
Smart Peripheral Controller

Low Cost
Motor Controller

Trademarks & Copyright
AT, IBM, and PC are trademarks of International Business Machines Corp.
Pentium is a registered trademark of Intel Corporation.
Windows is a registered trademark of Microsoft Corporation.
CodeVisionAVR is copyright by Pavel Haiduc, HP InfoTech s.r.l.

Table Of Contents

1 Introduction... 3
1.1 SPC LOW COST MOTOR CONTROLLER Specification..................... 3
1.2 Suggested System.. 3

2 SPC LOW COST MOTOR CONTROLLER Hardware................................... 4
2.1 SPC LOW COST MOTOR CONTROLLER Component Layout........... 4
2.2 Connectors and Jumpers Configurations... 4

3 SPC LOW COST MOTOR CONTROLLER Interface..................................... 6
3.1 UART TTL Interface... 6
3.2 I2C Interface.. 7
3.3 Command Set.. 8
3.3.1 DC Forward... 8
3.3.2 DC Reverse.. 9
3.3.3 DC Stop.. 10
3.3.4 DC All Stop.. 11
3.3.5 Stepper Continuous Run.. 12
3.3.6 Stepper Pulse Count Run... 13
3.3.7 Stepper Brake.. 14
3.3.8 Stepper Stop... 15
3.3.9 Set I2C Address... 15
3.3.10 Read I2C Address... 16

4 Testing Procedure... 17

5 Application and Program Example.. 17

Attachment
A. SPC LOW COST MOTOR CONTROLLER Schematics......................... 19

2

1. INTRODUCTION
Smart Peripheral Controller / SPC LOW COST MOTOR CONTROLLER is a DC
and stepper motor controller module which is compact, reliable, and
compatible for robotic applications. This module can be used to control the
direction and speed of 4 DC motors using the Pulse Width Modulation (PWM)
method or 2 stepper motors using full-step or half-step. This module is
equipped with quad full H-Bridge driver, UART TTL interface, and I2C interface,
so that it can easily be connected with other systems.

1.1. SPC LOW COST MOTOR CONTROLLER SPECIFICATION
SPC LOW COST MOTOR CONTROLLER specification is as follows:
• The module requires 4.8 – 5.4 VDC power supply.
• The motor requires 8 – 36 VDC power supply.
• Uses a A3988 motor driver IC.
• Each driver's maximum continuous current is 1.2 A.
• Can be used for unipolar or bipolar stepper motors.
• Input/Output pins are compatible with TTL and CMOS voltage level.
• Equipped with UART TTL and I2C interface.
• Using I2C, SPC LOW COST MOTOR CONTROLLER can be cascaded up to

8 modules.

1.2. SUGGESTED SYSTEM
Suggested system for SPC LOW COST MOTOR CONTROLLER is as follows:
Hardware:
• PC™ AT™ Pentium® IBM™ Compatible with USB port.
• DT-AVR Low Cost Series.
• DVD-ROM Drive and Hard disk.

Software:
• Windows® XP Operating System.
• CodeVisionAVR©.
• Program CD/DVD contents:

Contoh_i2c folder, contoh_uart folder, A3988.pdf, and SPC Low Cost
Motor Controller Manual.pdf.

3

2. SPC LOW COST MOTOR CONTROLLER HARDWARE

2.1. SPC LOW COST MOTOR CONTROLLER COMPONENT LAYOUT

2.2. CONNECTORS AND JUMPERS CONFIGURATIONS
INTERFACE PORT (J1) connector functions as a connector for module power
supply input, motor power supply input, UART TTL interface, I2C interface, and
motors.

Pin Name Function

1 M11 1st Output from H-Bridge M1 pair

2 M12 2nd Output from H-Bridge M1 pair

3 M21 1st Output from H-Bridge M2 pair

4 M22 2nd Output from H-Bridge M2 pair

5 M31 1st Output from H-Bridge M1 pair

6 M32 2nd Output from H-Bridge M3 pair

7 M41 1st Output from H-Bridge M1 pair

8 M42 2nd Output from H-Bridge M4 pair

9 MGND Ground reference for motor power supply

10 VM Connected to motor power supply (8 – 36 Volts)

11 SCL I2C-bus clock input

12 SDA I2C-bus data input / output

13 RXD TTL serial level input to SPC module

14 TXD TTL serial level output from SPC module

15 PGND Ground reference for SPC module power supply

16 VIN Connected to power supply (4.8 – 5.4 Volts)

4

J3, J4, J6, and J7 jumpers are used to select operation mode for each H-
Bridge on the SPC module.

M1 & M2
Functions

J3 & J4
Position

M3 & M4
Functions

J6 & J7
Position

DC Motor
Controller

DC Motor
Controller

Stepper Motor
Controller

Stepper Motor
Controller

Pay attention to the type of stepper motor connected to SPC LOW COST
MOTOR CONTROLLER because each type has its own connection. SPC LOW
COST MOTOR CONTROLLER can be utilized for 3 types of stepper motor:
Bipolar, 5 cables Unipolar, and 6 cables Unipolar. The following are the
connection examples for each stepper motor type:

5

8V-36V

Ground Catu Daya Motor

VM

M11/M31

M12/M32

M21/M41

MGND

M22/M42

Konektor J1

M
B

A

C

D

Bipolar

8V-36V

Ground Catu Daya Motor

VM

M11/M31

M12/M32

M21/M41

MGND

M22M42

Konektor J1

M
B

A

C

D

COMMON

Unipolar 5 kabel

J3 J4

1
2
3

J3 J4

1
2
3

J6 J7

1
2
3

J6 J7

1
2
3

SCL SDA

SCL SDA

SCL-SDA (J5) jumpers are used to activate pull-up resistors for SDA and SCL on
I2C interface.

Jumper SCL-SDA
J5 Function

Pull-up inactive
(jumpers disconnected)

Pull up active
(jumpers connected)

Important!
If more than one module is connected to I2C-bus, then only one set of SCL-
SDA (J5) jumpers needs to be connected.

I2C address configuration can be done through UART TTL interface.

M1 IND (D3), M2 IND (D4), M3 IND (D5), and M4 IND (D6) LEDs function as
motor condition indicator.

3. SPC LOW COST MOTOR CONTROLLER INTERFACE
SPC LOW COST MOTOR CONTROLLER has UART TTL and I2C interfaces that
can be used to receive commands or send data.

3.1. UART TTL INTERFACE
UART TTL communication parameters are as follows:

• 38400 bps • no parity bit
• 8 data bits • no flow control
• 1 stop bit

6

8V-36V

Ground Catu Daya Motor

VM

M11/M31

M12/M32

M21/M41

MGND

M22/M42

Konektor J1

M
B

A

C

D

COMMON 1

COMMON 2

Unipolar 6 kabel

All commands sent through UART TTL interface begin with 1 byte data that
contains <command number>, followed by (if needed) n-byte data command
parameter.

If the command and parameters transmission succeeded, then SPC LOW COST
MOTOR CONTROLLER will send 0x06 (Acknowledged/ACK). If the command is
not recognized, the SPC LOW COST MOTOR CONTROLLER will send 0x15
(Not Acknowledged/NCK). If the command is recognized but the command
parameter is incorrect, then SPC LOW COST MOTOR CONTROLLER will not
send any feedback.

If the command sent is a command requesting data from SPC LOW COST
MOTOR CONTROLLER module, then SPC LOW COST MOTOR CONTROLLER
will send the data via TX TTL line.

A data parameter that has a range larger than 255 decimals (larger than 1
byte) will be sent in two steps. 1 byte MSB data is sent first and is followed by
LSB data. For example: parameter <pulse delay> which has a range of 1 -
65535. If <pulse delay> has a value of 1500 then MSB byte will be 5 and
LSB byte will be 220 ((5x256)+220=1500).

Available commands and parameters can be seen in section 3.3.

3.2. I2C INTERFACE
SPC LOW COST MOTOR CONTROLLER module has an I2C interface. In this
interface, SPC LOW COST MOTOR CONTROLLER module acts as a slave with
an address that as been determined via UART command (see section 3.3.9).
I2C interface on SPC LOW COST MOTOR CONTROLLER module supports bit
rate up to a maximum rate of 50 kHz.

All commands sent through I2C interface begin with start condition, followed by
1 byte of SPC LOW COST MOTOR CONTROLLER module address. After the
address is sent, the master must send 1 byte data that contains <command
number>, followed by (if needed) n-byte command parameter data. After all
command parameters have been sent, the command is ended with stop
condition.

The following is the sequence that must be done to send a command via I2C
interface.

If the command and parameters transmission succeeded, then SPC LOW COST
MOTOR CONTROLLER will write a hexadecimal response 0x06
(Acknowledged/ACK) in its I2C buffer. But if the command is not recognized or
the command parameter is incorrect then the SPC LOW COST MOTOR

7

+ +

++

1 1 1 0 X X X 0

Write Address

X X X X X X X X

Command

X X X X X X X X

Parameter (if available)

Start

Stop

CONTROLLER will write a hexadecimal response of 0x15 (Not
Acknowledged/NCK) on its I2C buffer.

Master can send a read command to read the <ACK/NCK> response. If the
command sent is a command that requests data from SPC LOW COST MOTOR
CONTROLLER module, then those data can be read after reading the response
by using the read data command.

The following is the sequence that must be done to read response and/or data
from SPC LOW COST MOTOR CONTROLLER.

A data parameter that has a range larger than 255 decimals (larger than 1
byte) will be sent in two steps. 1 byte MSB data is sent first and is followed by
LSB data. For example: parameter <pulse delay> which has a range of 1 -
65535. If <pulse delay> has a value of 1500 then MSB byte will be 5 and
LSB byte will be 220 ((5x256)+220=1500).

3.3. COMMAND SET
The following is a complete list of commands in UART and I2C interface:

3.3.1. DC FORWARD

Function Controls DC motor forward rotation
Command 0x30
Parameter <Motor number>

1  DC motor connected to M1
2  DC motor connected to M2
3  DC motor connected to M3
4  DC motor connected to M4

<pwm level>
0 - 255  assigned duty cycle percentage (0 = 0%;

255 = 100%)
Response 0x06  if command is recognized

0x15  if command is not recognized
Delay
between
Command
and Response

10 µs

Description ● Indicator LED light intensity for each H-Bridge (M1,
M2, M3, and M4) will match the PWM value given. If
the PWM value is 0 then the indicator LED will turn off.
When the PWM value is 255 then indicator LED will
light up with the highest intensity.

8

+ +1 1 1 0 X X X 1

Read Address

Start

++0 0 0 X 0 1 X X

ACK / NCK

X X X X X X X X

Data 1 (if available)

Stop++ X X X X X X X X

Data n (jika ada)

...

● On forward condition, indicator LED will also blink.
● On forward condition, Mn1 (n is the H-Bridge number)

will produce voltage proportional to the PWM value
while Mn2 will be connected with MGND.

● Motor direction and PWM value will not be saved in
EEPROM. When the SPC module is powered on, PWM
values of each H-bridge is 0 (zero) and the motor will
be in a stop condition (all-4 indicator LEDs will blink
faintly every 2 seconds).

Example with UART interface to control the forward speed of DC motor
connected to M1. If the desired duty cycle is 50% (0.5 * 255 = 128) or equal
to 128 decimal or 0x80 hexadecimal:

User : 0x30 0x01 0x80
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x30); // “DC Forward” command
i2c_write(0x01); // Motor number
i2c_write(0x80); // PWM value
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

3.3.2. DC REVERSE

Function Controls DC motor reverse rotation
Command 0x31
Parameter <Motor number>

1  DC motor connected to M1
2  DC motor connected to M2
3  DC motor connected to M3
4  DC motor connected to M4

<pwm level>
0 - 255  assigned duty cycle percentage (0 = 0%;

255 = 100%)
Response 0x06  if command is recognized

0x15  if command is not recognized
Delay
between
Command
and Response

10 µs

Description ● Indicator LED light intensity for each H-Bridge (M1,
M2, M3, and M4) will match the PWM value given. If
the PWM value is 0 then the indicator LED will turn off.
When the PWM value is 255 then indicator LED will

9

light up with the highest intensity.
● On reverse condition, Mn2 (n is the H-Bridge number)

will produce voltage proportional to the PWM value
while Mn2 will be connected with MGND.

● Motor direction and PWM value will not be saved in
EEPROM. When the SPC module is powered on, PWM
values of each H-bridge is 0 (zero) and the motor will
be in a stop condition (all-4 indicator LED will blink
faintly every 2 seconds).

Example with UART interface to control the reverse speed of DC motor
connected to M1. If the desired duty cycle is 20% (0.25 * 255 = 64) or equal
to 64 decimal and 0x40 hexadecimal:

User : 0x31 0x01 0x40
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x31); // “DC Reverse” command
i2c_write(0x01); // Motor number
i2c_write(0x40); // PWM value
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

3.3.3. DC STOP

Function Stops DC motor
Command 0x32
Parameter <Motor number>

1  DC motor connected to M1
2  DC motor connected to M2
3  DC motor connected to M3
4  DC motor connected to M4

Response 0x06  if command is recognized
0x15  if command is not recognized

Delay
between
Command
and Response

10 µs

Description ● On stop condition, Mn1 and Mn2 will be in a three
state / high impedance condition.

Example with UART interface to stop DC motor connected to M1:

User : 0x32 0x01
SPC : 0x06

10

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x32); // “DC Stop” command
i2c_write(0x01); // Motor number
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

3.3.4. DC ALL STOP

Function Stops all DC or stepper motors simultaneously
Command 0x33
Parameter -
Response 0x06  if command is recognized

0x15  if command is not recognized
Delay
between
Command
and Response

10 µs

Description ● This command will cause all H-bridges to be in a stop
condition.

● If All H-Bridges are in stop condition, then indicator
LED of each H-Bridge will blink faintly every 2
seconds.

Example with UART interface to stop all DC or stepper motors connected to
M1, M2, M3, and M4 simultaneously:

User : 0x33
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x33); // “All Stop” command
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

11

3.3.5. STEPPER CONTINUOUS RUN

Function Controls stepper motor so that it rotates continuously
Command 0x34
Parameter <Motor number>

1  stepper motor connected to M1 and M2
2  stepper motor connected to M3 and M4

<step type>
1  Full-Step: motor will rotate 1 step every 1 pulse
2  Half-Step: motor will rotate ½ step every 1 pulse

<direction>
0  motor will rotate clockwise
1  motor will rotate counter clockwise

<pulse delay>
1 - 65535  Delay time between pulse to stepper

motor. The smaller the pulse delay, the
faster the stepper motor rotates

Response 0x06  if command is recognized
0x15  if command is not recognized

Delay
between
Command
and Response

10 µs

Description ● If the stepper motor rotates to an opposite direction,
then it means that the connection is reversed. To fix it,
change the order of connection installation.

● One pulse delay value represents delay time between
pulse for about 1 ms.

Example with UART interface to run the stepper motor connected to M1 and
M2 so that it rotates clockwise continuously, with a full-step step type, and the
delay between pulse is about 100 ms (0x0064 hexadecimal):

User : 0x34 0x01 0x01 0x00 0x00 0x64
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x34); // “Stepper Continuous Run” command
i2c_write(0x01); // Motor number
i2c_write(0x01); // Step type
i2c_write(0x00); // Direction
i2c_write(0x00); // MSB pulse delay
i2c_write(0x64); // LSB pulse delay
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

12

3.3.6. STEPPER PULSE COUNT RUN

Function Controls stepper motor so that it rotates according to how
many steps given

Command 0x35
Parameter <Motor number>

1  stepper motor connected to M1 and M2
2  stepper motor connected to M3 and M4

<step type>
1  Full-Step: motor will rotate 1 step every 1 pulse
2  Half-Step: motor will rotate ½ step every 1 pulse

<direction>
0  motor will rotate clockwise
1  motor will rotate counter clockwise

<pulse delay>
1 - 65535  Delay time between pulse to stepper

motor. The smaller the pulse delay, the
faster the stepper motor rotates

<pulse count>
1 - 65535  the number of pulse sent to stepper motor

Response 0x06  if command is recognized
0x15  if command is not recognized

Delay
between
Command
and Response

10 µs

Description ● If the stepper motor rotates to an opposite direction,
then it means that the connection is reversed. To fix it,
change the order of connection installation.

● One pulse delay value represents delay time between
pulse for about 1 ms.

● After the number of pulse that has been released
matches the pulse count, stepper motor will
automatically stop (on brake condition) while still
maintaining motor torque (current is still flowing
through stepper motor coils).

Example with UART interface to run the stepper motor connected to M1 and
M2 so that it rotates clockwise 20 pulses (0x0014 hexadecimal), with a full-
step step type, and the delay between pulses is about 1000 ms (0x03E8
hexadecimal):

User : 0x35 0x01 0x01 0x00 0x03 0xE8 0x00 0x14
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x35); // “Stepper Pulse Count Run” command
i2c_write(0x01); // Motor number
i2c_write(0x01); // Step type
i2c_write(0x00); // Direction

13

i2c_write(0x03); // MSB pulse delay
i2c_write(0xE8); // LSB pulse delay
i2c_write(0x00); // MSB pulse count
i2c_write(0x14); // LSB pulse count
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

3.3.7. STEPPER BRAKE

Function Stops the stepper motor while still maintaining motor torque
(current is still flowing through stepper motor coils).

Command 0x36
Parameter <Motor number>

1  stepper motor connected to M1 and M2
2  stepper motor connected to M3 and M4

Response 0x06  if command is recognized
0x15  if command is not recognized

Delay
between
Command
and Response

10 µs

Description ● This command can be given after the Continuous Run
command.

● On brake condition, stepper motor will stop while still
maintaining motor torque (current is still flowing
through stepper motor coils).

● On brake condition, indicator LED will lit up according
to the last Run command.

Example with UART interface to stop the stepper motor connected to M1 and
M2:

User : 0x36 0x01
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x36); // “Stepper Brake” command
i2c_write(0x01); // Motor number
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

14

3.3.8. STEPPER STOP

Function Stops the stepper motor (current doesn't flow through
stepper motor coils)

Command 0x37
Parameter <Motor number>

1  stepper motor connected to M1 and M2
2  stepper motor connected to M3 and M4

Response 0x06  if command is recognized
0x15  if command is not recognized

Delay
between
Command
and Response

10 µs

Description ● This command can be given after Continuous Run, Pulse
Count Run, or Brake command.

● On stop condition, stepper motor will stop and there
will be no current flowing through the motor coils.

● Stop condition is the default condition when the SPC
module is powered on

Example with UART interface:

User : 0x37 0x01
SPC : 0x06

The following is a pseudo code example, to use this command with I2C interface
(I2C address example = 0xE0):

i2c_start(); // Start Condition
i2c_write(0xE0); // Write SPC Low Cost Motor module
i2c_write(0x37); // “Stepper Stop” command
i2c_write(0x01); // Motor number
i2c_stop(); // Stop Condition
delay_us(10); // delay 10 us
i2c_start(); // Start Condition
i2c_write(0xE1); // Read SPC Low Cost Motor module
temp = i2c_read(0); // Data Acknowledgment
i2c_stop(); // Stop Condition

3.3.9. SET I2C ADDRESS

Function Changes I2C address
Command 0x41
Parameter <0xAA> <0x55> <newAddress>
Response 0x06  if command is recognized

0x15  if command is not recognized
Delay
between
Command
and Response

10 µs

Description ● This command can only be performed via UART
communication line.

● SPC module will use the new I2C address after going
through power off sequence.

15

● The allowed I2C address <newAddress> can be seen
in the table below.

● If the new address given is incorrect, then the I2C
address will not be changed (the previous address will
be used).

● The default I2C address is 0xE0.
● I2C address data will be saved in EEPROM so it won't

be erased when it's powered off.

I2C Address
I2C Write Address I2C Read Address

0xE0 0xE1
0xE2 0xE3
0xE4 0xE5
0xE6 0xE7
0xE8 0xE9
0xEA 0xEB
0xEC 0xED
0xEE 0xEF

Example with UART interface to change the I2C address from 0xE0 to 0xE2:

User : 0x41 0xAA 0x55 0xE2
SPC : 0x06

3.3.10.READ I2C ADDRESS

Function Reads the current I2C address
Command 0x42
Parameter -
Response <I2CAddress>  if command is recognized

0x15  if command is not recognized
Delay
between
Command
and Response

10 µs

Description ● This command can only be performed via UART
communication line.

● SPC module's I2C address can also be seen through the
number of blinks on the indicator LED when the module
is powered on.

● If the I2C address is 0xE0 then the indicator LED will
blink once. If the I2C address is 0xE2 then the indicator
LED will blink twice. If the I2C address is 0xE4 then the
indicator LED will blink 3 times, and so on until I2C
address 0xEE at which the indicator LED will blink 8
times.

Example with UART interface:

User : 0x42
SPC Module : <I2CAddress>

16

4. TESTING PROCEDURE
1. Connect the 5 Volts power supply to VIN and 9 - 12 Volts to VM SPC LOW

COST MOTOR CONTROLLER module.
2. Indicator LED will blink according to I2C address.
3. Send “DC Forward” command to motor 1 (M1) with PWM value of 255 via

UART TTL interface.
4. Indicator LED M1 will blink. When the voltage between pin M11 and M12

is measured, the result will be close to the motor power supply voltage
given on the VM pin.

5. Repeat step 3 and 4 for motor 2 (M2), motor 3 (M3), and motor 4 (M4).

5. APPLICATION AND PROGRAM EXAMPLE
As an application example, SPC LOW COST MOTOR CONTROLLER is used to
run 4 DC motors with I2C or UART interface. DT-AVR Low Cost Micro System
(LCMS) module with ATmega8535 microcontroller is used as master. The
following are the connections between the modules:

17

DT-AVR
LCMS

SCL

SDA SDA (PORTD.2)

 SCL (PORTD.3)

M1

M2

M11
M12
M21
M22

VM (8V – 36V) VIN (+5 V)

MGND
(Motor Power Supply

Ground)

PGND
(Digital Power

Supply Ground)
M3

M4

M31
M32
M41
M42

SPC
LOW COST

MOTOR
CONTROLLER
(address 0xE0)

As an example program for the above application, there are two programs
named contoh_i2c.c and contoh_uart.c (included in the CD/DVD) written using
CodeVisionAVR 1.25.2 evaluation.

In the program, DT-AVR LCMS will send "DC Forward" command for each
motors with PWM value of 255 to SPC module (for example, SPC's I2C address
is 0xE0) with about 1000ms delay for each command. After all of the
commands are sent, DT-AVR LCMS will wait for 3000 ms. Afterward "DC All
Stop" command will be sent to SPC followed by another 3000 ms delay. Then
DT-AVR LCMS will send "DC Reverse" command for each motor with PWM
value of 128 to SPC module with a 1000 ms delay for each command. When
all "DC Reverse" commands have been sent, DT-AVR LCMS will wait for 3000
ms. The program ends with DT-AVR LCMS sending "DC Stop" command for
each motor to SPC module.

♦ Thank you for your confidence in using our products, if there are difficulties, questions,
or suggestions regarding this product please contact our technical support:

support@innovativeelectronics.com

18

DT-AVR
LCMS

RXD

TXD RX (PORTD.0)

 TX (PORTD.1)

M1

M2

M11
M12
M21
M22

VM (8V – 36V) VIN (+5 V)

MGND
(Motor Power Supply

Ground)

PGND
(Digital Power

Supply Ground)
M3

M4

M31
M32
M41
M42

SPC
LOW COST

MOTOR
CONTROLLER
(address 0xE0)

ATTACHMENT A.
SPC LOW COST MOTOR CONTROLLER Schematics

19

