Lesson 11
Interrupt

1. Overview

In this lesson, we introduce the general concepts about interrupts supported by the Cortex-M3 processor. We
will then discuss a specific interrupt example that utilizes an external triggered signal.

2. General Concepts of an Interrupt

One of the methods to read an input from an 1/O port is using the polling technique as you did in lab 1. Polling
is a technique to monitor an 1/O port and to trigger an appropriate action when a change is detected. The general
idea is that the processor periodically reads the 1/O port and determines if there is a change. If there is a change,
the processor will execute the subset of code to deal specifically with this change. Otherwise, the processor will
continue with normal operations.

Another (more efficient?) way to read and input for an I/O port is using an interrupt. Interrupt-based program
allows the processor to continue processing the main task without periodically checking for a change at an 1/0
pin. Interrupt is an exception caused by an explicit request signal from a peripheral or hardware device. An
interrupt cause the automatic transfer of software execution outside of the normal programmed sequence. (e.g.
to provide service to the peripheral). When a peripheral or a hardware device needs service form the processor,
typically:

e Itasserts an interrupt request to the processor,

e The processor completes the current instruction then it suspends the current task and jumps to an

Interrupt Service Routine (ISR) to service the peripheral,
e Then, the processor resumes the previously suspended task.

The Cortex-M3 processor supports vector interrupts. It means that when an interrupt occurs, the program jumps
to a specific memory location indicated by the Nested Vectored Interrupt Controller (NVIC). This controller
provides an efficient way to handle different exceptions. Exceptions numbers 1-15 are system exceptions as
shown in the table below.

Exceptions of number 16 or above are peripheral driven. We will mainly discuss these types of exceptions in
class. Parts of the NVIC are discussed in this lesson.

In order for the processor to recognize an interrupt request form a peripheral, the peripheral and processor must
be initialized and configured properly to enable the interrupt triggering mechanism. In general, the following
conditions must be true for an interrupt to occur:

1: The peripheral is configured properly. This step varies based on the peripheral. We will discuss a
specific example later in this lesson (EINTO).

2: The interrupt enable bit for the peripheral in the Interrupt Set-Enable Registers (ISERnN registers) is
set. By default, all interrupt enable bits are cleared (disabled).

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 MNonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

- MemManage fault Programmable Memory management fault; Memory

Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abaort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or

trying to access coprocessor (the Cortex-M3
does not support a cCoprocessor)

7-10 Reserved NA -

11 SVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA —

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

From The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Joseph Yiu, Elsevier, 3" ed, 2014.

3: The priority level for the peripheral is configured properly in the Interrupt Priority Registers (IPRn
registers). In order for this interrupt to occur, this priority level must be higher than or the same as the
priority level set in BASEPRI register. Note that the lowest number is the highest priority. By default,
the priority level is 0 in BASEPRI register. Also, by default the priority level is zero for all
peripherals. It means that default values for these registers are ok to use in your program without an
modifications.

4: The global interrupt bit is enabled (bit 0 in PRIMASK register = 0). By default bit 0 of PRIMASK is
0 (enabled). In general, you won’t need to modify this register, but if necessary, you can use the
following instructions to enable or disable the global interrupt bit:

You can also use the MRS instructions to enable/disable disable the global interrupt bit. For example,

or

5: The peripheral asserts the interrupt request which sets the interrupt flag.

Once an interrupt request has been asserted by the peripheral and recognized by the processor, the processor
needs to service the peripheral which causes the following conditions:

1: Suspension of the main program
e Current instruction is completed
e Suspend execution and push 8 registers (R0-R3, R12, LR, PC, PCR) on the stack
e LR setto OXFFFFFFF9 which indicates interrupt return
e |PSR set to interrupt number
e PC setto ISR address

2: The ISR is executed
e Process the interrupt request by the peripheral
e Clears the flag that requested the interrupt
e Exit ISR by executing BX LR

3: Resume normal operation
e Pulls 8 registers (R0-R3, R12, LR, PC, PCR) from the stack
e Return to the next instruction in the previously suspended task.

Interrupt Service Routine (ISR) is a subroutine that is executed when an interrupt request occurs. Generally,
each potential source of interrupt would have a specific ISR. In most cases (except for the SysTick interrupt),
the ISR must clear the flag that caused the interrupt. Failing to clear the flag will trigger continuous ISR
execution (endless loop). After the ISR provides the necessary service, it will return to the main program by
executing the BX LR instruction.

In the vector interrupt system, each source (or each peripheral or hardware device) of interrupt has an associated
32-bit vector that points to the address of the first instruction in the ISR that handles the exception. These
vectors are stored at the beginning of the ROM. Table 50 (shown below) in the LPC17xx User Manual
contains the interrupt vector location for different interrupt source/peripheral. Note that the Vector Offset value
is the offset number from the beginning of the memory space (ROM starts at address 0x00000000). When an
interrupt occurs, the processor determines which exception number is activated, then calculates the starting
address of the ISR. The address is then used to update the PC. For example, if an External Interrupt 0 (EINTO)
requests an interrupt, the processor calculates the PC as:

Interrupt Exception Vector

ID
0
1

10
1
12
13

Number

16

17

18

19

20

21

22

23

24

Offset

0x40

Ox44

Ox48

Ox4C

0x50

Ox54

0x58

0xsC

0x60

Ox64

0x68
OxeC
0x70
0x74

Function

WDOT
Timer 0

Timer 1

Timer 2

Timer 3

UARTO

UART1

UART 2

UART 3

PWM1

12C0
12C1
12C2
SPI

Flag(s)

Watchdog Interrupt (WDINT)

Match 0 - 1 (MRO, MR1)

Capture 0 - 1 (CRO, CR1)

Match 0 - 2 (MRO, MR1, MR2)

Capture 0 - 1 (CRO, CR1)

Match 0-3

Capture 0-1

Match 0-3

Capture 0-1

Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)
Rx Data Available (RDA)

Character Time-out Indicator (CTI)

End of Auto-Baud (ABEO)

Auto-Baud Time-Out (ABTO)

Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)
Rx Data Available (RDA)

Character Time-out Indicator (CTI)
Modem Control Change

End of Auto-Baud (ABEQ)

Auto-Baud Time-Out (ABTO)

Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)
Rx Data Available (RDA)

Character Time-out Indicator (CTI)

End of Auto-Baud (ABEO)

Auto-Baud Time-Out (ABTO)

Rx Line Status (RLS)

Transmit Holding Register Empty (THRE)
Rx Data Available (RDA)

Character Time-out Indicator (CTI)

End of Auto-Baud (ABEO)

Auto-Baud Time-Out (ABTO)

Match O - & of PWM1
Capture 0-1 of PWM1

Sl (state change)
Sl (state change)
Sl (state change)

SPI Interrupt Flag (SPIF)
Mode Fault (MODF)

From Table 50 in the LPC17xx User manual, NXP Semiconductors, 2010.

4

14

15

16
17

18
19
20
21

23
24
25
26
27
28

29

30

31

32
33

30

31

32
33

34
35
36
37

38
39
40
41
42
43

45

46
47

48
49
50

0x78

0x7C

Oxa0
Ox84

0x88
Oxa8C
0xS0
0x94

0x38
0x9C
OxAD
OxA4
OxAB
OxAC
0xBO

0xB4

0xB8

0xBC

0xCO
0xC4
0xCa

SSPO0

SSP 1

PLLO (Main PLL)
RTC

External Interrupt
External Interrupt
External Interrupt
External Interrupt

ADC
BOD
USB
CAN
GPDMA
125
Ethernet

Repetitive Interrupt
Timer

Motor Control PVWM
Cluadrature Encoder

PLL1 (USE PLL)
USE Activity Interrupt
CAN Activity Intemupt

Tx FIFO half empty of SSP0

Rx FIFO half full of SSP0

Rx Timeout of SSP0

Rx Ovemun of SSP0

Tx FIFO half empty

Rx FIFO half full

Rx Timeout

Rx Ovemrun

PLLO Lock (PLOCKO)

Counter Increment (RTCCIF)

Alarm (RTCALF)

Extemnal Interrupt 0 (EINTO)

Extemnal Interrupt 1 (EINT1)

External Interrupt 2 (EINT2)

Extemnal Interrupt 3 (EINT3).

Note: EINT3 channel is shared with GPIO interrupts
AD Converter end of conversion

Brown Out detect

USB INT_REQ LP USB_INT REQ HP, USB_INT_REQ DMA
CAN Common, CAN 0 Tx, CAN 0 Rx, CAN 1 Tx, CAN 1 Rx
IntStatus of DMA channel 0, IntStatus of DMA channel 1
irg, dmareq1, dmareg2

Wakeuplnt, Softint, TxDonelnt, TxFinishedint, TxErmorint,
TxUnderrunint, RxDonelnt, RxFinishedint, RxErmorint,
RxOwverrunint.

RITINT

IPER[2:0], IPW[2:0], ICAP[2:0], FES

INX_Int, TIM_Int, VELC_Int, DIR_Int, ERR_Int, ENCLK_Int,
POSO0_Int, POS1_Int, POS2_Int, REV_Int, POSOREV_Int,
POS1REV_Int, POS2REV_Int

PLL1 Lock (PLOCK1)
USB_NEED_CLK
CANTWAKE, CAN2WAKE

Note that the ISR can reside anywhere in the code memory (ROM), so how do we manage the memory space so
that the processor can point to the right address for the correct ISR? From a programming perspective, we can
write the ISR as regular subroutine but with specific names. These predefined ISR names are provided in the
startupLPC17xx.s file provided with the Keil uvision software. A screenshot of the startupLPC17xx.s showing
some of the predefined ISR names is shown in the figure below. For example, if we want to create an ISR for
EITNO, then the name for the ISR should be EINTO_IRQHandler. The compiler will place the memory address

From Table 50 in the LPC17xx User manual, NXP Semiconductors, 2010.

of this ISR in the appropriate offset in the vector table (0x88 in this case).

startup_LPC170us

53
4 s Vector Table Mapped to Address 0 at Reset
S
56 LREL RESET, DATER, REARDCNLY
57 EXPORT _ Vectors
a8
589 Vectors DCD __initial sp ; Top of Stack
60 DCD Reset Handler ; Reset Handler
61 DCD HMI Handler ; HMI Handler
62 DCD HardFault Handler ; Hard Fault Handler
63 DCD MemManage Handler ; MPU Fault Handler
64 DD BusFault Handler ; Bus Fault Handler
685 Dch UsageFault Handler s U=zage Fault Handler
L1 Dch o s Reserved
L DD 4] ; Reserve
68 DCD 4] ; Reserve
69 DD 4] ; Reserved
T0 DCD SVC_Handler ; 5VCall Handler
Tl DCD DebugMon Handler ; Debug Monitor Handler
T2 DCD o] ; Reserved
73 DCD Pend3V_Handler ;s PendSV Handler
T4 DCD SysTick Handler ;s SysTick Handler
75
Ta s External Interrupts
T7 Dch WDT IRQHandler 1 Watchdog Timer
T8 DD TIMERO IRQHandler ;s 17: TimeroQ
79 DCD TIMER1 IRQHandler ;s 18: Timerl
B0 DD TIMERZ IRQHandler ; 19: Timer?2
81 DCD TIMERS IRQHandler ; 20: Timer3
g2 DCD URRTO_IRQHandler ; 21: TARTO
83 DCD UART1 TREQHandler s 22: TART1
84 DCD UARTZ TREQHandler s 23: TARTZ
85 DCD URRT3_IRQHandler s 24: TART3
g6 DCD PWM1 IRQHandler ; 25: PWM1
87 DCD I2C0 IRQHandler ; 26: I2C0
88 DCD I2C1 IRQHandler » 27: I2C1
89 DCD I2C2 IRQHandler ; 28: TI2C2
a0 DCD S5PI_TRQHandler ; 29: 5PI
o1 DCD 55P0_IRQHandler ; 30: 33P0
az DCD 55P1_IRQHandler ; 31: 55P1
a3 DCD PLLO IRQHandler ; 32: PLLO Lock (Main PLL)
o4 DCD RTC IRQHandler s 33: Beal Time Clock
) DCD EINTO IRQHandler ; 34: External Interrupt 0
1 DCD EINT1 TRQHandler ; 35: Externmal Interrupt 1
L) DCD EINTZ2 TRQHandler s 36: Extermal Interrupt 2
o8 DCD EINT3_TIEQHandler s 37: Extermal Interrupt 3
99 DD ADC IRQHandler s 38: L/D Converter
100 Dch BOD IRQHandler s 39: Brown-Cut Detect
3. Example of an Interrupt — EINTO (External Interrupt)

Let’s look at an example of an interrupt. The peripheral that we will use in this example is the External Interrupt
0 (EINTO).

Step 1: Setup the peripheral (EINTO)

Since this peripheral shares the same pin with other functions (e.g. GP1O P2.10), we will first need to set it up
to function as an External Interrupt O Pin. This is done by

6

Next, we will need to set the pin to detect rising edge changes (for this example) at the pin. These edges will
cause interrupts. This can be achieved by

Step 2: Enable EINTO Interrupt

By default, all external interrupts are disabled. So, we need to enable specific interrupt so that the processor can
service the peripheral when requested. We can enable EINTO interrupt by

Step 3: Set the Priority Level for EINTO (optional)

By default, all interrupts are set at level 0 which is the highest priority. This default priority is good to use in
programs, so you don’t have to do anything. However, if you want to set the priority of EINTO to another level,
you will need to

Step 4: Enable the Global Interrupt Bit (optional)

By default, the processor is configured to recognize any interrupts that are enabled (e.g. in step 2). It means that
you don’t have to do anything to enable this bit. This is indicated by bit 0 of the PRIMASK register. If this bit =
0, all interrupts can be activated if enabled in step 2. If this bit is 1, all exceptions (except NMI) are disabled.

Recall that you can use the following instructions to enable or disable the global interrupt bit:

Step 5: Develop an Interrupt Service Routine (ISR) for EINTO

In order for the processor to jump to right code for EINTO interrupt, the ISR must be named as:

7

The first task the ISR should perform is to save the contents of all the registers (r4-r12) that will be used in this
subroutine. For example, if your subroutine uses r4 and r5 as temporary storage, you should save these registers

by

The next step is to process the interrupt request. This is an application dependent step. For example, we can
write an application to keep a count of the number the INTO pushbutton is pressed.

The next step is very important: clearing the interrupt flag. If your ISR returns without clearing the interrupt
flag, the interrupt will endlessly occur (infinite loop). For EINTO, we can clear the interrupt flag by

Before returning to the main program, your subroutine should restore all the temporary registers (r4-r12) that
are used in the ISR. For example, if registers r4 and r5 are pushed on the stack at the beginning of the ISR, these
registers should be popped as:

The last instruction of the should be

Exercise: Write code to setup EINTO interrupt. Keep a count of the number of interrupt occurrences.

Notes about debugging with interrupts:
e Cannot use single step
e Use breakpoints and run option instead

4. References

[1]. Joseph Yiu, The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, Elsevier, 3" ed, 2014.
[2]. Jonathan Valvano, Introduction to ARM Cortex-M Microcontroller, 4" ed, 2013.

[3]. ARMv7-M Architecture Reference Manual, ARM Limited, 2010.

[4]. LPC17xx User manual, NXP Semiconductors, 2010.

[5]. Cortex-M3 Technical Reference Manual, ARM Limited, 2010.

#tinclude "LPC17xx.h" // Device header
#include "LED.h"

void _ asm EINTO_IRQHandler(void);
void __asm EINTO_Init(void);

// Reserve a 32-bit word at address9x10000000

K o e e e
Main: Initialize
K e e e e e e e e e e e —————— ———— */
int main (void) {
count = 0;
LED_Init(); /* Initialize LEDs */
EINTO _Init (); /* Initialize EINTO interrupt */
// endless loop -- do nothing, wait for interrupt
}
void __asm EINTO_Init(void)
{
[/ === Step 1 ---------cmmmm e e e e

//Setup pin to be EINTO in PINSEL4 register
// RO= OR mask to set bit 20, other bits unchanged
// RO= AND mask to clear bit 21, other bits unchanged
// R2= Address of PINSEL register

// set bit 20
// clear bit 21
// write back to PINSEL4 register

//Setup Mode to be edge in EXTMODE register
// R2= Address of EXTMODE register

// force bit @ = 1 for edge
// write back to EXTMODE register

//Setup Polarity to be rising edge in EXTPOLAR register
// R2= Address of EXTPOLAR register

// force bit @ = 1 for rising edge
// write back to EXTPOLAR register

/] ------ Step 2: Enable interrupt for peripheral (EINTO) in ISERO reigster
// RO= OR mask to set bit 18, other bits unchanged
// R2= Address of ISERO register
// force bit 18 = 1 to enable interrupt for EINTO
// write back to ISERO register

/] ----- Step 3: Setup priority for peripheral (EINTO) -- default ok
/] ----- Step 4: Enable global interrupt bit -- default ok
// return
}
/] ----- Step 5: ISR for EINT@---------------omm oo -

void __asm EINTO_IRQHandler(void){
// Save registers (r4-rl2) if used in ISR

// Processing: increment a count in count
// RO= address of count in data RAM

// increment count
// Clear EINTO interrupt flag in EXTINT register

// RO= address of EXTINT register

// clear EINTO flag by writing 1 to bit ©
// Pull registers (r4-rl12) if used in ISR

// Return from ISR

10

