStatus（）

EEL_Handler()
 execution status

↓
Command execution and the maintenance

mode processing have finished.

↓
A command is being

executed.

↓
Maintenance is being

performed.

Command execution status: EEL_OK
eel_operation_status_t: EEL_OPERATION_IDLE

Command execution status: EEL_BUSY
eel_operation_status_t: EEL_OPERATION_BUSY

Command execution status: EEL_OK
eel_operation_status_t: EEL_OPERATION_BUSY

Table 1-3. EEL_Handler Function Execution Status

EEL_Handler()

Command

Execution Status

EEL_GetDriverStatus()

eel_operation_status_t Status
Description

EEL_OK EEL_OPERATION_IDLE This is the command execution and maintenance mode

processing completion status.

(This includes when the maintenance mode processing is

paused.)

If all the results are this status when the EEL_Handler function is

executed four times, adjustment is complete.

EEL_OK EEL_OPERATION_BUSY Maintenance mode processing is being executed.

EEL_BUSY EEL_OPERATION_BUSY A command is being executed.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 31 of 70
Aug 02, 2013

Figure 1-23. Maintenance Mode Execution Flow (Example of Execution Until System Enters Adjustment

Completion Status)

After the STARTUP command finishes

EEL_Handler()

EEL_GetDriverStatus（）

EEL_Handler()
execution status

Command execution status: EEL_OK
eel_operation_status_t: EEL_OPERATION_IDLE

If the statuses are as follows four times

Other

Adjustment completion status
To the next process

Perform the necessary
processing according to the
command execution status.

The command execution
status indicates an error.

Figure 1-24. Execution Flow When Performing Adjustment After Executing EEL_CMD_WRITE Command

(Adjustment Completion Status)

EEL_Handler()

EEL_GetDriverStatus（）

EEL_Handler()
 execution status

Command execution status: EEL_OK
eel_operation_status_t: EEL_OPERATION_IDLE

If the statuses are as follows four times

Other

Adjustment completion status
To the next process

Perform the necessary
processing according to the
command execution status.

The command execution
status indicates an error.

EEL_Execute()
EEL_CMD_WRITE

command

Command
execution status

Perform the necessary
processing according to the
command execution status.

OtherNormal end: EEL_OK

Block adjustment
processing

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 32 of 70
Aug 02, 2013

Figure 1-25. Execution Flow When Performing Adjustment upon Starting EEPROM Emulation (Adjustment

Completion Status)

START

EEL_Init()

EEL_Open()

EEL_Execute()
EEL_CMD_STARTUP

command

Command
execution status

FAL_Init()

Perform the necessary
processing according to the
command execution status.

OtherNormal end: EEL_OK

Block adjustment
processing

EEL_Handler()

EEL_GetDriverStatus（）

EEL_Handler()
execution status

Command execution status: EEL_OK
eel_operation_status_t: EEL_OPERATION_IDLE

If the statuses are as follows four times

Other

Adjustment completion status
To the next process

Perform the necessary
processing according to the
command execution status.

The command execution
status indicates an error.

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 33 of 70
Aug 02, 2013

Figure 1-26. Example Flow for Executing Command and Maintenance Mode Processing in Polling Mode

START

EEL_Init()

EEL_Open()

EEL_Execute()
EEL_CMD_STARTUP

command

EEL_Execute()
EEL_CMD_WRITE

command

EEL_Execute()
EEL_CMD_SHUTDOWN

command

EEL_Close()

Polling processing (user
processing loop)

Judgment
processing (switch)

EEL_Execute()
EEL_CMD_READ

command

Can continue as executable
when there is no need to end.

Write Read

FAL_Init()

EEL_Handler()

Polling processing

ＥＮＤ

Event processing
(user processing)

Event parameter specificationStatus and event
judgment (user

processing)

Various
events

No
processing

EEL_GetDriverStatus（）

Processing status
judgment (user

processing)

The command is executed, as well as
maintenance processing if there is

time.
To check the status every time, also

call EEL_GetDriverStatus().

Block adjustment processing

RL78 Family CHAPTER 1 OVERVIEW OF EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 34 of 70
Aug 02, 2013

Figure 1-27. Example of Block Adjustment in EEL_Handler Function Maintenance Mode (Adjustment

Completion Status)

Active
block

Reserved
area

Management
data

Reserved
area

Management
data

Prepared
block

Reserved
area

Management
data

Prepared
block

Reserved
area

Management
data

Data
area

Reference
area

Unused

Data
area

Reference
area

Unused

Unused
area
(ALL
0xFF)

Unused
area
(ALL
0xFF)

Active
block

(latest)

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Block status before executing the maintenance
mode processing of the EEL_Handler function

Prepared
block

Reserved
area

Management
data

Reserved
area

Management
data

Prepared
block

Reserved
area

Management
data

Prepared
block

Reserved
area

Management
data

Data
area

Reference
area

Unused

Unused
area
(ALL
0xFF)

Unused
area
(ALL
0xFF)

Active
block

(latest)

EEPROM emulation blocks
(data flash: 4 blocks, 4 KB)

Block status after the maintenance processing is
completely executed (when the value of

EEL_REFRESH_BLOCK_THRESHOLD is 1)

Unused
area
(ALL
0xFF)

The latest data is moved.

Erased

Full maintenance execution

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 35 of 70
Aug 02, 2013

CHAPTER 2 USING EEPROM EMULATION

EEPROM emulation can store a maximum of 255 Note data items each consisting of 1 to 255 bytes in the flash

memory by using eight blocks of flash memory.

EEPROM emulation can be executed by incorporating the EEPROM emulation library into a user-created

program and executing that program.

Note For details about the number of user data items that can be stored, see 1.2.4 Number of stored user

data items and total user data size.

2. 1 Caution Points

EEPROM emulation is achieved by using a feature for manipulating the on-board microcontroller data flash

memory. Therefore, it is necessary to note the following:

(1) Before using the EEPROM emulation library, always close the flash self programming library. Also, do

not run the flash self programming library while the EEPROM emulation library is being used. When

using the flash self programming library, be sure to execute all of the processing up to and including the

EEL_Close function to finish EEPROM emulation.

When using EEPROM emulation after executing flash self programming library processing, it is necessary

to start processing from the initializing function (the FAL_Init function).

(2) Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used. If it

is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the processing

up to and including the EEL_Close function to finish EEPROM emulation.

(3) The watchdog timer does not stop during the execution of the EEPROM emulation Library Pack 01.

(4) The data flash memory cannot be read during data flash memory operation by the EEPROM emulation

Library Pack 01.

(5) In address above 0xFFE20 (0xFE20), do not place data buffer (argument) or stack which is used by

EEPROM emulation library functions and data flash library functions.

(6) When using data transfer controller (DTC) during EEPROM emulation, do not place RAM area used by

DTC in self RAM and in address above 0xFFE20 (0xFE20).

(7) Until EEPROM emulation is finished, do not corrupt RAM area (including self RAM) used by EEPROM

emulation.

<R>

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 36 of 70
Aug 02, 2013

(8) Do not execute any of the EEPROM emulation library functions during interrupt servicing except for the

EEL_TimeOut_CountDown function. Because the EEPROM emulation library functions do not support

execution more than once at the same time, the operation is not guaranteed when executing these

functions during interrupt servicing.

(9) When executing EEPROM emulation library processing in an OS, except for the

EEL_TimeOut_CountDown function, do not execute any of the EEPROM emulation library functions from

multiple tasks. Because the EEPROM emulation library functions do not support execution more than

once at the same time, the operation is not guaranteed when executing these functions from multiple

tasks.

(10) Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first.

(11) About an operation frequency of RL78 microcontrollers and an operation frequency value set by the

initializing function (FAL_Init), be aware of the following points:

- When using a frequency lower than 4 MHz as an operation frequency of RL78 microcontrollers, only 1

MHz, 2 MHz and 3 MHz can be used (frequencies other than integer values like a 1.5 MHz cannot be

used). Also, set an integer value 1, 2, or 3 to the operation frequency value set by the initializing

function.

- When using a frequency of 4 MHz or higher Note1 as an operation frequency of RL78 microcontrollers, a

certain frequency can be used as an operation frequency of RL78 microcontrollers.

- This operation frequency is not the frequency of the high-speed on-chip oscillator.

(12) Do not operate the DFTCTL during the execution of the EEPROM emulation library .

(13) Initialize the argument (RAM) that is used by the EEPROM emulation library function. When not initialized,

a RAM parity error is detected and the RL78 microcontroller might be reset. For a RAM parity error, refer to

the user’s manual of the target RL78 microcontroller.

(14) Initialize the SADDR area that is used by the EEPROM emulation library function. When not initialized, a

RAM parity error is detected and the RL78 microcontroller might be reset. For a RAM parity error, refer to

the user’s manual of the target RL78 microcontroller.

(15) To use the data flash memory for EEPROM emulation, it is necessary to execute the EEL_CMD_FORMAT

command upon first starting up to initialize the data flash memory and make it usable as EEPROM

emulation blocks.

Notes 1. For a maximum frequency, see the target RL78 microcontroller user’s manual.

<R>

<R>

<R>

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 37 of 70
Aug 02, 2013

(16) After initializing the EEPROM emulation blocks, do not change the initial values specified as fixed values

for stored data and the blocks. If these values are changed, the specified parameters become

inconsistent with the data written to the blocks, and there is a risk of no longer being able to correctly

execute EEPROM emulation. If the values must be changed, execute the EEL_CMD_FORMAT

command to reinitialize the EEPROM emulation blocks.

(17) Four or more data flash memories are necessary to use the EEPROM Emulation Library Pack 01. If the

number of data flash memory blocks is less than four, this library is unusable.

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 38 of 70
Aug 02, 2013

2. 2 Total Processing Time

The total processing time is the time until successful termination. This does not include the time until abnormal

termination due to errors in the input data or other errors.

Figure 2-1 Overview of Total Processing Time

User Program EEL

EEL_Execute

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = BUSY

EEL_Handler

Status = OK

 Total Processing Time

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 39 of 70
Aug 02, 2013

Table 2-1 Total Processing Time of EEPROM Emulation Library Pack 01 (When All Data Fits in 1 Block)

Emarks. fclk: CPU/peripheral hardware clock frequency (for example, at 20 MHz, fclk = 20)

 Data Num: Number of data entries registered

 Block Num: Number of EEPROM emulation blocks

 Funcstions MAX time(Full Speed Mode) MAX time(Wide Voltage Mode)

FAL_Init 2580 / fclk + 443 μs 2536 / fclk + 968 μs

EEL_Init (2123 + 80 × Data Num) / fclk μs (2123 + 80 × Data Num) / fclk μs

EEL_Open 87 / fclk + 12 μs 87 / fclk + 12 μs

EEL_Close 866/ fclk + 443 μs 822/ fclk + 968 μs

EEL_GetDriverStatus 47 / fclk μs 47 / fclk μs

EEL_GetSpace 57 / fclk μs 57 / fclk μs

EEL_GetVersionString 10 / fclk μs 10 / fclk μs

EEL_TimeOut_CountDown 30 / fclk μs 30 / fclk μs

EEL_Excute/EEL_Handler

・EEL_CMD_FORMAT (352494 / fclk + 330988)×Block Num μs (311793 / fclk + 374134)×Block Num μs

・

EEL_CMD_START

UP

1. Minimum data

 length is

 1~4 bytes

Data Num

8

(1082020+ 491768 ×(Block Num - 2))
/ fclk + 330988 μs

(1054886+ 491768 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

64

(1926490+ 4482900 ×(Block Num - 2))
/ fclk + 330988 μs

(1899356+ 4482900 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

128

(2891690+ 9044100 ×(Block Num - 2))
/ fclk + 330988 μs

(2864556+ 9044100 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

255

(4806090+ 18097500×(Block Num - 2))
/ fclk + 330988 μs

(4777956+ 18097500× (Block Num - 2))
/ fclk + 374134 μs

2. Minimum data

 length is

 13~16 Byte

Data Num

8

(771606 + 256268 × (Block Num - 2))
/ fclk + 330988 μs

(744472 + 256268 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

64

(1189076+ 2363400 × (Block Num - 2))
/ fclk + 330988 μs

(1161942+ 2363400 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

128

(1666676+ 4771500 × (Block Num - 2))
/ fclk + 330988 μs

(1639542+ 4771500 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

255

(2613676+ 9550500 × (Block Num - 2))
/ fclk + 330988 μs

(2586542+ 9550500 × (Block Num - 2))
/ fclk + 374134 μs

3.Minimum data

 length is

 61~64 Byte

Data Num

8

(569540 + 101109 × (Block Num - 2))
/ fclk + 330988 μs

(542406 + 101109 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

64

(705816 + 967779 × (Block Num - 2))
/ fclk + 330988 μs

(678682 + 967779 × (Block Num - 2))
/ fclk + 374134 μs

Data Num

128

(861528 + 1958100 × (Block Num - 2))
/ fclk + 330988 μs

(834394 + 1958100 × (Block Num - 2))
/ fclk + 374134 μs

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 40 of 70
Aug 02, 2013

Emarks. fclk: CPU/peripheral hardware clock frequency (for example, at 20 MHz, fclk = 20)

 Block Num: Number of EEPROM emulation blocks

 Funcstions MAX (Full Speed Mode) MAX (Wide Voltage Mode)

EEL_Excute/EEL_Handler

・EEL_CMD_CLEANUP (352494 / fclk + 330988)× Block Num

+ 4236841 / fclk + 223893 μs

(311793 / fclk + 374134)× Block Num

+ 4219942 / fclk + 851467 μs

・EEL_CMD_WRITE

 (Max data size)
5763174 / fclk + 1024588 μs 5650473 / fclk + 1906134 μs

・EEL_CMD_READ 58563 / fclk μs 58563 / fclk μs

・EEL_CMD_SHUTDOWN 1674 / fclk μs 1674 / fclk μs

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 41 of 70
Aug 02, 2013

2. 3 Software Resources

In the EEPROM emulation library, program areas corresponding to parts of the library to be used, RAM areas

for variables to be used in the library, and RAM areas for work area (self RAM) are used to assign an appropriate

program to the user area. Also, since the data flash library will be used, the EEPROM emulation library must

have a separate area for use by the data flash library.

 Tables 2-2 to 2-3 list the software resources required by each microcontroller.

Table 2-2 Software Resources Used by EEPROM Emulation Library Pack01

Notes: 1. Please contact us for the products that are newly added after this document has been issued.

2. The RL78/G12, L12 and G1C product does not support the EEPROM Emulation Library Pack01.

3. An area used as the working area by the EEPROM Emulation library Pack 01 is called self-RAM in this

manual and the user's manual. The self-RAM requires no user setting because it is an area that is not

mapped and automatically used at execution of the EEPROM Emulation library (previous data is

Item Size(Byte) Restrictions on Allocation and UsageNote1,2

Self RAMNote3 0 to 1024Note3

RL78/D1A
RAM 4KB ROM 64KB FEF00H to FF2FFH

RAM 16KB ROM 256KB FBF00H to FC2FFH

RL78/F12 RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/G13

RAM 4KB ROM 64KB FEF00H to FF2FFH

RAM 20KB ROM 256KB

*Excluding 128-pin products
FAF00H to FB2FFH

RAM 32KB ROM 512KB F7F00H to F82FFH

RL78/G14
RAM 5.5KB ROM 64KB FE900H to FECFFH

RAM 24KB ROM 256KB F9F00H to FA2FFH

RL78/G1A RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/I1A RAM 4KB ROM 64KB FEF00H to FF2FFH

RL78/L13 RAM 8KB ROM 128KB FDF00H to FE2FFH

ALLNote1,2 Products other than the aboveNote1,2 Contact us.

Stack 100

Can be allocated to a RAM area other than the self RAM and the area from FFE20H
to FFEFFH

Data buffer Note4 1 to 256

Requester(Argument) 6

Library search area 2

SADDR RAM work area
11

(fdl:2)

(eel:9)

Can be allocated to a short-addressing RAM area

Library size
8200

(fdl:1500)
(eel:6700)

Can be allocated to a program area other than the self RAM, the area from FFE20H
to FFEFFH, and the internal ROM

Data table

(n + 1) * 4

n = number of

data items

stored

Fixed-parameter area

(default)

72

(fdl:64)

(eel:4)

EEPROM emulation
block

4,096 or more
(at least 4

blocks)
Only data flash memory can be used.

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 42 of 70
Aug 02, 2013

discarded). When the EEPROM Emulation library is not used, the self-RAM can be used as a normal

RAM space.

For the RL78 microcontroller with self-RAM, the chapter of "memory space" in the user's manual of the

RL78 microcontroller has a note on an area (self-RAM) whose usage is prohibited during EEPROM

Emulation Library Pack01. If the above table does not include the target RL78 microcontroller, refer to the

user's manual of the target RL78 microcontroller.

4. The data buffer is used as the working area for EEPROM Emulation Library Pack01 internal processing or

 the. area where the data to be set is allocated in the EEL_Execute function. The required size depends on

 the function to be used.

Table 2-3. Data Buffer Size Used by EEPROM Emulation Library Functions

Note. The data buffer area specified by the EEL_Execute function is used as is.

Function Name Bytes

FAL_Init 0

EEL_Init 0

EEL_Open 0

EEL_Close 0

EEL_Executenote 0 ～ 256

EEL_Handlernote 0 ～ 256

EEL_TimeOut_CountDownnote 0

EEL_GetDriverStatus 3

EEL_GetSpace 2

EEL_GetVersionString 0

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 43 of 70
Aug 02, 2013

Figure 2-2 Arrangement Example of Self-RAM and Addresses FFE20H to FFEFFH

 (RL78/G13: product with 4-Kbyte RAM and 64-Kbyte ROM)

Figure 2-3 Arrangement Example of Addresses FFE20H to FFEFFH

 (RL78/G13: product with 2-Kbyte RAM and 32-Kbyte ROM)

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 44 of 70
Aug 02, 2013

2. 4 Initial Values to Be Set by User

As the initial values for the EEPROM emulation library, be sure to set the items indicated below. In addition,

before executing the EEPROM emulation library, be sure to execute the high-speed on-chip oscillator.

• Number of stored data items, and specific data IDs and data size

< Data flash library user include file (eel_descriptor.h)>Notes 1, 2

<EEPROM emulation library user include file (eel_descriptor.h)>Notes 1, 2

<EEPROM emulation library user program file (eel_descriptor.c)>Notes 1, 2

Notes 1. The macros and macro names that are being used have common parameters with the EEPROM

emulation library, so changes should be made to numerical values only.

 2. After initializing the EEPROM emulation blocks (after executing the EEL_CMD_FORMAT command), do

not change the values. If the values are changed, reinitialize the EEPROM emulation blocks.

 #define EEL_STORAGE_TYPE 'D':

#define EEL_VAR_NO 5:

#define EEL_REFRESH_BLOCK_THRESHOLD 1:

Flash memory type (D: Data flash memory)

Number of stored data items

Threshold setting

__far const eel_u08 eel_descriptor[EEL_VAR_NO+1][4]:

__far const eel_u08 eel_refresh_bth_u08:

__far const eel_u08 eel_storage_type_u08:

__far const eel_u08 eel_var_number_u08:

(1) Data identifier (data ID) and size

= (eel_u08)EEL_REFRESH_BLOCK_THRESHOLD;

(2) Threshold setting

= (eel_u08)EEL_STORAGE_TYPE;

(3) Flash memory type

= (eel_u08)EEL_VAR_NO;

(4) Number of stored data items

 #define FDL_SYSTEM_FREQUENCY 2000000:

#define FDL_WIDE_VOLTAGE_MODE:

#define FAL_POOL_SIZE 4:

#define EEL_POOL_SIZE 0:

(1) Operation frequency

 (2) Voltage mode

 (3) FAL pool size

 (4) FEL pool size

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 45 of 70
Aug 02, 2013

(1) Operation frequency

This sets an operation frequency which is used in RL78 microcontrollers. Note

The setting value is set to the FAL_Init frequency parameter by the following expressions (The frequency is
calculated by raising its decimals. The result calculated omits its decimals.).

Setting value of FAL_Init operation frequency = ((FDL_SYSTEM_FREQUENCY + 999999)/1000000)

Ex.1: When FDL_SYSTEM_FREQUENCY is 20000000 (20 MHz),

 ((20000000 + 999999)/10000000) = 20.999999 = 20

Ex.2: When FDL_SYSTEM_FREQUENCY is 4500000 (4.5 MHz),

 ((4500000 + 999999)/10000000) = 5.499999 = 5

Ex.3: When FDL_SYSTEM_FREQUENCY is 5000001 (5.000001 MHz),

 ((5000001 + 999999)/10000000) = 6.000000 = 6

Note This setting is a value required to control data flash memory. This setting does not change the operation

frequency of RL78 microcontrollers. In addition, this operation frequency is not the frequency of the

high-speed on-chip oscillator.

(2) Voltage mode Note 1

This sets the voltage mode of data flash memory. Note 2

When FDL_WIDE_VOLTAGE_MODE is not defined: Full-speed mode

When FDL_WIDE_VOLTAGE_MODE is defined: Wide voltage mode

Notes 1. The FDL_WIDE_VOLTAGE_MODE is commented out and not defined in the initial setting. To use

RL78 microcontrollers in the wide voltage mode, cancel the comment-out to define the mode.

 2. For details of the voltage mode, see the corresponding RL78 microcontrollers user’s manual.

(3) FAL pool size

Set the number of blocks of data flash memory mounted on your RL78 microcontrollers.

(4) EEL pool size Note

Set the number of blocks of data flash memory mounted on your RL78 microcontrollers.

Note Set the value of 4 (four blocks) or more.

(5) Data identifier (data ID) and size

This table specifies the data identifiers (data IDs) and sizes. It is called the EEL descriptor table. With
RL78 EEPROM emulation library Pack01, it is not possible to add identifiers while the program is running.
Accordingly, the data to be written must be registered to the EEL descriptor table in advance.

Figure 2-4. EEL Descriptor Table (When There Are Four Instances of Different Data)

__far const eel_u08 eel_descriptor [Number of stored data items + 1][4]

Data ID (A) 0x01Byte sizeWord size

Data ID (B) 0x01Byte sizeWord size

Data ID (C) 0x01Byte sizeWord size

Data ID (D) 0x01Byte sizeWord size

0x00 0x000x000x00

<R>

RL78 Family CHAPTER 2 USING EEPROM EMULATION

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 46 of 70
Aug 02, 2013

Data ID

The data ID is specified by the user.

Word size

This is the word size of the data to be written.

Byte size

This is the byte size of the data to be written.

RAM reference flag (0x01)

This flag is used for reference settings. Specify 1 as the registration data.

Termination area (0x00)

Specify 0 as the termination information.

(6) Threshold setting

This is the number of active blocks used as the adjustment reference when executing maintenance mode
processing. The maintenance mode processing is executed when the number of active blocks exceeds this
setting. For this setting, specify the number of blocks Note necessary for valid data storage + 1. When the
capacity necessary for data storage is less than a half of maximum usable size of one block, + 1 is not
required.

Note For details about the number of blocks necessary for valid data storage, see 1.2.4 Number of

stored user data items and total user data size.

(7) Flash memory type

This does not have to be changed. Use the initial value as is.

(8) Number of stored data items

This is set as the number of data items used for EEPROM emulation. The setting range is from 1 to 255.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 47 of 70
Aug 02, 2013

CHAPTER 3 EEPROM EMULATION FEATURES

This chapter describes the functions used for EEPROM emulation.

3. 1 Data Flash Library Functions

When executing EEPROM emulation by using the data flash memory, operations such as erasing or writing to

the data flash memory are performed by manipulating the data flash library from the EEPROM emulation library.

Therefore, before executing EEPROM emulation, it is necessary to initialize the data flash library, specify the

settings for accessing the data flash memory, and make other preparations. Table 3-1 shows the data flash

library function necessary for executing EEPROM emulation library processing.

Table 3-1. Data Flash Library Function That Must Be Executed Before Using EEPROM Emulation

Function Name Overview

FAL_Init This initializes the data flash library.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 48 of 70
Aug 02, 2013

FAL_Init

[Outline]

Data flash library initialization processing

[Format]

<C language>

fal_status_t __far FAL_Init(const __far fal_descriptor_t* descriptor_pstr)

<Assembler>

CALL !_FAL_Init or CALL !!_FAL_Init

Remark Call this function by using ! if placing the data flash library at 00000H to 0FFFFH or by using !! if not.

[Advance setting]

• The flash self programming library and EEPROM emulation library processing must be either not executing or
finished.

• Before executing this function, be sure to execute the high-speed on-chip oscillator.

[Function]

This function initializes parameters for accessing the data flash memory.

Cautions 1. Be sure to execute this function when starting EEPROM emulation to make it possible to start

accessing the data flash memory.

 2. This function is mutually exclusive with the flash self programming library (FSL). Before executing

this function, be sure to close the flash self programming library. Also, never use any flash self

programming library functions during EEPROM emulation.

 3. To use the flash self programming library after this function is executed, the RAM must be

reinitialized, so always execute this function when restarting the EEPROM emulation library.

 4. To execute this function again, always close the EEPROM emulation library.

 5. The table used for this function cannot be modified. Be sure to use a defined table.

[Register status after calling this function]

Return value: C

Corrupted registers: AX (argument), BC (argument)

<R>

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 49 of 70
Aug 02, 2013

[Argument]

fal_descriptor_t Note 1 Details (Defined Fixed Values Cannot Be Changed by Users)

Argument Type Description

fal_pool_first_addr_u32 fal_u32 Data flash memory start address

eel_pool_first_addr_u32 fal_u32 Data flash memory start address used for EEL Note 2

user_pool_first_addr_u32 fal_u32 Unused

fal_pool_last_addr_u32 fal_u32 Data flash memory end address

eel_pool_last_addr_u32 fal_u32 Data flash memory end address used for EEL Note 2

user_pool_last_addr_u32 fal_u32 Unused

fal_pool_first_block_u16 fal_u16 Data flash memory first block number

eel_pool_first_block_u16 fal_u16 Data flash memory first block number used for EEL Note 2

user_pool_first_block_u16 fal_u16 Unused

fal_pool_last_block_u16 fal_u16 Data flash memory last block number

eel_pool_last_block_u16 fal_u16 Data flash memory last block number used for EEL Note 2

user_pool_last_block_u16 fal_u16 Unused

fal_first_widx_u16 fal_u16 Data flash memory access start number

eel_first_widx_u16 fal_u16 Data flash memory access start number used for EEL Note 2

user_first_widx_u16 fal_u16 Unused

fal_last_widx_u16 fal_u16 Data flash memory access end number

eel_last_widx_u16 fal_u16 Data flash memory access end number used for EEL Note 2

user_last_widx_u16 fal_u16 Unused

fal_pool_wsize_u16 fal_u16 Area size of all blocks (word units: 4-byte units)

eel_pool_wsize_u16 fal_u16 Area size of all blocks used for EEL Note 2 (word units: 4-byte units)

user_pool_wsize_u16 fal_u16 Unused

block_size_u16 fal_u16 Area size of one block (byte units)

block_wsize_u16 fal_u16 Area size of one block (word units: 4-byte units)

fal_pool_size_u08 fal_u08 Data flash memory block size

eel_pool_size_u08 fal_u08 Data flash memory block size used for EEL Note 2

user_pool_size_u08 fal_u08 Unused

fx_MHz_u08 fal_u08 Setting of operation frequency of RL78 microcontroller

wide_voltage_mode_u08 fal_u08 Setting of voltage mode

Notes 1. Users must not modify this defined table.

 2. EEL: This stands for EEPROM emulation library.

Argument Type/Register

C Language Assembly Language

RENESAS Small and medium model const __far fal_descriptor_t* descriptor_pstr AX (0 to 15), BC (16 to 23)

RENESAS Large model const __far fal_descriptor_t* descriptor_pstr AX (0 to 15), BC (16 to 23)

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 50 of 70
Aug 02, 2013

[Return value]

Type Symbol Definition Description

fal_status_t FAL_OK Normal end

FAL_ERR_CONFIGURATION Initialization error. The setting is incorrect. Or high-speed

on-chip oscillator does not run. Make sure that the defined data

has not been changed.

Remark Assembly language return values are stored in register C.

<R>

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 51 of 70
Aug 02, 2013

3. 2 EEPROM Emulation Library Functions

The EEPROM emulation library consists of the following library functions.

Table 3-2. EEPROM Emulation Library Functions

Function Name Overview

EEL_Init Processing to initialize the RAM used for EEPROM emulation

EEL_Open EEPROM emulation preparation processing

EEL_Close EEPROM emulation end processing

EEL_Execute EEPROM emulation command execution processing

EEL_Handler Processing to continue executing EEPROM emulation commands or block adjustment

processing

* This is used for command execution in modes other than the enforced mode.

EEL_TimeOut_CountDown Timeout counting processing for EEPROM emulation command execution

* This is used only in the timeout mode.

EEL_GetDriverStatus This obtains the EEPROM emulation library status.

EEL_GetSpace This obtains the status indicating the number of free EEPROM emulation blocks.

EEL_GetVersionString This obtains the version information of the EEPROM emulation library (EEL).

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 52 of 70
Aug 02, 2013

EEL_Init

[Outline]

Processing to initialize the RAM used for EEPROM emulation

[Format]

<C language>

eel_status_t __far EEL_Init (void)

<Assembler>

CALL !_EEL_Init or CALL !!_EEL_Init

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

1. The flash self programming library and EEPROM emulation library processing must be either not executing
or finished.

2. The FAL_Init function must have finished normally.

[Function]

This function initializes parameters used to execute EEPROM emulation.

Cautions 1. When starting EEPROM emulation, always execute this function to initialize the RAM to be used.

 2. This function is mutually exclusive with the flash self programming library (FSL). Before executing

this function, be sure to close the flash self programming library. Also, never use any flash self

programming library functions during EEPROM emulation.

 3. To use the flash self programming library after this function is executed, the RAM must be

reinitialized, so always execute this function when restarting the EEPROM emulation library.

 4. To execute this function again, always close the EEPROM emulation library.

[Register status after calling this function]

Return value: C

[Argument]

None

[Return value]

Type Symbol Definition Description

eel_status_t EEL_OK Normal end

EEL_ERR_CONFIGURATION Initialization error. Either the FAL_Init function is not being

executed or the value specified for FAL_Init and EEL_Init

functions cannot be used to execute EEL processing.

Remark Assembly language return values are stored in register C.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 53 of 70
Aug 02, 2013

EEL_Open

[Outline]

EEPROM emulation preparation processing

[Format]

<C language>

void __far EEL_Open(void)

<Assembler>

CALL !_EEL_Open or CALL !!_EEL_Open

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

1. The FAL_Init and EEL_Init functions must have finished normally.

2. If EEPROM emulation was executed, the processing up to EEL_Close must be executed to stop the
processing (closed status).

[Function]

This function changes the system to a status in which the data flash memory can be manipulated to make it
possible to execute EEPROM emulation.

Note After executing the EEL_Open function and switching to the EEPROM emulation start status (opened),

flash self programming library processing cannot be executed. It also becomes impossible to execute

STOP mode and HALT mode processing. If it is necessary to execute flash self programming library,

STOP mode, or HALT mode processing, execute the EEL_Close function to switch EEPROM emulation

to the stopped status (closed).

[Register status after calling this function]

No registers are corrupted.

[Argument]

None

[Return value]

None

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 54 of 70
Aug 02, 2013

EEL_Close

[Outline]

EEPROM emulation end processing

[Format]

<C language>

void __far EEL_Close(void)

<Assembler>

CALL !_EEL_Close or CALL !!_EEL_Close

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

If EEPROM emulation was executed, the EEL_CMD_SHUTDOWN command must be used to set EEPROM
emulation to the stopped status (the opened status).

[Function]

This function changes the flash memory to the operation completion status to make it impossible to execute
EEPROM emulation.

[Register status after calling this function]

No registers are corrupted.

[Argument]

None

[Return value]

None

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 55 of 70
Aug 02, 2013

EEL_Execute

[Outline]

EEPROM emulation execution function

[Format]

<C language>

void __far EEL_Execute(eel_request_t* request)

<Assembler>

CALL !_EEL_Execute or CALL !!_EEL_Execute

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

The FAL_Init, EEL_Init, and EEL_Open functions must have finished normally.

[Function]

Each type of processing for performing EEPROM emulation operations is specified for this function as an
argument in the command format, and the processing is executed. When executing the EEL_Execute function,
it is possible to specify the execution mode and select the EEPROM emulation execution method. Table 3-3
and Figure 3-1 show the status of each mode.

Table 3-3. Command Execution Method in Each Mode

Execution Mode Description

Enforced mode All the processing of specified commands is executed using only the EEL_Execute function. The

control does not return from the function until all the command processing finishes.

Timeout mode Note The processing of specified commands is continuously executed until the timeout value specified for

the EEL_Execute function is set to 0 by the EEL_TimeOut_CountDown function. If there is

remaining processing when the timeout occurs, the processing is continued by using the

EEL_Handler function.

If all the processing finishes before the timeout value reaches 0, the function terminates and the

control returns to the user-created program, but, when using this mode, be sure to use the

EEL_TimeOut_CountDown function to make it possible for the timeout value to reach 0.

Polling mode Note The processing of specified commands is executed using a certain unit. After executing the

EEL_Execute function, the processing is continued by using the EEL_Handler function.

Note The execution mode can be re-specified when executing EEL_Handler.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 56 of 70
Aug 02, 2013

Figure 3-1. Command Execution Method in Each Mode

Status check
eel_request_t.status ?

Other

Command specification
EEL_Eｘecute()

Command specification
EEL_Handler()Note

EEL_BUSY

End of command

Start of command

Command specification
EEL_Eｘecute()

End of command

Start of command

Polling mode Timeout mode Enforced mode

Status check
eel_request_t.status ?

Other

Command specification
EEL_Eｘecute()

Command specification
EEL_Handler()Note

EEL_BUSY

End of command

Start of command

Countdown processing
EEL_TimeOut_CountDown

The processing continues
until the specified timeout
value reaches 0. Control
is returned to the user-
created program when
either the timeout value
reaches 0 or the
processing finishes.

The processing continues
until the specified timeout
value reaches 0. Control
is returned to the user-
created program when
either the timeout value
reaches 0 or the
processing finishes.

Status check
eel_request_t.status ?

Status check
eel_request_t.status ?

Other Other

A function for counting down by using a timer or other
means is called from a separate user-created
program, and the specified timeout value is set to 0.
(Execution is possible during interrupt servicing.)
If all the processing finishes before 0 is reached, it is
not necessary to call the function for counting down
and set the timeout value to 0.

* The specified timeout value is decremented (−1)
each time the countdown function is called.

Remaining timeout value = current timeout value − 1

EEL_BUSYEEL_BUSY

* The control is not returned
until all the instructions
finish.

* In the polling mode, not all the
processing is finished by the
EEL_Execute function, and it is
necessary to execute the
EEL_Handler function when
continuing the specified
processing.

Note The execution mode can be re-specified when executing EEL_Handler.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 57 of 70
Aug 02, 2013

[Register status after calling this function]

Corrupted register: AX (argument)

[Argument]

eel_request_t Details

Argument Type Description

eel_request_t.address_pu08 eel_u08 * Data buffer for storing write and read data Note

eel_request_t.identifier_u08 eel_u08 Parameter for setting command to be executed

eel_request_t.timeout_u08 eel_u08 Timeout value (command execution mode setting)

eel_request_t.command_enu eel_command_t Command to be executed

eel_request_t.status_enu eel_status_t Command execution status

Note Specify this parameter only for a command that requires the parameter. Set up the data buffer size

according to the byte sizes of the write and read data.

Timeout Value (timeout_u08) Setting Details

Timeout Value Description

0xFF Processing is executed in the enforced mode.

0x01 to 0xFE Processing is executed in the timeout mode.

0x00 Processing is executed in the polling mode.

Execution Commands (eel_command_t)

Command Description

EEL_CMD_STARTUP This checks the block status and sets the system to the EEPROM emulation start

(started) status. If all the blocks are active, the oldest active block is forcibly erased to

create a prepared block.

Be sure to execute this command before executing commands other than the

EEL_CMD_FORMAT command, which is used when initializing (erasing) Note 2

EEPROM emulation blocks, and make sure that the command finishes normally.

EEL_CMD_WRITE Note 1 This writes the specified data to the EEPROM emulation blocks.

* The following arguments must be specified prior to execution.

• eel_request_t.address: Specifies the start address of the RAM area where the write

data is stored.

• eel_request_t.identifier: Specifies the data ID of the write data.

EEL_CMD_READ Note 1 This reads the specified data from the EEPROM emulation blocks.

* The following arguments must be specified prior to execution.

• eel_request_t.address: Specifies the start address of the RAM area where the read

data is stored.

• eel_request_t.identifier: Specifies the data ID of the read data.

EEL_CMD_CLEANUP Notes 1, 3 This moves only the latest EEPROM emulation block data to the newly created active

block and initializes (erases) Note 2 all the other blocks, which are unnecessary.

If all the blocks are active, the oldest active block is forcibly erased to create a

prepared block, and then the processing is executed.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 58 of 70
Aug 02, 2013

Command Description

EEL_CMD_FORMAT Note 4 This initializes (erases) Note 2 everything, including the data recorded in the EEPROM

emulation blocks. Be sure to use this command before using EEPROM emulation for

the first time. Note that it is necessary to use this command to initialize all the blocks

if an EEPROM emulation block abnormality occurs (such as an active block

disappearing) or when modifying the initial values (fixed values that cannot be

changed).

Because EEPROM emulation switches to the stopped status (opened) regardless of

the results after the processing finishes, execute the EEL_CMD_STARTUP command

to continue using EEPROM emulation.

EEL_CMD_SHUTDOWN Note 1 This sets EEPROM emulation to the stopped status (opened).

Notes 1. Do not execute this command until the EEL_CMD_STARTUP command has finished normally.

 2. Blocks for which usage is prohibited are not initialized (erased).

 3. For the detailed operations, see 1.4.1 Adjusting blocks by using EEL_CMD_CLEANUP command.

 4. For the detailed operations, see 1.3 Initializing EEPROM Emulation Blocks.

Argument Type/Register

C Language Assembly Language

RENESAS Small and medium model eel_request_t* request AX (0 to 15)

RENESAS Large model eel_request_t* request AX (0 to 15)

Command Execution Statuses (eel_status_t)

Command Execution Status Description Corresponding Commands

EEL_OK Normal end All commands

EEL_BUSY A command is being executed. All commands

EEL_ERR_INITIALIZATION Initialization error:

The FAL_Init(), EEL_Init(), or EEL_Open

function has not finished normally.

All commands

EEL_ERR_ACCESS_LOCKED EEPROM emulation lock error:

EEPROM emulation cannot be executed.

Make sure that the EEL_CMD_STARTUP

command has finished normally.

Commands other than

EEL_CMD_STARTUP

EEL_ERR_COMMAND Command error:

A command that does not exist has been

specified.

−

EEL_ERR_PARAMETER Parameter error:

An incorrect command parameter has been

specified. Revise the specified parameter.

All commands

EEL_ERR_REJECTED Reject error:

A different command is being executed.
All commands

EEL_ERR_NO_INSTANCE Identifier error:

The specified data is not in the descriptor

table. Or data are not recorded.

EEL_CMD_READ

<R>

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 59 of 70
Aug 02, 2013

Command Execution Status Description Corresponding Commands

EEL_ERR_POOL_FULL Pool full error:

There is no area that can be used to write

the data. This error can be recovered from

by using the EEL_CMD_STARTUP or

EEL_CMD_CLEANUP command to forcibly

erase the oldest block, but some of the data

might disappear even if this is done.

EEL_CMD_WRITE

EEL_ERR_POOL_INCONSISTENT EEPROM emulation block inconsistency

error:

An EEPROM emulation block has the

undefined status (such as because there are

no active blocks). Execute the

EEL_CMD_FORMAT command to initialize

the EEPROM emulation blocks.

EEL_CMD_STARTUP

EEL_ERR_POOL_EXHAUSTED EEPROM emulation block exhaustion error:

There are no more EEPROM emulation

blocks that can be used to continue. Stop

EEPROM emulation.

Commands other than

EEL_CMD_READ and

EEL_CMD_SHUTDOWN

EEL_ERR_INTERNAL Internal error:

An unexpected error has occurred. Check

the device status. In addition, if this error

occurred during EEL_CMD_SHUTDOWN

command execution, execute the

EEL_Close function to stop EEPROM

emulation.

Commands other than

EEL_CMD_READ and

EEL_CMD_WRITE

[Return value]

None

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 60 of 70
Aug 02, 2013

EEL_Handler

[Outline]

Processing to continue executing EEPROM emulation when EEL_Execute is executed in a mode other than the
enforced mode, or the maintenance mode execution processing

[Format]

<C language>

void __far EEL_Handler(eel_u08 timeout_u08);

<Assembler>

CALL !_EEL_Handler or CALL !!_EEL_Handler

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

The FAL_Init, EEL_Init, and EEL_Open functions must have finished normally.

[Function]

This function continues executing the EEPROM emulation processing specified for the
EEL_Execute function. Note 1 In addition, by executing this function while no commands are being executed, it
is possible to adjust EEPROM emulation blocks by using the maintenance mode. Note 2

Notes 1. The command execution status for the EEL_Handler function is specified for eel_request_t* request,

which is used as the EEL_Execute function argument. Therefore, when using EEL_Handler, do not free

the eel_request_t* request variable.

 2. For details about the maintenance mode, see 1.4.2 Adjusting blocks by using EEL_Handler function.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 61 of 70
Aug 02, 2013

[Register status after calling this function]

Corrupted register: AX (argument)

[Argument]

Timeout Value (timeout_u08) Setting Details Note

Timeout Value Description

0x01 to 0xFF Executing processing continues in the timeout mode.

(It is necessary to use the EEL_TimeOut_CountDown function to set the timeout value to 0.)

0x00 Executing processing continues in the polling mode.

Note For details about each mode, see the description of the EEL_Execute function.

Development tool
Argument Type/Register

C Language Assembly Language

RENESAS Small and medium model eel_u08 timeout_u08 X

RENESAS Large model eel_u08 timeout_u08 X

[Return value]

Post-execution status information is specified for eel_request_t* request, an argument of the EEL_Execute
function.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 62 of 70
Aug 02, 2013

EEL_TimeOut_CountDown

[Outline]

Timeout counting processing for EEPROM emulation command execution

[Format]

<C language>

void __far EEL_TimeOut_CountDown(void)

<Assembler>

CALL !_EEL_TimeOut_CountDown or CALL !!_EEL_TimeOut_CountDown

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

The FAL_Init, EEL_Init, and EEL_Open functions must have finished normally.

[Function]

This function is used when executing EEPROM emulation in the timeout mode.

When this function is executed, the timeout value specified when executing an EEPROM emulation command is
decremented (−1), and the EEL_Execute and EEL_Handler function loop processing ends when the timeout
value reaches 0.

For details about handling the timeout value, see the sections that describe the EEL_Execute and EEL_Handler
functions.

[Register status after calling this function]

No registers are corrupted.

[Argument]

None

[Return value]

None

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 63 of 70
Aug 02, 2013

EEL_GetDriverStatus

[Outline]

This obtains the EEPROM emulation library status.

[Format]

<C language>

void __far EEL_GetDriverStatus(__near eel_driver_status_t *driverStatus_pstr)

<Assembler>

CALL !_EEL_GetDriverStatus or CALL !!_EEL_GetDriverStatus

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

The FAL_Init and EEL_Init functions must have finished normally.

[Function]

This function obtains the status of the EEPROM emulation library. This makes it possible to check the status of
the EEL_Handler function and EEPROM emulation.

[Register status after calling this function]

No registers are corrupted.

[Argument]

eel_driver_status_t Details

Argument Type Description

eel_driver_status_t.operationStatus_enu eel_operation_status_t EEL_Handler() execution status

eel_driver_status_t.accessStatus_enu eel_access_status_t EEPROM emulation status

eel_driver_status_t.backgroundStatus_enu eel_status_t Library status (not available to users)

eel_operation_status_t Details

Type Description

EEL_OPERATION_PASSIVE The EEL_CMD_STARTUP command has not finished normally and no commands are

being executed.

EEL_OPERATION_IDLE No command or maintenance modeNote processing is being executed.

EEL_OPERATION_BUSY Command or maintenance modeNote processing is being executed.

Note For details about the maintenance mode, see 1.4.2 Adjusting blocks by using EEL_Handler function.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 64 of 70
Aug 02, 2013

eel_access_status_t Details

Type Description

EEL_ACCESS_LOCKED Data reading and writing cannot be executed (opened, closed).

EEL_ACCESS_UNLOCKED Data reading and writing can be executed (started).

Development tool
Argument Type/Register

C Language Assembly Language

RENESAS Small and medium model __near eel_driver_status_t *driverStatus_pstr AX (0 to 15)

RENESAS Large model __near eel_driver_status_t *driverStatus_pstr AX (0 to 15)

[Return value]

None

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 65 of 70
Aug 02, 2013

EEL_GetSpace

[Outline]

This obtains the free EEPROM emulation block space (in word units).

[Format]

<C language>

eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)

<Assembler>

CALL !_EEL_GetSpace or CALL !!_EEL_GetSpace

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

The FAL_Init, EEL_Init, and EEL_Open functions, and the EEL_CMD_STARTUP command must have finished
normally.

[Function]

This function obtains the free EEPROM emulation block space (in word units).

[Register status after calling this function]

Return value: C

Corrupted register: AX (argument)

[Argument]

Type Description

__near eel_u16* The address at which the information about the total free space of the current active block and prepared

blocks is input (a 2-byte area): The data is in word units (1 word = 4 bytes).

Development tool
Argument Type/Register

C Language Assembly Language

RENESAS Small and medium model __near eel_u16* space_pu16 AX (0 to 15)

RENESAS Large model __near eel_u16* space_pu16 AX (0 to 15)

[Return value]

Type Symbol Definition Description

eel_status_t EEL_OK Acquisition successful

EEL_ERR_INITIALIZATION EEL_Init has not been executed.

EEL_ERR_ACCESS_LOCKED The EEL_CMD_STARTUP command has not finished normally.

EEL_ERR_REJECTED A command is being executed.

Remark Assembly language return values are stored in register C.

RL78 Family CHAPTER 3 EEPROM EMULATION FEATURES

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 66 of 70
Aug 02, 2013

EEL_GetVersionString

[Outline]

This obtains the version information of the EEPROM emulation library (EEL).

[Format]

<C language>

__far eel_u08* __far EEL_GetVersionString(void)

<Assembler>

CALL !_EEL_GetVersionString or CALL !!_EEL_GetVersionString

Remark Call this function by using ! if placing the EEPROM emulation library at 00000H to 0FFFFH or by

using !! if not.

[Advance setting]

None

[Function]

This function obtains the version information of the EEPROM emulation library (EEL).

[Register status after calling this function]

Return value: BC, DE

Corrupted registers: BC, DE

[Argument]

None

[Return value]

Type Description

eel_u08* The address at which the version information of the EEPROM emulation library (EEL) is input (a 24-bit

address area)

Example: For EEPROM emulation library Pack01 V1.00 (ASCII code)

“ERL78T01R110GVxxx”

 Version information: V110 → V1.10

 Corresponding tool: Renesas Electronics version

 Type name: Type 01

 Corresponding device: RL78

 Target library: EEL

<R>

RL78 Family APPENDIX A REVISION HISTORY

EEPROM Emulation Library Pack 01

R01US0054EJ0102 Rev.1.02 Page 67 of 70
Aug 02, 2013

APPENDIX A REVISION HISTORY

A. 1 Major Revisions in This Edition

Page Description Classification

Throughout the document

-
The document on the data flash library, which was classified as the application
note (old version of R01AN0351), was changed to the user’s manual.

(d)

-
The corresponding ZIP file name and release version were added to the
cover page.

(d)

-
Contents of the processing time and software resources were moved from the
usage note to this document. Accordingly, the reference destination described
in this document was also changed.

(d)

- The supported device was added. (b)

-
The notation of high-speed OCO was deleted to unify the notation of
high-speed on-chip oscillator.

(d)

-
The description of the operating frequency was unified to the CPU operating
frequency since individual descriptions had different notations.

(d)

Chapter 1 Overview of EEPROM emulation

p.12 and 20
Modified errors in the capacity of the separator and the calculation method for
the maximum size

(a)

Chapter 2 Using EEPROM emulation
p.36 Note on the frequency of the high-speed on-chip oscillator was added. (c)
p.36 Note on the RAM parity error was added. (c)
p.36 Note on the data flash control register (DFLCTL) was added. (c)
p.37 Note on the number of data flash memory block was added. (c)
p.38-40 Items regarding the processing time were added (the description of the

processing time was moved from the usage note to this document).
(c)

p.41-43 Items regarding the resources were added and description was also
changed.(the description on the resources was moved from the usage note to
this document).

(c)

P.44 and 45
and 48

Note on the high-speed on-chip oscillator was added.
(c)

Chapter 3 EEPROM Emulation features
p.50 Description of the return value was added. (c)

p.58 Description of the argument] was added. (c)

p.66 Description of the return value was changed (c)

Remark “Classification” in the above table classifies revisions as follows.

 (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division,

(e): Addition/change of related documents

RL78 Microcontrollers User’s Manual: EEPROM Emulation Library Pack 01

Publication Date: Rev.1.02 Aug 02, 2013

Published by: Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.

Colophon 1.3
© 2013 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 1.3

RL78 Family

R01US0054EJ0102

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	CONTENTS
	CHAPTER 1 OVERVIEW OF EEPROM EMULATION
	1. 1 Basic Specifications of EEPROM Emulation
	1. 2 EEPROM Emulation Operation Flow
	1. 2. 1 EEPROM Emulation Blocks
	1. 2. 2 Data structure
	1. 2. 3 Block status flags
	1. 2. 4 Number of stored user data items and total user data size

	1. 3 Initializing EEPROM Emulation Blocks
	1. 4 Adjusting EEPROM Emulation Blocks
	1. 4. 1 Adjusting blocks by using EEL_CMD_CLEANUP command
	1. 4. 2 Adjusting blocks by using EEL_Handler function (maintenance mode)

	CHAPTER 2 USING EEPROM EMULATION
	2. 1 Caution Points
	2. 2 Total Processing Time
	2. 3 Software Resources
	2. 4 Initial Values to Be Set by User

	CHAPTER 3 EEPROM EMULATION FEATURES
	3. 1 Data Flash Library Functions
	FAL_Init

	3. 2 EEPROM Emulation Library Functions
	EEL_Init
	EEL_Open
	EEL_Close
	EEL_Execute
	EEL_Handler
	EEL_TimeOut_CountDown
	EEL_GetDriverStatus
	EEL_GetSpace
	EEL_GetVersionString

	APPENDIX A REVISION HISTORY
	A. 1 Major Revisions in This Edition

	Colophon
	SALES OFFICES
	Back Cover

