
Integrating Logical Functions

with ILF

Bernd I� Dahn

J�urgen Gehne

Thomas Honigmann

Lutz Walther

Andreas Wolf

Institut f�ur Reine Mathematik der

Humboldt�Universit�at zu Berlin

Ziegelstra�e ��a

����� Berlin

Germany

March �� ���	



Abstract

This is a description of the system ILF developed at the Humboldt�University at
Berlin�� ILF is a system that integrates automated theorem provers� proof tactics
for interactive deductive systems and models within a graphical user interface� The
structure and commands of ILF are presented��

A special part is devoted to the TreeViewer � a part of ILF used for visualising
directed acyclic graphs� which can be used as a separate programme�

We describe the possibilities to extend ILF by integrating more interactive and
automated deductive systems�

The last part describes the ProofPad � a sample con�guration for editing proofs in
the �eld of lattice ordered groups�

�This work was supported by the Deutsche Forschungsgemeinschaft within the project
�Deduktion und verbandsgeordnete Gruppen�

�for further information contact e�mail� gehne�mathematik�hu�berlin�de



Contents

� What is ILF� �

� Installation and Con�guration �

� The User Interface �

��� The Command Line Interface � � � � � � � � � � � � � � � � � � � � � �

��� The GUI Windows� Menus and Commands � � � � � � � � � � � � � � ��

� The TreeViewer ��

� Theories ��

	 Proof Tactics ��


 Background Experts ��

� Deductive Systems �	

	�� Interactive Deductive Systems � � � � � � � � � � � � � � � � � � � � �


	���� FLEX � SLD Resolution � � � � � � � � � � � � � � � � � � � � �


	���� ME � Model Elimination � � � � � � � � � � � � � � � � � � � � ��

	���� MPRT � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

	���� pNAT � PROLOG Based Natural Reasoning � � � � � � � � � ��

	���
 pTAB � PROLOG Based Tableau Calculus � � � � � � � � � � ��

	���
 iTAB � Tableau Calculus based on the ILFA Library � � � � ��

	�� Automated Deductive Systems � � � � � � � � � � � � � � � � � � � � ��

	���� DISCOUNT � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� SETHEO � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	���� OTTER � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	���� An AC Rewrite System for Lattices and Groups � � � � � � � ��

	���
 Algebra � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

�



	���
 TwoLat � the Two Element Lattice � � � � � � � � � � � � � � �	

	���� ThreeLat � a Three Element Lattice Model � � � � � � � � � � ��

� Extending ILF ��

��� Integration of Interactive Systems � � � � � � � � � � � � � � � � � � � ��

��� Integration of Automated Theorem Provers � � � � � � � � � � � � � � ��

��� Adding Menus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� A Sample Con�guration� The ProofPad ��

�



Chapter �

What is ILF�

Research in the �eld of theorem proving in many groups in several countries has
created a lot of sophisticated tools e�g�

� automated theorem provers for various logical calculi�

� rewrite systems�

� proof tactics�

� model �nders and

� domain speci�c methods�

ILF is a tool that can be con�gured in many ways to Integrate all these Logical
Functions� The common feature of these tools that is used for this integration is
that they all can be used to modify a knowledge base�

ILF is applied on two di�erent levels� For the knowledge engineer it yields methods
of testing the power of tools to support logically correct arguments in a speci�c
�eld� Several ways to combine these tools in proof tactics can be tested rapidly�
When a collection of useful proof tactics has been obtained� it can be encapsulated
as a set of �rules of inference� in a new interactive or automated deductive system�
It is also possible to extend an existing system in this way� This new� more powerful
system can be tailored to meet exactly the needs of an end user� making available
just those procedures that his kind of problems demand�

The user of ILF is not restricted to a particular logic� He can use any of the systems
that have been integrated at any time� He might start proving a theorem within
one calculus� On the way he can decide to prove a speci�c formula by a specialized
system� E�g� he may apply a rewrite system in order to prove an equation and apply
this equation to construct a natural deduction proof�

The user can take advantage of the programming language PROLOG to write proof
tactics for interactive deductive systems� These tactics can change the state of a
proof by applying rules of inference in an automated way� PROLOG is augmented
by special constructs � socalled tacticals� loop constructs and global variables � in

�



order to help the user writing his own control programme for a theorem prover� His
proof tactics can ask advanced automated theorem provers running in the back�
ground for support� Di�erent alternatives for a proof can be tried automatically
using the backtracking capabilities of PROLOG� All the debugging tools of PRO�
LOG like tracing and spy points are available to develop and test proof tactics�

Perhaps the most challenging feature of ILF is its modularity� The power of ILF
can be easily extended by integrating further systems and developing libraries of
domain speci�c proof tactics� In fact� for an experienced PROLOG programmer�
it is a matter of a few days to integrate a new system that has been developed
somewhere else independently�

The continuously growing power of ILF requires a simple tool for control� This is
provided by a graphical user interface� The functionality of this interface can be
changed and modi�ed by the user at run time� allowing also automatic modi�cation
by the user�s proof tactics�

A common problem is to prevent the user from getting lost in complex hierarchies
of objects� e�g� in a proof� a complex term or a hierarchy of theories� Therefore�
ILF contains a TreeViewer that can be used to visualize these hierarchies as marked
directed acylic graphs� Though this TreeViewer was developed as a part of ILF� it
is in fact a separate programme with a simple interface to be used in combination
with other programmes�

The development of ILF at the Humboldt�University started around ��	� as an in�
teractive theorem prover with a language for proof tactics� In ��	� experiments with
the combination of several deductive systems began� In ���� OTTER from Argonne
National Laboratories became the �rst automated theorem prover to be integrated
into ILF� ��������� the development of ILF was supported by the Volkswagen�
Stiftung within a joint project �Leistungsf�ahigkeit von Beweisstrategien� with the
group of H� Kleine B�uning from Duisburg University� IBM Germany made ILFA
available � a toolkit for developing deductive systems in C� Using this system� inter�
active provers for the modi�ed problem reduction and for the tableau calculus were
built for ILF� Since ���� a project �Deduktion und verbandsgeordnete Gruppen�
supported by the Deutsche Forschungsgemeinschaft has provided the framework
and goals for the development of the system� This project is part of the DFG�
Schwerpunkt �Deduktion�� Cooperation within the Schwerpunkt made the provers
DISCOUNT �University of Kaiserslautern� and SETHEO �Technical UniversityMu�
nich� available to ILF� We are greatly indebted to the authors of these systems for
their assistance in integrating these provers into ILF�

Also the development of the TreeViewer has been stimulated very much by discus�
sions at workshops on proof tactics within the Schwerpunkt�

Subsequently� the structure and the commands of ILF� as they were implemented
in February ����� are described�

A sample con�guration � the ProofPad � is explained� This �deductive system� is
set up to assist a user without special knowledge in automated theorem proving
in editing elementary proofs in the �eld of lattice ordered groups� making the best
possible use of the power of automated theorem provers�

�



For the sake of extending the power of ILF� the interfaces needed for integrating
other deductive systems are discussed�

We do not presume that the reader has experience with ILF� but some knowledge
on PROLOG� on the deductive systems and on the logical calculi used by ILF will
be helpful� The corresponding references are either generally available or can be
easily obtained� Therefore� we shall only sketch these aspects�






Chapter �

Installation and Con�guration

ILF is available from the ILF group as a compressed tar��le ilf�tar�Z� By uncom�
pressing and x�taring ilf�tar�Z� the directory ilf and further subdirectories �e�g�
the bin � man and tmp directories� will be created�

ILF is based on PROLOG�� from Expert Systems Ltd� so PROLOG�� must
be available� It is recommended to install also the automated provers SETHEO
�LSBB��� and DISCOUNT �DP��� and use them as described in Section 	���� and
	�����

By convention all executables in ILF except for ilf have the extension �exe in order
to prevent PROLOG�� from automatically adding the extension �pro�

The following environment variables must be set�

environment variables

ILFHOME the home directory of ILF� usually the directory
built by x�taring the ilf�tar �le

USERILFHOME the personal ILF directory owned by the user� in
which ILF will store temporary �les and con�gu�
rations and modi�cations for a particular user

PROLOGHOME the home directory of PROLOG��

TVIEWHOME the home directory of the treeviewer

The executable �les are in �ILFHOME�bin and the manpages are in �ILFHOME�man�
�ILFHOME�bin and �ILFHOME�man should be included in the user�s PATH and
MANPATH variable� respectively�

The entries of the manpages normally start with ilf and are located in the
l�section of the manpages� The complete list of ILF�manpages can be found in
the ilf man manpages�

Since temporary �les will be created during an ILF session� a user should have a
personal ILF�directory �USERILFHOME di�erent from the ILF directory �ILFHOME

in order to avoid con�icts with �lenames� The current version requires a special






structure of the �USERILFHOME directory� which can be created by running ilf with
the �ini option�

ILF is envoked by ilf �option �option � � ���� where the currently available op�
tions are the following�

ILF command line options

�h show the possible options

�hosts create a new list of actual hosts

�ilfhome IH take IH as ILFHOME

�ilfrc IRC take IRC as �ilfrc �le

�ini create the USERILFHOME directory using the envi�
ronment variable �USERILFHOME and all necessary
subdirectories

�prologhome PH take PH as PROLOGHOME

�t test the environment� don�t start ILF

�userilfhome UIH take UIH as USERILFHOME

�x run ILF in an X�Window system

�x do not run ILF in an X�Window system

�xilf take the executable XILF instead of Xilf� the de�
fault executable

For the actual list of options see the ilf ilf manpages or the README �le� Further
options �e�g� X�toolkit options� will be passed to Xilf�

ILF will �rst read the �le �ilfrc in �USERILFHOME� If this �le does not exist� ILF
will take the generic �ilfrc in �ILFHOME�

The entries of the �ilfrc �le are divided into groups� each group GROUP is enclosed
in the keywords GROUP and END GROUP� There are at least the groups ILFSTATE�
EXPERT� DEDSYS and SIGNATURE with the following syntax�

ILF STATE

key� value�
key� value�
� � �

keyn valuen
END ILF STATE

EXPERT

expert� �file��

expert� �file��

� � �

expertn �filen�

END EXPERT

�



DED SYS

ded sys� �file��

ded sys� �file��

� � �

ded sysn �filen�

END DED SYS

SIGNATURE

op� ass� prec�
op� ass� prec�
� � �

opn assn precn
END SIGNATURE

TEX OP

op� ass� prec� texstring�
op� ass� prec� texstring�
� � �

opn assn precn texstringn
END TEX OP

The entries of the groups will be stored as PROLOG predicates�

� the ILF STATE entries as ilf state�keyi�valuei	�

� the EXPERT entries as expert file�experti�filei	�

� the DED SYS entries as dedsys file�dedsysi�filei	�

� the TEX OP entries as tex op�opi�assi�preci�texstringi	�

If no �le is given� none is taken as the �le� These �les are consulted when the
corresponding experts and deduction systems� respectively� are called� The entries
in the TEX OP group de�ne the LaTEX representation of these operators�

KILL

prog�
prog�
� � �

progn
END KILL

forces ILF to kill all processes� where grep �nds the pattern prog��� � � �progn in the
output lines of ps �auxww after it has �nished�

For distributed computation� the list of possibly available hosts is to be held in the
�le �ilfhosts in the USERILFHOME or in the ILFHOME directory� It is assumed that

	



the ILFHOME and USERILFHOME directories are mounted at these hosts and that the
user can login without password checking �i�e� the hosts should be in the users
�rhosts �le�� ILF checks which of these hosts are alive and stores the names of
these hosts for further use in the �le USERILFHOME�tmp�ilfhosts�pro� As long as
this �le exists� ILF assumes it to be up to date� so further invocation of ILF will skip
the check� In order to update the list of actually available hosts� the user should
simply remove the �le USERILFHOME�tmp�ilfhosts�pro or just start ILF with the
�hosts option� It is not recommended to change any �le in USERILFHOME�tmp

during an ILF�session�

ILF will start two processes running PROLOG��� one in the foreground to react to
the user�s command and one in the background to control the work of automated
systems running as separate processes� Depending on the automated systems used�
more processes may be created� All �les automatically created by ILF at runtime are
located in the directory �USERILFHOME�tmp� Files speci�c for a particular deductive
system SYSTEM are kept in �USERILFHOME�dedsys�SYSTEM� Theories and tactics are
contained in �USERILFHOME�th and �USERILFHOME�tac� They have the extensions
�th and �tac� respectively�

The behaviour of ILF depends very much on the setting of ilf states� which
are explained at appropriate positions in this paper� Any ilf state used during
a session must be initialized in the �le �ilfrc described above� Then it can
be retrieved by the command ilf state�key�Value	 and set by the command
ilf state�key�OldValue�NewValue	�

The declaration of operators in the SIGNATURE section of the �ilfrc �le follows the
conventions of PROLOG��� Note that changing these settings may change the way
ILF parses theories and tactics� When states of background systems that have been
saved before using the appropriate commands are reloaded� ILF checks whether the
relevant operator declarations have been changed and displays a warning message
if a change has been detected�

�



Chapter �

The User Interface

Unlike other deductive systems ILF is normally used with a graphical user interface�
The main reason for this is that the integration of many systems confronts the user
with a lot of di�erent commands that can be applied� The graphical user interface
is an e�cient help for the user in order to �nd out which commands are available
in a speci�c situation� Since these commands � when selected from a menu � are
printed in the command line� the graphical user interface can assist in learning the
commands necessary to write a proof tactic� Nevertheless� there is also a command
line interface available� Both interfaces are described below�

��� The Command Line Interface

The command line interface of ILF is essentially the top level interpreter of the
underlying PROLOG system� Thus any PROLOG�� command can be run from the
command line interface�

The graphical user interface is just a shell on top of the command line interface� any
command given to the graphical user interface will be delivered to the command
line interface� However� it is also possible to work only with the command line
interface� In order to do this� the ilf state x must be set to off � either by including
an appropriate statement in the �ilfrc �le or by starting ILF with the command
line option �x�

Another ilf state the user may want to set is exptty� If this ilf state is set to file�
the whole output from the background expert communicator is then sent to file�
The default value for exptty is �dev�tty� i� e� the terminal the user is working on�
Since the background experts work asynchronously� the default behaviour may be
confusing when working with the command line interface� The TreeViewer described
in Section � is an X���based application that is not available from the command
line interface�

There are very few facilities that are only available at the command line interface
due to the way Motif handles the user input� First of all� there is no way to
interrupt a running prolog programme from the graphical user interface� From the
command line interface this can be done by typing the terminal�s INTR character

��



�normally CTRL�C�� From the command line interface the EOF character �CTRL�D if
not speci�ed otherwise� can be used to signal the end of a �le �or a break for that
matter�� When using the graphical user interface end of file has to be typed or
the corresponding menu itemmust be chosen� When tracing through a programme�
going to the next step on the command line interface is performed by typing RETURN�
where the graphical user interface requires SPACE and RETURN�

Subsequently we describe the most important command line interface commands�
which are not speci�c for particular deductive systems� They are given in the full
predicate notation predicate�arity�

load�
 loads theories from the th�subdirectory of �USERILFHOME and tactics from
the tac�subdirectory�Whether to load a theory or a tactic is decided by the exten�
sion ��th vs� �tac� of the given �lename�

load th�
 and load tac�
 load a theory or a tactic located elsewhere if called with
an absolute path as argument�

load th�� and load tac�� display a list of all theories�tactics available in the user�s
th�tac�subdirectories and prompt the user with Choice� to enter a number�

After loading a theory� load th�� and load th�
 allow the user to enter additional
axioms� A number prompts for the axiom in a form described in Section 
� Name
prompts for the name of the axiom� An end� typed to the number prompt stops
the input�

forget th�� clears the knowledge base� axioms�� displays all axioms�

The commands
Head to Body by Tactic

Name reduces Head to Body by Tactic

are central to ILF� Tactic is executed to prove that Body implies Head� The call
succeeds if Tactic succeeds and proves an instantiation of Body� Head� In general
Head and Body may contain variables for subformulas that are instantiated during
the proof if this is supported by the particular deductive system�

reduces asserts the proved instantiation under the name Name into the knowledge
base�

The most simple case of a tactic is to call a deductive system by its name as a ��ary
predicate� This means that the user will interactively construct a proof by means
of the speci�ed deductive system�

Sometimes the lack of the occur check in PROLOG can cause problems when uni�
fying formulas or names of axioms� These problems can often be overcome by using
the command occur��� which switches the occur check for some operations on or
o�� The actual status of this �ag is contained in the ilf state occur�

The halt���command leaves the PROLOG system and therefore the command line
interface of ILF� too�

��



��� The GUI Windows� Menus and Commands

The ILF System can be used within a graphical interface that is based on the
X��R
 and OSF�Motif ��� libraries� Using the graphical user interface� the system
consists of the following windows� Some of these windows can be omitted by setting
appropriate ilf states described below� Notably� the graphical user interface can be
switched o� by setting the ilf state x to off�

� The main window controlling the PROLOG�� system running in the fore�
ground� It has pulldown menus� an area for the stdout stream of PROLOG
and a line for editing�

� The ExpertManager window� which displays messages from the PROLOG
system running in the background and from the automated systems called by
that PROLOG� The window is an ordinary xterm� The ExpertManager and
its window can be closed by typing ex stop� in the main window� The man�
ager can be restarted �a new PROLOG process will be created� by ex start�

� The expert log window� which is used to display some information for
debugging� This window is only displayed if the ilf state debug is set to on

in the �ilfrc �le� While ILF is running� this ilf state switches the displaying
of messages for debugging on or o�� If the window is not present� and the
state is set on� the debug messages are written into the �le exlog�l in the
tmp directory�

� The two windows of the TreeViewer that are described in Section ��

In the graphical user interface� too� all commands can be given to the system by
typing them on the command line of the main window� but it is easier to use
the menus� There is a standard set of commands given in the menu bar and the
pull down menus there� Which menu items are displayed depends on the ilf state
menu level� The level � will give only the basic menu items� and a higher level will
give more menu points� At present � is the maximum menu level in use� Menus
with a variable number of items contain an item refresh� which can be used to
adapt the menu to a new menu level� It is also possible to introduce new menus
�see Section ���

If a command is selected from a pulldown menu� its command line form is shown
in the main window� Some commands must be completed by the user by inserting
certain parameters� In these cases the displayed format of the commands indicates
the types of the parameters required�

After the ILF system has been started� it usually has four menus� the COMMAND

menu� the THEORY menu� the DED�SYS menu� and the expert menu� The COMMAND
menu has some items that can be used in several systems to edit a proof� These
commands are explained in Section 
� Moreover� there are the following general
commands�

��



COMMAND menu

occur�check n� switches the occur�check for some uni�cations in the
foreground PROLOG on or o�

load tactic c opens a �le select box of the user�s tactics

halt n leaves the ILF system and kills all subprogrammes

The THEORYmenu permits access to commands to inspect and manipulate the hier�
archy of theories in use� These commands are discussed in Section 
�

The interactive deductive systems� which will be decribed in Section 	��� can be
called from the menu DED�SYS�

�n� nocon�rm� c� con�rm� s� submenu

��



Chapter �

The TreeViewer

The TreeViewer is a graphical and alphanumerical interface for the visualisa�
tion of directed acyclic graphs� It is a separate programme that can be inte�
grated into other programmes� The TreeViewer can be obtained via ftp from
info�mathematik�hu�berlin�de ��������
��	� not yet connected to a name ser�
vice� in the compressed tar��le �ftp�ilf�tview�tar�Z�

It is based on the OSF�Motif library and should therefore work on any X�Window�
system on SUN SPARCStation and compatibles� In ILF the TreeViewer is used if
the ilf state treeviewer is set to on in the �le �ilfrc�

The graphs to be displayed are given by handles for the nodes� especially a desig�
nated root handle� and edges� Each handle for a node can be optionally associated
with a shape and an info displayed within the graph and a contents string� which
can be displayed in a separate window�

Having been invoked by the user� the TreeViewer o�ers two windows� one for the
graphic display of the graph and one for alphanumeric output and editing�

In the graphic window� by default graphs are displayed unfolded as trees showing
nodes occurring more than once in several places� Such nodes are marked by a
bold line in the drawn rectangle� The user can gather these nodes by commands
chosen from the pulldown menus of the graphic window� Of course� they can also
be separated again by an appropriate command� According to the shape associated
with a handle� the node is displayed as one of �� bitmaps� These bitmaps are
contained in the �le tvshapes� which can be edited by the user with a bitmap
editor� e�g� bitmap�

It is possible to hide parts of the graph and to redraw hidden parts�

There are several possibilities to display alphanumerical information about the
nodes� First of all� there is an info shown on the right�hand side of the nodal
rectangle� It is set automatically� but can be modi�ed by the user �see commands��
A further way is to click on a node in the graphic window using the left mouse
button� This method will show the handle of the node in the bottom line of the
graphic window�

In the alphanumeric window� textual information is displayed in the form in�

fo�string� spaces handle or contents if set� respectively� The number of spaces

��



depends on the depth of the node in the graph� thus indicating the structure of the
graph in the alphanumeric window� too� The information about a node is trans�
ferred to the list in this window by clicking on the node in the graphic window with
the middle mouse button� Clicking again will remove the information from the list�
If information on the node is displayed in the alphanumeric window� the rectangle
visualising this node has a shadow�

Another way to get a line into the above mentioned list is to use the tv text

command �see commands�� In this case the string 
user
 is shown instead of the
info�string and the number of spaces is constant� Handle or contents� respectively�
can be edited for further use in the bottom line of the alphanumeric window� They
are displayed in the bottom line after selection with the left mouse button�

The communication of the TreeViewer with the programme having invoked it is
realized by the use of two named pipes� one for the input� one for the output� These
pipes can be created by the client programme before invoking the TreeViewer or
initiated by the TreeViewer if it is called with the c option� In this case they are
removed automatically when the TreeViewer is closed�

The TreeViewer is called by

tview ��l� ��c� inputpipename outputpipename � � �

The option �l makes the programme write a log�le into the working directory�
which contains all commands received through the inputpipe and errors generated
by these commands if occurring�

The option �c causes the programme to generate communication pipes and remove
them when being closed� Inputpipename and outputpipename are the names of
the pipes for communication with the client programme� At the end of the option
list further options as generally known from graphical interfaces like �geometry or
�iconic can be added�

The client programme communicates with the TreeViewer using the following com�
mands� All these commands are given to the TreeViewer through the inputpipe�

TreeViewer commands for building the graph

root�Root	 creates a new root�node with the handle Root re�
moving an existing graph if nesseccary

new edge�Father�Son	 creates a new edge in an existing graph if Father
is known� the edge doesnt yet exist and Son is not
already located on the direct way from Father to
Root �i� e� the graph must be acyclic�

del edge�Father�Son	 deletes an edge of the graph if it exists and Son is
a leaf �i� e� has no sons�

set shape�Handle�Shape	 sets a shape for the node Handle� the number of
which must be in the range from � to �

set info�Handle�Info	 sets the info for the node Handle

�




set contents�Handle�Cont	 sets the contents Cont for the node Handle

Handle� Contents and Info are treated as strings� in case they contain a comma
�which is used as separator between the arguments of commands� they must be
enclosed in double quotes� Quotes are taken as a part of the string if they are
preceeded by a backslash�

The communication of the TreeViewer with the client programme can be performed
by the following commands� All messages from the TreeViewer are �nished with a
full�stop�

TreeViewer commands for communication

ok�message	 will cause the treeviewer to respond with message�
using the outputpipe

quit closes the TreeViewer

get handle has the TreeViewer write the next node handle and
contents� respectively� selected by the user to the
outputpipe� The node has to be selected in the
graphic window with the right mouse button� This
is signalled to the user by the form of the mouse�
cursor appearing as a hand�

get text initiates an answer containing facts in the form
of a list of PROLOG terms � each item being
on a separate line � surrounded by the keywords
tv list� and end�� The user may select a string
in the editable line of the alphanumeric window
end has to press the Return key� Then the follow�
ing information is passed to the client programme�
handle of the node corresponding to the selected
line in the text� position of the �rst character of
the selected substring �the �rst symbol has the po�
sition ��� length of the selected substring and the
string in the editable line surrounded by quotes
and followed by a full�stop� If there is not any part
of the string selected� the value of position is set
to �� and the length to ��

get info works as if both get handle and get text have
been called� but only one answer is allowed� The
user decides how to give the answer�

tv text�message	 generates a line containing 
user� message
 in
the alphanumeric window

update refreshes the contents of both the graphic and the
alphanumeric window after having changed things
by commands using the inputpipe

�




�� ��� �� is a comment to be ignored

call allows the client programme to call functions usu�
ally invoked from the menus by using the inputpipe

TreeViewer menu in the graphics window

Hide to remove nodes from the drawing� sons possible
being displayed as sons of the father node

Above hides all nodes above the selected one �excepting
the root�node�

This hides the selected node �root�node cannot be hid�
den�

Below hides all nodes below the selected one

Below but Leafs hides all nodes below the selected one except for
the leaves �the nodes without sons�

Draw displays nodes that have been hidden

Above displays hidden nodes above the selected one

Below displays hidden nodes below the selected one

Gather displays nodes occurring several times in the un�
folded graph only once

This contracts only the selected node

All contracts the selected node and all nodes having
more than one instance below it

Separate unfolds the graph after having used gather

This displays the selected node as often as it occurs as
a son

All displays the selected node and all nodes below it
as often as they occur as sons

List transfers textual information to the alphanumeric
window

This transfers information on the selected node �like us�
ing the middle mouse button�

All transfers information on the selected node and all
nodes below it

TreeViewer menu in the alphanumeric window

Discard Using this menu abandons the list in the alphanu�
meric window�

Action erases the list

Abandon cancels the action and leaves the list intact

��



Instead of using the menu buttons� the client programme can send the command
call�ButtonFunction�Handle	

through the inputpipe� The �rst argument ButtonFunction is a concatenation of
the labels of the buttons that would have to be clicked with the mouse if they
were used instead �e�g� the ButtonFunction for Hide�Above is HideAbove�� The
use of capitals is irrelevant so that e�g� hideAbove may also be used instead of
HideAbove� The second argument Handle is the handle string� The argument must
exist� if no handle is needed� it is not used� The di�erence of e�ects achieved by
using the mouse and the buttons and the command call� respectively� is caused by
the impossibility of distinguishing between several instances of one node without
the mousepointer� That�s why the command Hide�This for example can hide one
instance of a node only if the mouse is used� in case the command call is used�
all instances of the node are hidden� On the other hand� this di�erence allows to
realize the function Draw This for the command call� which would be impossible
to use with the mouse�

In order to run the TreeViewer the environment should be set up as follows�

For the graphic display the bitmap��le tvshapes must be available� This �le is
looked for in the actual directory and then in the directory given by the environ�
mental variable TVIEWHOME�

For trouble�shooting the l option should be used� This causes the generation of the
�le tview�log containing all commands sent through the inputpipe� Commands
not accepted are followed by a comment giving the reason of the missing acception�
The �le can be used as input by sending it through the inputpipe after deleting the
last line containing the command quit�

�	



Chapter �

Theories

This section describes the syntax of theory �les for ILF� A theory �le may contain
named axioms� a title� comments and PROLOG commands� It must contain an
end line containing end� as the only item�

An axiom is given on two lines� The �rst of these lines contains a term of the form
H��B�� H� or ��B�� H and B are valid PROLOG terms� possibly with variables� The
intended meaning of this axioms is the universal closure of B � H� of H and of �B�
respectively� Like in PROLOG� conjunction and disjunction ar denoted by a comma
and a semicolon� respectively� Variants of conjunction and disjunction� which can
take any list of propositions as arguments� are denoted by � and �� Negation
is denoted by not� Universal and existential quanti�er are written as ex and all�
They can bind either a single variable or a list of variables� As in PROLOG variables
start either with a capital letter or with an underscore character� It is possible to
use operators in pre�x� post�x or in�x notation if they have been declared in the
�le �ilfrc�

Of course� it depends on the properties of the concrete deductive systems which
axioms can be used in a proof�

Each axiom is followed by a line containing the name of the axiom which can be
an arbitrary prolog term� Clever naming conventions can simplify writing tactics
in ILF considerably� so names should be chosen with care� E� g� all laws of commu�
tativity can be denoted by names of the form comm�Op	 where Op is the operator
which is commutative� Similarly dis�����
	 and dis������	 can be names for
the equations saying that � distributes over � from left or right� respectively�

The �optional� title of a theory is given on a single line as
th title � title string�

title string must be enclosed in double quotes� It is recommended to chose
title string in such a way that �Theory of title string� is meaningful�

Comments are given as in C�programmes� A line containing a PROLOG command
starts with ��� An end line is a line consisting only of end� and must be in any
theory �le�

After this informal description we give a Backus�Naur�notation for this syntax� Ter�
minal symbols are prolog term� which stands for a valid PROLOG term� string�

��



which stands for any string of characters� comment string� which stands for any
string of characters not including ��� �lf�� which stands for a line feed and �� ��

� � �� �� 
 th title end� which stand for themselves�

ilf theory ��� ftheory partg� end line
theory part ��� empty part k axiom part k title line k comment
empty part ��� f�lf�g�

axiom part ��� axiom��lf�prolog term��lf�

axiom ��� prolog term �� prolog term k prolog term k
�� prolog term

title line ��� th title � 
string
��lf�

comment ��� �� comment string ��

end line ��� end��lf�

As mentioned above� theories can contain arbitrary PROLOG commands� The
command load�
Name�th
	� which loads a theory Name from the user�s directory
of theories is of special signi�cance for theories� This theory is considered as a
subtheory of the given theory� In this way� a simple hierarchy of theories is built
up� Though a theory can be a subtheory of several other theories it will be loaded
only once into memory� If there is a theory named standard�th in the directory
�fUSERILFHOMEg�th� it will be loaded at startup�

Within ILF� theory�
 and subtheory�� can be used to inspect the hierarchy of
theories� in theory�Formula�Theory	 tests whether a formula has been loaded
with a particular theory� The following commands� which can be also accessed
using the THEORY menu of the graphic user interface� can also manipulate theories�

THEORY menu

make theory�Theory	 creates a new theory

make subtheory�Th�SubTh	 determines that SubTh is considered to be con�
tained in Th

make title�Th�String	 lets String be the title of Th

add ax�Theory�AxList	 adds the axiom or the list of axioms AxList to the
theory Theory

rm ax�Theory�AxList	 removes the axioms from AxList from Theory but
leaves them in the knowledge base

rm theory�Theory	 removes Theory leaving its axioms still in the
knowledge base

add th gives the user the possibility to add new axioms
from the command line without inserting them
into a particular theory

activate�Name	 activates axioms whose name matches Name� De�
activated names will not be used by deductive sys�
tems� When an axiom is deactivated� its name is
changed from Name to ��Name	

deactivate�Name	 deactivates axioms whose name matches Name

��



forget ax�Name	 removes all axioms having a name matching Name
from the knowledge base

forget th eliminates all axioms and theories from memory

save th�Theory	 is used to save a theory to the user�s directory of
theories

save th as�Th�NewTh	 is used to save a theory to the user�s directory of
theories under the name NewTh

save changed ths asks the user for each theory that has been changed
whether it should be saved or not

axioms displays all axioms in memory on the terminal or
in the command window

The ilf state save th can contain a list of theories that are to be saved automat�
ically when ILF is left� From the graphic user interface additional tools for the
presentation of theories are available�

more of the THEORY menu

view th displays the hierarchy of theories in the windows of
the TreeViewer� If a particular theory is selected
with the right mouse button� it is displayed by the
LaTEX system� Selecting the top node quits this
operation

view theory�Theory	 displays a particular theory by the LaTEX system

��



Chapter �

Proof Tactics

Proof tactics are a way to automate parts of the work to be done to build a proof
in a deductive system� They can perform a �xed sequence of steps like a macro or
a re�ned control strategy like an automated theorem prover� In general� tactics are
developed to test di�erent procedures to control the search for a proof� Approved
tactics are frequently incorporated as new rules of inference into a deductive system�
Tactics are kept in �les in the directory �fUSERILFHOMEg�tac having the extension
�tac� If there is a �le named standard�tac� it is reconsulted at the start of ILF into
the module tactics� These �les can also include other commands to be performed�
notably commands like �� load�
Filename�tac
	� to reconsult more tactic �les�

In principle� a tactic is developed and tested like any other programme in PROLOG�
� �see the PROLOG�� manual for details�� Basic tactics are provided by the inte�
grated deductive systems as rules of inference or as commands for moving a focus
to a certain position in the proof� From these� more complex tactics can be build
using all the facilities of PROLOG � and some special tools described below� As
long as tactics manipulate proofs only through the use of rules of inference� the
correctness of the resulting proofs is guaranteed�

The speci�c set of commands that are available for building proof tactics depends
on the deductive system in use� However� the following commands have been im�
plemented for many systems in order to unify their use�

common tactics commands

pos�X	 uni�es X with the current position in the proof

set pos�Pos	 moves the focus to the position Pos

successors�S	 uni�es S with the list of successors of the current
position� This assumes that the proof is represen�
ted as a directed graph�

predecessors�S	 uni�es S with the list of predecessors of the current
position� This assumes that the proof is represen�
ted as a directed graph�

��



subgoals�S	 uni�es S with the list of open subgoals that have
to be solved in order to solve the goal at the cur�
rent position� The exact meaning of the concept of
an open subgoal depends on the speci�c deductive
system in use

fd�N	 moves the focus to the N�th successor of the current
position

bd�N	 moves the focus to the N�th predecessor of the cur�
rent position

up is the same as fd�
	� Backtracking does not undo
the e�ects of the positioning commands� There�
fore� in order to continue editing a proof at a cer�
tain position after performing a tactic� this posi�
tion has to be stored before the tactic and restored
after the tactic has �nished by a construction like
pos�X	�Tactic�set pos�X	

d is the same as bd�
	

problem�Pos�Con�Stat	 matches the formula at the position Pos in the
proof with Con and the status of the position �e�g�
proved or unproved� with Stat� The exact mean�
ing of contents and status is system dependent�
problem�� is often used to analyze the current goal
in order to chose an appropriate tactic

In many systems the application of a rule of inference is triggered by specifying a
certain axiom� In ILF a name Name of an axiom can be used to call a procedure
ax�Name	 that acts in a system speci�c way� On backtracking� the e�ect of this
procedure is undone�

The following tacticals can combine tactics� They are similar to the corresponding
tacticals of the Oyster system ��BH�����

common tactics commands

repeat tac�Tac	 applies the tactic Tac at the current position and
recursively to all open subgoals generated by Tac�
This is done in a depth��rst�left�to�right way�
Backtracking into Tactic is possible

Tac
 then tac Tac� applies the tactic Tac
 at the current position and
Tac� at all open subgoals created by Tac
� Back�
tracking into Tac� is possible� if this has failed on
all subgoals� backtracking into Tac
 is performed

Tac then l �T
�� � ��Tn� succeeds if the tactic Tac generates exactly n open
subgoals to which T
�� � ��Tn are applied success�
fully� Backtracking into Tn�� � ��T
�Tac is possible

��



Global variables and loops are available for a procedural style of programming�

global variables commands

assign�R�A
�����An	�V	 stores V in R in association with the parameters
A
�����An �n can be ��� For all settings of the pa�
rameters A
�����An at most one value V is stored
in R� It can be retrieved by R�A
�����An�V	

R�A
�����An	 �� V evaluates V to a number and stores the result�
ing value in R in association with the parameters
A
�����An� The value of V can be retrieved by
R�A
�����An�Value	

�Procedure until Test	 applies Procedure until Test succeeds� Test is
called after each run of Procedure� No backtrack�
ing into Procedure is performed

�Procedure while Test	 applies Procedure as long as Test succeeds� Test
is called before each run of Procedure� No back�
tracking into Procedure is performed

Example�

my status tac�T�S	 �� pos�P	��T until problem�P� �S		�

my status tac�T�S	 applies the tactic T until the initial position P has a status
that matches S�

A complex tactic may generate large new subproofs� It may not be possible for a
tactic to determine the size of these proofs in advance� In such a situation it can be
useful to forget those positions that have been created by the tactic except for those
which contain new open subgoals that still have to be proved� This can be achieved
by running the tactics hard� In order to do this� call Tactic h d� Since a part of
the result of the tactic has been eliminated� backtracking into Tactic is disabled�
It appears as if a single new rule of inference that generated the new subgoals has
been called�

��



Chapter �

Background Experts

Background experts are systems controlled by the PROLOG running as a back�
ground process� Each of these experts can occur in several instances working on
completely separated data� In order to use an expert� it must be mentioned in the
�ilfrc �le read at startup�

An expert named expert is started by ex start�expert�Nr	� If this call suc�
ceeds� Nr is instantiated with the number assigned to this expert by the inter�
nal ExpertManager� Commands can be sent to this expert by using the syntax
Nr � Command�� � � � �Commandn� If Nr is �� the commands are sent to the background
ExpertManager�

If the expert has been successfully started� it must be usually con�gured by re�
consulting an appropriate �le from its directory �fUSERILFHOMEg�dedsys�expert�
This can be done automatically if a �le has been mentioned in the �ilfrc �le or
from the command line or by a tactic using the command Nr � open sit�File	�
The internal situation of an expert can be saved by Nr � save sit�File	�

In order to use a background expert it is important to synchronize the work of
the foreground deductive system and the background expert� Communication is
synchronised by the command ex sync��� All axioms having a name matching
Name are sent to expert Nr by Nr � send ax�Name	� Axioms can also be activated
and deactivated for selected experts as for the foreground system� The easiest way
to synchronize the knowledge bases of the foreground and a background expert is by
using the commands ax sync�
� th sync�
 and kb sync�
� ax sync�Nr	 assures
that the foreground and the background expert Nr have the same axioms with the
same names� th sync�
 synchronizes the hierarchies of theories and kb sync�


performs both�

Before a background expert can be asked� an expert goal must be built� This can
be done interactively by Nr � get expert goal�� or automatically by a tactic�
For the latter method� make exp goal�Goal�expert�unproved�Name�Nr	 should
be called� If this call succeeds� the background has accepted to try to prove Goal�
Name can be an arbitrary PROLOG term that will be passed to the background
system and back� It can be used to identify the results of the proof or to pass
further control information to the background system�

When the background system has started its work on the goal� there will be a

�




fact expert goal�Goal�expert�started�Job	�Name�Module	 asserted in the fore�
ground� Here� Job is the number of the job in the background and Module is
the current input�output module when the problem was set up� By reference to
the module the ExpertManager can continue to handle a job even if the deduc�
tive system which started the job has been suspended for some time or if di�er�
ent deductive systems start jobs with the same name� When the job gets done�
started�Job	 is changed to finished�Job	� If the goal has been proved� a fact
expert goal�Goal�expert�proved�Name�Module	 will be present� Expert goals
can be removed by rm exp goal��� No deductive system is allowed to remove ex�
pert goals initiated by other systems�

In order to obtain the results of the background systems� the foreground system
must call ex answer�� from time to time�

In general it is impossible for a background expert to decide whether it should
keep on trying to �nd a proof or better try another problem� In order to make
this decision in an automated way the method of �exible killing can be used to
interrupt the work of automated experts running as separate processes� A maxi�
mum and minimum number of seconds a system is allowed to run can be set up
by Nr � set max sec�Seconds	 and Nr � set flexy sec�Seconds	� Default val�
ues can be determined in the ilf states default max sec and default flexy sec�
respectively� Note that the time given in default max sec is CPU time� but the
time in default flexy sec is real time� If a command kill flexy�� is send to
the expert Nr� its processes will be killed if its minimum number of seconds has
expired� If the time given in default max sec is reached� the processes belonging
to the expert will be killed by the cpu limit mechanism of the C shell�

�




Chapter 	

Deductive Systems

We distinguish interactive and automated deductive systems� Usually� interactive
systems are controlled by the PROLOG working in the foreground� while automated
deductive systems work in the background� sometimes as separate processes�

��� Interactive Deductive Systems

����� FLEX � SLD Resolution

FLEX is an interactive proof editor for SLD�resolution proofs for universal Horn
theories� A �partial� proof is given as a tree of literals with a unique root input

which stands for contradiction� The semantics of such a proof tree is given as
follows� The universal closure of a node is proved if the universal closure of all of
its sons is proved�

ax�
 is the only inference rule of FLEX� It applies the axiom whose name is given
as its argument to the actual position� i�e� if the actual position is a leaf and the
literal at this position matches the head of the axiom� then the most general uni�er
is applied to the tree and the literals of the body of the axiom are added as sons of
the current position�

If the axiom is a fact� the current node is treated as being closed� A tree having
only closed leaves is a proof� The name given as argument to ax�
 can be any
valid PROLOG term including � On backtracking all axioms with matching names
will be applied to the actual position� For the user�s convenience for every axiom
named Name a clause Name �� ax�Name	 is asserted� so axioms can be called by
simply typing their names�

For positioning in the proof tree the commands d�
� d��� up�
� up�� � up down��

described in Section 
 can be used�

last�� positions on the most recently generated leaf�

tree�� shows the actual proof tree�

tree�N	 shows the actual proof tree starting N nodes above the actual position�

��



problem�� shows the literal at the current position together with its state �proved
or unproved� leaf or node��

h�� shows the actual possibilities to proceed� that is� the open leaves that can be
selected or the axioms appliable to the selected leaf�

back�� does explicit backtracking�

A sequence of positioning commands and inference rule applications in FLEX can
be recorded as a tactic by record tac��� The tactic recorder is stopped by end tac�
The user will be prompted for a name under which the tactic will be saved� A saved
tactic can be stored in a �le using store tac���

FLEX can be started by flex�� or flex�
� If no tactic is given as an argument�
the tactic break is used and FLEX will work interactively� If it is not started by
the command Head to Body by flex�Tactic	but simply by the command flex�
FLEX prompts the user for a goal to prove which must be a conjunction of literals�
The proof tree is initialized by adding the literals of the goal as sons of the root�

If no tactic is called FLEX works in PROLOG���s break modus� which can be left
by typing end of file or selecting leave FLEX from the flex menu �in fact� this
is currently the only point to select from this menu��

Successors of a node in the proof tree are its sons and the only predecessor is its
father� Subgoals of a node are the leaves below it that are not closed� These
concepts are relevant for the use of tacticals �see Section 
��

����� ME � Model Elimination

ME is an interactive proof editor for the model elimination procedure as suggested
by Stickel in �St	��� Stickel considered the model elimination as an extension of
PROLOG�style logic programming from Horn clauses to arbitrary clauses� There�
fore ME was implemented as an extension of FLEX� so most of the functionality of
FLEX is also available under ME� The code both systems are sharing is located in
kern�prm while the system�speci�c code is in me�prm�

A �partial� proof is a tree of literals with the root false� which stands for con�
tradiction� The semantics of this tree are given similiar to FLEX� if the universal
closure of all sons of a given node is proved� then the universal closure of this node is
proved� too� A tree whose leaves are proved is therefore a proof of a contradiction�
i� e� a refutation for the given set of clauses� Completeness for �rst order Horn�
logic is achieved by using all contrapositives of all clauses including the goal and an
additional inference rule� the �ME��reduction rule �the inference rule of PROLOG
or FLEX is in this context called extension rule��

ME can be started by me�� or me�
� If no tactic is given as argument� the tactic
break is used� i� e� ME works interactively� If necessary� it prompts the user for a
goal to prove which must be a conjunction of literals� The proof tree is initialized
by adding these literals as sons of the root�

Because of the need of all contrapositives ME uses its own theory data base formed
during startup� If you add axioms to ILF �s theory while using ME� use cp�� must

�	



be called to make the contrapositions available forME� The name of a contrapositive
is derived from the name of the corresponding axiom by adding the number of the
literal considered to be the head as last argument �e� �g� from ass��	 you will get
ass���
	� ass����	� � � � corresponding to the choice of the �rst� second� � � � literal
as the head�� The names of the contrapositives of the negated goal are goal�
	�
goal��	� � � � �

All contrapositives can be listed by cps���

ax�
 is the command for the extension rule and works as in FLEX� For the user�s
convenience for every contrapositive�axiom named name a clause name �� ax�name	

is asserted as in FLEX�

The reduction rule can be applied via the red�
 command� red�N	 reduces the
actual leaf with its N�th ancestor� i� e� if the current goal matches the complement
of its N�th ancestor goal� then the most general uni�er will be applied to the tree
and the current goal will be treated as solved� If N is not instantiated� red�
 �nds
all possibilities for ME�reduction by backtracking� red�� is a shorthand for red� 	�

The tree positioning commands and the concepts of successors� predecessors and
subgoals are the same as in FLEX �see Section 	������

����� MPRT

MPRT is an interactive proof editor for the modi�ed problem reduction format as
de�ned by Plaisted in �Pl		��

Proofs are represented as trees similiar to FLEX and ME� A discussion of the tree
representation of modi�ed problem reduction can be found in �Me����

MPRT uses three inference rules� axiom application� assumption application and
splitting �see below�� Note that MPRT is much simpler than the TMPR�prover
developed by Mellouli��

The system consists of two parts� the executable mprt connected with ILF as
described in Section � and the Prolog module mprt�prm which provides some ad�
ditional functionality� The executable was developed in the programming language
C using the ILFA�libraries �see �DFKBLL���

ax�
 is the command for the axiom application rule� It applies the axiom whose
name is given as an argument at the actual position� i� e� if the actual position is
a leaf and the literal at this position matches the head of the axiom� then the most
general uni�er is applied to the tree and the literals of the body of the axiom are
added as sons of the current position� If the axiom is a fact� then the current node
is treated as proved� The name given as argument to ax�
 can be any valid Prolog
term including � On backtracking all possible axioms will be tried at the actual
position� For every axiom named name a clause name �� ax�name	� is asserted for
the user�s convenience�

ass�
 applies an assumption at the actual position� i� e� if the actual position is
an unproved leaf and the assumption identi�ed by the argument matches the literal

�
MPRT is comparable to the WMPR �weak MPR� described in �Me��	


��



of the leaf� the matching substitution is applied to the tree and the current node is
marked as proved by assumption�

case�
 splits the current node over the literal provided as argument� This rule is
applicable to each node of the tree� not only to leaves� The positioning commands
described in Section 
 are available�

problem�� shows the literal at the current position together with its state �proved
or unproved� leaf or node�� By problem�� you can use this information in a tactic�

h�� shows the axioms and assumptions applieable at the current node� Under the
graphic user interface a menu Rules containing these possibilities is constructed� h
is accessible via the help point from this menu�

back�� does explicit backtracking�

MPRT is started by mprt�� or mprt�
� If no tactic is given as the argument� the
tactic break is used� i� e� MPRT works interactively�

The core of MPRT is a C programme� Under the graphic user interface a window
for error messages from this programme will be created presenting the process id of
the executable in the title� MPRT has to be initialized by mprt start���

The proof tree is initialized by applying the goal to the root and positioning to the
�rst son of root�

Interactive work in MPRT can be left by typing end of file or selecting leave

from the mprt menu�

����� pNAT � PROLOG Based Natural Reasoning

The pNAT is an Interactive Theorem Prover on the calculus of Natural Reasoning�
as it is usually described in the literature� A detailed description can be found in
�Wo����

Commands of pNAT

sequents� lists out all sequents of the actual situation of the
system

nat start� initializes or reinitializes the system� all previous
information will be lost

load theory� converts all ax name facts from the current situa�
tion module into the internal syntax of pNAT

load goal� converts the ilf goal into the internal syntax of
pNAT

��



use�Rule�Info�Pos list	� performs a deduction step in the calculus� pre�
dicate is backtrackable� Rule can be one of the
following� in�not�� out�not�� in�and�� out�and ���
out�and ��� in�or ��� in�or ��� out�or�� in�imp��
out�imp�� in�aeq�� out�aeq ��� out�aeq ��� in�all��
out�all�� in�ex�� out�ex�� ns� or ns�� Info is in most
of the cases a pattern of the right side to be built
and may often be a variable� and Pos list is the
List of parent sequents� often all parameters can
be variables

use�Offs�Rl�Info�Posl	� as use��� the Value of Offs will be added to the
numbers in the Posl� can be used to access to rel�
atively adressed sequents� Offs and Posl may not
be Variables� else the predicate fails

control�Left�Right	� is true if there is a sequent of the given form

result�Pos	� asserts the sequent with the highest position �num�
ber� as proved to an ilf goal

offset�Nr	� Nr will be the number of the sequent created last�
it is usable e�g� with use��

set pos�Pos	� sets the actual position of the system to be Pos�
backtrackable

pos�Pos	� gives back as Pos the actual position� backtrack�
able

predecessor�Pred	� gives back as Pred a parent of the actual position�
backtrackable

predecessors�Predl	� gives back as Predl the list of all parents of the
actual position

predecessors�Pos�Predl	� gives back as Predl the list of all parents of Pos

successor�Succ	� gives back as Succ a child of the actual position�
backtrackable

successors�Succl	� gives back as Succl the list of all children of the
actual position

successors�Pos�Succl	� gives back as Succl the list of all parents of Pos

up�N	� sets the actual position to be the N�th predecessor
of the current actual position

down�N	� sets the actual position to be the N�th successor of
the current actual position

contents�Seq	� gives back as Seq the contents of the actual posi�
tion

contents�Pos�Seq	� gives back as Seq the contents of the position Pos

status�Stat	� shows the status of the actual position� Stat can
be initial �the root node�� axiom� leaf or node

��



status�Pos�Stat	� gives back as Stat the status of the position Pos

back� retracts the sequent created last

back�N	� retracts the sequent with the number N� it natu�
rally must be a leaf

The subgoal� command is not implemented� because it makes no sense in the
context of the pNAT system�

����� pTAB � PROLOG Based Tableau Calculus

The pTAB is an interactive theorem prover based on the tableaux calculus� as it is
usually described in the literature �see �Sm
	��� For details of this implementation
see �Wo����

Commands of pTAB

nodes� lists out all nodes of the tableau tree

structures� lists out all variable structures of the current tree
�see implementation�

show branch�Leaf	� shows all nodes on the path from leaf to the root
node of the tableau tree

show tree� shows all branches

proof� tests if the current tree is a proof� too

tab start� �re�� initializes the prover

load theory� integrates the current knowledge base in the ta�
bleau tree� new axioms will be built in as root node

load goal� integrates the current ilf goal into the tree

set pos�Name�Leaf	� sets the actual position to be on the node Name

and on the path above Leaf

set pos��Name�Leaf�	� as set pos�Name�Leaf	�

successor�X	� gives back a successor of the actual position� back�
trackable

predecessor�X	� gives back a predecessor of the actual position�
backtrackable

top� sets the actual position on the root node and an
arbitrarily selected leaf

up� sets the actual position on the predecessor

up�N	� N times up�

d� sets the actual position on the �rst sucessor

d�N	� sets the actual position on the N�th sucessor� cor�
rects the actual leaf

��



left� sets the actual position on the left brother of the
old position

left�N	� sets the actual position on the N�th left brother of
the old position

leaf�Leaf	� gives back as Leaf a leaf of the tableau tree

leaves�X	� gives back the list of all leaves

open branch�Leaf	� gives back as Leaf an open leaf of the tableau tree

open branches�X	� gives back the list of all open leaves

subgoal�X	� gives back an open leaf below the actual position�
backtrackable

contents�Node�Formula	� gives back as Formula the formula of the node Node

status�Name�Leaf�Sta	� gives back as Sta the status informations of the
node Node with respect to the leaf Leaf

split�Name�Leaf	� splits the formula of the node Name� and expands
the tree by appending the resulting formulas of the
split below the leaf Leaf �if all that is possible�� the
predicate is backtrackable� the arguments may be
variables

close branch�Leaf�N	� tries to close up the branch above Leaf� if N is an
integer� one of the two nodes used for a closure
must have a node number greater than N

close branch�Leaf	� the same as close branch�Leaf� 	�

close branch� prompts for a leaf and �re�� tries to close up the
branch belonging to that leaf

back� prompts for a node and takes back all splits done
after the creation of this node

����� iTAB � Tableau Calculus based on the ILFA Library

The iTAB is an interactive theorem prover based on the tableaux calculus� as it is
usually described in the literature �see �Sm
	��� implemented in C using the libraries
of the ILFA system �see �DFKBLL���

Commands of itab

back� takes back the last tree expanding command

load theory� transmits the current knowledge base to itab

goal� transmits the current ilf goal to itab

��



local pos��Node�Leaf�	� reads the list of local positions� i�e� the actual
node and the actual leaf from itab and assigns that
information to be the argument of the predicate
local positions �as a list�

set local pos��Nd�Lf�	� sets the the actual node and the actual leaf to be
Nd and Lf

pos�Node	� reads the actual position from itab and assigns that
information as the argument of the predicate ac�
tual position

set pos�Node	� sets the the actual node to be Node

contents�Cont�Var	� reads the formula contained in the node of the ac�
tual position from itab as Cont with the variable
name structure Var

contents�Cont	� the same as contents�Cont� 	�

contents�Pos�Cont�Var	� as contents�Cont�Var	�� but not of the actual
position but of the node Pos

status�Stat	� gives back as status the status information of the
actual node in relation to the actual leaf� i�e� if the
branch is closed or open

status�Pos�Stat	� as status�Stat	�� but not of the actual position
but of the node Pos

subgoals�Sub	� gives back as Sub the list of all open leaves below
the actual node

subgoals�Pos�Sub	� as subgoals�Sub	�� but not of the actual position
but of the node Pos

successors�Succ	� gives back as Succ the list of all nodes directly
below the actual node

successors�Pos�Succ	� as successors�Succ	�� but not of the actual po�
sition but of the node Pos

predecessors�Pred	� gives back as Pred the list with the node directly
above the actual node

predecessors�Pos�Pred	� as predecessors�Pred	�� but not of the actual
position but of the node Pos

fd�N	� sets the actual node to be the Nth successor of the
current actual node� warns if the leaf is not set
correctly

bd�
	� sets the actual node to be the predecessor of the
current actual node

set leaf�Leaf	� sets the actual leaf to be Leaf

ax�Name	� splits the axiom Name below the actual leaf� if pos�
sible

branch� shows the contents and status of all nodes above
the actual leaf with respect to that leaf

��



s�Node�Leaf	� tries to split the node Node and to expand the tree
below the leaf Leaf

c�Leaf	� tries to close up the branch above the leaf Leaf

��� Automated Deductive Systems

����� DISCOUNT

This system integrates the DISCOUNT system for distributed knowledge based
equational reasoning and completion from the University Kaiserslautern �DP����
The �ags and parameters follow the user manual of DISCOUNT� The system auto�
matically works in the silent and team mode and will perform PCL with the same
input �les if the task can be proved to get the dependencies� It is possible to con�
�gure experts� referees and selectors �in the sense of DISCOUNT� and to combine
them to teams� Unlike the original DISCOUNT� experts� referees and selectors have
to be referred to by names that can be arbitrary PROLOG terms�

DISCOUNT menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

refresh n rebuilds the menu with the current menu level� performs
refresh menu�

send axioms c transmits the matching axioms of the current knowledge
base to the expert� performs send axioms�Name	�

goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

kill flexy n kills the actual task of the expert if the minimum time
�default �exy sec�Sec�� set in the �ilfrc �le� for the task
is over� performs kill flexy�

file s submenu relating to �le operations

open sit c performs open sit�File	�� prompts the user for the
name of the �le with the data module to be used by the
expert

save sit c performs save sit�File	�� prompts the user for the
name of the �le to save the data module as this �le

�




In higher menu levels there are many other menu points to con�gure the team of
DISCOUNT experts� here are listed only the points that are additions to the user
manual�

more from the DISCOUNT menu

set flexy sec c prompts the user to type in the minimum �real� time
DISCOUNT can work without getting killed� performs
set flexy sec�Sec	�

max seconds c prompts the user to type in the maximum �cpu� time
DISCOUNT can work without getting killed� performs
set max sec�Sec	�

define experts � build � statistics

s nested submenu to create and name an expert� here a
statistic expert� other types see the menus and the user
manual of DISCOUNT

add weight c the user shall �ll in the pattern bld� exp� Name�
add weight� FWeight� VWeight� RedInst� Order�� with
the wanted parameters to de�ne the add weight expert
Name

define spec � build

s nested submenu to create and name a specialist

reduce cp c the user shall �ll in the pattern bld� spec� Name� re�
duce cp� StrtCp� RdCp� SsCp� DblCp�� with the wanted
parameters to de�ne the reduce cp specialist Name

define referee � build

s nested submenu to create and name a referee

statistic c the user shall �ll in the pattern bld� ref� Name� statistic�
SR� SE� SCP� RedCnt� MsFg�� with the wanted param�
eters to de�ne the statistic referee Name

define select � build

s nested submenu to create and name a selector

statistic c the user shall �ll in the pattern bld� sel� Name� statis�
tic� NrRls� NrEqs� MinV� RCnt� RRt� RLt� REq� RGl�
RSsum� CpCnt�� with the wanted parameters to de�ne
the statistic selector Name

team � static

s nested submenu to create and name a static triple of
expert� referee and selector

add c the user shall �ll in the pattern add er� static� Exp� Ref�
Sel� with the names of the prede�ned expert� referee and
selector� the system will treat them as a triple for the
con�guration of DISCOUNT

�




����� SETHEO

The SETHEO system uses the SETHEO resolution based automated theorem
prover from the Technical University Munich �LSBB���� The system will verify
the dependencies of the goal from the input formulas and write them back to the
user�

SETHEO menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

refresh n rebuilds the menu with the current menu level� performs
refresh menu�

send axioms c transmits the matching axioms of the current knowledge
base to the expert� performs send axioms�Name	�

goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

kill flexy n kills the actual task of the expert if the minimum time
�default �exy sec�Sec�� set in the �ilfrc �le� for the task
is over� performs kill flexy�

set flexy sec c prompts the user to type in the minimum �real� time
DISCOUNT can work without getting killed� performs
set flexy sec�Sec	�

max seconds n prompts the user to type in the maximum �cpu� time
DISCOUNT can work without getting killed� performs
set max sec�Sec	�

file s submenu relating to �le operations

open sit c performs open sit�File	�� prompts the user for the
name of the �le with the data module to be used by the
expert

save sit c performs save sit�File	�� prompts the user for the
name of the �le to save the data module as this �le

����� OTTER

OTTER is an automated theorem prover from Argonne National Laboratory
��MC���� for �rst order theories with special support for reasoning about equal�
ity� The syntax of the commands is as described in Otter�s manual� except that
theories and goals are taken from ILF� Therefore� we describe only the commands
to control the work of the expert�

��



OTTER menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

refresh n rebuilds the menu with the current menu level� performs
refresh menu�

send axioms c transmits the matching axioms of the current knowledge
base to the expert� performs send axioms�Name	�

goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

kill flexy n kills the actual task of the expert if the minimum time
�default �exy sec�Sec�� set in the �ilfrc �le� for the task
is over� performs kill flexy�

file s submenu relating to �le operations

open sit c performs open sit�File	�� prompts the user for the
name of the �le with the data module to be used by the
expert

save sit c performs save sit�File	�� prompts the user for the
name of the �le to save the data module as this �le

otter input c prompts the user for the name of the �le to use as OT�
TER input �le� performs otter input�File	�

����� An AC Rewrite System for Lattices and Groups

The BgPest system tries to prove a given formula by rewriting due to a method of
Peterson and Stickel �PSt	��� It decides automatically whether the theory of groups
or of lattices is to be used� depending on the leading operator of the left side of the
equation� If there is no operator� then one will be searched on the right side�

The result will be the �lexicographically smallest� normal forms of both sides of the
equation� but only if these sides are not variables� The usage follows the standard
of the ExpertManager� but it is not necessary and not possible to send theories to
the background�

BgPest menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

�	



goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

����� Algebra

algebra is an automated deductive system specialized to utilize simple algebraic
properties� Unlike other automated systems it works in the foreground because it
performs relatively simple actions�

When algebra is started for the �rst time it checks the actual knowledge base for ax�
ioms saying that some of the operators are associative� commutative� or distributive�
Currently� algebra has the following rules�

algebra menu

iso rule�P	� reduces a goal G with subterm T at position P to
�T�U�G�	� where U is a new variable and G� is ob�
tained from G by replacing T at position P by U

demod rule�Name�PosList	�applies an equation name Name at the positions in
the list PosList of the goal� If the equation has
preconditions� they are collected in the body of the
goal to be proved

dis rule�P	� reduces a goal G by applying a distributive law at
position P of G� If the same law can be applied at
the newly generated subterms� this is performed

ac move rule�Src�Dest	� reduces a goal G by moving the subterm at position
Src to the subterm at position Dest� provided this
is justi�ed by associative and commutative laws

����� TwoLat � the Two Element Lattice

The TwoLat system is not a deductive system in the usual sense� it tests formulas
in the lattice with two elements� The fact that a universal Horn formula is true in
that model� can be treated as a proof of this formula from the theory of distributive
lattices �see �Da����� Moreover� the system can be used as a model tester to prevent
proofs of formulas not valid in that model �so�called junk theorems�� The usage
follows the standards of the ExpertManager� but it is not nessecary and not possible
to send theories to the background� The user must recall� that �proved by TwoLat�
means only valid in the model of TwoLat�

��



TwoLat menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

����	 ThreeLat � a Three Element Lattice Model

ThreeLat is a system that checks the validity of a quanti�er free formula G from
the language of lattice ordered groups in the integers� G may contain additional
constants� and facts about these constants may be given as additional axioms�
More precisely� it is checked whether G holds in this model for all instances of the
constants with the values ��� �� � satisfying the additional axioms� If this is true
and G is a Horn formula which does not contain the symbol for the group operation�
ThreeLat returns proved since G is a logical consequence of the theory of lattice
ordered groups and the additional axioms �see �Da����� If G holds but is not a Horn
formula or contains the group operation symbol� ThreeLat returns passed� otherwise
it returns refused� The usage follows the standard of the ExpertManager� but it
is not necessary and not possible to send theories to the background�

ThreeLat menu

ask n gives the current expert goal to the background and ex�
pert starts working� performs ex ask�

end n terminates this expert� performs ex end�

goal c prompts the user to type a formula to use it as an ex�
pert goal� performs get expert goal�

use result c prompts the user for a name to integrate a proved ex�
pert goal with the given name into the current knowledge
base� performs use expert goal�

��



Chapter 


Extending ILF

Extending the power of ILF requires more information on the internal structure of
ILF� which will be given in this section� We shall describe how to integrate new
interactive and automated systems�

��� Integration of Interactive Systems

The knowledge base of ILF is kept in the PROLOG module axioms�prm in the pre�
dicate ax name��� The �rst argument of this predicate is the name of the axiom�
the second and third argument are head and body of the sequent constituting the
axiom� The last argument is a variable name structure as described in the manual
of PROLOG �� If the structure of a sequent is not relevant� the complete formula
can be contained in the second argument while the third argument is true�

When a new deductive system is called� the corresponding module is loaded and
a separate module for the data of the system is created� If the system contains
predicates de�ned elsewhere� the new de�nitions override the existing ones� This
makes it possible to realize the same commands in di�erent systems by di�erent
procedures� When a system �nishes its work� the original de�nitions are restored�

Deductive systems are accessed via the deduction system manager� which is called
by ded sys man��� The �rst argument is the deductive system to activate� the
second a tactic to execute�

By convention every deductive system DedSys provides the predicates DedSys��

and DedSys�
 de�ned as

DedSys �� ded sys man�DedSys�break	�

DedSys�Tactic	 �� ded sys man�DedSys�Tactic	�

If the deduction systemmanager gets messed up �for instance by leaving the Tactic
or the break by abort� use reset�� to set it in its initial state�

When a deductive system starts� the deduction system manager has created a data
module containing only a fact ilf goal�Head�Body�unproved�Name	 and being

��



the current input�output module� Body �� Head is the formula to be proved�
The last argument Name is a name for this formula if the system was called by the
command reduces and none otherwise�

When the system is left� the third argument must be changed from unproved to
proved if the goal has been proved� It is also possible to instantiate variables in
the formula if only an special case of the goal could be proved�

The designer of a deductive system must be aware that ILF may backtrack into the
system in order to look for another proof of the same goal�

A deductive system is integrated by de�ning a new fact�
ded sys props�System�Modules�CallProcedure�ExitProcedure	

Here

� System is the name of the system�

� Module is a list of PROLOG modules to be loaded�

� CallProcedure is a PROLOG predicate that is performed before any tactic�

� ExitProcedure is a PROLOG predicate that is performed before the deduc�
tive system is left� if the tactic succeeded�

A new interactive deductive system should � if possible � de�ne the predicates
successors� predecessors� subgoals� problem described in Section 
 in order to
make tacticals available�

New deductive systems developed in C must also be connected with ILF through a
PROLOG module�

Strictly speaking� the C programme required is a collection of procedures� Some
of these procedures are necessary� E�g� load theory to load a knowledge base and
return handles for the axioms read� goal to read a goal to be proved etc� A complete
list with a description of the interface is contained in the �le ceditor�dok� The
main�	 function and the functions necessary to communicate with ILF are de�ned
in editor�c� The C�programmer has to include ceditor�h and editcmds�h and
link his object �les with editor�o and editcmds�o� All these �les are located in
the �ILFHOME�src�c�ceditor directory�

The PROLOG side of the interface can make use of the modules ilfa�prm and
editor�prm� which implement the standard commands and the predicates for
the communication� If the call procedure of the new deductive system calls
ilfasys init�Path�Title	� where Path is the complete path to the executable
programme� Title in connection with a process ID is used as the title of an X�term
showing the stderr of the C programme�

��� Integration of Automated Theorem Provers

Automated theorem provers are usually integrated as background experts� They
should have a PROLOG module SYSTEM�prm that has all its predicates private ex�
cept for SYSTEM top��� which is called starting the system named SYSTEM and a

��



special predicate port SYSTEM�
� which must be de�ned by port SYSTEM�X	 �� X�
Moreover� there must be the predicate listen problem�
� If this predicate is called
with an argument of the form expert goal�Goal�SYSTEM�Job�Name�Nr	� the au�
tomated theorem prover should try to prove Goal from the theory it �nds in its
ax name�� predicate in its data module exp Nr� where Nr is the the number of the
expert� obtained from the ExpertManager� Since all predicates in the data module
of the system are private� di�erent copies of the same system may be active at the
same time� In order to access the data in the data module� port�
 is used� If pred�
icates from the data module are called by external predicates like bagof� they must
be included in port�
� When the prover has �nished its work successfully� it should
call output write�Job�expert goal�Goal�SYSTEM�proved�Job	�Name�N		� Fi�
nally it must call output write�Job�ready	�

If an external system is not implemented within the PROLOG�� in the background
is called� listen problem�
 must produce an input �le for the external system
and start it as a background process using PROLOG�s call�
 command� Then
listen problem�
 should succeed without the call of output write�Job�ready	�
For such systems there must be a predicate search results�� de�ned for the
system� The call search results�SYSTEM�Nr�Job	� informs the system SYSTEM

with data module exp Nr that the results of the Job Job can be analyzed�
Usually� the raw output of the external system will be analyzed roughly by
a �lter programme which sends the call search results�SYSTEM�Nr�Job	� to
the pipe �USERILFHOME�tmp�coma�p� The ExpertManager in the background
prolog will forward this call to SYSTEM� search results should �nish calling
output write�Job�ready	�

It is recommended to start external processes with limited CPU time� After the call
of the external system in the listen problem predicate� a programme that �nds out
the PID�s of the processes belonging to the external system should be called� These
PID�s should be sent to the pipe �USERILFHOME�tmp�coma�p as pid�List	� where
List has the form �Nr�PID list� and PID list looks like �PID
�� � ��PIDn� or
��Host
�PID
��� � ���Hostn�PIDn��� Since the determination of the exact PID�s
is often not possible �e�g� using DISCOUNT�� the �exy kill mechanism will send
signal � to the processes PID� PID�� and PID���

Generic background experts can be found in the �les �fILFHOMEg�doc�name�pro
and �fILFHOMEg�doc�name
�pro�

��� Adding Menus

If the graphical user interface is active� a new menu named MENU can be brought
up by the command create menu�MENU	� The items of this menu are descibed by
the predicate menu info MENU�� in the module exmenus�prm� The �rst argument
of this predicate is a number N indicating that this item will be displayed at menu
levels greater or equal to N�

If the item is a submenu� the second argument is the string to be shown as the title
of the submenu�

��



By an itemlist we mean a list having three members� The �rst is one of the atoms
confirm and noconfirm� indicating whether the action triggered by the menu item
needs con�rmation from the user or not� The second member is a string or an
atom to be displayed in the menu and the last member is a string to be passed to
PROLOG when the menu item has been selected�

It is also possible to create a separator within a menu by �lling in �separator� as
itemlist�

For menu items of the top level menu� the second argument of menu info MENU��

is an itemlist describing the item� For items of submenus the second argument is
a di�erence between a sequence of x and an itemlist� The length of the x�sequence
coincides with the depth of the item in the menu hierarchy�

Here we give an example of some possible lines�

menu info expert����confirm�load tac�
��load tac�Tac	
�	�

menu info expert����noconfirm�answer�ex answer�	�

menu info expert����confirm�menu level�
new level�N	
�	�

menu info expert����separator�	�

menu info expert�
�synchronize	�

menu info expert�
�x��noconfirm�communication�ex sync�	�

menu info expert�
�x��confirm�axioms�
ax sync�ExpertNr	
�	�

��



Chapter ��

A Sample Con�guration� The

ProofPad

We describe a con�guration of ILF that has been designed to make the power
of recent deductive systems available to users not specially trained� The version
currently implemented is con�gured to support proofs from the �rst order theory
of lattice ordered groups� However� the description below will not refer to these
special aspects� We shall explain the integration of the di�erent parts of ILF within
one application�

The ProofPad is a deductive system of very limited abilities that are considerably
extended by the use of other deductive systems� It presents to the user as a sequence
of proof lines to be edited� Each line has a status and the aim of the user is that each
line has the status proved� However� the user cannot change the status directly�
The system checks automatically� whether a speci�c line is a logical consequence
of the preceding lines� It takes a �xed number of preceding lines into account�
This number can be set with the ilf state pad recall� its default value is �� Each
time the user inserts a new line� the modi�ed problems are passed automatically
to a process running in the background� This background process tries to solve
the problems within a limited amount of time� It can employ also other deductive
systems� notably the automated theorem provers SETHEO and DISCOUNT� The
work of these systems is controlled in a �exible way using the predicate flexy kill

described in section �� If the background prover can prove a line� its status is
changed in the foreground to proved� otherwise to unproved� Since the background
can also test the validity of formulas in domain speci�c �nite structures� it may
also �nd out that a formula is unprovable and change the status accordingly to
unprovable� This may happen because the user has made a semantic mistake or
because the preceding lines do not yet contain enough information�

Like any other deductive system� it is called by �Name reduces� Head to Body by

pad�Modus	 �cf� ����� Modus can be direct or indirect depending on the type of
proof to be edited� Currently only direct proofs are supported� It is also possible to
call simply pad� Then the ProofPad will ask the user for the necessary information�

When the ProofPad has been started� the background is con�gured in an appropriate
way� This can be seen by the menus of the background experts that become available

�




now� The actual status of the proof can be inspected in three ways� which are all
available either from the command line or from ProofPads pulldown menu�

viewer commands of ProofPad

show pad is the fastest way to see the proof in the command
window

pad graph shows the structure of the proof in the graphics
window of the TreeViewer� The single lines can be
seen in the text window of the TreeViewer� The
form of the presentation depends on the ilf state
pad mode� If it is set to line� the proof is pre�
sented as a sequence of lines as by the show pad

command� However� if it is set to tree� the logical
structure of the proof is shown as a directed graph�
Edges of this graph indicate logical dependencies
among the lines�

pad view this command produces a �le proof�tex in the
directory �fUSERILFHOMEg�tmp� This is treated
by LaTEX and presented by the xdvi command�
Details on the LaTEX output are explained below�

In each of these presentations the goal will be named Theorem if the proof is com�
plete� Otherwise it is displayed as Conjecture� The user may move through the
lines using the commands set pos� up� d described in Section 
� The command
last takes him to the �rst line that has not been proved yet� The main tool of the
user is the insertion of lines containing new formulas by the command ins�Formula	
at the current position� These formulas get the status untried� Then they are au�
tomatically passed to the background system to be proved from a theory that can be
set in the ilf state pad default theory� If the background started working on the
line� its status is changed to tried and can be changed later on by the background
to proved� unproved or unprovable� del deletes the current line� The status of all
lines that have been proved using the deleted line directly is changed to untried�

If the background is not able to prove the formula� the user can

� insert further lines or

� modify the theory to be used by the command use�Theory	 or

� extend the theory by the command use also�Theory	

Here Theory can be either the name of a theory or an axiom or a list of such
names� Moreover� Theory can contain numbers of lines to be used� provided they
occur before the current line� pad use always�Theory	 speci�es a theory that will
always be added to the theories given to prove the lines on the ProofPad� Usually�

�




this is applied to ensure that frequently needed axioms like the basic axioms of
equality or of an ordering are not omitted�

The deductive system algebra �cf� Section 	���
� provides tools to construct new
proof lines automatically� From the ProofPad they are used by the commands
ac move and distribute� These commands require parameters for the position of
the subterms of the actual formula to be used� If they are called without parameters
�e�g� from the pulldown menu of the ProofPad�� the structure of the formula in the
current line is displayed as a tree by the TreeViewer and the user can select the
desired position with the right mouse button or he can display a subformula in the
TreeViewers text window as a string and select a certain substring with the mouse�
In the latter case� the position of the smallest subterm containing this substring is
selected�

If an axiom is a Horn clause with a head matching the formula in the current line�
the literals in the body can be automatically inserted as new lines in front of the
current line by using the name of the axiom as a command� This mechanism is also
used internally to connect the algebra system with the ProofPad� E�g� moving a
subterm from Pos
 to Pos� by ac move calls the procedure�

pos�P	�problem�P�F� 	�

�� Getting the actual position and the contents of the current line �cf� section 
���
alge�dist	 reduces F to F
 by algebra�ac move rule�Pos
�Pos�		�

�� Calling the algebra system �cf� section ���� with the rule of inference ac move �
rule� Note that F� is a variable that will be instantiated by this call���
alge�dist	�

�� Applying the axiom alge�dist� just created ��
forget ax�alge�dist		

�� Forgetting this axiom ��

Lines of a proof can be reordered by the command move line�Line
�Line�	� which
will move Line
 towards Line� as far as possible without violating the correctness
of the proof� move lines fd �move lines bd	 moves all lines to the bottom �to
the top� respectively� as far as possible� This can provide a better readability of
the proof� especially when transformed to LaTEX output�

The LaTEX output uses the article style of LaTEX� Author and title can be set by the
ilf states pad author and pad title� respectively� All �les making up the LaTEX
input reside in �fUSERILFHOMEg�tmp� The �les proof�tex contain the proof� The
title is contained in the �le title�inp�

For the LaTEX output� lines of equations or inequalities may be combined into a
chain of equations or inequalities� These formulas are connected by the words
�clearly�� �hence�� �therefore� and �by�� �clearly� indicates that no other line in
the proof has been used� �hence� means that just the formula immediately preceding
the current formula has been used and �therefore� shows that just the number of
immediately preceding formulas set in the ilf state pad recall have been used�
All the other references are given explicitly� All axioms not belonging to one of
the theories speci�ed in the ilf states pad default theory and pad use always are
explicitly mentioned at the places where they have been used� All formulas that are

��



added to the knowledge base at run time for further use with the ProofPad should
be inserted in a theory speci�ed in the ilf state pad reference� The default theory
for this purpose is lemmata�

The ProofPad can be left by typing end� If a proof has been completed� the user
has the possibility to write it into a LaTEX input �le that can be used in a larger
manuscript� In order to do this� the formula that has been proved must have a
name NAME� which must be a PROLOG atom� Then the �les NAME�inp � a LaTEX
input �le � and NAME�dep containing the relevant dependencies are created�

If the proof on the ProofPad is the last of a series of proofs of lemmata� a manuscript
can be created� This is done in two steps� First� the command outline erases the
ProofPad after saving the actual proof and builds a new proof by analyzing the
dependencies in the �les ��dep� Each line of this new proof consists of one of the
lemmata proved before� The lines can be arranged for the manuscript using the
commands described above� Then the �nal manuscript containing all the proofs of
the lemmata can be created by the command make manuscript�� It generates a
�le manuscript�tex�

�	



Bibliography

�Da��� Dahn� B�� Applying Algebraic Properties in Deduction� preprint ����

�DP��� Denzinger� J�� Pitz� W�� Das DISCOUNT�System� Benutzerhand�
buch� SEKI Working Paper SWP�����


�DFKBLL� U� Dunker� A� Fl�ogel� H� Kleine B�uning� J� Lehmann� Th� Lettmann�
ILFA � A Project in Experimental Logic Computation� Technischer
Bericht der Universit�at�GH Paderborn� Reihe Informatik� Nr� ����
������

�BH��� Bundy� Alan� van Harmelen� Frank et all�� The Oyster�Clam System�
Proc� ��th Conf� Aut� Ded�� Lecture Notes Art� Int�� vol� ��� �������

�� � 
�	

�LSBB��� Letz� R�� Schumann� J�� Bayerl� S�� Bibel� W�� SETHEO� A High�
Performance Theorem Prover� Journal of Automated Reasoning� 	
������� S� �	�����

�MC��� McCune� W�� Otter ���� in� Stickel� M�E� �ed��� Proceedings of the
��th CADE� pp� 

��

�� Springer� Berlin� ����

�Me��� Mellouli� T�� A Tree Representation of the Modi�ed Problem Re�
duction and its Extentsion to Three�valued Logic� KI�NRW ������
KI�Verbund NRW �������

�PSt	�� Peterson� G� E�� Stickel� M� E�� Complete Sets of Reductions for Some
Equational Theories� J� Ass� Comp� Mach� vol� �	 ���	��� ��� � �
�

�Pl		� Plaisted� D� A�� Non�Horn Clause Logic Programming without Con�
trapositives� Journal of Automated Reasoning � ���		�� �	����
�

�Sm
	� Smullyan� R� M� � First�Order Logic� Springer� Berlin ��
	

�St	�� Stickel� M� E�� A PROLOG Technology Theorem Prover� New gen�
eration computing � ���	��� �����	�

�Wo��� Wolf� A� � Deduktionssysteme und Taktik�ubersetzung� Diplomarbeit�
Humboldt�Universit�at zu Berlin� Fachbereich Mathematik� ����

��


