CMI

125 West Park Loop
Huntsville, AL 36806
Phone 256.722.0175
Fax 256.722.0144

Chandler/May, Inc.

VxWorks Device Driver
User’'s Manual

VXWorks Device Driver Software for the
General Sandards PMC-16A10-88

hosted on Power PC 604 and 80x86

Processors
Document number: 9005003 Revision: 11 Date: 03/09/99
Engineering Approval: Date:

Quality Representative Date:
Approval:

PMC-16AI10-88 Driver User’'s Manual

Adnomedgments

Copyright & 1999, Chandler/May, Inc. (CMI)

ALL RIGHTSRESERVED. The Purchaser of the GSC PMC-16A10-88 device driver may use or modify in
source form the subject software, but not to re-market it or distribute it to outside agencies or separate
internal company divisions. The software, however, may be embedded in their own distributed software.
In the event the Purchaser's customers require GSC PM C-16A10-88 device driver source code, then they
would have to purchase their own copy of the GSC PMC-16A10-88 device driver. CMI makes no warranty,
either expressed or implied, including, but not limited to, any implied warranties of merchantability or fitness
for aparticular purpose regarding this software and makes such software available solely on an "as-is"
basis. CMI reservesthe right to make changesin the GSC PM C-16A10-88 device driver design without
reservation and without notification to its users. This document may be copied for the Purchaser's own
internal use but not to re-market it or distribute it to outside agencies or separate internal company
divisions. If this document isto be copied, all copies must be of the entire document and all copyright and
trademark notifications must remain intact. The material in thisdocument isfor information only and is
subject to change without notice. While reasonable efforts have been made in the preparation of this
document to assure its accuracy, CMI assumes no liability resulting from errors or omissionsin this
document, or from the use of the information contained herein.

CMI, Chandler/May, Inc. logo are trademarks of CMI.

Forceisaregistered trademark of Force Computers. Inc.

GSC and PMC-16A10-88 are trademarks of General Standards Corporation
Motorola and the Motorola symbol are registered trademark of Motorola, Inc.
PLX and PLX Technology are trademarks of PLX Technology, Inc.

PowerPC isatrademark of IBM Corporation.

VxWorks and Wind River Systems are registered trademarks of Wind River Systems, Inc.

CMI

March 9, 1999 1

PMC-16AI10-88 Driver User’'s Manual

41
42

43

44

45

46

47

V.3 2% R o T @) Y 1V VYN o Y

V3 2 2 | N1 =YY= o Y

N A T = =\ = = 1) 1= = S
N VLY = = = 111 = = N
475

476

477

478

479

4710 INPUT_TEST

A.7101 LOOP_TEST CHANNEL ...ooosoieeeeeeseeeeeessseeeesesssseeeessssseseessseseeeeessssssseessssseeessssseesesssssseeeeen
Y I o7 M= 1N [N Y () o) =S
A.7.103 INT_SOURGCE . ..oooioeeooeesesceeeesssoeeessssseeesssssseeeessssseeesssssseeessesssneeeen

4714 ENABLE_PCI_INTERRUPTS. .c.ooooomsocceeesssssceessssssceesssssseeeesssssseeeen

4715 DISABLE_PCI_INTERRUPTS

N A TR X< o2 N =
47107 PROGRAM_RATE GEN ...oooooooeooooesesceeeesssseeesessesessesssssseessseseeseesssssessesssssseseeesssseesesssssseeeeen
W - T = V=TI = =T 1 = = N

4719 DISABLE_RATE_GEN.....coooooooooeeossssscceeesssssceeeessssseesesssseeeessssssneeeen

4720 ENABLE_OUTPUT STROBE.......ooosoceersssscceessssssceessessseeesssssseeeen

4721 DISABLE_OUTPUT STROBE

4722 CLEAR INT_REQUEST ...ooooooooeeeeesescceeeesssseeesesssseseesssssseessseseeeeesssssesssesssssseessssseesesssssseeeeen
4.7.23 STROBE_OUTPUTS

VN g o7 N N LN =0 £
»

CMI March 9, 1999 2

PMC-16AI10-88 Driver User’'s Manual

1 Scope

The purpose of this document is to describe how to interface with the PMC-16A10-88
VxWorks Device Driver developed by Chandler/May, Incorporated (CMI). This software
provides the interface between " Application Software" and the 16A10-88 Board. The
interface to this board is at the I/O system level. It requires no knowledge of the actua board
addressing of control/data register locations. It does, however, require some knowledge of the
individud bit representations for most control/data registers on the device.

The 16A10-88 Driver Software executes under control of the VxWorks operating system.
The 16AI10-88 isimplemented as a sandard VxWorks device driver writteninthe‘C’
programming language. The 16A10-88 Driver Software is designed to operate on CPU
boards containing PowerPC 604 processors aswell as VME CPU boards containing 80x86
processors. For example, the Force PPC/PowerCore-6604 CPU Board, the Motorola
MVME 2304, and the SCI JTT 686 CPU board.

2 Hardware Overview

The Generd Standards Corporation (GSC) 16A10-88 board isasingle-width anaog 1/0
interface that fitsinto a PCl Mezzanine Card dot. Thisboard has 16 channds, 8 for input and
8 for output. The output channels are cgpable of supporting synchronous and asynchronous
modes. Theinputs can be customized as 8 Sngle-ended or 4 differentid input channdsvia
software configuration. 1t also provides for minimum off-line maintenance by providing
cdibration and sdf-tedting functions.

The 16A10-88 board includes arate generator and a DMA controller. Therate controller is
provided to control the rate input channels are scanned, the output channels are strobed, or
both input and output functions for synchronicity. The DMA transfers are supported when the
board is acting as the bus master and the local bursting mode disabled.

The configuration of the interrupting capability of the 16A10-88 board is described in the
hardware manua for the board. The 16A10-88 Device Driver must be used correctly in
accordance with the hardware configuration in order to provide consistent results.

CMI

March 9, 1999 3

PMC-16AI10-88 Driver User’'s Manual

3 Referenced Documents

The following documents provided reference materia used in the development of this design:

PMC-16A10-88 8-Channd, 16-Bit Anadog Input/Output User’s Manud — Revison
A, Generd Standards Corporation.

PLX Technology, Inc. PCI 9080 PCI Bus Master Interface Chip data sheet.

Motorola MV ME2300-Series VME Processor Module Programmer’ s Reference
Guide.

Force PPC/PowerCore-6603/4 Technicad Reference Manudl.

4 Diriver Interface

The 16A10-88 Driver conforms to the device driver standards required by the VxWorks
Operating System and contains the following standard driver entry points.

GS _16AI0Drvingal() - Ingdlsthe device driver for use with multiple 16A10-88
Cards

GS _16AI0DrvRemove() - Removes the device driver from use
open() - opens adriver interface to one 16A10-88 Card

close() - closes adriver interface to one 16A10-88 Card

read() - reads data received from a 16A10-88 Card

write() - writes data to be transmitted by a 16A10-88 Card

ioctl() - performs various control and setup functions on the 16A10-88 Card

The 16A10-88 Device Driver provides a standard /0O system interface to the GSC PMC-
16A10-88 card for VxWorks applications which run on the VxWorks target processor. The
device driver isingtaled and devices created through the use of standard VxWorks I/O system
functions. The functions of the driver can then be used to access the board.

Included in the device driver software package is a menu driven board testing program and
source code. This program is delivered undocumented and unsupported but may be used to
exercise the 16A10-88 card and device driver. It can also be used to bresk the learning curve
somewhat for programming the 16A10-88 device.

CMI

March 9, 1999 4

PMC-16AI10-88 Driver User’'s Manual

If the user wishes to use the 16A10 Device Driver with the interrupting capability of the board
then auser supplied Interrupt Service Routine (ISR) must be written. This 1SR will be caled by
the driver when an interrupt is received from the board. There are limitations on the
functiondity of a VxWorks ISR. These are documented in the VxWorks Programmer’s Guide
and must be grictly followed in writing the ISR.

The Device Driver initidizes the board to disable dl types of 16A10-88 interrupts through
software control except for PCI interrupts controlled through the Shared Runtime - Interrupt
Control/Status register. 16A10-88 Interrupts must be enabled through the use of theioctl
function in order to take advantage of the interrupting capability of the board. Theioctl function
must aso be used to specify the user supplied 1SR which will be invoked when an interrupt is
received from the board. If interrupting is enabled and the user supplied ISR has not been
specified then nothing will hgppen in the driver when an interrupt is received from the board.

The 16A10-88 Device Driver dlows for multiple boards on asingle PCI bus. Each board will
be addressed as a separate VxWorks 1/0 system device. This device will be created when the
driver isingdled and isthen available for al driver operations (open, closg, ...).

It isimportant to note that the 16A10-88 device driver istarget processor dependent and thus
BSP dependent. System cdlls are made within the driver which are only available through
certain board support packages. Thisis due to the fact that PCI memory and 1/0 space could
be mapped differently for each target processor board. Also, it may be possible that the PMC
dot interrupt level may be mapped differently for each target processor board.

CMI

March 9, 1999 5

PMC-16AI10-88 Driver User’'s Manual

4.1 GS_16AIODrvinstall()

The GS_16AI10DrvIngal () function ingals the device driver into the VxWorks operating
sysem. Thisfunction must be cdled prior to using any of the other driver functions. This
function should not be cdled again without firgt caling the GS_16A10DrvRemove() function.

The GS_16AIODrvIngdl () function performs the following operations:
Ingtdls the device driver into the VXWorks operating system
Performs the following for each PMC Sot on the processor board
Determinesiif this dot contains a PCl card by examining the CPU board’ s registers

Determines if the dot contains a 16A10-88 board by examining the PCI
Configuration Device Type and Vendor ID Registers

Programs the PCI Configuration Base Address and Configuration Address
Regigters with predefined addresses

Enables the 16A10-88 Card to respond over the PCl Bus
Connects the driver interrupt handler for the interrupt number
Ingtalls adevice for the PMC Slot

Enables the PCI Interrupt for the PMC Sot

PROTOTYPE:

extern int GS_16A10Drvingal(BOOL bDebug);
Where:

bDebug- A boolean that is sent to the driver to enable debugging. If enabled the driver will
display error and status messages on the console during driver access. Note, this
should not be enabled during time sensitive processes.

Returns OK on success and ERROR on fallure

CMI

March 9, 1999 6

PMC-16AI10-88 Driver User’'s Manual

EXAMPLE:

STATUS i St at us;

/* Install the 16Al O-88 VxWorks Device Driver. */
i Status = GS_16Al ODrvlnstall (TRUE);

CMlﬂ March 9, 1999

PMC-16AI10-88 Driver User’'s Manual

4.2 GS_16AIODrvRemove()

The GS_16A10DrvRemove() function is used to remove the 16A10-88 Device Driver from
the VxWorks operating system. Thisfunction should only be cdled after acdl to the

GS 16AI0Drvingal() function. The GS_16A10DrvRemove() function closes al the open
devices for each PMC dot and removes the device driver from the operating system.

PROTOTYPE:

extern int GS_16A10DrvRemove(void);

Returns OK on success and ERROR on failure

EXAMPLE:
STATUS i St at us;

/* Renove the 16AI O 88 Driver */
i Status = GS_16Al ODr vRenove();

CMI March 9, 1999 8

PMC-16AI10-88 Driver User’'s Manual

4.3 open()

The open() function is the stlandard VxWorks entry point to open a connection to a 16A10-88
Cadinone PMC Sot. Thisfunction may only be cdled after acal to the
GS 16AI10DrvIngdl() function is made.

PROTOTYPE:

extern int open(const char *cName, int iFlags, int iMode)
Where:

cName- name of the device being opened which is one of the following depending on the
dot the 16A10-83 Board isin:

GS 16AI0 PMC1
GS 16A10 PMC2
iHags- isnot used.
iMode- isnot used.

Returns OK on success and ERROR on fallure

EXAMPLE:

i nt Fi | eDesc[2];

LOCAL char *slotNane[] = { GS_16AI O PMCl, GS_16Al O PMC2};
int 16AlI OSl ot = 1;

/* open the 16AI O 88 device for slot 1 */
Fi | eDesc[16Al CSl ot] = open(sl ot Name[16AI CSlot], O RDWR, 0644);

if (FileDesc[16AlOSlot] == ERROR)
{
| ogMsg(" Cannot Open Device Error %s\n\n",
(int) slotName[16AICSlIot], 0, 0, 0, 0, 0);

CMI

March 9, 1999 9

PMC-16AI10-88 Driver User’'s Manual

4.4 close()

The close() function is the stlandard VxWorks entry point to close a connection to a 16A10-88
CadinonePMC Sot. Thisfunction should only be caled after the open function has been
successfully caled for adot where a 16A10-88 Card resides. The close function closes an
interface to a 16A10-88 device.

PROTOTYPE:

extern STATUS closg(int iFd);
Where:
iIFd- File Descriptor returned from acal to the open function.

Returns OK if successful or ERROR if unsuccessful.

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;

/* close the device on slot 2 */

if (close(FileDesc[16Al0Slot]) == ERROR)
{
| ogMsg("Cl ose Error for Slot #%\n\n", 16AICSlot, 0, 0, 0, 0, 0);
}
Fi | eDesc[16Al OSl ot] = ERROR,

CMI March 9, 1999 10

PMC-16AI10-88 Driver User’'s Manual

45 read()

The read() function is the standard VxWorks entry point to receive channd datafrom a
16A10-88 Card FIFO in one PMC Slot. This function should only be called after the open
function has been successfully caled for adot where a 16A10-88 Card resides. The 16AI10-
88 has two data configurations in which the input channels can be read, single-ended and
differentid. In the Sngle-ended mode, there are 8 input channels read as 2 bytes each channel.
Wheress in differentiad mode, there are only 4 input channels aso with 2 bytes read each
channdl. Depending on the read mode of the driver which can be set using the ioctl() function,
the FIFO data will either be transferred to the user buffer using the PLX 9080 DMA capability
or will be accessed directly and assigned 16 bits at atime. Regardless of configuration, the
read() function will read these channelsin sequentid order starting with channel 0. Each
channd is capable of handling 16 bits of data.

Theread() logic isasfollows
Verify pointer to user buffer and note the requested number of bytesto read.
Take the semaphore.
Check andog input mode selection —isit Sngle ended or differentid.

Cadl culate the number of input scans requested based on the requested number of bytes
and the analog input mode.

Verify that the number of input scans requested is greater than zero.

If the driver isin DMA_MODE then fird verify the number of scansavaladlein the
input FIFO buffer is not less than the number of scans requested. If it is less that what
is requested then adjust the number of scans requested to match what is avaladle.
Next setup and transfer data to the user buffer from the input FIFO.

If the driver isin the SCAN_MODE then burgt the inputs if necessary, verify the
number of samplesin the input FIFO buffer, then read each channd one & atime.
Repeat this process based on the number of scans requested.

Return the number of bytesread.

CMI March 9, 1999 11

PMC-16AI10-88 Driver User’'s Manual

PROTOTYPE:

extern int read(int iFd, char *cBuffer, size t iMaxbytes);

Where:
iIFd - File Descriptor returned from a cdl to the open function.
CBuffer - pointer to character array to store read bytes.

iMaxbytes- maximum number of bytes to read.

Returns Number of bytes read if successful or ERROR if unsuccesstul.

EXAMPLE:
#defi ne MAXSAMPLES 8

i nt Fi | eDesc[2];

i nt i NunByt esRead,;

i nt 16Al OSl ot = 1;

char pusBuffer[MAXSAMPLES * 2];

/* Configure driver read() node */
if(ioctl(FileDesc[16AlCSlot], READ MODE_CONFI G, DMA MODE) == ERROR)
{
| ogMsg("ioctl READ MODE CONFI G Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

/* Configure |Input Channel WMode */
if(ioctl(FileDesc[16AlCSlot], |NPUT_MODE_CONFI G, SINGLE_CONTI NUOUS)
== ERROR)
{
| ogMsg("ioctl | NPUT_MODE _CONFI G Fail ed for Slot #%l\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

/* Read fromthe 16Al O-88 device */

i NunByt esRead = read(Fil eDesc[16Al CSlot],
pusBuf fer,
si zeof (pusBuffer));

if (iNunBytesRead == 0)
{

}

| ogMsg("Read failed for Slot #%\n", 16AICSlot, 0, 0, 0, 0, 0);

CMI

March 9, 1999 12

PMC-16AI10-88 Driver User’'s Manual

4.6 write()

Thewrite() function is the standard VxWorks entry point to transmit channd datato the
16A10-88 Card FIFO inone PMC Sot. Thisfunction should only be caled after the open
function has been successfully caled for adot where a 16A10-88 Card resides. For the
PMC-16AI10-88 it is hecessary for the datato be in a 16-bit format. The datawritten to the
output channd's should have the channel number first followed by the data. Therefore, thereis
adructure provided specificdly for this purpose. It isin the header file of the driver. It should
be noted that it isthe user’ s responghility to strobe the outputs after using the write() function if
the automatic updating of outputs has been disabled. The data written to the output buffer must
be flushed to the output channel specified by the user. Thus, an output strobe is necessary. This
is done to give the user flexibility for writing one or many channdsa atime.

Thewrite() logic isasfollows
Verify pointer to user buffer and note the requested number of bytes to write.
Take the semaphore.
Cdculate the number of output samples based on the requested number of bytes.

Vdidate the channel number for the sample to be written. Verify that thereisroomin
the output buffer for the current channel number to be written. Write the channd
number to the output FIFO. Verify that there is room in the output buffer for the
current sample to be written. Write the sample to the output FIFO. Repest this process
based on the number of samples given.

Return the number of bytes written.

PROTOTYPE:

extern int write(int iFd, char *cBuffer, Sze t INBytes);
Where:
iFd - File Descriptor returned from acal to the open function.

cBuffer - pointer to WRITE_PARAM dgructure containing an array of channd data and
sample datato write.

iNBytes- total number of bytesto write.

Returns Number of bytes written if successful or ERROR if unsuccessful. Thisincludes 16 bits
of channd information as well as 16 bits of channd data for each sample.

CMI

March 9, 1999 13

PMC-16AI10-88 Driver User’'s Manual

typedef struct WriteParam
{
USHORT usChannd
USHORT usData;

} WRITE_PARAM;

EXAMPLE:

i nt Fi |l eDesc[2];

i nt i, iNumBytesWitten,;
WRI TE_PARAM pusBuffer[8];

int 16AlI OSl ot = 1;

for (i =0; i <8; i++)

{

pusBuffer[i].usChannel = (USHORT)i ;
pusBuffer[i].usData = OxAAAA;

}

/* Disable Automatic Qutput Strobe. */
if (ioctl(FileDesc[16AlCSlot], DI SABLE OUTPUT_STROBE, 0) == ERROR)
{
| ogMsg(" Di sabl e Qutput Strobe Failed for Slot #%l\n\n",
16AICSlot, O, 0, 0, 0, 0);
}
i NunBytesWitten = wite(FileDesc[16AlCSlot],
(char*) &pusBuf fer,
si zeof (pusBuffer));

if (i NunBytesWitten == 0)

{

| ogMsg("write failed for Slot #%\n", 16AICSIot, 0, 0, 0, 0, 0);
}
el se
{

if (iNunBytesWitten != (8*sizeof (\WRI TE_PARAM))

{

| ogMsg("Only wrote %l bytes\n",
i NunBytesWitten, 0, 0, 0, 0, 0);

}

el se

{

[* Strobe Qutputs. */
if (ioctl(FileDesc[16AlCSlot], STROBE_QUTPUTS, 0) == ERROR)
{

CMI March 9, 1999 14

PMC-16AI10-88 Driver User’'s Manual

| ogMsg(" Qut put Strobe Failed for Slot #%\n\n",

16AI CSl ot

0, 0, 0, 0, 0);

CMI

March 9, 1999 15

4.7

ioctl()

PMC-16AI10-88 Driver User’'s Manual

Theioctl() function is the standard VxWorks entry point to perform control and setup
operations on an 16A10-88 Card in one PMC Sot. Thisfunction should only be cdled after
the open function has been successfully caled for adot where a 16A10-88 Card resides. The
ioctl() function will perform different functions based upon the function parameter. These
functions will be described in the following subparagraphs.

PROTOTYPE:

extern int ioctl(int iFd, int iFunction, int iArg);

Where:

iFd - File Descriptor returned from acal to the open function.

iFunction- Theioctl function to perform which is one of the following:

NO_COMMAND - Empty Command, performs nothing.
INIT_BOARD - Initidizes the 16A10-88 Board.
READ_REGISTER - Reads a specified 16A10-88 Register.
WRITE_REGISTER - Writes to a specified 16A10-88 Register.
START_DMA - Startsa DMA Read from the 16A10 Board

REG_FOR_INT_NOTIFY - Regigers the gpplication code to be Notified when an
Interrupt occurs.

GET_DEVICE_ERROR - Returnsthe Error that occurred during the last accessto the
16A10-88 Driver.

READ_MODE_CONFIG - Configures the 16A10-88 read() mode (FIFO scan reads
or DMA enabled FIFO reads).

INPUT_MODE_CONFIG - Configures the 16A10-88 Input channds (Sngle-ended or
differentia mode, burst or continuous scan).

INPUT_TEST — Peaforms a Sdf-test for 16A10-88 Board vaidation.

LOOP_TEST_CHANNEL - Sets the output Channel to be connected to input channel 0
for Loopback Test.

CALIBRATION_M ODE — Sets and runs Cdlibration operation.

CMI

March 9, 1999 16

PMC-16AI10-88 Driver User’'s Manual

INT_SOURCE — Sets Interrupt Source condition.

ENABLE_PCI_INTERRUPTS — Enables PCI Interrupts in order for the 16A10-88 to
produce aloca interrupt request.

DISABLE_PCI_INTERRUPTS - Disables PCI Interrupts.
LAST_CHANNEL - Setsthe Last output Channel in strobe sequence.
PROGRAM_RATE_GEN - Programs the Rate Generator for specified rate frequency.

ENABLE_RATE_GEN — Enables and Configures the Rate Generator to control the
Input scan rate, the output strobe rate, or both.

DISABLE_RATE_GEN — Disables the Rate Generator for preferred rate (input, output,
or both).

ENABLE_OUTPUT_STROBE — Enables the Output Strobe and disables automatic
updating of outputs.

DISABLE_OUTPUT_STOBE - Disables the Output Strobe and enable automeatic
updating of outputs.

CLEAR_INT_REQUEST - Clearsthe Interrupt Request flag.
STROBE_OUTPUTS - Strobes dl Output channels once.
SCAN_INPUTS - Scansdl Input channels once.

IArg - The parametersto the specific ioctl() function. See the following subsectionsfor a
description of the parameters for each function.

Returns OK if successful or ERROR if unsuccesstul.

CMI

March 9, 1999 17

PMC-16AI10-88 Driver User’'s Manual

4.7.1 NO_COMMAND

Thisisan empty driver entry point. This command may be given to vdidate that the driver
is correctly ingtalled and that the 16A10-88 Board Device has been successfully opened.

arg PARAMETER:

Not used.

EXAMPLE:

int FileDesc[2];
int 161 ACSl ot = 1;

if (ioctl(FileDesc[1l6AICSlot], NO COMWAND, 0) == ERROR)
{
| ogMsg("ioctl NO COMVAND Failed for Slot #%\n\n", 16Al CSlot,
0, 0, 0, 0, 0);

CMI

March 9, 1999 18

PMC-16AI10-88 Driver User’'s Manual

4.7.2 INIT_BOARD
The INIT_BOARD Function initidizes the board and sets dl defaults.
arg PARAMETER:
Not used.
EXAMPLE:
int FileDesc[2];
int 16AIOSlot = 1;
if (ioctl(FileDesc[16Al OSlot], |INT_BOARD, 0) == ERROR)
{
| ogMsg("Board Initialization Failed for Slot #%\n\n", 16Al OSl ot,
0, 0, 0, 0, 0);
}
CMlﬂ March 9, 1999 19

4.7.3 READ_REGISTER

arg PARAMETER:

REG_PARAM *

PMC-16AI10-88 Driver User’'s Manual

The READ_REGISTER Function reads and returns the contents of one of the 161A0-88
Registers.

int el6AIORegigter - One of the following registersto reed. Refer to the 16A10-88

Hardware documentation for a description of each register.

% 16A1 O-88 Registers*
BOARD_CTRL_REG

RATE GEN_REG
IN_OUT_FIFO_REG

RATE CTRL_REG
INPUT_BUF_PTR_REG

BUFFER_FLAGS REG

+ DMA Registers***
DMA_CH_0 MODE
DMA_CH_0_PCI_ADDR
DMA_CH_0_LOCAL_ADDR
DMA_CH_0 TRANS BYTE _CNT
DMA_CH_0 DESC_PTR
DMA_CH_1 MODE

DMA_CH_1 PCl_ADDR

DMA_CH_1 LOCAL_ADDR

CMI

March 9, 1999

20

DMA_CH_1 TRANS BYTE_CNT
DMA_CH_1 DESC PTR
DMA_CMD_STATUS
DMA_MODE_ARB_REG

DMA_THRESHOLD_REG

*** PC| Configuration Registers***
DEVICE_VENDOR_ID

STATUS COMMAND

CLASS CODE_REVISION_ID
BIST HDR TYPE LAT CACHE SIZE
PCI_MEM_BASE_ADDR

PCl_IO BASE ADDR
PCI_BASE_ADDR 0
PCI_BASE_ADDR 1

CARDBUS CIS PTR

SUBSYS ID_VENDOR ID
PCI_BASE ADDR_LOC ROM

LAT _GNT_INT_PIN_LINE

*** |_ocal Configuration Registers. ***
PCI_TO LOC _ADDR 0 RNG
LOC_BASE_ADDR_REMAP 0
MODE_ARBITRATION

BIG_LITTLE_ENDIAN_DESC

PMC-16AI10-88 Driver User’'s Manual

CMI

March 9, 1999

21

PCI_TO_LOC_ROM_RNG
LOC_BASE_ADDR_REMAP_EXP_ROM
BUS REG_DESC 0 FOR PCl_LOC
DIR_MASTER_TO_PCl_RNG
LOC_ADDR_FOR DIR MASTER_MEM
LOC_ADDR_FOR DIR MASTER 10
PCI_ADDR_REMAP DIR MASTER
PCl_CFG_ADDR_DIR_MASTER |0
PCI_TO LOC_ADDR_1 RNG
LOC_BASE_ADDR REMAP 1

BUS REG_DESC 1 _FOR PCI_LOC

*** Run Time Registers***
MAILBOX_REGISTER O
MAILBOX_REGISTER 1
MAILBOX_REGISTER 2
MAILBOX_REGISTER 3
MAILBOX_REGISTER 4
MAILBOX_REGISTER 5
MAILBOX_REGISTER 6
MAILBOX_REGISTER 7
PCI_TO LOC_DOORBELL
LOC_TO_PCI_DOORBELL
INT_CTRL_STATUS

PROM_CTRL_CMD_CODES CTRL

PMC-16AI10-88 Driver User’'s Manual

CMI

March 9, 1999

22

DEVICE_ID_VENDOR_ID

REVISION_ID
MAILBOX_REG 0

MAILBOX_REG 1

*** Messaging Queue Registers***
OUT_POST_Q INT_STATUS

OUT_POST_Q INT_MASK

IN_Q_PORT
OUT_Q_PORT
MSG_UNIT_CONFIG
Q_BASE_ADDR
IN_FREE_HEAD_PTR
IN_FREE_TAIL_PTR
IN_POST_HEAD_PTR
IN_POST_TAIL_PTR
OUT_FREE_HEAD_PTR
OUT_FREE_TAIL_PTR
OUT_POST_HEAD_PTR
OUT_POST_TAIL_PTR

Q STATUS CTRL_REG

ULONG *pulVaue - Pointer to the location where the value read is to be stored

EXAMPLE:

PMC-16AI10-88 Driver User’'s Manual

CMI

March 9, 1999

23

PMC-16AI10-88 Driver User’'s Manual

i nt Fi |l eDesc[2];
REG_PARAM t heReg;

ULONG ul Val ue;

i nt 16AI CSl ot = 1;

t heReg. pul Val ue = &ul Val ue;
t heReg. e1l6Al ORegi ster = BOARD_CTRL_REG,

if (ioctl(FileDesc[1l6AlCSIot], READ REG STER, (int) &t heReg) ==

ERROR)
{
| ogMsg(" Read Regi ster Failed for Slot #%\n\n", 16AI OSlot,
0, 0, 0, 0, 0);
}

CMI

March 9, 1999 24

474 WRITE_REGISTER

arg PARAMETER:

REG_PARAM *

PMC-16AI10-88 Driver User’'s Manual

The WRITE_REGISTER Function writes a value to one of the 16A10-88 Regigters.

int el6AlI0ORegister - One of the following regigtersto write. Refer to the 16A10-88

Hardware documentation for a description of each register.

*** 16A10-88 Registers***
BOARD_CTRL_REG

RATE GEN_REG
IN_OUT_FIFO REG

RATE CTRL_REG

*** DMA Registers***
DMA_CH_0 MODE
DMA_CH_0_PCI_ADDR
DMA_CH_0 LOCAL_ADDR
DMA_CH_0 TRANS BYTE CNT
DMA_CH_0 DESC_PTR
DMA_CH_1 MODE

DMA_CH_1 PCl_ADDR
DMA_CH_1 LOCAL_ADDR
DMA_CH_1 TRANS BYTE CNT

DMA_CH_1 DESC PTR

CMI

March 9, 1999

25

DMA_CMD_STATUS
DMA_MODE_ARB_REG

DMA_THRESHOLD_REG

*** PC| Configuration Registers***
DEVICE_VENDOR ID

STATUS COMMAND

CLASS CODE_REVISION_ID
BIST HDR_TYPE LAT_CACHE SIZE
PCI_MEM_BASE_ADDR

PCI_ |0 BASE ADDR

PCI_BASE ADDR 0

PCI_ BASE ADDR 1

CARDBUS CIS PTR

SUBSYS ID_VENDOR ID
PCI_BASE ADDR_LOC_ROM

LAT_GNT_INT_PIN_LINE

*** |_ocal Configuration Registers. ***
PCI_TO LOC ADDR_0 RNG

LOC BASE ADDR_REMAP 0
MODE_ARBITRATION

BIG LITTLE_ENDIAN_DESC
PCI_TO LOC_ROM_RNG

LOC_BASE_ADDR_REMAP _EXP_ROM

PMC-16AI10-88 Driver User’'s Manual

CMI

March 9, 1999

26

BUS REG DESC 0 FOR PCI_LOC

DIR_ MASTER TO_PCI_RNG

LOC_ADDR_FOR DIR MASTER MEM

LOC_ADDR_FOR DIR MASTER 10
PCI_ADDR_REMAP DIR MASTER
PCl_CFG_ADDR_DIR_MASTER |O
PCI_TO LOC_ADDR_1 RNG
LOC_BASE_ADDR REMAP 1

BUS REG DESC 1 FOR PCI_LOC

*** Run Time Registers***
MAILBOX_REGISTER O
MAILBOX_REGISTER 1
MAILBOX_REGISTER 2
MAILBOX_REGISTER 3
MAILBOX_REGISTER 4
MAILBOX_REGISTER 5
MAILBOX_REGISTER 6
MAILBOX_REGISTER 7
PCI_TO LOC_DOORBELL
LOC TO_PCl_DOORBELL
INT_CTRL_STATUS
PROM_CTRL_CMD_CODES CTRL
DEVICE_ID_VENDOR ID

REVISION_ID

PMC-16AI10-88 Driver User’'s Manual

CMI

March 9, 1999

27

PMC-16AI10-88 Driver User’'s Manual

MAILBOX_REG 0

MAILBOX_REG 1

*** Messaging Queue Registers***
OUT _POST _Q INT_STATUS
OUT _POST_Q INT_MASK
IN_Q _PORT

OUT_Q PORT
MSG_UNIT_CONFIG

Q BASE ADDR

IN_FREE HEAD PTR
IN_FREE_TAIL_PTR
IN_POST_HEAD PTR
IN_POST _TAIL_PTR
OUT_FREE_HEAD_PTR
OUT_FREE TAIL_PTR
OUT_POST_HEAD PTR

OUT _POST _TAIL_PTR

Q_STATUS CTRL_REG

ULONG *pulVaue - Pointer to the location containing the vaue to be written.

EXAMPLE:

i nt Fi | eDesc[2];
REG_ PARAM t heReg;
ULONG ul Val ue = 0xAAAA;

CMI

March 9, 1999

28

PMC-16AI10-88 Driver User’'s Manual

int 16Al OSl ot

1,

t heReg. pul Val ue = &ul Val ue;
t heReg. el6Al ORegi ster = OUT_Q _PORT;

if (ioctl(FileDesc[1l6AlC0Slot], WRITE_REGQ STER, (int) &t heReg) ==

ERROR)
{
| ogMsg("Wite Register Failed for Slot #%\n\n", 16Al CSlot,
0, 0, 0, 0, 0);
}

CMlﬂ March 9, 1999 29

PMC-16AI10-88 Driver User’'s Manual

475 START_DMA

The START_DMA function corfigures the 16A10-88 DMA Registersfor aDMA
Transfer from the board, and then sarts the tranfer.

arg PARAMETER:

DMA_PARAM *

int DMAChanne - DMA Channd to perform transfer on. Must be one of the following:
DMA_CHAN_O
DMA_CHAN 1

ULONG uDMAMode - Vaue to be written to the 16A10-88 DMA Mode Register.

ULONG ulDMALocaAddress - Vaue to be written to the 16A10-88 DMA Local
Address Regigter. Datareturned islittle endian and
may need to be byte/word swapped.

ULONG ulIDMAByteCount - Vaueto bewritten to the 16A10-88 DMA Byte Count
Regigter.

ULONG ulDMADescriptorPtr - Vaue to be written to the 16A10-88 DMA Descriptor
Pointer Regigter.

ULONG ulIDMAArbitration - Vaue to be written to the 16A10-88 DMA Arbitration
Regider.

ULONG uDMAThreshold - Vaue to be written to the 16A10-88 DMA Threshold
Regider.

See the PLX-PCI PCI Bus Magter Interface Data Sheet for a description of the DMA
Regiders.

CMI March 9, 1999 30

PMC-16AI10-88 Driver User’'s Manual

DMA READ EXAMPLE:

#defi ne DWORD_COUNT 80

i nt i I ndex, FileDesc[2], 16AICSlot = 1;
DVA _PARAM DMAPar anet er s;

ULONG pul Buf f er [DWORD_COUNT] ;

REG _PARAM t heReg;

ULONG ul Val ue;

/* Scan input channels.

*/
if(ioctl (FileDesc[16AlCSlot], SCAN I NPUTS, 0) == ERROR)
{
| ogMsg(" I nput Scan Failed\n\n", 0, 0, 0, 0, 0, 0);
}

/* Setup paranmeters to performa DVA Read fromthe 16Al O 88 Board.
*/

DMAPar amet er s. DMAChannel = 0;

DMAPar aret er s. ul DMAMbde = 0x943;

DVAPar anet er s. ul DMALocal Addr ess (ULONG) pul Buffer;

DVAPar anet er s. ul DMAByt eCount DWORD_COUNT * 4;

DVAPar anet er s. ul DMADescri ptor Ptr = OxA;
DMAPar anet er s. ul DMAAr bi trati on = 0;
DMAPar anet er s. ul DMAThr eshol d = 0;

if (ioctl(FileDesc[1l6AlCSlot], START _DMA, (int) &DMAParaneters) ==
ERROR)
{
| ogMsg("Start DVA Failed for Slot #%\n\n", 16AI CSlot,
0, 0, 0, 0, 0);

}
/* Wait for the DVA to Conplete. */
t heReg. pul Val ue = &ul Val ue;
t heReg. el6Al ORegi st er = DMA_CMD_STATUS;
do
{
if (ioctl(FileDesc[16AlCsSlot], READ REGQ STER, (int) & heReg) ==
ERROR)
{
| ogMsg(" Read Regi ster Failed for Slot #%\n\n", 16AI CSloot,
0, 0, 0, 0, 0);
br eak;
}

} while (! (ul Value & 0x10));

/* Clear the DVA channel 0/1 conmand/status register.
*/

ul Val ue = 0;

t heReg. pul Val ue = &ul Val ue;

t heReg. e16Al ORegi ster = DVMA CMD_STATUS;

CMI

March 9, 1999 31

PMC-16AI10-88 Driver User’'s Manual

if (ioctl(FileDesc[1l6AlC0Slot], WRITE_REGQ STER, (int) &t heReg) ==
ERROR)
{
| ogMsg("Wite Register Failed\n\n",
0o, 0,0 0, O, 0, 0);

CMI

March 9, 1999 32

PMC-16AI10-88 Driver User’'s Manual

476 REG_FOR_INT_NOTIFY

The REG_FOR_INT_NOTIFY function will register or unregister for natification that an
interrupt has occurred on the 16A10-88 Board. If thisfunction is called with a pointer to a
subroutine, that routine will be invoked when a 16A10-88 Interrupt occurs. If afunctionis
currently registered for interrupt notification and this function is called with aNULL pointer,
the function will no longer be caled when an interrupt occurs. The parameter sent to the
natification routine will be the dot number of the 16A10-88 Board that has interrupted and
will be one of the following:

16A10_PMC1
16A10_PMC2

Note that the internd driver interrupt handler will clear interrupts after caling the user
supplied ISR.

arg PARAMETER:

int (*intHandler)(int) - Pointer to aroutine to handle the interrupt notification or aNULL
Pointer if the caler wants to unregigter for interrupt notification.

EXAMPLE:

int FileDesc[2];
int 16Al OSlot = 1;

int intHandl er (ULONG ul Sl ot Num)

{
REG_PARAM t heReg;

ULONG ul Val ue;
/* execute interrupt control here */

return (0);

} /* intHandl er */

/* Request notification on the user selected conditions. */

if (ioctl(FileDesc[1l6AICSIot], REG FOR INT_NOTIFY, (int) intHandler)
== ERROR)

{

CMI

March 9, 1999 33

| ogMsg(" Request

PMC-16AI10-88 Driver User’'s Manual

Interrupt Notification Failed\n\n",0,0,0,0,0,0);

CMI

March 9, 1999 34

a4.7.7

PMC-16AI10-88 Driver User’'s Manual

GET_DEVICE_ERROR

The GET_DEVICE_ERROR function will return the error that occurred on the last cdl to
one of the 16A10-88 Device Driver entry points. Whenever adriver function is caled and
it returns an error, this function may be caled to determine the cause of the error.

arg PARAMETER:

int * - Pointer to the location of where the error code isto be written. 1t will be one of the
following:

NO_ERR - No Error Occurred.
INVALID PARAMETER_ERR - An Invaid Parameter was sent to driver.

RESOURCE_ERR - Thedriver could not obtain aresource (memory or semaphore) to
perform its function.

BOARD_ACCESS ERR - Failure occurred when the GS_16A10DrvIngal function
fails when probing the 16A10-88 card’ s Board Status
Regiger.

DEVICE_ADD_ERROR - Failure occurred when the GS_16A10DrvIngal function
fails when trying to add device to the VxWorks Operating
Sysem.

ALREADY_OPEN_ERROR - A cdl to the open driver access routine for a device that
isaready open.

INVALID_DRV_NUM_ERR - Returned from the GS_16AIODrvingdl functionif an
invaid driver number was obtained when trying to add
the device driver to the VxWorks operating system.
Also returned from the GS_16A10DrvRemove
function if the driver falled to remove the device driver
from the VxWorks operating system.

ALREADY_INSTALLED_ERR - Returned from the GS_16AIODrvingdl function if
the driver has aready been ingtaled.

PCI_CONFIG_ERR - Returned from the GS_16AIODrvingal function if aread or
write of a PCI Configuration Regigter fails.

CMI

March 9, 1999 35

PMC-16AI10-88 Driver User’'s Manual

INVALID_BOARD_STATUS ERR - Returned from the GS_16AIODrvIngal

function if an invalid board gatusisread from

the 16A10-88 Board.

FIFO_BUFFER_ERR - If during awrite() transaction the FIFO buffer isindicated to be

ful by the atus of the buffer status register, the driver will
return the number of bytesthat could be written along with
throwing this error condition.

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
int Status;

/* Send the Get Device Error Code Conmmand for this channel */
if (ioctl(FileDesc[16AlOSlot], CGET_DEVICE ERROR, (int) &Status) ==
ERROR)

{
| ogMsg(" Get Device Error Code Failed for Slot #%l\n\n",

16AICSlot, O, O, 0, 0, 0);

CMI

March 9, 1999

36

PMC-16AI10-88 Driver User’'s Manual

4.7.8 READ_MODE_CONFIG

The READ_MODE_CONF G function will configure the driver for the type of read() from
the input FIFO to be performed. There are two types of reads. Thefirst being referred to
as SCAN_MODE where each sample is read out of the input FIFO one at atime and put
into the user buffer given. The other type of read is referred to as DMA_MODE where the
DMA capahility of the board is taken advantage of .

arg PARAMETER:

int* - Pointer to one of the following vaues:
SCAN_MODE

DMA_MODE

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
i nt i Mode;

i Mode = DMA_MODE;

if (ioctl(FileDesc[16AlCSlot], READ MODE CONFI G, (int) & Mde) ==
ERROR)
{
| ogMsg(" Read Mode Configuration Failed for Slot #%l\n\n",
16AICSlot, O, O, 0, 0, 0);

CMI

March 9, 1999 37

4.7.9

INPUT_MODE_CONFIG

PMC-16AI10-88 Driver User’'s Manual

The INPUT_MODE_CONF G function will arrange input channds into single-ended or
differential mode, and set either burst or continuous scan.

arg PARAMETER:

int * - Pointer to one of the following values
SINGLE_CONTINUOUS
SINGLE_BURST
DIFF_CONTINUOUS

DIFF_BURST

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
int iMde;

i Mode = DI FF_BURST;

if (ioctl(FileDesc[16Al OSlot], |NPUT_MODE_CONFIG, (int) & Mde) ==

ERROR)
{

| ogMsg(" I nput Configuration Failed for Slot #%\n\n", 16Al CSl ot,

0, 0, 0, 0, 0);
}

CMI

March 9, 1999

38

PMC-16AI10-88 Driver User’'s Manual

4.7.10 INPUT_TEST

The INPUT_TEST function will perform a system leve validation of operation precision.
There are several tests, such as aloopback test, positive reference test, and zero input test.
During the loopback test, one output channd is connected to the input channel 0. During
the positive reference test, an internd voltage reference is connected to dl input channels.
The zero input test consists of dl input channels being connected to the interna ground.

arg PARAMETER:

int* - Pointer to one of the following vaues:
LOOPBACK
POSITIVE_REF

ZERO

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
int Test;

Test = ZERG

if (ioctl(FileDesc[1l6AICSIot], INPUT_TEST, (int) &Test) == ERROR)
{
| ogMsg(" I nput Test Failed for Slot #%\n\n", 16Al CSlot,
0, 0, 0, 0, 0);

CMI

March 9, 1999 39

PMC-16AI10-88 Driver User’'s Manual

4.7.11 LOOP_TEST_CHANNEL

The LOOP_TEST_CHANNEL function will set the output channd to be tested in the
loopback sdlftest. This must take place before the loopback test is started.

arg PARAMETER:

int * - Pointer to one of the following values
CHANNELDO
CHANNEL1
CHANNEL?2
CHANNELS3
CHANNEL4
CHANNELS
CHANNELG6

CHANNEL7

EXAMPLE:

i nt Fi | eDesc[2];
int 16AlI OSl ot = 1;
int *chan;

chan = CHANNEL2;

if (ioctl(FileDesc[1l6AICSlot], LOOP_TEST CHANNEL, (int) &chan) ==
ERROR)
{
| ogMsg(" Loopback Channel Selection Failed for Slot #%\n\n",
16Al OSl ot
0o, 0, 0, 0, 0);

CMI March 9, 1999 40

PMC-16AI10-88 Driver User’'s Manual

4.7.12 CALIBRATION_MODE

The CALIBRATION_MODE function performs a calibration operation. There are
various operations, such as loading the cdibration DAC' s from the EEPROM,
autocdibration, and copying cdibration vaues from EEPROM to the input buffer. Thereis
aso adefault operation of no cdibration activity. Refer to the PMC-16AI0-88 User's
Manud for more information on these operations.

arg PARAMETER:

int* - Pointer to one of the following vaues:
NO_CAL_ACTIVITY
LOAD_DAC
AUTO_CAL

COPY_VALUE

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
int Mode;

Mode = AUTO CAL;

if (ioctl(FileDesc[16AlCSlot], CALIBRATION MODE, (int) &\Vbde) ==
ERROR)
{
| ogMsg("Calibration Failed for Slot #%\n\n", 16Al CSloot,
0, 0, 0, 0, 0);

CMI March 9, 1999 41

PMC-16AI10-88 Driver User’'s Manual

4.7.13 INT_SOURCE

The INT_SOURCE function will set the interrupt condition for asingle loca interrupt
request.

arg PARAMETER:

int * - Pointer to one of the following values
IDLE
CAL_COMPLETE
IN_SCAN_COMPLETE
INPUT_ALMOST_FULL
OUTPUT_ALMOST_EMPTY
INPUT_EMPTY

OUTPUT_FULL

EXAMPLE:

i nt Fi |l eDesc[2];
int 16AlI OSl ot = 1;
int Sour ce;

Source = | N_SCAN_COVPLETE;

if (ioctl(FileDesc[1l6AI0Slot], INT_SOURCE, (int) &Source) == ERROR)
{
| ogMsg("Interrupt Selection Failed for Slot #%d\n\n", 16Al OSl ot,
0, 0, 0, 0, 0);

CMI March 9, 1999 42

PMC-16AI10-88 Driver User’'s Manual

4.7.14 ENABLE_PCI_INTERRUPTS

The ENABLE _PCl_INTERRUPTS function enables the PCI interrupts in order to have a
locdl interrupt request be generated.

arg PARAMETER:

Not Used.

EXAMPLE:

i nt Fi | eDesc[2];
i nt 16Al OSl ot = 1;

if (ioctl(FileDesc[1l6AlCSlot], ENABLE PCl _I NTERRUPTS, 0) == ERROR)
{
| ogMsg("PCl Interrupt Enable Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

CMI March 9, 1999 43

PMC-16AI10-88 Driver User’'s Manual

4.7.15 DISABLE_PCI_INTERRUPTS

The DISABLE_PCI_INTERRUPTS function disables the PCI interrupts.

arg PARAMETER:

Not Used.

EXAMPLE:

i nt Fi |l eDesc[2];
int 16AlI OSl ot = 1;

if (ioctl(FileDesc[16AlCSlot], DI SABLE PCI | NTERRUPTS, 0) == ERROR)
{
| ogMsg("PCl Interrupts Disable Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);

CMI March 9, 1999 44

PMC-16AI10-88 Driver User’'s Manual

4.7.16 LAST_CHANNEL

The LAST_CHANNEL function will st the last channd in an output channd group. This
function is associated with the rate controller. 1t is used to stop the collection of output
vaues

arg PARAMETER:

int* - Pointer to one of the following values:
CHANNELO
CHANNEL1
CHANNEL2
CHANNELS3
CHANNEL4
CHANNELS
CHANNELG6

CHANNEL7

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;
int Channel ;

Channel = CHANNEL2Z2;

if (ioctl(FileDesc[16AlCSlot], LAST_CHANNEL, (int)&Channel) ==

ERROR)
{
| ogMsg("Last Qutput Channel Selection Failed for Slot
#%\ n\n", 16AICSlot, 0, O, O, 0, 0);
}

CMI March 9, 1999 45

PMC-16AI10-88 Driver User’'s Manual

4.7.17 PROGRAM_RATE_GEN

The PROGRAM_RATE_GEN function will set the rate at which the input channels are
scanned and the output channels are strobed. This function uses a user-specified divisor,

iNrate. The rate generator calculates the clock frequency as.

Frequency (Hz) = 20,000,000 / iNrate

It is advised that the iNrate vaue remains more than 50h (80 decimal).

arg PARAMETER:

int* - Pointer to the integer used in caculation.

EXAMPLE:

int FileDesc[2];
int 16Al OSlot = 1;
int iNrate;

i Nrate = 0x0100;

/* Program Rate Generator. */

if (ioctl(FileDesc[16AlCSlot], PROGRAM RATE_GEN, iNrate) == ERROR)
{
| ogMsg(" Program Rate Generator Failed\n\n", 0, 0, O,
0, 0, 0);
}
CMlﬂ March 9, 1999 46

PMC-16AI10-88 Driver User’'s Manual

4.7.18 ENABLE_RATE_GEN

The ENABLE_RATE_GEN function will enable and configure the rate generator to

control the inputs, outputs, or both. The generator can act as a burst trigger, an output

strobe, or a synchronizer of both inputs and outputs.

arg PARAMETER:

int * - Pointer to one of the following values
OUTPUT_RATE
INPUT_RATE

BOTH_IN_OUT RATE

EXAMPLE:

int FileDesc[2];
int 16Al CSl ot = 1;
int Rate;

Rate = BOTH_| N_OUT_RATE;

if (ioctl(FileDesc[16AlI 0S|l ot], ENABLE _RATE_CEN, (int)&Rate) ==

ERROR)
{
| ogMsg(" Rate Generator Enable Failed for Slot #%l\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

CMI

March 9, 1999

47

PMC-16AI10-88 Driver User’'s Manual

4.7.19 DISABLE_RATE_GEN

The DISABLE _RATE_GEN function disables the rate generator to control input scan, output
strobe, or both rates.

arg PARAMETER:

int* - Pointer to one of the following values.
OUTPUT_RATE
INPUT_RATE

BOTH_IN_OUT RATE

EXAMPLE:

int FileDesc[?2];
int 16AIOSlot = 1;
int Rate;

Rat e = | NPUT_RATE;

if (ioctl(FileDesc[16Al CSlot], DI SABLE RATE GEN, (int)&Rate) ==
ERROR)
{
|l ogMsg("Rate Generator Disable Failed for Slot #%l\n\n",
16AICSlot, 0, O, 0, 0, 0);

CMI March 9, 1999 48

PMC-16AI10-88 Driver User’'s Manual

4.7.20 ENABLE_OUTPUT_STROBE

The ENABLE_OUTPUT_STROBE function will enable output strobing. Output vaues will
be stored in atemporary buffer until an internal (software) strobe, an externa (hardware)
strobe, or a output strobe from the rate generator has occurred.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;

if (ioctl(FileDesc[16AlCSlot], ENABLE OUTPUT_STROBE, 0) == ERROR)
{
| ogMsg(" Qut put Strobe Enable Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);

CMI March 9, 1999 49

PMC-16AI10-88 Driver User’'s Manual

4.7.21 DISABLE_OUTPUT_STROBE

The DISABLE OUTPUT_STROBE function will disable output strobing. While strobes are
not alowed, output values are moved from the output buffer to the salected output channel
without having to go through an intermediate buffer.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;

if (ioctl(FileDesc[16AlCSlot], DI SABLE OUTPUT_STROBE, 0) == ERROR)
{
| ogMsg(" Qut put Strobe Di sable Failed for Slot #%\n\n",
16AICSlot, 0, 0, 0, O, 0);

CMI

March 9, 1999 50

PMC-16AI10-88 Driver User’'s Manual

4.7.22 CLEAR_INT_REQUEST

The CLEAR_INT_REQUEST function clears the interrupt request flag after an interrupt has
occurred.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 16Al CSlot = 1;

if (ioctl(FileDesc[1l6AlCSlot], CLEAR | NT_REQUEST, 0) == ERROR)
{
| ogMsg("Clear Interrupt Request Flag Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

CMI

March 9, 1999 51

PMC-16AI10-88 Driver User’'s Manual

4.7.23 STROBE_OUTPUTS

The STROBE_OUTPUTS function causes a strobe of dl output channels. This, in turn, forces
the output values from the intermediate buffer to the appropriate output channels.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 16Al CSlot = 1;

if (ioctl(FileDesc[1l6AlCSIot], STROBE OQUTPUTS, 0) == ERROR)
{
| ogMsg(" Qut put Strobe Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

CMI

March 9, 1999 52

PMC-16AI10-88 Driver User’'s Manual

4.7.24 SCAN_INPUTS

The SCAN_INPUTS function triggers a burst scan of al input channels.

arg PARAMETER:

Not Used.

EXAMPLE:

int FileDesc[2];
int 16AICSlot = 1;

if (ioctl(FileDesc[16AlCSlot], SCAN I NPUTS, 0) == ERROR)
{
| ogMsg(" I nput Scan Failed for Slot #%\n\n",
16AICSlot, O, 0, 0, 0, 0);
}

CMI March 9, 1999 53

