
ASH WARE, Inc.

by

Version 2.40

11/1/2015

(C) 2007-2015

Linker Reference Manual

John Diener and Andy Klumpp

page 2, Linker Reference Manual

Linker Reference Manual, page 3

Linker Reference Manual

Table of Contents

Foreword 5

Part 1 Command Line Options 7

Part 2 Code Location 21

.. 212.1 Code Size

Part 3 Global Error Handling 23

.. 243.1 Global Error Data

.. 253.2 Error Handling Library

.. 253.3 Invalid Entry Error Handling

.. 263.4 In the SCM OFF Weeds Error Handling

.. 263.5 In the FILL Weeds Error Handling

.. 273.6 Unexpected Thread Error Handling

.. 283.7 Extending the Error Handler

.. 283.8 Accessing the Error Handler

.. 293.9 Creating a User-Defined Error Handler

Part 4 Entry Table 33

.. 334.1 Entry Table Base Address assignment

.. 334.2 CFSR Assignment

Part 5 System Configuration Analyses 35

.. 355.1 System Configuration File

Part 6 Channel Hardware Instruction
Packing 39

.. 406.1 Channel Hardware Sub-Instruction Packing Convention

Linker Reference Manual

page 4, Linker Reference Manual

Part 7 Channel HW Sub-Instruction
Re-Ordering 43

Part 8 Linking Legacy (.COD) Code 45

.. 458.1 Legacy Global Memory Allocation

.. 468.2 Disabling optimization on legacy code

.. 468.3 Legacy Code Limitations

.. 468.4 Legacy Restrictions on ETEC

.. 478.5 Legacy/ETEC Interactions

.. 478.6 Legacy/ETEC Misc Notes

.. 478.7 Auto-Header and Auto-Defines Information Validity

... 48Invalid Legacy Auto-Header Information

... 48Supported ETPU_C Compiler Versions

... 48Qualifying Unsupported eTPU_C Versions

Part 9 Optimization Limitations 49

.. 499.1 Compiler/Optimizer Limitations

... 49Compiler Inline Assembly Limitations

.. 509.2 Assembly/Optimizer Limitations

... 50Indeterminate Return Value Limitation

... 50Hard-Coded Return Address Limitation

... 50Register Storage between Threads Limitation

... 51Invalid Construct Limitation

... 51Hard-Coded Value Limitation

... 52Multiply-Divide Unit (MDU) Limitations

Linker Reference Manual, page 5

Linker Reference Manual

page 6, Linker Reference Manual

1. Command Line Options

Linker Reference Manual, page 7 (C) 2007-2015

1
Command Line Options

Type the executable name with the -h command line parameter to generate a list of the
available options.

ETEC_link.exe –h

The linker/optimizer has the following format:

ETEC_link.exe <ObjectFile1> <ObjectFile2> <options>

The <options> can be one or more of the following options.

Setting Option Default Example

Display Help

This option overrides all
others and when it exists
no linking is actually
done.

-h Off -h

Open Manual

Opens the electronic
version of this Linker
Reference Manual.

-man Off -man

1. Command Line Options

page 8, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

Open a Specific Manual

Opens an electronic
version of the specified
manual.

-man=<MANUAL>

where MANUAL is
one of the following:

TOOLKIT: Toolkit
User Manual.

COMP: Compiler
Reference Manual

LINK: Linker
Reference
Manual.

ASMFS: eTPU
Assembler
Reference Manual
- Freescale
Syntax.

ASMAW: eTPU
Assembler
Reference Manual
- ASH WARE
Syntax.

ETPUSIM: Stand-
Alone eTpu
Simulator
Reference
Manual.

MTDT: Common
reference manual
covering all
simulator/debugger
products EXCEPT
the eTPU Stand-
Alone simulator.

LICENSE:

Off -man=ETPUCIM

1. Command Line Options

Linker Reference Manual, page 9 (C) 2007-2015

Setting Option Default Example

License reference
manual

Display Version

Displays the tool name
and version number and
exits with a non-zero exit
code without linking.

-version Off -version

Display Licensing Info

Outputs the licensing
information for this tool.

-license Off -license

Console Message Verbosity

Control the verbosity of
the linker message
output.

-verb=<N>

where N can be in the
range of 0 (no console
output) to 9 (verbose
message output).

5 -verb=9

Console Message
Suppression

Suppress console
messages by their type/
class. Multiple types can
be specified with multiple
–verbSuppress options.

-
verbSuppress=<TYP
E>

where TYPE can be:

BANNER : the
ETEC version &
copyright banner.

SUMMARY : the
success/failure
warning/error
count summary
line

WARNING : all
warning messages

Off -verbSuppress=
SUMMARY

1. Command Line Options

page 10, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

ERROR : all error
messages (does
not affect the tool
exit code)

Disable a specific warning -warnDis=<ID>
where ID is the
warning's
identification number.

Off -WarnDis=41065

Strictly treat warnings as
errors

If a link warning is
encountered, treat it as
an error such that the link
fails

-Strict Disabled -Strict

Input File Options

List of Object Files to link <ObjectFile1>
<ObjectFile2> ...
<ObjectFileN>

None etpuc_cam.eao
etpuc_crank.eao

System Configuration File
(optional)

Describes system
configuration such as
system clock frequency,
which functions are
running channels and
their priority levels, etc.
running on which
channels and at which
priority level. This is
used to calculate the

-
sysConfig=<FileName
> where FileName is
a file that describes
the system
configuration.

None -
sysConfig=MySyst
emCfg.SysCfg

1. Command Line Options

Linker Reference Manual, page 11 (C) 2007-2015

Setting Option Default Example

Worst Case Latency
(WCL) based on the
Worst Case Thread
Length (WCTL).
Results are displayed in
the analyses file.

Import Executable

Includes a .COD legacy
file as part of the build.

-Imp=<name.cod> None -Imp=Existing.cod

Imported Executable Data

Amount of Data Memory
in bytes to allocate for
the imported legacy (.
COD) file. This setting
is mandatory when
importing a .COD file.

-ImpData=<Bytes> None -ImpData=0x224

Imported Executable Data
End Free Space

When specified, this
address indicates the end
of the global address
range available for
locating global data from
ETEC-compiled code.
The globally addressable
address space in the
eTPU runs from 0x0
through 0x400. Some .
COD compilations locate
global data both in low
global memory and at
high global memory,
leaving a gap in between.

-ImpDataEnd=<byte
address>

None -
ImpDataEnd=0x3F
0

1. Command Line Options

page 12, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

 It is in these cases that
the use of -ImpDataEnd
is required; for most .
COD file imports it is not
required. For example, if
the imported .COD uses
the 3-byte unit at 0x3FD
as temporary storage,
and uses up through 0x55
in low global memory,
then the ideal linker
options would be "-
ImpData=0x58 -
ImpDataEnd=0x3FC".

Disable Imported
Executable Optimizations

Optimizations on the
imported legacy (.COD)
executable file default to
enabled. This option
overrides the default
such that optimizations
are disabled for imported
executables.

-ImpOpt- Disabled -ImpOpt-

Disable Import of the
Default Error Handling
Library

When this option is
specified the default
error handling library is
not imported and the
memory fill is 0 unless
otherwise specified.
Once disabled, users can

-ErrorLib- Enabled -ErrorLib-

1. Command Line Options

Linker Reference Manual, page 13 (C) 2007-2015

Setting Option Default Example

provide their own error
handlers using the error
handler names
(_Error_handler_entry,
etc.).

Output File Options

Output File To Produce

Executable file name

-
out=<BaseFileName>

None -out=MyOutputFile

Suppress ELF/DWARF File
Generation

-elf- Generate

Suppress Entry Table Debug
Data

Some consumers of ELF/
DWARF files may not
be compatible with the
entry table debug data;
this disables its output,

-etdbg- Generate

Output a global data
segment in the ELF/
DWARF file

When this option is
specified a global data
segment is generated in
the ELF/DWARF file. It
has R/W attributes set,
and an alignment of 4
bytes.

-elfgd Do not
output global
data segment

-elfgd

Defines Header File To
Produce

-defines=<FileName> Based on
executable

-
defines=MyDefine

1. Command Line Options

page 14, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

A set of #defines used
for host-side drivers.
Defaults to the
executable file name with
‘_defines’ appended to
the base file name and
a .h extension

name sFile.h

Suppress Defines File
Generation

-defines- Generate -defines-

Global Mnemonic

The specified mnemonic
gets pre-pended to all
names in the auto-
generated header file and
executable image array
C file. This is useful
when multiple images are
to be used at host load
time, thereby avoiding
naming conflicts.

-GM=<Text> '-' -GM=_FS_

Produce Auto-Struct
Header File / Specify Name

A set of structure
declarations that can be
used for host-side driver
development. If no name
is specified, it defaults to
the executable file name
with ‘_struct’ appended
to the base file name and
a .h extension

-autostruct // default
(deprecated)

-
autostruct=<FileName
>

-autostruct- // disable
auto-struct generation

auto-struct
file
generation

-
autostruct=etpu_if_
struct.h

Initialized Data File to -idata=<FileName> Based on idata=MyInitDataFi

1. Command Line Options

Linker Reference Manual, page 15 (C) 2007-2015

Setting Option Default Example

Produce

A set of data structures
used to initialize global
and channel-frame
memory. Defaults to the
executable file name with
‘_idata’ appended to the
base file name and .c, .h
extensions.

executable
name

le.c

Suppress IData File
Generation

-idata- Generate -idata-

SCM C File

C array of opcodes and
entry table data to be
included on the host-side
and copied into the
eTPU’s SCM. Defaults
to the executable file
name with ‘_scm’
appended to the base file
name and a .c extension

-scm=<FileName> None -scm=MyScmFile.c

Suppress SCM C file
generation

-scm- Generate -scm-

Data Size 8-bit Override

By default, scm and idata
data is 32-bit; this option
overrides and results in
8-bit initialized array
output

-data8 32-bit data -data8

Name of the analyses file to -ana=<FileName> OutputFileBa -

1. Command Line Options

page 16, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

produce. Defaults to the
executable file name with
‘_ana’ appended to the base
file name and an .html
extension.

where FileName is
the name of the
analyses file to
product

seName.ana Ana=MyOverriden
tName.ana

Disable analysis file
generation

-ana- Enabled -ana-

Generate .lst files

When specified, each
source file that
contributes to code
generation is output into a
list file with intermixed
disassembly information.
They are named the
same as the source file
but with a .lst extension.
When just "-lst" is used,
the list files are placed in
the executable output
path. When "-lstInSrc" is
used each individual list
file is output in the
directory that
corresponds to its source
file. Last, the default
executable output path
for list files can be
overridden by specifying
a path with the "-
lst=<DirName>" option
form.

"-lstaddr-" removes the
address and opcode

-lst

-lstInSrc

-lst=<DirName>

-lstaddr-

Disabled -lst

-lstInSrc

-lst=..\ListFiles\

1. Command Line Options

Linker Reference Manual, page 17 (C) 2007-2015

Setting Option Default Example

listings which puts the
listing files into a format
that is ideal for "diff."
This is particularly helpful
when comparing
generated code for
different compiler
versions.

Generate .map file / Specify
Name

When specified, a map
file containing code &
data location information
is output. The default
name is the executable
name appended with a ".
map" extension, in the
executable output path.
The path and name can
be overridden using the
"=<FileName>" option.

-map

-map=<FileName>

Disabled -map

-map=..
\myMapFile.map

Code Generation Options

Target Selection

Select the destination
processor for the
compilation.

-target=<TARGET>

where TARGET can
be:

ETPU1 : compile
for the baseline
eTPU processor.

ETPU2 : compile
for the eTPU2
processor version.

ETPU1 -target=ETPU2

1. Command Line Options

page 18, Linker Reference Manual (C) 2007-2015

Setting Option Default Example

Entry Table Base Address

Underlying architecture
supports only multiples of
0x800

-etba=<Addr> 0x0 -etba=0x800

SCM Code Size -CodeSize=<Bytes> 0x1800 (6K) -CodeSize=0x4000

Fill Opcode Override

Use specified opcode to
fill any unused SCM
code space

-FillOpcode=<Val> Jump to
error library

-FillOpcode=0x123

Disable optimizations

Optimizations default to
enabled. This option
overrides the default
such that optimizations
are disabled.

-opt- Enabled -opt-

Network License Options

Retry Network License

If unable to acquire a full
license from the network
license server, the
application will continue
to re-try periodically up
to the specified number
of seconds until it
succeeds, or the retry
time expires.

-networkRetry=<N> Off -networkRetry=600

Check-out Network License

Attempts to check-out a

-
networkCheckout=<Y

Off -
networkCheckout=

1. Command Line Options

Linker Reference Manual, page 19 (C) 2007-2015

Setting Option Default Example

network license until the
specified date and time.
The HH field is in 24
hour time. No linking is
done, only the license
check-out. An exit code
of 0 indicates success,
non-zero failure.

YYY:MM:DD:HH:
MM>

2010:08:04:18:00

Check-in Network License

Returns a checked out
license to the network
license server. This only
needs to be done if the
license is being returned
before its checkout
expiration date. No
linking is done. An exit
code of 0 indicates
success, non-zero failure.

-networkCheckin Off -networkCheckin

page 20, Linker Reference Manual

2. Code Location

Linker Reference Manual, page 21 (C) 2007-2015

2
Code Location

There is almost no reason at all for the user to care about code location so this section is
kind of like describing the difference between blue and red to a color blind person. Having
said that, code gets located beginning at address zero and continues upward.

The big issues are the entry table and “unbreakable code chunks”. An “unbreakable code
chunk” is a section of code that must remain contiguous in order to function properly and
the definition of “functioning properly” varies between the compiler and assembler. Entry
table locating is done first followed by code locating. If an “unbreakable code chunk”
would over-write the entry table, then it is moved in its entirety to the first available opcode
slot after the entry table.

ASH WARE reserves the right to change this algorithm, but in any case if you are doing
something that depends on the locating algorithm, then this author suspects you are doing
something wrong.

2.1 Code Size

Although the eTPU has a code space of 64K bytes, the various microcontrollers only
populate a portion of this. For instance, some eTPU derivates in the Coldfire family
populate 6K bytes and some eTPU derivatives in the MPC55xx family populate 12K.

To accommodate this variation in code size between the different eTPU derivates there is
a command line argument for specifying the amount of code space actually populated.

2. Code Location

page 22, Linker Reference Manual (C) 2007-2015

This code size must be aligned to a 2K boundary, and must be between 2K and the
maximum code space allowed by the eTPU instruction set which is 64K.

3. Global Error Handling

Linker Reference Manual, page 23 (C) 2007-2015

3
Global Error Handling

A variety of causes including alpha particles, coding errors, and silicon defects could cause
eTPU code to execute in un-intended ways. The key issues to consider are error detection
and error correction.

Undetected errors are the bane of electronic reliability because the probability of their
presence accumulates over time, code size, hours spent coding, etc. Therefore ETEC
places primary emphasis on error detection and has built in hooks for detection of many
errors.

Error correction, on the other hand, is considered to be the in the user’s domain and ASH
WARE strongly recommends that each system designer carefully designs their systems
with error correction strategies in place. Having said that, ETEC does support “default”
error correction mechanisms. If these default mechanisms are not overridden, they will
correct a variety of detected error cases. The default error handling mechanism is
disabled or overridden by using the -ErrorLib- linker command line option.

ASH WARE recommends that users create specially-named error handlers for a variety
of possible error scenarios. These handlers are generally written in assembly, and have the
following names.

_Error_handler_entry.
_Error_handler_scm_off_weeds
_Error_handler_fill_weeds
_Error_handler_unexpected_thread

3. Global Error Handling

page 24, Linker Reference Manual (C) 2007-2015

These error handlers should be used to correct the error conditions described later in this
section.

3.1 Global Error Data

If an error is detected, information helpful in diagnosing the source of the error is placed in
an automatically-generated global variable named as follows:

_Global_error_data.

This 32-bit variable is used to encode error information as shown in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EESB Spare

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EEEVS EECL EECN

EESB – Encoded Error Source Bits

Bit = 1 indicates that such an error has been detected
Bit = 0 indicates that such an error has not been detected.

Bit 31 indicates that _Error_handler_entry has executed.
Bit 30 indicates that _Error_handler_scm_off_weeds has executed.
Bit 29 indicates that _Error_handler_fill_weeds has executed.
Bit 28 indicates that _Error_handler_unexpected_thread has executed
Bit 27 indicates that undefined ETEC error 2 has occurred
Bit 26 indicates that undefined ETEC error 3 has occurred
Bit 25 indicates that user-defined error 1 has occurred
Bit 24 indicates that user-defined error 2 has occurred
Bit 23 indicates that user-defined error 3 has occurred
Bit 22 indicates that user-defined error 4 has occurred

EEEVS – Encoded Event States

3. Global Error Handling

Linker Reference Manual, page 25 (C) 2007-2015

Bit = 1 indicates that an event is active
Bit = 0 indicates that an event is not active

Bit 15 contains the LINK state
Bit 14 contains the Transition B state
Bit 13 contains the Transition A state
Bit 12 contains the Match B state
Bit 11 contains the Match A state
Bit 10 contains zero (future expansion)
Bit 9 contains zero (future expansion)

EECL – Encoded Error Conditionals

Bit 8 contains the sampled input pin state
Bit 7 contains the current output pin state
Bit 6 contains the flag 1 state, if available
Bit 5 contains the flag 0 state, if available

EECN - Encoded Error Channel Number

This is the active channel number of the last event handler. New incoming event handlers
overwrite this value such that if error handlers are executed multiple times, then the
number contains the last-executed time.

3.2 Error Handling Library

The ASH WARE defined error handlers are defined in a library named
“etec_error_handler.lib (for eTPU1) and etec_error_handler_etpu2.lib (for eTPU2) which
is provided as part of ETEC. The linker automatically includes one of these two libraries
based on whether the linker is building for eTPU1 or eTPU2.

The error handling library can be disabled from being included in the linking process via the
-ErrorLib- command line option.

3.3 Invalid Entry Error Handling

Threads get executed based on pointers found in the entry table. The entry table supports
up to 32 functions but it is rare to actually use all 32 functions. The unused entries are
considered to be invalid and in normal operation would never get accessed.

3. Global Error Handling

page 26, Linker Reference Manual (C) 2007-2015

It is an error to access an unused function in the entry table. When possible, unused
entries are filled with the following address.

_Error_handler_entry.

It is not always possible to fill unused entries with this address because unused portions of
the entry table can be used to hold code. So this address is used where the entry table
contains neither eTPU functions nor eTPU code.

3.4 In the SCM OFF Weeds Error Handling

The address space of the eTPU is 64K, but Freescale generally only fills a very small
portion of this code space with physical memory. For example, the very first MPC5554
version had only 12K of code memory. So what happens if, due to an error, the thread of
execution should occur in the unused 52K of code space?

It is an error to execute from the unused portion of the SCM code memory and when this
happens the actual opcode that gets executed is specified by the SCMDATAOFFR
register. ETEC provides an SCMDATAOFFR register value (see the
SCM_OFF_OPCODE #define in the auto-defines header section) that will cause the
following error handler to execute.

_Error_handler_scm_off_weeds

Note that this error handler will only execute if the #define SCM_OFF_OPCODE <value>
provided in the automatically-generated header file is used to program the
ETPUSCMOFFDATAR register.

3.5 In the FILL Weeds Error Handling

Say you have 18K of available code memory but use only 15K. The remaining 3K of code
memory is essentially spare capacity. So what happens if the thread of execution
somehow moves to this extra 3K of code memory?

It is an error to execute from this spare memory. ETEC defaults to filling this spare
memory with a jump to the error handler listed below. Note that a jump is used instead of
a call so that the user can possibly determine an address (based on the return address
register, RAR) of any possible originating return that might have caused this code to get
executed in the first place.

_Error_handler_fill_weeds

3. Global Error Handling

Linker Reference Manual, page 27 (C) 2007-2015

A related issue is the fill opcode specified on the command line. If a fill-opcode value is
specified on the command line then this overrides the default fill opcode that ETEC would
have used to jump to this error handler. It is therefore an error to both specify a fill opcode
and to override this error hander, and in fact if a fill opcode is specified then ETEC will
neither provide, nor allow, this error handler to exist.

3.6 Unexpected Thread Error Handling

Say you have a function that does not support an incoming link event. If a link does occur
this is an error condition and should be made observable to the host software so that the
problem does not remain undetected. The 'Unexpected Thread' error handler can be used
both in ETEC mode and legacy mode 'C' as well to detect these types of unexpected
errors. Note that no overhead is incurred using the methods described below. The
address of the error handler is injected directly into the entry table.

In ETEC mode simply add the following to any unused entries.

< . . . >

5 | X | X | X | input=X | X | X | low | enable | ::_Error_handler_unexpected_thread

< . . . >

In Legacy mode call the _Error_handler_unexpected_thread as a fragment from any
unused threads. For example, do the following for t

if(hsr==1)
{

// Call the error handler as if a fragment
// The address will be injected
// directly into the entry table
// thereby incurring no overhead
_Error_handler_unexpected_thread();

}

In the assemble entry table place the unexpected thread error handler directly in the table
as follows.
hsr | lsr | transitionB | transitionA | pin | flag1 | flag0 | load | matches |

 1 | X | X | X | input=0 | X | 0 | low | enable | ::

_Error_handler_unexpected_thread

3. Global Error Handling

page 28, Linker Reference Manual (C) 2007-2015

3.7 Extending the Error Handler

It is possible to extend the custom error handler in assembly by adding assembly code that
uses 'user-defined' error bits to extend the error library. Care must be taken to use error
bits set aside for the user, and not those set aside for future extension.

Note that the existing error library is accessed by jumping to label
'_Error_handler_save_states'. When entering this location the P_31_0 register contains
the error bits that the user wishes to set.

// File: UserErrorHandler.sta

// declare the external error handler data bit that will be
set
extern int32 _Global_error_data;

_Error_handler_user:

// Set user-defined error bit 2
// and leave it in p_31_24
ram p_31_0 = _Global_error_data;;
seq goto _Error_handler_save_states;;
alu p_31_24 = p_31_24 | 0x1;; // Set user-defined

error 2

3.8 Accessing the Error Handler

It is possible to access the existing error handler library in both 'ETEC' as well as 'Legacy'
mode.

To access the factory-supplied error handlers directly in either mode, they are called suchly

// Link service requests are not supported
// Make this error observable by calling a factory-defined
error handler
if (IsLinkServiceRequestEvent())
{

// Error Detected,
// the ETEC global error handler in etpuc mode
_Error_handler_entry();

}

3. Global Error Handling

Linker Reference Manual, page 29 (C) 2007-2015

Note that the three factory-defined error handlers are defined in factory-provided header
file 'ETpu_Lib' as follows

_eTPU_thread _Error_handler_entry(_eTPU_matches_enabled);
_eTPU_thread _Error_handler_scm_off_weeds
(_eTPU_matches_enabled);
_eTPU_thread _Error_handler_fill_weeds
(_eTPU_matches_enabled);

To access a user-defined error handler from 'C' that was written in assembly, the error
handler must be declared as a fragment as follows.

_eTPU_thread _Error_handler_user(_eTPU_matches_enabled);

In ETEC mode these factory-defined and user-defined error handlers can also be directly
injected into the event vector table as follows.

DEFINE_ENTRY_TABLE(TestClass, TestClass, standard,
inputpin, autocfsr)
{

// HSR LSR M1 M2 PIN F0 F1 vector
ETPU_VECTOR1(1, x, x, x, 0, 0, x,

_Error_handler_user),
<... SNIP ...>

ETPU_VECTOR1(5, x, x, x, x, x, x,
_Error_handler_user),

ETPU_VECTOR1(6, x, x, x, x, x, x,
_Error_handler_entry),

ETPU_VECTOR1(7, x, x, x, x, x, x, MyThread),
ETPU_VECTOR1(0, 1, 1, 1, x, 0, x,

_Error_handler_user),
<... SNIP ...>

ETPU_VECTOR1(0, 1, 1, 0, x, 1, x,
_Error_handler_user),
};

3.9 Creating a User-Defined Error Handler

A user defined error handler can be defined using a fragment. Use of a fragment is an
efficient method because a fragment reduces (and in this case eliminates) the call/return
overhead. From within the thread, simply call the fragment as follows.

// Declare the global error handler as a fragment
// to eliminate the call/return overhead
_eTPU_fragment Global_Error_Func()

3. Global Error Handling

page 30, Linker Reference Manual (C) 2007-2015

{
int l_error = chan;
if (LinkServiceRequest == 1) l_error+=0x0100;
if (MatchALatch == 1) l_error+=0x0200;
if (MatchBLatch == 1) l_error+=0x0400;
if (TransitionALatch == 1) l_error+=0x0800;
if (TransitionBLatch == 1) l_error+=0x1000;
Global_Error = l_error;
ClearAllLatches();

}

// Legacy mode function that accesses the user-defined
error handler
if (IsLinkServiceRequestEvent())
{

// Test accessing
// a user error handler in etpuc mode
Global_Error_Func();

}

In ETEC mode, a user-defined global error handler is declared as a thread, then inserted
directly into the event vector table as follows.

// Get a pointer to the global error handler data
extern int _Global_error_data;

_eTPU_thread MyGlobalErrorHandler(_eTPU_matches_enabled)
{

// Set bit 22, this is user-defined error #2
_Global_error_data |= (1<<22);

}

// Set one or more invalid entries to point the the user-
defined error handler
DEFINE_ENTRY_TABLE(TestClass, TestClass, standard,
inputpin, autocfsr)
{

// HSR LSR M1 M2 PIN F0 F1 vector
<... SNIP ...>

ETPU_VECTOR1(0, 1, 1, 1, x, 0, x,
MyGlobalErrorHandler),

<... SNIP ...>
};

3. Global Error Handling

Linker Reference Manual, page 31 (C) 2007-2015

page 32, Linker Reference Manual

4. Entry Table

Linker Reference Manual, page 33 (C) 2007-2015

4
Entry Table

This section covers the entry table.

4.1 Entry Table Base Address assignment

There is a command line argument for specifying the entry table base address. The eTPU
architecture forces the entry table base address to be on a 2K boundary. Additionally, the
entire entry table must be located within the boundaries of the amount of code actually
populated in the eTPU derivate.

4.2 CFSR Assignment

Each entry table is assigned a CFSR register value. Although this can be done by the user
in the compiler and assembler, it is generally preferable to allow the linker to assign CFSR
values.

This section describes how un-assigned CFSR values are assigned. Although this section
might seem interesting, especially to those who enjoyed the math portion of the SAT,
specifics of this algorithm should not be counted on by the user. In fact, ASH WARE
reserves the right to change this algorithm with future linker releases. Use the auto-
defines capability to determine which CFSR value the linker has actually assigned to each
entry table.

4. Entry Table

page 34, Linker Reference Manual (C) 2007-2015

The linker assigns un-assigned CFSR values using the algorithms described here. The
specific algorithm used depends on whether or not the entry table base address is at
address zero (the default) and if there are any user-assigned CFSR values. The intent of
this algorithm is to reduce the number and size of gaps in the entry table, thereby improving
the code packing efficiency.

If the entry table is located at address zero and there are no user-assigned CFSR values
then CFSR assignment begins with zero, and continues with progressively higher numbered
values.

If the entry table is NOT located at zero and there are no user-assigned CFSR values then
assignment begins with 31, and continues with progressively lower numbered values.

If the entry table is located at address zero but there are user-assigned CFSR values, then
the linker assigns CFSR values starting with the highest numbered value, and assigns
progressively lower numbered values until zero is reached. Then progressively higher
numbered values are assigned

If the entry table is NOT located at zero and there ARE user-assigned CFSR values, then
CFSR values assignment begins with the lowest user-assigned CFSR value and continues
upwards to 31. Then progressively lower numbered values are assigned

5. System Configuration Analyses

Linker Reference Manual, page 35 (C) 2007-2015

5
System Configuration Analyses

A system configuration file supports advanced analyses of the generated eTPU code in an
actual system. System parameters such as system clock speed, channel priorities, and
channel assigned functions are specified. Results are displayed in the analyses. file.

5.1 System Configuration File

The system configuration file is a text file that the user edits to specify the system
configuration. The linker uses the information contained in this file along with the
functional parameters in the code to determine things such as Worst Case Latency for a
channel.

The file is specified on the command line using the -sysConfig=<FileName>.

The format is line based which each line may contain a single setting, or acomment.

Ram Collision Rate

<PERCENT> RCR

The ram collision rate is specified by the collision rate, in percent (0 to 100.)

Clock Frequency

<FREQUENCY> mhz

System clock frequency in megahertz.

5. System Configuration Analyses

page 36, Linker Reference Manual (C) 2007-2015

Processor Family

<PROCESSOR FAMILY>

Processor family. Valid values are MCF (Coldfire,) MPC (Freescale Power
Architecture,) or SPC (STMicro Power Architecture.) Note that the Freescale and
STMicro power architectures both take two system clocks to execute one eTPU
instruction. In the Coldfire architecture each eTPU instruction takes four system clocks to
execute, OUCH!

Channel Configuration

<Engine> <CHANNEL> <FUNCTION> <PRIORITY> <MAX_WCTL>

ENGINE is the engine of the channel being specified, valid values are A and B.

CHANNEL is the channel number being specified, valid range is 0 to 31.

FUNCTION is the name of the eTPU Function for legacy style code or the name of the
eTPU Class for ETEC style code.

PRIORITY is the priority assigned to that channel. Valid values are 'high;, 'middle' and
'low'.

MAX_WCTL is an optional parameter that specifies that maximum allowed Worst Case
Thread Length (WCTL) in micro-seconds. The link will fail if the calculated WCTL
exceeds this specified maximum.

Comments

// This is an example C style comment

Comment lines using a leading double slashes. Empty lines are also treated as comments.

Example System Configuration File

The following is an example of a system configuration file.

25 RCR // RAM collision rate (percent)
133 mhz // System clock frequency
MPC // Freescale Power Architecture

// - In engine A, the LOW priority is longer than the
MIDDLE
// So latency is 1 low + 1 high (shorter MIDDLE not
used)
// Engine Channel Function Priority MaxWCL
(microseconds)

 A, 3, UART, high, 0.95

5. System Configuration Analyses

Linker Reference Manual, page 37 (C) 2007-2015

 A, 4, PWM, middle,
 A, 5, PWM, low,

// - In engine A, the LOW priority is longer than the
MIDDLE
// So latency is 1 low + 1 high (shorter MIDDLE not
used)
// Engine Channel Function Priority MaxWCL
(microseconds)

 B, 3, QOM, high, 1.40
 B, 4, UART, middle,
 B, 5, UART, low,

The linker generates the following information in the analyses file based on the System
Configuration file listed above.

Worst Case Latency

Channel/Function Priority WCTL*
Max
WCL

Actual WCL

Engine A, Channel 3, UART High
0.56 us
(30,14)

0.95 us
0.86 us
(45,20)

Engine A, Channel 4, PWM Middle
0.30 us
(15,6)

-
1.97 us
(105,48)

Engine A, Channel 5, PWM Low
0.30 us
(15,6)

-
3.64 us
(195,90)

Engine B, Channel 3, QOM High
0.76 us
(43,17)

1.40 us
1.32 us
(73,31)

Engine B, Channel 4, UART Middle
0.56 us
(30,14)

-
2.85 us
(159,65)

Engine B, Channel 5, UART Low
0.56 us
(30,14)

-
5.14 us
(288,116)

5. System Configuration Analyses

page 38, Linker Reference Manual (C) 2007-2015

Note: WCTL (Worst Case Thread Length) includes the Steps, RAM's, TST's (Time
Slot Transitions) and TST-RAM's with RCR (RAM Collision Rate) factored in. The two
numbers in parantheses are the instruction-steps and the RAM's

Configuration

System clock frequency: 133 MHz

Ram Collision Rate (RCR): 25%

Processor family: 'Freescale Power Architecture'

6. Channel Hardware Instruction Packing

Linker Reference Manual, page 39 (C) 2007-2015

6
Channel Hardware Instruction

Packing

This section describes the most important improvement of this tools suite over other options
and the capabilities described are the primary motivating factor behind the development of
this compiler (that and income of course.) Consider the following sub-instructions.

chan clear MatchRecognitionLatchA;;
chan matchA = ertA, set MatchEnableLatchA;;

It turns out that the parallel nature of the eTPU’s instruction set allows these sub-
instructions to be packed into a single opcode. But it is also possible that these sub-
instructions could be placed into separate opcodes and the trouble is that the eTPU’s
channel hardware behavior is vastly different depending on which way the optimizer packs
these sub-instructions. The combination of lack of control and lack of documentation has
driven this author into a state of apoplectic perdition for the last several years.

ETEC addresses this issue in two ways, one is really good (user-control), and one is, well,
kinda good (Convention Documentation.) These are described in the following two
sections.

6. Channel Hardware Instruction Packing

page 40, Linker Reference Manual (C) 2007-2015

6.1 Channel Hardware Sub-Instruction Packing Convention

The channel hardware sub-instruction packing convention documented in this section is the
default for the ETEC compiler. This packing convention is based on ASH WARE’s
understanding of the legacy compiler.

The legacy compiler packed channel hardware sub-instructions based on an (apparently)
un-documented convention. That is to say, the packing scheme was (apparently) not
documented, but the convention would (presumably) stay the same from one release to the
next such that code that functioned in a particular way in one release would retain that
same functionality if built using a different compiler release.

The ETEC packing convention can be disabled using the #pragma no_packing_convention
and, in fact, the author recommends disabling the packing convention and instead explicitly
specifying the packing constraints as described in section 5.1, “Sub-Instruction Packing
Control.” Explicitly specifying the packing constraints both reduces code size and
increases your own understanding of the quality-critical issues associated with channel
hardware sub-instruction ordering.

Channel sub-instructions that are located adjacently in source code are packed together.
This definition is ambiguous, and requires further description. To see that the definition is
ambiguous, consider the following three sub-instructions.

Sub Instruction A;;
Sub Instruction B;;
Sub Instruction C;;

Consider the case where A, B, and C cannot fit into a single opcode, but A and B can fit
together, and B and C can fit together as well. Either of the following two packing
combinations satisf the over-simplified packing convention as described up to this point.

Opcode 1: Sub Instruction A + Sub Instruction B;;
Opcode 2: Sub Instruction C;;

Or, …

Opcode 1: Sub Instruction A;;
Opcode 2: Sub Instruction B + Sub Instruction C;;

Therefore, the packing definition is ambiguous and requires further description.

Starting from the top of the source code (lowest line number) and working towards the
bottom of the file, channel hardware sub-instructions are packed into opcodes. When a
sub-instruction is encountered that will not fit into the opcode being packed, then a new
opcode is generated and newly-encountered sub-instructions are packed into this newly-

6. Channel Hardware Instruction Packing

Linker Reference Manual, page 41 (C) 2007-2015

generated opcode.

This packing convention only applies to channel hardware sub-instructions and only to
those sub instructions with ordering dependencies. The following sub-instruction fields are
specifically excluded: FLC and CIRC.

These packed opcodes may experience some movement (to reduce code size) but in all
cases the movement will not result in any functional variation except as noted elsewhere in
the documentation.

With this fully-defined description, ONLY the following packing order can occur.

Opcode 1: Sub Instruction A + Sub Instruction B;;
Opcode 2: Sub Instruction C;;

To summarize, the key points presented in this section are as follows:

For optimal quality, reduced code size, and full understanding of your code’s
behavior, it is best to disable the packing convention described in this section,
and instead fully specify the packing order as described in the section 5.1,
“Sub-Instruction Packing Control.”

The packing convention defined in this section has been adopted to maximize
backward compatibility with the legacy compiler. The author recommends
not relying on the legacy packing convention.

The legacy packing convention applies ONLY to channel hardware sub-
instructions.

page 42, Linker Reference Manual

7. Channel HW Sub-Instruction Re-Ordering

Linker Reference Manual, page 43 (C) 2007-2015

7
Channel HW Sub-Instruction

Re-Ordering

The CIRC field is considered to be independent of all other channel hardware fields. It
can be re-ordered with no restrictions. It is restricted relative to RAM operations though.
It cannot pass any RAM operations. Once in the same instruction as a RAM, it cannot be
re-ordered.

The FLC field has no re-ordering restrictions whatsoever.

The LSR field has no re-ordering restrictions whatsoever. (It is tied to the TST channel,
not the channel register)

MRL and ERW form “blocks” relative to the following fields; OPAC, IPAC, TDL, TBS,
PSC, PSCS, MRLE, PDCM, PDCM, and MTD. If MRL and ERW are upstream, then
they cannot join with these fields. Conversely, if these fields are upstream then they CAN
join with these fields.

page 44, Linker Reference Manual

8. Linking Legacy (.COD) Code

Linker Reference Manual, page 45 (C) 2007-2015

8
Linking Legacy (.COD) Code

ETEC supports linking existing legacy mode eTPU code (.COD) along with object files
generated by the ETEC tools chain (assembly and “C” source.) This capability allows
users to migrate to the ETEC tools suite in a gradual manner.

8.1 Legacy Global Memory Allocation

Global memory is normally associated with global variables but the legacy compiler also
uses global memory to store values across function calls, to pass function call variables,
and for dynamic local variables that overflow the register set.

The issue (unfortunately) is that there is no reliable way of determining the amount of
global memory that is used by the legacy compiler, and ETEC (unfortunately) requires that
you pass this value to the ETEC linker via the command line (-ImpData). In fact, global
memory allocation is even more complicated than that in some cases because at times a .
COD compilation also uses high global memory just below address 0x400, typically for
temporary storage. When this split global locating occurs in the .COD file to imported, the
lower bound of this upper section of data must also be specified (-ImpDataEnd). This
allows ETEC to safely locate its global variables from ETEC-compiled object files into the
empty range. See the command line options section for a description of how to specify the
amount of global memory to allocate for legacy compiler generated (.COD) code.

8. Linking Legacy (.COD) Code

page 46, Linker Reference Manual (C) 2007-2015

8.2 Disabling optimization on legacy code

Optimizations on legacy code default to enabled. When enabled the entry table will likely
change to adjust address pointers to the size-reduced code and to optimize preloads.
Opcodes may change some due to optimization, though unchanged opcodes will have a bias
toward retention of their original packing.

Optimizations for the imported legacy code (.COD) can be disabled, see the command line
options for a description of how this is done. With optimizations disabled the entry table
and executable portions of the code image remain unchanged, though any “dead space”
between the entry table and code will use the ETEC fill algorithm.

The ETEC optimizer makes assumptions about code behavior and certain legacy-compiler
features may violate these assumptions such that the ETEC optimizer should not be
enabled legacy-compiler generated code. The following is a list of the known features

* Register allocation to global or static variables. (The ETEC optimizer
assumes that registers need not retain their value across threads.)

8.3 Legacy Code Limitations

The following restrictions apply to the legacy compiler generated code.

* The entry table must be located at address zero (the normal default)
* Only COD compiler versions (TBD) are supported.
* Enabling of optimizations for legacy-generated code may invalidate any

legacy auto-generated code.
* The .COD’s fill opcode is ignored and the ETEC fill algorithm is used

instead.

8.4 Legacy Restrictions on ETEC

Linking with legacy compiler generated code places some restrictions on the ETEC
generated code that can be linked.

* The entry table must be located at address zero
* ETEC-generated code cannot specify a function number that is used by the

legacy-compiler generated code.
* There must be a gap between the end of the legacy generated entry table

and the start of legacy-generated code into which the ETEC-generated
entry table gets placed (TBD: Can we relocate the BC-generated code??)

8. Linking Legacy (.COD) Code

Linker Reference Manual, page 47 (C) 2007-2015

When compiling the legacy code, use the legacy “org” statement to generate
this gap.

8.5 Legacy/ETEC Interactions

Some interactions between the legacy compiler generated code and ETEC generated code
are allowed, as listed below.

Certain types of (generally simple) global variables declared in legacy-generated code can
be accessed by ETEC generated code. These include the following

* int24, unsigned int24, int8, unsigned int8, int32, unsigned int32 (global)
* int, unsigned int, char, unsigned char.

8.6 Legacy/ETEC Misc Notes

* Analyses files are valid for etec generated code
* Disable optimizations on the legacy-generated code to retain validity of certain legacy

#pragma writes (auto header)
* In many cases the legacy code’s
* The ETEC-generated auto-defines file is valid. In certain cases, the legacy-generated

auto-header must not be used. For example the

8.7 Auto-Header and Auto-Defines Information Validity

Auto-header files are generated by the legacy compiler and auto-defines files are
generated by the ETEC compiler. In all cases, information in the ETEC-generated auto-
defines file is valid. The safest route is simply to switch to the ETEC-generated auto-
defines file, but this may not be an option for all customers. This section describes which
information from the legacy-generated auto-header can still be used.

Information in the legacy-generated auto-header may or may not be valid depending on the
nature of the information and on whether or not optimizations are enabled for the legacy
generated code.

8. Linking Legacy (.COD) Code

page 48, Linker Reference Manual (C) 2007-2015

8.7.1 Invalid Legacy Auto-Header Information

The following list represents information in the legacy-generated auto header that are not
valid.

* The code block
* MISC value
* Global Data Size

8.7.2 Supported ETPU_C Compiler Versions

The following is a list of supported versions at the time of this printing. See our website for
the most up-to-date list.

* 1.0.7.55

Note that unsupported compiler versions will in all likelihood still work. If the version of the
compiler that you are using is not on the supported versions list, please contact ASH
WARE for support of your compiler version.

8.7.3 Qualifying Unsupported eTPU_C Versions

Although code generated by unsupported eTPU_C compiler versions will generally
function when imported, it is possible to qualify unsupported versions using the process
described in this section.

The key issue in the qualification process is that not all eTPU_C compiler versions are
available to ASH WARE. Therefore, to qualify your eTPU_C compiler version, the
following process has been established. (TODO=develop a standard test suite)

Customer requests ASH WARE to support a specific eTPU_C compiler
version.

ASH WARE provides customer with a test build suite

Customer builds the test suite and provides ASH WARE with the resulting .
COD file.

ASH WARE adds the .COD file to the ETEC test suite and (assuming it
passes all tests) adds this .COD version to the list of supported compilers.

9. Optimization Limitations

Linker Reference Manual, page 49 (C) 2007-2015

9
Optimization Limitations

This section covers optimization limitations.

9.1 Compiler/Optimizer Limitations

The Return Address Regester (RAR) cannot be written within a called “C” function. For
instance, the following construct is not allowed.

MyCFunc()
{

rar = <SomeNumber>.
}

9.1.1 Compiler Inline Assembly Limitations

The limitations for inline assembly are the same as those listed in the assembly limitations
section.

9. Optimization Limitations

page 50, Linker Reference Manual (C) 2007-2015

9.2 Assembly/Optimizer Limitations

There are quite a few optimizer limitations to assembled code, however these limitations
are all detected by the optimizer such that the optimizer will detect and report any
constructs that prevent optimization. Detected constructs that prevent optimization result in
the optimize/link stage being abandoned and such that no invalid code is generated.

9.2.1 Indeterminate Return Value Limitation

The optimizer needs to fully understand all possible paths and this is not possible when the
RAR register has an un-initialized or otherwise indeterminate value. For instance, the
following constructs causes the optimization to fail because the RAR register value is
unknown at the time of the return.

ThreadStart:
seq return;;

The following construct also causes the optimizer to fail for the reason that if the call is not
taken then the RAR register is un-initialized.

ThreadStart:
seq if n == false then call MyFunc, flush;;
seq return;;

9.2.2 Hard-Coded Return Address Limitation

The optimizer does not support code that hardcodes the return address. Any writes to the
return address register using an ALU instruction is not supported. An example of an
unsupported construct is found below

alu ReturnAddr = b;;

Please contact the factory for hints on overcoming this limitation.

9.2.3 Register Storage between Threads Limitation

It is not possible to store global static variables in registers such that their value remains
valid between threads. The optimizer assumes that all registers begin each thread with
garbage data, and that any final register writes at the end of a thread are garbage.

ThreadStart:

9. Optimization Limitations

Linker Reference Manual, page 51 (C) 2007-2015

Seq diob = diob + 1;; // Diob contains the thread
count

Seq end;;

In the above case the optimizer does not see the diob register value getting used between
the increment and the end of the thread and therefore will eliminate the opcode.

9.2.4 Invalid Construct Limitation

If the Freescale lists a construct as being invalid then use of the construct will cause the
optimizer to fail. For instance, a un-flushed seq followed by an flushed seq results in
indeterminate eTPU operation per the Freescale documentation.

seq goto MyFunc1, no_flush;;
seq goto MyFunc2, flush;;

Another invalid construct per the Freescale documentation is the destination of the first of
two sequential un-flushed branches being another change-in-flow instruction. For example,
use of the following construct will cause the optimizer to fail because the first opcode in the
called function is a change-of-flow.

MyFunc1:
seq return, flush ;;

ThreadStart:
seq goto MyFunc1, no_flush;;
seq goto MyFunc2, no_flush;;
< . . . >

9.2.5 Hard-Coded Value Limitation

All executable code must be generated using either the assembler or compiler. No
opcodes generated by hard-coding a value are allowed. A hard-coded opcode is generated
when a value is forced as an opcode, as follows.

%hex 3F190FF9.

Instead, in all cases an equivalent valid opcode can be generated using assembly as
follows.

#asm(alu a = a >>R p.)

9. Optimization Limitations

page 52, Linker Reference Manual (C) 2007-2015

9.2.6 Multiply-Divide Unit (MDU) Limitations

The MDU significantly complicates the optimizer/analyzer because the MDU’s results are
not available until multiple instructions later. When writing code using ETEC there is no
issue with multiplies and divides because the compiler generates code that the linker/
optimizer can handle. However, when writing code in inline or regular assembly the
restriction covered here applies.

Currently, following each MDU operation, the following logic that causes the MDU to spin
until the operation is completed as indicated by the MacBusy (MB) flag is required. An
example of this is shown below.

#asm
mdu p macs a.

MAC_BUSY_SPIN_LOOP:
if mb == 1 then goto MAC_BUSY_SPIN_LOOP, flush.
alu p = mach.

#endasm

	Command Line Options
	Code Location
	Code Size

	Global Error Handling
	Global Error Data
	Error Handling Library
	Invalid Entry Error Handling
	In the SCM OFF Weeds Error Handling
	In the FILL Weeds Error Handling
	Unexpected Thread Error Handling
	Extending the Error Handler
	Accessing the Error Handler
	Creating a User-Defined Error Handler

	Entry Table
	Entry Table Base Address assignment
	CFSR Assignment

	System Configuration Analyses
	System Configuration File

	Channel Hardware Instruction Packing
	Channel Hardware Sub-Instruction Packing Convention

	Channel HW Sub-Instruction Re-Ordering
	Linking Legacy (.COD) Code
	Legacy Global Memory Allocation
	Disabling optimization on legacy code
	Legacy Code Limitations
	Legacy Restrictions on ETEC
	Legacy/ETEC Interactions
	Legacy/ETEC Misc Notes
	Auto-Header and Auto-Defines Information Validity
	Invalid Legacy Auto-Header Information
	Supported ETPU_C Compiler Versions
	Qualifying Unsupported eTPU_C Versions

	Optimization Limitations
	Compiler/Optimizer Limitations
	Compiler Inline Assembly Limitations

	Assembly/Optimizer Limitations
	Indeterminate Return Value Limitation
	Hard-Coded Return Address Limitation
	Register Storage between Threads Limitation
	Invalid Construct Limitation
	Hard-Coded Value Limitation
	Multiply-Divide Unit (MDU) Limitations

