6F8C0928

TOSHIBA

SCricS

Integrated Controlle

Sequence Controller S2T

User's Manual - Function -

EEEEEEEEN

EEEEEEEEN

EREEEEEREE

EREEEEERAENR

EEEEEEEEEN

EEEEEREEEEN

EEEEEEERERAEN

LA L R RRRRERRAEL
EEEEEEEEEEEEEEN
EEEEEEEEEEEEEEENR

LA R R R RARRRRARRRLQLR

. AL AR AR RRRRARRRRERE.

AL RRRRARRRRRRRER QL

AR R R AR RRRARRRRREREULN

AR R R AR RRRARRRRRRERELR QR
LA LR R R RRRRRRRRRRARRORALR
LA R R R AR RRRARRRRARRARERELRE.
LA R R AR RRRARRRRRRARRBRELROE
LA R AR RRRARRRRRARARRRALROE
. LA R R R AR RRRARRRRRRARRBRALROE
LA AR R AR RRRARRRRRRARERREARE
. LA AR R AR RRRARRRRRALAREBRAERDE
LA LR R AR RRRARRRRRRARERRARDER
AL AR AR A RRRAARRERRRRERRERRR
. A AR R R AR RRRARRRRRRRERR LR QR
LA LR R R R R RRRRRRRRAREROR QR R QR RERE

u
u
u
u
LA LR R AR R RARRRRARARREQR LR QRepeps

General Information

Hazard Classifications

This manual is prepared for users of Toshiba’s Programmable
Controller S2T.

Read this manual thoroughly before using the S2T. Also, keep this
manual and related manuals so that you can read them anytime while
the S2T is in operation.

1.

The S2T has been designed and manufactured for use in an
industrial environment. However, the S2T is not intended to be used
for systems which may endanger human life. Consult Toshiba if you
intend to use the S2T for a special application, such as
transportation machines, medical apparatus, aviation and space
systems, nuclear controls, submarine systems, etc.

The S2T has been manufactured under strict quality control.
However, to keep safety of overall automated system, fail-safe
systems should be considered outside the S2T.

In installation, wiring, operation and maintenance of the S2T, it is
assumed that the users have general knowledge of industrial
electric control systems. If this product is handled or operated
improperly, electrical shock, fire or damage to this product could
result.

This manual has been written for users who are familiar with
Programmable Controllers and industrial control equipment. Contact
Toshiba if you have any questions about this manual.

Sample programs and circuits described in this manual are provided
for explaining the operations and applications of the S2T. You
should test completely if you use them as a part of your application
system.

In this manual, the following two hazard classifications are used to
explain the safety precautions.

A WARNING Indicates a potentially hazardous situation which, if

not avoided, could result in death or serious injury.

A CAUTION Indicates a potentially hazardous situation which, if

not avoided, may result in minor or moderate injury.
It may also be used to alert against unsafe
practices.

Even a precaution is classified as CAUTION, it may cause serious
results depending on the situation. Observe all the safety precautions
described on this manual.

Before reading this manual

Safety Precautions

Installation:

A CAUTION

1. Excess temperature, humidity, vibration, shocks, or dusty and corrosive gas
environment can cause electrical shock, fire or malfunction. Install and use the S2T
and in the environment described in the S2T User’'s Manual - Hardware.

2. Improper installation directions or insufficient installation can cause fire or the units to
drop. Install the S2T in accordance with the instructions described in the S2T User's
Manual - Hardware -.

3. Turn off power before installing or removing any units, modules or terminal blocks.
Failure to do so can cause electrical shock or damage to the S2T and related
equipment.

4. Entering wire scraps or other foreign debris into to the S2T and related equipment can
cause fire or malfunction. Pay attention to prevent entering them into the S2T and
related equipment during installation and wiring.

Wiring:

A CAUTION
1. Turn off power before wiring to minimize the risk of electrical shock.

2. Exposed conductive parts of wire can cause electrical shock. Use crimp-style
terminals with insulating sheath or insulating tape to cover the conductive parts. Also
close the terminal covers securely on the terminal blocks when wiring has been
completed.

3. Operation without grounding may cause electrical shock or malfunction. Connect the
ground terminal on the S2T to the system ground.

4. Applying excess power voltage to the S2T can cause explosion or fire. Apply power of
the specified ratings described in the S2T User’s Manual - Hardware.

5. Improper wiring can cause fire, electrical shock or malfunction. Observe local
regulations on wiring and grounding.

User’'s manual - Functions 1

Before reading this manual

Operation:
A WARNING

1. Configure emergency stop and safety interlocking circuits outside the S2T. Otherwise,
malfunction of the S2T can cause injury or serious accidents.

A CAUTION

2. Operate the S2T and the related modules with closing the terminal covers. Keep
hands away from terminals while power on, to avoid the risk of electrical shock.

3. When you attempt to perform force outputs, RUN/HALT controls, etc. during operation,
carefully check for safety.

4. Turn on power to the S2T before turning on power to the loads. Failure to do so may
cause unexpected behavior of the loads.

5. Set operation mode switches of the S2T and I/O modules. Improper switch settings
may cause malfunction of the S2T and related equipment.

6. Do not use any modules of the S2T for the purpose other than specified. This can
cause electrical shock or injury.

7. Configure the external circuit so that the external power required for output modules
and power to the loads are switched on/off simultaneously. Also, turn off power to the
loads before turning off power to the S2T.

8. Install fuses appropriate to the load current in the external circuits for the relay output
modules. Failure to do so can cause fire in case of load over-current.

9. Check for proper connections on wires, connectors and modules. Insufficient contact
can cause malfunction or damage to the S2T and related equipment.

10. Turn off power immediately if the S2T is emitting smoke or odor. Operation under such
condition can cause fire or electrical shock. Also unauthorized repairing will cause fire
or serious accidents. Do not attempt to repair. Contact Toshiba for repairing.

2 V series S2T

Before reading this manual

Maintenance:

A CAUTION

1. Do not charge, disassemble, dispose in a fire nor short-circuit the batteries, It can
cause explosion or fire. Observe local regulations for disposal of them.

2. Turn off power before removing or replacing units, terminal blocks or wires. Failure to
do so can cause electrical shock or damage to the S2T and related equipment.

3. Replace a blown fuse with a specified one. Failure to do so can cause fire or damage
to the S2T.

4. Perform daily checks, periodical checks and cleaning to maintain the system in normal
condition and to prevent unnecessary troubles.

5. Check by referring “Troubleshooting” section of the S2T User’'s Manual - Hardware,
when operating improperly. Contact Toshiba for repairing if the S2T or related
equipment is failed. Toshiba will not guarantee proper operation nor safety for
unauthorized repairing.

6. The contact reliability of the relays used in the relay output module will reduce if the
switching exceeds the specified life. Replace the module if exceeded.

7. Replace the battery every 2 years to maintain the S2T’s program and data normally.

8. Do not modify the S2T and related equipment in hardware nor software. This can
cause fire, electrical shock or injury.

9. Pay special attention for safety if you attempt to measure circuit voltage at the S2T's
terminal.

10. Turn off power before replacing modules. Failure to do so can cause electrical shock or
damage to the S2T and related equipment.
If you attempt to replace an I/O module while power on (by using on-line 1/0O
replacement function), carefully check for safety.

User’'s manual - Functions 3

Before reading this manual

Purpose of this manual

Inside of this manual

This manual describes the functions (those functions which can be
achieved by the CPU and the basic hardware) of the Programmable
Controller S2T. This manual also provides the necessary information
for designing application programs and operating the S2T.

Read this manual carefully to use the S2T with it's maximum
performance.

This manual is divided into the following 3 Parts.

Part 1. Basic Programming Gives the basic information for
programming, and shows how to
write a program into the S2T with a
simple example.

Part 2. Functions...........ccooeeeeeeneee. For the full understanding of the
S2T functions, first explains the
internal operation of the S2T CPU,
and then explains the detailed
functions of the S2T.

Part 3. Programming Information Explains the information for
designing a program which will
fully use the functions of the S2T.
Also explains Ladder diagram and
SFC as programming languages
for the S2T. Explains in the
detailed information summarized
in Part 1.

Those who are using the S2T for the first time should first read Part 1 in
order to understand the basics of programming.

When Parts 2 and 3 are read in addition, the advanced control functions
of the S2T will be understood without difficulty.

Those experienced in using the S2T may skip Part 1, but refer to Parts 2
and 3 as necessary so as to fully use performance. An index is
provided at the end of this manual for that purpose.

When it comes to the configuration, some of the contents of Parts 1 and
3 are duplicated. However, please note that some portions of the
explanation in Part 1 are summarized for ease of understanding.

4 V series S2T

Related manuals

Before reading this manual

The following related manuals are available for the S2T.

S2T User’s Manual-Hardware
This manual covers the S2T’s main body and basic 1/O-their
specifications, handling, maintenance and services.

S2T User’s Manual-Functions

This document explains the functions of the S2T and how to use them.
The necessary information to create user programs is covered in this
volume.

T-series Instruction Set
This manual provides the detailed specifications of instructions for
Toshiba’'s T-series Programmable Controllers.

T-PDS Basic Operation Manual

This manual explains how to install the T-series program development
system (T-PDS) into your personal computer and provides basic
programming operations.

T-PDS Command Reference Manual
This manual explains all the commands of the T-series program
development system (T-PDS) in detail.

T-series Computer Link Function
This manual explains the specification and handling method of the T-
series Programmable Controller's Computer Link function.

User’'s manual - Functions 5

Before reading this manual

Note and caution
symbols

Terminology

Users of this manual should pay special attention to information
preceded by the following symbols.

Calls the reader’s attention to information considered
important for full understandings of programming procedures
and/or operation of the equipment.

Calls the reader’s attention to conditions or practices that could damage
the equipment or render it temporarily inoperative.

AWG American Wire Gage
ASCII American Standard Code for Information Interchange
CPU Central Processing Unit

EEPROM Electrically Erasable Programmable Read Only Memory
IF Interface

I/0 Input/Output

LED Light-Emitting Diode

ms millisecond

NEMA National Electrical Manufacture’s Association
PLC Programmable Controller
PS Power Supply

RAM Random Access Memory
ROM Read Only Memory

VS microsecond

Vac ac voltage

Vdc dc voltage

6 V series S2T

PART 1
BASIC PROGRAMMING

1.
11
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4

Contents

OVEIVIBW .ottt eeeseaeaeanaees 15
System design Proceduresccceevieeeriieeiiiiiee e 15
Basic programming proCeduresS..........ceeevvvveeeviviiiiiiiiieeeeeeenn, 16
Operation OULHNE........cuviiiiiiieee e 19
Operation modes and functions...........cccccceeeeeeiiiee e, 19
Modes transition CONAItIONScevviiiiiiiiiiiiieie s 20
Operation flow chartcccoooviiiiiii e, 22
1/O AIOCALION ... 24
/O @lloCAtiON ... 24
INnput and oUtPUL reQIStErSccevvviiiiiiei e 25
Rules for I/O allocation ..., 27
Unit base address setting functionscccccciieieiieeeneenns 30
USEI Programcocuuiiiiiiiiiiieeeeeets et eai e 32
User program configurationccccceeeiiiieiiiiiiiiiieie e, 32
System information.............ccoovviiiiiii e 33
(@ LY g o] foTo | =1 o P 34
Program execution SEQUENCEuueeiieeeeiieiiiiiieeeeeeeenannnns 36
USEr Datal ...cccveieeieiie e 37
User data types and functionscccccvvvvviiiiiiiiiei e, 37
Conditions for data initializationcccccuvvvvviiiiiiiieeeeieeee. 40
Programming Examplecccccooiiiiiiiiiiiiiciiieeeeeeeees 41
SAMPIE SYSIEM ... 41
Input/output allocationcoevviiiiiiiii e, 42
SaMPIE ProgramMccovveeiiii et e e 44
Programming proCedurecouvveuvuuuiieieeeeeeeeiiieee e eeeeeeanns 48

User’'s manual - Functions 7

Contents

PART 2
FUNCTIONS

1.
11
1.2

2.1
2.2
2.3
2.4
241
2.4.2
2.4.3
2.5
2.6

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
54
54.1
5.5
5.6
5.7

OVEIVIBW .iiiiiiiiiiiiiiiiieettiebieeebebebabisb e 73
S2T System configuration..............cceevvvvviiiiiie e, 73
Functional specifications.........ccccooviveeiiiiieeiiee e, 74
Internal Operation...........ooevvveiiii e 75
Basic internal operation flowccoovviiiiii 75
System initializationcoieeii i 76
1Y [oTo [o o] o1 (o] IR PP 78
SCAN CONTIO ... 83

SCAN MOAEcooiiiiiiii 85

Batch 1/O pProCessingcoovvvvviiiiiiieeeeeeeieee e 87

TIMer UPdate..........vvvviiiiiie e e 89
Peripheral SUPPOItcccooiiiiiiiicie e 90
Programming support functions...........ccccccccceeeeiiiieeeeeceeeeiinns 91
User Program Execution Control.............cccevvvvvvnnnnnn. 94
Program tYPESuu i 94
Main/sub programs execution control............ccccceeeeeieeeeeinnnns 95
Interrupt programs execution CONtrolcccccoeevcvviveeennnn. 102
Peripheral Memory Support Functions 104
Flash Memory (EEPROM) SUPPOItccovvvvviiiiiiiiiiiie e, 104
EXpansion memory SUPPOMeeeiiieeeeeeeeeeevene e 105
RAS FUNCHIONS ..coeiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 106
OVEIVIEW ..ttt 106
Self-diagnoSIS......ccuvvuiiii e 106
EVENt NISTOMY ...uuii e 110
Power interruption detection function.............ccccccoeeeeeeinenns 112

Hot restart fUNCLIONuuuuiiiiiiiiiiiiiiiiiees 112
Execution status Mmonitoring.............ceeeeieeeerieeeiiiiiie e eeeeeeeenns 113
Sampling trace functioncccooooeeiiiiiie e, 114
Status latch fUNCLIONuuiiiiiiiiiiiies 119

8 V series S2T

5.8
5.8.1
5.8.2
5.8.3
5.9
5.10

Contents

Debug support functionc.ioiiiiiiiei e 120
Force fUNCHON......ooii e 120
Online program changing functioncccceevivinennn. 120
DEBUG mode functions...........ccouueiiiieieiiiiiiiiieee e 121

System diagNOSHICS.uuii e 128

Password fUNCLioN ... 132

User’'s manual - Functions 9

Contents

PART 3
PROGRAMMING
INFORMATION

1.
11
1.2

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
54

OVEIVIBW ittt 135
AIMS Of Part 3. 135
User memory configuration.............cccceeeiieeeiiieeiiiiiiin e, 135
User Program Configurationcccceeeeeevvvviviinnnnnnnn. 137
OVEIVIEW ..ttt 137
System information.............cooeviiiiiiiiee e 139
(U LY g o] g0 | =1 o 142
1Y/ F= 1T T o] £ e | =2 PSS SRPPPPPN 143
SYU] 0B o] £ e | =2 [144
INTEITUPL PrOgIaM ... e e 146
SUD-TOULINES ... 149
COMMENES ... 151
USEr Data.......ooeieeiiieeiee e 152
OVEIVIEW ..ttt 152
Registers and deViCeSccoieeevivieiiiiiiiii e 155
Register data types.........uueiiiieiiieeiecee e 180
INdexX MOdIfICAtION.........ceviiiiiiiiiiii s 187
Digit designationuuieiiieeiieeecee e e 191
1/O AlOCAtION oo 196
OVEIVIEW ..ttt 196
Methods of VO allocation................eeeeeviiiiiiiiiiiiiiiiiiieeeeeeee 197
Register and module correspondencecccceeevviieeeeennn.. 201
Network assignmentcoeieeeriiieicee e 203
Programming Languagecccovvvvvviieieeeeeeeeeiiiinnn 208
OVEIVIEW ...ttt 208
Ladder diagramcceeeeieeeeiiieeicee e 211
S C e e e e 218
Programming precautions...............uuuceeiieeeeeieeiiiiiineeeeeeeennnns 233

10 V series S2T

55
551

55.2
55.3
5.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.7

Contents

Network support fUNCLONovvvvviieieieee s 235

Expand memory card data access through

computer Nk ... 235
TOSLINE-S20LP (I00p) SUPPOIt.....iieeeeeeeeeieeeeeiiiiiinnnn 238
Ethernet SUPPOIt.......cooo e 239
INSTFUCTIONS ... 240
Double-word multiplication and division (D(/) 241
Essential PID (PID3).....cciiieeiiieiiiiiaee e 243
Floating point essential PID (FPID3).........cccvvciiiiiieiiieane. 248
Expanded data transfer (XFER)............oovviiiiiiiiiiiinnnnnnn. 253
Network data send (SEND)........cccoiviiiiiiiiiiiiicieeeeee 259
Network data receive (RECV).......ccoviiiiiiiiiiiiiiiiieeeeeeeees 263
List Of INStrUCLIONS......ccoi i 267
... 293

User’'s manual - Functions 11

Contents

12 V series S2T

PART 1
BASIC PROGRAMMING

PART 1 BASIC PROGRAMMING 1. Overview

1.1
System design Normally, the design of a control system to which the S2T is applied is
procedures carried out by the following procedure.

System Planning |----- Study the configuration of the
control system and device
configurations (including PLC
selection).

A 4

System Designing ~ |----- Thoroughly study the operation
sequence of the system and
the abnormal sequence.

A 4

Detailed Designing ~ |----- Study the interfaces between
S2T 1/0O modules and external
devices, and determine the
types of I/0O modules.

v A 4
System Wiring Program Designing |[----- Create the S2T program
according to the system
operation sequence.
A A4
Input'/Output Programming ~ |[----- Enter the program by using the
Operation Check T-series programmer (T-PDS).
| >
v
Program Loading ~ |----- Load the program into the S2T.
A
Debugging |----- Carry out the S2T operation
check by simulated inputs.
A
Combination Test ~ |----- Carry out an operation check
by combining with external
devices (the power circuit
should be cut off).
A 4
TestRun = |----- Carry out system trial operation
and adjustment.
A
Program Storing ~ |----- Store the program on a disk file
and make documentation.
A
Hot Run

User’s manual - Functions 15

1. Overview

PART 1 BASIC PROGRAMMING

1.2

Basic programming The basic procedures for creating a S2T program and loading the

procedures

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Determination of 1/0

A

A

Program Designing

A

y

Starting the T-PDS

A

A

Selecting Offline Mode

A

A

I/O Allocation

A

A

Programming

A

A

Start up

the S2T

A

A

Selecting Online Mode

i

program into the S2T are as follows.

Determine the types and
arrangement of the I/O modules and
make an input/output map for the
external devices and the S2T'’s data
memory.

Create the program based on the
operation sequence of the system.

At this time, give due consideration to
constructing the program by dividing it
into an input signal processing
section, a control condition section
and an output section. Also the
program will follow the flow of control
operation. By this means, the
program should be easy to study, and
therefore modification and additions
should be simple.

Start up the T-series Programmer (T-
PDS).

Set the T-PDS to Offline mode and
initialize the Workfile
(Workfile=Offline memory)

Write the input/output allocation
information based on the I/O
allocation determined in (1) above.

Write the program designed in (2)
above into the disk. Do not forget
the END instruction at the end of the
program.

Connect the S2T and the programmer
(T-PDS) by the dedicated cable, and
start the S2T with HALT mode.

Set the T-PDS to Online mode.
When communications between the
S2T and the T-PDS are established,
the S2T operation mode is displayed
on the T-PDS screen.

16 V series S2T

PART 1 BASIC PROGRAMMING

1. Overview

(9)

(10)

(11)

(12)

(13)

(14)

l

Clearing Memory

\ 4

Program Transfer

Y

Program Debugging

\ 4

Program Modification

A4

Writing into the EEPROM

\4

Normal Operation

Clear the S2T’s memory by issuing the
Clear Memory command from the T-PDS.
If the S2T is in ERROR mode, issue the
Error Reset command, then issue the
Clear Memory command.

Transfer the program created in offline
mode to the S2T.

Put the S2T into RUN mode and check
the operation. When the I/O modules
are not all mounted, use the Forced RUN
(RUN-F) function.

Carry out any required modifications to
the program.

When the S2T CPU has built-in flash
memory (PU662T/PU672T), write the
program into the flash memory.

Put the RAM/ROM switch to ROM, and
the operation mode switch to RUN.
Operation will then start automatically the
next time when power is switched ON.

The above procedure is called ‘Offline mode programming’.
In the Offline mode programming, after the user program is developed
without the S2T hardware, it will be loaded into the S2T at a time.

User’'s manual - Functions 17

1. Overview

PART 1 BASIC PROGRAMMING

(1)

(2)

3)

(7)

(8)

(9)

(11)

(12)

(13)

(14)

On the other hand, the method of connecting the programmer (T-PDS)
to the S2T and writing the program directly into the S2T is called ‘Online

mode programming’.
as follows.

Determination of 1/0

v

Program Designing

v

Starting the T-PDS

v

Starting up the S2T

v

Selecting Online Mode

v

Clearing Memory

v

1/0 Allocation

Programming

v

Program Debugging

v

Program Modification

v

Writing into the EEPROM

v

Normal Operation

~_NOTE

The procedure of Online mode programming is

Set the T-PDS to Online mode.

Clear (initialize) the S2T’'s memory.

When all the necessary 1/0 modules
are mounted, the Automatic 1/O
Allocation function can be used.

Write the program directly into the
S2T’'s memory.

U Al

(1) Take special care for Safety during program debugging and test

run.

(2) If power is switched on when the RAM/ROM switch is in RAM,
the S2T will not enter RUN mode automatically even if the

Operation mode switch is in RUN.

(See Section 2.2)

18 V series S2T

PART 1 BASIC PROGRAMMING

2. Operation Outline

2.1
Operation modes and
functions

There are 3 modes of RUN, HALT and ERROR as basic operation
modes of the S2T. Also, as a variation of the RUN mode, the RUN-F
mode is available for debugging.

RUN Mode:

RUN-F Mode:

HALT Mode:

ERROR Mode:

~ NOTE

This is the program execution mode. The S2T
repeats the reading of external inputs, execution of the
user program and the determination of external output
states. (One cycle of this operation is called a
‘scan’). Monitoring of the program execution state
and forced input/output can be performed using the
programmer.

This is a mode to force the program execution even
when the I/O modules are not mounted. (In the
normal RUN mode, this would give an 1/O no answer
error). This is used for program debugging.

This is the operation stop mode. The S2T switches
OFF all outputs and stops user program execution.
Normally, programming is carried out in this mode.
Also, writing the program into the flash memory (in the
case of the PU662T/PU672T) is available in this mode
only.

This is the ‘Error Down’ state. When the S2T detects
an error by self-diagnosis which renders continuation
of operation impossible, it will switch OFF all outputs,
stop the use program execution and enter the ERROR
mode. Inthe ERROR mode, all writing operations to
the S2T are prohibited. In order to escape from this
mode, it is necessary either execute ‘Error Reset’ from
the programmer, or to switch the power supply OFF
and ON again.

U Al

1. Programs can be changed in both the RUN mode and the RUN-
F mode (this is called the ‘online program changing function’).
However, only normal programming in the HALT mode is
described in Part 1. See Part 2 for the online program changing

function.

2. Apart from the above 4 modes, there are actually the HOLD
mode and the DEBUG mode as well. These are described in

Part 2.

User’'s manual - Functions 19

2. Operation Outline PART 1 BASIC PROGRAMMING

2.2
Modes transition To determine/change the operation mode of the S2T, the operation
conditions mode switch on the CPU module, programmer PLC control commands
and S2T self-diagnosis are available. Also, the RAM/ROM switch on
the CPU module controls the operation mode at power up. These are
described below.

* QOperation Mode Switch...HALT/RUN

Switch _
Position Operation Mode
HALT When the mode switch is shifted from RUN or P-RUN to HALT, the

operation mode will turn to the HALT mode. Also, when power is switched
ON with the mode switch at HALT, the S2T will start up in the HALT mode.
RUN When the mode switch is shifted from HALT to RUN, the operation mode
will turn to the RUN mode. The mode when power is switched ON in the
RUN position will be determined by the RAM/ROM switch.

* Auto-RUN/Standby selection

Switch .
Position Operation Mode
Auto-RUN The S2T's initial operation mode is determined by the mode control switch

(HALT / RUN). When this switch is in RUN, the S2T moves into RUN mode
automatically.

Standby The S2T stays in HALT mode regardless of the mode control switch (HALT /
RUN) after power on. Then the operation mode can be changed manually,
i.e. by programmer command or by changing the mode control switch.

* RAM/ROM switch:

PSoV:\;"iiiC;‘n Operation Mode
RAM User program stored in RAM is used.
(Program transfer from Flash Memory to RAM is not executed)
ROM At the beginning of RUN mode, user program stored in flash memory is
transferred to RAM. (It is called Initial load)

* Mode control switch:

Switch _
Position Operation Mode
HALT User program execution is stopped. (HALT mode)

Normally, programming is performed in the HALT mode.
S2T operation mode control by programmer is not allowed.

RUN S2T executes user program cyclically. (RUN mode)

It is the normal switch position under operation.

Even in the RUN mode, program changes are possible. However, saving
into the flash memory is available only in the HALT mode.

S2T operation mode control by programmer is possible.

20 V series S2T

PART 1 BASIC PROGRAMMING

2. Operation Outline

Previous state OP mode
OP mode transition factor after Remarks
OP mode RAM/ROM | Mode SW transition
HALT Power ON HALT No Initial Load
RAM Auto-RUN RUN
RUN Power ON No Initial Load
Standby HALT
(Power OFF) HALT Power ON HALT Initial Load execution
ROM Auto-RUN =)
RUN Power ON RUN Initial Load execution — RUN
Standby
— — Error detection at power ON ERROR
HALT Mode SW — RUN RUN
RAM RUN Command RUN RUN No Initial Load
Command Force RUN RUN-F
HALT Mode SW — RUN RUN
Initial Load execution - RUN
ROM Command RUN RUN
HALT RUN — .
Command Force RUN RUN-F Initial Load execution —» RUN-F
RUN Mode SW — HALT HALT Mode unchange
HALT Command (any) HALT))
— Command invalid (Mode unchange)
RUN Command HALT HALT
— Error detection ERROR
RUN Mode SW — HALT HALT
Command HALT HALT
RUN — Command RUN RUN o
RUN Command invalid (Mode unchange)
Command Force RUN RUN
Error detection ERROR
RUN Mode SW — HALT HALT
Command HALT HALT
RUN-F — Command RUN RUN-F o
RUN Command invalid (Mode unchange)
Command Force RUN RUN-F
Error detection ERROR
Mode SW (HALT/RUN) ERROR
Invalid
ERROR — — Command (except Error Reset) ERROR
Command Error Reset HALT Recovery to HALT mode

1) In this table, OP mode, RAM/ROM and Mode SW mean Operation mode, RAM/ROM switch and Operation Mode

switch, respectively.
2) — means the switch status is not related to.

3) See next page for the Initial Load.

User’s manual - Functions 21

2. Operation Outline

2.3

Operation flow chart

PART 1 BASIC PROGRAMMING

User programs can be produced without fully understanding the internal
processes of the S2T. However, understanding the outline of the
internal processes will be effective in producing more efficient programs
and in carrying out appropriate debugging. The following drawing
gives a S2T internal process overview.

(Power On >

v

Self-diagnosis

System Initialization

(always)

v

v

(ERROR mode)

(HALT mode) <«

Initial Load ~ [----- O
User Data Initialization ----- O
A\ 4
Operation Mode Control User program
¢ memory (RAM) Flash memory
(RUN/RUN-F mode) | H
0 O
— &—| Program
Batch Input Processing [----- U
HEND}—| |
v Data
Batch Output Processing |[--1-- 0O D:> /
Data 0
—
"""" O Input
0| <= Input |<= module
User Program Execution [---|-- 0O -) _O_u_t;);t_) —— Output
| O module
O Initial Load

When the RAM/ROM switch is in ROM and the operation mode
switch is in RUN, the following contents stored in the flash memory
will be transferred to the S2T RAM at power up and at transiting
from the HALT mode to the RUN mode.

(1) Whole user program
(2) Leading 4k words of data register (DO000 to D4095)

22 V series S2T

PART 1 BASIC PROGRAMMING 2. Operation Outline

[0 User Data Initialization
User data (data register, timer, counter, input register, output
register, etc.) are initialized. User data is explained in Section 5.

0 Batch Input Processing
The status of external input signals will be read from input modules
and stored in the input registers. (The input register is sometimes
called the ‘input image table’.)

[0 Batch Output Processing
The status of output registers is written to the output modules. The
output module determines the ON/OFF state of output based on
this. (The output register is sometimes called the ‘output image
table’.)

[0 User Program Execution
The instructions stored in the user program memory are read one by
one, and the contents of the output register are updated while
referring to the contents of the user data. This is an essential
function of the S2T.

One cycle from operation mode control to user program execution is
called ‘one scan’. The time required for 1 scan is called the ‘scan
cycle’ (or the ‘scan time’).

Generally, the shorter the scan cycle, the faster the output response to a

change in input signal.

~ NOTE
Ll ALl

The important items related to the S2T operation mode and the
switches are summarized below.

(1) When power is turned on with the RAM/ROM switch at RAM
position, the S2T starts up in HALT mode. Therefore, use the
RAM position during debug and test run, and set to ROM in
normal operation, regardless of the type of the S2T CPU.

(2) The object of the Initial Load is whole program and the leading 4k
words of data register (DO000 to D4095).
Therefore, even if the range of DO000 to D4095 is specified as
retentive, these data will be initialized by the data of the flash
memory.

User’'s manual - Functions 23

3. 1/0 Allocation

PART 1 BASIC PROGRAMMING

3.1
I/O allocation

As described in Section 2.3, communication between input modules or
output modules and the user program is executed via the input registers
and the output registers.

I/0O allocation is the determination of which address of the I/O registers
shall be assigned to which I1/0O module. Basically, this is determined by
the mounting order of the modules. Therefore, informing the CPU of
the module mounting order is called ‘I/O allocation’.

The following two methods are available for performing I/O allocation.
Either method requires that the S2T is in the HALT mode and that the
operation mode switch is in a position RUN.

(1) Automatic I/O Allocation
Execute the automatic I/O allocation command to the S2T from the
programmer. The S2T CPU reads the module types of 1/0O
modules mounted (see the table on the next page) and stores this in
the user program memory as 1/O allocation information.

(2) Manual I/O Allocation
Set the mounting positions and the module types of 1/O modules on
the I/O allocation screen of the programmer, and write this
information to the S2T.
Manual I/0 allocation is used when performing programming in a
state in which not all the 1/0O modules have been mounted, or when
using the unit base address settings described in Section 3.4.
Manual 1/O allocation is also used for offline mode programming.

When the /O allocation information is stored in the S2T memory by
these methods, the correspondence between the 1/O modules and the
I/O register is automatically determined by the rules described in
Section 3.3.

*) In practice, special allocation of module types other than those
shown in the table on the next page can be executed by manual I/O
allocation. However, the description is omitted here. The details
are described in Part 3.

24 V series S2T

PART 1 BASIC PROGRAMMING

3. 1/0 Allocation

The module type of I/0O module is expressed in the following table by a
combination of a functional classification (X: Input, Y: Output, X+Y: I/O
mixed) and the number of registers occupied (W).

Module Description Module Type
DI632D/652 8 points DC input X 1w
DI633 16 points DC input X 1W
Di634 32 points DC input X 2W
DI635/635H 64 points DC input X 4w
IN653/663 16 points AC input X 1w
D0O633/633P/653 16 points DC output Y 1W
DO634 32 points DC output Y 2W
DO635 64 points DC output Y 4W
AC663 16 points AC output Y 1W
RO663 16 points Relay output Y 2W
RO662S 8 points Relay output (isolated) Y 1W
AD624L/634L
ADG624/634 4 channels analog input X 4w
RT614
ADG668/TC618 8 channels analog input X 8W
822227672 4 channels analog output Y 4W
DA664 4 channels analog output Y 4W
P1632 2 channels pulse input iIX+Y 2W
CF611 ASCII module iX+Y 4W
SN621/622/625/626/627 | TOSLINE-S20 data transmission TL-S
UM611/612 TOSLINE-F10 data transmission TL-F

3.2

Input and output In the previous Section, I/O allocation is the performance of
registers correspondence between I/O modules and input/output registers.
Here, the configurations of input registers and output registers, and
methods of address expression are described.

In descriptions hitherto, input registers and output registers have been

treated as separate entities.

configuration, this is not correct.

However, from the viewpoint of memory

User’'s manual - Functions 25

3. 1/0O Allocation PART 1 BASIC PROGRAMMING

In practice, the input register and the output register use the same
memory area which is called the ‘I/O register’. In other words, before
performing I/O allocation, the I/O register is not colour-divided for input
and output. Colour-division of input and output in register units (16-bit
units) is performed by carrying out I/O allocation. (Before allocation,
internally, all are regarded as output registers).

This idea can be conveyed by the following drawing.

I/O Register 1/0 Register
(before 1/O allocation) (after 1/O allocation)
YWO000 YWO000 D
YW001 I/0 allocation YW001 ¢
YW002 :> YWO002 “
YW 255 YW255 <«
A N4

T— Register contents (16-bit data)

Register address

Input/output classification (Input=XW, Output=YW)

This address expresses allocation as output

This address expresses allocation as input

The I/O register is a 16-bit register, and 256 registers are available.
(‘16-bit’ signifies that it stores the ON/OFF information for 16 points.)

The I/O register used in the user program is expressed as follows.

When an input register SJXWIH O O
When an output register ...YW [] []]

The above [] [] [[] expresses the register address (also called the
‘register number’), a decimal number from 000 to 255.

Also, each bit (called a ‘device’) in the I/O register is expressed as
follows.

When a bit in an input register (input device) LXOOOM™M
When a bit in an output register (output device) ...Y[] [] [[[E

The above [] [] [] expresses the register address and the[d
expresses the bit position in the register.

As bit positions, 16 positions of 0,1, ..., 9, A, B, C, D, E, F are available.

26 V series S2T

PART 1 BASIC PROGRAMMING 3. 1/0O Allocation

3.3
Rules for I/0O allocation When 1/O allocation is performed either by the automatic I/O allocation
or the manual I/O allocation method, the 1/O allocation information
(information on which type of module is mounted in which position) is
produced in the user program memory. The coordination between the
registers and the 1/0 modules is decided according to the following
rules.

(1) In the basic unit, allocation is carried out from the module
immediately to the right of the CPU in sequence from the lowest
register address.

Pl lCIxXIXIxIY[vY[xIx]vy
S1IP|2 44
Ulw|w|w|wlwlwlwlw

XWO000, XW001
XWO002, XW003

XW004, XW005
YWO006, YWO007
YWO008, YWO009, YWO010, YWO011

YW020, YW021
XWO016, XW017, XW018, XW019
XW012, XW013, XW014, XW015

N
|—>§-l>-<

(2) In the case of expansion units, allocations are given following on
from the previous stage unit in sequence from the left end module to
the right end module.

Register allocation table

PUO 1 2 3 4 5 6 7 JIS .
] i ol Type Register
Basic IPCXXXYYXXY tlt
#0
(#0) FISIPlolalalolalalal2 0|0 x 2w |xwooo, xwoo1
U W |W|W|W[W|W|W|W ol S 5
7|y 2w | ywo20
01 2 3 456 7 1|0]|Y 2w [xwo022, xw023
Expansion I P XXX XYY [Y]Y 1| X 2w | xw024, Xw025
(#1) El S 2121212121211 11 |:> 2| X 2W | XW026, XW027
WIW|W|W|W|W|W|W 3| X 2w [Xw028, XW029
4|Y 2w [Xw030, XW031
0 1 2 3 45 6 7 5| Y 2w [Xw032, Xw033
Expansion | P YIX|X|Y|Y | X|X]|Y 6 v 2w [xwoza
#2
(#2) F| S 2121212212122 7|y 2w | xwo035
WIW[W[WWIW|W W 2| o[y 2w | xwo36, xwo37
S| s S

*) In the 1/O allocation, for convenience, the module mounting position
is expressed by a combination of the unit number and the slot
number.

Unit number: #0, #1, #2, #3 in sequence from the basic unit
Slot number: 0,1, 2, ...7 in sequence from the module mounting
position at the left end.

User’'s manual - Functions 27

3. 1/0 Allocation

PART 1 BASIC PROGRAMMING

(3) Slots in which no module is mounted (in manual I/O allocation, slots

for which no type is set) do not occupy registers.

‘vacant’ slots.

p
S

CcC o
=X
=N

X
X

=n

300D

~3S0OD <

~3S0OD <

XW000, XW001
XW002, XW003
XW004, XW005

E

Y
2
wW

YWO006, YW007

Y
2
W

YWO008, YW009

These are called

(4) In case of the 4-slot basic rack (BU643D), slots 4 to 7 are regarded
as vacant. Similarly, in case of the 6-slot expansion rack (BU666),
slots 6 to 7 are regarded as vacant.

PUO 1 2
Basic IPCXXY
#0
(#0) FISIPlololo
Ulw|W|W
01 2 3
Expansion I P X|X|X]|Y
(#1) FIS[2]2]2]2
WIW|W W

Register allocation table

Type

Register

o|l~-3sC

X2W

XW000, XW001

X2wW

XW002, XW003

Y 2w

XW004, XW005

Vacant

S

S

Vacant

Y 2W

XW006, XW007

X2W

XW008, XW009

X2wW

XW010, XW011

X2W

XW012, XW013

Vacant

S

S

N [hlw NP |lO[N|[WIN|[RR|O|~0—W0

Vacant

28 V series S2T

PART 1 BASIC PROGRAMMING

3. 1/0 Allocation

(5) After an input/output register is allocated to an I/O module, the
individual external signals on the module are allocated to each bit
(device) on the register.
registers are allocated, lower register address is allocated to the

lower common (LC) side.

(Example)

At this time, in modules to which multiple

The following is the input signal and input device coordination when
XW004 and XWO005 are allocated to a 32-point input module (X2W).

0 X0040 —
— X0041 1 1)
°° w0043 3 2 3 |2 X0042 55
0 © 4 4 X0044 55
55 X0045 5 5
6 6 X0046 —
L 55 X0047 7 7 —0
8 LCO
- X0048 8 9 PS
10 9 X0049 —
5o X004A A 11 o O
12 B X004B —
55 X004C C 13 o o
14 D X004D —
o0 XOOUE—E1 16 2 1F xoosr i
(5 LC1 17 0 O
\PS) 18 0 X0050 5o
— X0051 1 19
o o ” 5 20 o1 2 X0052 55
0 o X0053 22 =14 X0054 —
0 o X0055 51 ,, 6 X0056 —
— 25
55 X0057 7 [~ - Heo =
—O O X0058 8 1 . 9 X0059 = —
— 29
0 © X005A A 30 B X005B 5o
55 X005C C 31
32 D X005D 55
55 X005E E 33
34 F X005F —
@ HC1 26 35 O
NS/ 37 | NC
NC | 38

(6) Special modules (modules which are not designated by X, Y, X+Y,
iX, 1Y, iX+Y as module types) such as data transmission modules do
not occupy input/output registers.

(7) Input/output registers which are not allocated, internally become
output registers, and can be used in the same way as auxiliary

registers/relays in the program.

User’'s manual - Functions 29

3. 1/0 Allocation

PART 1 BASIC PROGRAMMING

3.4

Unit base address
setting functions

As a special function for input/output allocation, there is a function which
can set the base register address of each unit.

This function is achieved by the manual 1/O allocation.

If this function is used, the register address does not shift even when
module additions are carried out in the future.

PUO 1 2 3 4 5 6 7 PUO 1 2 3 456 7
Basic | PICIX|X|X|X|X]|X]|X Expansion P XXX X|X|X]|X
#0) FISIPlalalalal2]2]2 (#2) FIS| [2(2]2]2|2]2]2
ulw|w|w|w|w|ww ww w|w|w|w|w
01234567 01234567
Expansion I P YIYIY|Y[Y|Y]|Y Expansion I P YIY|Y|Y|Y]|Y
(#1) FIS| |alal2l2]2]2]2 (#3) FIS| [2(2)1]1]1]1
ww|w|w|w|w|w w W w|w|w|w
Register allocation table
U _ S U _ S
? L;r(;lfjrbeassse (l) Type Register ? L;r(;lfjrbeassse (l) Type Register
t t t t
0 00 PU — > 60 0| X2w |[xwo060, Xwo61
0| xaw |xwooooxwooz | | | 1] xow [xwo62, xwo63
1] x4aw |xwoo0s0xwoo7 | | | 2| Xx2w [xwo64, xwo65
2| xaw [xwoosoxwoir | | | 3| x2w [xwoee, xwo67
3| x2w [xwo12, xwo13 o 4| x2w [xwoes, xwo69
4| X2w |xwo14, xwo15] 5| X2w |xwo070, Xwo71
5| X2w |xwo16, Xwo017] 6| X2W |Xw072, XW073
6| X2w |xwo1s, XW019] 7 —
7 — 3 90 0| Y2w [ywo90, Ywoo1
1 30 0| vaw [ywozooywozz | | | 1] vow [ywo92, ywo93
1] vyaw |ywozsoywosz | | | 2| yiw [ywoos
2| vow [ywoss, ywo39] 3| viw [ywoos
3| yow [ywoso, Ywosr o 4] y1iw [ywoos
4| vow |ywo42, Ywoss] 5| Y1iw |Ywo97
5| vyow |Ywo44, Ywo4s] 6 —
6| Yow |ywose, Ywo47] 7 —
7 —_

30 V series S2T

PART 1 BASIC PROGRAMMING 3. 1/0O Allocation

~_NOTE
L] ALl

(1) Apart from register address skipping between units, when the
unit base address setting function is used, it follows the 1/0
allocation rules described in Section 3.3.

(2) A setting which gives a latter stage unit a low register address
cannot be performed. For example, a setting by which the base
address of Unit #1 is 50 and the base address of Unit #2 is 30
cannot be performed.

(3) When automatic 1/O allocation is performed, there is no base
address designation for any unit. The registers are allocated in
succession. (As described in Section 3.3).

User’'s manual - Functions 31

4. User Program

PART 1 BASIC PROGRAMMING

4.1
User program
configuration

A group of instructions for executing control is called a ‘user program’.
This is also called an ‘application program’, a ‘sequence program’ or a
‘logic circuit’. In this manual it will be called a ‘user program’.

The memory area which stores the user program is called the ‘user
program memory’, and in the S2T it has a capacity of 32k steps.
(PU6G62T)/64k steps (PU672T)

However, out of this, 0.5k steps are used to store the user program
ancillary information (this is called ‘system information’). Therefore,
the actual user program capacity will be 31.5k/63.5k steps. Also, if
Tags and Comments are stored in the S2T, a part of this area is used.
A ‘step’ is the minimum unit which composes an instruction and,
depending on the type of instruction, there will be 1-10 steps per
instruction.

Flash memory

N

0.5k steps System information i
User program |
31.5k steps/ RAM memory
63.5k steps KE/—
Tag and comment -

~_NOTE
U all

(1) For the conditions for transfer from the flash memory to the RAM
(the Initial Load), see Section 2.3.
(2) Tag and Comment are explained in Part 3.

32 V series S2T

PART 1 BASIC PROGRAMMING 4. User Program

4.2
System information ‘System information’ is the area which stores execution control
parameters and user program control information for executing the
user program, and occupies 0.5k steps. The following contents are
included in the system information.

(1) Machine parameters (model type, memory capacity)

(2) User program information (program ID, system comments, number
of steps used, etc.)

(3) Execution control parameters (scanning mode, sub-program and
interrupt program execution conditions)

(4) Retentive memory area information

(5) I/O allocation information

(6) I/O interrupt assignment information

(7) Network assignment information

(8) Computer link parameters

(9) System diagnosis function execution conditions

Out of these, the CPU automatically performs the setting/updating of the
machine parameters of (1) and the number of steps used of (2). Items
apart from these are set by the user from the programmer. Here, only
the retentive memory area information of (4) and the I/O allocation
information of (5) are described. The other items are described in Part
2 and Part 3.

* Retentive memory area
The ranges for retaining the data during power off can be set for the
auxiliary register (RW), the timer register (T), the counter register
(C) and the data register (D). Data other than within these set
ranges will be 0-cleared (device is OFF) in the data initialization
process at power up. This setting is performed in a way to
designate from the first address (0) to a desighated address for
each of the above registers. (See Section 5.2 for details)

* 1/O allocation information
As described in Section 3,1/0O allocation information is stored here
by executing automatic I/O allocation or manual I/O allocation. The
CPU determines input/output register allocation based on this
information. Also, as self-diagnosis, the CPU executes a check as
to whether the modules in the allocation information are correctly
mounted.

User’'s manual - Functions 33

34 V series S2T

4. User Program

PART 1 BASIC PROGRAMMING
4.3

User program The user program is a group of instructions for executing control, and
has a capacity of 31.5k/63.5k steps.

The function which executes the
user program is the main function of the programmable controller S2T.

program type.

The user program is stored by each program type as shown in the
following diagram, and it is managed by units called ‘blocks’ in each

Also, in 1 block, the user program is managed by a rung
number (in the case of ladder diagram).

Therefore, in the
monitoring/editing the user program, a specified rung can be called by
designating the program type, block number and rung number.

User Program Configuration

Program Type Internal Block Internal Structure
(Program Types) Structure (Blocks) (Rung Numbers)
Rung 1
Main program ::'—1 }—[:
Block 1
_______________________ —
Sub-program #1 l\ """"""""""""
\
_______________________ l‘l | Rung 2
Sub-program #2 '\ '\ |_| C mov 1—0O
! Block 2 !
_______________________ \ \ L
1 \
Sub-program #3 '\‘ """""""""""" \\‘ Rung 3
_______________________ '. \
1
| Block 3 \
Sub-program #4 \ \
_______________________ ‘.‘ L] \‘ b
Timer interrupt program \I ‘\‘
----------------------- 1 \
\
I/O interrupt program #1 "1 ‘\‘
1
_______________________ S S
1 1
I/O interrupt program #2 ! \
_______________________ \ i | Rungm
\ -
I/O interrupt program #3 \ Block n | (m=no limit
T '\l (n=maximum 256) ‘\ H
I/O interrupt program #4 ! \
_______________________ \
\ } }
I/O interrupt program #5 \
I/O interrupt program #6
-----_ ------------------ ~ ~L ~ la O}
I/O interrupt program #7
I/O interrupt program #8
Sub-routine

PART 1 BASIC PROGRAMMING

4. User Program

*

10

11

Program Types

As program types, the main program, sub-programs (#1-#4), the
timer interrupt program, 1/O interrupt programs (#1-#8) and the sub-
routines are available. Although there is a capacity limit of within a
total of 31.5K/63.5k steps, there is no capacity limit on any of the
program types.

Blocks

From 1 to 256 are effective as block numbers. Every block has no
capacity limit. In the S2T, apart from the Ladder diagram, the SEC
language can be used. However multiple languages cannot be
used in one block. In other words, when multiple languages are
used, it is necessary to separate blocks. In the case of using the
ladder diagram only, there is no need to divide the block.

Rungs

Within the block, the user program is managed by the rung number.
(In the case of the Ladder diagram). A ‘rung’ signifies one
grouping which is linked by lines other than right and left power rails.
There is no limit to the number of rungs which can be programmed
within one block. The size of one rung is limited to 11 lines x 12
rows (maximum 132 steps), as shown in the following diagram.

mianl :
R o
.- S R
B e e A A A A
-
-
-
-
-
-

e e

User’s manual - Functions 35

4. User Program

PART 1 BASIC PROGRAMMING

4.4
Program execution
sequence

The main program is the main body of the user program which executes

every scan, and must have at least one END instruction.
program execution sequence is described in the case of the main

program only. The operation of other program types is described in

Part 2.

The user program is executed in the following sequence.

Here, the

[0 The main program is .executed in sequence from the first block (the

lowest number block) to the block which contains the END
instruction.

O Within one block, it is executed in sequence from the first rung

(Rung 1) to the last rung (in the case of the block containing the

END instruction, to the rung which has the END instruction).

O Within one rung, it is executed in accordance with the following
rules.

(1) When there is no vertical
connection, execution is
carried out from left to right.

w
N
N

Rina

(2) When there are OR
connections the OR logic
path is executed first.

:|:H

12

N
ol

(3) When there are branches,
execution is carried out
from the upper line to the

I]
T

H
H

lower line. >_
(4) A combination of (2) and 1o 34 Sr
(3) above. j ;J L GI: 8> >_
— | O
7
- -
___NOTE
1Al

1. The block numbers need not be consecutive.
there may be vacant blocks in the middle.

2. The rung numbers must be consecutive.
rungs cannot be programmed in the middle.

In other words,

In other words, vacant

36 V series S2T

PART 1 BASIC PROGRAMMING 5. User Data

5.1
User data types and Data stored in the RAM memory of the CPU and which can be referred
functions directly in a user program, such as the states of input/output signals,
control parameters and arithmetical results during execution of the user
program are called ‘user data’.

From the viewpoint of treatment, user data can be considered as
divided into registers and devices.

Registers are locations which store 16-bit data. The following types
are available according to their functions.

Code Name Function Number Address Range
Stores input data from the input

XW | Input register module (batch input) XWO000-XW511
. Stores output data to the output
YW | Output register module (batch output) Total YWO000-YW511
IW | Direct input register Direct mpgt dat_a from the input 512 words IWO00-IW511
module (direct input)
ow D|r¢ct output Direct out.put data to the output OW000-OW511
register module(direct output)
Used as a temporary memory for
RW | Auxiliary register results during execution of the 1000 words | RW000-RW999

user program

Stores error flags, execution
SW | Special register control flags, clock-calendar data 256 words | SW000-SW255
timing clocks, etc.

Stores elapsed time during timer
instruction execution

T | Timer register 1000 words | TOOO-T999

Stores current count value during
counter instruction execution

Used for storing control
D |Data register parameters and as a temporary 8192 words | D0000-D8191
memory for execution results
Data exchange area with data
W | Link register transmission module 2048 words | W0000-W2047
(TOSLINE-S20)

Data exchange area with data
LW |Link relay register |transmission module 256 words | LW000-LW255
(TOSLINE-F10)

Used for storing control

C | Counter register 512 words | C000-C511

F | File register parameters and for storing 32768 words | FOO00-F32767
accumulated data

' Used for indirect addressing for l1word |1 (No address)

J Index register register designation of 1word |J (No address)
instructions 1word |K (No address)

*1) In the S2T system, 1 word is treated as equal to 16 bits and units
called words are used as numbers of registers.

*2) All register addresses are decimal numbers.

*3) In the timer register TO0O0-T063 increase in 0.01 second units (0.01
second timer) and T064-T999 increase in 0.1 second units (0.1
second timer).

User’'s manual - Functions 37

5. User Data PART 1 BASIC PROGRAMMING

On the other hand, ‘devices’ are locations which store 1-bit data
(ON/OFF information). The following types are available according to
their functions.

Code

Name

Function

Number

Address Range

Input device

Stores input data from the input
module (batch input)
Corresponds to 1 bit in the XW
register

Output device

Stores output data to the output
module (batch output)
Corresponds to 1 bit in the YW
register

Direct input device

Direct input data from the input
module (direct input)

Direct output
device

Direct output data to the output
module (direct output)

Total
8192 points

X0000-X511F

Y0000-Y511F

10000-I511F

0O000-0O511F

Auxiliary relay
device

Used for internal relay.
Corresponds to 1 bit in the RW
register

16000 points

RO00-R999F

Special device

Stores error flags, execution
control flags, timing relays, etc.
Corresponds to 1 bit in the SW
register

4096 points

S0000-S255F

Timer relay device

Reflects the execution result of
the timer instruction
Corresponds to the T register
operation of the same address

1000 points

T.000-T.999

Counter relay
device

Reflects the execution result of
the counter instruction
Corresponds to the C register
operation of the same address

512 points

C.000-C.511

Link device

Data exchange area with data
transmission module
(TOSLINE-S20)

Corresponds to 1 bit in the
leading 512 words of the W
register

16000 points

Z0000-Z999F

Link relay device

Data exchange area with data
transmission module
(TOSLINE-F10)

4096 points

LOO00-L255F

The address expressions for devices are as shown below.

Otherthan T.and C.X 063 F

T.andC.T. 255

Bit position in the corresponding
register (0-F)
Address of corresponding register
(decimal number)
Function code (X, Y,0,, R, S, Z, L)

(decimal number)

Function code (T., C.)

Address of corresponding register

38 V series S2T

PART 1 BASIC PROGRAMMING 5. User Data

Therefore, for example, device X0352 expresses bit 2 of register
XWO035, and if X0352 is ON, it means that bit 2 of XWO035 is 1.

(MSB)* (LSB)*
FEDCBA987 654321 0 <«<—Bitposition
xwosa | | [[[[[[[[[[]]af[]]

; X0352=0ON

~ NOTE
U all

(1) The least significant bit (LSB) is bit 0 when numerical values are
handled in the register.

(2) When the direct input register/device (IW/1) are used in an
instruction, input data will be read directly from the input module
when that instruction is executed. (This system is called the
‘direct input system’). As opposed to this, in the input register
(XW), input data will be read from the corresponding input
module in a batch before user program execution. (This system
is called the ‘batch input system’). In the input/output allocation.
an IW and XW of the same address correspond to the same
input module.

(3) When the direct output register/device (OW/O) are used in an
instruction, those data will be outputted directly to the output
module when that instruction is executed. (This system is
called the ‘direct output system’). As opposed to this, the
contents of the output register (YW) will be outputted to the
corresponding output module in a batch before user program
execution. (This system is called the ‘batch output system’).

In the input/output allocation, an OW and YW of the same
address correspond to the same output module.

Note that, in the case of direct output by device O, the other 15
bits in the same register (OW) are also directly outputted.

(4) See Part 3 for details of registers/devices.

* LSB : Least significant bit
MSB: Most significant bit

User’'s manual - Functions 39

5. User Data

PART 1 BASIC PROGRAMMING

5.2
Conditions for data
initialization

The user data are initialized according to the conditions in the following
table at power up and at transiting the RUN mode.

Also, the leading 4k words of the data register (DO000 to D4095), are
the subjects of the Initial Load. Therefore, when the Initial Load
conditions are established, initialization will be carried out in the
sequence Initial Load — data initialization. (See Section 2.3 for Initial

Load)

Register/Device

Initialization

Input registers/devices (XW/X)

For forced input devices the previous state is
maintained, the others are 0-cleared.

Output registers/devices (YW/Y)

For coil forced output devices the previous state
is maintained, the others are O-cleared.

Auxiliary registers/devices (RW/R)

For registers designated as retentive and coil
forced devices the previous state is maintained,
the others are O-cleared.

Special registers/devices (SW/S)

CPU setting part is initialized and the user setting
part is maintained.

Timer registers/relays (T/T.)

Counter registers/relays (C/C.)

For registers designated as retentive and the
devices which correspond to them the previous
state is maintained, the others are 0-cleared.

Data registers (D)

For registers designated as retentive the previous
state is maintained, the others are 0-cleared.

Link registers/relays (W/Z)

For forced link devices the previous state is
maintained, the others are 0-cleared.

Link relays (LW/L)

For forced link relays the previous state is
maintained, the others are O-cleared.

File registers (F)

All maintained

Index registers (1,J,K)

All O-cleared

*) The retentive memory area designation is available for the RW, T, C

and D registers.

These areas are designated by the system information setting

function of the programmer.

For each register the area from the

first address (0) to the designated address becomes the retentive

memaory area.

T-PDS’s Retentive Memory Area Designation Screen

13. Retentive memory area
RWO000 0 []
T0O0O 0 []
C000 0 []
DO000 0 []

40 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

6.1
Sample system In this section, simple sequences as examples, input/output allocation,
program designing and also the procedures for the actual programming
operation are shown. Refer to them when using the S2T.

Let us consider the sequence in the following diagram as an example

91 9| 9| 9| Numerical setting device (BCD output type)

@ Operation switches (start, stop, emergency stop, fault reset)

E Limit switches (LSO, LS1, LS2, LS3)

T3 <— -0 o- Motor answerback (running forward, running in reverse)

—> EU:D Motor (forward, reverse)

N\
L 5 /_ Lamp displays (preparation complete, operating, operation
/7N complete, fault)

Dol | o
> IR AN

1 | Numerical display device (BCD input type)

|
1

O When the ‘Start’ switch is pressed with LSO in the ON state, the
following operation is executed.

Foward Foward Foward
LSO > LS1 > LS2 > LS3
\ (Stop for 1 second) (Stop for 2 seconds) (Stop for 3 seconds)
(Stop for 10 seconds Reverse

after LSO returns to ON)

[0 The above operation is repeated only for the number of times set by
the numerical setting device. During the operation, the ‘Operating’
lamp is lit and, at the same time, the actual number of executions at
that time is displayed on the numerical display device.

When the operation is completed, the ‘Operating’ lamp will go out,
and the ‘Operation complete’ lamp will be lit.

[0 If the 'Stop’ switch is pressed during the operation, the motor is
stopped at that position and, after 1 second, starts in reverse.
When the LSO becomes ON, the motor is stopped and, after 1
second, the ‘Preparation complete’ lamp is lit.

User’'s manual - Functions 41

6. Programming Example PART 1 BASIC PROGRAMMING

[0 When LSO is ON in states other than during operation, the
‘Preparation complete’ lamp is lit. The ‘Start’ switch is only
effective when the ‘Preparation complete’ lamp is lit.

O When the ‘Emergency stop’ switch has been pressed, the motor is
stopped in that position and the ‘Fault’ lamp is lit. In that state, if
the ‘Fault reset’ switch is pressed, the ‘Fault’ lamp will go out.

6.2
Input/output allocation First decide the module configuration and make a Map of
Correspondence between external signals and registers/devices.
Here, the allocation is made for modules with the configuration shown
below.

* Module configuration and register allocation

0 1 2 3 4
P PIDIDIR Rack : BU643D (for Basic, 3 I/O slots)
S ull|oO]|O PS : PS693 (100-120/200-240 Vac)
6 66|66 CPU : PU662T (Standard)
9 6|13|3]|6 Input : DI634 (32 points DC input)
3 2141413 Output: DO634 (32 points DC output)
T RO663 (16 points isolated Relay output)
XW000, XW001 J
YW002, YWO003
YWO004
* Input/Output Map
XWO000 (Numerical Setting Device) XWO001 (Switches)
X0000 |) X0010 | Emergency stop (normally ON)
01 L %100 11 | Fault reset
02 12 | Start
03) 13 | Stop
04 |) 14
05 15
> 1
06 x10 16
07 J 17
08 |) 18 | LSO
09 | %102 19 | LS1
0A 1A | LS2
0B J 1B | LS3
oc |) 1C | Answerback forward
0D 5 1D | Answerback reverse
> %10
OE 1E
OF J 1F

42 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

YWO0O02 (Numerical Display Device) YWO003 (Lamps) YWO004 (Motor)
Y0020 |) Y0030 |Fault Y0040 |Forward

21 L %100 31 |Preparation complete 41 |Reverse

22 32 |Operating 42

23 | 33 |Operation complete 43

24) 34 44

25 . 35 45

26| [<10 36 46

27 | 37 47

28 | 38 48

29 | {102 39 49

2A 3A 4A

2B |) 3B 4B

2C 3C 4C

2D | | o5 3D 4D

2E 3E 4E

2F 3F 4F

User’'s manual - Functions 43

6. Programming Example PART 1 BASIC PROGRAMMING

6.3

Sample program

€))
Input—| —Output

@&
Input—F—Output

Input —+

—Output

€)
Input —(

Input — @& Ton T] —Qutput

Counter input
P jd\ aT —Output

Enable input

Input —{ @& en B }— Output

Input— @& eco & —Output

Input

—{mes T
—{ mer

A sample program of this sequence are shown on the following pages.
When designing a program, arrange the conditions, and give them
careful thought so that the program will follow the flow of operations as
far as possible.

Here, the program is composed using basic instructions only. The
following is a simple explanation of the instructions used in this
program.

NO contact
Put output ON when the input is ON and the state of device @& is ON.

NC contact
Put output ON when the input is ON and the state of device & is OFF.

Transitional contact (rising)
Put output ON only when the input at the previous scan was OFF and
the input at the present scan is ON.

Coll
Put device @ ON when the input is ON, and put device & OFF
when the input is OFF.

ON-delay timer

After the input has changed from OFF to ON, put output ON after the
elapse of the time specified by & . Also, at this time put the
corresponding timer relay ON. (the 0.1 second timer in the example on
the next page)

Counter

With the enable input in the ON state, count the number of times the
count input is ON and store in counter register Cnnn. When the values
of & and Cnnn become equal, put output ON. When the enable
input is OFF, clear Cnnn and put output OFF.

Binary conversion
When the input is ON, convert the value of BCD which has been stored
in & to a binary number and store in & .

BCD conversion
When the input is ON, convert the value of & to BCD and is store in
@& .

Master control set/reset
Put the power rail between MCS and MCR ON only when the input of
MCS is ON.

44 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

Operation Mode
Setting Part

Operating Sequence

X010 ROQO
1 —{ 10ToNTO®s - F A
1 second delay Emergency Emergency
Sstop Sstop
R
[[
Fault reset
%2)j(}g F/{(Dl
2 j/O| | | | \ >_
Emergency Stop Operating LSO Preparation
stop complete
jO Ij%ﬁ /JFG Ij%p ROG2
(
3 1-3 il ! ROl | S
Stop Operating| Stop Emergency Stop
complete stop
RO(IJZ
™
X012 R|001 R|014 RIO/?/Z RIO/?/O ROO3
4 | f | —H e ¢)
Start Preparation| Operation Stop Emergency Ope-
complete | complete stop rating
RO?S
™
RO(|)3 r
| [mes}H
Operating
6 —f ———xwo00 BIND D 5000]
Numerical setting device
| X|019 RO10
7 (
Ls1 Runni
forwer
T.068
Cycle
complete
RO10
X019 R0O13
8 10 TON TO65 |
LS1 Runningin 1 second delay
reverse
T.065 XO01A RO11
| |
9 | IF =
LS2 Runni
forwar
RO11
X01A RO13
10 —] 20 TON T066 |
2 seconds delay

LS2 Running in
reverse

When ‘Emergency stop’ (X010:
normally ON) is OFF, maintains
ROOOON. RO00 s reset by ‘Fault
reset’ (X011) ON.

ON delay timer is to wait the
establishment of the emergency
stop signal.

When ‘operating’

(RO03) is ON and ‘Stop’

(X013) is ON, the stop mode
(RO02) isON. When ‘Stop
complete’ (RO16) is ON, RO02 is
put to reset.

When ‘Preparation complete’
(ROO1) is ONand ‘Start’

(X012) is ON, the operation mode
(ROO3) is put ON.

When ‘Operation complete’ (R014)
is ON, RO03is put to reset.

When the operation mode (R003)
is ON, the MCS-MCR is executed.

The value of the numerical setting
device is binary-converted at the
beginning of the operation, and is
substituted in D5000.

()| RO10is put ONat the beginning of

the operation. RO10is reset by
LS1 (X019) being ONL

When ‘Cycle complete’ (T.068) is
ON also, inthe same way, RO10is
put ON.

T.065is put ON after LS1 (X019)
has been ON for 1 second.

When T.065is ON, RO11is put ON
andheld. RO11is reset by LS2
(XO1A) being ON.

T.066is put ON after LS2 (X01A)
has been ON for 2 seconds.

User’s manual - Functions 45

6. Programming Example

PART 1 BASIC PROGRAMMING

Stop Sequence

11

12

13

14

15

16

17

18

19

20

21

22

T.066 X01B R0O12
| | e
— —3f (-
LS3 Running
forward
RO:i.Z
X01B RO13
30 TON T067 |
LS3 Running 3 seconds delay
reverse
T.OE|37 X|018 F\;013
I /‘l/ \)‘
LSO Running in
reverse
RO13
X018 RO10
100 TON T068 |
LSO Running 10 seconds delay
forward
T.068 _ RO14
CNT | ()
Cycle Operation
complete complete
| D5000 C000
—{ cooo BcD Ywo? |
Numerical display
[McrRH
R002
| [wes}-
Stop
X018
10 TON T069 |
LSO 1 second delay
T.069 RO15
| ()
Running in
reverse
X018 RO16
— —— 10 TonTO70 | (
LSO 1 second delay Stop
complete

[mMcrRH

When T.066 is ON, R012 is put ON
and held. When LS3 (X01B) is
ON, RO12 is reset.

T.067 is put ON after LS3 (X01B)
has been ON for 3 seconds.

When T.067 is ON, R013 is put ON
and held. When LSO (X018) is
ON, R0O13 is reset.

‘Cycle complete’ (T.068) is put ON
after LSO (X018) has been ON for
10 seconds.

The number of completed cycles
are counted. When they equal
the value (D5000) on the numerical
setting device, ‘Operation
complete’ (RO14) is put ON.

The count value (C000) is
converted to BCD and is outputted
to the numerical display.

When the stop mode (R002) is ON,
the MCS-MCR is executed.

When LSO (X018) is OFF, T.069
and RO15 are put ON after 1
second. If LSO (X018) is put ON,
T.069 and RO15 are reset.

‘Stop complete’ (R016) is put ON
after LSO (X018) har 1 second.

46 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

Lamp Circuit

Motor Circuit

Program End

23 —]

24 —]

25 —]

26 —

27

28

29

RO00 Y030
| (-
Emergency Fault
stop
R001 Y031
| (-
Preparation Preparation
complete complete
R003 Y032
| ()
Operating Operating
R0(|)3 'l RO17
(
[! \)‘
Operating
R0O00
I
Emergency
stop
RO14 RO17 Y033
I | < >_
Operation Operation
complete complete
YIO?3
[
RO10 RO0O0 X01D Y040
T s (]
Running |Emer- Running in Forward
forward [gency reverse
Ro11l | Stop
Running
forward
R0O12
RO13 RO0O0 X01C Y041
I | I | I e)_
Running in [Emer- Running Reverse
reverse |gency forward
RO15 stop
Running in
reverse
0 —{END |

When ‘Emergency stop’ (R000) is
ON, the ‘Fault’ lamp (Y030) is put
ON.

When ‘Preparation complete’
(RO01) is ON, the ‘Preparation
complete’ lamp (YO031) is put ON.

When ‘Operating’ (RO03) is ON,
the ‘Operating’ lamp (Y032) is put
ON.

R017 becomes ON immediately
the operation mode (R003) or
‘Emergency stop’ (R000) is put
ON.

When ‘Operation complete’ (R014)
is ON, the ‘Operation complete’
lamp (Y033) is put ON. When
R017 is on, Y033 is reset.

When R010, R011, or R012 is ON,
‘Forward’ (Y040) is put ON. This
is interlocked by the ‘Running in
reverse’ answerback (X01D).

When R013 or R014 is ON,
‘Reverse’ (Y041) is put ON. This
is interlocked by the ‘Running
forward’ answerback (X01C).

User’s manual - Functions 47

6. Programming Example

PART 1 BASIC PROGRAMMING

6.4
Programming procedure

Here, the procedures for actually writing this program to the S2T using

the programmer (T-PDS) are shown.

PDS version 2.0)

(An operational example of T-

(1) Turn the programmer power ON, startup the T-PDS by keying in

TPDS [Enter).

(T-PDS initial Menu Screen)

[T-PRS MINE #AY e
5: T: Load/Save /Compare
P: Program 0: Setop Options
M: Data Wonitar L: OnlinefIffline
C: Coneents K Passward
T: Bscementation Q: Guit
U: Usage Map
e
TPl P2 F1 M FF T F& ~ FT F8 ~ ¥§ P

In the initial state, the T-PDS starts up in the communication mode

with the PLC (S2T).

Therefore, in the state when it is not

connected to the S2T, “Receive time-out” is displayed on the screen.

(2) In order to carry out off-line programming, change to off line mode.
Select “L: Online/Offline”, key-in L.

Program

. Comaents

ﬁ“l‘lﬂ:‘ﬂiﬂ

T Usage Map

: System Inforsation T
0
: Data Honjtor L:
1
Q

: Docomentation

: Load/Save/Compare

: Setup Optloms

: Password
: Quit

Select mode

Lurrent mode is Online

N: Unline F: JWEN

PLC

| BN BN ool)

F1 F2

F3 Fd

133 13 F7 Fi hi] T1d

|
|

48 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

Here, select “F: Offline”.

Key-in F.
il T-PHS MORE MEML e
4§: System Informatien T: Load/Save/Cospare
P: Program : Setup Options
M: Lata Monmitsr L: ERVARMERR Y,
C: Comments k: Password
B: Docomentation Q: Quit
U: Usage Map

A: Orive & B; Drive B G I: Drive § E: Drive E

PE

— — I T
F1 F2 FJ J£] Fa 113 Fi 3] 1] il

This sets the selection mode for the disk drive in which to create the
off-line work file. Here, select “C: drive C” by keying-in C.

§: System Informatian T: Load/Save/Compare
P: Program O: Setop Uptlons
¥: Data Monitmr L: HHYERAI
i C: Coments M: Password
: 1: Docmmentstion Q: Quit
1: Usage Nap

o workfile - create nee File 7|

il e s N: Bo

384

I W a0 W OTTon

FI FZ F3 2] Fh F& F7 3] Fi Fig

The programmer is how waiting for confirmation the creation of a
work file. Key-inY.

o T-PIS MOGE MEML)
8: Sysiem Informatian T: Load/Save/Compare
P: Progras 0: Setup Dptiens
N: Data Momitor L: WEnEARE
C: Comments K: Password E
1: Dacmmentatjon 0: Qoit ;
U: lUsage Mayp

Select PLE tvpel

1: B 2: T2
i

L

FIC

NN . I I
FI 1] 3 M 1 T S A ¢ | 1 T

User’'s manual - Functions 49

6. Programming Example PART 1 BASIC PROGRAMMING

Next, the PLC model will be requested. Select “6: T3H” by keying-

in 1.
T-PIS *HIBE YEAL
$: System Information T: Lead/Save/Compars
P: Program 0: Setup Optiaons
M: Data Monikor L: Sliserert o
C: Comments W: Passwerd
B: Oocomentation 0: Goit
U: Usage Hap

Save settimgs intp dick 2
L o M: No

0Ffline:T

— _— —
F1 4] g Th b 7 11 |) TIE

The T-PDS mode is changed to offline mode.
“Offline C: " is displayed at the bottom left of the screen.

Since you are asked whether to record the settings, select “Y: Yes”.
By this means, the next time the T-PDS starts up, it will start up with
the work file in drive C as the target.

e T-PIIS MHNE MESL -
5: System Information T: Load/Save/Conpare
P: Proyram 0: Setup fiptions
M: Data Monitor L:
C: Comments ¥: Password
D: Docmwentation Q: Quit
U: Usage Map

Select by wsiwg 171 or 1] kevs and press [Enter] kew

— I | e

DFELine:L

1 F2 F3 5] 1] [F7 13} F3 Fi#

50 V series S2T

PART 1 BASIC PROGRAMMING

(3) Next carry out the I/O allocation.

6. Programming Example

“S: System information”. Key-in S.

From the initial menu state, select

i [F- Pit5 SOBE $EM st

{System Informatlion>

:
: I/ Allocation

: Progres

5
P
?
M: Data Monitor
A
C: Comnents
E: Event Eistory
Bi: Docuwwestation
d 5: Scan Tinre
. 1: Usagc Map
! T: Sampling Trace
L
]
;1

! Stakms Larck

: Systes Disgnosis

: Memory Manaygenent

Offline:C

MR L |
51 T2 F3 T 3 % F T% T3 I

|

| = -

? Seleet by asing £77 o (11 kevs and press {Cnterl kev
i

H

Here, select “A: 1/0 allocation information”. Key-in A.

: g T-PUIS MODE MEND e

]

| S: SHSRA

] {System Informatlon>

i P: Program <L/0 Allocation>

i P: System Parameters

. H: Data Henitor e LBl AlLncatinn

: A: VY RYARGAA 1

| L: Comaents I: Izterrupt Assigmment
i E: Event Bistory

i B: Docomentation N! Network Assigomeat
| S: Scan Time

! U: Usage Map

! T: Samapiirg Trace

: L: Status Latck

i

‘ D: System Diagnosis

; M: Memory “amagewent

Select by nsing [*F or 1f] kevs aml press {Enterl kev

Bffline.C
I | ST Cancel |
FI ¥Z F3 T3 |33 ¥B 7 3] F3 F18

Then, key-in A to select “A: 1/O allocation”.

{I/0 Aliocation>

I

i —-tmit 38— —Uait Bl-— ——Unit #2—- Unit §I-—-

i Slot 10 Slot 1/ Slo i slot ¥

! U 1 e [1 B 1 ! 1

! 81 1 1) L 1 1 1
10] z L 1 2 [1 z 1 1
2 i] 30 1 31) il 1
31] LI] 1 i) 41 1
11] 5 [1 5 [i 5 I 1
5 { | § [] 6 [1 b I]
0] 70 H Tl 1 70 1
70] 8 } a [1 B]
L] 3 I 9 [1 3 [i
£] 1a i 1l 1 1 []

DFfTine:C 10
P vicSet IEDLITE DisCon BTV [Tiand il Lancel

Fi 1] F EY Fh F7 F8 Fi Tifl

User’'s manual - Functions 51

6. Programming Example PART 1 BASIC PROGRAMMING

In offline programming, manual 1/O allocation is carried out.
Therefore, select F1 (Edit) on the command line. A cursor will
appear on the screen.

)
BEESEE 1:% LY X Xe¥ 4 IX 5 fY 6 iXe¥ 7: I #: SP
M: MR S: TL-S§ 0: TL-F P: OFT
Az IW B: 20 [:4F D:aw E: LGN F: 34 6: 63N B: LZoW
—-lnit B— ——Unit $1--—- ———-Unit #2---- --=-lnik 83-—-
slot 170 Slat 140 Slat 1 Siat 140
PU |) 8 [1 I 1 8 []
B {] 1 [1 10 1 1 [)
1 |] 2 [1 z I 1 z 1 i
20 1 3 { 1 11 1 30 1
30] £ [)| 4 [] 4 [1
4 [i 5 [)| 5[1 5 1
5 [1 5 1 1 b 1 § 1 1
6 [i Tk } 70 1 71 1
; T 1 1 8 [I [] [i
[g 1 3 I 1 9 i 9 []
3 [1 8 [1 b1 1 9 ! 1
J
! i
fffline.C i [
opReg Frite NN Clear
FI FZ 3 L] 3] TS I F3 3 Fia

Because the module configuration has been decided in Section 6.2,
carry out the following settings as the input/output allocation.

- Unit #0 -
Slot 1/0
PU |]

0 [X2W] < DI634 (32 pts input)
1 [Y2W] ~ DO634 (32 pts output)
2 [Y1IW] « RO663 (16 pts output)

To set the module type, move the cursor to the specified slot
position. Then designate by combining a function division (X, Y,
etc.) and the number of the register occupied (1W, 2W, etc.) from
the selection list displayed in the upper part of the screen.

First, move the cursor to Unit #0, Slot 0, using the cursor keys.
Then, key-in 1 to designate “1: X".

GRS 11X 2:¥ 1Y 4 U0 S Iy B JX¥T: I B: 88 |
M: MR S: TL-S 0: TL-F P: OPT
A3 BN C:4F D 8 E: ISW F: 32W B: G4 %: 128W
~—-lpit B— —1Upit 8$1-—- ——Unit #2-—— —lnit #3-—---
Slat 14 $lot A &lot I Slat /6
P 1 8 [1 B[] eI 1
[10] 10 1 0 1
1 [1 2 [1 Fa 1 20 1
2] 30 1 310 1 10]
30] 4 [1 4 1] C |)]
4 [1 g I i 5 [] il 1
g I 1 F 1 1 6 [] E [1
6 [i 71 1 7 [1 T 0 1
70 1 g i 1 8 [1 80 1
8 [1 7 (] LI 1 9 [1
3 [1 8 [1 1B [1 8 I]
[l notdule tvee and reqister siye
1
BffIine:T 1A Edit
tursor ETIAT Write AL1C1r EAPTT Cancel
Tl ¥z 3!] 131 F& F? 3] (3] Fig

52 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

Next, key-in B to designate “B: 2W".

LoiasE 1. % 2:Y 3 XY 401X 5: Y 6: LXe¥ 7:Z 3: SP
M: ¥R §: TL-§ O: TL-F P: OFT
A: 1IN @ 2% C: 4N D: W E: 16N F: I2¥ 0: BAN B: 126W
—-init B— ——lipir $1-— —~—-Hnit #$2— —1Unit 33—
Slhat 1/8 Slot e §lot 0 Siot 170
Py 1 8] I i - 1
LI 1L 1 1 0] I 1
1§ 1 2z I 1 2 1 1 z [1
21 1 3 [] 170 1 3 []
aq] 4 [1 4 L 1 4 1 i
4 { } S 0 1 5 [| 5 I I
5 1)] 6 [) b [1 6 [1
B[] 71 1 70 1 I]
70] 2 1 8 [1 8 1
IS] 9 [1 80] 91)
31)] m {] LI] 8 [1
21iClr JUTITMR Vancel
F1 ¥z r3 |71 113 FB T 3] F FIg

“X 2W” is displayed as the module type at the bottom of the screen.

Set the module type into the slot at the cursor position. Key-in [Enter].

|
: s 1: % v 3 Xs¥ 41X S: Y B! IX¥ T: 2 8: sP
M: MR S: TL-5 4: TL-F B: OFT

A: 1N B- A C:4w D: W E: IGN F: 32W G: B4F W 1zeW
——init B— —linir l-—— ——tnit 37—~ ——Unit #3—

Shot 1/n Siot 1/ Slet 1 Slot 10
PU | 1 8 [1 a1l] [1
i ¥ B[i 10] 10]
1 [kA 1 20 1 z2 1 1
2 1 10 ! 11 1 11 1
310] 4 [1 5 I 1 L 1
4 [] 30 1 s [1 50 1
s I] B [] 6 [1 b [1
E [] 70 1 70] 70 1
71 1 8 [] B[1 eI 1
i 1 3 1] 9 } [1
3 I] 18 1 i 18 [1 8 1 1

Bffiine:C
; [T EIN Eancel

F1 f 3 3] Fq |3 43 ¥ 1] 13 Tig

“X 2W" is displayed at the Unit #0, Slot O position, and the cursor
moves to the next slot.

Hereafter, carry out the required settings using the same procedure.

WheE 1. % 2: ¥ 2: AsY 4: I 5 [¥Y 6: iXeY %: Z B: SP
M: MW S TL-S O: TL-F P: OPT
A: W B2 E: 4N D: B E: 16W F: 32 G: 64N ¥: 120
—--lnit $—0o —lmit - ——lnit #2-——- ——Uinjt #3—
Slot e Skot 10 Stot 4] Slot i
PU I 1 | 2 I [I 1 B[1
B[X 1 1 10 i [1
1§ ¥) z L 1 0 1 2 I 1
z [¥) 3 E] ¥ 0 1 30 1
1 [5 [1 1 i 1 a4]
LI 1 50 1 5 [] 5 1]
5 1 1 § [1 6 [] 6 I |
§] 71 1 70 1 71 1
T 1 8 [1 8 ! []
a [1 3 f 1 30 ¥ 3 { 1
9 [1 JLIN# 1 [1 m I 3
T iine: ! ;
Taplle Eritr | 5116 1r SHEEEEN Congrl |
|3 T2 T F4 T3 ki 7 i Fy FIR

User’'s manual - Functions 53

6. Programming Example PART 1 BASIC PROGRAMMING

After completing required settings, write this information in the work
file. Select F5 (Write) from the command line.

lnit =@ Unic 21 tnit #2 Unit 33
Top Register No. Top Register Nao. Top Register Np. Top Beglster No.
{] [1 { 1 I 1

; —tnit — —pit §l-— —Unit #2— — Uit #3-———

i Slat 170 Slat 18 Stoe 1/0 Slat %)
I 1 [1 [] 8 [1
Bl ox A 11] 10 ! 1 i
| BT - '} 2 { 1 2 0 I 2 [1
20 ¥ w 30 i 31 1 I 1
TR] 4 f 1 4 i i 4 [1
R) 5 [i 5 § i 5 1
5[] [i 6 [1 [1
Bl] 7 [1 70) 71 1
70 1 i 1 a [1 a1 1
91] 9 [1 3) 9 [1
LY 1 W [] 18 f 1 8 I I

BFfLine’T .
—

i ¥Z 3 £} 3] 11 3 13 b1 T

The programmer will wait for confirmation. Key-in Y.

Unit #@ Unit ¥1 tYoit &2 Unit #3
Top ?eﬁister I:'Iln. Top lEegistu- P]In. Top i[!f.-gister Ng, Top Begister No.
] i 1
~—-ipit B—— —Unit #l-—— ——1nit §2—- —lmnit %3—
Slnt 1/ Slet I Slot 173 Slot | 341]
Py] B[] e I 1 21 i
e x 2] il 1 [i 1 [i
1 (v =) 2 [] 21 3 2 [i
2 [¥ w 71] 30 I 30 !
30 1 4 i i 3 I i 41 1
4 [I 5 [; 5 1 5 1 !
51 1 [1 6 [I & [i
6 1 70] 70 ! 70 1
71 1 8 [] 8 I g I]
8 [1 9 {] 9 [} 1 1]
9 I] m i i 18 [1 11 I 1
0ffline T 1/
Fdit DIEEYH Tapleg IR W hnallisyl anil Contel
S

This completes the 1/O allocation.

54 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

(4) Now we enter the program typing phase. First, press the [Esc] key
to return to the initial menu.

Unit %9 tnit #1 Unic ¥2 Unit #3 j
Top Register No. Top Begister MNo. Top Register No. Top Register No, |
l 1 [1 [] t 1]

i —-lnit — —Uinit $1—— ——1init #2—- ——lnit ¥3—-
! Stot I Slat I Slot 1/ Slot 1/8
i PU | 1 B[] I i LI |)]
Bl x LI i 10 1 110 1
1 [v 2N 2 [i 210 i z I 1
20 ¥ wl 3 1 i 31] 31 1
310 1 4 1 1 41] 1 i]
4 [] 5 i | 5 [1 5[1
5 [1 [) § [1 6 I H
6 [1 70] 7 I 1 70 1
70] g [] 8 E 1 1 1
80) 30 1 910 i 9t i
LI 1 JLINN i pLINNY 1 b I]
fetura to top nenn 2
Y. H: No
ine €

OFFT

Fi 34 F3 |12 3 31 F7 1% 1] Fi8

The programmer will wait for confirmation. Key-inY.

hdeded T-PBS “HINE MEM. -
5: T: Load/Save/Compare
P: Program 0: Setup Options
¥: Data Monitar L: [nline/0ffline
T: Comments ¥: Password
0: Docmentation §: goit
; U: Usag= Map

Seleet bv using [7] or 1§l kees and press IEnter| key
#fEline:C
F1 | 3 ¥3 T 11 TE] 11] L&) T18

Here, select “P: Program”. Key-in P.

0filine T Blach J 1 ”
H Read ETIAN Jomp ERGNENRtaMon NLACEN SUEIIW Cancel |

F1 [T3 1] 33 1 1¥] F8 3 Fi#

User’'s manual - Functions 55

6. Programming Example

Block 1 of the main program is automatically selected, and “Block:

M1” will be displayed on the screen.

Here, select F1 (Menu) from the command line.

~] 4 {-?t £2 39 e
Il

-

o]

Seleck funetinn

E: N: Data sindow 5: Search and replace reference address
M: Mopitor command F: Data format G: Debug

{ifflize T Bioch: g 1

b B W Cancel |

134 114 F3 4 s 113 Lk T8 F 1R

Then, select “E: Program Edit” from the menu window and key-in E.

A cursor will appear on the screen.

B Conce! | i
T T18 :

Here, select F6 (Append) from the command line. Then,
instruction symbols will appear on the command line.

™) o 2. .
T T P T
i Il fl .

¥
|

[T R R, W)
T
L

— -

ack:J T 3]
Seulnst FMEE Clear
i

56 V series S2T

PART 1 BASIC PROGRAMMING

PART 1 BASIC PROGRAMMING 6. Programming Example

Here, start typing in the program in Section 6.3.
First, press F7 (TON).

=]
i

F1 7 F3 1] 1] o i T ES T18

Since the programmer is waiting confirmation, key-in Y.

Biock-7 T I RO

JTIEEM Cleor WAGTEN Urite WRSCCME Hex
—— g TP VT Iniex
F3 | [G F !

Input the operands (setting value and timer register).

Key-in

10 [Enter]

T64 [Enter]

If you make a mistake, cancel it with the Space key and re-input.

i
#4918 TON rasﬁ- .

B! -

i
m‘i- 4 ;
H 3
11 l !
Gffiine.C B '
' : 8 vrite WRECEN firx

[EEN Cf] WETTEE Lance
b F1 :

1

User’'s manual - Functions 57

6. Programming Example PART 1 BASIC PROGRAMMING

Next, input the NC contact of X010 (with vertical connection).
Key-in

F2 (=)

F5 (1)

X10 [Enter]

xae1e

1-{eBa1e TON m%- T

- —

- -

2
3
4
E
& 4
k|
8
4
»

Complete the 1st rung using the same procedure, as follows.
Key-in

F6 (—()—) RO [Enter]

F1 (— |—) RO [Enter]

F2 (—4f—) X11 [Enter]
F4 (-) [Enter]

F4 (-) [Enter]

i XB918 - L
1eoRia o rm:—vj <
! -
"~ -
> i
7+ 4
it]
i
1

£ 3 [EditE T el
- IS Clear rite
' |

Next, move to the head of the 2nd rung using the cursor keys, and
input the 2nd rung using the same procedure as for the 1st rung.
Then input the 3rd and 4th rungs.

58 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

While doing this, when an instruction for which the symbol is not
displayed on the command line such as a transitional contact,
display the Menu Window by pressing Shift + F2 (Seq Inst), and
then select.

(Screen state when Shift + F2 (Seq Inst) has been pressed)

¥o0ea |

L

RARR1

=
1D +
I+ —FH —NH
TOF S8 =
JC5 JCR
xS HCR MCSn NCEn
END
410+

Oifline:C Block:g/ I ¢ d
T

¥ 2 F3 F4 133 ¥h F¥ T# 74 Fid

When input has been completed as far as the 4th rung, write the 1st
to 4th rungs into the work file.

In other words, the size of program which is writable to the work file
at any one time is one screen size (11 lines by 12 columns).
Therefore, this means writing to the work file at convenient divisions
of rungs.

(The cursor also will move within the screen limits in the Edit mode).

Carry out the operation of writing to the work file as follows:

(State with input up to the 4th rung complete)

1Y EaRed
1-WeEiP TUN TBE31 1 { —
E9896 XBR11
— .
P90G0 ROBOZ FOOE] YPE1D RARRT
22— i {
%8813 POAR) RAGLG RADAA . 1
I P ft—i 2 —
P82
— & -
AHa12 HU] 2914 RBEEZ Rodb ROBAT
4 —t —{
K
.—‘ 4

5
B 4
ki

- A
£ 4 ¢ p1remd
Elear fleite

User’'s manual - Functions 59

6. Programming Example

PART 1 BASIC PROGRAMMING

Key-in Shift + F6 (Write).

10 008
I-{pee18 TOR TRELI—+ —
BORE Yee1i
- y
BOED RMEWZ RODB] 18815 [0
B — — 3]
Wals Eaed eLs heoss (L)
3 p—
firys .
b th ¥ S8R] ROEI4 RBAA? RADAE REAA3
4 —m— t —
E9aR3
]
J

Covtrof |

Lancel

ET T £ Fid

Because the programmer is awaiting confirmation, key-in Y.

xed1a i L
PeRig TON TREA—1 {0
| PAMBH YBRL1
-l E
RUBE RMEE? REDE] XBd1d FO0E1
——— bt } —(
xea13 ROPW3 EMILE m Roaa 2
F— ——t— b { >—
eyt
Xma1z Rl PR1Z REOE? ROEBO Rt
i—? I——i A bt —
— }—[~

In this way, the 1st to 4th rungs have been written to the work file.
Next, input the 5th rung onward. Move the cursor onto the 4th rung
using the cursor keys (the cursor can move over existing rungs

only), and press F6 (Append).

The screen will then turn to an edit

screen with the 4th rung leading.

RoOal RBALd ROOZ RN
3 —r

RoER 3

Hex

Inﬂe\t

60 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

Move the cursor to the head of the 5th rung, and start entering the
program from there onward.

To input the Function instructions such as BIN, key-in Shift + F3
(Fun Inst) to display Function instructions, then select the instruction
group which contains the desired instruction.

(Screen state when Shift + F3 (Fun Inst) has been pressed)

| x8812 FAO2] RPMI4 POBRZ ReRd LK

| pAoR3 ; I b
HF—J

4— —t—

h. oy

'

+

13

z2
24

< Hove >
FIN(a18) A0V

EI 15 v

M NOT 2% DNOT

XCHS 23 IXCB
TIRT 25 MOV 26 TNOT

Nl
Fry

F

T nm:t.lml B‘Lﬂ
Have

ine:l Block:

tr

Logic Hotate
5

1

a3 RGN]
-Marn pecial _ -

(State when Shift + F3 (Convert) is pressed on the above screen)

| xo12 RgPR1 EOR1S ROONZ RAGAH EAGR]
29983 I ’ ‘
RAB8 3
! S

¥
- Il

108
182
102
1188
198
2

<Comvers
FUN(188] ABS

m%ﬁi DABS 286 FARS
183 DREE 287 FNEG

ll! 185 7SE6 1B6 ASC

BIN 1B BBIN

RCD 191 DBCD

FLF 285 X

tond

UfFJ.

Sne:L Block:
Funct ion YR BC0

F3 Es

[Feal |
Logic Rotate

[175]]
mmml _ E
Fl

Hereafter, write the whole program using the same procedure.

User’'s manual - Functions 61

6. Programming Example PART 1 BASIC PROGRAMMING

(5) When the whole program has been written in work file in the
operation up to this point, load the program into the S2T.

First, connect the S2T and the T-PDS with the dedicated cable.
(This assumes that the modules in Section 6.2 are mounted in the
S27)

Next, put the RAM/ROM switch on the CPU to RAM, the operation
mode switch to the RUN position, and turn on power to the S2T.
(The S2T will start up in the HALT mode)

(6) Put the T-PDS into communication mode with the PLC (S2T).

First, return the T-PDS display to the initial menu by pressing [Esc]
[Enter], and then select “L: Online/Offline”.

! | e RIS MMBEEMG e]
‘ 5: Systew Information T: Load/Save/Compare
P: Program 0: Setup Optlons
M Data Healtar L: BEisweioy
C: Coments §: Password
D: Docwmentation Q: Quit
U: lLsage Map
Corrent mode is 0ffline
N: F: OffLine
§ffiine.C
EN N S T

F1 Tz 3] t4 F5 FE T T8 2] Fid

Here, select “N: Online” to select online mode. Key-in N.

8: System Information T: Load/Save/Compare
P: Program 0: Setap Optisns

H: Data Momitor L: BRHseARE e
C: Coments K: Passuerd

D: Bacmmrentation 4: Guit

U; Bsage Map

‘ .ahle connection ready 7|
B 25| N: Mo

GFfline:C

i BN G Concel |
FI Fz F3 Fq F5 13 F7 ¥ F9 Fm®

62 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example
__|]

Confirm the connection state and key-in Y

- wa T-PS “UNE MEM: el
"%: Systew Infurmation T: Load/Save /Tompare
P: Programs [: Setup Optlons
N: Data Monitar L: B
C: Comments ¥: Password
I: Docwmentation Q: Quit
U: Usage Map

| S S oncel

1 ¥z 3 F4)i)i} F7 11 1] TiE

When the communication of the T-PDS with the S2T is correctly
connected, “PLC HALT” message will be displayed at the bottom left
of the screen.

Although the record of settings is not always required, here, select
“Y: Yes”.

Now the T-PDS has been changed to the online mode.

User’'s manual - Functions 63

6. Programming Example PART 1 BASIC PROGRAMMING
__|]

(7) Next, clear the memory of the S2T. Select “S: System Information”.

Key-in S.
hatated T-PIS MBRE YEAL [T
§: it
{Systems Information>
P: Program
P:
M: larz Menitor
A: 1/0 Allocatlicn
C: Comments
E: Event Bistory
D: Docwmentatlion
§: Scan Tiac
U: Usage Map
T: Sampling Trace
L: Status Latch
B: Systew Didgneosis
N: Hemory Hamagement

U mmaes mmmaw i)
Fi Fz FI Fa Fo)13 F7 4] 3] F18

Here, select “M: Memory Management” from the <System
Information> menu. Key-in M.

{System Informalien>
: Frogiom Hemory Manngemenb>

: System Paramelers
E:
L]

: Clear Memcry

; 1/0 Allocetion
: Coments

H
P
¥: Data Honitar
[
1

: Event Bistory
: Docomentatian F: Clesr Farce
U: Usage Map #: Program Eead

1 Sampling Trace (kAN « IC card/IEPEM)

: Status Latch W: Progrem Write

P
E
E
S: Scan Time
T
L
. (RAN = IC card/FEPEIM)

: Systen Diagmosis

Next, select “M: Clear Memory” from the <Memory Management>
menu. Key-in M.

e T-Fii5 MDE YENU L
§: SESTHE AR
{System Informatiow
P: Program Memory Maocegemenby
P: System Parameters
M: Datz Monitor E: Clesr Event History
A: I/0 Alkocation S e
C: Coments LR 2 Z o
E: Event History
D: Decumentatisn F: Glear Force
§: Scan Time
1U: Usage Map f: Program Resd
; T: Sampling Trace (RBN + IC card/EEFRCM)
1
! L: Statns Latch ¥: Program Brite
; (R4 -~ IC card /EEPRIN)
: 0: System Diagnosis
N I Clear Nemory
: ¥: N: No
'

i 5 RiG
] m I T]
) S GRS S I T3 - — T o T3 13U

64 V series S2T

PART 1 BASIC PROGRAMMING

6. Programming Example

The programmer will await execution confirmation. Execute Clear

by keying-in Y.
e T-PIS MINE SEM!? [t
S BRI —————
<Systsm Information>
I': Progrem {Memory Mapeyewenl>
P: System Parameters
N: Data Mopitor E: Clear Event History
A: 1/0 Allocation s
C: Coments M. VERE SR,
E: Event Bisrory
B: Docementation F: Clear Force
§: Scan Fime
U: Usage Map RB: Program Resd
T: Sampling Trace (RA% « IC card/EEFBON)
L: Starus Latch W: Program Write
(R ~+ IC card/EEFRON)
D: System Diagoosis
JEVHALT [EPRO
F T YETE
; T1 F2 ¥3 i) 3 i) F7 [§1] L] T1B
—

(8) Next, transfer (load) the program which has been written in the work

file to the S2T. First, display the initial menu by pressing [Esc]

[Enter], and then select “T: Load/Save/Compare”.

T R,
0: Setzs Options

<.oad/Save/Compare>
ISl berkfile

L: Baline/UfFELine
F: Norkflle-+Disk

L: Fassword
D: PLC—Disk

U: Quit

Select by using (71 or {11 kevs amd press |Enter] kev

F1 FZ] Fa 3 -] 7 11 il Fig

Here, select “P: PLC « Work File” from the <Load/Save/Compare>

menu.
L e TP ME R e]
T RS
Load/Save/Conpare>
y 0: Setup Optlons {FLC-NorkFlle>

P PR
L: Online/OFf1ine B:

F: Workfile—-Disk
K: Passward L: Load(kork~PLL)

5: PLC—Disk
. Quit C: Compare(PLC—dork)

Select by wsing (7] or
PLUEERE rgaily

1} keys ani press [Enter) keyv

Fi 14 FI Fa Y F& F7 i k] T8

User’'s manual - Functions 65

6. Programming Example PART 1 BASIC PROGRAMMING
__|]

Then, select “L: Load (Work - PLC)” from the <PLC - Work File>

menu.
L e PISWIEMEM ews
T: B RRR
Load/Save Coopare>
" ! 0: Setwp Dyptions <Luoad (Nork-FLCI>
P BRI
L: (mline/Uffline P:
F: Werkfiie—Risk
K: Password 0: Reglster/device data
| B: PLC—Disk
&: Golt C: Comments
4
; A: Al

Select tw using '] or [!! kevs and press IEnterl key

E— ——
F1 33 T3 T3] |13 Fi Fa 3] T

The selection menu for loading details is displayed. Since it is
simply the program in this example, select “P: Program & Sys Info”.

<Load (kark+PLC) /Program & Sys Infod
Transfer T-PDS workfile's program and system ipforsatlen to FLL.

PLC T-PDS

— —r ran
s Iafg

.

PLCEINE TP RIS

T I
T 3 T3 JCI ¥E T T4 T

The programmer will await execution confirmation. Key-in Y.

Qoad [Work+PLC) /Prograr & Sys Infod>
fransfer T-POS workfile’'s progrom amd systewm Inforsatlon to PLO.

FLE T-BOE
F; e an - rogran
l5ys lofg | lSys Infg |

Aoy et ol

I T | Coveal |
1 FI I M TS 133 ¥ 33 TT B

‘ gieHal,T EPRUGCEIRY:ork-PLU
\

When correct loading has been carried out “Complete” will be
displayed.

66 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

(9) When the loading of the program has been completed by the above
operations, operate the S2T (RUN mode) and debug the program.
Here, try to change the S2T mode by the Control command of the
T-PDS. First display the initial menu by pressing [Esc] [Enter], and
then select “P: Program”.

XBg18]
L {wed1a TON TOEA Tt {
ROREE YR8 11
—i k
ROPIY RBAAZ ROPOl X0E1E Ro0a1
Fa b —
XBAL3 RAPAZ BAALG RAMaR RA0A2
i 't { —
BAB8 2
..__i -
X812 ReVOL RPEL4 ROBG2 RPOSS Fo083
44— —t— t £ =
Poaa3
__l -
RBBE3
5—} MCs H
B—t—XMa& BIR D58l
XBa1g RBE18
T Hf b
T.86
— H

| PRl ety T -
i HYE FRead BTN Jowp ERTR] Hold BN crtrol BTl

| F1 F2 T3 | 3] 1] F7 ¥ 1£] F1B

The T-PDS will enter the monitor mode for the program which has
been loaded in the S2T.

Here, select F9 (Control) from the command line.

XBH 18 Reana
i1 TON Tapdi—1 {1
P0AR XAs1i
el 4
ROGBH ROBBZ RAMR3 X8818 Ko
ot —
xma13 RN 3 EBE1E RBOE8 2% T4
F— —it—— t >
a2
L -
XHa12 RO EH1d RUSEZ POHBE i X
S]
Boes)
— 4
kpea3
it MEs H
H: B: BUN F: Force RUN E: Error reset
L: HILD E: HILA eancel I: UEBLE
Nl TF flock 31
.
Fi ¥z] FE Fg FB F7 1] 3] L]

~_NOTE
L ALl

When the S2T is put into the RUN mode with the aim of program
debugging and test running, take thorough precautions for safety,
such as switching OFF the motive power circuit.

User’'s manual - Functions 67

6. Programming Example

PART 1 BASIC PROGRAMMING

Select “R: RUN” from the menu window.

X168]
P18 TON TABE 1+ { F—
PSR XBR11
ARy RoRa? P01 YPE18 Ba88 1
1 XmA13 [K] m}lﬁ i] Bow 2
It 3t —
| B0z
4
E:EJZ ROPE: BREI4 RAOH2 ROBSG %0083
4 —— F—t—it { —
Ex
| o3
S MHCS H
¥: H: Reo
H: BALT R N F: Force FUN E: Error reset
L: HGLD C: HOLE eancel D: DEBUG
" —
| | BN B Coocel
1 FZ F3 F4 3 EE P F§ 1] Fip

The programmer will await execution confirmation, key-in Y after
rechecking the safety of the surroundings.

B0 1 FXPE18 AR
1-[BMa18 TON TG4+ £
BUARD XPR11
i 4 -
RUPBA P2 YPRE1 KBR1H EBG8
23—t {)
XAl 3 ROPAT RO 1E AR Roa82
e — i {

“PLC: RUN" will be displayed on the screen. This is the monitor
screen for the program execution state.

Perform confirmation of operation by using the external simulation
switch and the T-PDS simulation input function (Force function).
For operation, see separate T-PDS operation manual.

When carrying out program correction/modification, stop the S2T
temporarily (put into the HALT mode), and correct/modify the
program in the S2T.

When carrying out creation/modification of the program while still in
the online mode, the operations are the same as in to offline mode.

68 V series S2T

PART 1 BASIC PROGRAMMING 6. Programming Example

(10) When program correction and operation check are completed,
save the program in the disk and switch OFF the S2T power.

To finish with the T-PDS, press [Esc] [Enter] and select “Q: Quit” in
the state with the initial menu displayed.

The above completes the programming procedure. If the S2T'’s
RAM/ROM switch is put to ROM and the Operation Mode switch is
put to RUN, the S2T will operate automatically when power is next
switched ON.

~_NOTE
U Al

In the case of a CPU with a built-in flash memory, write the program
into the flash memory before the above procedure (10).

The operation can be performed by selecting “W: Program Write”
from the <Memory Management> menu. (See the screen on the
procedure (7)).

User’'s manual - Functions 69

6. Programming Example PART 1 BASIC PROGRAMMING

70 V series S2T

PART 2
FUNCTIONS

PART 2 FUNCTIONS

1. Overview

1.1
S2T System The S2T system configuration is shown in the figure below. Part 2

configuration

functions.

explains the S2T system functions, concentrating on the S2T CPU

S2T

Serial

TOSLINE-S20

3 or 8 modules

Programmer Basic unt 1 5 N\
(T-PDS)
PlI|C]|I T T I
(RS232C) ulo | | o) 41618 modules
%:I S| |F A
[\
Expansion cable [P I |
. F S / /
Computer link (@) (0]
Host (RS485) .
computer | |
I|: g } } \ Expansion unit
S2T S2T RSP max. 3 units
0 ol [¢)
TOSLINE-F10
T | | I[P I
R : L F S /
emote o) 0
T2E /O
The internal block diagram of the S2T CPU is shown below.
| Flash Memory
l WDT _J[_' ________________ |
1 N 1
| User User |
| PF System || System program data |
| ROM RAM memory | |memory
Programmer I RS232C |«—»| Main m Hﬂ (I/0 bus)
processor |F] |_|':_| 1
|
Computer «—> A |
P link RS485 RTC LSI Language | i’
| —*| processor 2
o
| t o :
| Q
| Switches| | LEDs -

The Main processor controls overall execution tasks.

The Language

processor (LP) works as co-processor and executes the user program

(bit operation and word operation).

These two processors work in

parallel during scan operation.

User’'s manual - Functions 73

1. Overview

1.2
Functional
specifications

PART 2 FUNCTIONS

Item

Specification

Control method

Stored program, cyclic scan system

1/0 method

Batch 1/O (refresh), Direct I/0, or combination

Number of I/O points

1024 points (when 32 pts I/Os are used)
2048 points (when 64 pts 1/0Os are used)
Total space: 8192 points/512 words

Programming language

SFC (Sequential Function Chart)
Ladder diagram (relay symbol+function block)

Program capacity

32k steps (PU662T)

64k steps (PU72T) (incl. comment space) (1 step=24 bhits)

Memory

Main memory: SRAM (battery back up)
Optional memory: Flash Memory

Basic ladder instructions: 24, function instructions: 206

User * transfer (single length/double length/register table)
Program * arithmetic caI(_:uIatic.)n (single length/double Iength/binary/BCp) _
* |logical operation (single length/double length/register table/bit file)
Instructions * comparison (single length/double length, sign/unsign)
* program control (jump/FOR-NEXT/subroutine and others)
* function (limit/trigonometric integral/PID/function generator)
* conversion (ASCII/BCD/7 segment other)
* Floating point operations
Execution speed gérigc/?rr::scf:? 62.; zlglc;lidition
Scanning system Floating scan/constant scan (interval: 10-200 msec. 10 msec units)
Multitasking i ?n?:ar: Fr:tC)egrElgl(isllé)%g r;’ésl;imi msec units), 8 I/0O interrupt
1/O device/register 8192 points/512 words (X/Y, XW/YW, .batch 1/10)
(I/0, IW/OW direct 1/O)
Auxiliary device/register [16000 points/1000 words (R/RW)
Special device/register 4096 points/256 words (S/SW)
Timer device/register 1000 points (T./T) (g(r;f)irrj]c;gilcé; of 0.1s and 0.01s timer is user
User Counter device/register [512 points (C./C)
data Data register 8192 words (D)
Link device/register 16000 points/2048 words (Z/W) (for TOSLINE-S20)
Link relay/register 4096 points/256 words (L/LW) (for TOSLINE-F10)
File register 8192 words (F)
Index register 1, J, K (total 3 words)
Retentive memory User specified for RW, T, C and D
Diagnasis BatFery level, I/O bgs chf_ack, I/Q respo.nse, 1/0 registration, 1/0
parity, Watch dog timer, illegal instruction, LP check, others
RAS Monitoring Event history record, scantime measurement, others
Debugging Online trace monitor, force, sampling trace, status latch, single

step/N scan execution, break point, others

74 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

2.1
Basic internal
operation flow

The S2T basic operation flow chart is shown below.

1 Power on '

v

System
initialization

A\ 4

A
Mode HALT mode
control
RUN mode
\/ v
Peripheral Self-
Scan control support diagnosis

A

A

S2T performs system initialization following power on. If no
abnormality is detected, S2T proceeds the mode control processing.

Here, if the RUN mode transitional condition is fulfilled, the scan control
begins. The scan control is the basic function of the S2T for the user
program execution operation. And if the RUN mode transitional
condition is not fulfilled, S2T enters the HALT mode and does not
execute the user program.

The peripheral support processing is executed as background for
communicating with the programmer and the computer link.

Self-diagnosis is carried out in each processing. The above figure
shows the self diagnosis executed as background.

The details of these processes are explained in this section. Self-
diagnosis is explained in 5 RAS functions.

User’'s manual - Functions 75

2. Internal Operation

PART 2 FUNCTIONS

System initialization

2.2

The system initialization is performed after power is turned on.

The following flow chart shows the sequence of processes explained
below.

O

CPU hardware check
and initialization

\4

Power-off time,
Power-on time record

A\ 4

Power interruption Time from power on to completion of the

decision system initialization:
Approx. 2 seconds (without initial load)
v Approx. 3 seconds (with initial load)
Battery check
v
Initial load

|

User data initialization

}

User program check

than 2 seconds, it is decided as power interruption.

CPU hardware check and initialization

System ROM check, system RAM check and initial set up,
peripheral LS| check and initial set up, RTC LSI check, and
language processor (LP) check take place.

Power-off time, Power-on time record

The last time the power was switched off is recorded in the event

history table, and the present date and time read from the RTC LSI
is recorded as power-on time. Also the present date and time are

set into the special register (SW007-SW013).

Power interruption decision

In the hot restart mode (S0400 is ON), if power-off period is less
In this case,
initial load and user data initialization explained below will not be
carried out. (only when the last power-off occurred in the RUN
mode)

Battery check

The battery voltage is checked for the user program and the user
data backup. If the battery voltage is lower than the specified value
a message is recorded in the event history table ‘batt voltage drop’

together with the special relay battery alarm flag (SO00F) setting.

76 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

O

Initial load

The initial load means the term for the transfer of the contents of the
user program and the leading 4k words of the data register (D0O000
to 04095), from the peripheral memory (Flash Memory) to the main
memory (RAM), prior to running the user program.

The initial load is initiated when the power is turned on, the
operation mode switch is in RUN and the RAM/ROM switch is
turned to ROM.

* The initial load is not performed if the user program is written in
the flash memory, but the contents are destroyed (BCC error
detection).

User data initialization
The user data (registers and devices) is initialized according to the
conditions in the following table:

Register/Device Initialization

Input registers/devices(XW/X)

For forced input devices, the previous state is
maintained, the others are 0-cleared.

Output registers/devices(YW/Y)

For coil forced output devices, the previous state is
maintained, the others are O-cleared.

Auxiliary registers/devices (RW/R)

For registers designated as retentive and coil forced
devices, the previous state is maintained,

the others are 0-cleared.

CPU setting part is initialized and the user setting

Special registers/devices (SW/S)

part is maintained.

Timer registers/relays (T/T.)

counter registers/relays (C/C.)

For registers designated as retentive and the device
corresponding to the previous state is maintained,
the others are O-cleared.

Data registers (D)

For registers designated as retentive, the previous
state is maintained, the others are 0-cleared.

Link registers/relays (W/Z)

For forced link devices the previous state is
maintained, the others are 0-cleared.

Link relays (LW/L)

For forced link relays, the previous state is
maintained, the others are 0-cleared.

File registers (F)

All maintained

Index registers (I, J K)

All O-cleared

User’'s manual - Functions 77

2. Internal Operation PART 2 FUNCTIONS

*1) For the force function, refer to 5.11 Debug Support Function.
*2) For the retentive memory area designation, refer to Part 3,
Section 2.2.

0 User program check
The contents of the user program on the main memory (RAM) are
checked by BCC.

2.3
Mode control The S2T operation mode is selected according to the status of the
operation mode switch on the CPU module and mode change requests
from the peripherals (programmer, computer link, data transmission
system).

The S2T operation mode is basically divided into three; RUN mode,
HALT mode and ERROR mode. Also, within the RUN mode, other
than the usual RUN mode, RUN-F, HOLD and DEBUG modes mainly
for debugging are also available.

| \ =
| »
' Operation mode switch i —»| HALT mode
e ! N
_} \\
e EEEEE R e » RUN mode
i Mode change according to
_
i commands from peripherals !
““““““““““““ —>| RUN-F mode

RUN mode

——| HOLD mode

L »| DEBUG mode

\4

ERROR mode

78 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

The following explains the operation of each mode, after which the
conditions (mode transition conditions) are explained.

HALT:

RUN:

RUN-F:

HOLD:

DEBUG:

ERROR:

All external outputs are switched OFF, user program
execution and I/O processing are halted. Inthe HALT mode
the mode control is run periodically (every 50 ms), idle time is
shared to peripheral support and diagnostic control.
Externally this is the mode for creating/amending user
programs.

After initial load (where necessary), user data initialization
(where necessary), I/0 module mounting check, user program
check, and scan mode decisions, S2T goes into the RUN
mode. Mode control, batch 1/O processing timer update, and
user program execution are run repeatedly in the RUN mode.
This is called scan control. There are 2 scanning methods;
the floating scan repeats program execution continuously and
the constant scan repeats program execution in a fixed cycle.
Selection is called scan mode selection. Scan control is
explained in detail in 2.4.

This is the forced run mode. It differs from the above RUN
mode in that scan control begins even if the allocated 1/0
modules are not actually mounted. (If other modules are
mounted instead, the mode will not run.)

Otherwise action is the same as the above RUN mode.

This is the scan temporary stop mode. Only the batch I/O
processing is run, the timer update and the user program
execution are halted. The scan mode continues from the
status previously reached.

The I/O module test can be performed by the data monitor/set
function.

This is the mode which may be used for program debugging
functions (single step execution, single rung execution, N
scan execution, breakpoint setting, etc.).

In this mode, there are three sub-modes; D-HALT, D-STOP
and D-RUN.

For the DEBUG mode functions, see Section 5.11.3.

When an error is detected in one of the diagnostic checks and
operation cannot be resumed by the prescribed retry action,
S2T will enter this mode. In the ERROR mode the output is
completely OFF, only the error reset command is effective
from the programmer (the error reset command takes S2T
back to the HALT mode). Refer to 5 RAS Functions for
detailed diagnosis.

User’'s manual - Functions 79

2. Internal Operation

PART 2 FUNCTIONS

The transition conditions for each mode are shown below.

« HALT mode transition conditions

Previous state - OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
RAM — Power on INZ
(Power off)
ROM HALT Power on IL, INZ
ERROR — — Command Error Reset HALT
Other than o RUN Mode SW - HALT
above Command HALT
* RUN mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
ROM RUN Power on IL, INZ
Power off
() o RUN Power on
(HOT restart)
HALT Mode SW - RUN INZ
RAM RUN
RUN Command RUN INZ
HALT
HALT Mode SW - RUN IL, INZ
ROM
RUN Command RUN IL, INZ
RUN or Return to
HOLD — RUN Command HOLD Cancel mode before
RUN-F
HOLD
* RUN-F mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
RAM RUN Command Force Run INZ
HALT RUN-F
ROM RUN Command Force Run IL, INZ
Return to
RUN or
HOLD — RUN Command HOLD Cancel mode before
RUN-F
HOLD
* HOLD mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
RUN — RUN Command HOLD
RUN-F — RUN Command HOLD HOLD
D-RUN — RUN Command HOLD

80 V series S2T

PART 2 FUNCTIONS 2. Internal Operation

« DEBUG mode transition conditions

Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
HALT — RUN Command Debug
D-HALT
D-STOP — RUN Command D-HALT

Command Initial

Command Continue
D-HALT — RUN INZ
Command Step

Command Rung
Command Initial D-RUN INZ
Command Continue

D-STOP — RUN
Command Step
Command Rung
HOLD — RUN Command HOLD Cancel

N scan complete

Break point detected

Stop condition fulfilled
D-RUN — RUN - D-STOP
Step execution completed

Rung execution completed

Command Stop
Mode SW — HALT

D-HALT — RUN

Command — HALT

Mode SW — HALT HALT
D-STOP — RUN

Command — HALT
D-RUN — RUN Mode SW — HALT

*1) In the table, OP mode, RAM/ROM and Mode SW mean Operation
mode, RAM/ROM switch and Operation mode switch, respectively.

*2) — means the switch status is not related to.

*3) In the OP mode transition factor column, “Mode SW - XX” means
switching the Operation mode switch to XX position. And
“Command XX” means issue of the command XX from the
programmer.

*4) Switching the Operation mode switch between RUN will not affect
the operation mode. However, the protect state will be changed
accordingly. (Refer to Section 5.4).

*5) In the Note column, IL means initial load execution, and INZ means
the user data initialization.

*6) See Section 5.11.3 for the DEBUG mode functions.

User’s manual - Functions 81

2. Internal Operation PART 2 FUNCTIONS

The following diagram illustrates the mode transition conditions.

(Power on)
Auto
5|3
:"CS
D-HALT . 2|8 RUN \
A ,C-)\ E i /

2 T T //

£36 J
Ss /
o< ‘
co

Debug command
O D-HALTO

3
%} O
O , \/ / ©
S \ \ ’ O)
= . | O Force RUNDO/ Q g
£| |D-STOP - —| HALT | ¢ 7 ~| RUN-F 1B 19
S| aragy [THALTIOOHALTD | x [>HALT o0 HALTD % o | =2
o x = | , 2 (@)
2 ol s : i ’ ’ = L
2| 3|8 l Vo / P =
2 c Q 1 B)/ 7 a c
©) ! ! N / s O ©
el |o : : & / L ol |©
— / 7
% g : : o) / d - 9
ol |2 \ = J/ L O ()
> —:.é ! : L ’ 7 T
8 9 : ! = // // =
N QY @ ! , . v
l 0 HOLDO - e
D-RUN T) / > | HOLD
! 0 HOLD CancelO -
| S ,,"—’
v| ¥ T
-
ERROR

*1) --- means the ERROR mode transition.

*2) [- XX] means switching the Operation mode switch to the XX
position.

*3) O XX O means issuing of the command XX from the programmer.

*4) The setting status of the RAM/ROM switch and the Operation mode
switch at power on are indicated by (XX) and [XX], respectively.

82 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

2.4
Scan control

As explained in 2.3, when the RUN mode transition conditions are
fulfilled, initial load (when necessary), user data initialization (when
necessary), I/O mounting check, program check and scan mode setting

are performed, and scan control begins.

In scan control, mode control,

batch 1/O processing, timer update and user program execution are
repeated. The following diagram shows the scan control flow chart.

RUN mode transition conditions

are fulfilled
_____________ l_]
0 Initial load (when necessary)
D “?ﬁvrh%%tiéﬂgé‘!é?%"”
!
0 I/O mounting check
!
1l User program check
!
0 Scan mode setting
!
1l Batch 1/O processing
!
0 Timer update
!
g User program execution
kV
g Mode control
!
O Batch 1/0 processing
!
1l Timer update
!
0 User program execution
|

RUN mode transition
process

First scan

Second scan and then
after (repeated)

User’'s manual - Functions 83

2. Internal Operation PART 2 FUNCTIONS

O Initial load
When the RAM/ROM switch is in the ROM side and the Operation
mode switch is in the RUN position, the user program and the
leading 4k words of the data register (DO00O to D4095) stored in the
peripheral memory (flash memory) will be transferred to the main
memory (RAM) in accordance with the following conditions.

» Initial load will not be performed if the user program is written in
the flash memory but the contents are destroyed (BCC error
detection). In this case, the S2T will enter the ERROR mode.

» Initial load will not be performed if the S2T is in the Hot restart
mode from power interruption.

[0 User data initialization
User data initialization takes place. Refer to 2.2, System
initialization, for detailed initialization. User data initialization will
not be performed if the S2T is in the Hot restart mode from power
interruption.

O 1/O mounting check
The 1/0O module mounting status is checked based on the I/O
allocation information. (Refer to details in 5 RAS functions)

[0 User program check
BCC check will be performed on the user program in the main
memory (RAM). (Refer to 5 RAS functions for details)

0 Scan mode setting
Setting of the scan mode (floating scan or constant scan) will be
performed. The scan mode is explained in 2.4.1.

84 V series S2T

PART 2 FUNCTIONS 2. Internal Operation

0,0 Batch I/O processing
Data exchange between the 1/0 image table (I/O register/device)
and the 1/0O module will be performed based on the I/O allocation
information. Data exchange with the data transmission module
(TOSLINE-S20, TOSLINE-F10) will be also performed. The first
scan is input only.
Batch I/O processing is explained in 2.4.2.

0,0 Timer update
The activated timer registers and the timing relays (S0040-
S0047) will be updated. Timer update is explained in 2.4.3.

0,0 User program execution
User program instructions will be executed in sequence from the
beginning to the END instruction. The execution object is a main
program and sub-programs.
In case of an interrupt program, when the interrupt is generated,
the corresponding interrupt program is activated immediately.
The user program execution control is explained in detail in
section 3.

0 Mode control
Will check the Operation mode switch and for mode change
commands from the programmer and change the operation
mode. Also, scan timing control will be performed by measuring
the scan cycle.

2.4.1 Inthe S2T, the scan mode enables select from floating scan and
Scan mode constant scan.
The floating scan mode is that, immediately after one scan is complete
the next scan commences. It is the shortest scan cycle but the scan

cycle varies according to the user program execution state.

The action of the floating scan is shown in the following diagram.

Scan cycle Scan cycle

3|

& 3|
< r|‘

|
‘ | Mode| le] |Timer| User program | ‘ Mode ‘ I/O |Timer| User program ‘ ‘ |
A

Next scan begins immediately

User’'s manual - Functions 85

2. Internal Operation PART 2 FUNCTIONS

Scan cycle (fixed at 50 ms)

The constant scan mode has a specified time cycle for scanning. The
setup range of the cycle is 10-200 ms (10 ms units). Use this scan
cycle to avoid variation in scan intervals.

The action of the constant scan when the cycle is fixed at 50 ms is
shown in the following diagram.

v Scan cycle (fixed at 50 ms) .

(2
|‘

r|‘ rl

| Mode ‘ 1/0 ‘ Timer | User program ‘ | Mode ‘ I/O ‘ Timer | User program | |

Scan mode selection will be performed by setting up the scan cycle in
the system information menu of the programmer.

To select floating scan, do not set up a scan time (leave blank).

With the constant scan, scan time can be set up within the range 10-200
ms (10 ms units).

~_NOTE
U all

In the constant scan, if the time for one scan exceeds a specified
cycle, it will turn to floating scan, and the constant scan delay flag
(special relay-S0008) comes ON. Also, when the scan time reverts
to within the specified cycle, the scan cycle will return to the original
constant scan.

5 Constant scan cycle v Constant scan cycle N
I i ‘|
| Mode | I/0 ‘ Timer ‘ User program | | Mode ‘ 1/0 ‘ Timer | User program ‘ ‘ Mode |
A
Immediately to the next scan Returns to the constant scan

86 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

2.4.2
Batch 1/0O processing

The status of the external input signals will be read from input modules
onto the I/O register/device (XW/X). Output register/device (YW/Y)
status will be output to the output modules. This process takes place
before user program execution and is done in batches, hence named
batch 1/O processing. The object of the batch I/O processing is as
follows:

Batch input ... signals from input modules without i designation on I/O
allocation and input registers/device (XW/X) which are not forced.

Batch output ... output registers/devices (YW/Y) corresponding to output
modules without i designation on 1/O allocation.

Also, data reading/writing between the data transmission module

(TOSLINE-S20, TOSLINE-F10) and the link registers/relays (W/Z and
LWI/L) will be performed in this process.

I/O register/device

XW000 < | | Input module
XW001
YW002 | > Output module
YWO003

Link register/device

Link register allocated
xgggi to TOSLINE-S20
W0002 ¢ > | TOSLINE-S20
WO0003
Link relay

Link relay allocated

LWO0O |LOF| ... |LO1) LOO to TOSLINE-F10
LW001 [L1F| ... [L11] L1o < > | TOSLINE-F10
LWO0O02 [L2F| ... |L21| L20 :

LWO0O03 [L3F| ... [L31] L30

~v ~

User’'s manual - Functions 87

2. Internal Operation PART 2 FUNCTIONS

If we consider S2T operation simply from the viewpoint of external
signal exchanges, batch 1/O processing and user program execution
can be considered to be repeated continuously, as shown in the
following diagram.

Scan 4

Y

Latest input data incorporated in XW

Batch I/O processing ~ |------ YW data output externally
Y
- YW data updated with reference to
Running user program ------ XW data

)

Basically, this has the advantage that high speed scanning is achieved
because the S2T CPU does not access to the I/0O modules during user
program execution. Also it is easy to create program logic because the
XW data are not changed during user program execution. This
method is called the batch 1/0 processing method (refresh method).

There is also another method of S2T operation whereby 1/0 module
data exchange takes place during user program execution, using IW/I
instead of XW/X, and OW/O instead of YW/Y. This method is called
the direct I/O processing method. It is recommended that the I/O
modules used in direct I/O are inhibited from batch I/O (they have i
specification on 1/O allocation) to shorten the time for batch 1/0
processing.

~ NOTE
U all

(1) Use the following criteria for batch 1/0O processing time.
Input (XW) 00 22 ps/register
Output (YW) 00 22 us/register
Link (W/LW)) 00 7 us/register

(2) 1/O modules with i designation on 1/O allocation (iX, iY, iX+Y) are
not part of batch 1/0O processing. Refer to Part 3 for /O
allocation.

(3) Forced input devices (X), link register devices (Z), and link relays
(L) are not part of batch I/O processing. The force function is
explained in section 5.11.1.

(4) Refer to the data transmission module manual for the allocation
of the link register/relay (W/Z and L/LW) to the data transmission
module.

(5) With direct I/O processing, output will be in register units even
when the bit (O) is specified. Refer to Part 3 for direct I/O
registers.

88 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

2.4.3
Timer update

The timer registers activated by timer instructions will be updated

(increased), and the timing relays (S0040-S0047) will be updated.

» Updating timer registers

lOmsecsysteminterrupt¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Scan

|| | Timer |

|| |Timer|

|| | Timer |

|4

| Scan cycle ‘L
>

| Scan cycle ‘|

€

)

| Timer update cycle | Timer update cycle|
1€ >« >

The number of system interrupts which occur during the timer update

cycle (= scan cycle) will be counted, and the counts will be added up in
the timer registers which are started up by the timer instructions (TON,
TOF, SS, TRG).

The 10 msec interrupt is used for the 0.01 second timer (TO00-user), the
10 ms interrupts are accumulated and used for the 0.1 second timer
The timer reset and the time-up processing will be

(user-T999).
performed in the execution of the timer instruction.

Notes

Timer Timer register Preset range
classification (Timer device) 9
0.01 second TO00-T063 0-32767
timer (T.000-user) (0 0327.67 seconds)
0.1 second T064-T999 0-32767
timer (user-T.999) (0 03276.7 seconds)

On-delay timer (TON)
Off-delay timer (TOF)
Single shot timer (SS)
Timer trigger (TRG)

*) Take the criteria for the time for performing the timer register update
as follows.

4 us/timer register (update time)

» Updating timing relays
The timing relays (S0040-S0047) ON/OFF status is controlled by

using the 10 msec system interrupt.

The binary counter is

configured as shown on the next page. (When RUN is started up
they will be all OFF)

User’'s manual - Functions 89

2. Internal Operation PART 2 FUNCTIONS

S0040 (0.1 sec)

S0041 (0.2 sec)

S0042 (0.4 sec)

EE%

S0043 (0.8 sec)

0.8 sec |

I

S0044 (1.0 sec)

;

S0045 (2.0 sec)

|

S0046 (4.0 sec)

-
.

S0047 (8.0 sec) 4.0 sec

»
»

A

2.5
Peripheral support Peripheral support processing will interpret request commands from the
peripherals (programmer, computer link, data transmission module),
process the requests and responds.

In the S2T, the Language processor (LP) takes charge of user program
execution. The peripheral support processing will be performed by the
main processor during user program execution in parallel.

User program execution (LP) User program
A i
1 |
1 |
1 |
1 |
! v
Scan control | Mode | 110 |Timer ’ Mode |- - -
T 1
| 1
| 1
| 1
Peripheral
support

*1) For commands which require accessing to user data, the command
interpretation will be performed in parallel and the data accessing
will be performed at the bottom of scan at batch for data
synchronization.

*2) If two or more commands are received simultaneously from the
request sources, the order of priority will be as follows:
Programmer > Computer link > TOSLINE-S20(CH1) > TOSLINE-S20(CH2)

90 V series S2T

PART 2 FUNCTIONS

2. Internal Operation

2.6
Programming support
functions

The programming support functions are part of the functions realized as
a result of peripheral support processing. Detailed programming
support functions are explained in separate manuals for the
programmer. The explanation here relates to an overview of the
functions and their relation to the S2T operation modes.

(1) Memory clear
When the memory clear command is received, the content of the
user program memory (RAM) will be initialized and the content of
the user data memory (RAM) will be cleared to 0.

(2) Automatic I/O allocation
When the automatic I/O allocation command is received, the types
of 1/0 modules mounted will be read and the I/O allocation
information will be stored on the system information. (System
information is in the user program memory.)

(3) Reading the /O allocation information
The 1/0O allocation information will be read from the system
information, and sent to the peripherals.

(4) Writing 1/0O allocation information
I/0O allocation information received from peripherals is stored on the
system information.

(5) Reading the system information
The system information (program ID, retentive memory
specification, number of steps used, scan mode specification, other)
is read and sent to the peripherals.

(6) Writing system information
The system information (user setup items) received from the
peripherals is stored in the system information.

(7) Reading the program
In response to a request from peripherals, a specified range of
instructions will be read from the user program memory, and sent to
the peripherals.

(8) Writing the program
A specified range of instructions is received from peripherals and
written onto the user program memory. After writing, the BCC
(check code) correction will be carried out immediately.

User’'s manual - Functions 91

2. Internal Operation PART 2 FUNCTIONS

(9) On-line program change
Changing the content of the user program memory
(adding/changing/inserting/deleting) and the BCC correction will be
carried out in the RUN mode. This action is performed after
completion of one scan, so the scan cycle is extended while this is
being processed.

Changing the program on-line is subject to the following
restrictions.

* You may not change the number or running order of instructions
which are related to the program execution (see below).

END, MCS, MCR, JOS, JCR, JUMP, LBL, FOR, NEXT, CALL,
SUBR, RET, IRET

* You may not change the SFC structure in the SFC program, but
you may change the action corresponding to a step and a
transition condition. (Ladder diagram part).

(10) Batch reading of program
The content of the user program memory (including the system
information) is read and sent to the peripherals.
It is used for the program uploading (S2T - Programmer - Disk).

(11) Batch writing the program
The user program (including the system information) is received
from peripherals and will be stored in the user program memory.
It is used for program download (Disk — Programmer — S2T).

(12) Search
The instruction/operand specified by peripherals will be searched
through the user program memory and their address will be sent to
peripherals.

(13) Program check
When the program check command is received, the user program
syntax will be checked. The result of this check will be sent to
peripherals.

(14) Reading data
The specified data will be read from the user data memory in
response to a request from the peripherals, and the data will be
sent to the peripherals.

(15) Writing data
User data address and data content received from peripherals will
be stored in the user data memory.

92 V series S2T

PART 2 FUNCTIONS 2. Internal Operation

(16) Program reading from the EEPROM (flash memory).
The checked the flash memory content will be transferred to the
user program memory and user data memory (RW, T, C, D) of the
main memory (RAM).

(17) Program writing to EEPROM (flash memory).
The content of the user program memory and the user data
memory (RW, T, C, D) will be transferred to the flash memory.

The execution conditions for these functions are shown in the following
table.

Function Execution conditions

Reading I/O allocation information

Reading system information

: Always possible
Reading the program

Reading data

Batch reading the program

Possible except in ERROR mode
Search

Program check

Program writing to IC memory Possible in HALT mode
card/EEPROM

Memory clear

Automatic 1/O allocation

Writing I/O allocation information

Writing the system information Possible in the HALT mode

Writing the program

Batch writing the program

Program reading from flash memory

On-line program change Possible except in the ERROR mode
Writing data Possible except in the ERROR mode
___NOTE
U] ALl

If the password function is used, available functions are limited
according to the protect level of the password. Refer to 5.13 for the
password function.

User’'s manual - Functions 93

3. User Program Execution Control PART 2 FUNCTIONS

3.1
Program types The S2T can run several different program types in parallel (this
function is called the multitask function). This function can be used to
realize the optimal response time for each application.

The programs are classified into the 3 types below. There are a total of
14 programs.

e Main program (one)
This program will be executed every scan and forms the main part of
the scan.

* Sub-programs (4)
This program can be activated by other programs. A total of 4 (#1-
#4) are provided. (#1 is fixed function)
In the floating scan, the sub-program will be executed after the main
program execution with time limit (user setting). And in the
constant scan, the sub-program will be executed in idle time from
completion of the main program execution to the beginning of the
next scan.

By means of sub-programs, the main program can be used as fast
scanning task, and the sub-programs as slow scanning
(background) tasks.

e Interrupt programs (9)
When the interrupt condition is fulfilled, the S2T will stop other
operations and execute the corresponding interrupt program
immediately. A total of 5 are provided: one program which starts
up at specified intervals (Timer interrupt program), and 8 programs
which start up according to interrupt signals from I/O modules with
an interrupt function (I/O interrupt programs #1-#8).

By means of timer interrupt, time critical control can be achieved,
and by means of I/O interrupts, I/O responses can take place
without affecting the scan cycle.

The sub-programs and the interrupt programs execution method and
the execution conditions are explained in this section.

94 V series S2T

PART 2 FUNCTIONS

3. User Program Execution Control

3.2
Main/sub programs
execution control

Four sub-programs (Sub#1 to Sub#4) can be registered. They will be
executed according to the conditions described in the table below.
Sub#1 will be executed only once before the main program execution in
the first scan. The function of Sub#2 can be selected from the normal
mode or special mode. Sub#3 and Sub#4 are fixed in normal mode
function.

In the normal mode, the execution mode can be selected from one time
execution or cyclic execution.

No. Normal/special One time/cyclic Operation
Executed only once before main
Sub#1 | N/A N/A program in the first scan. (after 1/O
processing)
One time mode Executed when S0409=1.
Normal mode when 30405=0 S0409 is reset automatically.
when S0403=0 | cyclic mode Executed once every specified
Sub#2 when S0405=1 scans (SW042) during S0409=1.
Executed only once before main
Special mode N/A program in the first scan, instead of
when S0403=1 Sub#1, if S0400=1 and the last
power off period is less than 2s.
One time mode Executed when S040A=1.
Sub#3 Normal mode when S0406=0 SO040A is reset automatically.
u
only Cyclic mode Executed once every specified
when S0406=1 scans (SW043) during SO40A=1.
One time mode Executed when S040B=1.
Subt4 Normal mode when S0407=0 S0408 is reset automatically.
u
only Cyclic mode Executed once every specified
when S0407=1 scans (SW044) during S0408=1.

*) Hereafter, the main program, and sub-program #1 to sub-program
#4 are referred as Main, Sub#1 to Sub#4, respectively.

User’'s manual - Functions 95

3. User Program Execution Control

PART 2 FUNCTIONS

Sub#1 operation

The flags (special relays/registers) related to the sub-program operation
are summarized in the table below.

Sub No. Flag (Name) Function Note

Sub#1l | S0410 (Sub#1 executing) | 0: Not executing 1: Executing Status

Sub#2 | S0400 (Hot restart mode) | 0: Normal 1: Hot restart Setting
S0403 (Special mode) 0: Normal 1: Special Setting
S0405 (Sub#2 mode) 0: One time 1: Cyclic Setting
S0409 (Sub#2 start) 0: No request 1: Start request Command
SWO042 (Sub#2 interval) Scan number setting for cyclic mode | Setting
S0411 (Sub#2 executing) | 0: Not executing 1: Executing Status
S0415 (Sub#2 delay) 0: Normal 1: Delay Status

Sub#3 | S0406 (Sub#3 mode) 0: One time 1: Cyclic Setting
S040A (Sub#3 start) 0: No request 1: Start request Command
SWO043 (Sub#3 interval) Scan number setting for cyclic mode | Setting
S0412 (Sub#3 executing) | 0: Not executing 1: Executing Status
S0416 (Sub#3 delay) 0: Normal 1: Delay Status

Sub#4 | S0407 (Sub#4 mode) 0: One time 1: Cyclic Setting
S040B (Sub#4 start) 0: No request 1: Start request Command
SWO044 (Sub#4 interval) Scan number setting for cyclic mode | Setting
S0413 (Sub#4 executing) | 0: Not executing 1: Executing Status
S0417 (Sub#4 delay) 0: Normal 1: Delay Status

*) In the above table, “Setting” means the user preset flag for

execution mode selection, “Command” means the user control flag
for activating the sub-program, and “Status” means the execution
status flag which can be monitored in the user program.

Sub#1 will be executed only once in the first scan before Main

execution.

HALT mode or system

initialization

N

First scan

»e

Therefore, Sub#1 can be used as the initial setting program
at the start of the operation.

Second scan

'l

<
<

r|‘

v

Mode

Transition | /O | Timer

Sub#1 | Main

Mode

1/10 | Timer Main

96 V series S2T

PART 2 FUNCTIONS

3. User Program Execution Control

Sub#2 special mode
operation

System initialization

If Sub#2 is set as the special mode (S0403=1) and the Hot restart
condition is fulfilled (S0400=1 and recovery from power off less than 2
sec), Sub#2 will be executed once in the first scan before Main
execution. In this case, Sub#1 is not executed. Also, when the Hot
restart condition is fulfilled, the initial load and the user data initialization
will not be performed.

Sub#2 special mode can be used as the initial setting program for the
restart from power interruption.

P First scan | Second scan

(Hot restart)

Normal mode operation
(Sub#2, Sub#3, Sub#4)

>
rl < r|‘ »

|Mode| Transition | 110 |Timer | Sub#2 | Main | |M0de 110 | Timer | Main |

In the normal mode, the sub-programs will be executed after the main
program execution with time limit. The time assigned for the sub-
program execution is different between in the floating scan mode and in
the constant scan mode.

In the floating scan mode:

The user sets the sub-program execution time in the system
information. The setting range is 1 to 100 ms (1 ms units). The
activated sub-program(s) will be executed within this time limit. If the
execution cannot finish within this time limit, the execution will be
interrupted and re-started in the next scan.

In the constant scan mode:

The activated sub-program(s) will be executed in idle time from
completion of the main program execution to the beginning of the next
scan. If the sub-program execution cannot finish within this time limit,
the execution will be interrupted and re-started in the next scan.

There are two execution modes in the normal mode operation; the one
time execution and the cyclic execution.

In the one time mode, the sub-program will be activated when the
Sub#n start flag changes from OFF to ON.

In the cyclic mode, the sub-program will be cyclically activated every
designated number of scans during the Sub#n start flag is ON.

User’'s manual - Functions 97

3. User Program Execution Control PART 2 FUNCTIONS

One time mode The sub-program start request is checked at each time of the main
program and the sub-program execution completed. If two or more
start requests occur at a time, the order of priority will be as follows.

Sub#2>Sub#3>Sub#4

When the sub-program is activated, the start flag is reset automatically.

» Operation example in the floating scan

5 Scan ., Scan , Scan . Scan _, Scan
['I‘ ’l‘ ’l‘ ’l‘ ’l o
Main :
l : ! l l : : ! l : : l
| | | \ | | ! ! | | | |
' ! 1 1 ' ! ! 1 1
Sub#2 ! : ! Lo o
R o T
! ! F———— 1 ! 1 1 1
Sub#3 Vo stopped ! ! o
: - [emed] R
I | I | I I | | | |
| [| | ! ! | 1 | 1
Sub#4 - ! | I:] Lo I | I |
T T A
| . | I | | | ! | | | |
! :Tlme:llmltu [Lo I I I I
i e [Lo A R
b b b Lo 'O O O
Oovy vo O o, 0 IZIE EIZID: v v |
| | | | |
Sub#2 start (S0409) . v — — v
1 1 l [1 |
Sub#2 executing (S0411) :J_! : : ; ; : L
I I
I
Sub#3 start (S040A) — . ¢ i . i
1 ! 1 ! T
I I
Sub#3 executing (S0412) :—,—! :
| I
Sub#4 start (S0408) | | ‘:'
I
Sub#4 executing (S0413)

Start requests to Sub#2, Sub#3 and Sub#4 from Main
Sub#2 activated

Sub#2 completed and Sub#3 activated
Sub#3 interrupted and next scan started
Main completed and Sub#3 re-started
Sub#3 completed and Sub#4 activated
Sub#4 completed and next scan started
Start request to Sub#3 from Main
Sub#3 activated

Sub#3 completed and next scan started
Start request to Sub#2 from Main
Sub#2 activated

Sub#2 completed and next scan started

OobOoooboooooogooaad

98 V series S2T

PART 2 FUNCTIONS 3. User Program Execution Control

* Operation example in the constant scan

Scan (constant)

»
|
|
|
|

Main :I

Sub#2

Scan (constant) , Scan (constant)

»l
» <
|
|
|

5”2
<

|

1

|

|

\ 4

Sub#3

O

Sub#4 (stopped),

O
O
O
O

O
€]
[}
S

«“--- - -~ - -~ " —" —" " - ———

]

Sub#2 start (S0409)

m)
S T T T

€--{------

]

Sub#2 executing (S0411)
Sub#3 start (S040A)

]

4--|1---t+----—————----

Sub#3 executing (S0412)
Sub#4 start (S040B)

|

«--4---F--f--4----"-"-"==----

|

Sub#4 executing (S0413)

Start request to Sub#2 from Main

Sub#2 activated

Sub#2 completed

Start requests to Sub#3 and Sub#4 from Main
Sub#3 activated

Sub#3 completed and Sub#4 activated
Sub#4 interrupted and next scan started
Sub#4 re-started

Sub#4 completed

Ooooooooodd

User’'s manual - Functions 99

3. User Program Execution Control PART 2 FUNCTIONS

Cyclic mode While the start flag is ON, the sub-program will be executed once every
designated number of scans. The order of execution priority is as
follows:

Sub#2>Sub#3>Sub#4

The start flag should be controlled (ON/OFF) by the user program. If
the sub-program execution cannot be completed within the designated
scans, the delay flag (S0415, S0416, S0417) is set to ON.

» Operation example in the floating scan

n+1l n+2 . n+3 n+8
> — > —>

OC OO0

|

Scan counts

v

Main

Sub#2 (every 3 scans)

L]

0 N
Sub#3 (every 8 scans)

:
I
I
I
I
I
I
I
i
Sub#4 (every 20 scans) \
I
v

<-f-O----m--

| [
o 5 I
! U, .0 O 3 o0 g
Sub#2 start (S0409) —— y v R v BER B
I | |
Sub#2 executing (S0411) v 1 E : |_\4[<; : : 3 ! E
Sub#3 start (S0408) ——— v) vy
Sub#3 executing (S0412) ' . : « I ! E
Sub#4 start (S0408) ~—— vy » Y ey
l_l I . |_|

Sub#4 executing (S0413) 5 G

Start requests to Sub#2, Sub#3 and Sub#4 from Main
Sub#2 activated

Sub#2 completed and Sub#3 activated

Sub#3 interrupted and next scan started

Sub#3 re-started

Sub#3 completed and Sub#4 activated

Sub#4 completed

Sub#2 activated in the first scan of next 3 scans
Sub#2 completed

Sub#3 activated in the first scan of next 8 scans
Sub#3 completed

Sub#4 activated in the first scan of next 20 scans
Sub#4 completed

Ooooooooooogooaod

100 V series S2T

PART 2 FUNCTIONS

3. User Program Execution Control

Scan counts

Main

Operation example in the constant scan (Sub#3 and Sub#4 are
omitted)

<C
DY

A\ 4

| 0 g O
Sub#2 (every 10 scans) i izs;o;_)p_ec;): :(s;J;p;cI)[] '(;t(;p;e_d)-i_:(;t;p;e_d):
Di ED i al O
Sub#2 start (S0409) — v v v v
Sub#2 executing (S0411) S |—SS—, L

OobOoooboooooogooaad

Start request to Sub#2 from Main
Sub#2 activated

Sub#2 interrupted

Sub#2 re-started

Sub#2 interrupted

Sub#2 re-started

Sub#2 completed

Sub#2 activated in the first scan of the next 10 scans
Sub#2 interrupted

Sub#2 re-started

Sub#2 interrupted

Sub#2 re-started

Sub#2 completed

User’'s manual - Functions 101

3. User Program Execution Control PART 2 FUNCTIONS

3.3
Interrupt programs When the interrupt condition is fulfilled, the S2T will stop other
execution control operations and execute the corresponding interrupt program
immediately. As shown below, you can register one timer interrupt
program which starts up according to an interval setup in system
information and 8 I/O interrupt programs which start up according to
interrupt signals from I/O modules with an interrupt function.

Interrupt program Operation
Activated according to the interrupt interval setup in
Timer interrupt system information. The interrupt interval is set at 2 to
1000 ms (1 ms units)
I/O interrupt #1 I/O interrupt programs are activated by interrupt signals
-1/O interrupt #8 generated from I/O modules with interrupt function
I Set interval Ll Set interval N
Interrupt conditions = e d
Timer I/0 #1 Timer 1/O #4 I/0 #2 Timer
! Scan ! l Scan ' Scan ' _ Scan! Scal < Scan o

Scan control

it] e !

T

I

Timer interrupt |:|

1/O interrupt #1 l:l

I:‘ I/O interrupt #2

1/O interrupt #4

(1) Interrupt priority
When several interrupt conditions occur simultaneously, the
programs will be executed in the order of priority shown in the
following table (the lower the numerical value the higher the level of
priority). Also, if other interrupt conditions occur during an interrupt
program execution the interrupt conditions will be put on hold, and
after the interrupt program execution is completed, they will be
executed in priority order.

102 V series S2T

PART 2 FUNCTIONS

3. User Program Execution Control

Interrupt program Priority level Priority in class

Timer interrupt 0 —

I/O interrupt #1 0 (initial value)
I/O interrupt #2 1 (ditto)

I/O interrupt #3 2 (ditto)

I/O interrupt #4 1 3 (ditto)

I/O interrupt #5 4 (ditto)

I/O interrupt #6 5 (ditto)

I/O interrupt #7 6 (ditto)

I/O interrupt #8 7 (ditto)

(2)

3)

The timer interrupt has the highest level of priority, followed by the
I/O interrupt programs in order.

With respect to the level of priority for I/O interrupt, the 1/O interrupt
from the module nearest the CPU has the highest level of priority.
Refer to (3) below regarding the correspondence between interrupt
programs and 1/0O modules.

Interrupt enable/disable

You can switch between interrupt disable and enable by using the DI
instruction (interrupt disable) and El instruction (interrupt enable).
By executing the DI instruction, the interrupt conditions which occur
during interrupt disable mode will be put on hold; these will be then
executed instantly when the interrupt enable mode is entered by
executing the El instruction. (DI and El should be used in a pair)
Also, in transition to RUN mode, the interrupt will be disabled in the
first scan. It will be enabled automatically from the second scan.

Allocation of 1/O interrupt program

The I/O interrupt with the lowest number corresponds to the I/O
module with interrupt function nearest the CPU, in the initial state.
This allocation can be changed. See Part 3 Section 2.3.3.
There are no restrictions on the mounting position of /0O modules
with the interrupt function.

NOTE
U all

The I/O interrupt response time (from the time interrupt conditions
arise until interrupt program starts up), with normal interrupt enable
and no other interrupt program started up, is an instruction execution
time +500 ps in worst case.

User’'s manual - Functions 103

4. Peripheral Memor

y Support Functions PART 2 FUNCTIONS

4.1
Flash Memory
(EEPROM) support

The contents of the user program and the register data can be stored in
the flash memory. They can be read into the main memory (RAM) by
the initial load function or programmer operation. Also, the data
registers (D) stored in the flash memory can be accessed from the user
program. Flash memory makes it possible to run without battery, and
recovery is easy in the event of a program being destroyed.

The following functions are available with EEPROM.

Function

Details Conditions

Program write
flash memory

Writes the contents of the user
program (including the system
information) and the data registers
(D), the timer registers (T), the
counter registers (C) and the auxiliary
relay registers(RW) in the main
memory (RAM) into the flash memory.

into Performed by the ‘Program
write (RAM - IC card/
EEPROM)’ command from the
programmer in the following
state.

- HALT mode

Program read

from flash memory

Transfers the contents of the flash
memory to the user program memory,
the data registers (D), the timer
registers (T), the counter registers
(C), and the auxiliary relay registers
(RW) in the main memory (RAM).

Performed by the ‘Program
read (RAM « IC card/
EEPROM)’ command from the
programmer in the following
state.

- HALT mode

Initial load

Transfers the contents of the flash
memory to the user program memory
and the leading 4 k words of the data
registers (DO00O to D4095) in the
main memory (RAM).

At system initialization:
- RAM/ROM switch is in ROM

At transition to RUN mode:
- RAM/ROM switch is in ROM
- Mode switch is in RUN

Read/write the

flash memory

data registers in

Reads the data of data registers in
flash memory and stores in the main
memory by user program. Writes the
specified data of the main memory
into the data registers in flash
memory by user program.

Accessed by Expanded data
transfer instruction (XFER)

~_NOTE
U Al

(1) Referto 2.2, System Initialization and 2.4, Scan Control, with
respect to the initial load function.

(2) The number of times the flash memory can be written will be
limited by the hardware to 100,000 times. The S2T counts the
number of times the flash memory write is performed. If the
100,000 times is exceeded, the flash memory alarm flag (S0007)
will come ON. However, this checking is not effective for data
writing by XFER instruction. It is recommended to check it by
user program for the XFER instruction.

104 V series S2T

PART 2 FUNCTIONS

4. Peripheral Memory Support Functions

4.2

Expansion memory Expansion memory can be used as user data expansion area
support (expanded file register).

The following functions are available with the expansion memory card.

Use type Function Details Conditions
Expansion | Sampling trace | Stores trace data when Used with the sampling
memory buffer the sampling trace is trace function when the

executed. MMR allocation is set in

the CPU slot.

Expanded file
register

Reads/writes the data in Accessed by the

the expansion memory expanded data transfer
(512k words) as expanded | instruction (XFER).

file registers from the user

program.

User’'s manual - Functions 105

5. RAS Functions

PART 2 FUNCTIONS

51
Overview

5.2
Self-diagnosis

The meaning of RAS is Reliability, Availability and Serviceability. The
RAS function is the general term used for the functions installed in the
S2T which increase the reliability and serviceability of the applied
systems and support the operation of the system.

This section explains the self-diagnostic functions, maintenance
functions, the debugging functions installed in the S2T, and the system
diagnostic function which can be used by the S2T user.

The details of the self-diagnosis which are designed to prevent
abnormal operation, the timing of the diagnosis and behavior when
malfunctions are detected are shown below.

In building up a system, consider the system operation safety in case of
the S2T shutdown (fail safe) and the system operation backup function.

In the following explanation, error registration means the storing of the
details of the error and the time when it occurred on the event history
table; error down means that all the outputs turn OFF and ERROR
mode is entered; alarm means that the error is registered, the special
relay is set, and running is continued.

(1) Diagnosis at system initialization (when power supply is turned on)

Iltems Diagnostics details Behavior when error detected
System ROM The correctness of the system | Error registration takes place,
BCC check ROM is checked by BCC. FAULT and I/O LED flash.

(Programmer communication
impossible)
System RAM The system RAM read/write is | Error registration takes place, the
check checked. FAULT LED flashes.

(Programmer communication
impossible)

Peripheral LSI
check

Peripheral LSl is checked for
normal initialization. (Read
back check)

Error registration takes place,the
FAULT LED flashes, the I/O LED
lights up. (Programmer
communication impossible)

LP check

LP (language processor) is
checked for normal
initialization.

Error registration takes place,
ERROR mode is entered.
(Error reset command invalid)

User program
memory check

The correctness of the content
of the user program memory is
checked by BCC. (Checked
after initial load when
peripheral memory is present)

Error registration takes place,
ERROR mode is entered.

User data
memory check

The user data memory
read/write is checked.

Error registration takes place,
ERROR mode is entered.
(Error reset command invalid)

106 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

Peripheral
memory check

The correctness of the
peripheral memory (flash
memory) is checked by BCC.

Error registration takes place.
ERROR mode is entered.

RTC LSI The validity of the data read | Alarm. Until reset, the date
check from the RTC LSI (date and | and time data (in the special
time) is checked. The data | register) are HFF.
is set in the special register.
Battery check | The voltage of the memory | Alarm. If the user program

backup battery is checked

memory BCC is normal, it will
start up normally.

(However, user data in the
retentive memory
specification is not
guaranteed.)

(2) RUN start-up diagnosis

Items

Diagnostics details

Behavior when error detected

I/O verify check

The 1/O allocation information
and the 1/0 modules mounted
are verified, to check that they
agree.

Error registration, error down.
However, when start-up is
activated by a command from the
programmer, a message will the
displayed. It remains in HALT
mode and no error registration
will take place.

1/0 bus check

Checks that I/0 bus is normal.

Error registration, error down.
However, when start-up is
activated by a command from the
programmer, a message will be
displayed. It remain in HALT
mode and no error registration
will take place.

Expansion unit
power check

Checks that power of
expansion units is normal.

Error registration, error down.
However, when start-up is
activated by a command from the
programmer, it will remain the in
HALT mode and no error
registration will take place.

I/O response
check

Checks that response when
1/0 module is accessed is
within specified response time
limits.

Error registration, error down.
However, when start-up is
activated by a command from the
programmer, a message will be
displayed. It remain in HALT
mode and no error registration
will take place.

Program check

User program syntax is
checked.

Error registration, error down.
However, when start-up is
activated by a command from the
programmer a message will be
displayed. It remain in HALT
mode and no error registration
will take place.

User’'s manual - Functions 107

5. RAS Functions

(3) Diagnosis during scan

PART 2 FUNCTIONS

Items

Diagnostics details

Behavior when error detected

1/0 bus check

Checks that I/O bus is normal.
(at batch 1/O processing)

Error registration then error
down.

(However, if recovered by retries,
only registration will take place;
no error down.)

Expansion unit
power check

Checks that power of
expansion units is normal.
(at batch 1/O processing)

Error registration then error
down.

(However, if recovered by retries,
only registration will take place;
no error down.)

I/O response
check

Checks that response when
1/0 module is accessed is
within specified response time
limits.

(At batch 1/O processing and at
direct I/O instruction)

Error registration then error
down.

(However, if recovered by retries,
only registration will take place;
no error down.)

I/0O bus parity
check

Bus parity is checked when the
1/0 module is accessed.

(At batch 1/O processing and
direct I/O instruction)

Error registration then error
down.

(However, if recovered by retries,
only registration will take place;
no error down.)

LP function Test program run in LP Error registration then error
check (language processor) and down.
checked for correct results. (However, if recovered by retries,
(When running the user only registration will take place;
program) no error down.)
LP illegal Checks whether or not illegal Error registration and then error
instruction instruction is detected in LP down.

detection check

(language processor).
(When running the user
program)

Scan time over
check

Checks that scan cycle does
not exceed set value (200 ms).
However, set value can be
changed by user instruction
(WDT). (When running the
user program)

Error registration and then error
down.

108 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

(4) Diagnosis in any mode (executed in background)

Iltems Diagnostics details Behavior when error detected
System ROM The correctness of the system | Error registration and then error
BCC check ROM is checked by BCC. down.

(Error reset command invalid)
System RAM The system RAM read/write is | Error registration and then error
check checked. down.

(Error reset command invalid)

Peripheral LSI
check

Peripheral LSI setting status is
checked.

Error registration and then error
down.
(Error reset command invalid)

Watchdog
timer check

Watchdog timer system
runaway check.
(Set at 350 ms)

Error registration and transition to
ERROR mode after system
reset.

User memory
check

User memory (RAM)
read/write checked.

Error down after error registration
(with retry).

LP check

LP (language processor)
read/write is checked.

Error registration and then error
down.

Battery check

Memory backup battery
voltage checked.

Alarm

RTC LSI check

Date and time data read from
RTC LSI every 300ms, validity
checked, data set in special
register.

Alarm. Until reset, date and
time data are HFF.

~_NOTE

U Al

Refer to the separate S2T User’'s Manual-Hardware, for details of

troubleshooting.

User’'s manual - Functions 109

5. RAS Functions

PART 2 FUNCTIONS

5.3

Event history When an error is detected by the S2T diagnosis, the details and time of

occurrence will be registered in the event history table (besides errors,
the times power ON/OFF are also registered). The 30 most recent
occurrences of errors can be registered in the event history table. As
new data is registered, the data registered previously will be shifted
down in sequence, and the oldest data will be deleted.

Use the event history table for maintenance information. It can be
displayed on the programmer as below. The contents of the event
history table are remained until executing the event history clear
command or the memory clear command from the programmer.

<{Event Histmvyd
Bate Tise Fuent Comt Tnfo 1 Ipfe 2 Info 3 Mode

. $4-85-88 15:56:82 Systen power on 1 INIT.
94-95-08 £6:55:25 System power off 1
U4-84-P1 21:55:2% System power on 1
. 94-84-B1 71:54:5Z2 System power off 1
31-84-A1 Z1:54:21 [no ansver 5 48841 YWeR2 RN
1
1
1

54-84-81 17:11:88 Sysiem power on INIT.
$4-94-81 17:05:12 Sysiem power off BALT
94-84-0] 18:42;16 Mo ENO/IRET error 4 -9l BAA2B BALT PR

00 A I L

HEPRALT P RIGEIEvent
fat | BN TGN Concel |

i FI i F3 T3 i T 113 F3 F1E

The meaning of each item on the screen above is as follows.

(1) Number (1-30)
Indicates the order of occurrence. Number one is the most recent.

(2) Date (year-month-day)
Indicates the date of occurrence. This is shown as “??-??-?2?" if
the RTC LSl is abnormal.

(3) Time (hours: minutes: seconds)
Indicates the time of occurrence. This is shown as"??:??:??" if the
RTC LSl is abnormal.

110 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

(4) Event
Indicates the sort of error detected. (System power on and system
power off are also registered.)

(5) Count
Indicates the number of times the error was detected. For
example, an error is detected during a process, the retry is repeated
4 times, the malfunction does not change and it goes to error down.
This is indicated as count 5 and DOWN will be displayed under the
Mode.

(6) Information 1, Information 2, Information 3
Indicates supplementary information regarding the error. For
example, with an 1/O error the 1/O module position (unit No, slot No)
where the error occurred and the read/write register address etc.
will be indicated.

(7) Mode
Indicates the actual mode when the error was detected. Also
displays DOWN when error down occurs. On the mode display,
INIT indicates the system initialization after power is turned on.

*) Refer to the separate S2T User's Manual-Hardware for display
details of detected errors and methods of proceeding.

User’'s manual - Functions 111

5. RAS Functions PART 2 FUNCTIONS

5.4
Power interruption The S2T has one function that control the S2T’s operation in the event
detection function of power interruption. That is the hot restart function which enables the
restart from the power interruption without initialization.

541
Hot restart function For the S2T, the user can decide the operation re-start condition at the
recovery from the power interruption.

The hot restart function will be effective when the special relay S0400 is
set to ON (S0400=1). In this case, if power is turned off in the RUN
mode and recovered within 2 seconds, the S2T moves into RUN mode
without the initial load and the user data initialization.

By using this function together with the special mode of the sub-
program #2, the user can decide the operation re-start condition as

follows:
Interruption time Re-start condition Method
Longer than 2 Re-start after the normal —
seconds initialization
Within 2 seconds Re-start after the normal | Do not use the hot restart
initialization function (S0400=0)
Re-start after setting the | Use sub-program #2 as
prespecified data into special mode to set
registers/devices prespecified data
Re-start after setting the | Use sub-program #2 as
data according to input special mode to set data
status according to input status
Re-start without any Do not use sub-program
initialization (hot restart) | #2 special mode
___NOTE
LAl
(1) When power interruption is longer than 2 seconds, normal
initialization will be carried out even if S0400 is ON.
(2) The hot restart function is also available by using the
programmer’s System Diagnosis menu in addition to setting
S0400 to ON.

112 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

5.5
Execution status The following functions are served by the S2T for user to monitor the
monitoring S2T execution status. (Refer to separate manuals for the programmer
for operation of these.)

(1) Execution time measurement function
Measures the following execution times. This data can be
monitored on the programmer.

* Scan cycle
current value, maximum value, minimum value (1 ms units)

* Main program execution time
current value, maximum value, minimum value (1 ms units)

* Sub-program execution time (Sub#1-#4)
current value, maximum value, minimum value (1 ms units)

* Timer interrupt execution time
latest value, maximum value, minimum value (0.1 ms units)

* 1/O interrupt execution time (I/O #1-#8)
latest value, maximum value, minimum value (0.1 ms units)

~_NOTE
U Al

(1) The scan cycle value includes the scan overhead and all
interrupts occurring during the scan.

(2) With the main program and the sub-program execution times the
interrupt time for any interrupts occurring are excluded.

(2) Online trace function
This function traces the status during program execution and
displays on the programmer screen (power flow display, register
value display). Since this displays data from the paint in time that
the instruction is executed rather than at the end of a scan cycle, it is
useful for program debugging.

User’'s manual - Functions 113

5. RAS Functions

PART 2 FUNCTIONS

5.6
Sampling trace function

Sampling buffer

Sampling target

The sampling trace function collects the status of specified
registers/devices and stores it into the sampling buffer, according to the
specified sampling condition. The collected data can be displayed on
the programmer screen in the format of trend graph (for registers) or
timing chart (for devices).

The sampling trace function is useful for program debugging and
troubleshooting.

Expand memory of the S2T CPU module is used for the sampling
buffer.
The sampling buffer size is 8k words (fixed).

The sampling targets (registers/devices) are selected from the following
combinations.

O 3registers + 8 devices
[0 7 registers + 8 devices

In case of O, 256 times per 1 k words (max. 2048 times) of collection is
available. In case of 1,128 times per 1 k words (max. 1024 times) of
collection is available.

114 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

Sampling condition

There are the arm condition and the trigger condition for the sampling
trace execution conditions.

The arm condition consists of the start condition and the stop condition.
When the start condition is fulfilled, the data collection is started. And
when the stop condition is fulfilled, the data collection is stopped.
However, if the after counts is added to the stop condition, the arm
condition is extended for specified counts of scans after the stop
condition is fulfilled.

The trigger condition specifies the timing of the data collection. That s,
the data collection is carried out at the moment of the trigger condition is
fulfilled while the arm condition is fulfilled.

The sampling target and the condition are set on the programmer
screen (below). Setting is available when the S2T is in HALT mode or
the sampling trace is disabled by pressing F2 (Disable).

1. Buffer §ize § kiords
E. Sampling Type 7 registers+d devices 3 reglsters+8 devices
3. Ars Cenditien Start § (1] lpsisn Sigs [H
stop | (11 Upsiag Sigm [] ;
AFTER | 1 :
4, Trigger Conditlon [10 ()] Ussign Sign [1
5. Sawpling Disable/Enable Disable Emable
5. Sampling Status Stapdby Executing
7. WELE Target
I 1L 11 Pl 11 Ti 11 H
o i ce
I i 11 1L 11 10 1r 1L 1
398 REN FPRNGIITrac _
Falr IO et NESTTON Stort M " ETIGE Uance |
F1 72 3 |12} 3 [1] 7 Fo 3 FI18

The sampling trace is executed when it is enabled by pressing F3
(Enable).

NOTE
U Al

The sampling trace can also be started/stopped by manually without
setting the arm condition. F5 (Start) and F4 (Stop) are used.

User’'s manual - Functions 115

5. RAS Functions

PART 2 FUNCTIONS

The setting method for each condition is as follows.

Arm start condition:

Start

[

| —

A

(

Y

)] \Unsign Sign [|

A

Arm stop condition:

Comparison value if reference is register and
condition is =

Condition

for register: Blank 000 =
10000Increase
2 0000 Decrease
3 0000Change

for device: 10000Rising (OFF - ON)
2 0000Falling (ON - OFF)
3 0000 Change (both)

Reference: Register or device

Stop

[

(

)] Unsign Sign []
AFTER |]

Arm condition is extended for specified counts
of scans

Blank 0000000 No setting

1 to 65535 000 Scan counts

*) Other setting items are the same as the arm
start condition.

116 V series S2T

PART 2 FUNCTIONS

Trigger condition:

5. RAS Functions

()] Unsign Sign []

NOTE

Counts of condition fulfilled:
Data collection is carried out once per counts times
the following condition fulfilled

Blank 0000000 No setting (counts = 1)

1 to 65535 000 Counts

*) Other setting items are the same as the arm
start condition.

U] ALl

The evaluation of the conditions are performed at the end of every

scan.

Execution example

Sampling target and condition setting example:

1. Duffer Size kiords
2. Samplipg Type 7 registers+8 devices 3 registers+8 devices
3. Ars Comditien Start [B2881(3)] lusign Sign £ 1
Stop [231e@{1})] Imsiqy Sign { 1
AFTER § i
4. Trigger Conditien { H ¢1] Unsigm Sigm I } :
5. Sampling Disable/Enablc Disahle Enable !
6. Samplimg Status Standby Executing [
7. Sampling Target
Tiem
[v¥eay] { Dzpoe] [D28eL]
[sepail [ve16d) [¥8185] I vei86] [Eales] [11 1E i
21¢ RN JPROGEERT race
it (JESYIIY Enanfe NEIXTU Start NEAEN | MO Cancel §
F1 FZ F3 5] 5 113 F7 i F3 T1a

In the above example, the data of YW008, D1000, D2001, S0041,
Y0104, Y0105, Y0106 and R0100 are collected every scan, for the
duration of from D2001 changed to 10 scans after R0100 changed to

ON.

User’'s manual - Functions 117

5. RAS Functions

Data display example 1 (Data):

PART 2 FUNCTIONS

YWhE 3

12118
DZPe1

Seed L
yeied
ye185
Y8186
e

4908

(=3I B e

H

4131
24
4808

o e e e

3
4187
42
4808

Qo e0

4
4242
71
4ded

Lol - R - -

5

4293
kL
1908

o0 00e

13

4315
124
Ll

a0 o*

3

4398
119
888

O Q0o

4158
174
L

Qoaowe

4508
4008

00008

I
4548
4088

00008

Next foBULE Fornat

Ti FZ 3 T4 13 FE x5 3] 3 Flé
Data display example 2 (Trend graph):
Dzpea
a2
1408

1
Sampling range [

1] ~ [1488]

Bata range Integer [

8] ~ [o)

Trev_ | TSI Cance |
Fi 13 bE] Fd [3] £h F? 3] 3] T1g
Data display example 3 (Timing chart):
1 h idea

5841
Y8184
Y8185
YR186
RRifR

l " L " L L " —|
AR AR A R U U A U VA RS SRR
Y T Y e T T T

!

|

SN T R N [N OO [

f

Y B o B

| S—

Sampling ramge [
4f¢ RUN EPROGHEDisplavy

1} ~ [1408]

T o]

F2

F3

7

i

13

Fi3

118 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

57
Status latch function

The status latch function will transfer the specified devices/registers
data in batches to the internal latch data storage area when the latch
condition set by the programmer is fulfilled or when the Status latch
instruction (STLS) is executed.

The latch condition is evaluated and data collected at the end of the
scan. However, when the STLS instruction is executed, the data
collection is carried out at the time of the instruction is executed.
Latched data can be displayed on the programmer.

The latched status can be reset by the latch reset command of the
programmer or by executing the Status latch reset instruction (STLR).

The latch target and condition setting screen is shown below.

1. Latch Comdition [Ré298{1)] |Unsign Sign []

2. Latch Execution Status READY

3. Latch Target
1(xpoeR] zi xpBel] 3 x@eezl &l xewea] S xeesd] 6L xBwas]
70 ¥BARs] 6 xBBET] 91 XBA14] 18l X@AIR} 11[¥eAI1B] 12[xPA13]
13[xeeicl a{ xee1E? 15[xBRIF] 3s6f veeedl 17[veers] 180 Noe)
13t Dsee1]l 29[DeM8z] z1I DEME3) 2z[DEAe4] 23[BEBRS]) P4[UGHES]

25 D6BBT) 25{ D718l 27{ D711} 268(D718z] 23l ZM1ee] 3¢ IEiRl]
2l 8182] 32(T9183]]

I

JESALT PROGEELATch |
|

I

dit R il selay] T ootrol
F1 FZ I3 £ 133 Fo |3 4] F3 Fid

The setting method for the latch condition is the same as the arm
condition of the sampling trace function. (See Section 5.9)

In the example above, 32 devices/registers data will be transferred to
the latch data storage area when R0100 is changed from OFF to ON.

The latched data display screen is shown below.

latch Data flisplay

1 [¥pug] @ 17 [18] BRBLE
2 [Xoaal} ° 18 [D683} B10WE
3 [Yzl . 19 [Doewl} AZ368
4 [Xpoall o 28 [Dowez] [R
5 | xmead} - 21 [ne8u3] BROAS
6 | xmaas) - 22 [Doesd] PaoRd
7 | xAAiE] . 23 [De8es] -B85es
8 | x@oa7] < 24 [DoRBE] BA6SS
9 { ¥pa14] ° 25 [D5287] #4689
1B { XP@L6) & 26 [D7108] -Aa1d8
11 | Xp&tg} . 27 [mna] -S92E8
12 i ¥pd1A] o 5 [B7182] -#408
13 1 ¥P8iC} - 23 [18180] .

14 [XBRIE] o [181e1] k4

15 [x801F] o 31 [79182] .

16 [ywd03) 91362 2 [mie3] .

478 KUN EPROGIERD I sps iy -
sign NG TN Mex untro] JETEY
T1 2 3 1 133 FE Fi] 1] i1 Fig

This function is useful for program debugging.

User’'s manual - Functions 119

5. RAS Functions

PART 2 FUNCTIONS

5.8
Debug support function

5.8.1
Force function

5.8.2
Online program
changing function

The following functions are supported by S2T for effective program
debugging.
(Refer to separate manuals for programmers for operation of these.)

There are two functions in the force function, input force and coil force.
Batch input data is not updated in the input force specified
register/device. The registers/devices which can be specified for
forced input are the input register/device (XW/X), link register/relay
(W/Z) in the receiver area and link register/relay (LW/L) in the receiver
area. On the other hand, coil force specified coil instruction can not be
processed when the program is running, so despite the state of the
program, the coil device maintains its previous state.

Simulated input and simulated output are made possible by the
combined use of the force function and the data setting function.

This function enables to change the user program online (during RUN).

The changes are made after completion of one scan, so it extends the

inter-scan cycle.

Online program change is subject to the following conditions.

* You cannot make changes to the number or order of execution
control instructions (below).
END, MCS, MCR, JOS, JCR, JUMP, LBL, FOR, NEXT, CALL,
SUBR, RET, IRET

* You cannot change the SFC structure in the SFC program section,
but you can change the detail parts (ladder diagram) which relate to
steps and transitions.

Also, there is the constant operand changing function.

This function enables to change the constant operand, such as
timer/counter preset value and constant data used in function
instructions, online (during RUN). For the timer/counter presets,
changing is possible even in the memory protect state (P-RUN).

~_NOTE
U all

When using the online program changing function, pay attention for
safety.

If changed rung contains a transition-sensing type instruction
(below), the instruction will be executed at the online changing if the
input condition is ON, because the input condition of last scan is
initialized. Pay attention for this point.

—f] 3—, —P3—, —(P{J, Edged function instructions.

120 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

5.8.3
DEBUG mode functions

DEBUG mode

The S2T has a special mode for supporting the program debugging. It
is the DEBUG mode. Inthe DEBUG mode, the following functions
become available.

» Breakpoint setting function
Starts and stops at the instruction which is set as the breakpoint.

» Single step execution function
Starts and stops in unit of one instruction.

» Single rung execution function
Starts and stops in units of one rung.

» N scans execution function
Executes specified times of scans and stops.

e Stop condition setting function
Executes until the specified stop condition is fulfilled.

The S2T can enter into the DEBUG mode only from the HALT mode.
There are three sub-modes in the DEBUG mode, D-HALT, D-RUN and

D-STOP.

D-HALT:

D-RUN:

D-STOP:

When mode is changed from HALT to DEBUG, S2T enters
this mode. The execution condition setting of the DEBUG
mode function is possible in this mode. (All outputs OFF)

Program execution mode. When the stop condition is
fulfilled in each DEBUG mode function, the mode moves into
D-STOP.

Temporary stop mode. The mode transition factor of D-
RUN to D-STOP can be displayed on the programmer.
(Output state remains)

User’'s manual - Functions 121

5. RAS Functions

PART 2 FUNCTIONS

I/O disable

Trace back function

Function details

In the DEBUG mode, 1/0 module accessing can be disabled by the
execution condition setting. When I/O disable is selected, external
input status is not read into the input devices/registers (X/XW) and the
status of the output devices/registers (Y/YW) is not sent the output
modules.

In this case, operation modes displayed on the programmer are
changed from D-HALT to S-HALT, D-RUN to S-RUN and D-STOP to S-
STOP respectively.

In the program execution of the DEBUG mode functions, the online
trace information of latest 10 scans is maintained. This information
can be monitored after the execution is stopped (D-STOP mode).

*1) This function is not available for the single step execution and the
single rung execution.

*2) This function is available only for the program range currently
monitored.

(1) Breakpoint setting function

Program execution is stopped when the instruction which is set as the
breakpoint is fetched. The breakpoint can be set on one location only.
This function becomes available when any number except 0 is set in the
Breakpoint counts in the execution condition setting. When the
breakpoint is fetched specified times, the program execution is stopped.

The start of execution can be selected from the initial start and the
continue start.

e Initial start0000000000 User data initialization is performed then
program execution is started from the top.

» Continue start 000000 Program execution is started from the point
where the execution was stopped last time.

When execution is started from the D-HALT mode, the initial start is
selected automatically.

122 V series S2T

PART 2 FUNCTIONS

5. RAS Functions

Execution example 1 (Initial start)

L

— (O
]
i
Y
— L] (O
Breakpoint
Execution example 2 (Continue start)
Last time stopped point
— (O
— T]
—
Y
—HH = O
/
Breakpoint

(2) Single step execution function

The execution is started and stopped in units of one instruction.

User data initialization
is performed. Then
program execution is
started from the top
and stopped at the
breakpoint.

(The breakpoint
instruction is not
executed)

Execution is started
from the point of last
time stopped and
stopped at the
breakpoint.

When

this function is activated from the D-HALT mode, the user data
initialization is performed and the program execution is stopped at the
top instruction. (D-RUN — D-STOP)
When this function is activated from the D-STOP mode, S2T executes
the last time stopped instruction and stops at the next instruction.

Execution example 1

-
A

TH
TI_

Last time stopped point

L

Executes the last time
stopped instruction and
stops at the next
instruction.

User’'s manual - Functions 123

5. RAS Functions PART 2 FUNCTIONS

If execution is stopped at the sub-routine call instruction (CALL) and if
the sub-routine call condition is satisfied, the next stop point is the
corresponding sub-routine entry (SUBR).

Execution example 2 (CALL/RET)

- H(;LL' No1] Ti

~
\

—{ SUBR(01) |
— | o=
[RETH
|

As same as above, if execution is stopped at the jump instruction
(JUMP) and if the jump condition is satisfied, the next stop point is the
corresponding label instruction (LBL).

In case of the FOR-NEXT loop, the instructions inside the loop are
executed specified times, but the execution trace is not possible. The
first time execution status is displayed and the execution is stopped at
the next instruction to the loop.

Execution example 3 (FOR-NEXT)

— I FOR10]
Executed 10 times
_I: :I I: 1 but the first time
a| execution status is
displayed.
H{ NEXT]
HHT (O

The interrupt program is executed during the single step execution, but
it is not traced.

124 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

(3) Single rung execution function

The execution is started and stopped in units of one rung. When this
function is activated from the D-HALT mode, the S2T performs the user
data initialization and stops at the top instruction.

(D-RUN - D-STOP)

When this function is activated from the D-STOP mode, the S2T
executes the last time stopped rung and stops at the first instruction of
the next rung.

Execution example 1

Last time stopped point

?

A

]

Even if the rung contains the sub-routine call (CALL) or the jump
(JUMP) instructions, the next stopping point is the next rung despite of
calling or jumping.

Execution example 2 (JUMP)

Last time stopped point
If jump condition is not

7 , satisfied, the
—d F{ JUMP N.02] e execution is stopped
) at the next rung.

— b] (O o
If jump condition is
satisfied, the

_| execution is moved to
the LBL instruction.

— LBL (02)] (not stopped)

User’'s manual - Functions 125

5. RAS Functions PART 2 FUNCTIONS

In case of the FOR-NEXT loop, the instructions inside the loop are
executed specified times, but only the first time execution can be traced
as same as the single step execution.

Also, the same precautions as the single step execution are applied to
the interrupt program.

(4) N scans execution function

The S2T executes the specified times of scans and stops at the end of
the scan.

The scan counts is set in the execution condition setting. The setting
range is 0 to 65535. If O is set, this function is disabled.

The start of execution can be selected from the initial start and the
continue start, as same as the breakpoint setting function.

(5) Stop condition setting function

The S2T executes the program until the stop condition is fulfilled.
The checkpoint of the condition can be selected either at the end of
scan or at the breakpoint.

The stop condition can be set as either AND or OR conditions of up to
four registers/devices data.

The start of execution can be selected from the initial start and the
continue start, as same as the breakpoint setting function.

126 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

Notes (1) The DEBUG mode functions can also be used in combinations as
follows.

Breakpoint setting

or N scans execution
Single step execution | and/or and/or
or Stop condition setting

Single rung execution

(2) The initial load is not performed at the mode changing from D-HALT
(S-HALT) to D-RUN (S-RUN).

(3) The timers used in the program are updated as normal in free scan,
and updated as 100 ms/scan in the single step/rung execution.

(4) The sub-program execution is not interrupted in the single step/rung
execution. In free scan, it is interrupted as normal.

(5) The actions of the interrupt program are as follows.
At D-HALT (S-HALT) inhibited

At D-STOP (S-STOP)...... holded (executed when changed to enable)
At D-RUN (S-RUN).......... enabled

Restrictions (1) The DEBUG mode function is not available for the SFC program
block.

(2) The DEBUG mode function is available only when the programmer
is connected directly to the S2T’s programmer port.

(3) Program modification should not be made in the DEBUG mode.
Otherwise, the DEBUG mode functions may not work correctly.

~ NOTE
U Al

In the D-STOP and D-RUN modes, FAULT LED blinks. And in the
S-STOP and S-RUN modes, FAULT and I/O LEDs blink. Both of
above are not error.

User’'s manual - Functions 127

5. RAS Functions

PART 2 FUNCTIONS

5.9
System diagnostics

Display on programmer «<—— SWO016 | First error code

(first error code and SWO017 | Number of codes
corresponding error message)

The following functions are provided for diagnosis of controlled system
operation. The system can be monitored easily using of these
functions.

(1) Diagnostics display function

By using the diagnostics display instruction (DIAG) in the user
program, the relevant error code (1-64) and error message
(maximum 12 characters per message) can be displayed on the
programmer screen. Also, the error code generated is stored in
the special registers (SW016-SWO033) in order of generation up to a
maximum of 16 codes and the annunciator relay (S0340-S037F)
corresponding to the error code goes ON. It is possible to use the
special register/relay to display the error code on an external display
monitor.

The error codes registered can be reset one by one (shift up after
erased) using the programmer or by the diagnostics display reset
instruction (DIAR).

This function may also be used effectively in conjunction with the bit
pattern check and the sequence time over detection mentioned
below. (Refer to details of diagnosis display instructions in other
manual for instruction set)

Execution of DIAG
instruction (error
codes registered to
the end)

SWO018 | First error code
SWO019 | Error code 2

SW020 | Error code 3 %, ¥7--- Reset the error code
SWO021 | Error code 4

registration by DIAR
instruction or
programmer
operation

SW033 °

When error codes are registered, for example 3,10, 29, 58, each
corresponding annunciator relay, S0342, S0349, S035C, S0379 comes

(Annunciator relay)

FEDCBA98 7 65 43210
SWO034 (16(15(14(13(12({11{10(9 |8 |7 |6 |54 |3 |2 |1

SWO035 [32|31|30(29|28|27(26|25|24(23|22|21|20|19|18 |17
SWO036 (48|47 |46|45|44(43|42|41({40(39|38|37(36(35|34|33
SWO037 |64 |63|62|61|60(59(58|57(56(55(54|53(52(51|50(49

128 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

(2) Bit pattern check function
This function checks that the device ON/OFF status for a number of
devices are in the normal combinations (pattern). For example,
checks that not more than 2 from device 1, 2 and 3 are ON
simultaneously. Up to 8 devices can be registered, and up to 16
patterns can be set. The checkpoint can be selected either before
program execution or end of scan. The results are reflected in the
special relay S0142.
This function is enabled when the special relay S0140 is set to ON.

Device registered Bit pattern setting Present device
(maximum 8) (maximum 16 patterns) status

xooo o @ i PY o
X003 ° O rerres o °
X015 X X e ° Y — °

: : : : Comparison :

Y08A o X e PY o

Results
Agrees with the setting pattern.................. S0142 =0

Dose not agree with the setting pattern..... S0142 =1
In the pattern setting, OFF is shown as o , ON is shown as e and
do not care is shown as x .

The device and bit pattern registration takes place in programmer
system diagnosis menu.

*) The checkpoint of this function can be selected by the special
relay SO15F as below.

S015F = OFF Before user program execution
(after I/O processing)

S015F =ON.......... After user program execution

User’'s manual - Functions 129

5. RAS Functions PART 2 FUNCTIONS

(3) Register value validity check function
This function checks that the register value is within the specified
numerical value range. Up to 4 registers can be registered with the
maximum and the minimum data. Also, it is possible to select the
register value to be taken as an integer (signed) or as a positive
integer (unsigned).
The checkpoint can be selected either before program execution or
end of scan. The results are stored in the special relay S0143-
S0146 (within the range: 0, outside the range: 1).
This function is enabled when the special relay S0140 is set to ON.

Registered register - . Present
: Type Minimum value Maximum value .
(maximum 4) register value
XW034 Unsigned 0 400 200
XW035 Signed -1500 1500 ~——~ 2000
D0011 Unsigned H0200 H9000 Comparison H1234
W0100 Signed -300 600 -1000
Results

A\ 4
Register 1 (XW034)....... S0143=0
Register 2 (XW035)....... S0144 =1
Register 3 (D0011) S0145=0
Register 4 (W0100)....... S0146=1

The register and the numerical value range are registered in
programmer system diagnosis menu.

*) The checkpoint of this function can be selected by the special
relay SO15F as below.

S015F = OFF Before user program execution
(after I/O processing)

S015F =ON.......... After user program execution

130 V series S2T

PART 2 FUNCTIONS 5. RAS Functions

(4) Sequence time over detection function
The alarm step is provided for one of SFC (sequential function
chart) instructions. This Alarm step turns ON the specified device
when the following transition is not come true within the preset time.
This function allows easy detection of operation hold ups in
sequential control process.

(SFC structure)

‘I— (Action part)
__________ Work processing

(Transition conditions part) 120

Processing| 1
completed
121
T0OO03
1000 A T Work transport
R1000
Transport | 1
completed Alarm step
192 monitor timer = TO03

monitor time = 10 seconds
alarm device = R1000

With the above example, if the transport has not been completed
(work arrived signal ON etc) within 10 seconds from when the work
transport started, the specified alarm device (R1000) comes ON.
By this means a malfunction of the work drive or the sensor can be
detected.

Refer to Part 3 of this manual and the other instruction set manual
for explanation with respect to SFC.

User’'s manual - Functions 131

5. RAS Functions PART 2 FUNCTIONS

5.10
Password function For the system security, the password function is provided.
There are three levels of protection as shown below. Accordingly,
three levels of passwords can be set.

Level 1 possible functions

» Clear memory
Writing/down-loading program
» Operation mode control
Setting/changing password

Level 2 possible functions

* Reading/up-loading program
* Program write to flash memory (EEPROM)

Level 3 possible functions

Writing data

» Writing system information
I/O allocation

» Sampling trace, status latch

— Always possible functions

» Reading system information
Reading /O allocation information
* Reading event history

Reading data

For example, if level 1 and level 2 passwords have been set, only level
3 and always possible functions are enabled. In this state, if the level 2
password is entered, the level 2 possible functions are also enabled.

~_NOTE
U Al

(1) Do not forget your level 1 password. Otherwise, you cannot
release the password protection.

(2) Protection level for each programmer command is explained in
the programmer operation manual.

132 V series S2T

PART 3
PROGRAMMING INFORMATION

PART 3 PROGRAMMING INFORMATION 1. Overview

11

Aims of Part 3 The main functions of the S2T are to store the user program, to execute
the stored user program and to control and monitor the operation/state
of machines/processes which are the result of such execution.
The user program is a series of instructions for achieving the request
control function, operation conditions, data processing and the interface
with the operator. It is stored in the user program memory. The
execution of the user program is the sequential performance of the
processes of reading user data in which external input/output data and
control parameters are stored, processing the respective instructions
and storing the results of this in the user data memory.

Part 2 described the types of processing which are executed by the S2T
internally, functions for executing the user program efficiently and the
RAS functions. Part 3 describes the necessary information for creating
user programs, that is to say detailed user data, detail of the
input/output allocation and the programming languages. Also, the user
program configuration is described to use the S2T's multi-tasking
function.

1.2
User memory The following diagram shows the user memory configuration of the S2T.
configuration

Peripheral Memory
Main Memory — A

B
(RAM) (EEPROM)
User program User program
memory memory
(32k/64k steps) (32k/64k steps)
User data User data
memory memory
Expand Memory
(XWIYW, RW, (O,RW, T, C) R =
T.C,D,W, LW, S
sw,F1,J3,K p----ton———— :
User data memory || E_,:
(expanded F register) |+

User’'s manual - Functions 135

1. Overview PART 3 PROGRAMMING INFORMATION

The memory which can be used by user is called user memory. The
user memory can be divided by configuration into main memory and
peripheral memory. And the user memory can be divided by function
into user program memory and user data memory.

The main memory is a built-in RAM memory with battery backed up.
On the other hand, the peripheral memory is an optional memory
configured by flash memory. The peripheral memory can be used as
back up for main memory (user program and register data).

The user program memory has a capacity of 32k/64k steps (step is a
unit for instruction storage), and stores a series of instructions created
by ladder diagram or SFC.

The user data memory stores variable data for user program execution.
It is separated by function into input/output registers, data registers, etc.

136 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.1
Overview The user program memory can be divided into the system information
storage area, the user program storage area and comments storage
area as shown below.

User Program Memory Configuration

A
0.5k steps System information

User program
31.5k/63.5k steps

Comments

System information is the area which stores execution control
parameters for the user program and user program management
information, and it always occupies 0.5k steps.

Comments are added and stored for easy maintenance of the user
program. The comments storage area is not fixed. (user setting)

The user programs is divided into the program types of main program,
sub-programs, interrupt programs and sub-routines, depending on the
function.

Of these, the main program is the core of the user program.

On the other hand, when it is difficult to achieve the requested control
functions by the main program alone, sub-programs and interrupt
programs are used as required, but need not be provided.

Also, sub-routines are used when repetition of the same process in a
program is required, or in order to see the program more easily by
making one function into a block, but may not be provided if not
required.

User’'s manual - Functions 137

2. User Program Configuration

User Program Configuration
(Program Types)

PART 3 PROGRAMMING INFORMATION

Program Type Internal
Configuration (Blocks)

Main program
prog Block 1

Sub-program #1 \

Sub-program #2 \

Sub-program #3 N\ Block 2

Sub-program #4 \

Timer interrupt program N\

1/O interrupt program #1 \ Block 3

1/O interrupt program #2 \

1/O interrupt program #3 \

1/O interrupt program #4 \ Block n

(n=max. 256)

1/O interrupt program #5 \

1/0O interrupt program #6 \

1/0O interrupt program #7

1/O interrupt program #8 Block 1

Sub-routines

Also, in each program type, the user program is arranged by units called
‘blocks’.

Internally, a block definition label is present at the head of each block.
The program type, block number and programming language
information are in the block definition label (there is no need for the user
to be concerned with the block definition label).

Although the 2 programming languages of ladder diagram and SFC can
be used in combination in the S2T, only 1 language can be used in any
1 block.

~ NOTE
U all

(1) In each program type and block, there is no limit to the program
capacity (number of steps). The only limit is the total capacity
(31.5k/63.5k steps).

(2) The block number need not be consecutive.
there may be vacant blocks in the sequence.

In other words,

138 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.2
System information

System information is the area which stores execution control
parameters and user program management information when executing
a user program, and occupies 0.5k steps of the user program memory.
The following details are included in system information.

(1) Program ID
This is the user program identification. A setting of up to 10
alphanumeric characters can be set. The program ID can be
registered/monitored on the system information screen of the
programmer.

(2) System Comments
These are comments attached to the user program. A setting of up
to 30 alphanumeric characters can be set. The system comments
can be registered/monitored on the system information screen of the
programmer.

(3) Memory Capacity
This stores the memory type (user program capacity/data register
capacity). The memory capacity can be monitored on the system
information screen of the programmer. (monitor only)

(4) Steps Used
This stores the number of steps used in the user program. The
number of steps used can be monitored on the system information
screen of the programmer. (monitor only)

(5) PLC Type
This stores the model type. The PLC type can be monitored on the
system information screen of the programmer. (monitor only)

(6) Program Size Setting
This is the capacity assigned to the user program. The rest of this
setting out of total 32k steps is assigned to the comments. The
program size setting can be registered/monitored on the system
information screen of the programmer.

(7) Sampling Buffer Setting
This performs the setting and registration of the storage capacity of
the sampling buffer for the sampling trace function. The maximum
setting is 8k words. The sampling buffer setting can be
registered/monitored on the system information screen of the
programmer.

User’'s manual - Functions 139

2. User Program Confi

guration PART 3 PROGRAMMING INFORMATION

(8)

(9)

Retentive Memory Area Designation

This sets and registers the address ranges for the auxiliary register
(RW), timer register (T), counter register (C) and data register (D)
which retain pre-power cut data out of the user data. The ranges
registered here are outside the subjects of the user data initialization
process. For each of these registers, the ranges from the leading
address (0) to the designated address are the retentive memory
areas. The retentive memory area designations can be
registered/monitored on the system information screen of the
programmer.

Scan Time Setting

This sets and registers the scan mode (floating/constant). When
no scan time is registered (blank), the mode becomes the floating
scan mode. When a numerical value is set for the scan time, the
mode becomes a constant scan mode which takes that time as the
scan cycle. The setting for the scan cycle is 10-200 ms (in 10 ms
units).

The scan time setting can be registered/monitored on the system
information screen of the programmer.

(10) Sub-Program Execution Time

(11)

Time limit factor assigned for sub-programs in the floating scan.
The setting range is 1-100 ms (in 1 ms units). The sub-program
execution time can be registered/monitored on the system
information screen of the programmer.

Timer Interrupt Interval

This sets and registers the interrupt cycle of the timer interrupt
program. The setting range is 1-1000 ms (in 1 ms units). The
timer interrupt interval can be registered/monitored on the system
information screen of the programmer.

(12) Computer Link Parameters

This sets and registers the parameters for the computer link.
The computer link parameters can be registered/monitored on the
system information screen of the programmer.

The parameter items and their setting ranges are as follows:

* Station No. 000000000 1-32 (initial value=1)

* Baud rate 00000000000 300, 600,1200, 2400, 4800, 9600,
19200(initial value 9600)

* Parity 000000000C00000 None, odd, even (initial value=odd)

* Data length (bits) 0000 7, 8 (initial value=8)

* Stop bit0000000000000 1,2 (initial value=1)

140 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

(13)

(14)

(15)

I/O Allocation Information

This stores 1/O allocation information and unit base address
designation information. This information is created either by
executing the automatic I/O allocation command or by setting and
registering an 1/0 module type for each slot (manual 1/O allocation)
on the 1/O allocation information screen of the programmer.

Interrupt Assignment Information

This stores the information of correspondence between the I/O
interrupt program and I/O modules with interrupt functions. In the
initial state (without setting this information), the lower number of
I/O interrupt programs are assigned in sequence from the interrupt
module closest to the CPU.

This information can be registered/monitored on the interrupt
assignment screen of the programmer.

Network Assignment Information

Information on the link register areas allocated to the data
transmission modules (TOSLINE-S20, TOSLINE-F10) is stored
here. This information can be registered/monitored on the
network assignment information screen of the programmer.

User’'s manual - Functions 141

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

2.3
User program

The user program is composed of each of the program types of main
program, sub-programs (#1 - #4), interrupt programs (Timer, I/O#1 - /O
#8) and sub-routines. Of these program types, a main program must
always be present. However, the other program types may not be
present at all if they are not used. Therefore, needless to say, a user
program can be configured with a main program only.

Also in the program types, the program can be divided into units called

‘blocks’ (block division is not necessary unless required). Block

division is required in the following cases.

* When using languages other than ladder diagram (1 language/
block)

* When creating multiple SFC programs (1 SFC/block, see Section
5.3)

* When block division by control function units makes the program
easier to see.

There are no restrictions on program capacities (number of steps) by
program types and blocks. (Except in the case of SFC)

As block numbers, 1 to 256 are available. However, the block
numbers need not be consecutive. When executing the program, the
program is executed in sequence from the block with the lowest
number.

142 V series S2T

2.3.1
Main program

PART 3 PROGRAMMING INFORMATION

2. User Program Configuration

The main program is the portion which is the core of the user program

and is always executed every scan.

finished by the END instruction.

The main program must be

Although instructions may be present after the END instruction, these
portions will not be executed. (However, they count in the number of

steps used)

(Example of Main Program Configuration)

A

Block 1

Block 10

Main program

Block 11

Block 20

(Ladder diagram block)

(SFC block)

(SFC block)

(Ladder diagram block)

User’'s manual - Functions 143

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

2.3.2
Sub-program

The sub-program is a program type to achieve the multi-tasking
function. 4 sub-programs (Sub #1 - Sub #4) are provided.

Sub #1 is executed once in the first scan before the main program
execution. Therefore, the Sub #1 can be used for the initial setting
program.

Sub #2 can be selected from the two functions, the initial setting
program in the case of power interruption and the normal sub-program
function which can be controlled by other program types.

Sub #3 and Sub #4 are fixed as the normal sub-program function.
In the normal sub-program function of Sub #2, Sub #3 and Sub #4, the

execution mode can be selected either the one time mode or the cyclic
mode.

NOTE
U Al

For the details of the sub-program execution, see Part 2 Section 3.2.
Also, for Sub #2, see Part 2 Section 5.5.2.

Each sub-program must be finished by the END instruction.

Although instructions may be present after the END instruction, these
instructions will not be executed. (However, they count in the number of
steps used)

144 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

Sub-programs execution conditions are summarized in the table below.

Sub No. Execution condition

Sub #1 Executed once in the first scan before the main program
execution, except when S2T is in the hot restart mode
(S0400=1 and power recovery within 2s).

Sub #2 [Special mode] S0403=1

Executed once in the first scan before the main program
execution when S2T is in the hot restart mode (S0400=1 and
power recovery within 2s).

[One time mode] S0403= 0 and S0405=0
Executed once when S0409 is changed from 0 to 1.
(S0409 is reset to 0 automatically)

[Cyclic mode] S0403=0 and S0405=1

Executed once per every specified number of scans which is
specified by SW042, during S0409=1.

Sub #3 | [One time mode] S0406=0

Executed once when S040A is changed from 0 to 1.

(SO40A is reset to 0 automatically)

[Cyclic mode] S0406=1

Executed once per every specified number of scans which is
specified by SW043, during S0O40A=1.

Sub #4 [One time mode] S0407=0
Executed once when S040B is changed from 0 to 1.
(SO40B is reset to 0 automatically)

[Cyclic mode] S0407=1
Executed once per every specified number of scans which is
specified by SW044, during S040B=1.

~ NOTE
U all

The sub-program execution may be time-sliced by scan.

Therefore, to prevent the unexpected status changes of 1/O registers
(XW/YW) used in the sub-program, it is recommended to use the
batch 1/O inhibition (with i allocation) and the direct I/O instruction
(I/10).

User’'s manual - Functions 145

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

2.3.3
Interrupt program

There are a total of 9 types of interrupt program. These are 1 timer
interrupt program which is executed cyclically with a cycle which is set
in system information, and 8 1/O interrupt programs (#1 - #8) which are
started by interrupt signals from I/O modules with interrupt function.

* Timer interrupt program
This is executed cyclically with a cycle of 1-1000 ms which is
registered in system information. When no cycle is registered
(blank), it is not executed.
Set the interval setting of the timer interrupt with 1 ms units in item
16 of the T-PDS system information screen.
For details, see T-PDS operation manuals.

e |/O interrupt programs (#1 - #8)
These are started by interrupt signals generated by 1/0O modules
with the interrupt function. The coordination between the interrupt
program numbers and the 1/0O modules with interrupt function can be
changed by the interrupt assignment function.

Each interrupt program must be finished by the IRET instruction.

NOTE
my'

(1) For details of interrupt program operation, see Part 2 Section 3.3.
(2) SFC cannot be used in the interrupt program.

The following modules are available as the I/O module with the interrupt
function (interrupt 1/0).
* 2 channels pulse input

(Part No.: P1632/672, allocation type: iX+Y2W)

When automatic I/O allocation is carried out in the state with interrupt
I/O mounted, for coordination between the interrupt program number
and the interrupt I/O, the lower number I/O interrupt programs are
allocated in sequence from the interrupt I/O closest to the CPU. (See
the example on the following page)

146 V series S2T

PART 3 PROGRAMMING INFORMATION

Example)

(1) Module mounting status

Interrupt 1/0 (1)

s

Interrupt 1/O (2)

e

2. User Program Configuration

PU 0¥ 1¥2 3 5 6 7
Basic PICli|iI[X[X|Y|Y]|Y]Ii
unit 0 X | X X
() S|P L|% A
F uly|Yy Y
21212122222
W{W|W|W|WWW|W
01 2 3 45 6 7
Expansion P X|X|X|Y
(unit) || S| 5§ 55|58
Fl |3|& |88
>\Zl4alala|>|>|>
W W |W|wW
(2) Register allocation
Unit 0 Unit 1
S S
(|) Module type Register (|) Module type Register
t t
PU — —
0 |iX+Y 2W | XW000, YW001 0
1 |iX+Y 2W | XW002, YW003 1 (X AW [XW016 OXWO019
2 | X 2W | XW004, XW005 2 [X AW [XW020 OXW023
3 | X 2W | XW006, XW007 31Y 4W | YW024 OYWO027
4 |Y 2W | XW008, YW009 4 |Y 4W | YW028 0 YWO031
51Y 2W | XwW010, YW011 5 |Vacant —
6 |Y 2W [XW012, YW013 6 |Vacant —
7 |iIX+Y 2W | XW014, YWO015 7 |Vacant —

(3) Interrupt program assignment

Program type

Corresponding
input register

Corresponding
interrupt 1/0

Remarks

I/O interrupt program #1 XWO000 Unit 0-Slot 0 | Interrupt I/O (1)
I/O interrupt program #2 XW002 Unit 0-Slot 1 | Interrupt I/O (2)
I/O interrupt program #3 XW014 Unit 0-Slot 7 | Interrupt I/O (3)

User’'s manual - Functions 147

Interrupt 1/0 (3)

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

The interrupt program assignment determined as the page before can
be changed as follows.

Example)
Interrupt assignment information (before changing)

Interrupt level Interrupt program No. Input register No.
0 [1] XW000
1 [2] XWO002
2 [3] XW014
Change to

Interrupt assignment information (after changing)

Interrupt level Interrupt program No. Input register No.
0 [1] XW000
1 [2] XW002
2 [3] XW014

In this example, interrupt programs for XW002 and XW004 are
exchanged.

~ NOTE
my'

By using the interrupt assignment function, the correspondence
between the interrupt 1/0 and the interrupt program No. can be
changed. However, the interrupt level (priority) is fixed as the
hardware. The interrupt I/O mounted closer to the CPU has higher
interrupt priority. The interrupt priority cannot be changed.

148 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.34
Sub-routines

When it is necessary to execute repetitions of the same process in a
program, this process can be registered as a sub-routine. This sub-
routine can be executed by calling it at the required location. By this
means, the number of program steps can be reduced and, at the same
time, the program becomes easier to see since the functions have been
put in order.

Sub-routines can be called from other program types (main program,
sub-programs, interrupt programs) and from other sub-routines (they
can also be called from the action part of SFC).

The sub-routine should be located in the program type “Sub-routine”,
and started by SUBR instruction and finished by RET instruction. Up
to 256 sub-routines can be programmed.

It is necessary to assign a sub-routine number to the SUBR instruction
(sub-routine entry instruction). The effective numbers are from 0 to
255,

— SUBR (0?0) =
Sub-routine number

The RET instruction (sub-routine return instruction) has no sub-routine
number.

The instruction which calls a registered sub-routine is the CALL
instruction (sub-routine call instruction) of ladder diagram. The CALL
instruction requires the number of the sub-routine it calls.

— cALL N.ocT)o =

Sub-routine number

User’'s manual - Functions 149

2. User Program Configuration

PART 3 PROGRAMMING INFORMATION

The following is an execution sequence when sub-routines are

included.

Program under execution

HCALL N.OOlJ—|

@&

}—{ HcaLL N.001]—|

®
HcALL N.031}
[MOV |——

Flow of execution

Sub-routines

HSUBR (001)]—|

——[RET |

— SUBR (031) ——

[RET |

[0 By the sub-routine 001 CALL instruction execution, the execution
shifts to sub-routine 001

O When it has proceeded to the RET instruction, the execution returns

to the instruction following the CALL instruction in O
0 When device & is ON, the CALL instruction is executed, and the
execution shifts to sub-routine 001

[0 When it has proceeded to the RET instruction, the execution returns

to the instruction following the CALL instruction in O
00 When device @ is ON, the CALL instruction is executed, and the
execution shifts to sub-routine 031

O When it has proceeded to the RET instruction, the execution returns

to the instruction following the CALL instructionin O (the MOV
instruction in this example)

150 V series S2T

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.4
Comments

~_NOTE
U Al

(1) Multiple sub-routines can be programmed in a block. However
for execution monitor by programmer, 1 sub-routine on 1 block is
recommended.

(2) SFC cannot be used in a sub-routine.

(3) Other sub-routines can be called from a sub-routine (nesting), up
to 6 layers.

(4) Since the operation will become abnormal in cases such as
calling the same sub-routine during the execution of a sub-
routine, take care that the cases do not occur.

Comments can be added and stored in the S2T's user program
memory. By this means, the user program becomes easier to
understand.

The types of comments which can be stored in the S2T are
tags/comments for registers, devices and SFC steps.

Tag 00000000 up to 5 characters

Comment 000 up to 20 characters

The comments storage capacity is the rest of the program size setting
out of total 32k/64k steps.

The maximum storage humber of comments (tag and comment paired)
is calculated as follows.

(1024 x (32 or 64 — N) - 38) / 10

Program size setting
(assigned to the user program)

~ NOTE
U all

Here, the comments which can be stored in the S2T are explained.
Comments can also be saved in a disk file.

For the disk file usage, see separate manual for the programmer (T-
PDS).

User’'s manual - Functions 151

3. User Data

PART 3 PROGRAMMING INFORMATION

3.1
Overview

The area which stores the external input/output data, current values of
timers and counters and the values of the variables for data processing
is called the ‘user data’.

For user data, the storage location of the data is expressed by a
combination of ‘function type’ and a sequence of numbers which starts
from O (this is called the ‘address’)

Example) XW 005

Address 005
(in this case it is the register address)
Function type XW=Input register

To say that the content of XWO0O05 is 100 is to say that the
numerical value 100 is stored in a location in the user data
memory indicated by XWO005.

Also, user data is divided into registers and devices according to the
type of data to be stored. (Although the expression ‘relay’ is also used, a
relay should be regarded as one type of device)

A ‘register’ is an area which stores 16 bits of data and it is expressed as
a combination of a function type and a register address. (the register
address is a decimal number)

Example) D 1024

Register address (decimal number)
Function type D=Data register

On the other hand a ‘device’ is an area which stores 1 bit of data (it
expresses 1 or 0, in other words ON or OFF), and it is expressed as a
combination of a function type and a device address. However, a
device does not use an independent memory area. ltis allocated as 1
bit in the 16 bits of the corresponding register. Therefore, the device
address is expressed in the form of the corresponding register
address+bit position.

Example) X 005 6

I Bit position (there are 16 positions 0-F)
Register address (decimal number)
Function type X=Input device
(corresponds to input register XW)

152 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

The correspondence between register data and device data should be
considered as follows.

Example) When it is said that the content of XW005 is 100, since the
decimal number 100 is expressed as 1100100 in binary
notation, this indicates that each of the bits of XW005 will
be as follows.

(MSB) (LSB)
FEDCBA987 65 4 3 2 1 0<—Bitposition
XW005 000000000}100100
T

X0056 is ON(1)

At this time, the data of device X0056 corresponding to
bit position “6” of XWOQO05 is 1, that is to say X0056 is ON.

The correspondence of registers and devices is shown by function
types.

 Input device (X)000OCO corresponds to 1 bit of input register (XW)

* Output device (Y) U000 corresponds to 1 bit of output register (YW)

» Auxiliary device (R)UU0O corresponds to 1 bit of auxiliary register (RW)
» Special device (S)0000 corresponds to 1 bit of special register (SW)
* Link device (Z)0000000 corresponds to 1 bit of link register (W)

* Link relay (L) 000D0OOO corresponds to 1 bit of link register (LW)

The treatment of the other devices, I, O, T. and C., is slightly different.
It is described in detail in Section 3.2.

User’'s manual - Functions 153

3. User Data PART 3 PROGRAMMING INFORMATION

The following Table shows the types of registers and devices and their
address ranges. Their functions and methods of use are described in

Section 3.2.

Function Type gﬁ%ee Alggrzzzs Quantity Eég;ﬁ;:gn
Input register XW XW001
Output register YW YWO034
Direct input register (W, 000-511 Togz words IW001
Direct output register ow Oowo034
Input device X X001 A
Output device Y Y0348
Direct input device I 0000-511F T%tigz points 10012
Direct output device (@] 00340
Auxiliary register RW | 000-999 1000 words RW100
Auxiliary device R 0000-999F | 16000 points R1001
Special register SW 000-255 256 words SWo014
Special device S 0000-255F 4096 points S0140
Timer register T 000-999 1000 words TO30
Timer device T. 000-999 1000 points T.030
Counter register C 000-511 512 words C199
Counter device C. 000-511 512 points C.199
Data register D 0000-8191 8192 words D4055
Link register W 0000-2047 2048 words W0200
Link device z 0000-999F | 16000 points 72001
Link relay register Lw 0000-255 256 words Lw123
Link relay L 0000-255F 4096 points L123F
File register F 0000-32767 | 32768 words FO500

I None 1 word I
Index register J None 1 word J
K None 1 word K
~_NOTE
L] AL
In the S2T, 1 word is treated as equal to 16 bits, and the number of
registers is counted in word units.

154 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

3.2
Registers and devices

Input registers and
Input devices

Output registers and
Output devices

The following Tables describe the functions and address ranges for
each function type of registers and devices Input registers and Input

devices.

Codes

Input registers........ XW
Input devices......... X

Addresses

Input registers........ 000-511 (512 words) Common use as output
Input devices......... 0000-511F (8192 points) | registers/output devices

Functions

These are allocated in the input module as register units (word units) by
performing input/output allocation. The signal state inputted to the
input module is stored in the corresponding input register by batch
input/output timing (except for modules which have the designation
attached when allocating). An input device expresses 1 bit of the
corresponding input register.

The data of input register/input devices basically do not change during 1
scan. However, when executing a direct I/O instruction (FLIN235),
data is read from the corresponding input module when the instruction is
executed and is stored in an input register/input device (XW/X).

Thus, the data changes during the scan.

Codes

Output registers YW
Output devices...... Y

Addresses

Output registers 000-511 (512 words) Common use as input
Output devices...... 0000-511F (8192 points) | registers/input devices

Functions

These are allocated in the output module as register units (word units)
by performing input/output allocation. The data stored in the output
register is written to the corresponding output module by batch
input/output timing, and the state of the output signal of the output
module is determined (except for modules which have the designation
attached when allocating). An output device expresses 1 bit of an
output register.

User’'s manual - Functions 155

3. User Data

PART 3 PROGRAMMING INFORMATION

Direct input registers
and Direct input devices

Direct output registers
and Direct output devices

Auxiliary registers
and Auxiliary devices

Codes

Direct input registers w
Direct input devices....... |

Addresses

Direct input registers 000-511 (correspond to input registers (XW))
Direct input devices....... 0000-511F (correspond to input devices (X))

Functions

Direct input registers/direct input devices do not themselves indicate
specific memories.

When the instruction which uses these registers/devices is executed,
they operate and read data directly from the input module
corresponding to the address. These registers/devices are used when
using the S2T as the direct input/output system (direct system) and not
the batch input/output system (refresh system).

Example) 10000
— — NO contact instruction of 10000

When executing the instruction, the bit data corresponding to X0000 is
read from the input module and the instruction is executed by this data.
(The X0000 data is not affected)

— IW005 MOV RW 100 }— Transfer instruction fromIWQ005 to RW100

When executing the instruction, the word data corresponding to XW005
is read from the input module and is transferred to RW100. (The XW005
data is not affected)

Codes

Direct output registers ... OW
Direct output devices..... O

Addresses

Direct input registers 000-511 (correspond to output registers (YW))
Direct input devices....... 0000-511F (correspond to output devices (Y))

Functions

When instructions are executed using direct output registers/direct
output devices, data is stored in the corresponding output
registers/output devices (YW/Y). Then, this output register (YW) data
is written directly to the corresponding output module. These
registers/devices are used when using the S2T as the direct
input/output system (direct system) and not the batch input/output
system (refresh system).

Example) 00020
—(Y Coil 00020

When the instruction is executed, the data (ON/OFF data)
corresponding to the left link state is stored in Y0020. Then the 16-bit
data of YWO002 is written to the corresponding output module.

Codes

Auxiliary registers.....RW
Auxiliary devices R

Addresses

Output registers........ 000-999 (1000 words)
Output devices 0000-999F
(corresponding to one bit in a register, 16000 points)

Functions

These are general purpose registers/devices which can be used for
temporary storage of execution results in a program. An auxiliary
register is used for storing 16-bit data. An auxiliary device indicates 1
bit in an auxiliary register.

Auxiliary registers/devices can be designated as retentive memory
areas.

156 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

Special registers Codes Special registersSW
and Special devices Special devices........ S

Addresses | Special registers 000-255 (256 words)
Special devices........ 0000-255F
(corresponding to one bit in a register, 4096 points)

Functions These are registers/devices which have special function such as fault
flags (Error down/Warning) which are set when the CPU detects a
malfunction; timing relays and clock calendar data (year, month, day,
hour, minute, second, day of week) which are updated by the CPU;
flags/data which the user sets for executing operational control of the
sub-programs. For details, see the following table.

Timer registers Codes Timer registers.......... T
and Timer devices Timer devices........... T.
Addresses | Timer registers......... 000-999 (1000 words)
Timer devices........... 000-999 (1000 points)

Functions The timer registers are used together with timer instructions (TON, TOE,
SS, TRG), and store elapsed time (increment system) when the timer is
operating. Also, the timer devices are linked to the operation of the
timer registers with the same address, and store the output results of
timer instructions. The timer registers can be designated as retentive
memory areas.

Counter registers |codes Counter registers
and Counter devices Counter devices....... C.

Addresses | Counter registers000-511 (512 words)
Counter devices....... 000-511 (512 points)

Functions The counter registers are used together with counter instructions (CNT,
U/D), and store the current count value when the counter is operating.
Also, the counter devices are linked to the operation of the counter
registers with the same address, and store the output results of counter
instructions. The counter registers can be designated as retentive
memory areas.

Data registers |codes D

Addresses |000-8191 (8192 words)

Functions General-purpose registers which can be used for such purposes as a
temporary memory for arithmetic results and the storage of control
parameters. Apart from the fact that bit designation is not possible,
they can be used in the same way as auxiliary registers. Data
registers can be designated as retentive memory areas.

Also, when a peripheral memory is used, D0O000-D4095 become
subjects for the initial load. In the ‘memory protect’ state (P-RUN),
data writing to DO000-D4095 is prohibited.

User’'s manual - Functions 157

3. User Data

PART 3 PROGRAMMING INFORMATION

Link registers
and Link device
(TOSLINE-S20)

Link registers
and Link relays
(TOSLINE-F10)

File registers

Index registers

Codes Link registers............ w
Link devices Z

Addresses | Link registers............ 0000-2047 (2048 words)

Link devices 0000-999F (corresponding to the leading 1000
words of the register, 16000 points)

Functions Used for a data link by the TOSLINE-S20. For the leading 1000 words
(WO0000-W0999) of he link registers, bit designation is possible as link
devices (Z0000-Z999F).

For areas not allocated to TOSLINE-S20, they can be used in the same
way as auxiliary registers and data registers.

Codes Link registers............ LW
Link relays................ L

Addresses | Link registers............ 000-255 (256 words)

Link relays................ 000-255F (4096 points)

Functions Used as registers/relays for remote 1/O by the TOSLINE-F10.

When TOSLINE-F10 is not used, they can be used in the same way as
auxiliary relays.

Codes F

Addresses |0000-32767 (32768 words)

Functions Can be used in the same way as data registers for such as storing
control parameters and storing field collection data. Bit designation is
not possible. The whole file register area is retained for power off.
The file registers can also be used for the sampling buffer.

Codes I, J, K (3 types, 3 words)

Addresses None

Functions When registers (apart from index registers) are used by instructions,

apart from the normal address designation system (direct address
designation, for instance D0100), indirect designation (indirect address
designation, for instance D0100.1) is possible by using the index
registers.

(If, for instance the content of | is 5, D0100.| indicates 00105)

For indirect address designation, see Section 3.4.

158 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

Tables of special

Overall map

register/special relays are shown below.

Register

Content

SWO000

Operation mode, error flags, warning flags

Swoo1

CPU error-related flags

SWO002

I/O error-related flags

SwWo003

Program erro-related flags, IC memory card status

SwWo004

Timing relays

SWO005

Carry flag, error flag

SW006

Flags related to error during program execution

SWO007

{
SWo013

Clock-calendar data
(Year, month, day, hour, minute, second, day of the week)

SW014

Flags related to bit pattern check/data validity check

SWO015

Flags related to 1/O error mapping, etc.

SWO016

!
SWo033

Diagnosis display record (system diagnosis)

SW034

{
Swo037

Annunciator relay (system diagnosis)

SWO038

Reserve (for future use)

SW039

Interrupt program execution status

SWO040

Sub-program execution control

SWo041

Sub-program execution status

SwWo042

!
SW044

Sub-program execution intervals (for cyclic mode)

SWO045

Power interruption continuous operation time

SW046

{
SW049

I/O error map

SWO050

{
SWo77

Reserve (for future use)

User’'s manual - Functions 159

3. User Data PART 3 PROGRAMMING INFORMATION

Overall map (continued)

Register Content
SW078

{ TOSLINE-F10 commands/status
SW093
SW094

{ TOSLINE-F10 scan error map
SW109
SW110 TOSLINE-S20 CHL1 station status
Sw111 TOSLINE-S20 CH2 station status
SW112

! TOSLINE-S20 CH1 online map
SW115
SW116

{ TOSLINE-S20 CH2 online map
SW119
SW120

! TOSLINE-S20 CH1 standby map
SW123
Sw124

! TOSLINE-S20 CH2 standby map
Sw127
SW128

! TOSLINE-S20 scan healthy map
Sw191
SW192

! Reserve (for future use)
SW255

160 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

igigil Name Function

S0000 0: Initializing 4: HOLD mode B: D-STOP

S0001 1: HALT mode 6 : ERROR mode D: S-HALT
Operation mode

S0002 2: RUN mode 9: D-HALT E: S-RUN

S0003 3: Run-F mode A: D-RUN F:S-STOP

S0004 | CPU error (Down) ON when error occurs (OR condition of related flag in SW001)

S0005 | I/O error (Down) ON when error occurs (OR condition of related flag in SW002)

S0006 | Program error (Down) ON when error occurs (OR condition of related flag in SW003)

S0007 | EEPROM alarm (Warning) E())l:ev;/:t?:nii:tli?nil(\aﬂsyumber of writing times 100,000 exceeded

S0008 | Constant scan delay (Warning) ON when actual scan time exceeds the constant scan time setting

S0009 | I/O alarm (Warning) ON when 1/O error detected by 1/O error mapping

SO000A | Calendar LSI error (Warning) ON when clock-calendar data fault (operation continues)

S000B

S000C Reserve (for future use)

S000D | TOSLINE-F10 error (Warning) ON when TOSLINE-F10 error (operation continues)

SO000E | TOSLINE-S20 error (Warning) ON when TOSLINE-S20 error (operation continues)

SO00F | Battery volatge low (Warning) ON when battery voltage low (operation continues)

S0010 | System ROM error (Down) ON when system ROM error

S0011 | System RAM error (Down) ON when system RAM error

S0012 | Program memory error (Down) ON when program memory (RAM) error

S0013 | EEPROM error (Down) ON when EEPROM error

S0014 Reserve (for future use)

S0015 | LP error (Down) ON when language processor (LP) error

S0016 | Main CPU error (Down) ON when main error (Down)

S0017

S0018

S0019

SO001A

S00LB Reserve (for future use)

S001C

S001D

SO01E

S001F | Watch-dog timer error (Down) ON when watch-dog timer error occurs

*1) This area is for reference only. (Do not write)
*2) The error flags are reset at the beginning of RUN mode.

User’'s manual - Functions 161

3. User Data

PART 3 PROGRAMMING INFORMATION

Special
device

Name

Function

S0020

I/O bus error (Down)

ON when /O bus error occurs

S0021

I/0 mismatch error (Down)

ON when 1/0O mismatch error occurs (allocation information and
mounting state do not agree)

S0022

I/0O response error (Down)

ON when no I/O response occurs

S0023

I/O parity error (Down)

ON when /O data parity error occurs

S0024

Reserve (for future use)

S0025

I/O interrupt error (Warning)

ON when unused /O interrupt occurs (operation continues)

S0026

Special module error (Warning)

ON when fault occurs in special module (operation continues)

S0027

S0028

S0029

S002A

S002B

S002C

S002D

S002E

S002F

Reserve (for future use)

S0030

Program error

ON when program error occurs (OR condition of SW006 flags)

S0031

Scan timer error (Down)

ON when scan cycle exceeds the limit value

S0032

S0033

S0034

S0035

S0036

S0037

S0038

S0039

SO003A

S003B

S003C

S003D

SO003E

SO003F

Reserve (for future use)

*1) This area is for reference only. (Do not write)
*2) The error flags are reset at the beginning of RUN mode.

162 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

Special
device

Name

Function

S0040

Timing relay 0.1 sec

0.05 sec OFF/0.05 sec ON (Cycle 0.1 sec)

S0041

Timing relay 0.2 sec

0.1 sec OFF/0.1 sec ON (Cycle 0.2 sec)

S0042

Timing relay 0.4 sec

0.2 sec OFF/0.2 sec ON (Cycle 0.4 sec)

S0043

Timing relay 0.8 sec

0.4 sec OFF/0.4 sec ON (Cycle 0.8 sec) All OEE when RUN

S0044

Timing relay 1.0 sec

0.5 sec OFF/0.5 sec ON (Cycle 1.0 sec) starts up

S0045

Timing relay 2.0 sec

1.0 sec OFF/1.0 sec ON (Cycle 2.0 sec)

S0046

Timing relay 4.0 sec

2.0 sec OFF/2.0 sec ON (Cycle 4.0 sec)

S0047

Timing relay 8.0 sec

4.0 sec OFF/4.0 sec ON (Cycle 8.0 sec)

S0048

S0049

S004A

S004B

S004C

S004D

Reserve (for future use)

S004E

Always OFF

Always OFF

S004F

Always ON

Always ON

S0050

CF (carry flag)

Used by instructions with carry

S0051

ERF (Error flag)

ON through error occurrence when executing instructions
(linked with each error flag of SW006)

S0052

S0053

S0054

S0055

S0056

S0057

S0058

S0059

SO005A

S005B

S005C

S005D

SO005E

SO05F

Reserve (for future use)

*) This area (except for S0050, S0051) is for reference only. (Writing is ineffective)

User’'s manual - Functions 163

3. User Data

PART 3 PROGRAMMING INFORMATION

Special

. Name Function

device

S0060 | lllegal instruction detection (Down) | ON when illegal instruction detected

S0061

S0062 Reserve (for future use)

S0063

S0064 | Boundary error (Warning) ON Whgn addre_ss range exceeded by indirect address designation
(operation continues)

S0065 | Address boundary error (Warning) QN Wht_en destinati.on (indirect) error by CALL instruction or JUMP
instruction (operation continues)

S0066
Reserve (for future use)

S0067

S0068 | Division error (Warning) ON when error occurs by division instruction (operation continues)

S0069 | BOD data error (Warning) ON Yvhen fault data detected by BCD instruction (operation
continues)

. . ON when table limits exceeded by table operation instruction

SO006A | Table operation error (Warning) W . .' 1S ex y peration insfruct
(operation continues)

S006B | Encode error (Warning) ON when error occurs by encode instruction (operation continues)

S006C Address registration error ON when destination for CALL instruction or JUMP instruction

(Warning) unregistered (operation continues)

S006D | Nesting error (Warning) ON then nest.ing exceed.ed by CALL instruction, FOR instruction or
MCSn instruction (operation continues)

SO006E
Reserve (for future use)

SO06F

*1) The error flags are reset at the beginning of RUN mode.
*2) For warning flags, resetting by user program is possible.

i%?;i:: Name Function

SWO007 | Calendar data (Year) Last 2 digits of the calendar year (91, 92, ...)

SWO008 | Calendar data (Month) Month (01-12)

SWO009 | Calendar data (Day) Day (01-31)

SWO010 | Calendar data (Hour) Hour (00-23) Stored in lower 8 bits
SWO011 | Calendar data (Minute) Minute (00-59) by BCD code
SWO012 | Calendar data (Second) Second (00-59)

SWO013 | Calendar data (Day of the week) Day of the week (Sunday=00, Monday=

01, ...Saturday=06)

*1) The clock-calendar data setting is performed by calendar setting instruction (CLND) or by calendar setting

operation by programmer.

(It is ineffective to write data directly to the special registers)

*2) When the data cannot be read correctly due to the calendar LSI fault, these registers become HOOFF.

*3) Calendar accuracy is + 30 seconds/month.

164

V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

Special

) Name Function
device

S0140 | Bit/register check Bit pattern/register value check is ecuted by setting ON
S0141 | Bit/register check result ON when either S0142-S0146 is ON

S0142 | Bit pattern check result ON when bit pattern check error detected

S0143 | Register value check result (1) ON when register value check error detected for register 1

S0144 | Register value check result (2) ON when register value check error detected for register 2

S0145 | Register value check result (3) ON when register value check error detected for register 3

S0146 | Register value check result (4) ON when register value check error detected for register 4
S0147
S0148
S0149
S014A

S014B Reserve (for future use)
S014C
S014D
SO014E
S014F

S0150 | I/O error mapping 1/0 error mapping is executed by setting ON
S0151
S0152
S0153
S0154
S0155
S0156
S0157
S0158
S0159
S015A
S015B
S015C
S015D
SO015E

Reserve (for future use)

OFF: before program execution

S015F | Checkpoint for bit/register check ON: after program execution

User’'s manual - Functions 165

3. User Data

PART 3 PROGRAMMING INFORMATION

Spgmal Name Function
register
SWO016 | First error code » The designated error codes (1-64) are stored in order of execution
Swo017 | Number of registration in SW018-SW033 (the earlier the code, the lower the address), and
- the number of registration (SWO017) is updated.
SW018 | Error code (First) _ _ .
» The earliest error code occurring (the content of SW018) is stored
SW019 | Error code (2) in the leading error code (SWO016).
SW020 | Error code (3) « The registered error codes are cancelled one by one by the
SWo021 | Error code (4) execution of the diagnostic display reset instruction or by a reset
operation by the programmer.
Swo22 | Error code (5) At this time, the number of registers is reduced by 1 and the storage
SW023 | Error code (6) positions of the error codes are shifted up.
SW024 | Error code (7)
SW025 | Error code (8)
SW026 | Error code (9)
SW027 | Error code (10)
SWo028 | Error code (11)
SW029 | Error code (12)
SWO030 | Error code (13)
SW031 | Error code (14)
SW032 | Error code (15)
SWO033 | Error code (16)
Speqal Name Function
device
S0340 | Annunciator relay 1 » The annunciator relays corresponding to the error codes registered
S0341 | Annunciator relay 2 in SW018-SW033 become ON
S0342 | Annunciator relay 3
S0343 | Annunciator relay 4
S0344 | Annunciator relay 5
S0345 | Annunciator relay 6
S0346 | Annunciator relay 7
S0347 | Annunciator relay 8
S0348 | Annunciator relay 9
S0349 | Annunciator relay 10
S034A | Annunciator relay 11
S0348 | Annunciator relay 12
S034C | Annunciator relay 13
S034D | Annunciator relay 14
S034E | Annunciator relay 15
S034F | Annunciator relay 16

166 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

?jp:lfcizl Name Function
S0350 | Annunciator relay 17 » The annunciator relays corresponding to the error codes registered
S0351 | Annunciator relay 18 in SW018-5W033 become ON
S0352 | Annunciator relay 19
S0353 | Annunciator relay 20
S0354 | Annunciator relay 21
S0355 | Annunciator relay 22
S0356 | Annunciator relay 23
S0357 | Annunciator relay 24
S0358 | Annunciator relay 25
S0359 | Annunciator relay 26
S035A | Annunciator relay 27
S035B | Annunciator relay 28
S035C | Annunciator relay 29
S035D | Annunciator relay 30
S035E | Annunciator relay 31
S035F | Annunciator relay 32
S0360 | Annunciator relay 33
S0361 | Annunciator relay 34
S0362 | Annunciator relay 35
S0363 | Annunciator relay 36
S0364 | Annunciator relay 37
S0365 | Annunciator relay 38
S0366 | Annunciator relay 39
S0367 | Annunciator relay 40
S0368 | Annunciator relay 41
S0369 | Annunciator relay 42
S036A | Annunciator relay 43
S036B | Annunciator relay 44
S036C | Annunciator relay 45
S036D | Annunciator relay 56
S036E | Annunciator relay 47
S036F | Annunciator relay 48

User’'s manual - Functions 167

3. User Data PART 3 PROGRAMMING INFORMATION

Special

) Name Function
device

S0370 | Annunciator relay 49 » The annunciator relays corresponding to the error codes registered
in SW018-SW033 become ON

S0371 | Annunciator relay 50

S0372 | Annunciator relay 51

S0373 | Annunciator relay 52
S0374 | Annunciator relay 53

S0375 | Annunciator relay 54

S0376 | Annunciator relay 55

S0377 | Annunciator relay 56

S0378 | Annunciator relay 57

S0379 | Annunciator relay 58
S037A | Annunciator relay 59
S037B | Annunciator relay 60
S037C | Annunciator relay 61

S037D | Annunciator relay 62
S037E | Annunciator relay 63
S037F | Annunciator relay 64

SW38 | Programmer port response delay 0030 x 10 ms

Special

) Name Function
device

S0390 | Timer interrupt execution status

S0391 | I/O interrupt #1 execution status

S0392 | /O interrupt #2 execution status

S0393 | /O interrupt #3 execution status

S0394 | /O interrupt #4 execution status ON during execution

S0395 | /O interrupt #5 execution status

S0396 | /O interrupt #6 execution status

S0397 | I/O interrupt #7 execution status

S0398 | /O interrupt #8 execution status
S0399
S039A
S039B

S039C Reserve (for future use)
S039D
S039E
SO039F

168 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

?jp:lzzl Name Function
S0400 | Hot restart mode ON when hot restart mode (setting by program is available)
S0401 | HOLD device ON during HOLD mode (setting by program is available)
S0402 Reserve (for future use)
S0403 | Sub-program #2 mode (Sglglfrlggr:nrgl#z moogezz ;Ztéi(:gl)
S0404 Reserve (for future use)
S0405 | Sub-program #2 execution mode (Sggg?rg?]rea?mf e)éeNc:utci:(;rélzz)o de setting
S0406 | Sub-program #3 execution mode (Sg.k:)_p?rg?,??mf egﬁ?g;l?;; de setting
S0407 | Sub-program #4 execution mode (Sglglfrg?];a?m? egﬁ?g;l?;; de setting
S0408 Reserve (for future use)
S0409 | Sub-program #2 request Sub-program #2 request command (Execution request by setting ON)
S040A | Sub-program #3 request Sub-program #3 request command (Execution request by setting ON)
S040B | Sub-program #4 request Sub-program #4 request command (Execution request by setting ON)
S040C
S040D
SO40E Reserve (for future use)
S040F
S0410 | Sub-program #1 execution status ON during sub-program #1 execution
S0411 | Sub-program #2 execution status | ON during sub-program #2 execution
S0412 | Sub-program #3 execution status ON during sub-program #3 execution
S0413 | Sub-program #4 execution status ON during sub-program #4 execution
S0414 Reserve (for future use)
S0415 | Sub-program #2 delay (Warning) ON when sub-program #2 execution delay (cyclic mode)
S0416 | Sub-program #3 delay (Warning) ON when sub-program #3 execution delay (cyclic mode)
S0417 | Sub-program #4 delay (Warning) ON when sub-program #4 execution delay (cyclic mode)
S0418
S0419
SO041A
S041B
Reserve (for future use)
S041C
S041D
SO041E
S041F

User’'s manual - Functions 169

3. User Data

PART 3 PROGRAMMING INFORMATION

ig?;i:: Name Function

SWO042 | Sub-program #2 interval Number of scans for sub-program #2 cyclic mode
SWO043 | Sub-program #3 interval Number of scans for sub-program #3 cyclic mode
SWO044 | Sub-program #4 interval Number of scans for sub-program #4 cyclic mode
SWO045 Reserve (for future use)

170 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

Special
device

Name

Function

SWO046

§

SWO052

Reserve (for future use)

Special
register

Name

Function

SWO067

Write protect for SEND/RECV

Used for setting write protect against SEND and RECV instructions

User’'s manual - Functions 171

3. User Data

PART 3 PROGRAMMING INFORMATION

Special
device

Name

Function

S0780

S0781

S0782

S0783

S0784

S0785

S0786

S0787

S0788

S0789

SO078A

S078B

S078C

S078D

SO078E

SO078F

TOSLINE-F10
CH1 command

Transmission status

ON during transmission

Output inhibit status

ON when output inhibit mode

Re-configuration

ON during re-configuration

Reserve (for future use)

Scan transmission error

On when scan transmission error occurs

Reserve (for future use)

Transmission stop

Transmission stop by setting ON

Output inhibit

Output inhibit by setting ON

Reserve (for future use)

S0790

S0791

S0792

S0793

S0794

S0795

S0796

S0797

S0798

S0799

SO079A

S079B

S079C

S079D

SO079E

SO079F

TOSLINE-F10
CH1 status

Transmission status

ON during transmission

Scan transmission

ON during scan transmission

Reserve (for future use)

MS operation mode

OFF: Normal mode ON: Test mode

Reserve (for future use)

*) Refer to the TOSLINE-F10 manual for details.

172 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

i%?;i:: Name Function

SWO080 | TOSLINE-F10 CH2 command * Bit assignment in the register is the same as SW078 and SW079.
SW081 | TOSLINE-F10 CH2 status

SW082 | TOSLINE-F10 CH3 command

SW083 | TOSLINE-F10 CH3 status

SWO084 | TOSLINE-F10 CH4 command

SWO085 | TOSLINE-F10 CH4 status

SWO086 | TOSLINE-F10 CH5 command

SWO087 | TOSLINE-F10 CH5 status

SWO088 | TOSLINE-F10 CH6 command

SWO089 | TOSLINE-F10 CH6 status

SWO090 | TOSLINE-F10 CH7 command

SWO091 | TOSLINE-F10 CH7 status

SWO092 | TOSLINE-F10 CH8 command

SW093 | TOSLINE-F10 CHS status

rSepg(iE;:tiz: Name Function

SWQ094 LW000 [JLWO015 * The corresponding bit comes ON when the LW
SWO095 LWO016 [JLWO31 register is not updated normally.

SW096 LW032 0LwW047

SWQ097 LW048 [JLW063 * The lowest address of LW register corresponds
SW098 LWO064 [1LW079 to bit 0 in the SW register, and in the order.
SW099 LW080 LILW095

SW100 LW096 JLwW111

SW101 | TOSLINE-F10 w112 OLwi27

SW102 | Scan error map LW128 [1LwW143

SW103 LW144 [JLW159

SW104 LW160 OLW175

SW105 LW176 0JLW191

SW106 LW192 [JLwW207

SW107 Lw208 [1LwW223

SW108 LW224 [JLW239

SW109 LW240 JLW255

User’'s manual - Functions 173

3. User Data

PART 3 PROGRAMMING INFORMATION

?jp:lzzl Name Function
S1100 Test mode ON when test mode
S1101
S1102 Reserve (for future use)
S1103
S1104 Master/slave ON when master station
S1105 Scan inhibit ON when scan transmission inhibited
S1106
S1107 | TOSLINE-S20
s1108 | CH1 station status

Reserve (for future use)
S1109
S110A
S110B
si110C Online ON when online mode
S110D Standby ON when standby mode
S110E Offline ON when offline mode
S110F Down ON when down mode
S1110 Test mode ON when test mode
S1111
S1112 Reserve (for future use)
S1113
S1114 Master/slave ON when master station
S1115 Scan inhibit ON when scan transmission inhibited
S1116
S1117 | TOSLINE-S20
s1118 | CH2 station status

Reserve (for future use)
S1119
S111A
S111B
S111C Online ON when online mode
S111D Standby ON when standby mode
S111E Offline ON when offline mode
S111F Down ON when down mode

*) Refer to the TOSLINE-S20 manual for details.

174 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

i%?;i:: Name Function

SW112 station No. 1 [ONo. 16 * The corresponding bit is ON when the station is
SW113 | TOSLINE-S20 station No. 17 ONo. 32 online.

Swi14 | CH1 online map station No. 33 ONo. 48 * The lowest station number corresponds to bit 0
SW115 station No. 49 [INo. 64 in the SW register, and in the order.

SW116 station No. 1 [ONo. 16

SW117 | TOSLINE-S20 station No. 17 ONo. 32

swiig | CH2 online map station No. 33 CJNo. 48

SW119 station No. 49 [INo. 64

SW120 station No. 1 [ONo. 16 * The corresponding bit is ON when the station is
SW121 | TOSLINE-S20 station No. 17 ONo. 32 standby.

swi122 | CH1 standby map station No. 33 ONo. 48 * The lowest station number corresponds to bit 0
SW123 station No. 49 [INo. 64 in the SW register, and in the order.

Sw1i24 station No. 1 [ONo. 16

SW125 | TOSLINE-S20 station No. 17 ONo. 32

Swi126 | CH2 standby map station No. 33 [JNo. 48

Swi127 station No. 49 [INo. 64

i%?;i:: Name Function

Sw128 W0000 [Jw0015 * The corresponding bit is ON when the W
SW129 W0016 [JW0031 register is updated normally.

SW130 W0032 [Jw0047

SW131 w0048 [JW0063 * The lowest address of W register corresponds
SW132 W0064 [IW0079 to bit 0 in the SW register, and in the order.
SW133 WO0080 [1W0095

SW134 W0096 [1w0111

SW135 | TOSLINE-S20 Wo0112 Jw0127

Sw136 | scan healthy map W0128 0W0143

SW137 W0144 [1wW0159

SW138 W0160 [JW0175

SW139 w0176 [Jw0191

SW140 W0192 [1w0207

SWi141 W0208 [1w0223

SW142 w0224 [1w0239

SW143 W0240 [JW0255

User’'s manual - Functions 175

3. User Data

PART 3 PROGRAMMING INFORMATION

i%?;i:: Name Function
SW144 W0256 [1w0271 * The corresponding bit is ON when the W
SW145 W0272 [W0278 register is updated normally.
SW146 W0288 [JW0303

Sw147 w0304 [JwW0319 * The lowest address of W register corresponds
SW148 W0320 [IW0335 to bit 0 in the SW register, and in the order.
SW149 W0336 [1W0351

SW150 W0352 [JW0367

SW151 W0368 [JW0383

SW152 W0384 [1W0399

SW153 W0400 [1wW0415

SW154 w0416 [1w0431

SW155 W0432 [1w0447

SW156 W0448 [1W0463

SW157 W0464 [1W0479

SW158 W0480 [1W0495

SW159 | TOSLINE-S20 W0496 [JW0511

Sw160 | scan healthy map W0512 OW0527

SW161 W0528 [1W0543

SW162 W0544 [1W0559

SW163 W0560 [JW0575

SW164 WO0576 [1W0591

SW165 W0592 [1wW0607

SW166 W0608 [JW0623

SW167 W0624 [JW0639

SW168 W0640 [TW0655

SW169 W0656 [1W0671

SW170 W0672 JW0687

SW171 W0688 [JW0703

SW172 W0704 [JwW0719

SW173 W0720 [OwW0735

SW174 W0736 [JW0751

SW175 w0752 [Jw0767

176 V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

ig?;i:: Name Function

SW176 W0768 [1W0783 * The corresponding bit is ON when the W
SW177 WO0784 CIW0799 register is updated normally.

SW178 W0800 [JW0815

SW179 w0816 [Jw0831 * The lowest address of W register corresponds
SW180 W0832 [IW0847 to bit 0 in the SW register, and in the order.
Swi181 W0848 [1W0863

SW182 W0864 [JW0879

SW183 | TOSLINE-S20 W0880 [JW0895

Swig4 | scan healthy map W0896 1W0911

SW185 W0912 [Jw0927

SW186 W0928 [1W0943

SW187 W0944 [1wW0959

SwW188 W0960 [TW0975

SW189 W0976 [1w0991

SW190 W0992 [JW1007

SW191 W1008 [JW1023

User’'s manual - Functions 177

3. User Data

PART 3 PROGRAMMING INFORMATION

i%?;i:: Name Function
SW192 W1024 [TwW1039 * The corresponding bit is ON when the W
SW193 W1040 CJW1055 register is updated normally.
SW194 W1056 [1w1071
SW195 w1072 (Jw1087 * The lowest address of W register corresponds
SW196 W1088 [IW1103 to bit 0 in the SW register, and in the order.
SW197 W1104 OW1119
SW198 W1120 JW1135
SW199 W1136 JW1151
SW200 w1152 0wW1167
SwW201 w1168 [1W1183
SW202 w1184 [JW1199
SW203 W1200 [JW1215
SW204 w1216 [Jw1231
SW205 W1232 (w1247
SW206 W1248 [1W1263
SW207 | TOSLINE-S20 W1264 [JW1279
Sw208 | scan healthy map W1280 OW1295
SW209 W1296 [1wW1311
SW210 w1312 (w1327
SwW211 w1328 [1wW1343
SW212 W1344 [1wW1359
SW213 W1360 (w1375
SW214 w1376 [Jw1391
SW215 w1392 [1w1407
SW216 W1408 [1w1423
SW217 W1424 [1W1439
SW218 W1440 (w1455
SW219 W1456 [1w1471
SW220 W1472 [1w1487
Sw221 W1488 [1W1503
SW222 w1504 (w1519
SW223 W1520 (w1535
NOTE
L] ALl

In case of TOSLINE-S20LP, it does not have the scan healthy map. Therefore these SW
registers are not effective for the TOSLINE-S20LP.

178

V series S2T

PART 3 PROGRAMMING INFORMATION

3. User Data

i%?;i:: Name Function
SW224 W1536 [Jw1551 * The corresponding bit is ON when the W
SW225 W1552 CW1567 register is updated normally.
SW226 W1568 [1wW1583
SwW227 w1584 [1W1599 * The lowest address of W register corresponds
SW228 W1600 [IW1615 to bit 0 in the SW register, and in the order.
SW229 W1616 [JwW1631
SW230 W1632 (w1647
SW231 W1648 [1W1663
SW232 W1664 [1W1679
SW233 W1680 [1W1695
SW234 W1696 [JwW1711
SW235 w1712 (O0w1727
SW236 W1728 [1wW1743
SW237 W1744 [IW1759
SW238 W1760 OW1775
SW239 | TOSLINE-S20 W1776 w1791
Sw240 | scan healthy map W1792 OW1807
Sw241 w1808 [1w1823
SW242 w1824 [1w1839
SW243 W1840 (w1855
SW244 W1856 [1w1871
SW245 w1872 [1w1887
SW246 w1888 [1W1903
SW247 W1904 [1w1919
SW248 W1920 (w1935
SW249 W1936 [1wW1951
SW250 W1952 [1wW1967
SW251 W1968 [1W1983
SW252 W1984 [1W1999
SW253 W2000 (w2015
SW254 W2016 [Jw2031
SW255 W2032 (w2047
___NOTE
L] ALl
In case of TOSLINE-S20LP, it does not have the scan healthy map. Therefore these SW
registers are not effective for the TOSLINE-S20LP.

User’'s manual - Functions 179

3. User Data

PART 3 PROGRAMMING INFORMATION

3.3
Register data types

It has already been explained the register is “a location which stores 16
bits of data”. Inthe S2T instructions, the following types of data can be
processed using single registers or multiple consecutive registers.

» Unsigned integers (integers in the range 0 to 65535)

* Integers (integers in the range -32768 to 32767)

» BCD (integers in the range 0 to 9999 expressed by BCD code)

» Unsigned double-length integers (integers in the range 0 to
4294967295)

» Double-length integers (integers in the range -2147483648 to
2147483647)

* Double-length BCD (integers in the range 0 to 99999999 expressed
by BCD code)

» Floating point data (real number in the range -3.40282 x 10* to
3.40282 x 10%)

However, there are no dedicated registers corresponding to the types
for processing these types of data. The processing of the register data
varies according to which instruction is used.

In other words, as shown in the following example, even when the same
register is used, if the data type of the instruction differs, the processing
of the register data will also differ.

Example)
When the value of DO005 is HFFFF (hexadecimal FFFF):

(1) In the unsigned comparison instruction (Greater than),
—[D0005 U > 100]— decision output (ON when true)

The value of DO0O05 is regarded as 65535 (unsigned integer),
therefore it is judged to be greater than the compared value (100)
and the output of the instruction becomes ON.

(2) In the (signed) comparison instruction (Greater than),
—[D0005 > 100]— decision output (ON when true)

The value of DO0O5 is regarded as -1 (integer), therefore it is judged
not to be greater than the compared value (100) and the output of
the instruction becomes OFF.

In this way, since there is no classification of registers by data type, it is
possible to execute complex data operations provided their use is
thoroughly understood. However, in order to make the program easier
to see, it is recommended that registers be used by allocation by data
types (1 register is processed by 1 data type) as far as possible.

180 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

(1) Unsigned Integer
This is a 16-bit unsigned integer expressed by 1 register. The bit
configuration inside the register is as shown below.

(MSB) (LSB)
FEDCBA987 65 43 2 1 0<— Bitpositions

Register [| | [[[[[[[][[]]]]

Bit 0 is the least significant bit (LSB), and bit F is the most significant
bit (MSB). The processable numerical value range is as shown in
the following Table.

Numerical Value Binary Expression Hexadecimal
(Decimal) yEXp Expression
65535 1111 1111 1111 11211 FFFF
65534 1111 1121 1111 1110 FFFE
/ / /
1 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0000
___NOTE
LAl

When programming and when program monitoring, it is possible to
change between decimal numbers and hexadecimal numbers for
displaying/setting register data. When using a hexadecimal
display, “H” is attached before the numerical value.

Example) H89AB (hexadecimal 89AB)

(2) Integer
This is a 16-bit integer expressed by 1 register. A negative number
is expressed by 2's complement.

(MSB) (LSB)
FEDCBA987 65 43 2 1 0<«<— Bitpositions
Register | | [[[[[[[[[[]][]]
I oo
Data 15 bits
Sign bit

The numerical value is expressed by the 15 bits from bit O to bit E.
Bit F expresses the sign (0 when positive, 1 when negative)

User’'s manual - Functions 181

3. User Data

PART 3 PROGRAMMING INFORMATION

Processable numerical range and expression format are shown in
the following Table.

Numeriqal Value Binary Expression Hexadeci.mal
(Decimal) Expression
32767 0111 1111 1111 1111 TFFF
32766 0111 1111 1111 1110 7FFE
/ / /

1 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0001
-1 1111 1111 1111 1111 FFFF
/ / /
-32767 1000 0000 0000 0001 8001
-32768 1000 0000 0000 0000 8000

The 2's complement is that the lower 16 bits become all 0 by adding
the 2's complement data and the original data.

Example)
0111 1111 1111 1111 (Binary)=32767
+ 1000 0000 0000 0001 (Binary)=-32767
1 0000 0000 0000 0000

In calculation, the 2's complements of a numerical value can be
found by the operation of inverting each bit of that numerical value
and adding 1.

Example)
0111 1111 1111 1111 (Binary)=32767
(bit inversion)
1000 0000 0000 0000 (Binary)=-32768
(add 1)
1000 0000 0000 0001 (Binary)=-32767
(3) BCD

BCD is the abbreviation of Binary Coded Decimal. BCD expresses
1 digit (0-9) of a decimal number by 4 bits of a binary number.
Therefore, 1 register can express the numerical value of a 4-digit
decimal number.

(MSB) (LSB)
FEDCBA®987 6543 2 1 0<«—— Bitpositions
Register | | [[[[[[[[[[]][]]

| R N 2 S S —
10° 107 10 10°

182 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

Processable numerical range and expression format are shown in
the following Table.

Numerical Value Binary Expression Hexadecimal
(Decimal) y EXp Expression
9999 1001 1001 1001 1001 9999
9998 1001 1001 1001 1000 9998
/ / J
10 0000 0000 0001 0000 0010
9 0000 0000 0000 1001 0009
/ / J
1 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0000
~ NOTE
0 Al

Basically, BCD is a data format used for data inputs from BCD-
output type numerical setting devices and data outputs to BCD-input
type numerical display devices. However, the S2T is provided with
dedicated instructions which execute the calculations on BCD data
as they stand.

(4) Unsigned Double-Length Integer
This is 32-bit unsigned integer which is expressed using 2
consecutive registers. In the case of double-length data, the
registers are designated in the form & +1+« @& . @& indicates the
lower 16 bits and @& +1 shows the upper 16 bits. (& +1 is the
register following register @&)
(MSB) (LSB)

F - - - - - - 0 F - - - - - - 0 <— Bit positions

L Register & = Lower 16 bhits

Register & +1 = Upper 16 bits

Example) When processing an unsigned double-length integer in
double length register D0201+D0200, D0200 becomes & and
D0201 becomes & +1. DO0200 becomes the lower side and
D0201 becomes the upper side.

In programming, when D0200 is entered in the position which
designates the double-length operand, D0201+D0200 is
automatically displayed.

The numerical value range in which unsigned double-length integers
can be processed is shown in the table on the following page.

User’'s manual - Functions 183

3. User Data PART 3 PROGRAMMING INFORMATION

) Hexadecimal Expression
Numerical Value - -
Register & +1 Register &
4294967295 FFFF FFFF
/ / /
65536 0001 0000
65535 0000 FFFF
/ / /
0 0000 0000

NOTE
U all

Both odd-numbered addresses and even-numbered addresses may
be used as register & .

(5) Double-Length Integer
This is 32-bit integer which is expressed using 2 consecutive
registers. Negative numbers are expressed by 2's complement.
(See (2) ‘Integers’)
The registers are designated in the form & +1e« & . & becomes
the lower and @& +1 becomes the upper.
(MSB) (LSB)

FE - - - - - 0 F - - - - - - 0 <— Bit positions

— Register & = Lower 16 bits
— 0 - E bits of register & +1 = Upper 15 bits
—— F bit of register & +1 = Sign bit (positive: 0, negative: 1)

The numerical value is expressed by the 31 bits from bit O of register
@ to bit E of register & +1. The sign is expressed by bit F of
register & +1 (0 when positive, 1 when negative).

Example) When a double-length integer is processed by registers
D1002¢D1001, D1001 becomes & and D1002 becomes & +1,

and D1001 is the lower and D1002 is the upper. Also, the sign is
expressed by the bit F of D1002.

In programming, when D1001 is entered in the position which
designates the double-length operand, D1002¢D1001 is
automatically displayed.

The numerical value range in which double-length integers can be
processed is shown in the table on the following page.

184 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

Hexadecimal Expression

Numerical Value . -

Register @& +1 Register @&

2147483647 TFFF FFFF

/ / /
65536 0001 0000
65535 0000 FFFF

/ / /
0 0000 0000
-1 FFFF FFFF

/ / /
-65536 FFFF 0000
-65537 FFFE FFFF

/ / /
-2147483648 8000 0000

(6) Double-Length BCD
This is 8-digit BCD data which is expressed by using 2 consecutive
registers.

(MSB) (LSB)
F-C B-8 7-4 3-0 F--C B--8 7--4 3--0 «<—— Bit positions

H_H_Aﬂ_/\—(_/ %_H_H_H_)
10" 10° 10° 10* 10 102 10" 10°

-

Register & +1 Register &
The registers are designated in the form & +1¢ & ,and &
becomes the lower 4 digits while @& +1 becomes the upper 4 digits.

Example) When processing a double-length BCD by registers
XWO001+XW000, XW000 becomes & while XW001 becomes @&
+1 and XW000 becomes the lower 4 digits while XW001 becomes
the upper 4 digits.

The following table shows the numerical range and the expression
format in which double-length BCD data can be processed.

Hexadecimal Expression
Numerical Value . -
Register & +1 Register &
99999999 9999 9999
/ J /
1 0000 0001
0 0000 0000

User’'s manual - Functions 185

3. User Data PART 3 PROGRAMMING INFORMATION

(7) Floating Point Data
This is a real number which is expressed using 2 consecutive
registers (32-bit).
The registers are designated in the form & +1« @& . Internally,
the following format is used. (conforms to IEEE754)

(MSB) (LSB)
F E------- 7 6----- 0 F--oommmmmeeee - - 0 <— Bit positions
Exponent Mantissa (23 bits)
(8 bits)
Sign (0: +, 1: -)
Register & +1 Register &

Value = (Sign)1.(Mantissa) x 2 (Exponent-127)

The floating point data is used with the following floating point
instructions. Therefore, there is no need for user to consider the
format.

e Conversions (Floating point - Double-length integer)

* Floating point arithmetics

* Floating point comparisons

* Floating point functions (Trigonometrics, square root, etc.)
* Floating point process operations (Integral, PID, etc.)

The following table shows the numerical range in which the floating
point data can be processed.

Numerical value Expression Remarks

3.40282 x 10% 3.40282E38 Maximum
/ /

1.17549 x 10°% 1.17549E-38 Nearest to 0
0 0

-1.17549 x 1078 -1.17549E-38 Nearest to 0
/ /

-3.40282 x 10% -3.40282E38 Minimum

186 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

34
Index modification

When registers are used by instructions, the method of directly
designating the register address as shown in Example 1) below is called
‘direct addressing’.

As opposed to this, the method of indirectly designating the register by
combination with the contents of the index registers (I, J, K) as shown in
Example 2) below is called the ‘indirect addressing’. In particular, in
this case, since the address is modified using an index register, this is
called ‘index modification’.

Example 1)
— RW100 MOV D3500 }—

Data transfer instruction
Transfer content of RW100 to D3500

Example 2)
| J
— RW100 MOV D3500 }—

Data transfer instruction (index modification attached)

Transfer content of RW(100+]) to D(3500+J)

(If 1=3 and J=200, the content of RW103 is transferred to D3700)
There are 3 types of index register, |, J and K. Each type processes
16-bit integers (-32768 to 32767). There are no particular differences in

function between these 3 types of index register.

There is no special instruction for substituting values in these index
registers. There are designated as destination for normal instructions.

Example 1) Substituting a constant in an index register
—[64 MOV |]— (Substitute 64 in index register)
—[-2 MOV J]— (Substitute -2 in index register J)

Example 2) Substituting register data in an index register

—[D0035 MOV K]— (Substitute the value of DO035 in index
register K)

—[RWO078 MOV |]— (Substitute the value of RWO078 in index
register 1)

User’'s manual - Functions 187

3. User Data PART 3 PROGRAMMING INFORMATION

Example 3) Substituting the result of an operation in an index register
— RW200-30 - I |-
(Substitute the result of subtracting 30 from RW200 in I)
— xw004 ENC (4) J |-

(Substitute the uppermost ON bit position of XW004 in J
(encode))

~_NOTE
U Al

Although, basically, index registers are processed as single-length
(16 bits), when, for instance, using an index register as the storage
destination for a instruction which becomes double-length as the
result of a multiplication instruction or the like, only the combinations
Je lorKe Jare effective. In this case, it becomes J ¢ | by
designating | in the double-length operand position, and J becomes
upper while | becomes lower. In the same, by designating J, it
becomes K ¢ J, and K becomes upper while J becomes lower.

Example)

—{D1357 %10 - J I |-

The following are examples of registers in which index modification has
been executed.

g
. When | =0, expresses RW100
RW100 When | =1, expresses RW101
When | =-1, expresses RW099

When | =100, expresses RW200
_When | =-100, expresses RW000

J e /When J=0, expresses D0201 [D0200

D0201 [D0200 When J =1, expresses D0202 [D0201
When J =2, expresses D0203 [D0202

When J = -1, expresses D0200 [D0199

_When J =-2, expresses D0199 [D0198

188 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

The following shows an example of the operation when index
modification is applied to a program.

Example)
X0010
—P CO00 * 3 — D2001 [D2000 | } .
!
D2000 MOV 1] [Xw005 MOV D3000 | =
!
+11] [xwo10 Mov D3000 | 0
!
+11] [xwo12 Mov D3000 | 0

The following processing is carried out when X0010 changes from OFF
to ON

[0 Substitute 3 times the value of the content of CO00 in index register |
0 Store content of XW005 in D(3000+1)
0 Add 1 to the content of | and store content of XW010 in D(3000+I)
[0 Add a further 1 to the content of | and store content of XW012 in
D(3000+)
Incidentally,
&

—| P |—is positive transition-sensing contact which becomes ON once
only when device @& changes from OFF to ON (until the instruction is
executed in the next scan)

—[A *xB - &+l &]— is multiplication instruction which
multiplies & by ® and stores it in double-length register & +1+. &

—[+1 &]7 is increment instruction which adds 1 to the content of &
and stores it in &

—[@ MOV @]-is a data transfer instruction which substitutes the
contentof & in &

~ NOTE
U Al

(1) Substitutions of values to index registers and index modification
may be carried out any number of times during a program.
Therefore, normally, the program will be easier to see if a value
substitution to an index register is executed immediately before
index modification.

(2) Be careful that the registers do not exceed the address range
through index modification. When the results of index
modification exceed the address range, the instruction is not
executed, and special devices (S0051 and S0064) which
indicate ‘boundary error’ become ON.

User’'s manual - Functions 189

3. User Data PART 3 PROGRAMMING INFORMATION

As explained before, the main purpose of the index modification is
indirect designation of register. However, as the special usage of the
index modification, the followings are also possible.

* For CALL and JUMP instructions, indirect designation of the
destination address is possible.

|
— JUMP N.000 }— (If I=5, jump to Label 5)

If indexed destination is not registered, the special devices (S0051
and S006C) become ON. If indexed destination exceeds the
range, the special devices (S0051 and S0065) become ON. And
both cases, the instruction is not executed.

* For SET and RST instructions, indirect designation of device is
possible.

!
— SET R0100 |~ (If I=HOO5F, set RO15F to ON)

» For constant operand, the constant value can be modified by the
index register.

|
—{ 500 MOV D5000 |~ (If 1=10, 510 is stored in D5000)

NOTE
U Al

Refer to the Instruction Set manual for the operands to which the
index modification is available in each instruction.

190 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

3.5
Digit designation

There is a method called ‘digit designation’ which is a special
designation method for register data. ‘Digit designation’ treats 1 digit
(4 bits) of a hexadecimal number as a data unit. It is a method of
designation in which a number of digits from the designated devices (bit
positions) are made the subject of data operation.

In practice, in the case of the following Example, 2 digits from X0008
(that is to say, the upper 8 bits of XW000) become the subject of data
operation.

Example)

02 -— Digit designation (in this case 2-digit designation)

x0008 <« Digit designation leading device

N Designates the hatched line area

F---CB---87---43¢:---0
XW000 | | ||

A A

2nd digit 1st digit

X008

There are 9 types of digit designation — QO, Q1, ..., Q8 which have the
following significations

QO.... makes the designated device 1 bit the subject of data operation

Q1.... makes 1 digit (4 bits) started with the designated device the
subject of data operation

Q2.... makes 2 digits (8 bits) started with the designated device the
subject of data operation

Q3.... makes 3 digits (12 bits) started with the designated device the
subject of data operation

Q4.... makes 4 digits (16 bits) started with the designated device the
subject of data operation

Q5.... makes 5 digits (20 bits) started with the designated device the
subject of data operation

Q6.... makes 6 digits (24 bits) started with the designated device the
subject of data operation

Q7....makes 7 digits (28 bits) started with the designated device the
subject of data operation

Q8.... makes 8 digits (32 bits) started with the designated device the
subject of data operation

In digit designation, when the area designated covers multiple registers,
as shown below, the area is designated from the smaller address to the
greater address.

User’'s manual - Functions 191

3. User Data

PART 3 PROGRAMMING INFORMATION

Example)
RWO031 RWO030
04 F B 0 FC 0
rosoc — || [[[[H[[]]
—

The 16 bits RO30C to R031B
(RO30C is the LSB as a numerical value)

Below, the operation of digit designation is described for the case when
digit designation is executed as a source operand (a register for
executing an instruction using its data) and the case when digit
designation is executed as a destination operand (a register which
stores the result of instruction execution).

It is possible to carry out digit designation for both a source operand and
a destination operand with 1 instruction.

(1) Digit designation for a source operand
For a single-length (16 bits) operand, QO to Q4 are available. The
upper digits which are out of the designated digits are regarded as 0.

Example 1)
Q1
—{ x0054 MOV D1000 |- (Data transfer)
F C B 8 7 4 3210
Transferred data 0 0 0

A A N
Contents of X0057 4T w

Contents of X0056
Contents of X0055
Contents of X0054

Example 2)

Q4
—{ x002C B + H0050 - YW010 }— (BCD addition)
(Example of XW003=H8765, XW002=H4321)

X003B~X0038 X0037~X0034 X0033~X0030 X002F~X002C

Augend data | 7 ‘ 6 | 5 | 4

+
Addend data 0 0 5 0

U 0
Sum 7 7 | 0 4

(stored in YWO010)

192 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

For a double-length (32 bits) operand, all Q0 to Q8 are available.
Example 3)

Q7
—[R0102 DMOV D0701 [D0700 |- (Double-length transfer)

D 0 F 210
RwoLL Rwoto | | | 7]
Transferred data 0
D0701 [(DO700 | 0 | |

(2) Digit designation for a destination operand
For single-length (16 bits) operand, QO to Q4 are available. The
result data of the operation is stored in the specified digits of the
destination register. The digits which are out of the designated
digits are unchanged.

Example 1)
Q2
—[XW000 MOV R0018]7 (Data transfer)

= 8 7 4 3 0
XWO000 | Ignored |
Transferred data |
RWO001 | — | | | — Enchanged

2 digits started with ROOFS\

(R0O018 [TRO0O1F) R0018

User’'s manual - Functions 193

3. User Data PART 3 PROGRAMMING INFORMATION

Example 2)
Q3 Q3
—{ x0045 + 200 - R1200 | (Addition)
0 F DC 98 54 0

XW005 [XW004 e’
Augend data 0 (e

+
Addend data 200

U
Sum Ignored & + 200
Destination Unchanged & +200

R1200

If, XW005=H0077=0000 0000 0111 0111 (binary)
XW004=H182A=0001 1000 0010 1010 (binary)

augend data is;
0000 1000 1100 0001 (binary)=H08C1=2241 (decimal)

sum by adding 200;
0000 1001 1000 1001 (binary)=H0989=2441 (decimal)

Therefore, the data below is stored in the 3 digits (12 bits)
started with R1200.
1001 1000 1001 (binary)=H989=2441 (decimal)

194 V series S2T

PART 3 PROGRAMMING INFORMATION 3. User Data

For a double-length (32 bits) operand, all Q0 to Q8 are available.

Example 3)
Q6
—[D8001 8000 DMOV R0508 | (Double-length transfer)

F 8 7 0F 0
D8001 [D8000 | Ignored | |

_— —
g _—
——

rwost Rwoso | | |] | || unchanged |

~ NOTE
L] ALl

(1) Be careful that the result of digit designation does not exceed the
address range. When the result of digit designation exceeds
the address range, the excess portion will be ignored.

(2) A combination of digit designation and index modification can

also be used.

Example)
Q1 | If I=HOO01C, it signifies the same _ 01
R0O000 R0O01C

User’'s manual - Functions 195

4. 1/0O Allocation PART 3 PROGRAMMING INFORMATION

4.1
Overview The state of external input signals inputted to input modules is read via
the input registers/devices (XW/X or IW/l) when scan control is
executed. On the other hand, the output data determined in user
program execution are outputted to output modules via output
registers/devices (YW/Y or OW/O) and outputs from the output modules
to external loads are based on these data.

I/0O allocation is the execution of mapping between input
registers/devices and input modules and of mapping between output
registers/devices and output modules. In other words, physical
devices called 1/0 modules are allocated to logic devices called
registers/devices.

Input registers/devices and output registers/devices do not use their
own independent memory areas. They use a series of memory areas
which can be said to be input/output registers/devices (a register
address range of 256 words from 000 to 255).

By executing I/O allocation, function type determination is carried out by
making addresses allocated to input modules input registers/devices
and addresses allocated to output modules output registers/devices.

| Input/Output Registers |

YW) 000 I/O Modules
Y0y 001 32-point input [$ P SO0

YW) 002

YW) 003 16-point outputi—> [Output signals ¢

YW) 004

16-point output}> [Output signals [®

R

92 ~
1/0 allocation
execution

| Input/Output Registers |

WO000

&
<

WO001

&
<

e[e[e[3]

002

003

g

) 004

p)
C
2
C

Note) Addresses not allocated to I/O modules are output (YW)
internally.

196 V series S2T

PART 3 PROGRAMMING INFORMATION

4.2
Methods of VO allocation

Automatic I/O allocation

4. 1/0 Allocation

The execution of 1/0 allocation can be said in other words to be the
carrying out of the registration of 1/0 allocation information in system
information. The S2T CPU checks whether the I/O modules are
correctly mounted based on this I/O allocation information when RUN
starts-up. Also, at the same time, the correspondence between the
input/output registers (XW/YW) and the I/O modules is determined
based on this I/O allocation information. On the other hand, the
programmer reads this I/O allocation information when communicating
with the S2T and recognizes the assignment whether input. (XW) or
output (YW) for every input/output register address.

There are 2 methods for the registration of /O allocation information in
system information. These are automatic I/O allocation and manual
I/O allocation.

The registration of I/O allocation information is only available when the
S2T is in the HALT mode .

This is a method of causing the S2T to execute the registration of I/O
allocation information. It is carried out by selecting and executing the
AutoSet command on the I/O allocation screen of the programmer (T-
PDS).

When the automatic I/O allocation is executed, the S2T CPU reads out
state of the I/0O modules which are mounted (what type of module is
mounted in which position) and registers the I/O allocation information.

Each I/O module has one of the module types shown below.

Module Description Module Type
DI1632D/652 8 points DC input X 1w
DI633 16 points DC input X 1w
DI634 32 points DC input X 2w
DI635/635H 64 points DC input X 4W
IN653/663 16 points AC input X 1w
D0O633/633P/653 16 points DC output Y 1W
DO634 32 points DC output Y 2W
DO635 64 points DC output Y 4W
AC663 16 points AC output Y 1W
RO663 16 points Relay output Y 2W
RO662S 8 points Relay output (isolated) Y 1W
ADG624L/634L
AD624/634 4 channels analog input X 4W
RT614
AD668/TC618 8 channels analog input X 8W
Bﬁggg}‘mz 4 channels analog output Y 4W
DA664 4 channels analog output Y AW
P1632 2 channels pulse input iX+Y 2W
CF611 ASCII module iIX+Y AW
SN621/622/625/626/627 TOSLINE-S20 data transmission TL-S
UM611/612 TOSLINE-F10 data transmission TL-F

User’'s manual - Functions 197

4. 1/0O Allocation PART 3 PROGRAMMING INFORMATION

For instance, when automatic I/O allocation is executed with the I/O
module mounting state shown below, the CPU reads the I/O module
types which are mounted and creates I/O allocation information and it
registers it in system information.

* Module mounting state

PUO 1 2 3 4 5 6 7<«— SlotNo.
Basic PICls|s|s5|5|5(5|5
(unit 0) S|P|E|2|2|E2|2|2|E|u
o lulelelelelelglal2
ola|lalalalalalkF
N Ol O|O|O | AN | N
M A|[dA|A | A1 M | ™M
0 1 2 3 45 6 7
Expansion unit #1 P Alala <<
(unit 1) INEEE R
F clc|lc Cle|lc| 8
18191852883
0 1 2 3 45 6 7
Expansion unit #2 ||| P 31212|1212|12|23/132
it IBEHEHEHEHEEHE
Fl [8|elelelelelelale
>|la|lala|la|lajalala
OO O |O|AN | AN ||
—A|A | A [A M| N[O™
01 2 3 45 6 7
Expansion unit #3 |1 | P 3132
(unit 3) 1S|513|13|3|5|5|5|5|5
F Q ﬂ ﬂ ﬂ Ol Q| Q| Q| O
SialalalS|S|S S|S
O | © | ©
| |
* 1/O allocation information
Unit 0 Unit 1 Unit 2 Unit 3
S S S S
(I) Module type (I) Module type (I) Module type (I) Module type
t t t t
PU 0 X 4W 0 Y 1W 0 Y 1W
0 X 2w 1 X 4W 1 Y 1W 1 Y 1W
1 X 1w 2 X 4W 2 Y 1W 2 Y 1W
2 X 1w 3 3 Y 1W 3
3 X 1w 4 4 Y 2W 4
4 X 1w 5 Y 2W 5 Y 2W 5
5 X 2W 6 Y 2W 6 Y 2W 6
6 X 2W 7 7 Y 2W 7
7 TL-F

198 V series S2T

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

Manual I/O allocation

This is the method by which the user edits the 1/O allocation information
on the I/O allocation information screen of the programmer (T-PDS) and
writes it to the S2T. The manual I/O allocation is used in the following
cases.

» When carrying out programming in a state in which the 1/O modules
are not fully mounted

* When it is desired to remove some modules from the subjects of
batch input/output processing

* When using the unit base address setting function

* When allocating a specified number of registers to slot left vacant for
future addition

* When carrying out offline programming

For manual I/O allocation, module types are set for each slot. The
module types which can be set at this time are as shown below.
Module types are expressed by combinations of function classifications
and numbers of registers occupied. (except for TL-S and TL-F)

Function Number of
classification | registers occupied Remarks
X 01, 02, 04, 08 Input (batch input/output)
Y 01, 02, 04, 08 Output (batch input/output)

X+Y 02, 04, O8 Input+output (batch input/output)
iX 01, 02, 04, 08 Input (out of batch input/output)
iy 01, 02, 04, 08 Output (out of batch input/output)

iX+Y 02, 04, 08 Input+output (out of batch input/output)
z 08, 16, 32

SP 01, 02, 04, 08 Space

TL-S — For TOSLINE-S20

TL-F — For TOSLINE-F10

(1) Allocations to input/output modules are: -X and iX to input modules,
Y and iY to output modules and X+Y and iX+Y to input/output mixed
modules. The input/output registers which correspond to modules
with the designation i attached are not included in batch input/output
subjects.

(2) SP is used when allocating an arbitrary number of registers to a
vacant slot.

(3) TL-S is allocated to data transmission module TOSLINE-S20.

(4) TL-F is allocated to data transmission module TOSLINE-F10.

(5) Zis not used in the S2T.

User’'s manual - Functions 199

4. 1/0O Allocation PART 3 PROGRAMMING INFORMATION

~_NOTE
U Al

The I/O allocation information can be freely edited and registered by
carrying out manual I/O allocation. However, it is necessary that
the registered input/output allocation information and the I/O module
mounting state should agree for starting-up RUN.

When executing the ‘forced RUN’ command, operation (RUN-F
mode) is possible even if the modules registered in the allocation
information are not mounted. However, in this case also, operation
cannot be executed when a module of a different type to the
registered module is mounted (I/O mismatch).

Unit base address In manual I/O allocation, the starting register address (input/output
setting function registers) of each unit can be set.

The register addresses can be arranged for each unit by using this
function. Also, when an I/O module is added in a vacant slot in the
future, it is possible to avoid affecting the register addresses of other
units.

(Unit base address setting screen on T-PDS)

Unit #0 Unit #1 Unit #2 Unit #3
Top Register No. Top Register No. Top Register No. Top Register No.
[0] [15] [35] [50]

In the case of this screen example, address allocations can be carried
out

from XW/YWO0OO for the basic unit

from XW/YWOQ15 for expansion unit #1

from XW/YWO035 for expansion unit #2

from XW/YWO050 for expansion unit #3

NOTE
U Al

Settings by which latter stage units become lower register addresses
cannot be made.

200 V series S2T

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

4.3
Register and module
correspondence

When 1/O allocation information is registered by carrying out automatic
I/0O allocation or manual I/O allocation, correspondence between
registers and modules is automatically determined by the following
rules.

(1) In any unit, allocation is the lower address registers are allocated in
sequence from the module at the left end.

(2) In a case when the unit base addr.ess is not set.(it is not set by
automatic 1/O allocation), the registers are allocated in continuation
from the previous stage unit.

(3) A slot for which a module type is not set (any vacant slot in
automatic 1/O allocation is the same) does not occupy any registers.

(4) The cases of the half size racks also are handled in the same way
as standard size rack for I/O allocation, and they are regarded as
having slots without settings in the latter portions of the unit.
Therefore these portions do not occupy registers.

(5) Slots for which SP (space) is set, output registers are allocated
internally by a number of set words.

(6) Modules for which Z, TL-S and TL-F are set do not occupy
input/output registers (XW/YW).

(7) Input/output registers which are not allocated to I/O modules
become output registers (YW) in the programming. Thus, they can
be used in the same way as auxiliary registers/relays (RW/R).

User’'s manual - Functions 201

4. 1/0O Allocation PART 3 PROGRAMMING INFORMATION

The following examples show the register allocation when the 1/O
allocation information is registered.

Example 1)

«]/O allocation information

Unit O Unit 1 Unit 2 Unit 3
Base address [] | Base address [] | Base address [] | Base address []
S S S S
(lj Module type (lj Module type (lj Module type (lj Module type
t t t t
PU 0 X 4w 0 Y 1W 0 Y 1W
0 X 2W 1 X 4w 1 Y 1W 1 Y 1W
1 X 1W 2 X 4W 2 Y 1W 2 Y 1W
2 X 1W 3 3 Y 1W 3
3 X 1w 4 4 Y 2W 4
4 X 1w 5 Y 2W 5 Y 2W 5
5 X 2W 6 Y 2W 6 Y 2W 6
6 X 2W 7 7 Y 2W 7
7 TL-F
» Register allocation
Unit O Unit 1 Unit 2 Unit 3
S S S S
c', Register c', Register (lj Register (lj Register
t t t t
PU 0 | XW010 OXW013 | 0 | YWO026 0 | YW038
0 | XW000, XW001 | 1 | XW014 OXW017 | 1 | YW027 1 |YWO039
1 | XW002 2 | XW018 OXw021 | 2 | YW028 2 | YWO040
2 | XwW003 3 3 | YW029 3
3 | XW004 4 4 | YWO030, YWO031| 4
4 | XW005 5 | YW022, YW023 | 5 | YW032, YWO033 | 5
5 | XW006, XWO007 | 6 | YW024, YW025| 6 | YW034, YWO035| 6
6 | XW008, XW009 | 7 7 | YWO036, YWO037 | 7
7

202 V series S2T

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

4.4
Network assignment

TOSLINE-S20

For the data transmission module (TOSLINE-S20, TOSLINE-F10), the
network assignment is necessary in addition to the 1/0 allocation
mentioned before.

The network assignment is the declaration of assignment between the
link registers and the scan data memory in the data transmission
module.

The TOSLINE-S20 has 1024 words of scan data memory in the module.
By using the network assignment, S2T's link registers (W) are assigned
to the scan data memory in units of blocks.

(64 words/block)

Here, the block is not related to the data send block in the TOSLINE-
S20. The data transfer direction between the link registers and the
scan data memory is determined by S2T CPU for each address,
according to the data send block setting in the TOSLINE-S20.

The following 3 types of assignment setting are available.

Setting Function

Blank The block of link registers (W) are not assigned to
TOSLINE-S20.

LINK The block of link registers (W) are assigned to
TOSLINE-S20.
(S2T accesses TOSLINE-S20 for the block)

GLOBAL Used when 2 TOSLINE-S20s are mounted on the S2T,

and when the S2T functions as bridge station for the 2
TOSLINE-S20 networks.

Note) Up to 2 TOSLINE-S20s can be mounted on a S2T.
In this case, the TOSLINE-S20 nearer to the S2T CPU is
regarded as CH1, and the other is CH2.

User’'s manual - Functions 203

4. 1/0O Allocation PART 3 PROGRAMMING INFORMATION

(1) Example when 1 TOSLINE-30 is mounted (CH1 only)

» Network assignment example

Block Corresponding link registers CH1 CH2
1 WO0000 ~ W0063 LINK
2 w0064 ~ W0127 LINK
S w0128 ~ W0191 LINK
4 w0192 ~ W0255
5 W0256~-W0319
6 W0320 ~ W0383
7 W0384 ~ W0447
8 W0448 ~ W0511
9 WO0512 ~ W0575 LINK
10 WO0576 ~ W0639 LINK
11 w0640 ~ W0703
12 WO0704 ~ W0767
13 WO0768 ~ W0831
14 W0832 ~ W0895
15 W0896 ~ W0959
16 WO0960 ~ W1023

« Data transfer direction

Link register Data transfer direction CH1 scan data
W0000 0 =
! > ! é
woi49 | 149
WO0150 150
! < X
woor | 191
W0192 192
! (no transfer) 2 o
wos11 | 511 | =2
W0512 512 o}
o
! < !
woeszs | 639
WO0640 640
2 (no transfer) 2
wiozg | 1023

204 V series S2T

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

(2) Example when 2 TOSLINE-S20 are mounted (CH1, CH2)
Regarding the network assignment, the W register is divided into 32
blocks. (64 words per one block)

The S20 has 1024 words of scan memory. In case of the S2T, even
if two 320’s are used, the scan memory of each S20 can be fully
mapped to the W register. Channel 1 320 is allocated to the blocks 1
to 16, and channel 2 S20 is allocated to the blocks 17 to 32. The
allocation example below shows the case of all the blocks are set as

“LINK”.

S2T'slink register | o Setting CH1 S20 CH2 S20
W CH1 CH2 scan memory scan memory

WO0000 - W0063 1 LINK 0000 - 0063

WO0064 - W0127 2 LINK 0064 - 0127

W0128 - W0191 3 LINK 0128 - 0191

WO0192 - W0255 4 LINK 0192 - 0255

W0256 - W0319 S LINK 0256 - 0319

W0320 - W0383 6 LINK 0320 - 0383

W0384 - W0447 7 LINK 0384 - 0447

W0448 - W0511 8 LINK 0448 - 0511

WO0512 - W0575 9 LINK 0512 - 0575

WO0576 - W0639 10 LINK 0576 - 0639

W0640 - W0703 1 LINK 0640 - 0703

WO0704 - W0767 12 LINK 0704 - 0767

WO0768 - W0831 13 LINK 0768 - 0831

W0832 - W0895 14 LINK 0832 - 0895

WO0896 - W0959 15 LINK 0896 - 0959

WO0960 - W1023 16 LINK 0960 - 1023

W1024 - W1087 17 LINK 0000 - 0063

W1088 - W1151 18 LINK 0064 - 0127

W1152 - W1215 19 LINK 0128 - 0191

W1216 - W1279 20 LINK 0192 - 0255

W1280 - W1343 21 LINK 0256 - 0319

W1344 - W1407 22 LINK 0320 - 0383

W1408 - W1471 23 LINK 0384 - 0447

W1472 - W1535 24 LINK 0448 - 0511

W1536 - W1599 25 LINK 0512 - 0575

W1600 - W1663 26 LINK 0576 - 0639

W1664 - W1727 27 LINK 0640 - 0703

W1728 - W1791 28 LINK 0704 - 0767

W1792 - W1855 29 LINK 0768 - 0831

W1856 - W1919 30 LINK 0832 - 0895

W1920 - W1983 31 LINK 0896 - 0959

W1984 - W2047 32 LINK 0960 - 1023

User’'s manual - Functions 205

4. 1/0 Allocation

PART 3 PROGRAMMING INFORMATION

When “GLOBAL" setting is used, the link registers of “GLOBAL”
setting block are assigned to both CH1 and CH2 S20's.

S2T's link register Block Setting CH1 S20 CH2 S20
w CH1 CH2 scan memory | scan memory
W0192 - W0255 4 LINK 0192 - 0255 —
W0256 - W0319 5 GLOBAL 0256 - 0319 0256 - 0319
W0320 - W0383 6 GLOBAL 0320 - 0383 0320 - 0383
WO0384 - W0447 7 GLOBAL 0384 - 0447 0384 - 0447
W0448 - W0511 8 GLOBAL 0448 - 0511 0448 - 0511
WO0512 - W0575 9 LINK 0512 - 0575 —
W1216 - W1279 20 LINK 0192 - 0255
W1280 - W1343 21
W1344 - W1407 22 — —
W1408 - W1471 23 —
W1472 - W1535 24
W1536 - W1599 25 LINK 0512 - 0575

e The blocks 1 - 16 are dedicated to the CHI S20, and the blocks 17 -
32 are dedicated to the CH2 S20. It is not allowed to assign the
blocks 1 - 16 to CH2, and blocks 17 - 32 to CH1.

* For the blocks set as “LINK” or “GLOBAL", the S2T performs data
read from S20 (for data receive area) and data write to S20 (for data
send area). The data transfer direction (read or write) is
automatically decided by the S2T according to the S20's
receive/send setting.

* For the blocks set as “GLOBAL", the data transfer is as follows.

1) If CH1 is receive and CH2 is send CH1 receive data is read and
written into both W register and CH2.

2) If CHIis send and CH2 is receive CH2 receive data is read and
written into both W register and CH1.

3) If both CH1 and CH2 are send; W register data is written into
both CH1 and CH2.

4) If both CH1 and CH2 are receive; The receive data of “GLOBAL"
setting channel is read and stored in W register.

~_NOTE
U Al

In case of TOSLINE-S20LP, it has 4096 words of scan memory. The
leading 2048 words can be assigned straight to W register. The
following 2048 words can be accessed by using XFER instruction.

206 V series S2T

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

TOSLINE-F10

The TOSLINE-F10 has 32 words of scan data memory in the module.
Up to 8 TOSLINE-F10 can be mounted on a S2T. In this case, the
TOSLINE-F10 nearer to the S2T CPU is assigned in sequence from
CH1 to CHS.

For theTOSLINE-F10, set LINK for all existing CHs by the network
assignment. By this setting, the link registers (LW) are assigned to the

TOSLINE-F10 in units of 32 words from the lowest address.

* Network assignment when 4 TOSLINE-F10s.are mounted

CH Setting Assigned link register (LW)

1 LINK LWO000 ~ Lwo031

2 LINK LWO032 ~ LW063

S LINK LW064 ~ LW095

4 LINK LWO096 ~ Lw127

5

6

= —

8

The data transfer direction between the link registers (LW) and the
scan data in the TOSLINE-F10 is determined by S2T CPU,
according the TOSLINE-F10 network configuration.

NOTE
U all

For details of the data transmission modules (TOSLINE-S20,
TOSLINE-F10), see separate manuals for them.

User’'s manual - Functions 207

5. Programming Language

PART 3 PROGRAMMING INFORMATION

51
Overview

The S2T supports 2 types of programming language for the user
programs-ladder diagram and SFC. Multiple programming languages
can be used in mixed by a single user program by separating blocks of
the program. Thus, the optimum program configuration for the control
functions can be achieved.

(1) Ladder Diagram

This is the language which is core programming language for the
S2T. The program is configured by a combination of relay symbols
and function blocks. This language is suitable for logic control.

Relay Symbols

Function Blocks.....

Example)

X05 X10 X13 X14

These are NO contact, NC contact, coll, etc.

These are box type instructions which express
single functions. They can be freely positioned
in a ladder diagram network by treating them in
a similar way to relay contacts. The output of
one function block can be connected to the input
of another function block.

Y5A

— A
Y5A
|

R100

— HXw10 > D101

()

X20 R3C

H RW12 MOV D102 }—

208 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(2) SFC (Sequential Function Chart)
This is a programming language suitable for process stepping
control (sequential control). Also, it is a language which makes the
flow of control easy to see. Therefore, it is effective for program
maintenance and standardization. SFC program is composed of
structure part which shows the flow of control, action parts which
show the operation of each step and transition condition parts which
enable the process to advance. Action parts and transition
condition parts are produced by ladder diagram. SFC can be
considered as an execution control element for making a program
easier to see by arranging the control processes and conditions
rather than a single programming language.

(SFC Structure)

0 @?
i

/ Divergence of simultaneous sequences

, ﬁ]
(Transition condition) I::I

l:: lh_pf 3E“] | 1 (Action part)
7| | 9| + ------------- H

£ 4 [TON H SET
4]

T 8] ; |—‘—(|—< H

O| M |[«<— Endstep

Initial step

Transition

Divergence of sequence selection

The flow of control advances downward from the initial step and,
when it reaches the end step, it returns to the initial step. A step
corresponds to an operational process, and there is an action part
corresponding to each step. The condition of shifting from one
step to the next is called ‘transition’, and there is a transition
condition corresponding to each transition. When the immediately
preceding step of a transition is in the active state and the transition
condition is ON, the state of the immediately preceding step is
changed to inactive and the next step becomes active.

User’'s manual - Functions 209

5. Programming Language PART 3 PROGRAMMING INFORMATION

The following Table shows the programming languages which are
usable for each program type/part.

Program type/part Ladder diagram SFC
Main program o o
Sub-program o o
Interupt program o X
Sub-routine o x *
SFC action program part o x *
SFC transition condition part o x

o : Usable

x : Not usable

*) SFC can be made an hierarchical structure (other SFC can be
made to correspond to 1 step of SFC). In this case a macro-step
(equivalent to an SFC sub-routine) is used.

210 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.2
Ladder diagram

Mixed use can be made of the two types of programming language,
ladder diagram and SFC in the S2T. However, of these, ladder
diagram is the basic language which must be present in the user
program.

Here, the structure, execution sequence and general items of ladder
diagram instructions are explained for ladder diagram programs.

As explained before, a user program is registered by every functional
type which is called a program type. Furthermore, in each program
type the user program is registered by one or a multiple of units called
‘blocks’.

Main program, sub-program #1 - #4,
Program Types........ timer interrupt program,

I/O interrupt programs #1 - #8, sub-routine

Blocks......ccccceennene. Blocks 1-256 (1 language/1 block).
When commencing programming in a block to be newly registered, that
program is designated by the language which is used (this is called

‘language designation’).

However, in the case of ladder diagram, the operation of language
designation is not required (the default is ladder diagram).

The ladder diagram program in any one block is registered/arranged by
units called ‘rung’. A rung is defined as 1 network which is connected

to each other, as shown below.

Rung number Rung

A L
2 H | (>

(>
3 H — — | >

User’'s manual - Functions 211

5. Programming Language

PART 3 PROGRAMMING INFORMATION

The rung numbers are a series of numbers (decimal numbers) starting
from 1, and rung numbers cannot be skipped. There is no limit to the
number of rungs.

The size of any one rung is limited to 11 lines x 12 columns, as shown
below.

10

11

1

H
H
H
H
HE
H
H
H
H
HE

HE

Ladder diagram is a language which composes programs using relay
symbols as a base in an image similar to a hard-wired relay sequence.
In the S2T, in order to achieve an efficient data-processing program,
ladder diagram which are combinations of relay symbols and function
blocks are used.

Relay Symbols

........ These are NO contact, NC contact, coil and
contacts and coils to which special functions are
given. Each of these is called an ‘instruction’.

(Basic ladder instructions)

Example) NO contact

When device &

@&
Input — — Output

become conductive.

is ON, the input side and the output side

Viewed from the aspect of program execution, the operation
is such that when the input is ON and the content of device

@&

is also ON, the output will become ON.

212 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

Function Blocks.......

These are expressed as boxes which each show 1
function. As types of function, there are data
transfers, the four arithmetic operations, logic
operations, comparisons, and various
mathematical functions. Each of these is called
an ‘instruction’. (Function instructions)

In a function block there are 1 or more inputs and 1
output. When a certain condition is satisfied by
the input state, a specified function is executed and
the ON/OFF of the output is determined by the
result of execution.

Example 1) Addition

Input— & + & - & F—Output

When the input is ON the content of register & and the content
of register ®@ are added and the result is stored in register & .
The output becomes ON if an overflow or an underflow is
generated as the result of the addition.

Example 2) Combination of Relay Symbols and Function Blocks

X0030

=l

Y0105
(

(-

—{ XW004 > 500 |

X0105 X0027

al

g

When X0030 is ON or the content of X\W004 exceeds 500, Y0105
becomes ON. Y0105 stays on even if X0030 is OFF and the
content of XW004 is 500 or less, then Y0105 will become OFF
when X0027 becomes ON.

~ NOTE

U Al

(1) A function block can be regarded as a contact which has a
special function. By carefully arranging the function blocks in
the order of execution of instructions, complex control functions
can be achieved by an easily understandable program.

(2) A list of ladder diagram instructions is shown in Section 5.5. For
the detailed specifications of each instruction, see the separate
volume, ‘Instruction set Manual'.

User’'s manual - Functions 213

5. Programming Language

PART 3 PROGRAMMING INFORMATION

Instruction execution
seguence

The instructions execution sequence in a block composed by ladder

diagram are shown below.

(1) They are executed in the sequence rungl, rung2, rung3... through
to the final rung in the block (in the case of a block with an END
instruction, through to the rung with the END instruction).

(2) They are executed according to the following rules in any one rung.

O When there is no vertical
connection, they are executed
from left to right.

O When there is an OR connection,
the OR logic portion is executed
first.

O When there is a branch, they are
executed in the order from the
upper line to the lower line.

O A combination of 0 and O
above

- A
#:Qu“:: |
E -

= "
Bt /o8
miasiael ° >
2] sy °(H
7

The instructions execution sequence in which function instructions are

included also follows the above rules.

However, for program execution

control instructions, this will depend on the specification of each

instruction.

The following show the execution sequences in cases in which program
execution control instructions are used.

» Master Control (MCS/MCR, MCSn/MCRn)

4
[MCSH

6
(O

[MCRH

a
= -
5
=y
n+1 |

When the MCS input is ON,
execution is normal.

When the MCS input is OFF,
execution is by making the
power rail from the rung
following MCS to the rung of
MCR OFF (the execution
sequence is the same).

214 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

1 3 4
0 F
2
Bl
6
n+1 |
|
l
n+m

Jump Control (JCS/JCR)

When the JCS input is ON, the
instructions from the rung
following JCS to the rung of JCR

7 are read and skipped at high

Conditional Jump (JUMP/LBL)

speed (instructions are only read
and not executed). When the
JCS input is OFF, execution is
normal.

1 2 When the JUMP instruction input
n - }—DUMP N.03 is ON, execution shifts to the rung
following the LBL instruction with
| (
n+1 _| | \ >_ the corresponding label number
(03 in the example on the left)
3 (the numbers in the diagram on
| | i
I: 1 | the left are the execution
+
n+m. LBL (03)J | sequence at this time). When
4 5 6 the JUMP instruction input is OFF,
| | | ('
n+m+1 _| I 1 () execution is nomal.
| |
! !
* Repeat (FOR/NEXT)
When the FOR instruction input is
1 2 ON, the instructions between
—| I—EFOR 10] FOR and NEXT are repeatedly
times executed the designated number

—
— H]

Ji.

of times (10 times in the example
on the left), and when the
designated number of times is

reached, execution is shifted to
the rung following the NEXT

—NEXT]

Sub-Routine (CALL/SUBR/RET)

1 2
— —{ CALL N.20}——
7, 8, 9

instruction. When the FOR
instruction input is OFF, execution
is normal.

When the CALL instruction input
is ON, execution is shifted to the
rung following the SUBR
instruction with the corresponding

1

(Sub-routine)
SUBR (20) |

w

7

\ >_ sub-routine number (20 in the
example in the left). When the
RET instruction is reached,

execution is returned to the

instruction following the CALL
instruction (the numbers in the

T

diagram on the left are the
execution sequence at this time).

When the CALL instruction input
is OFF, execution is normal.

User’'s manual - Functions 215

5. Programming Language PART 3 PROGRAMMING INFORMATION

General information on
ladder diagram
instructions

The general information required for designing programs with ladder
diagram are listed below.

(1) In all program types, it is necessary to create at least one block by
ladder diagram. In other words, the ends of the main program and
each sub-program are judged by ladder diagram END instruction.
Also, the end of each interrupt program is judged by a ladder
diagram IRET instruction. Furthermore, it is necessary to compose
the entry to and exit from a sub-routine by the ladder diagram SUBR
instruction and RET instruction.

(2) The group of instructions which includes the timer instructions (4
types), counter instruction, jump control instruction, master control
instruction and END instruction in the relay symbol type instructions
is called the ‘basic ladder instructions’.

(3) Instructions other than the basic ladder instructions are called
‘function instructions’. The function instructions have respective
individual function numbers (FUN No.). Also, even if instructions
have the same function number, selection of the execution
conditions is possible as shown below. (There are some instructions
which cannot be selected)

Normal Executed every scan while the instruction input is ON.
Edged...... Executed only in the scan in which the instruction input
changes from OFF to ON.

Example) Data Transfer Instruction

R0O000

Nomal — —{ 10 MOV Dlooo]—|

The MOV instruction (substitute 10 in D1000) is executed every scan
while RO00O0 is ON.

R0000 A‘(— Edged symbol

Edged }—1 —{ 10 MoV Dlooo]—|

The MOV instruction (substitute 10 in D1000) is executed only in the
scan in which RO000 changes from OFF to ON.

Any instructions cannot be positioned after (to the right of) a edged
function instruction.

Example)

X001l A
— 10 MOV D1000 | 20 MOV D1000

X0011 N R0001
— {2000 + 300 ® D2000]

Neither of these two rungs can be created.

216 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(4) The number of steps required for one instruction differs depending
on the type of instruction. Also, even with the same instruction, the
number of steps occupied varies depending on whether digit
designation is used in the operand, a constant or a register is used
in a double-length operand, etc. (1-10 steps/1 instruction).

Also, basically step numbers are not required for vertical connection
lines and horizontal connection lines.

(5) In an instruction which has multiple inputs, a vertical connection line

cannot be placed immediately before an input.

In this case, insert

a dummy contact (such as the NO contact of special relay SO004F

which is always ON) immediately before the input.

Example)
R0O000 R0O003
|| D)
[J
R0001 R0O004 Not possible
|| i 1 (>
. CNT
R0002 1 10 co30
[L
\U/ Modification
R0O000 R0O003
||)
[N/
RO001 | SO04F R0004 Possible
|| || I 1 (>
[[CNT
R0002 10 C030
[L

The above arrangement is not required for the lowest input of
multiple inputs.

Example)
R0000 R0003
||)
[J
R0O001 | S004F R0004 Possible
I |_ i 1)
1 ont g
R0002 10 C030
[L
R0005
||

User’'s manual - Functions 217

5. Programming Language

PART 3 PROGRAMMING INFORMATION

5.3
SFC

SFC is the abbreviation of Sequential Function Chart. This is a
programming language suitable for process stepping control (sequential
control). Inthe S2T, the following function can be used in the SFC.

o JUMP .o Moves the active state to an arbitrary step
when a jump condition is satisfied.

» Step with waiting time..... Even if the transition condition is satisfied,
step transition is not carried out until a set
time has elapsed. (Wait step)

e Step with alarm When transition to the following step is not
carried out even if the set time has
elapsed, the designated alarm device
becomes ON. (Alarm step)

SFC can be used in the main program and in the sub-programs. Here
the overall composition of SFC, the elements of SFC and notes on
program creation are described.

An SFC program is composed of SFC structure,action program parts
and transition condition parts.

(SFC structure)
| Step (Action program part)

(Transition condition part) T e —— L (H

}—{q-\li _______________ | Transition |_
— Step

121 | e :]-1 (H

Step number

An SFC structure regulates the flow of the control operation and has
steps and transitions as its basic elements. A step is expressed by
one box, as shown above. Each step has its own step number. Also,
corresponding action program parts are annexed 1 to 1 to steps.

Steps have the two states of active and inactive. When a step is
active, the power rail of the corresponding action program will be ON.
When a step is inactive, the power rail of the corresponding action
program will be OFF.

On the other hand, a transition is located between step and step, and
expresses the conditions for transition of the active state from the step
immediately before (upper step) to the following step (lower step).
Corresponding transition conditions are annexed 1 to 1 to transitions.

218 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

Overall configuration

For instance, in the diagram above, when step 120 is active, the action
program power rail corresponding to step 120 becomes ON. In this
state, when device & becomes ON, the transition conditions are
satisfied, and step 120 becomes inactive and step 121 becomes active.
In accompaniment to this, the action program power rail corresponding
to step 120 becomes OFF (executed as power rail OFF), and the action
program power rail corresponding to step 121 becomes ON.

The following illustrates the overall configuration of an SFC Program.

(SFC main program) (Macro program)

SFC initialization Macro entry

Noo\ [—

X0010 Initial step Macro number\A\A

00| ,~ 100
Label 0 EII _,,_/‘/y
—+ Macrostep """ 20
@10 > /
1[m];

Macro number —— 100 _| "~ 21 I::I
Step\ ‘\\\ T
Step number—— 2 |_—| 2 T 22 [:I
T tion ™3 I \\\ 1L

ransition Simultaneous o
3 [:I sequences @

Macro end

Sequence selection
e q

6 | 8 J1of |
7| ol |
ul]

1 SFC end

@10 | <«

The overall SFC program can be considered as divided into an SFC
main program and a macro program.

The SFC main program has an initial step in its structure, and has an
SFC end or an End step in its bottom. In the S2T, a maximum of 64
SFC main programs can be created.

User’'s manual - Functions 219

5. Programming Language PART 3 PROGRAMMING INFORMATION

On the other hand a macro program is a sub-sequence which starts
from ‘macro entry’ and finishes at ‘macro end’. Each macro program
has its own macro number, and corresponds 1 to 1 to macro steps
which are present in the SFC main program or other macro programs.
Macro programs are used for rendering the program easy to see by
making the SFC program an hierarchical structure. In all, 128 macro
programs can be created.

Macro entry

1061 3/ 106]

Macro step \iA 1T 30 Exactlty the same Al
1 (™ <opera ion g 30 I::I
3 BT

ar .

12 [‘j ot 31 [__]

| €

\ 12
Macro end

~_NOTE
U Al

(1) Macro steps can be used in macro programs (SFC multi-level
hierarchy). There is no limit to the number of levels.

(2) Macro programs and macro steps must correspond 1 to 1 .That
is to say, macro steps designated with the same macro number
cannot be used in multiple locations.

(3) Macro program should be programmed in the following location
than the SFC main program/macro program which has the
corresponding macro step. (in upper numbered block)

SFC programming becomes possible by designating blocks and then
selecting SFC by language designation.

Only one SFC main program or one macro program can be created in 1
block. (1 SFC/block)

Also, the maximum number of SFC steps per block is 128.

220 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

SFC elements The following is a description of the elements which compose an SFC
program.

(1) SFC Initialization
This is the function which starts-up (makes active) the designated
initial step by making the steps in a designated area inactive.
Either of the two methods of an SFC instruction or a ladder diagram
instruction is used. One SFC initialization is required for 1 SFC
main program.

00 SFC Instruction

NXx
@A SFC initialization
nnnn This instruction connects
$SSS to the initial step

} Initial step

Operands: xx = Program number (0-63)
@ =Start-up device (except T.and C.)
nnnn = Number of initialized steps (1-4096)

Function: When the device (with the exception of a timer device
or a counter device) designated by @& changes from
OFF to ON, the number of steps following the initial
step (ssss) which are designated by nnnn (from step
number ssss to ssss + nnnn -1), are made inactive, and
the initial step (ssss) is made active.

0 Ladder Diagram Instruction (FUN 241)
Input —[SFIZ (nnnn) ssss]— Output

Operands: nnnn=N umber of initialized steps (1-4096)
ssss = Step number of initial step (0-4095)

Function: When the input changes from OFF to ON, the number
of steps designated by nnnn from the step number
designated by ssss (from step humber ssss to ssss +
nnnn -1) are made inactive, and the initial step
designated by ssss is made active.

User’'s manual - Functions 221

5. Programming Language PART 3 PROGRAMMING INFORMATION

(2) Initial Step
This is the step which indicates the start of an SFC main program.
It has its own step number and can have an action program part
which corresponds 1 to 1.

Only 1 initial step can be programmed in 1 block.

SSSS @ ssss = Step number (0-4095)

(3) Step
This expresses one unit of contral steps. The step has its own step
numbers and has an action program part which corresponds 1 to 1.

SSSS ssss = Step number (0-4095)

(4) Transition
This expresses the conditions for shifting the active state from a
step to the following step. Transition has a transition condition part
which corresponds 1 to 1.

(5) SFC End
This expresses the end of an SFC main program. An SFC main
program requires either this ‘SFC end’ or the ‘end step’ of (6). The
‘SFC end’ has a transition condition which corresponds 1 to 1 and a
return destination label number. When transition condition is
satisfied with the step immediately before being in the active state,
the step following the designation label is made active with making
the step immediately before inactive. (This is the same operation as
that described in ‘SFC jump’ below).

@Il [l = Label number (0-1023)

222 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(6) End Step
This expresses the end of an SFC main program. An SFC main
program requires either this ‘end step’ or the ‘SFC end’ of (5). The
end step has the same step number as the initial step. When the
immediately preceding transition condition is satisfied, the initial
step returns to the active state.

SSSS @ ssss = Initial step number (0-4095)

(7) Sequence Selection (divergence)
This transfers the active state to 1 step in which the transition
condition is satisfied out of multiple connected steps. When the
transition conditions are satisfied simultaneously, the step on the left
has priority. (The number of branches is a maximum of 5 columns).

(8) Sequence Selection (convergence)
This collects into 1 step the paths diverged by above (7).

User’'s manual - Functions 223

5. Programming Language PART 3 PROGRAMMING INFORMATION

(9) Simultaneous Sequences (divergence)
After the immediately preceding transition condition is satisfied,
this makes all the connected steps active. (The number of
branches is a maximum of 5 columns).

(10) Simultaneous Sequences (convergence)
When all the immediately preceding steps are active and the
transition condition is satisfied, this shifts the active state to the
next step.

(11) Macro Step
A macro step corresponds to one macro program. When the
immediately preceding transition condition is satisfied, this shifts
the active state to macro program with the designated macro
number. When the transition advances through the macro
program and reaches the macro end, the active state is shifted to
the step following the macro step. A macro step is accompanied
by a dummy transition which has no transition condition (always
true).

SSSS ssss = Step number (0-4095)

mmm mmmm = Macro number (0-127)

224 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(12) Macro Entry
This expresses the start of a macro program. The macro entry
has no action program. Steps are connected below the macro
entry. Only 1 macro entry can be programmed in 1 block.

mmm mmm = Macro number (0-127)

(13) Macro End
This expresses the end of a macro program. Macro end has a
transition condition which corresponds 1 to 1, and returns to the
corresponding macro step when this transition condition is
satisfied.

(14) SFC Jump
This expresses a jump to any arbitrary step. Jump has a jump
condition which corresponds 1 to 1, and jump destination label
numbers. When the transition condition is satisfied, the active
state jumps to the step following the designated label. When the
jump transition condition and the transition condition for the
following step are simultaneously satisfied, jump has priority.

-

@ <—— 11l = Label number (0-1023)

T

‘SFC Jump’ is located immediately after a step. SFC Jumps with
the same label number may be present in multiple locations.

User’'s manual - Functions 225

5. Programming Language PART 3 PROGRAMMING INFORMATION

(15) SFC Label
This expresses the return destination from an ‘SFC end’ and the

jump destination from a ‘SFC jump’. Label is located immediately
after transitions.

@l >—— [l = Label number (0-1023)

=

~ NOTE
my'

Note that, when SFC label corresponding to SFC end or SFC jump is
not present, or when SFC labels with the same label number are
present in multiple locations, an error will occur when RUN starts-up.

(16) Wait Step
This is a step which measures the time after becoming active, and
does no execute transition even if the following transition condition
is satisfied, until a set time has elapsed. It has an action program
corresponding 1 to 1.

ssss = Step number (0-4095)
SSSS d = Timer register (TO00-T999)
a Xxxxx = Set time (0-65535)
XXXXX
(Note) TOOO-user are 0.01 second timers
user-T999 are 0.1 second timers

(17) Alarm Step
This is a step which measures the time after becoming active, and
when the transition condition is not satisfied within a set time,
switches ON a designated alarm device. It has an action program
corresponding 1 to 1. When the transition condition is satisfied
and the alarm step becomes inactive, the alarm device also
becomes OFF.

ssss = Step number (0-4095)
SSSS d = Timer register (TO00-T999)
a xxxxx = Set time (0-65535)
XXXXX @ = Alarm device (other than X, T., C.)
@&
(Note) TOOO-user are 0.01 second timers
user-T999 are 0.1 second timers

226 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Action program and
transition condition

o HH-
11 e e it SETET SRR TR

The action program corresponds to 1 step, and the transition condition
corresponds to 1 transition.
These are programmed by ladder diagram.

(1) Action Program
The size of 1 action program is 11 lines x 11 columns as shown
below, and the number of instruction steps is a maximum of 121
steps.

1 [AR AR A A A A A
2 Hi e .
3 e e e S A S
4 o [e R e sauhe SUEEL SEEE EEEEEE
s HH—
o HH--
r HH--
o HH--
o M-

In a case when a larger size than the above is required as an action
program, a sub-routine is used. (CALL instruction)

Even if there is no action corresponding to a step, this does not affect
SFC operation. In this case, the step becomes a dummy step (a step
which waits only the next transition condition will be satisfied).

In programming, by designating the step on the SFC screen and
selecting the detail display mode, the monitor/edit screen for the action
program corresponding to that step will appear.

In the case when the content of the action program is only 1 instruction
out of SET, RST, coil, invert colil, positive pulse coil and negative
transition-sensing coll, direct editing can be carried out without puffing
up the detail display screen. See the programmer (T-PDS) operation
manual in a separate volume for this operation.

User’'s manual - Functions 227

5. Programming Language PART 3 PROGRAMMING INFORMATION

(2) Transition Condition
The size of 1 transition condition is 11 lines x 10 columns, and the
number of instruction steps is a maximum of 110 steps.

] I1||2|345|678910
e e
3 a e et SEEEEEEEL SRR N S
4 e e et AR EEEEE SERE SRR PR SRR
s HH—
o HH-
;-
o HH—
o Hi—
o - ,
11 > .

When there is no transition condition corresponding to a certain
transition, that transition condition is always regarded as true.
(Dummy transition)

In programming, by designating the transition on the SFC screen
and selecting the detail display mode, the monitor/edit screen for the
transition condition corresponding to that transition will appear. In
the case when the content of the transition condition is only 1
instruction of NO contact or NC contact, direct editing can be carried
out without putting up the detail display screen. See the
programmer (T-PDS) operation manual in a separate volume for this
operation.

~_NOTE
U Al

The following execution control instructions cannot be used in action
programs and transition conditions.

e Jump (JSC/JCR, JUMP/LBL)

« Master control (MCS/MCR, MCSn/MCRn)

* End (END)

* FOR-NEXT (FOR/NEXT)

Also, the invert contact and various coil instructions cannot be used
in transition conditions.

228 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Execution system The following shows the concept of the execution system in one SFC
program.

(1) In one scan, evaluation of the transition condition, the step transition
processing and the execution of the action program are sequentially
operated.

(2) Evaluation of the transition condition means the execution of the
transition condition connected to an active step and carrying out a
check for transition condition establishment. At this time, since
evaluation is made only for active step, there are no multiple step
transitions by 1 scan in consecutively connected steps.

For instance, as shown in the diagram on the
100 right, in a program in which the transition

condition from step 100 to 101 and the 100 [Ij
transition condition from step 101 to 102 are)
the same, step 100 becomes active in the
previous scan, and when device & has

been switched ON in the present scan, there 101 [j
IS transition to step 101 in the present scan.
(Transition to step 102 will be from the next

scan onward) 102

(3) Step transition processing means making the previous step inactive
and the following step active if the transition condition is satisfied,
based on the result of evaluation of the transition condition.

e

(4) Execution of the action program corresponding to the active step is
carried out by switching the power rail ON, and executing the action
program corresponding to the inactive step by switching the power
rail OFF. At this time, as shown in the following diagram, the
execution sequence is from top to bottom, and from left to right in
branches.

2 4 6
L] L] L]
-3 +5 £
| | | | The numerals in the diagram
show the execution sequence
of the action programs.
|17

User’'s manual - Functions 229

5. Programming Language PART 3 PROGRAMMING INFORMATION

Points to note

The following is a list of points to note when creating SFC programs.

(1) The capacity limits of SFC programs are set out in the following

Tables. Be careful not to exceed these capacities.

e Overall Capacities (Maximum numbers which can be
programmed in the S2T)

Number of SFC main programs 64 (063)
Number of macro programs 128 (0127)
Number of SFC steps 4096 (04095)
Number of SFC labels 1024 (01023)

« Capacities per SFC Main Program/Macro Program

Number of SFC steps 128

Number o_f_lnstructlpp steps (SFC, actions 1024 steps*

and transition conditions total)

Number of simultaneous branches 5

SFC edit screen capacity 128 lines by 5 columns

» Capacities per Action/Transition condition

Action program capacity 121 steps*

Transition condition capacity 110 steps*

*) See 5.5 ‘List of instructions’ for the required numbers of steps for
SFC instructions and ladder diagram instructions.

(2) The starting and re-setting of an SFC program is carried out by the

SFC initialization instruction (SFC instruction/ladder diagram
instruction). SFC initialization makes the steps in a designated
area inactive and makes the initial step active. Therefore, the area
of the steps designated by SFC initialization (the number of
initialized steps) includes all the step numbers which are used in
that SFC program (including macro programs as well). Take care
that step numbers used in other SFC programs are not involved.

For instance, if the SFC initialization designation is 50 steps from
step number 0 and step 50 is used in that SFC program, when SFC
initialization is executed with step 50 in the active state, step 50 will
remain active.

On the other hand, if the SFC initialization designation is 201 steps
from step number 100 and step 300 is used in another SFC
program, when SFC initialization is executed with step 300 in the
active state, step 300 will become inactive without any condition.

230 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(3) There is no limit to the step number sequence used in 1 SFC
program (including macro programs). However, the initial step
must be made the lowest step number in that sequence. (See (2)
above)

(4) A sequence selection diverges above transitions, and converges

below transitions. Also, a simultaneous sequence diverges above
a steps and converges below a steps.

BREEE:

SRR

However, the divergence must end in a corresponding convergence.
Therefore, programs such as the following are not allowed.

H -

User’'s manual - Functions 231

5. Programming Language PART 3 PROGRAMMING INFORMATION

(5) The jump destination of a SFC jump may be either in the upward

direction or in the downward direction, or it may be in another SFC
program. Also, it is possible to jump to the outside from inside a
branch.

Since a SFC jump can be very freely used in this way, take thorough
precautions so that the SFC logic will not become abnormal (so that
multiple unrelated steps in a series of SFC will not become active)
through jumping.

A SFC jump is always positioned immediately after a step, Also,
although basically a SFC label is positioned immediately after a
transition, it is positioned between the convergence line and the
step in the case of a sequence selection (convergence).

SRNCIRNCICI

\ I <t <

E= R

(6) The states (active/inactive) of SFC steps are not retained for power

off. When starting-up, all become inactive.

(7) The output of an SFC step can be controlled by sandwiching the

SFC program block by ladder diagram master control (MCS/MSR).

When the input of MCS is OFF, the power rail of the action program
corresponding to the active step also becomes OFF. However, in

the state, step transition is carried out.

232 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.4
Programming
precautions

The S2T supports multi-task function. When using this function, there
is the possibility of the sub-program being interrupted by the main
program or the interrupt program, and the main program being
interrupted by the interrupt program. Precautionary notes arising from
this are given below, and should be taken into account when creating
programs.

(1) Avoid using the same sub-routine in the main program, the sub-
programs and the interrupt programs. When the main program
execution is interrupted during a sub-routine is being executed and
the same sub-routine is executed in that state, the results after re-
starting are sometimes not as expected.

(2) There is no classification of user data (register/device) by program
type. Therefore, take thorough precautions that there is no
erroneous mixed use between program types.

Example)
RO interrupt Y0
e —— <
RO Y1
HF (

Interrupt occurs through the timing in the above diagram. And when the content
of RO is modified in the interrupt, the simultaneous ON (or the simultaneous OFF)
of YO and Y1, which normally could not occur, happens.

(3) Try to execute the exchange of data between different program
types by 1 instruction or by using the interrupt disable (DI) and the
interrupt enable (El) instructions. Otherwise, the same thing as in
(2) above may happen.

Example) Composition of the main program when transferring the
three data, D1000, D1001 and D1002, from the interrupt
program to the main program.

D1000 MOV D2000 |——
D1001 MOV D2001 |——

D1002 MOV D2002 :l—

User’'s manual - Functions 233

5. Programming Language PART 3 PROGRAMMING INFORMATION

In the above program, when an interrupt occurs between
instructions, synchronization between D2000, D2001 and D2002
cannot be guaranteed. In this case, make 1 instruction by using
the table transfer instruction, as follows.

H D1000 TMOV (3) D2000]—|

Or sandwich these instructions by DI and El instructions.

(4) If the same index register is used in different program types, the
data of the index register should be saved and restored as follows.

Example)

(Sub-program)

may be interrupted here

Lo
H RW030 MOV | |F*{ D1000 MOV RW050]—|

(Main-program)

1 I MOV D8000}
' : I Saving |

| :
n-1 |—|:D8000 MOV ﬂ (for sub-program)

n —[END] Restoring |

(Interrupt program)

1 HI MOV D8010] ,
I . | Saving |

| :
! | -
n-1 {{D8010 MOV] (for sub-program)

n [IRET]

Restoring |

With respect to the main program, the data of index registers are
saved when interrupt occurs and restored when operation returns to
main program automatically. However, because of this, even if an
index register is used only in an interrupt program, the data
continuity of the index register between interrupt intervals is not
kept. In such case, use another register to store index value
substitute the value into an index register in the interrupt program.

234 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

55
Network support function

551
Expand memory card The expanded file register data stored in the backuped memory can be
data access through read/written through RS-485 computer link.
computer link
There are two types of data storage format for the expand memory.
They are 8 k words per bank and 64 k words per bank. (Refer to XFER
instruction)
Note that the computer link command for these formats are slightly
different.

Expanded file register Request message format (Host — S2T):
data read [MR]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

‘ (|A| ADR ‘M ‘ R ‘ Starting register ‘ , | Bank | , N ‘ &| Sum |) ‘CR‘
Can be shortened Can be omitted

ADR: Station address ... 01 to 32
Starting register:
For 8 k words per bank........ FO000 to F8191 «—— Upper case F
For 64 k words per bank f0000 to 165535 (bank 1) - «<— Lower case f
f0000 to 57343 (bank 2)

Bank: For 8k words per bank 1to 15
For 64k words per bank 1to7

N: Number of registers to be read ... 1 to 61 (61 words max.)

Sum: Check sum

Response message format (S2T - Host):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| (|A|ADR [M|R| Data#1 | Data#2

n-5n4 n3 n2nl n
| pata#N-1 | Data#N |&|sum |) [cR|

Data: Data in hexadecimal

User’'s manual - Functions 235

5. Programming Language PART 3 PROGRAMMING INFORMATION

Expanded file register Request message format (Host — S2T):
data read [MW]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
‘(|A|ADR ‘M‘R‘ Starting register ‘ |Bank| ‘ Data #1 ‘

\ / //

Can be shortened

n-5 n4 n3 n2nl n

[] pam#ni [, | pata#n [&]sum |)][cR|
\ / f
Can be shortened Can be omitted

ADR: Station address ... 01 to 32
Starting register:
For 8 k words per bank........ FO000 to F8191 «—— Upper case F
For 64 k words per bank fO000 to 165535 (bank 1) - <— Lower case f
f0000 to 57343 (bank 2)

Bank: For 8k words per bank 1to 15
For 64k words per bank lto7

Data: Data in hexadecimal
N: Number of registers to be read ... 1 to 61 (61 words max.)

Sum: Check sum

Response message format (S2T - Host):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| (|A]ADR|S|T| staus |&]|sum]|)|cR

Status: S2T operation status

236 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

~_NOTE
U all

(1) The maximum message text length is limited to 255 bytes.

(2) Shortening expression for starting register, bank, number and
data (MW only) are available. E.g. F9 for FO0009.
When shortening expression is used, the maximum number of
MW command can be increased more than 46 words. In this
case, it is limited by the maximum message text length (255
bytes).

(3) When an error has occurred, error response CE or EE is
returned.
« If designated register or bank is out of the effective range,

EE115 (register no./size error) is returned.

(4) For general information of computer link function, refer to T-

series Computer Link Operation Manual.

User’'s manual - Functions 237

5. Programming Language PART 3 PROGRAMMING INFORMATION

5.5.2
TOSLINE-S20LP (loop)
support

In addition to th standard bus connection type TOSLINE-S20 (here
called S20), the optical loop connection type TOSLINE-S20LP (here
called S20LP) can be used with the S2T. (SN627: S2T station module of
S20LP)

By using the S20LP, high speed control-data linkage is available as
same as the S20. Furthermore, peer-to-peer communication between
S2T’s becomes available via S20LP.

* Up to two S20LP can be installed on a S2T. (S20LP and S20 total)

» The S20LP has 4 k words of scan transmission capacity. The
leading 2 k words of the scan memory can be assigned to S2T’s link
register (W). And the following 2 k words can be read/written by
using XFER instruction.

e The S20LP does not have the scan healthy map. Therefore,
SW128 to SW255 are not used for the S20LP.

* The S20LP has the loop map which indicates loop connection status
of each station. This loop map can be read by using READ
instruction.

* By using SEND and RECYV instructions, any register data of a S2T
can be sent to other S2T, and any register data of other S2T can be
read into a S2T, via S20LP. (peer-to-peer communication)

NOTE
U Al

(1) The S20LP is under development.
(2) For details of the S20LP, refer to the separate manual for S20LP.

238 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.5.3
Ethernet support

The Ethernet module (EN611/EN631) is available for the S2T. By
using the EN611/EN631, the S2T can be connected to Ethernet
network.

Using the Ethernet module, the S2T supports the following
communication functions.

e Computer link function:
Host computer on the Ethernet can perform data read/write, S2T
status read, program up-load/down-load, etc. for the S2T, by using
the T-series computer link command.

* Peer-to-peer communication:
By using SEND and RECYV instructions, any register data of a S2T
can be sent to other S2T, and any register data of other S2T can be
read into a S2T, via Ethernet.

» Socket service:
Communication between a computer and a S2T user program is
available by using SEND and RECYV instructions. Maximum 8
ports of socket are available. The protocol can be selected either
TCP/IP or UDP/IP for each port.

Up to four EN611/EN631’s can be installed on a S2T.

To activate the EN611/EN631, SEND instruction is required to set
parameters (IP address, UDP port number) and to send commands
(communication start, etc.)

NOTE
U Al

(1) For details of the EN611/EN631, refer to the separate manual for
EN611/EN631.

User’'s manual - Functions 239

5. Programming Language PART 3 PROGRAMMING INFORMATION

5.6
Instructions

This section explains the specifications of the following instructions.

Double-word multiplication and division (FUN042 D*/)
Combination instruction of multiplication and division for double-
word data.

This instruction is not available on the S2T.

Essential PID (FUN156 PID3)
PID (Proportional, Integral, Derivative) control instruction which has
the following features.
OOncomplete derivative action expanding stable application range
[Essential digital algorithm succeeding to benefits of analog PID
This instruction is not available on the S2T.

Floating point essential PID (FUN232 FPID3)
Essential RID instruction for floating point data.
This instruction is not available on the S2T.

Expanded data transfer (FUN236 XFER)
Data transfer instruction between special objects, i.e. expanded file
register, data in flash memory, TOSLINE-S20 scan memory, etc.
Some functions are added to this instruction for the S2T.

Network data send (FUN239 SEND)
Used to peer-to-peer communication via TOSLINE-S20LP or
Ethernet. This instruction is also used for Ethernet module
(EN611/EN631) control.
This instruction is not available on the S2T.

Network data receive (FUN240 RECV)
Used to peer-to-peer communication via TOSLINE-S20LP or
Ethernet. This instruction is also used for Ethernet module
(EN611/EN631) control.
This instruction is not available on the S2T.

240 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

5.6.1

Double-word
multiplication and
division (DO)

Expression

Function

FUN 042 DU Double-word multiplication and division

Input — A+1A DI B+1B - C+1[T | Output

When the input is ON, the data of A+1[A is multiplied by the data of
B+1[B, and the product is divided by B+3B+2, then the quotient is
stored in C+1[C and the remainder in C+3[C+2.
The data range is -2147483648 to 2147483647. If the result (quotient)
is out of the data range, the following limit value is stored.

Positive overflow: quotient = 2147483647, remainder =0

Negative overflow: quotient =-2147483647, remainder =0

Execution condition Input Operation Output | ERF
OFF No execution OFF —
ON B+3M+2 # 0, no overflow | Normal execution ON —
B+3M+2 # 0, overflow Limit ON ON
B+3B+2 =0 No execution OFF ON
Operand
Device Register Con-) dex
stant
Name
X|IY|S|ILIR|Z|T.IC./I1|O|X|Y|S|L|RIW|T|C|D|F|I|O|I|J|K
WIW W |W|W W|W
A |Operation IVIvIvIvIvv]v]v]v V| v
data
g |Multiplier, VIvVIvIVvIv]|v]vIv]v v
divisor
C |Result VIVIVIVIVIVIVIV]|V v
Example
R0200

1+ —{D0351-D0350 DJ D0262-D0261 — D040-D0400] g

When R0200 is ON, the double-word data of D0351[D0350 is multiplied
by the data of D0262[D0261, and the product is divided by the data of
D0264[0263, then the quotient is stored in D0401MDM0400 and the
remainder in D0403[D0402.

User’'s manual - Functions 241

5. Programming Language PART 3 PROGRAMMING INFORMATION

If the data of D03510350 is 23437688, D0262[D0261 is 1876509, and
D0264[0263 is 113487, the quotient (387542471) is stored in
D04010400 and the remainder (64815) is stored in D0403[D0402.

D03511D0350 23437688 A
D026410263 D0401D0400 387542471

x S| 113487 | =P
D0403(D0402 64815
D0262D0261 | 1876509 | |

NOTE
L ALl

Edge execution modifier is also available for this instruction.

242 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

5.6.2
Essential PID (PID3)

Expression

Function

FUN 156 PID3 Essential PID

Input—[A PID3B - C]— Output

Performs PID (Proportional, Integral, Derivative) control which is a

fundamental method of feed-back control. (Pre-derivative real PID
algorithm)
This PID3 instruction has the following features.

For derivative action, incomplete derivative is used to suppress
interference of high-frequency noise and to expand the stable
application range,

Controllability and stability are enhanced in case of limit operation
for MV, by using digital PID algorithm succeeding to benefits of
analog PID.

Auto, cascade and manual modes are supported in this instruction.
Digital filter is available for PV.

Direct / reverse operation is selectable.

Execution condition Input Operation Output
OFF Initialization OFF
ON Execute PID every setting interval ON when
execution
Operand
Device Register Con-) dex
stant
Name
X|Y|S|IL|R|Z|T.IC.|1|O|X|Y|S|L|R|W|T|C|ID|F|I1]|O|Il|J]|K
WI{W W W W W{W
Top of input
Aldats VIVIVVVV[V][V]V[Y v
Top of
B | parameter VIVIVIVVV[V]V]V [V v
Top of
Coutputdata VIVIVIVIVIV|V|VI|V v
Input data Control parameter Output data
A | Process input value VC B | Proportional gain Kp C | Manipulation value MV
A+1|A-mode set value ASV B+1 | Integral time Ti| C+1|Lasterror €1
A+2 | C-mode set value Ccsv B+2 | Derivative time To| C+2|Last derivative value D,
A+3|M-mode MV input MMV B+3 | Dead-band GP| C+3|LastPV PV,
A+4 | MV tracking input T™MV B+4 | A-mode initial SV ISV| C+4|Last SV SV,
A+5 | Mode setting MODE B+5 | Input filter constant FT| C+5]Integral remainder Ir
B+6 | ASV differential limit DSV | C+6 |Derivative remainder Dr
B+7 | MMV differential limit DMMV | C+7|Internal MV MV,
A-mode: Auto mode B+8 | Initial status STS| C+8|lInternal counter C
C-mode: Cascade mode B+9 | MV upper limit MH C+9 | Control interval At
M-mode: Manual mode B+10 | MV lower limit ML
B+11 | MV differential limit DMV
B+12 | Control interval setting n

User’'s manual - Functions 243

5. Programming Language

PART 3 PROGRAMMING INFORMATION

Control block diagram

Integral |¢
control |¢
Integral
Auto 1 _\L
mode BNy —
ASV Aln MV
—’ Proportional +
Differential sSvn + en APN ++% AMVn MVCn
Q) Gfip 1 /9 _A—v HIL — 1 W
Csv - : : ~
Cascade Derivative e |
mode ,L_TDs [ADn o MMV}
1+n Op & . — Manual
Differential limit 1 0de
PVn
MVS: Velodty - Position
1| PVC MVn = MVn-1 - AMVn
1+T 5 H/L: Upper / lower limit
Digital filter DMV Differential limit

Integral action control:

When MV is limited (H/L, DMV) and the integral value has same
sign as limit over, integral action is stopped.

Velocity - Position conversion:

In Direct mode, MV increases when PV is increased.

- MV, = MV, - AMV,

In Reverse mode, MV decreases when PV is increased.

= MV, = MV, , + AMV,

Gap (dead-band) operation:

Errore

! SV-PV

GP(%)| GP(%):

Algorithm Digital filter:
PV, = (1 - FT) [PVC + FT [PV,

Here,
0.000 < FT £0.999

244 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

Parameter details

PID algorithm:

AMV, = Ko (AP, + Al, + AD,)
MV, = MV, + AMV,

Here,
AI:’n =€,-6h
e,=SV,- PV, (If GP 0, Gap is applied)
e, (At +1Ir
Al = —”? (If T,=0, Al,=0)
AD. = T, OPV,,- PV) - At[D,, + Dr
i At+n OTD
Dn = Dn—l + ADn
n = 0.1 (Fixed)

A Process input value PVC (0.00 to 100.00 %) Data range: 0 to 10000
A+1 Auto mode set value ASV (0.00 to 100.00 %) Data range: 0 to 10000
A+2 Cascade mode set value CSV (0.00 to 100.00 %) Data range: 0 to 10000
A+3 Manual mode MV MMV (-25.00 to 125.00 %) Data range:

A+4 MV tracking input TMV (-25.00 to 125.00 %) Data range: -2500 to 12500
A+5 Mode setting MODE Data range: -2500 to 12500
F C 8 4 0
A——
T— Operation mode
00: Manual mode
01: Auto mode
10: Cascade mode
11: (Reserve)
Tracking designation
0: No
1: Yes

B Proportional gain K, (0.00 to 327.67) Data range: 0 to 32767
B+1 Integral time T, (0.000 to 32.767 min., stop if T,=0) Data range: 0 to 32767
B+2 Derivative time T, (0.000 to 32.767 min.) Data range: 0 to 32767
B+3 Gap (dead-band) GP (0.00 to 10.00 %) Data range: 0 to 1000
B+4 Auto mode initial set value ISV (0.00 to 100.00 %) Data range: 0 to 10000
B+5 Input filter constant FT (0.000 to 0.999) Data range: 0 to 999
B+6 ASV differential limit DSV (0.00 to 100.00 %/At) Data range: 0.to 10000
B+7 MMV differential limit DMMV (0.00 to 100.00 %/At) Data range: 0.to 10000

User’'s manual - Functions 245

5. Programming Language PART 3 PROGRAMMING INFORMATION

Operation

B+8 Initial status STS

F c 8 4 0
SESEEERENNNNNEEN
; Initial operation mode

00: Manual mode

01: Auto mode

10: Cascade mode

11: (Reserve)

Direct / reverse selection

0: Direct

1: Reverse
B+9 MV upper limit MH (-25.00 to 125.00 %) Data range: -2500 to 12500
B+10 MV lower limit ML (-25.00 to 125.00 %) Data range: -2500 to 12500
B+11 MV differential limit DMV (0.00 to 100.00 %/At) Data range: 0 to 10000
B+12 Control interval setting n (1 to 32767 times) Data range: 1 to 32767

Executes PID every n scan. Therefore, control interval At = n X constant scan
interval (It is treated as n = 1 when n < 0)

C Manipulation value MV (-25.00 to 125.00 %) Data range: -2500 to 12500
C+1
. Internal work area

C+9

1. When the instruction input is OFF:

Initializes the PID3 instruction.

Operation mode is set as specified by B+8
A+5bit 0,1 — B+8bit 0, 1

Auto mode SV is set as specified by B+4.
ASV ~ ISV

Manual mode MV is set as current MV.
MMV « MV

Internal calculation data is initialized.

MV remains unchanged.

2. When the instruction input is ON:
Executes PID calculation every n scan which is specified by B+12.
The following operation modes are available according to the setting
of A+5.

e Auto mode
This is a normal PID control mode with ASV as set value.
Set value differential limit DSV, manipulation value upper/lower
limit MHIML and differential limit DMV are effective.
Bump-less changing from auto mode to manual mode is
available. (Manual mode manipulation value MMV is over-written
by current MV automatically. MMV ~MV)

246 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

* Manual mode
In this mode, the manipulation value MV can be directly controlled
by the input value of MMV.
MV differential limit for manual mode DMMV is effective. MH/ML
and DMV are not effective.
When mode is changed from manual to auto or cascade, the
operation is started from the current MV.

» Cascade mode
This is a mode for PID cascade connection. PID is executed
with CSV as set value.
Different from the auto mode, set value differential limit is not
effective. Manipulation value upper/lower limit MH/ML and
differential limit DMV are effective.
Bump-less changing from cascade mode to manual mode is
available. (Manual mode manipulation value MMV is over-written
by current MV automatically. MMV — MV)
And, bump-less changing from cascade mode to auto mode is
available. (Auto mode set value ASV is over-written by current
CSV automatically. ASV ~ CSV)

* MV tracking
This function is available in auto and cascade modes. When the
tracking designation (A+5 bit 2) is ON, tracking input TMV is
directly output as MV.
Manipulation value upper/lower limit MH/ML is effective, but
differential limit DMV is not effective.
When the tracking designation is changed to OFF, the operation
is started from the current MV.

~ NOTE
U Al

< PID3 instruction is only usable on the main-program.

* PID3 instruction must be used under the constant scan mode.
The constant scan interval can be selected in the range of 10 to
200 ms, 10 ms increments.

« The data handled by the PID3 instruction are % units. Therefore,
process input value PVC, manipulation value MV, etc., should be
converted to % units (scaling), before and/or after the PID3
instruction. For this purpose, the function generator instruction
(FUN165 FG) is convenient.

User’'s manual - Functions 247

5. Programming Language

PART 3 PROGRAMMING INFORMATION

5.6.3
Floating point essential
PID (FPID3)
FUN 232 | FPID3 | Floating point essential PID
Expression | inpyt — A+1@ FPID3 B+1B - C+1[C |- Output
Function Performs PID (Proportional, Integral, Derivative) control which is a

fundamental method of feed-back control. (Pre-derivative real PID

algorithm)

The operation of this FPID3 instruction is the same as the PID3 (FUN
156) instruction except for dealing data as floating point data.

Execution condition Input Operation Output
OFF Initialization OFF
ON Execute PID every setting interval ON when
execution
Operand
Device Register con- | dex
stant
Name
X|Y|S|ILIR|Z|T.|C.| 1 |O|X|Y|S|L|R|W|T|C|D|F O|1]J|K
WI{W W W W W (W
Top of input
A dors VIVIVIVIVVVIV]V]Y v
Top of
B | parameter VIVIVIVIVVVV]V]Y v
Top of
C | output data VIVIVIVIVIVV]V]V v
Input data Control parameter Output data
A+1[A | Process input value VC| B+1B |Proportional gain Kp | C+1I[C | Manipulation value MV
E A-mode set value ASV i Integral time Ti E Last error €4
! C-mode set value Csv ! Derivative time To ! Last derivative value D,
! |M-mode MV input MMV ! |Dead-band GP| | |LastPV PV,
| [MV tracking input T™MV I |A-mode initial SV ISV| | |LastSV SV,
' Mode setting MODE ' Input filter constant FT | Integral remainder Ir
! ASYV differential limit DSV ! Derivative remainder Dr
I |MMV differential limit DMMV | | |Internal MV MV,
A-mode: Auto mode i Initial status STS i Internal counter C
C-mode: Cascade mode | MV upper limit MH ' Control interval At
M-mode: Manual mode i MV lower limit ML
i | MV differential limit DMV
' Control interval setting n

248 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Control block diagram

Integral |¢
control |¢
Integral
Auto 1 M
mode T s]
ASV Aln MVn
—’ Proportional +
Differential + v AMVn MVCn
oGm0 [P v ———
csv ; - ; ~M
Cascade Derivative MMV |
mode L TDs [ADn »| DMMV Vanual
1n To 05 Differential limit mode
PVn
MVS: Velodty - Position
1| PvC MVn = MVn-1 - AMVn
1+T 5 H/L: Upper / lower limit
Digital filter DMV Differential limit

Integral action control:

When MV is limited (H/L, DMV) and the integral value has same
sign as limit over, integral action is stopped.

Velocity - Position conversion:
In Direct mode, MV increases when PV is increased.
- MV, =MV, - AMV,
In Reverse mode, MV decreases when PV is increased.
- MV, =MV, + AMV,

Gap (dead-band) operation:

Errore

L SV-PV

1 GP@%)| GP(%):

Algorithm Digital filter:
PV, = (1 - FT) [PVC + FT [PV,

Here,
O0<FT<1

User’'s manual - Functions 249

5. Programming Language PART 3 PROGRAMMING INFORMATION

PID algorithm:

AMV, = Ko (AP, + Al, + AD,)
MV, = MV, , + AMV,

Here,
AI:’n =€,-6h
e,=SV,- PV, (If GP 0, Gap is applied)
e, [At+1r
Al = —”? (If T,=0, Al,=0)
AD, = To [PV, PV,) - At Dy, + Dr
" At+n OTD
Dn = Dn—l + ADn
n = 0.1 (Fixed)

Parameter details A+1[A Process input value PVC (0 to 100 %) Data range: 0.0 to 100.0
A+3[A+2 Auto mode set value ASV (0 to 100 %) Data range: 0.0 to 100.0
A+5[A+4 Cascade mode set value CSV (0to 100 %) Data range: 0.0 to 100.0
A+7[A+6 Manual mode MV MMV (-25 to 125 %) Data range: -25.0 to 125.0
A+9[A +8 MV tracking input TMV (-25 to 125 %) Data range: -25.0 to 125.0

A+11[A+10 Mode setting MODE
A+11 A+10
F 0 F C 8 4 0
AY——
T— Operation mode
00: Manual mode
01: Auto mode
10: Cascade mode
11: (Reserve)
Tracking designation
0: No
1: Yes
B+1B Proportional gain K, (0 to 327.67) Data range: 0.0 to 327.67
B+3B+2 Integral time T, (0 to 32.767 min., stop if T,=0) Data range: 0.0 to 32.767
B+5[B+4 Derivative time T, (0 to 32.767 min.) Data range: 0.0 to 32.767
B+7B+6 Gap (dead-band) GP (0 to 10 %) Data range: 0.0 to 10.0
B+9B+8 Auto mode initial set value ISV (0 to 100 %) Data range: 0.0 to 100.0
B+11MB+10 Input filter constant FT (O to less than 1) Data range: 0.0 to

less than 1.0
B+13B+12 ASYV differential limit DSV (0 to 100 %/At) Data range: 0.0 to 100.0
B+15B+14 MMV differential limit DMMV (0 to 100 %/At) Data range: 0.0 to 100.0

250 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

B+17B+16 Initial status STS

B+17 B+16
F 0 F C 8 4 0
A
T— Initial operation mode
00: Manual mode
01: Auto mode
10: Cascade mode
11: (Reserve)
Direct / reverse selection
0: Direct
1: Reverse
B+19B+18 MV upper limit MH (-25 to 125 %) Data range: -25.0 to 125.0
B+21MB+20 MV lower limit ML (-25 to 125 %) Data range: -25.0 to 125.0
B+23MB+22 MV differential limit DMV (0 to 100 %/At) Data range: 0.0 to 100.0

B+25B+24 Control interval setting n (1 to 32767 times) Data range: 1.0 to 32767.0
Executes PID every n scan. Therefore, control interval At = n x constant
scan interval (It is treated as n = 1 when n < 0)

C+1IC Manipulation value MV (-25 to 125 %) Data range: -25.0 to 125.0
C+3[C+2
Internal work area

C+15[C+14

Operation 1. When the instruction input is OFF:

Initializes the FPID3 instruction.

Operation mode is set as specified by B+17 [B+16.
A+10bit 0,1 — B+16bit0, 1

Auto mode SV is set as specified by B+9 [B+8.
ASV ~ ISV

Manual mode MV is set as current MV.
MMV « MV

Internal calculation data is initialized.

MV remains unchanged.

2. When the instruction input is ON:
Executes PID calculation every n scan which is specified by
B+25[B+24. The following operation modes are available
according to the setting of A+11[A+10.

e Auto mode
This is a normal PID control mode with ASV as set value. Set
value differential limit DSV, manipulation value upper/lower limit
MH/ML and differential limit DMV are effective.
Bump-less changing from auto mode to manual mode is
available. (Manual mode manipulation value MMV is over-written
by current MV automatically. MMV « MV)

User’'s manual - Functions 251

5. Programming Language PART 3 PROGRAMMING INFORMATION

* Manual mode
In this mode, the manipulation value MV can be directly controlled
by the input value of MMV.
MV differential limit for manual mode DMMV is effective. MH/ML
and DMV are not effective.
When mode is changed from manual to auto or cascade, the
operation is started from the current MV.

» Cascade mode
This is a mode for PID cascade connection. PID is executed
with CSV as set value.
Different from the auto mode, set value differential limit is not
effective. Manipulation value upper/lower limit MH/ML and
differential limit DMV are effective.
Bump-less changing from cascade mode to manual mode is
available. (Manual mode manipulation value MMV is over-written
by current MV automatically. MMV ~ MV)
And, bump-less changing from cascade mode to auto mode is
available. (Auto mode set value ASV is over-written by current
CSV automatically. ASV ~ CSV)

* MV tracking
This function is available in auto and cascade modes. When the
tracking designation (A+5 bit 2) is ON, tracking input TMV is
directly output as MV.
Manipulation value upper/lower limit MH/ML is effective, but
differential limit DMV is not effective.
When the tracking designation is changed to OFF, the operation
is started from the current MV.

~ NOTE
U Al

< PID3 instruction is only usable on the main-program.

* PID3 instruction must be used under the constant scan mode.
The constant scan interval can be selected in the range of 10 to
200 ms, 10 ms increments.

« The data handled by the PID3 instruction are % units. Therefore,
process input value PVC, manipulation value MV, etc., should be
converted to % units (scaling), before and/or after the PID3
instruction.

252 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.6.4
Expanded data transfer
(XFER)

FUN 236 | XFER Expanded data transfer

Expression
Input— A XFER B ~ C |- Output

Function When the input is ON, data block transfer is performed between the
source which is indirectly designated by A and A+1 and the destination
which is indirectly designated by C and C+1. The transfer size
(number of words) is designated by B.

The transfer size is 1 to 256 words. (except for writing into flash
memory)
Data transfer between the following objects are available.
» CPU register ~ CPU register
* CPU register ~ Expanded F register
* CPU register ~ TOSLINE-S20 or TOSLINE-S20LP
(here called S20 or S20LP)
* CPU register ~ Flash memory (D register)

Execution condition Input Operation Output | ERF
OFF No execution OFF —
ON Normal execution ON —
When error is occurred (see Note) ON Set
Operand
. . Con-
Device Register Index
stant
Name
XIY|S|L|R|Z|T.IC./I|O[X|Y|S|L|IR|IW|T|C|D|F|I1|O]|1]J|K
W W W |W[w wW{w
A |Source VIvIvivIv|v|v|v]v]v y
parameter
g | Transfer VIvIiviviv|v|v|v]v]v v
size
CDest|nat|on JIviviviviviviviy N
parameter
Source parameter Transfer size and status Destination parameter
A| Bank/CH Type B Transfer size C| Bank/CH Type
A+l Leading address B+1 Status flag C+1 Leading address
(Scan healthy map)
B+16 Max. 16 words

» Refer to the following table for contents of each designation.
» The status flag is created only when the transfer from S20 to
Register.

User’'s manual - Functions 253

5. Programming Language PART 3 PROGRAMMING INFORMATION

Transfer parameter table

Transfer object Bank /CH | TYPE Leading address Transfer size S]Eg[;s
XW/YW register 0 HOO |Oto511 1to 256 None
& | W register 0 HO1 | O0to 2047 1to 256 None
'Zé)u LW register 0 HO2 | 0to 255 1to 256 None
- | RW register 0 HO3 | 0to 999 1to 256 None
% D register 0 HO4 | 0to 8191 1to 256 None
F register 0 HO5 | 0to 32767 1to 256 None
Expanded F register™ 1to 15 HO5 | Oto 8191 1to 256 None
lor2 HO6 | 0to 65535 (bank 1~7) 1to 256 None
0 to 57343 (bank 8)

S20 scan memory lor27? H10 | Oto 1023 1to 256 Yes™
S20LP scan memory lor2 H10 | 0to 4095 1to 256 None
EEPROM (D register) 0 H20 | Oto 8191 Source (read) None

1 to 256

| Destination (write)
1to0 128

*1) Two format types of the expand memory is available. They are 8 k words/bank (type: HO5) and 64 k
words/bank (type: H06). Type HO6 is available only in the S2T.
*2) The status flag is created only when S20 is designated as transfer source.

254 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

CPU register « Expanded F register configuration:

Expanded F register

<Type HO5> <Type HO6>
FO0000 FO0000
Bank 1
F8191
FO0000
Bank 2 Bank 1
F8191
FO000 Bank 3
F8191 F65535
i i FO0000
i i Bank 8
FO0000
Bank 15
F8191 F57343

Example

1

RO000 {
H—{RW00 XFER RWO02 - RW10] ’

Source designation Transfer size Destination designation
RWO000 | HOO | HO4 RWO002 | 00045 RWO010 | HO1 ‘ HO5
RWO001 00000 RWO011 00000

DO0000 (CPU register) 45 words transfer Bank 1 FO0O00 (Expanded F register)

When R0O00O is ON, 45 words data starting with DOOOO is transferred to
Bank 1 FOO0O and after in the expand memory.

Remark: When type HO6 is used in the S2T, the expanded F register can be
accessed as FO0000 to F65535 (bank 1 ~ 7) and FOO000 to F57343
(bank 8).

User’'s manual - Functions 255

5. Programming Language PART 3 PROGRAMMING INFORMATION

CPU register o
S20/S20LP scan memory

Example

RO000 ‘
1— —{RWO00 XFER RW02 - RW10] ’

Source designation Transfer size Destination designation
RWO0O00 | HOO | HO1 RW002 | 00010 RW010 | HO1 | H10
RW001 00000 RW011 00000
WO0000 (CPU register) 10 words transfer Channel 1 S20/S20LP

scan memory address 00000

When R0000 is ON, 10 words data starting with WO00OQO is transferred to
scan memory address 00000 and after of channel 1 S20/S20LP.

Remarks: « When writing data into S20/S20LP scan memory, confirm that the
address range is S20/S20LP’s data send block.

» If S20/S20LP scan memory is accessed only by this XFER
instruction, the network assignment, i.e. “LINK” or “GLOBAL” setting,
is not necessary.

» When S20 is designated as source, the status flag (scan healthy
map) for the read-out data is stored in operand B+1 and after. (Status
flag is not created for S20LP)

For example, when 99 words data is read from S20 with using
RWO030 as transfer size designation, RW031 to RW037 (7 words) are
used to store the scan healthy map.

RWO030 99 <«— Transfer size (99 words)
F C

RWO031(16|15(14|13|12(11/10{9|8|7|6|5|4|3|2|1

RWO032 |32|31(30|29|28|27|26|25|24|23|22|21|20|29|18|17 Status flag

(scan healthy map)
1: Scan normal

RWO036 [96|95(94(93|92(91|90(89|88|87|86|85|84(83|82|81 0: Not normal
RWO037 99(98(97

0 is stored in the excess bits

256 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

CPU register « Flash Flash Memory D register configuration:
Memory (D register)

D0000
Page 1
D0127
D0128

Page 2
D0255
D0256

Page 3

D0383

D7936
Page 64

D8191

Example

RO000 {
1 ——{RWO00 XFER RW02 - RW10] ’

Source designation Transfer size Destination designation
RW000 | HOO | Ho4 RW002 | 00032 RWO10 | HOO | H20
RWO001 00100 RW011 00064
D0100 (CPU register) 32 words transfer D0064 (flash memory)

When R0000 is ON, 32 words data starting with D0100 is transferred to
D0064 and after in the flash memory. (Data write into flash memory)

Remark: Flash memory is internally divided by page.

» Writing data into the flash memory is available within one page at a
time.

» For data reading from the flash memory, there is no need to consider
the pages.

» The flash memory has a life limit for data writing into an address. It
is 100,000 times. Pay attention not to exceed the limit. (flash
memory alarm flag = S0007 is not updated by executing this
instruction)

* Once data writing into the flash memory is executed, flash memory
access (read/write) is prohibited for the duration of 10 ms.

Therefore, minimum 10 ms interval is necessary for data writing.

User’'s manual - Functions 257

5. Programming Language PART 3 PROGRAMMING INFORMATION

~_NOTE
U Al

« Edge execution modifier is also available for this instruction.
« The XFER instruction is not executed as error in the following
cases. (ERF = S0051 is set to ON)

Transfer Error cause

Between CPU registers | 1) When the transfer size is 0 or more than 256.
2) When the source/destination table of transfer is out of the valid range.

CPU reqister to 1) When the transfer size is 0 or more than 256.

expanded F register 2) When the source/destination table of transfer is out of the valid range.
3) When the PU662T module.

CPU reqister to 1) When the transfer size is 0 or more than 256.

S20/S20LP 2) When the source/destination table of transfer is out of the valid range.

3) When channel designation is other than 1 or 2. (other than 1 for T2)
4) When S20/S20LP is not installed or not allocated.
5) When status flag area is not sufficient.

6) When an odd address is designated as the leading address in the case of
S20/S20LP is set as double-word access.

7) When the transfer size is odd address in the case of S20/S20LP is set as
double-word access.

8) When the S20/S20LP module is not normal.

CPU register to 1) When the transfer size is 0 or more than 256.
EEPROM 2) When the source/destination table of transfer is out of the valid range.
3) When the data writing address range exceeds page boundary.

4) When this instruction is executed during flash memory access inhibited (10
ms).

5) When the CPU does not have flash memory.

Others 1) When source/destination designation is invalid.
2) When an invalid transfer combination is designated.

3) When the index maodification is used for an operand and register boundary
error is occurred as the result of the index maodification. (in this case, the
instruction output comes OFF)

258 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

5.6.5

Network data send

(SEND)

Expression

Function

FUN 239 SEND Network data send

Input — A SEND B |- Output

This instruction sends the designated range of register data to another
S2T through the network. (Network: TOSLINE-S20LP or Ethernet)

The transfer source register (self-station) is designated by A+3 and
A+4.

The transfer destination register (target-station) is designated by A+5
and A+6.

The transfer size (number of words) is designated by A+2. The
maximum transfer size is 128 words (S20LP), or 485 words (Ethernet).
The designation method of the target-station is different between S20LP
and Ethernet.

Execution condition Input Operation Output | ERF
OFF No execution OFF —
ON During execution OFF —
Normal complete ON —
When error is occurred (see Note) ON Set
Operand
Device Register con- || dex
stant
Name
X|Y|S|L|R|Z|T|C|I|O|X|Y|S|L|R|W|[T|C|D|F|[I]|O|I]|J]|K
WI{W|W|W|W W | W
A |Transter VIvIiviv]v|v|v]v]v]|v v
parameter
B |Status VIVIV|V|V]|V|V]|V]|V v
<In case of S20LP> <In case of Ethernet>
F CB 8 7 0 F CB 8 7 0
A MID | CcH | Targetstation No. Al MD | cH] 0 (fixed)
A+l 0 (fixed) A+l Request command
A+2 Transfer size A+2 Transfer size
A+3 Register type (self-station) A+3 Register type (self-station)
A+4 Leading address (self-station) A+4 Leading address (self-station)
A+5 Register type (target-station) A+5 Register type (target-station)
A+6 Leading address (target-station) A+6 Leading address (target-station)
A+7 Response time limit A+7 Response time limit
A+8 Target-station IP address
A+9
A+10 Target-station UDP port No.
NOTE
L] AL
Parameters for the Ethernet varies depending on the request command. Above figure
shows the parameters for the register read/write command (H0021).

User’'s manual - Functions 259

5. Programming Language PART 3 PROGRAMMING INFORMATION

F E D C B 8 7 0
B Abn|Busy| Status | 0 | TermSTS

B+1 Transmission error information (if TermSTS is HOB)

Inside the parameter:

Transfer parameter S20LP Ethernet

MID (network type) 2 3

CH (channel of self-station) lor2 lto4
(max. two S20LP’s on S2T) (max. four EN611/EN631’s on S2T)

Target station No. lto64 0 (fixed)

Request command 0 (fixed) HO0021: Register read/write

Transfer size 1to 128 1to 485

(number of words) (max. 84 words for T or C register) (max. 323 words for T or C register)
(designation across T511 and T512 is | (designation across T511 and T512
not allowed) is not allowed)

Register type HO000: XW/YW register

HOO001: W register
HO002: LW register
HO003: RW register
HO004: D register
HOO0O05: F register (CPU)
HDO05: Expanded F register
(expand memory, 8k words/bank, [0 is bank No. 01 - OF)
HD06: Expanded F register
(expand memory, 64 words/bank, I is bank No. 01 - 08)
HOO0O07: T register
HO008: C register
HO009: SW register

Leading address Designates the leading register address to be transferred
Response time limit Specifies the time limit of the response from target-station. (0.1 s units)
When the bit F is set to ON, the following default value is used.
S20LP 4.1s
Ethernet 30s
Target-station IP address N/A Designates the IP address of the
target-station
Target-station UDP port No. N/A Designates the UDP port No. of the
target-station

260 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Inside the parameter
(cont’d):

Status S20LP Ethernet

Abn - Normal complete

: Error complete

> Initial state
: Transmission port busy

Busy

Status : Initial state
: While send requesting
: While waiting response

: Complete

WNPFRPO|FPO|FkO

TermSTS HOO: Normal complete

HO1: Register designation error
HO2: Response time-out

HO3: Parameter error

HO4: Register write protect

HO5: (Reserve)

HO6: Module error (send time-out)
HO7: No send channel

HO08: Invalid station No.

HO09: Transfer size error

HOA: Boundary error o .
HOB: Transmission error Bit 7 indicates the error is occurred

HOC: I/O no answer error whether self-station or target-station.

HOD: expand memory designation error 0: Self-station
HOE: (Reserve) 1: Target-station
HOF: (Reserve)

Transmission error When TermSTS is HOB, the error information is stored. (O for other cases)
information For detailed information, refer to the S20LP or EN311 manual.

Example RO020 ‘
11— —{RW10 SEND RW50] ‘

Rwoto| 2 | 1 | 3 S20LP, channel 1, target station No. is 3

RWO011 0

RWO012 128 Transfer size: 128 words

RwWO013 3 Self-station RW register

RwWO014 100 Leading address: RW100

RWO015 4 Target-station D register

RWO016 1000 Leading address: D1000

RWO017 10 Response time limit: 1 second
¥ Send requesting

Rwosofop|1| o | o

RWO051 0

User’'s manual - Functions 261

5. Programming Language

PART 3 PROGRAMMING INFORMATION

TOSLINE-S20LP

Station No. 3
S2T S2T
(self-station) (target-station)
RW100 D1000
RwW101 D1001

rw227 [] pr127 [|

When R0020 is ON, 128 words data starting with RW100 is transferred
to D1000 and after of the S2T on which station No. 3 S20LP is installed.
When the operation is completed, the status is set in RW050 and
instruction output comes ON.

~ NOTE

U Al

Keep the input ON until the output comes ON.

This instruction becomes error complete in the following cases.

(ERF = S0051 is set to ON)

(1) Target station No. is invalid. (for S20LP)

(2) Invalid register designation. (In case of T and C registers, T -
T and C - Cis only possible)

(3) Source/destination register address range is out of valid
range.

(4) Destination register is write-protected.

(5) Response time-out is occurred.

By using SWO067, register write-protect is available against SEND
instruction of other S2T.

F 9 8 7 6 5 4 3 2 1 0
SWO067 | [swlc|T] [F][]D[RWw]w[yw]

0: Write enable
1: Write protect Both F register in CPU and
expanded F register in IC card

Resetting the status register (operand B) is necessary at the first
scan.

When using the TOSLINE-S20LP or Ethernet module
(EN611/EN631), read the manual for these network modules.

262 V series S2T

PART 3 PROGRAMMING INFORMATION

5. Programming Language

5.6.6
Network data receive
(RECV)

Expression

Function

FUN 240 RECV Network data receive

Input —[A RECV B]— Output

This instruction reads the designated range of register data from
another S2T through the network.

(Network: TOSLINE-S20LP or Ethernet)

The transfer source register (target-station) is designated by A+5 and
A+6.

The transfer destination register (self-station) is designated by A+3 and
A+4.

The transfer size (number of words) is designated by A+2. The
maximum transfer size is 128 words (S20LP), or 485 words (Ethernet).
The designation method of the target-station is different between S20LP
and Ethernet.

Execution condition Input Operation Output | ERF
OFF No execution OFF —
ON During execution OFF —
Normal complete ON —
When error is occurred (see Note) ON Set
Operand
Device Register con- || dex
stant
Name
X|Y|S|L|R|Z|T|C|I|O|X|Y|S|L|R|W|[T|C|D|F|[I]|O|I]|J|K
WI|W||W|[W|W W |W
A |Transfer vIvIiv|v|v|v|v]v|v]v v
parameter
B |[Status VIVIV|V|V]|V|V]|V]|V v
<In case of S20LP> <In case of Ethernet>
F CcB 8 7 0 F CB 8 7 0
A MD | cH | Targetstation No. Al mbp | cH | 0 (fixed)
A+l 0 (fixed) A+l Request command
A+2 Transfer size A+2 Transfer size
A+3 Register type (self-station) A+3 Register type (self-station)
A+4 Leading address (self-station) A+4 Leading address (self-station)
A+5 Register type (target-station) A+5 Register type (target-station)
A+6 Leading address (target-station) A+6 Leading address (target-station)
A+7 Response time limit A+7 Response time limit
A+8 Target-station IP address
A+9
A+10 Target-station UDP port No.
NOTE
L] AL
Parameters for the Ethernet varies depending on the request command. Above figure
shows the parameters for the register read/write command (HO021).

User’'s manual - Functions 263

5. Programming Language PART 3 PROGRAMMING INFORMATION

F E D C B 8 7 0
B Abn|Busy| Status | 0 | TermSTS

B+1 Transmission error information (if TermSTS is HOB)

Inside the parameter:

Transfer parameter S20LP Ethernet

MID (network type) 2 3

CH (channel of self-station) lor2 lto4
(max. two S20LP’s on S2T) (max. four EN611/EN631’s on S2T)

Target station No. lto64 0 (fixed)

Request command 0 (fixed) HO0021: Register read/write

Transfer size 1to 128 1to 485

(number of words) (max. 84 words for T or C register) (max. 323 words for T or C register)
(designation across T511 and T512 is | (designation across T511 and T512
not allowed) is not allowed)

Register type HO000: XW/YW register

HOO001: W register
HO002: LW register
HO003: RW register
HO004: D register
HOO0O05: F register (CPU)
HDO05: Expanded F register
(expand memory, 8k words/bank, [0 is bank No. 01 - OF)
HD06: Expanded F register
(expand memory, 64 words/bank, I is bank No. 01 - 02)
HOO0O07: T register
HO008: C register
HO009: SW register

Leading address Designates the leading register address to be transferred
Response time limit Specifies the time limit of the response from target-station. (0.1 s units)
When the bit F is set to ON, the following default value is used.
S20LP 4.1s
Ethernet 30s
Target-station IP address N/A Designates the IP address of the
target-station
Target-station UDP port No. N/A Designates the UDP port No. of the
target-station

264 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Inside the parameter
(cont’d):

Status S20LP Ethernet

Abn : Normal complete

: Error complete

: Initial state
: Transmission port busy

Busy

> Initial state

: While send requesting
: While waiting response
: Complete

Status

NPFPO|IFRPO|FR,O

w

TermSTS HOO:
HO1:
HO2:
HO3:
HO4:
HO5:
HO6:
HO7:
HO8:
HO9:
HOA:

Normal complete

Register designation error
Response time-out
Parameter error

Register write protect
(Reserve)

Module error (send time-out)
No send channel

Invalid station No.

Transfer size error

Boundary error . .
Bit 7 indicates the error is occurred

HOB: Transmission error) g
HOC: I/O no answer error whether self-station or target-station.
HOD: expand memory designation error 0: Self-station

HOE: (Reserve) 1: Target-station

HOF: (Reserve)

Transmission error When TermSTS is HOB, the error information is stored. (0 for other cases)

information For detailed information, refer to the S20LP or EN311 manual.
Example RO030 ‘
1— ——{RW30 RECV RW60] ‘
Rwo3o| 3 | 1 [o Ethernet, channel 1
RwWO031 33 (H21) Request command H21: Register read/write
RW032 200 Transfer size: 200 words
RWO033 5 Self-station F register
RW034 5000 Leading address: F5000
RWO035 4 Target-station D register
RWO036 4000 Leading address: D4000
RWO037 50 Response time limit: 5 second
RwWO038 H62 HOA Target-station IP address:
RWO039 H85 H71 133.113.98.10 = H85.H71.H62.HOA
RWO040 1024 Target-station UDP port No.: 1024
¥ Send requesting
rRwosoloo[1] o | o
RWO061 0

User’'s manual - Functions 265

5. Programming Language

S2T
(self-station)

F5000
F5001

Fs100 [|

S2T
(target-station)

D4000
D4001

patgg [|

When R0030 is ON, 200 words data starting with D4000 of the S2T on
which EN611/EN631 (IP address = 133.113.98.10) is installed, is read
and stored in F5000 and after.

When the operation is completed, the status is set in RW060 and
instruction output comes ON.

~ NOTE

PART 3 PROGRAMMING INFORMATION

IP address = 133.113.98.10

U Al

« Keep the input ON until the output comes ON.
¢ This instruction becomes error complete in the following cases.
(ERF = S0051 is set to ON)
(1) Target station No. is invalid. (for S20LP)
(2) Invalid register designation. (In case of T and C registers, T -
T and C - Cis only possible)
(3) Source/destination register address range is out of valid
range.
(4) Destination register is write-protected.
(5) Response time-out is occurred.

* By using SWO067, self-station’s register write-protect is available.

F 9 8 7 6 5 4 3 2 1 0
SWO067 | [swlc|T] [F][]D[RWw]w[yw]
0: Write enable
1: Write protect Both F register in CPU and

expanded F register in IC card

« Resetting the status register (operand B) is necessary at the first
scan.

« When using the TOSLINE-S20LP or Ethernet module

(EN611/EN631), read the manual for these network modules.

266 V series S2T

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.7
List of instructions

An instruction list is given in the sequence of ladder diagram
instructions and SFC instructions on the next page and thereafter.

The groups in the list correspond to the group classifications of function
instructions used in the programmer (T-PDS). (Except for SFC).

The required numbers of steps signify the size of memory required for
storing these instructions. The showing of the required number of
steps by a range such as 4-7, is because the number of steps changes
due to the following conditions, even for the same instruction.

* When using digit designation, there is an increase of 1 step per 1
operand.

» When a constant is used in a double-length operand, there is an
increase of 1 step.

* When executing index madification in a constant, there is an
increase of 1 step.

The minimum execution time figure shows normal case value, i.e. when
no index modification, no digit designation and normal registers are
used for each operand.

The maximum execution time figure shows worst case value, i.e. when

direct input/output registers (IW/OW) are used for each operand, etc.

NOTE
U Al

Here, an overview of each instruction is given. See the instruction
set manual in a separate volume for details.

User’'s manual - Functions 267

PART 3 PROGRAMMING INFORMATION

5. Programming Language

— 1 ‘wesboid-gns pue weiboid urew Jo pus saredlpu| _l._u anN3 H_!._ pu3g
60°0 1 _|_H dor H_|_ Josal [0u0o dwing
‘NO S! indul uaym YO pue SO usamiaq
suononsisul uo Buiddiys paads-ybiy 1no salue)d
600 T |_H SOor H_| 189S |04u02 dwng
) ‘440 01 NO Wwolj IZY 109 Buisuas-uolsue. |
9€0 1 pabueyd si indur uaym ueds T 10} NO () 821nap suin) annebaN
] "NO 01 440 woly In_v: 109 BuISuas-uonsuel |
9€0 1 pabueyd si indur uaym ueds T 10} NO () 821nap suin (v) BANISOd
. ‘440 01 NO wouj pabueys si () adinap I_Z_I 10eJU09 Buisuas-uonisuel |
9e0 1 pue NO S! Indui usym ueds T o} NO Indino suing (v) anebaN
. "NO 01 440 wouy pabuey? si () a2inap I_n__l 19809 Buisuas-uonisuel |
9e0 1 pue NO S! Indui usym ueds T o} NO Indino suing (v) aANIsod
: : K-
8T°0 T () @21n8p Ul sal01s pue alels Indul 8y} SUBAU|)]109 UBAU|
\J
. ik
600 T arels Indul a8y} sUaAuU|) JauaAu|
\J
600 T 340 JONO S I v* |100 pa2Io4
indul Jayraym Jo ssa|pebal () ad1Aap JO alels suleiay (v) :
8T°0 T "NO st indut uaym NO () 991n8p Sayoums Iﬁ Wx 10D
\J
. ‘440 S! ueds siy} ul Indul pue NO SI ueds
1
9€0 1 shoinald ayy ul iIndul uaym Ajuo NO Indino sayoums I_ _I (Bunrey) 10e1U00 feuonsuel |
. ‘NO SI ueas siyi ui indui 8y} pue 440 S! Ueds I
9€’0 T snoinald ays ul Indul uaym Ajuo NO Indino sayoums I_ _I (Busy) 19e1u09 feuonisuel |
600 T (paso|o Ajrew.ou 1981U09) (V) 921A8p JO 19810 DN wm) 10BU02 DN
v
: (uado Ajrew.ou 19€1U09) (W) 921A8p JO 19BIU0D I_ _I JBJU0D suohonasul
600 T Il 10e] \ IASP JO 10e) ON) 10e] ON aouanbag
(sn) palinba. o
paiinbalawn| sdals Arewwns uonejuasaiday aweN N dnoio
uonnoax3y | Jo JaquinN NN4

(suononnsu| asuanbas) suonanisu| weibeiq Jappe

268 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

"Jawn sareAnoe pue (y) Aq payioads Jaisibal

687c ¢ Jawin sresjo ‘NO 01 440 wolj pabueyd st indul usypn |_H (v) od1L H_| 1966y Jawi] | 8vT
. (4aqwinu Bunsau
6'v ¢ _|_” UdOnW H_|_ UMW) 189Sl [01JU0D JBISBN SET
‘(2 - T) Jaqunu Bunsau e s1 u "NO SsI indul
SOIN uaym 4O Buipuodsaliod 0y jies samod NO suiny
) u ()oqwinu Bunsau
6v c _H SOW H_| yum) 18s jonuoo saisey | V€T
600 T _w 4O H_ 19Sal |0JJU0D JBISEN
"NO st indui SO
usaym YDIN pue SO usamiag rel Jamod NO suinl
600 T _|_w SON H_| 19S |043U0D JSISeN
19181631 181unod si (g) "NO ‘(O) 1ndino suiny
(W) A
8T'0 . () Aq vwz._omam anjeA 18s 01 [enba sawo2aq anjea (g) (v) 3 J8nes
JUN0Y UBYAA "NO awo9d sey (D) indul Junod ay} sawin O IND D
JO Jagwinu 8yl Slunod ‘NO s! (3) indui ajgeus uaym
PRSI
8T'0 z Jawn si (9) "NO sswo9 indul usym Buniess ‘(v) I_H () ss (v) H_l Jawn 10ys ajbuls
Aq pawoads ‘pouad 18s ay) 4o} Ajluo NO Indino suing
) s1s16ai Jawn si (g) 440 uam ndul souls pasdels Jown felo
81’0 ¢ sey (v) Ag payoads pouad 18s uaym 440 ndino suing |_H (8) 401 (v) H_| i AeIep 440
. 9181631 Jawn si (g) "NO awed indui asuis pasde|a Jown felo suonannsul
810 ¢ sey (v) Ag panyoads pouad 19s usym NO Indino suiny |_” (8) NOL (V) H_| I ABI9P NO wo.cozcmw.
(sr) palinbal 0
palinbalawn| sdais Arewwns uonejuasaiday aweN N dnoio
uonnoax3y | Jo JaquinN NN4

(suononnsu| asuanbas) suonanisu| weibeiq Jappe]

User’s manual - Functions 269

PART 3 PROGRAMMING INFORMATION

5. Programming Language

(Ol T+(D) urynsau sy) salols pue ‘(VIIT+(v) J0

T'9 6~ SusI0D au wouy (GNT+{(g) 10 WAoo Al SRS —{ (on1+(0) ~ (@nT+(@) -a (WDT+(W) | uonoenans yibusl-sjgnod | zg
T'9 6~ (ODT+(9) ulwnsai & seiots pue (VT +(v) —{ (OnT+(0) - (@ T+(8) +a (WWITHY) | uomppe yibus|-ejgnod | 1€
JO SjUdU09 8y} 01 (g)IT+(g) JO SIUB0ID By} SPPY -
. T+(D) ul Jspurewsas ayy pue ‘(9) uiusnonb ayy salois -
65y 1~y (8) 10 SWAW00 9 AG (%) 10 AW B4} SAPING L@} uoisIng | 0g
. (ODT + (D) urynsal sy sali0is _
80T 2~V | oue (g) 10 swejuoo oy Ag () 10 Siusjuoo ay sandoni — ©h1+0) - (@0 W) |- uoneoydnini | 62
. ‘(D) urnsal ay) salols pue _)
60 Ly ‘(¥) Jo sjusju09 8y} wouly (g) Jo Slusuod ay) s1oegns |_H © - @-Wm H_| vohoehans | e
. ‘(D) Ul nsal ay) salois _ suonelado
60 v pue ‘() 0 S0 8yl 01 (g) 40 SIS0 Byl SPPY |_w ©) = @+ H_| uonppY |- L2 /WYY
(g) Aq papeay a|qe)
ugs'o+vrrve| 9~V aus 01 (v) Aq papeay u zIs Jo 8|qe} 3L JO SUSIU0D —{ (@ (1oNL (W) |— Iajsuel) pue LaAUI BjqeL | 92
2y Buisudwod eyep pasianal-lig ayl siajsuel]
. . (@) Aq papeay ajges ayy 0} ‘(v)
UBV'O+ZEVZ| 9~ | (0 haneal U z1S JO B|qE) AU JO SIUBIIOD BUY SIBSUEL — @ W ronL) - Jajsuen sjqeL | Gz
. () 4o syuaru00 ayy Aq ‘(a)
ULEOHG'ST | 9~V | (o napeay U a21s J0 9|1 B4 JO SIUBILOY BU) SAZIEMU| — @WzNnL W - uonezifeniut ajqeL | ¥z
. ‘(anT+(a) Jo)
95'2 S | guowo00 ays yum (VITT+(y) 10 SIUGW0D BU) SABLIERYIXT —{ (@b1+(@) HoXa (VIT+(v) |— |ebueyoxe erep yibusl-ajanod | €z
219 G~€ () Jo swau02 ayr yum (v) Jo sluslu0d a8yl sabueyox3 I_u (a) 9HOX (V) H_l abueyoxs erea| zz
. (@) pue T+ (g) 01 (v) pue T+(V) JO SUBU0D lajsuel)
(224 9-€ ay1 Buisudwiod eyep pasianal-ig syl siajsuel | |_H (81T+(8) LONG (VIT+(V) H_| pue paAul yibusl-s|gnoq T
. () 01 (V) Jo s
9€ a-€ ay) Buisudwod erep pasianal-liq ay) siajsuel | |_w (8 LON () H_| 19jsUes) pue UsAUL | - 0e
1497 9-¢ (@) pue T+(g) 01 (v) pue T+(v) JO SlusIU0D Sigjsuel] —{ (@n1+(@ Aowa (WiT+(v) |— | isjsuen erep wbual-aignoa | 6T
)) suononasul
bS50 G~g (g) 01 (V) JO SIUBIUOD SIB)SURI] |_”Am_v AOW (V) H_| lajsuenereq| 8T 1ajsuel]
(sM) paJinbai ‘0
palinbal awn| sdais Arewwns uonejuasalday aweN N dnoio
uofnoaxy | Jo JsquinN NN

(suononusu| uonodun4) suonanasu| welbelq Jsppe

270 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

Ty €~¢ T Aq (VIOT+(V) J0 s)uaju00 ays suawaidsg I_H (vnT+(v) 1-@ H_l Juswaidap yibusl-a|qnoa | 9y
€z'e e~z T Aq (v) JO SIUSU0D By} SUBWRI08Q — W wswaad| Sy
Ty €~2 T Aq (VD1T+(V) JO SIU81u090 8y} sluswaIou| I_u (VinT+(v) T+ H_l wawaJoul yibusl-signod |
€Te €-2 T A9 (V) JO SIUSIUOD BY} SJUBWIIOU| — W wawasnul | e
‘(uonresado Jabayul paubisun) T+(Q) LOISIAID
198 8~v Ul Japurewas ay) pue () ulusnonb ay) sauols ‘(g) — © - @ na (W) |- afBuIs/aignop paubisun | ¥
10 Su8u09 3yl Ag (VI T+(V) 0 S0 8yl saping : :
*(uonelado Jabajul paubisun)
L] I~Y T+(D) ur Jepurewsl sy pue ‘() ul wanonb sy sa.101s I_HQ < (@) /n Asu_l uorsiap paubisun | ov
pue ‘(g) Jo slusluod ayy Ag () Jo SIULILU0I By sapIAId
‘(uonenojed
LeL L~v 1abajur paubisun) (ONT+(D) urnsal auy saiols pue lﬁGgT@ - (@dn A$H_I uonredldiynw paubisun | 6€
‘(g) Jo swau02 ays Aq (V) 40 su0d ays saldNiA
“Insal uoneiado ayy 01 Buipiodde
. sabueyd beyy Aued ayl (DPT+(D) ul ynsal 8yl salols -) Aired yum
el 6~v pue ‘(VT+(V) Jo siusjuod ay) wolj Bey Aed ayi jo |_” (QT+(0) -~ (anT+(8) 0-a A<BH+A<VH_| uonoegns yibusj-ajgnoq 8e
sjuau09 ayl snid (gNT+(g) 1o swauod 8yl s1engns
“InsaJ uoneiado sy} 01
. Buiploaoe saoueyd Hejy Aed ayl (OQNT+(D) Ul ynsal _ Aired
tel 6~v ay) sai01s pue ‘(g T+(g) J0 Swsuod ayy pue (VIT+(v) l._MGBTg (nT+(8) 5+a (MU T+(v) H_[ynm uonippe yibusj-sjgnog L€
10 SJUBIU0D 3y} 0] Bely ALeD 8U) JO SIUSIUOD BU) SPPY
")nsal uoneiado
. 2y 01 Buiploaoe sabueyd Beyy Aed ay] (D) ul _)
629 Lv JInsal ay) sal01s pue ‘() JO Slualu0d ay) wol) Beyy Aued l._ug (@ 2~ (v) H_[Aured yum uonoenans | 9g
aU1 JO SIUBUOI B} pue (g) JO SIUSUOI BU} S1oeNqNS
")nsal
. uonelado ay 01 buipiodoe sabueyo Beyy Aled ayl -
629 L% | () ulynsel oup Sa101S pUe (y) 10 SIBILS 3L 01 (8) — @ -~ @o+w) |- Aureo ym uomppy | S€
JO SJUBIU0D 3y} pue Bey ALed 8y} JO SIUSIUOID 8] SPPY
"2+(o1e+(0) ur sepurewal
586 6~v ay pue (O T+(0) Ul Juanonb sy salols pue (GNT+(q) |_w (ont+(0) < (ant+(Q) /a A<BH+A<VH_| uoisinlp yibual-a|gnoa | ¢
10 sjuaiu02 ayr Agq (V)I1T+(V) J0 Susuod 8yl sepinig
‘(O T+(0hz+(one+(0) d
zT9 6~v uinsas ey saiols pue ‘(@T+(@) | — (QUT+0) ~ (@TH@o a (vit+(y) |~ | uoneoydninw ybusi-aignoa | e suopelado
Jo sdwWwo2 ayl Agq (v T+(v) Jo suauod sy seldniniy NBWYILY
(sr) paiinbai o
palinbalsawn| sdais Arewwing uonejuasalday awepN N dnoio
uonnoax3y | Jo JsaquinN NN

(suononaisuj uonoun4) suononisu| welbeiq Jsppe

User’s manual - Functions 271

PART 3 PROGRAMMING INFORMATION

5. Programming Language

: "(OPT+(D) Uty sauois pue (gNT+(g) _ do
¢6's 6~v pue (vIT+(v) Jo ¥O aAIsnjoxa aanebau sy spulq |_MGBH+GV (@lT+(8) ¥N3a A<EH+A<VH_| aAISNjoxa 10N yibusl-aignog | oo
: () ury sauols _
¥8Y I~Y pUE (g) pUe () 10 MO aASN[oxa aATeBaU au) Spuid I_HGV (a) N3 A$H_| dO BAISNOX8 10N | ¥
. (o1 T+(0) ut U sauos pue (gPT+(d) _ i
26'S 6~v puE (VIIT+(¥) 10 HO [221B0] SNSNXS BU] SpUI —{ (on1+(0) ~ (@T+(8) HO3a (WIIT+(v) }— | w0 ansnjoxe yibual-aianod | €5
: "(0) Uy sai0ls -~
v8'y I~y DU (8) PUE () JO MO [29150] SAISNOX® BLj SpUL — @ - @uoaw) ¥0 anisnxa | 2§
"(ONT+(0) ur 1 sauois
: ~ - Busj-ajgno
26'S 6~v pue (G T+(@) pue (VITT+(y) 10 MO [21Bo] oy SpuI- —{ @IT+(0) = (@nT+(@) ¥oa (WT+(v) O wbusi-ajgnod| TS
v8'y L~y (D) ui salois pue (g) pue (v) Jo YO [edibo] sy} spuld — @ -@uow - do| 0S
. “(ODT+(0) U sauois
- - Bus|-a|gno
26'S 6~v pue (GlT+(g) pue (VITT+(v) 1o ANV [21Bo] o SpuI —{ (On1+(0) ~ (@nT+(8) aNva (WiT+(y) |- ANV Wwbusj-ejgnod | 6v
. () _ suopresado
v8v L u1 3 salois pue (g) pue (v) Jo ANV [e2160] 8y} spulq |_Hg (@ anv A$H_| anv) v [e21607
. "(ONT+(0) ur ynsal ayy saiols pue (gnT-+(Q) -
902t ¥ A0 (U (v) 10 evep ui0d Buneoy o sopmg | L QUTHO) ~ (@IT+(@) /4 (MIT+(v) uoisip Juiod Butteold | TTZ
. "(ONT+() urynsal ayy saiols pue (gnT-+(Q) -
802t v £Q (W1T+(y) 1o E1ep Juiod Bunreoy aup sandnniy —{ (an1+(0) ~ (@IT+(@) 04 (WiT+(v) J— | uoneoydninw juiod Buireoid | 0tz
_ "(OT+(D) Ut ynsas ayy sa103s pue (VIT+(V) _ i
Z8'vT v WOl (GT+(8) 10 eep uiod Buneoy o senang | L QPO ~ @IT+@) -3 (WIT+(W) | uonoexngns juiod Bueol | 60z
. ‘(O T+(D) Ul ynsas syl sal0ls pue suonelado
- d 6
14 4 (@lIT+(g) pue (VITT+(v) 10 Brep 1wiod Buneoy si sppy — Qu1+(0) = (@nT+(@) +4 (WnT+(v) | uomppe julod Buneold | 80g SNBUILILY
(sr) paiinbai ‘0
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoaxy | Jo JsquinN NN

(suononJsu| uondUN4) suonoNISu|

weibeiq Jeppe

272 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

"ynsal ay1 01 Buipiodoe

U/Z'0+€EE'S 9~¥ sabueyo Beyy Aired sy (g) ul)nsas 8y} salois pue I_w (@) < ulHs @u_l Yol yiysuqu| T2
(uondaup gSIA) o] 8Y1 01 Sliq U (V) Ul elep auyl SYS
"J)|nsal ay1 01 Buipiodoe
ULZ0+LLY 9~¥ sabueyo Beyy Aured 8y (g) ul)nsal 8y} salois pue I_u@ < UYHS Asm_l wbuyysuqu| oL
(uonoaup gs7) Wb 3yl 01 siq u (V) ul elep ay) SHYS
"JInsal ay1 01 Buipioodoe
89'Y €~2 sabueyd beyy Alred sy *(v) Ui ynsal sy} sai0is pue I_u Wt ._Imu_l ¥aIYUS A T| 69
(uonoaup gSIN) 81 Y 03 11g T (V) Ul BIEP Bl SYIYS
"JInsal ay1 01 Buipiodoe
rAN4 €~2 sabueyo Beyy Aired 8y (V) ul)nsal 8y} salois pue I_Hos T m:wu_l wbuYysng T| 89
(uonoauip gs7) WbL 8y 01 11g T () Ul BIEP BYI SYIYS SHIUS
'(g) Aq papeay u azis ajqel
) ~ y u Sallig o} U
86’8 v g ay1 Jo 11q Yi(v) 8yl 1o aTels 440/NO 8yl saploaq I_m @ () 111 €H_I S
. "0 ey Jayio st (aNT+(g) i
897 L€ | e (W) 10 AN [29160] 81 3l NG 1nchno oup sun. —{ (@+@ 1s1a (MIT+(v) |- 159 yibual-aianoa | §9
. ‘0 ueyr 1sylo
uE 578 Is1(g) pue (v) 1o GNV [eaIBol LA) NO IO B3 swnL — @us30 - el o
(D) Aq papeay uonedo| ayl Ul Il Sal0ls pue
UZL'0+TE'EC S (8) Ag papeay u azis Jo sjqe) sy pue (V) Ag papesy — @ - @WaNnaLw - YO 9AISN|OXa 10N 3|geL | 09
U 9zIS JO 3|ge1 8yl 40 YO dAISN|IXa 1 ON a8yl spulq
"(D) Ag papeay uoneoo| ay; ul
Uz, 0+1€°€2 S 1 sau03s pue ‘(g Aq papesy u 8zIs J0 8|qe} aus pue (v) — © - (@ WyoaL W |- dO dNISN|oxa BjqeL | 65
AQ papeay u azis Jo a|qel 8yl JO YO dAISNjIXa ayl spuld
(D) Aq papeay uoredo| ay; ul
UZL'0+TE'EC g 1 sau01s pue ‘(g) Aq papeay u 8zis Jo a|ge) 3y} pue (v) — © - @ WwuoLw - doalqel| 85
AQ papeay u azis Jo a|gel a3yl Jo YO [ea1bo| syl spul4
(D) Aq papeay uoredo| ay) ul
Uz, 0+1e'€C S 1 sal0ls pue ‘(g) Aq papeay u azis Jo ajqel ay) pue (v) — @ - @ WanvL W |- aNv dlgeL | /S suonesado
Aq papeay u azis Jo 8|gel 8y} Jo ANV [ed1B0] 8y} spul [eaibo
(sr) paiinbal o
palinbalawn| sdais Arewwing uonejuasalday awepN N dnoio
uonnoaxg | Jo JaquinN NN

(suonanaisu| uonaun4) suononisu| welbeiq JappeT

User’s manual - Functions 273

PART 3 PROGRAMMING INFORMATION

5. Programming Language

2'0€

‘0 01 T-(V) S19s pue
‘() ur 11 sa101s ‘(v) @21nap ayl sapadaid Aj@reipawiwi
yorym (T-(v)) 921A8p 8y} JO SIUBU0D B} SBXeL

— W 1as -

Yiys 901n8Q

9L

ug/'9+8's€

")Insal ay) 0} Buiploaoe sabueys

Beyy Areo ay] *((7) indur uondalip ayl Jo arels ay) uo
spuadap uonoauIp Yiys ay3) Wb 8y} 01 10 Ya| B} 01 U
T wayi syiys pue () adinap ayl Agq papeay Sa2inap U
Y1 JO SIUBIUOI Y] SBYE] UondNSUl By} ‘NO Sawod (S)
ndur Wiys ayr usym usyi ‘NO s! (3) indui sjqeus ay Ji

(v) 1

() s
ddsaa

J191s16a1 YIys [euonoalipig

<72

ugT'G+8'G¢

‘JInsal
ay) 01 Buipiodoe sabueyo Bejy Aed ayl ‘Yys| ayl 0111q
T way syiys pue () ad1nap ay) Agq papeay Sao1nap u

31 JO SIUBUOI BY) S} UoNdNIISUI Byl ‘NO Sawod (S)
ndur Wiys ayr usym usyi ‘NO s! (3) indur sjqeus ay Ji

(v) 3
s
Odsa

JEISEIRIS

VL

ugeo+L'Le

‘JInsal ay} 0} Buipioaoe sabueyd Bejy Aed ayl “(v)
Aq paresipul sug jo saquinu 3y Aq (UondauIp gSIN) ¥aj
au} 01)1 sylys pue ‘(g) Aq papeay ajly Hg-w ay) saxel
:92IAap e SI (g) usym

"(v) Ag pareoipul spiom

Jo Jagwnu ay1 Ag (uonoalip ssaippe ybiy) ys| ayx

01 1l SyIYs pue ‘(g) Agq papeay ajgel pJom-w ay) saxel
:Ja1s1Bal e si (g) usym

— @ - W) HsLW) |-

4| YIYS SHG U By ug W

€L

uge'o+8'9¢

"JInsal ay} 0} Buipioaoe sabueyd Bejy Aued ayl “(v)

Ag pareaipur sng jo Jaquinu ayy Ag (uonoalip gs) ybu
au} 01)1 sylys pue ‘(g) Aq papeay ajly Hg-w ay} saxel
:92IAap e SI (g) usym

"(v) Ag paieoipul spiom

10 Jaquinu ay1 Ag (uonoalip ssaippe Mmoj) 1ybu ayl

01 11 SyIYs pue ‘(g) Agq papeay ajgel pJom-w ay) saxel
Ja1s1bal e si (g) usym

— @ - WuHsLW) |-

WBL YIys SNq U By Ig W

[4A

HUS

(s)
paJinbal awn
uonnoax3y

palinbal
sdais
JO JaquinN

Arewwns

CO_Hmucmww_wa_

aweN

‘ON
NN

dnoio

(suononusu| uonodun4) suonanasu| welbelq Jsppe

274 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

6'6

€~¢

‘}nsal ay} 0} Buipiodoe
sabueyo Beyy Aured ay] -Hejy Aued syl Buipnjoul
(uonoaup gs7) B BY1 01 1q T (W) Ul BIEP BY) SaYeIoY

— W 1oud |-

Aured yum 1ybu srelol 1g T

8

wGeg2g+9'0¢

‘ynsal ay}

0] Buipioooe sabueyd bBejy Aed ayl “(v) Aq paioads
S¥q 4o Jaquinu a8y} Aq (uonoalip 9SIN) ¥a) 8yl o3

¥ sayejol pue ‘(g) Aq papeay ‘sig w o 3|1 1q 3y saxeL
:92IAap e SI (g) usym

'(v) Ag payioads spiom

Jo Jaquinu 8y} Ag (uonoalip ssaippe ybiy) yaj sy o1 I
salelol pue ‘(g) Ag papeay ‘spJom W Jo a|qel sy} saxel
Ja1s1bal e si (g) usym

— (@ WL -

}3| 8rejol s)q u 9y g w

€8

wGeg2g+9'0¢

S~v

‘ynsal ay}

0] Buipioooe sabueyd bBejy Ared ayl “(v) Aq paiioads
S1q Jo Jaquinu a8yl Aq (uonodaap gs7) ybu 8yl 01

¥ sayejol pue ‘(g) Aq papeay ‘sig wi o 3|1 1q 3y saxeL
:92IAap e SI (g) usym

'(v) Ag payioads spiom

10 Jagwnu ay1 Aq (uonoalip ssaippe moj) ybL ayy 01 1l
sarej04 pue ‘(g) Aq papeay ‘spJom w Jo a|gel ayl saxel
.Ja1s1Bal e si (g) usym

— (@ W L v) |-

6L a1e104 SHQ U BJY g W

28

uge'o+8'0T

"JInsal ay} 0} Buipioaoe sabueyd Be)) Ared ayl
"(uondauIp gSIA) WAl aY1 01 Siq U () Ul elep ay) sareloy

— @ -uum

1o 818101 SHg U

18

ugeo+S'Tt

9~

‘JInsal
ay) 01 Buiploooe sabueyd Bejy Ared ay] “(uonoalip
gs1) Wb auyy 01 suq u (v) Ul erep ay} sareloy

— (@ -uum

1yBu a1e101 Sl U

08

8.'8

")Insal ay} 0} Buipioaoe sabueyd Bejy Ared ayl
"(uondaulp gSIN) ¥8| 8yl 01 1 T (W) Ul erep ay) sareloy

— Wy

Y| erelod g T

6L

€C6

€~¢

‘)Insal ay} 0} Buiploaoe sabueyd Beyy Aued syl
“(uonoauip gs7) B ayy 01 1g T (V) Ul eYep ay) sareloy

— W Tu -

Wb erel0s 1q T

8L

areloy

(s)
palinbal awn
uonnoax3

paiinbal
sdals
Jo JaquinN

Arewwns

uoneasalday

aweN

“ON
NN4

dnoio

(suononaisu| uonadun4) suononisu| welbelq JappeT

User’s manual - Functions 275

PART 3 PROGRAMMING INFORMATION

5. Programming Language

€'6¢

‘(D) 12181681 BYY
ul way salois pue ‘(y) Jaisibal ayl Aq papeay u azis
10 8|qes ay) 1 JaisiBal yx(g) 8yl Jo SuLU0D By} sexel

— @ - @ Wxan v

Jaxajdniniy

06

wGegg+9'0¢

‘J)nsal ay} 01 Buipioaoe sabueyd

Beyy A1ed ayl (V) Ag paredipul Sl JO Jagquinu ayl

Ag (uonoauip gsIA) Wb 8yl 01 1 sarelol pue ‘Beyy Aued
ay1 Buipnpour (g) Aq papeay sug w Jo 8|y 1q ay) sexel
:801n8p e sI (Q) JI

(‘esnnd ui

uoneonoads Jaisibal se swes) ‘(v) Ag paleaipul spiom
Jo Jagwnu ay} Ag (uonoalip ssaippe ybiy) ybu ayy 01

11 saejol pue (g) Ag papeay SpJom W Jo d|qel ay) saxel
:Jeisibal e si(g) y

—{ (@ (W) oL v -

Ared
Yum ys| arejold s)q u sfy ugq w

68

wGeg'¢+9°0e

‘}Insal ay1 01 Buipiodde sabueyd

Be|y Aued ayy (V) Ag pareaipul Suq Jo Jagquinu ayl

Aq (uonoaap gs1) ybu 8yl 01 11 sajejol pue ‘Bejy Aled
auyy Buipnjour *(g) Ag papeay siq w Jo 3jij Hg Y} SaxeL
:2o1nap e si(d) 4l

(‘zaNnnd ui

uoneonoads Jaisibal se awes) (V) Ag palesipul spiom
10 Jaguinu ayl Ag (uondalip ssaippe moj) ybu ayl 0}

11 salejol pue (g) Ag papeay SpJom Wi Jo d|qel syl saxel
JaisiBal e s (g) 4l

—{ (@) (W) oxyL (v) |-

Aired yum
6 8re104 SNQ U B U W

88

ugT+e Tl

o~

"JInsal ay1 01 Buipiodoe sabueyd Be|) Ared ay|
'(g) urynsal ay} salo1s pue ‘Bejy A1red ayy Buipnjoul
(uonoalip gSIN) ¥al 8yl 03 ug u (v) Ul erep ays sareloy

— @ -uvonw -

Aired yum 1a) are1o4 siq u

.8

Ug0'¢+6'6

Insal ay1 01 Buipioosoe sabueyd Be|y Aued ay |
'(g) urynsal ayl saio1s pue ‘Bejy Aures ayy Buipnjoul
(uonoaap gs7) Y8 8YL 01 11g U (V) Ul Blep B} SB1eIoY

— (@ - voma(v) -

Aired yum ybu aejol suq u

98

Sv'6

€~¢

‘)nsai ay) 0} Buipiodoe
sabueyd Beyy Aued ay] -Bejy Aued ayy Buipnjoul
(uonoalip gsIN) ¥al 8y 03 ug T (v) Ul eyep ays sareloy

— w1ow |-

Aired yum yaj erelol g T

S8

areloy

(sr))
paJinbal awn
uonnoax3y

palinbal
sdais
JO JaquinN

Arewwns

CO_Hmucmww_wa_

aweN

‘ON
NN

dnoio

(suononusu| uonodun4) suonanasu| welbelq Jsppe

276 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(D) 191516814

Lee 9~ L Aq papeay u azis Jo a|del 8y} o g Yi(d) 8y — @ - @wniaw - Iajsuen sjqel-ud| €6
Ul way) salois pue () 92IA8p 8y} JO SIUSIUOD Y] Saxel
"(0) @21n8p

19 9~ ay) u1)1 sa10)s pue (v) Jarsibai ayy A papeay spiom I_HGV < (a) () el (v) H_I loysuen g —ajqeL | 26
U azIs Jo 3|qe) du} Jo peay ay} Wwoly ig yKg) auyy saxeL
()

6'GC 9~ 19181691 ays Aq papeay u azis 4o djges 8y} Jo Jaisibal I_HGV < (a) (u) Xda (v) H_I lexa|dninwaq | 16

yi(g) ayr ui () Jeisibal ayi JO SIUBIUOD BY} SBIOIS aleloy
(sr) paiinbal o
paisinbalrswn| sdals Aewwns uoneasalday aweN N dnoio
uonnoaxg | Jo JaquinN NN

(suononaisu| uonadun4) suononisu| welbelq JappeT

User’'s manual - Functions 277

PART 3 PROGRAMMING INFORMATION

5. Programming Language

‘(uosuredwod Jabaiul yibus|-a|qnop)

renba

v8 L€ (@0T+(8)S(VIT+(v) 4 NO Indino suiny [(@1+(8) =0 W)} | oy so) ubuar-aignoa | 207
‘(uosiLredwod Jabayul yibusj-ajgnop)
. _ Bual-
£e'8 L~€ (GITH@)> (VI () 1 NO 1NN SuinL —{ (@r+@ >a (wr+v) |- ueu ssa| iBusl-ajanod | 90T
‘(uosredwod Jabayul yibusj-ajgnop)
. _ b Bual-
£e'8 1~€ (T @)1+ () 1l NO 1ndiNo UL —{ (@rt+(@) <>a (MTHw) |- fenba 10u yiBuB-alaNoa | SOT
. ‘(uosuredwod 1abayul Yibus|-a|gnop)
- = enba yibus|-ajgno
£c'8 1~€ (GTH@)=(W11T+(%) 3 NO 1IN0 Sumy —{ @1+ =a (WT+(v) |- fenba bual-ajanod | voT
18 I8 ‘(uosuredwod Jabaiul yibus|-a|gqnop) |_”AmEH+Am_v —<a A<BH+A$H_| renba coT
(@nT+(@=(vioT+(v) # NO Indino suing - 10 uey) Jarealb yibusl-signoQ
‘(uosiLredwod Jabayul yibusj-ajgnop)
. _ 6 yibusl-
£e'8 L~€ (@T+@)<(I+ () 1l NG 1NN SLInL —{ (@1+(@) <a (WiT+(v) |- | uew ssreaib wibust-aianod | 2ot
869 G~¢ "(uosuredwod Jabiaw) (g)s(v) § NO Indino suing |_HAm_v = A$H_| renba Jo ueyl ssa1| TOT
86'9 S~¢ ‘(uosuredwod Jabiaw) (9)>(v) # NO Indino suiny. |_w (g) VA$H_| ueyy sso| 00T
869 G~¢ "(uosuredwoo sabisw) (g)(v) # NO Indino suin I_u@ <> @u_l [enbs 10N | 66
86'9 G~€ "(uosredwoo sebisw) (g)=(v) # NO Indino suing. I_u (a) = Asm_l enb3 | 86
869 G~¢ "(uosuredwod Jabiaw) (g)=(v) § NO Indino suing |_HAm_v =< A<VH_| renba 10 ueyl Jo1eaID | /6
5.9 5~¢€ “(uostredwod JeBraw) (g)<(v) #f NO Indino suint — @<w uey) sorea1o | 96
. . (D) ur sug Buiyorew-uou ayl salois pue ~
UBrZ+9L9 | S | g) pue (v) wos Buniers alqe) seisiBal aup soreduOn — ©) - (@ W awoL (v) |- uosiredwod sy ug | 56 aredwon
(sr) paiinbai ‘0
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoaxy | Jo JsquinN NN

(suononusu| uonodun4) suonanasu| welbelq Jsppe

278 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

. *(uosiredwod eyep juiod Buireoyy) _ renba
s0e € (anT+(8)s(v)IT+(w) # NO Indino suint —{ (@@ =3 (1+v) |- 10 uey) ssa| uiod Buneol4 | £¥¢
. *(uosuredwod eep juiod Buireoyy)
d 6
502 € (@T+(@)>(IT+(¥) 4 NO Indino Suny — @+@) >3 (WT+v) - uew ssa| wuiod Buneod | 9Tz
. *(uosuredwod eep juiod Buireoyy)
b d 6
19T € (@NT+(@)£(W)T+(¥) §l NO Idino swin |_HAmEH+Am_V <>4 (VIT+(V) H_| [enbs jou julod buneold | STC
*(uosiredwo9 eyep juiod Buinreoyy)
. = enba juiod Buneo,
Lot £ (GTHE)~ (I TH(9) 3 NG Indino Suint —{ (@1+(@) =4 (WiT+(v) - fenba Juiod Buneold | ¥Tz
. *(uosiredwod eyep juiod Buineoyy) |_”Am9 (@) =<d (VIT(VH_| renba
s0e € (@ T+(@)=(vT+(v) # NO Indino suing. THE) =<d MITHY. 10 uey; Jarealb juiod Buneoy | €F¢
. *(uosuredwod eep juiod Buireoyy)
6 juiod 6
502 £ (@IT+@)<(IITH) 3 NG Indino Suint —{ (@1+(@) <4 (iT+(v) = | ueur sereaud uiod Bunreoid | z1z
. ‘(uostredwos Jabsiul paubisun) _
869 S~¢€ (g5(v) 1t NO 1ncano suin| |_”Am_v =>MN A$H_| fenba 1o uey) ssa| paubisun | £TT
86'9 G~€ (uostreduiod sabajul paubisun) I_u (@ >n(v) H_I uey sss| paubisun | 21T
(a)>(v) ## NO Indino suing. !
86'9 og ‘(uosiredwod Jabajul paubisun) |_Nm_v N A<VH_| Enba jou paubisun | TrT
(@2(v) # NO Indino suiny !
969 g "(uostredwoo Jabayur paubisun) |_Hﬁm_v -n A$H_| fenba pauisun | oTT
()=(v) §# NO Indino suint. - .
. ‘(uosuredwod Jabajul paubisun) _ fenba
869 i€ (g9=(v) # NO Indino suiny |_”Am_v =<n (v) H_| 10 ueyy Jeyeaib paubisun | 607
86'9 G~¢ (uostreduiod sabajul paubisun) —@=<nw) - uey s91ea1B paubisun | 80T
(9)<(¥) # NO ndino suiny : aledwo)
(sr) paiinbai o
palinbalawn| sdais Arewwing uonejuasalday awepN N dnoio
uonnoaxy | Jo JaquinN NN

(suononaisuj uonduUNH) sUONdNJISU|

weibeiq Jappe

User’s manual - Functions 279

PART 3 PROGRAMMING INFORMATION

5. Programming Language

“(@lT+(g) urynsal ay) saols pue (vIT+(v) ul erep

6’y 9~-¢ UIBUS|-0]GNOp U Ul SIG NG JO J3qUINU aU) SIUNoD I_u (g) oaa @u_l unod ug ybusi-s|qnog | €21
. '(g) uiynsai ay) salols
[5-€ pue () ul erep ay: Ul sig NO 40 Jaguinu ay} SlunoD |_w (8) o8 (v) H_| wnoa g | cet
‘440 01 1S3l 8y} |[e S18s pue ‘NO 01
v'0€ v~€ (v) Ja1sifa1 4o suq u Jamo] aus Aq paredipul uomsod 1g —{ @ Woaaw) |- apodad | TZT
a1 s19s ‘(g) Aq pspeay sug .z 3ZIS J0 3|1} g 8y} SaeL
'(g) 12181681
062 v~€ ur uosod ug NO 1sowladdn sy s8101s uoHINASUI I_w (a) (u) oNa (v) H_I apoous | 02T
auy ‘(v) Aq papeay suq .z 8zIs Jo 3|l 1g 3y} U
8v'¢ T ‘Beyy Ao ayy s1esay |_”O._.ww_ H_| Aned1esay | 61T
8v'2 T ‘Beyy Aed ay) s1es |_wo 13S H_| Aired19s | QTT
‘440 01)1 s18s81 pue (v)
T S~ | Aq pareolput uonisod au Ul g 8y} saxe) uonoN.ISUl AL —{ (@ W 1suL v - 19saly ajqeL | LTT
‘(g) 1a1s1681 BY) Ag papeay ‘SpIOM U JO)i} g aY1 wolH
"NO 03)l s18s pue (v)
L1g S~y | Ad parealpul uonedo| Y} Ul Mg B} S8XE} LUoRoNISUl By —@W1iasLtv) |- lesNq 8|qeL | 91T
‘(g) 18151681 Yl Aq papeay ‘spiom u o 8| 1ig By} Wol-
) ‘() Je1s1bas ul g salois
8y :Jeisibal e si () 4
ez —) 1sy |- 1211621/201N8p 1953 | STT
€59 440 01 (V) 221n3p sles
:801n8p e sI (V) JI
) (V) J91s1631 Ul 4444H S2101S
8y :Jeisibal e si (V) 4
e~z — W 13s |- sz1siBo1/00108p 105 | PTT
eG'g "NO 0} (V) 921n9p S}9S Buissasoid
:@o1nap e st (V) 41 elep [elnads
(sr) paiinbai ‘0
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoaxy | Jo JsquinN NN

(suononJsu| uondUN4) suonoNISu|

weibeiq Jeppe

280 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(Juswa199p) 1UN0d NAMOQ : 440
(Juawiaiour) WNod dn @ NO

"(mojaq 89s) (N)

(v)3
ndui uonoajas umop/dn ay} Jo arels ayl 01 Buipiodde
-~ . inaurl uonos| P/ Ui Jo a3els ayi 03 buip. o) Jaunod umop-dn | 6%T
apew S| (JUaWaI29pAUBWAIDUI) UORIBIIP UNOD 5
2y} Jo uondajas ay] ‘() 1a1sibal 193unod ay} ul)l S2101S ann
pue NO awod sey (D) Indul JUNo2 a8y} sawi Jo Jaquinu
3y3 SJUNOJ uonoNIISUl dYL ‘NO s! () indul sjqeus ayl 4|
(Auoud saxe)l 19say) 440 01 (V) 921nap ay) s1asal) o
T8 I ¥ ‘NO s! (1) indur 18sa1 8Yy uaym :NO 01 (v) 8o1nep D4HS doy-di4 | /vT
3y} S18s uononasul ayl ‘NO s! (S) indul 18s ayy uaym
‘T Ag (g) 10 anjeA ay) sluawaIdap OS|yY
891 9~G (D) U3 sai01s puke ‘ISl Ul paysnd sem Lalym erep —{) - (@ (W) 4dod (v) }— sy dod | /2T
a1 (V) Ag papeay SpJom U JO a|dqe) 8y} WOy N0 sayel
'T Aq (g) 10 anjeA ay) sluawaloap
791 9~G os|v "(0) ur ¥ salols pue (v) Aq papeay spiom — ©) - (@ () 1dod (v) }— 1se| dod | 92T
U Jo 3|qe)1 8y} 01 1se| Ul paysnd eyep ay1 INo saxel
8'sT 9~§ 'T A (g) jo anfen au swawdsoul pue () Aq (2) < (@) (u) HSNd (v) usnd| Szt
papeay spiom U Jo a|qer ayi ol () ul erep ayl saysnd l._w H_[
"T+(Q) ui s1a1s16a1 Buyorew ayj jo ssaippe Jaisibal
o 1SaMO| 3y} SaJ01s pue ‘(D) ul Saydrew Jo laquinu _
urzeote | 98 5U1 521013 () J0 SIUBIU0D B BuIOTEW ETep 10} — O - @WHs® |- HRIERS BIEA | PET | Buisseooud
(g) Aq papeay spiom u Jo a|gel erep ybnolyl sayoleas elep [eloads
(sM) palinbal o
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoax3 | o JaquinN NN4

(suononunsuj

uonoun4) suononisuj

weibeiq Jsppe

User’s manual - Functions 281

PART 3 PROGRAMMING INFORMATION

5. Programming Language

(D4S Jo uonennoe) (v) dais

AM%M\M N._.M__ s sajeAnoe pue ‘() dais D4S oy woly sdals U ay) s)9sal |_H (v) (u) N_u_ww_| azieyul 04S | Tve
uononJsul ayl ‘NO 01 440 wou} pabueyd s indul usypn
‘NO (W) 821n8p suiny pue ‘Buni awes
. 3y} uo suonanJsul indul aouanbas
18 ¢ dais yum saoinep ayl 440 suin _|_HA<v H_| Indino sousnbas dais | ovT
uonanaisul 8yl ‘NO s! indui ua
-90usnbas onasul syl ‘NO st inaul usym
dais auo 'NO sI () a21nap pue
: ndui aduanbas da
0e ¢ asudwod asay L NO s! iIndur uaym NO Indino swny |_”A$ H_| Inaut 1S | SPT
‘(@2uanbas dajs jJo uoneanoe)
102 € NO (V) suin pue ‘() 8d1nep I_u (v) () N_qu_l azieniul 8ousnbaes dals | 1T
Aq papeay sa21A8p U 8yl 440 suin
0ze b4 "aWI} UOIID31aP JOA0 awi Ueds 8y} SPUaIX] |_wc ._h_>>H_| 19sal Jawn Bopyorepn | VT
— 1 ‘wresboud 1dniisiul 8Y) Jo pua ayl saredlpu| _|_”._.m_m_ H_|_ pus welibold idnuai | zvT
0'€S T ‘wrelboid 1dnuisiul 8yl Jo uonndaxa sajgesiq |_”_n_ H_| 1dnusiul ejgesia | Tyt
0'1S T ‘wreiboid 1dnuisiul 8yl Jo uonnoaxa sajgeud |_” 13 H_| 1dnuaul a|qeus | ovT
— T “(LTvH 01) uonndaxs weiboid ayy sdois —{ dois dois | 81
Ge'T b4 *(Uu Jaquinu) aunNoIgNs ay) 01 3dUeIUS 3Y] SaILJIPU| _|_H€5 m_m_DwH_|_ Anua aunnoigns | €T
S6'v T _|_ 1X3N (LX3N) dooj 1XaAN-HO4 | €€T
‘u Ag payioads sawi Jo Jaguinu ay) H_|
Alpareadas | X3IN 01 4O Wolj uonaas ay) saIndaxy
869 z H uwod - (d404) doo| 1XaN-d0d | 2T
Ge'T b4 ‘dwnl reuonipuod ayy 1oy uoneunsap dwnl ayy sareaipu| _|_H€5 1g1 H_|_ |oqe| dwng | 9€T
. "uu Jagquinu [age| .
S0 e~ oup 10} 51| 3L 01 Aoauip sdwnl “NO st Indui aup 4 I_u uu-'N n__>_3nu_| dwnl reuonipuod | 0€T
869 1 *aUINoIgNS 8y} JO pus ay) salealpu| _|_H._.m_w_ H_|_ uimal aunnoJgns | 62T
. ‘Uu Jaguinu aunnoigns ayj Joj _|_H U H_|_ 25 BUINOIN |013u0d
sv'0 €~¢ aunnoJgNs ay sjfes uonanisul ayy ‘NO Si indur auy 41 NTIvO I anoians | set weiboid
(sM) palinbal o
pasinbals awn| sdals Arewwns uoneuasalday aweN N dnoio
uonnodaxg | Jo JaquinN NN

(suononaisuj uonduUNH) suoNdNJISU|

weibeiq Jappe

282 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

‘(D) ul synsal ay) salois pue ‘(g) Jo anjea

8501 L~v ay1 Buisn (V) Jo sualu0d ay 01 Jwi| Jaddn ue salddy |_” ©) = @ W H_| Hwiy saddn | 09T uonoun4
'S99IAap Buipuodsaliod ay) uo |01U09 440/NO
ug'TT+6°'02 o] N0 salled pue ‘() ajgel Jo} anfeA Bumas uoneAndesp |_H8v < (g) (u) NVYD (V) H_| Jaouanbas wed | 65T
pue uoneAnoe ayl yum (g) laisibal ayr saredwo)d
*(D) @ge1 ug 8y 01 11 sNdINO pue Jsquinu
109 dais siyy 01 buipuodsanios uianed ndino ayi dn s)o0|
:Bunnoax3 uononisul ayl ‘() ajgel uianed 1ndino erep ay Buisn -
%S 9 “T+(g) Ul 1l S8I0IS pUE Jaquinu |_H?5 (0 < (@) (uynnaa A$H_| laousnbas wnig | 85T
:azienul 1y dais ay} sapioap uay) ‘(spremuo ugz+(y)) ajger bumas
anfeA Junod ay) yum (g) anjea junod ay} saredwod
(g) yum bBunuels spiom 9 ayl ul nsal
0'20ST € 3] Sal01S pue ‘sw pue a)ep Jualind ay) wol ‘(v) I_w@ Sai1o (v) H_I uonesado Jepused | SST
Aq papeay erep awin pue ajep Jo SpJom g ay) sjoenqns
‘(Bumas
0'968 4 awin pue a1ep) |ST Jepusfed ayl ul way) S1as pue |_H anTo (v) H_| lepusjed 189S | #ST
(v) 12151621 8y} Agq papeay erep JO SPIOM 9 3y} Sayel
9t T "Uore| snjels syl Jo slels sy) s|poued |_wm._._.w H_| 19sal yare| sneis | €91
“gale Yydle| ay) Ul way) salols pue Jawwresboid
vv6 T ay1 Aq 18s (gg xew) sialsibal/sadinap ayl saxel |_M Ss H_| 19 UDIe| SiE1S | ¢ST
‘Aejal Jorerounuue ayl woly pue (0STNN4)
ugg'e+0'9T £~2 uononusul Aejdsip onsoubelp ayl Aq papiodal |_” (v) ¥via H_| 19sal Aejdsip onsoubeiqg | TST
1S1| 909 JoLa 8y wolj () apod Jolid ay) sasel]
's92Inap [esayduad syl uo pasonuow aq ued (g)
Aq papeay sa|gel Jaisibal ayy ul papiodal (Sia1oereyd
. 2T Xew) sabessaw Jodla ay] Aejal Jojelounuue
eve L Buipuodsaliod ayr NO suin} pue ‘aisibal [eroads ayy |_”Am_v (v) ovia H_| Keidsip onsoubeiq | 05t
ui () Aq parealpul apod 10413 31 SPJ0JdJ UONINNSUI
a3yl ‘NO 01 440 wiou} pabueyd sey indur usymn Svd
(sr) paiinbai o
palinbalawn| sdais Arewwing uonejuasalday awepN N dnoio
uonnoax3y | Jo laquinN NN4

(suononaisuj uonduUNH) sUONdNJISU|

weibeiq Jappe

User’s manual - Functions 283

PART 3 PROGRAMMING INFORMATION

5. Programming Language

'0000T Ag anfeA auisod sy buiAldiinw pue
9'ce S-€ 00T 4q (v) Jo anfe au Bulpinip Aq paureiqo (sa16ap) —{@soov) |- (SOD) uonouny BuISOD | €21
ajbue ay) Bunyel Aq paureiqo anfea ayl (g) ul salols
"0000T Ag anjeA auis sy BulAidninw pue
€'1e S-€ 00T Aq (v) Jo anje ayy Bulpinip Aq paureiqo (sa16ap) — @nNisv) |- (NIS) uopouny auIs | z.T
a|bue ay1 Bunyel Aq paureigo anjea ayl (g) ul salois
(D) Uy salols
1709/ 14 pue ‘(g) yum Buiess sisiswered ay) Buisn (v) Jo anjea I_HGV < (9) zaid (v) H_I did aJenbs uonenaq | TLT
ay1 Joj uonre|naed d|d arenbs uoneiAsp ayl INo salled
. (D) ur 1 salois pue (g) yum Buniers sisrsweled syl _
9068 v Aq (V) 0 anfeA ay} Joj uonenNofes did syl INo sale)d |_Hg (@ aid (v) H_| aid| ot
. ‘(D) ur 1 sal101s pue ‘(g) yum bBuiuess sisloweled _
Oev L ay1 Aq () Jo anjea ay Joj uonouny durel sy} sarelausn |_w8v (8) dAvd (v) H_| uonouny dwey | 69T
“(oT+(0)
g'ee I~V ur)nsas ays salojs pue (g)IT+(g) 1o} Juelsuod [eibaul l._ug < (8) 9LNI ASH_I [esBajul | 89T
ay) woly (V) Jo anfen ay) Joj [elbajul syl serenoe)d
) (@) urn saios pue (v T+(V) _
c'88 9-¢ e1ep y1bus|-ajgnop ay) Jo 1001 arenbs sy} spuiq |_” (@) ~ LA (WIT+(v) H_| 1001 arenbs | 29T
) (D) urn saloss pue ‘() Jo sluawo9 ayl 4oy (g) Agq -
LTT L~y DeTEOIU PUEQ PEAp U SOAIB UILM ANfeA S SpU — ©-@aaw - pueq pead | 99T
(D) ul n salos pue ‘uawnbie sy se () Jo Sluau0d
Ug0'Z+.'8€ 1~ 3U) sexe) yolym anfeA uonouny syl spul (g) Aq papeay lﬁ@ < (g) (u) o4 @H_I Joyessuab uonound | G9T
sisoweled U xz ayl Ag pauiap uonouny ay) Buisn
. (@) urn saios pue ‘(v) Ag papeay
9'8e v 3|qrel e1ep pIoM-U aul Joj anfeA abelane ay) serenoe)d |_HAm_v W 3nv (v) H_| anen abesany | v91
“T+(g) ul anfea wnwiuiw ayy yum Jayuiod ayr salols
€02 14 pue ‘(v) Ul 8nfeA wnwiuiw 8y} S8I0JS ‘dnjeA wnwiuiw I_uom_v (U) NIN (W) H_I aneA WNWIUIN | €9T
ay1 Jo} (V) Aq papeay a|qel elep plom-u) saydieas
“T+(g) ul anfea winwixew ayr yum Jaiod ay) Sai01s
€02 % pue ‘(g) ul anfeA wnwixew ayl Sa101s ‘anjeA wnwixew |_H () (U) XvIN (W) H_| anfeA wnwixelN | Z9tT
a1 Jo} (V) Aq papeay a|qel elep plom-u s} saydiess
. ‘(D) ul synsal ay) salois pue ‘(g) Jo anjea ~
8501 I~V ay Buisn ‘() o SIUBIU09 By} 03 Hwi| Jamo) & sanddy I_u Q- @MW H_I ywij Jamo| T9T -
(sr) palinbal o
palinbal awn| sdais Arewwns uonejuasalday aweN N dnoio
uofnoaxy | Jo JsquinN NN

(suononJsu| uonodUN4) suonoNSu|

weibeiq Jappe

284 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

"(g) urynsal sy sa101s pue 00T Aq 1 saldninw “(v) Jo

€esot 5-¢ anfeA anjosge ay} Jo wyleho| uowwod ayl sarended |_”Am_v 201 A<VH_| wipnebo| 6.1
7'v8L G~€ (@817T+(8) ut 1 sa1018 pue (v) Jo I_H@u?@ dx3 Asu_l uonouny fepuauodx3 | 8.1
anfeA anjosge ay) Jo Q00T/T 40 [enuauodxa ayy spui4 ’ :

. *(g) ur 11 sa101s uay ‘00T Ag anjeA wabuey
7'€06 S-€ o1 a1 SN ‘0000T Aq () 10 NeA 341 SEPING —{ @ Nviv (v) | | (N1 uonounjusbuel o1y | 22T

. '(g) ur 31 sa101s uay} ‘00T Ag anjeA auIsod
9'GE G~¢ are a sandnnuw “0000T AQ () 10 ANEA BU) SSPIAIG |_Hﬁm_v SOV A<VH_| (;-SOD) uonouny BUISO2 21y | 9/T

) "(g) uru salois syl ‘00T Ag anjeA auis
6'vE S~¢ are au sandginu “0000T AQ () 10 BNEA B SSPING — @Nisvv) - (z:NIS) uonouny auis oIy | G/1

'0000T Ag anjeA juabue) su BuiAldininw pue
509 S~¢€ 00T 4q (V) jo anfen ayy Buipinip Aq paurelqo (a169p) |_HAm_v NVL A$H_| (Nwv.L) uonounyjuabuel | /T

a|bue ay) Bupjel Aq paureigo anjea ayi (g) ul S8I01S uonound
(srl) palinbal o
pasinbal swn| sdals Aewwns uoneasalday aweN N dnoio

uonnoax3 | Jo JaquinN NN4

(suononaisuj uonduUNH) sUoNdNJISU|

weibeiq Jappe

User’'s manual - Functions 285

PART 3 PROGRAMMING INFORMATION

5. Programming Language

: “(anT+(a) ut (ViT+(v)
9'/T € 10 21ep Juiod Buneoy 10 ERp UoSIBAU UBIS SU) SAI0IS I_w@aim_v 93NA (WIT+(V) H_I uorsiaaul ubis yuiod Buneold | 20z
. “(anT+(a) ut (ViT+(v)
eI € 10 e1ep 1uiod BUNEO) JO BN[eA AINJOSAE AU SAI0NS I_u@aim_v sav4 (ViT+(v) H_I anfen ainjosqge iod Buneold | 90z
. ‘(g@y1T+(g) ur u sa101s pue erep sabajul yibus|-signo
908 € POl (VIIT+() 10 1ep 1uiod BUITRO) 8L SUBALOD lﬁ@ﬁimv X4 (v T+(V) H_I uoIsI9AU02 uiod paxi4 | 502
. (@nT+(g) ury salois pue erep uiod Buieoy
6'GC G~€ o (wiIT+(w) 10 19631 LIBUBI-BIGNOP S SIBALOS I_HA@T@ 174 QBTQVH_I uois1aAu02 julod Bueold | 0z
) "(@iiT+(g) ur y salois pue UOISI9AUOD
eey 9-€ erep gog owi (vinT+(v) ul erep Areuiq syl SUaAUOD |_HAm9H+Am_V a%8d (IT+v) H_| aog yibus|-s|gnoq 16t
. () ury saiois
6'TT G~¢ pUe e1ep 4og o1l () Ul Brep Areuiq au) SUSAUOD) I_u (9) aog (v) H_I UoISIaAU0d D4 | 06T
. (g@nT+(g) ul n salols pue eyep Areuiq UOISIBAUOD
¢sl 9-€ ol (Vi1 T+(v) Ui erep aog yibus|-s|gnop sy} sHaAu0D |_HAmEH+Am_v NIga A<BH+A<VH_| Areuiq ybusl-ajgnod 68t
) (@) ury saioys
9'se 5-¢ pue ejep Areuiq o (v) Ul erep dog ayl SLUBAU0D |_”Am_v NIg (v) H_| uoisianuod Areurg | 88T
'(g) Ag papeay uoied0| 3yl Ul JNsal ayl SaI01S
Uge'T+8'6T | OT-~€ "ap03 ||DSY OJUI WaL) 8SI18AUOD puke (V) Aq paredipul —@osviv) - UOISIBAUOD |I1DSY | 98T
(s121080240 9T WNWIXew) souawnueyde ayl saxel
. (g) ul sa101s §
el 5~¢ DU P09 1eWBES-2 01Ul () J0 SIG b 8 SHOAIOS —{@oas:v) - apooep Juswbes-/ | 8T
. “(gipt+(g) ul sai01s pue ‘erep)
558 s5-€ LIBUBI-BIGNOp O1ul () U1 €18 PAUBIS S SHOALCH —{ @r+@ma) }— | uosieruoo yibusl-aignoa | 8T
. . juswia|dwoo
10T 9~€ (ab1+(g) u (viDT+(v) Jo Juaws|dwod s,z sy salols —{ (@1+(@) oana (Wit+(w) |- sz ybua-aignog | 8%
ev'L G~¢ (9) ur () Jo uawadwod s,z ay) saI0ls I_w (8) 93N (v) H_I wawaldwod s,z | 28T
v'0T 9~¢ “(ant+(g) u (vinT+(v) Jo anfen anjosqe ay) sei0ls —{ (@1+(8) Sava (WiT+(v) |~ | enren sinjosqe yibual-sianod | T8T
S5'8 G~€ () w (V) Jo anjeA snjosge sy SaI0)S —{(@sav) SN[eA BINIOSAY | 08T | yoi550n009)
(sr) paiinbai ‘0
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoaxy | Jo JsquinN NN

(suononnsuj uonoun4) suondNASU|

weibeiq Jeppe

286 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

‘)nsas uoneltado
a1 0} Buipiodde sabueyo Beyy Aured ayl (OT+(D)

A1red yum uonoengns

Z'sTT 6~ U1 NS81 BU) SI0NS PUE ‘UoE Ul (W)L (y) wou —{ (QnT+(0) - (auT+(8) 0-aa (WIT+(VY) |— 408 wbusainog | €2
Beyy A11ed ay jo syusod sy snid (gT+(g) soenans
“ynsal uonelado
. ay} 01 Buipioooe sabueys Bely Aured syl (DPT+(D) - Aired yum
LTl 6~v ul JInsai 8yl salols pue ‘adg ul (vT+(v) o1 ‘Beyy Aured |_H88ﬁ+8v (@T+(8) O+aa A<Bﬁ+ﬁ<vm_| uomppe aog yibus|-sjgnoa coe
ay1 Jo syuawoo ayl snid (g T+(g) Jo SLu09d ay) SppY
"JInsal uoirelado ay) 0} Buipiodoe sabueyo
509 L~y Beyy Aured sy *(2) urinsal sy saiols pue ‘gog ul (v) — @~ @oaw |- | Aueoywmuonoenans aoa| Toz
wouy Beyy Aured ays jo suawod ayy snid (g) sioenqns
"JInsal uoielado ay) 0} Buipiodoe sabueyo
509 L~y Bey Aureo ay1 *(0) urnsal sy salols pue ‘qog — - @oraw |- Aured yum uopippe aog | 002
ul (v) 01 Be)) Awred aya Jo syuaiuod ays snid (g) sppv
"2+(01e+(0) ur sspurewas ayy pue
z'8ee 6~v | (ODT+(0) uruenonb ay; saiols pue ‘qog ul (aNT+8) | — (QVT+(0) ~ (@NT+(@) /a0 (VNT+(v) J— | uoisinp adg wbual-ajgnod | 66T
Jo sydu02 8y Aq (vVIT+(v) JO SU8LI0D Byl SBPIAIQ
(OnT+(olz+(0nE+0) —
€'8Le 6~ u1yinsa1 ayy salols pue ‘gog ul (aNT+(g) | —| (ONT+(0) ~ (@nT+E)08a (WIT+W) |— S 86T
aog yibua|-ajgnoq
JO sL109 8yl Aq (W)IT+(V) JO sualuo9 ayi saldninin
) (Ol T+(0) urynsal ay) sai0is pue ‘aog ut (VT+(v) Jo _ i uonoengns
ot 6~v SWa09 ayl woly (gNT+(g) Jo susu09 ayl syoengns |_” (QPT+(0) -~ (ant+(8) -aa A<BH+A$H_| aong yibus|-ajgnog 161
. “(OPT+(D) urynsal syy saols pue ‘aog ul (viT+(v) _)
T2 6~ 10 SJUA00 a1 0] (FT+(E) 16 S B SPPY —{ (On1+(0) - (@nt+(g) +aa (WiT+(v) }— | uomppe aog yibusl-sianod | 96T
T+Ho) u
v'e8 L~y | Japurewsi ay} pue (O) utjuanonb sy} sai0)s pue ‘add —{@-@rw - uoIsINp aog | S6T
ul (g) Jo swa09 ayl Aq (V) J0 SUBU0D 3yl SapIAIQ
. ‘(OIT+(D) ur ynsas ayy salols pue _
9201 L~y ‘aog u Jayiebol (g) pue (v) siusiuod ays sandniniy —{ @1+ - (@08 () - uonedNdninw o9 | ¥6T
. (D) urynsai ay) sal0)s pue ‘qog - (q)-
¢'6s L~y ui () Jo S1U8ju09 8y} wodj (g) Jo SUsU0I 8y} S}oeNqnS |_Hg (@) -9 A<VH_| UoRoENqNS aod | €61
) ‘(D) urynsal ay) salois pue - uonelado
265 L% | (g) pue (v) 1o SIS0 8L 0 LOWPPE Qg N0 SAWES — © - @+aw - uonippe aog | Z6T e
(sr) paiinbai o
palinbalawn| sdais Arewwing uonejuasalday awepN N dnoio
uonnoaxy | Jo JaquinN NN

(suononaisuj uonduUNH) sUONdNJISU|

weibeiq Jappe

User’s manual - Functions 287

PART 3 PROGRAMMING INFORMATION

5. Programming Language

. “(@nT+(g) ur n sauos pue ‘(v T+(V) (tNVL)
0'0eY € Jo erep uiod Buneoy; ays Joy Juabuel are ay) spuiq |_”Am9H+Am_v NVLvd A,Q‘BH+A$H_| wiabue) oure iod Bureol 6ce
. “(@T+(a) ur n sauos pue ‘(v T+(v) (;-S02)
r'se € Jo erep uiod Buneoy) ayj 10} 8UISOI dJe 8yl SpulH |_NmEH+Am_v SO0V (WIT+(V) H_| auIso9 are juiod Buneolq 8ee
T'sE £ (@T(8) 1 s9i01s pue (vIT+(v) —{ (@nr+(8) NiSvH (WIT+(W) }— | (NIS) surs ore juiod Bunteol | 2z
Jo erep uiod Buieoyy ay) Joy auls are ay) spui T : : :
9'552 £ (ENT(8) Ui sa1ois pue (D)T+(v) —{ (@n1+(8) NV (IT+(W) | | (NvL) wusbuerjuiod Buneols | gzz
Jo eyep juiod Buneoyy ays Joy Jusbuel ayl spui4 : ;
. “(giyt+(g) ur u salols pue
9'€T9 € {(vlIT+(v) 10 e1ep JuI0d B0y BUy) 10] SUISOD B SPUIH l._w@ﬁim_v S004 (ViIT+(v) H_l (S02) auso2 juiod buneold | Gzz
. “(giyt+(g) ur u salols pue
6'€€€ € (Wi +(v) 10 2P 1iod Buneoy BU) 10} SIS AUy SPUIH —{ (@1+(@) Nisd (WT+(W) |- (NIs) aus yuiod Bunreol | vz
“(OT+(0) Ul 1 sal01s pue (GNT+(Q) yIm Qld asenbs
9'8/Y 14 Buiess sivlewered Buisn (v)1T+(v) erep juiod Huieoy I_HGBTGTA@T@ zdldd QBTQVH_I uoneinap wiod Buneoyy | £°
ay) Joj uonenoea q|d arenbs uoneiAnap ayj 1IN0 salle)
“(OPT+(0) ury sauo3s pue (ghT+(a)
0'0ey v um Buness sielaurered Buisn (vIIT+(v) erep | — (QNT+(0) ~ (AVT+(8) Aidd (WIT+(W) |— Qid wiod Buneold | zez
wiod Buireoy} ayl 4o} uoneNoed did ayl INo sale)d
. “(@nT+(g) ur n sauos pue ‘(v T+(v)
6'882 € e1ep Jwi0d BUITEO] BU1 J0 1001 B1ENDS BU} SPUIY I_u@_ﬁim_v 184 (v T+(v) H_I 1001 81enbs uiod Buireold | TzZZ
. “(OpT+(0) ur ¥ sasoss pue (viT+(v) o} (aliT+(Q) Aq -~
Sor v pueq peap au) SAAIB YoIUM e1ep juiod Buneop au Spuld —{ On1+(0) - (@1 +@) 903 (WIT+(W) |— pueq pesp juiod Buneold | 0ze
“(optT+(0)
6'€C v uIyInsa1 sy} sa101s pue (@T+(g) Buisn (VIT+(v) | —{ (QIT+(0) = (@IT+(8) T4 (WIT+(vw) |— nwy Jemo] wujod Buneold | 6Tz
erep juiod Buneoy ayy 01 wij JIamo| ay) saljddy
“(opt+(0)
9'€C v u1yInsa1 8y} salols pue (@NIT+(g) Buisn (VIT+(v) | —[(QNT+(0) ~ (@NT+(8) N4 (IT+(W) |— iy saddn juiod Buneold | 8Tz suopouny
erep uiod Buieoyy ayy 01 Hwij Jaddn ayy saiddy [eay
(sr) paiinbai ‘0
paisinbalawn| sdals Arewwns uoneuasalday aweN N dnoio
uonnoaxy | Jo JsquinN NN

(suononJsu| uondUN4) suonoNISu|

weibeiq Jeppe

288 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

‘g|npow [e1oads ay) ul Alowaw

Ug'eT+2T. S~ au) 01 eaje JaisiBal J9SN AU} JO SIUBILOD AU SIASURIL I_HGV < (g) LM Asu_l 81LM eyep ajnpow [e1ads | 8€z
. "eaJe Jasn ay] 01 s|npow eroads =
US'ET+ZTL S~v aU) Ul AIOWSL BU} WOJ JAISUEI BIEP N0 SAILED —© - @avauv) - peal erep s|npow [e10ads | /€2
()
19611 19181621 9yl Aq panioads Ajpoasipul uoeunsap Jajsuen
y Mr_h %%w ¥ ol 01 () Jo151B51 3U1 AQ pouadS ARoBiIpUI 931N0S —© - @u3ax W) |- Jajsuen erep papuedx3 | 9gz
P a Jajsuen ay) wolj (g) 8zIs J0 %20|q plom 8yl siajsuel]
"‘ainpow O/] Buipuodsallod ay) oj/woly erep
uL'6+.'02 € 40 Indino/indut 1no saped uononiisul 8yl ‘(v) Jaisifial I_w?v () on H_I O/181a | sez
indino/indul ayy Agq papeay sia1sibal SPIOM U 3y} 104 ndino/ndu
9'08 € (8IT+(8) ul) Sa101S pue ‘(YIIT+(v) Jo erep I_umﬁim_v 9014 (VIT+(V) H_I wypureBo Juiod Bueold | TEZ
wiod Buireoy) ayl Jo wyieho] uowwod ay) sarenae)d : : :
“(@inT+(g) ur u salols pue ‘(YIT+(V)
. 1 suonoun
8'829 € 10 e1ep 1uiod Buneoy oL 40 [nuBUOdXS By} SpUI —{ @1+@) dx33 (WT+(W) |- fenusuodxa juiod Buneold | oez .H_mm m
(sr) palinbal 0
paisinbal swn| sdais Aewwns uoneasalday aweN ZD_/M_ dnoio
uonnoaxg | Jo JaquinN

(suononaisuj uonduUNH) sUONdNJISU|

weibeiq Jappe

User’'s manual - Functions 289

PART 3 PROGRAMMING INFORMATION

5. Programming Language

88°0T

(uonoe
Buipn|oxa)
S

‘pouad 18s a1 sI xxxx pue ‘1a1sibal Jswn ay)
s1 (1) J4aqunu dals ay) SI SSSS "siseq auo-0]-auo € Uo
puodsaliod yoiym weibold uonoe surejuod ‘NO 03 (V)

921A8p Wlee ay) s1es ‘poliad 18s ay) UIYNIM apew uasq
10U sey uonisuell 8y} I pue ‘poliad aAnde Byl SIONUOIA

(v)
XXXX

w

SSSS

dais wuely

€96

(uonoe
Buipnjoxa)
14

pouad 18s ay)

SI XXXX pue ‘4a1s1Bai Jawn ay si (1) 4aquinu dais ays si
SSSS 'sise(au0-0}-8U0 B U0 puodsaliod yoym welboid
uonoe sey 1| ‘pasde|a sey polad 18s 8y} [nuN uonisues]
31 1IN0 Aured 10U S90P UORINIISUL SIY} ‘aNnJ] SBW0D
uonipuod uonisues) Buipadaid Aj@rRIpaWIWI 8} JI USAT

XXXX

w

SSSS

dais e

06'6

]agWINU 0JoBW Y1 SI WWW pue
Jagwinu dals 8yl SI SSSS “wiww Aq paresipul weiboid
0JoBW 3Y) 0] SISeq 8U0-01-3UO0 B U0 Spuodsalio)

dais oloepy

“Jaquinu dajs [eniul sy I SSss

"aNJ) SBW09 UONIPUOD uoisuel) Buipadaid Ajereipawiwi
ay) uaym dajs remur buipuodsaliod ayy 01 Buissaosoid
suinay ‘wesboud D4S 8y Jo pua 8y saredIpu|

SSSS

dais pug

00’

(uonoe
Buipn|oxa)
T

Jaquinu dais ays s
SSSS "SISe(8u0-0]-2U0 B U0 puodsaliod yoiym welboid
uoIo. SUNIUOD 3| “|0JIU0 JO Nun 3|BuIs ay) SI SIY L

SSSS

deis

88'L

(uonoe
Buipn|oxa)
Z

“Jaquinu dajs ay) SI SSSS 'siseq
8U0-01-3U0 & U0 puodsaliod yaiym welboid uonoe
sureju0d pue weiboid DS 9yl Jo Uels syl saledlpu|

SSSS

dais reniuj

dais 045

8,61

"(uonreAnoe 04S)

dais reniul ay sareanoe pue ‘welibold D4S Buipasdrans
3y Jo sdals uuuu ay} SareAnde Ul UoRINNSUI

a3yl ‘NO 01 440 woly pabueys sey () a21Aap ayr Uaymn

uuuu

(v)

-
-
T
.
.
E

azlfeniul 04S

9Z|[emul D4S

(sr)
paJinbal awn
uonnoax3y

palinbal
sdals
JO JaquinN

Arewwns

CO_Hmucwmw_wa_

aweN

‘ON
NN

dnoio

suonannsul D4s

290 V series S2T

5. Programming Language

PART 3 PROGRAMMING INFORMATION

0€0 T ‘welboid oioew Jo pels saledlpu| Anua oo
AN | www
. ‘dwnl D4S ay1 wou} uoireunsap dwnl ayy
€0t ¢ 10 ‘pus DS Byl WO} UoITeUNSaP UINial 8y} saledipu| |A e 19G®1 248
[eqeT
(uonipuod ‘siseq 3
€59 Buipn|oxa) | auo-01-auo e uo puodsaliod Ydlym UoIPUOD UonISuel} pua 010N
z surejuo) ‘weiboid o01oeW BY1 JO PUS BY] SBYRIIPU| 1
‘siseq au0-0)
(uompuoo
. -8u0 e uo puodsallod yaiym uonipuod dwnl surejuo)
€0'8 Buipn|oxe) . dwnt 048
aNJ} SBWO02 UORIPUOD 3Y) UaYm |11 Ag parealpul
s |12ge] ay1 01 sdwnc -dajs palisap 01 dwnl sajeoipuj
'SISeq 8u0-0}-auo e
(uompuod . nmo
. Uo puodsalIod YoIym UoRIpUOd UoRISURI] SUIRIUOD “ani}
€59 BuIpnoxe) | o os vor —+ pug 04S
1IPUOd uonIsuel) ayl uaym TTTT Aq parealpul
¢ 1aqe| ayi 01 sdwnr "welboid D4S Jo pua ay) saredipu|
(uonipuod ‘SIseq au0-0}-auo
29'S Buipnjoxa) B U0 puodsaliod ydiym uonpuod uonisues] sureuo) — uonisuel |
‘sdals usamiag uonIsuel} 10} UOIIPUOD By} SaedIpu
T) 1oq uon 110} uonip U} saredipui uonisuel |
(sr) palinbal 0
palinbalawn| sdals Arewwing uonejuasalday awepN N dnoio
uonnoax3y | Jo JaquinN NN4

suolonasu] D4S

User’s manual - Functions 291

PART 3 PROGRAMMING INFORMATION

5. Programming Language

(11) @2usbianuo)d

Ue6'c+e6'c saouanbas snoaueynwiIs
USY 0482 (1) @2uabianuo)d
saouanbas snoaueynwIS
(youeuq
3yl ulyum sjreisp
[enpiAipul pue ‘sdais
) ‘suonisuen Buipnjox3) (i) @auabianig
sTo f saouanbas snoaueynwiIS
1UNO2 Yyoueiq ay1 sl u _H_H_
c+u 1 1 I
) ! ! ! (11) @2usbianig
sTo D R E— saouanbas snoaueynwiIs
) (1) @auabianig
sTo saouanbas snoauenwIS saouanbas
'sda)s pa1osuuod 8y [[e saleAdy snoaue)NWIS
) N aouabianuo)
sT0 uonoa|as asuanbas
(youeuq
16 aU UIIM S|P _HAW_ _HA_IivI_ _HAWW_ i (1) eouabianig
[enpIAIpUI pUE ‘sdais " " " uonos|es asuanbag
‘suonisuen; Buipnjox3)
. 1UNO2 Yyoueiq ayl sl u m_ m_ ﬂ_ 4 (1) souabianid
Sv'9 T-Uxz _ uonos|es asuanbag
. "(Auoud 1a)) ana3 SaW0I UONIPUOD T (1) @ausbianig
sv'9 uonisues] ay) yaiym Joj dais ayy sareanoe uonos|es asuanbag uonos|as
‘sdais paoauuod [elanas Buowe woiH 9ouanbasg
(s) palinbal ON
paJinbal awn sdays ,6. JBQUINN Arewwns uonejuasaiday aweN NA4 dnoio
uonnoax3y

suonannsul D4s

292 V series S2T

Index

A

ANuUNCIator relayeeeeiiie e

Automatic 1/0 allocation

Auxiliary device (R)ccuvviiiiieeeiiieeieee e,
Auxiliary register (RW)cooviieiriiiiiee e

B

COMMENES ...
Computer link parameters

Counter register (C) .coooeeeiiiieeiei e

D

DEBUG MOEieeiieiieeeeeeee et

Data initialiZationoeuvii e
Data register (D)ccovvveiiiiiii e
DV .. e

Diagnostics display function
Digit designationccooveeeiiiiiiiiiieee e

E

ERROR MOAE ...

EVeNt NiStOrYoii e
Execution time measurement function
Expanded file registerooooviiieiiiiee e,

F

Flash Memory ...
Floating point datacccoooeeiiiiiiiiiiiiiie e,

(O70] 151 r=1 0] =T 07= 1 o F T

147, 167, 175,
176, 177, 178,
179, 285

28, 31, 36, 38, 98,
102, 145, 150,
205, 207, 212
161

38, 143, 161

148
66, 146, 215, 216,
217

37, 138, 141, 157
38, 143

81, 88, 89, 91, 104,
107, 110, 112, 143,
169, 248, 249,
253, 254

38, 143

20, 80, 81, 84, 140,
141, 146

38, 48, 88

38, 143

50, 51, 243, 245,
250, 255, 261
266, 275

147

197, 199, 200,
202, 233, 271

20, 80, 81, 85, 88,
102, 120, 121,
122, 125, 169
77,120, 126

130

119, 237, 238, 242

79, 117, 259
180, 192, 242,
250, 272, 280,

293

Index

288, 289, 291,

292, 293

e [0 = 11T T o= o T 81, 88, 89, 91, 104,
107, 108, 111, 143

o (oT N8 { U [ox 1o o PSR PPPPRRPPN 79, 80, 93, 138

(U aTox 1 T0] a1 o] [0 Tox <G 220, 226, 227

(U] aTex 10T g WA 13 ({0 (o3 1] o [P 72,138, 227, 229,
231, 271

Functional SPECIfICALIONSii e e e e e e e eeeenennes 74

H

[oY I I 4o To [20, 23, 24, 26, 28,
73,79, 75, 80, 81
83, 102, 117, 122,
132, 140, 141,
142, 144, 169,
205

[(@I I 4 To Yo [20, 83, 169, 181

HOt restart TUNCHION..........e e 128

|

[0 [= 1S T | =T] o 1R 92, 93

1/O allocation INfOrMALIONovveiiiiiie e e et e et e eeees 28, 31, 38, 59, 88,
89, 98, 102, 122,
145, 205, 207,
209, 211, 212, 213

L@ 2= | (o Tor=11T0] o [N (U] (=PSRRI 36

(L@ =11 (o Tox=1 1o] o 28, 29, 30, 31, 36,

38, 59, 64, 88, 89,
92, 93, 98, 102,
122, 145, 203,
205, 207, 209, 211,
212,213, 214

7@ 1 (=1 0 o PP 38, 41, 104, 113,
115, 116, 130, 145,
150, 152, 153,
170, 179, 180,

224

I/0 module with interrupt fUNCLION....... ... 115

/O MOUNTING CRECK e et e e e e e e e eeeeees 86, 88

[ale Loy q gaToTo 1 or=1 i o] o HE RO 193, 194, 195,
196, 202, 260,
271

[T E= 1IN (o 7= To PP 77,79, 81, 84, 86,

88, 107, 117, 118,
120, 128, 146
165

INPUL AEVICE (X) ettt e ettt ettt e e e e e ettt e e e e e e e e eeeateaa e e e e e eaaeeeennes 161

294

Index

T oL UL g =To T (=T o AT T 47,161

LT =0 =] P 182, 186, 188
Interrupt assignmMeNnt INfOrMALIONooii i e eeeeees 154

Interrupt enable/disable ... 115

LT =T U] 018 o] 0o | =T 1 o IS 38, 89, 104, 113,

115, 116, 143, 145,
146, 138, 145,
146, 150, 152,
154, 155, 167,
231, 233, 235,
284

L

= To [0 L= o [=T | =1 o S 40, 41, 100, 138,
137, 139, 146,
155

= To [0 L= o [=T | = o PSSR 220, 221, 223,
224, 226, 227,
229, 231, 240,
246, 250, 253,
271

g1 oo [V o = (74 PR 161

I C=To 1Sy (=T (R) TP 161, 219

I C=To (=Y L= (A 161, 240

M

1Y/ F= 1T T o] 0o | = o PSR 41, 43, 66, 89, 104,
105, 107, 108,
130, 138, 146,
147, 148, 149,
155, 223, 224,
231, 235, 237,
241, 242, 233,
235, 268

Manual 1/O AllOCALIONuuiiiiiii e e e e eba s 28, 31, 33, 35, 38,
60, 145, 205, 209,
211, 212

Y [T o gL YA o= o = Lo | Y SR 38, 141

1Y/ {o Yo (<YK oTa] o] { (0] IR 22, 26, 75, 80, 81,
86, 89

Mode transition CONAILIONoiiiiiiiii i 81, 85

MOAUIE TYPE .. e 28, 29, 34, 60, 62,
145, 152, 205,
207, 209, 212,
213

MUIIEASK TUNCHION ...t e e 104

295

Index

N

Network assignment iNformationoouuiiiiii i 38, 145

@)

Online program changing fUNCLION.............ccooiiii i 20, 138

Operation MOode SWITCHcoooiii e 18, 22, 24, 28, 73,
79, 80, 84, 85, 88,
89

L@ 01T = 110] o 1 1 T Lo L= 20, 98, 141, 248,
253

(@ 1111010 | ao [V, oI () RPN 161

(O 111 o T8I C=To IS L= (ALY TSR 47,161, 164

P

PLC control COMMEANAS.......ouuuiiiie e e e e e eeeeennes 22

PasSSWOId fUNCHION.t e e e et e et e e e e e e e e e e eaaes 103, 151

Peripheral SUPPOIT.........ccciiii e e e e e e e e e aeeees 75, 81, 96, 98

Power interruption deCISIONuuuiii e 77

Program ID ... et e e eaaas 38, 98, 141

Program eXeCULION SEOUENCE.uuiiieeeeeeeetiiiiee e e e e e e et s e e e e e e e et a e e e e e e eaaaa s 43

[oo = 0 (RS VA= IR =] 1] o PP 141, 157

PO AM LY e ettt et e e e e aeaa 40, 41, 43, 104,
138, 139, 146,
148, 152, 155,
223, 224, 231,
233, 235

Programming lanQUAGE.........cooeeiiiiiiie e 135, 139, 220,
221, 223, 224,
235

R

RAM/ROM SWITCI....ciiiiiiiiiiiiiiiiiiiiieiieeetee ettt eeeeeeeees 18, 22, 23, 24, 26,
73, 80, 79, 84, 85,
88, 117

RAS TUNCHION ...ttt e s es s e ebaneeennnee 75, 88, 120, 135

[1N I 4T To 1= SRS 18, 20, 24, 48, 78,
169, 170, 173

RUN MIOGE ..ttt ettt ettt ettt et et e et e e e e e e e e e e e e e aaeaaaaeaeaeaeas 75,77, 80, 81, 83,
86, 100, 115, 117,
128, 146

RUN-F MIOQ. ..ttt et e e et ettt e e e e e e eeeeeeens 83, 20, 211

T 0 1 (= S 35, 149, 152, 159,

167, 168, 174,
180, 182, 184,
186, 188, 190,
192, 212, 213,
243, 245, 250,
255, 261, 262,

296

Index

SFC INtaliZationoovuiieieee e
SFC JUMP ittt

SFC 1AaDBI..ceiee e

Sampling buffer.......cccoi i,

Sampling trace function

SCAN CONIOL.. e
SCAN CYCIE ..,

SCAN MOUE ..o

Scan time Settingceevvieeiiiiiecce e,
Special register (SW)coov oo
Status latch function............ccocviiiii e,
Sub-program execution time
SUD-Programcoouiiiiiiiie e

263, 266, 267
268

38, 48, 80, 143,
164, 165

40, 41, 43, 226
43, 84

237, 241, 242,
245, 295

240, 250

241, 245, 253,
295

245, 250, 253,
295

237, 239, 240,
241, 242, 250
100, 137, 138,
139, 146, 150,
155, 157

220, 221, 223,
224, 235, 237,
239, 240, 241
242, 244, 245,
246, 248, 249
250, 252, 253,
271, 284, 294,
295, 296

131, 141, 166
119, 131, 136, 141
75, 81, 86, 203
26, 89, 90, 91, 95
100, 104, 124,
130, 138, 143,
170

81, 86, 88, 89, 91,
98, 143

143

161

136

107, 130, 143
38, 41, 89, 104,
105, 106, 107,
108, 111, 128, 130,
138, 143, 146,
148, 149, 155,
165, 167, 181,
183, 223, 224,

297

Index

Sub-routine

System comments

System configuration

System information

T

Timer interrupt interval

Timer interrupt

Timer register (T)
Timer update
Timing relay

U

Unit base address setting function
Unsigned double-length integer

Unsigned integer

User data initialization

User data

User program check
User program execution

User program mem

ory

231, 233, 235,
268

41, 138, 143, 144,
146, 155, 156,
157, 223, 224,
231, 233, 246

38, 141

73

37, 38, 48, 59, 75,
77, 88, 91, 98, 100,
102, 107, 113, 117,
120, 127, 138,
141, 143, 150,
205, 207

143

41, 104, 113, 115,
130, 143, 150,
179, 224

38, 143

81, 86, 89, 95
46, 89, 95, 165,
167, 171

35, 36, 209

180, 186

180, 182, 186,
271, 280
77,79, 81, 84, 86,
88, 107, 128, 141,
142, 143, 144

26, 45,48, 77,79
81, 84, 86, 88, 96,
98, 100, 102, 107,
119, 121, 122, 128,
135, 137, 141,
142, 144, 143,
159, 233

80, 81, 88

20, 26, 47, 75, 81
86, 89, 92, 93, 96,
137, 148, 149,
203

26, 28, 31, 37, 98,
100, 102, 117, 120,
122, 135, 137,

298

Index

138, 141, 157

(0 LY o o (0T | =1 o o 17, 20, 24, 26, 28,
30, 31, 37, 38, 40,
41, 43, 45, 47, 73,
75,77, 79, 80, 81,
86, 88, 89, 90, 91,
92, 93, 96, 98, 100,
102, 106, 111, 117,
118, 119, 120, 122,
124, 135, 137,
138, 139, 141,
146, 147, 157,
173, 148, 149
203, 220, 224,
241

W
Watchdog timer ChECK. e e 125

299

6F8C0928

Integrated Controller series

	Sequence Controller S2T User's Manual -Function-
	Safety Precautions
	PART 1 BASIC PROGRAMMING
	1. Overview
	1.1 System design procedures
	1.2 Basic programming procedures

	2. Operation Outline
	2.1 Operation modes and functions
	2.2 Modes fransition conditions
	2.3 Operation flow chart

	3. I/O Allocation
	3.1 I/O allocation
	3.2 Input and output registers
	3.3 Rules for I/O allocation
	3.4 Unit base address setting functions

	4. User Program
	4.1 User program configuration
	4.2 System information
	4.3 User program
	4.4 Program execution sequence

	5. User Data
	5.1 User data types and functions
	5.2 Conditions for data initialization

	6. Programming Example
	6.1 Sample system
	6.2 Input/output allocation
	6.3 Sample program
	6.4 Programming procedure

	PART 2 FUNCTIONS
	1. Overview
	1.1 S2T System configuration
	1.2 Functional specifications

	2. Internal Operation
	2.1 Basic internal operation flow
	2.2 System initialization
	2.3 Mode control
	2.4 Scan control
	2.4.1 Scan mode
	2.4.2 Batch I/O processing
	2.4.3 Timer update

	2.5 Peripheral support
	2.6 Programming support functions

	3. User Program Execution Control
	3.1 Program types
	3.2 Main/sub program execution control
	3.3 Interrupt programs execution control

	4. Peripheral Memory Support Functions
	4.1 Flash Memory (EEPROM)support
	4.2 Expansion memory support

	5. RAS Functions
	5.1 Overview
	5.2 Self-diagnosis
	5.3 Event history
	5.4 Power interruption detection function
	5.4.1 Hot restart function

	5.5 Execution status monitoring
	5.6 Sampling trace function
	5.7 Status latch function
	5.8 Debug support function
	5.8.1 Force function
	5.8.2 Online program changing function
	5.8.3 DEBUG mode functions

	5.9 System diagnostics
	5.10 Password function

	PART 3 PROGRAMMING INFORMATION
	1. Overview
	1.1 Aims of Part 3
	1.2 User memory configuration

	2. User Program Configuration
	2.1 Overview
	2.2 System information
	2.3 User program
	2.3.1 Main program
	2.3.2 Sub-program
	2.3.3 Interrupt program
	2.3.4 Sub-routines

	2.4 Comments

	3. User Data
	3.1 Overview
	3.2 Registers and devices
	3.3 Register data types
	3.4 Index modification
	3.5 Digit designation

	4. I/O Allocation
	4.1 Overview
	4.2 Methods of I/O allocation
	4.3 Register and module correspondence
	4.4 Network assignment

	5. Programming Language
	5.1 Overview
	5.2 Landder diagram
	5.3 SFC
	5.4 Programming precautions
	5.5 Network support function
	5.5.1 Expand memory card data access through computer link
	5.5.2 TOSLINE-S20LP(loop)support
	5.5.3 Ethernet support

	5.6 Instructions
	5.6.1 Double-word multiplication and division(D*/)
	5.6.2 Essential PID(PID3)
	5.6.3 Floating point essential PID(FPID3)
	5.6.4 Expanded data transfer(XFER)
	5.6.5 Network data send(SEND)
	5.6.6 Network data receive(RECV)

	5.7 List of instructions

