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Abstract 

The main aim of the Deliverable D02 is to provide security and requirement analysis for the chosen scenarios 
in UbiSec&Sens. 

The document defines the chosen scenarios in detail and provides an overview and an evaluation of hardware 
and software platforms that are currently available. It discusses how the requirements that are defined by the 
UbiSec&Sens scenarios can be fulfilled by these platforms. Finally it defines an idealised hardware 
architecture as well as an optimised middleware solution and describes an initial software and hardware 
architecture which will be used for the demonstrator setup. 

The results were strongly influenced by lifetime issues, since there is a need for finding a balance between 
the lifetime and the required level of security. In addition to their influence, the scenarios are defining a 
range of potential settings for the demonstrators. The wide range of different security settings has led to the 
idea of a flexible security support, backed by appropriate architecture and tool support. 
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Executive summary

The main aim of the deliverable D02 is to provide security and requirement analysis for the chosen scenarios.

In order to define a systems architecture requirements of reference scenarios have been defined and analysed.
As basis for the evaluation important parameters such as energy consumption of available sensor nodes have
been evaluated. Our analysis clearly indicates that a flexible architecture of our security middleware is needed,
since for example not all security modules can be stored at a sensor node. Such a security middleware provides
an interface to potential applications and is connected to the hardware by anhardware- and operating system-
dependent abstraction layer. Application and middleware are linked at compile time, what results in minimum
overhead. To update security algorithms after deployment an efficient dynamic code update mechanism is re-
quired.

With such an architecture the requirements of our scenarios can be fulfilledto a certain extent. Better service
can be achieved with improved HW, e.g. cryptographic accelerators or energy harvesting mechanisms, which
is also discussed in the document.

The first section is discussing sample scenarios for each of our application fields providing much more detailed
description per scenario compared to deliverable D01. The settings defined for each scenario provide infor-
mation about the collected data type, sampling rate, number of nodes and expected lifetime. These scenarios
are no longer toy examples, they are close to realistic set-ups for specific parts of large scale applications. In
case of the agriculture scenario the area for which a sensor based monitoring is described goes up to 14 ha.
The vehicular scenario does not look at that scale, but focuses on sensing at specific very dangerous parts of
roads where a small number of sensors still provides valuable information.Similar holds true for the Homeland
security scenario. The latter scenario is described for three rooms whichcan be seen as a certain hotel room
and the aisle, so that a specific floor can be secured with this setting. The requirements that result from these
three scenarios have guided our work described in the later sections.

The second section provides an overview and evaluation of hardware and software platforms that are currently
available for realisation of wireless sensor network applications. We are focusing on existing hardware archi-
tectures for which we investigate their energy efficiency with a special focus on public key cryptography, since
these are the most power hungry operations a sensor node will have to execute. We also investigate the current
operating systems as well as middleware approaches for wireless sensornetworks. Thus, this section explores
the currently available design space for realisation of WSN applications.

In section 3 we discuss the extent to which existing system architectures combined of hardware and software
can fulfil the requirements that are defined by our scenarios. Here we are again focusing on energy issues
and memory requirements as a second parameter. The latter clearly shows that the software packages that are
installed at the sensor nodes need to be as small as possible. Additionally, there is a need for the ability to
exchange parts of the software because deployment of all security modules is infeasible. The available energy
is also pretty limited and allows for small duty cycles only.

We further use our results to define an idealised hardware architecture as well as an optimised middleware
solution in section 4 of the document.

We also use our findings for the description of an initial software and hardware architecture which will be used
for our demonstrator set-up. This is presented in the final section 5.

Lifetime issues have strongly influenced the analysis presented in this document, since there is a need for
finding a balance between the lifetime and the required level of security. In addition to their influence on our
research results presented here the scenarios are defining a range of potential settings for our demonstrators.
The wide range of different security settings has led the idea of a flexible security support, backed by an ap-
propriate architecture and tool support. In work package 4 we will refine the scenarios in order to elaborate
concrete parameters of the demonstrators which we will realise.

Page 3 of (61) c©UbiSec&Sens consortium 2007
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1 Definition of Sample Scenarios

In this section we are discussing sample scenarios for each of our application fields. The intention is to provide
much more detailed description per scenario as we did in D0.1. The settings defined in the following subsec-
tions provide information on data such as data type collected, sampling rate, number of nodes and expected
lifetime. These scenarios are no longer toy examples, but close to realistic set-ups for specific parts of large
scale applications. In case of the agriculture scenario the area for whicha sensor based monitoring is described
goes up to 14 ha. The vehicular scenario does not look at that scale, but focusses on sensing at specific very
dangerous parts of roads where the small number of sensors still provides valuable information. Similar holds
true for the homeland security scenario. The scenario is described for three rooms which can be seen as a
certain hotel room and the aisle, so that a specific floor can be secured with this setting. The requirements that
result from our three scenarios have guided our work described in thelater chapters. The wide range of different
security settings has led to the idea of a flexible security support, backed byan appropriate architecture and tool
support. Lifetime issues have strongly influenced the definition of an idealised hardware etc. In addition to
their influence on our research results presented here these scenarios are defining a range of potential settings
for considerable demonstrators. In workpackage 4 we will refine the scenarios in order to elaborate concrete
parameters of the demonstrators which we will realise.

1.1 Agriculture

1.1.1 Sensor Data Type

The following sensor data types were provided by the owners of the Naegele vineyard in Germany.

Humidity is measured on the plants and in the ground.

Light is a considerable factor to measure for long term analysis. However, measuring the intensity of light
remains of a minor interest for the vineyard owners, since it is currently unclear how to use or interpret
such information in a vineyard context.

1.1.2 Node Types

Types of nodes to be used in this scenario:

Sensor nodesare equipped with measurement units (sensors) of one of the two types defined above. The
sensor nodes are statically configured during the WSN roll-out.

The sensor nodes do not perform aggregation. Since humidity and light are relatively stable factors over
a long period of time, the frequency of sensor readings is several readings per day.

Aggregator nodes are selected sensor nodes which in addition to sensing are dedicated for more advanced
processing of the information collected by other sensor nodes. The aggregator nodes are dynamically
elected during the network lifetime.

Periodically aggregator nodes transmit the processed information to the sinknode, potentially over a
multihop path.

Sink node is a gateway node between WSN and the control network. The sink node can either be mobile or
static. We also refer to the mobile sink node as to a mobile reader.

1.1.3 Network Type

The type of the network is a hierarchical grid with two hierarchy levels.

Page 11 of (61) c©UbiSec&Sens consortium 2007
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Table 1: The spatial extension and number of nodes in the agriculture scenario
Area Distance

between
nodes [m]

Topology Number of nodes Number of sensors

1 ha 25m Grid 25 25 humidity sensors
8 light sensors

14 ha 25m Grid 25x14 = 350 25x14 = 350 humidity sensors
8x14 = 112 light sensors

0.45 ha 25m Grid 25/2 = 13 25/2 = 13 humidity sensors
8/2 = 4 light sensors

Figure 1: Monitored area in the agriculture scenario

1.1.4 Spatial Extension and Number of Nodes

According to the interest expressed by the vineyard owners a distance of 25 m between sensors is sufficient to
measure humidity. Assuming a rectangular deployment area (100x200 m) the nodes are placed on a grid with
the size of a cell 25m x 25m. In total 45 nodes are required. All nodes areequipped with humidity sensors.
15 of them should be equipped with light sensors. The distribution of the sensors in a sample vineyard is
schematically shown in Figure 1. The figure also shows the position and the coverage of the aggregators, the
simple nodes and the sink.

The range requirements of the network are shown in table 2

1.1.5 Sampling Rate and Topology

Table 3 presents the frequency of data dissemination and deployment details. For the sensor and aggregator
nodes, i.e., nodes that are battery powered, this frequency indicates how many times per day the node has to
wake up to sense (and/or receive in case of an aggregator) and to send the reading or aggregated readings.

Note that in order to measure the soil humidity some nodes equipped with the humiditysensors should

Table 2: Radio range requirements in the agriculture scenario
Node type Range [m] Comments
Aggregator nodes 60 In order to allow point to point communication with the neighbour-

ing aggregators.
Sensor nodes 35 In order to have at least one aggregator in its communication range.
Static sink 50 A multihop routing protocol is needed to route the data from the

aggregators to the sink.
Mobile reader 25 A multihop routing protocol is needed to route the data from the

aggregators to the reader.

c©UbiSec&Sens consortium 2007 Page 12 of (61)
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Table 3: The deployment and sampling rate details for the agriculture scenario
Node type Selection Functionality Sending fre-

quency
Deployment

Aggregator nodes Using aggre-
gator node
election
protocol

- sensing
- aggregating readings

1 aggregated
reading / day

- mounted above the
ground (either on a
pole or on the plants
supporting infrastruc-
ture)

Sensor nodes statically - sensing 6 readings / day - placed directly on
the ground

Sink node statically - gathering the read-
ings from WSN

- fixed or mobile sink

technologically be placed close to the ground. The humidity sensor nodes measuring the humidity level on a
plant should be placed higher. All nodes with the light sensors should be mounted on poles for more precise
measurements. It is foreseen that the higher located sensor nodes will have better radio coverage, therefore
the role of an aggregator will migrate between these nodes. In order to balance the energy consumption an
aggregator node election protocol should be deployed in these nodes. The precise placement of particular
nodes will be defined during the deployment time after detailed investigation of the deployment area. The
placement of nodes will ensure the radio coverage requirements specified above.

1.1.6 Lifetime

As described in the “Scenario Definition and Initial Threat Analysis” deliverable (D0.1), the monitoring period
in a vineyard is equal to the vegetation period (second half of April - end of August). However, for specific
types of measured factors the monitoring period may be more restricted. For example in the drying time (July-
August) humidity measurements are done more frequently. Thus, we can assume that the expected lifetime of
the sensor network shall be at least 5 months. In order to prolong the networks lifetime an aggregator node
election protocol will be deployed in all nodes with potential aggregator function as described above. The
precise rate of aggregator nodes re-election will be identified prior to deployment.

1.1.7 Security Requirements

The application of wireless sensor networks (WSN) technology in agriculture converges to a task of correlating
the micro-climatic, bio-chemical factors during different growth stages of plants to the quality of the final
product. The role of the sensor network in this case is to provide constantmonitoring of these factors in an
automatic way and dynamic delivering the measured data to the farmer.

In our scenario we aim at enhancing the quality of grapes what dependson two major factors during its
growth: The moisture of the ground and the quantity of light a plant gets. Therefore, we implement a vineyard
WSN equipped with moisture and light sensors. The WSN measures periodically the latter two factors and
reports them periodically to the farmer.

Attacks from human beings or wild animals and unintended accidents due to agricultural engines can lead
to a partial destruction of the WSN resulting in a loss of the measured data. In order to tackle these problems,
measurements have to be stored in geographically distant nodes and allow thefarmer to request this information
when needed.

Since the target of this sensor network is enhancing the quality of the final wine product, malicious attacks
from competitors should be taken in account. The large surface of a vineyard makes it impossible to be fully
controlled against intruders. Therefore a faulty node could be discreetly inserted in the WSN in order to inject
erroneous readings. A solution against this attack is realized by implementing aplausibility check of the
measurements and discarding the erroneous ones based on statistics.
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Table 4: Attacks in the agriculture scenario
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort
to suc-
ceed

Attacker type UBI supported coun-
termeasures

Effort to succeed after
applying UBI counter-
measures

Manipulating
sensors read-
ings

Data poison-
ing

Sensors Source of light
or moisture ap-
plied to sensors

Sensor readings
are manipulated
with non-natural
techniques

cheap Clever Outsiders The application of
RANBAR on aggregator
nodes

Depends on the size of
the region under RAN-
BAR supervision

Natural
destruction

Loosing
parts of the
networks and
store mea-
surements

Sensor
nodes

Animals, cli-
mate factors
(rain)

Animals eating
or smashing the
electronic devices.
Leaking sensor
boxes.

cheap < Clever Out-
siders

Installing sensors in
waterproof transparent
boxes and mount them
on wooden poles.

Only Hard physical at-
tacks can still destroy the
motes.

Intended de-
struction

Interrupt the
service / De-
stroy specific
data

Sensor
nodes

- The attacker de-
stroys random or
specific nodes with
an hammer

cheap Clever Outsiders Implementing
TinyPEDS storing
the collected data from
one region on a remote
aggregator

The attack is mitigated.
Some data might be lost
despite replication. Ser-
vice might be interrupted
if the connectivity of the
WSN is brought down to
a critical point.

Manipulating
data mes-
sages

Inserting
messages

Network
commu-
nication

Laptop, sensor
nodes, powerful
wireless device

Attacker succeeds
to imitate our
message format
and send jams to
aggregator nodes

minimal Knowledgeable
Insiders

The application of
RANBAR on aggregator
nodes

Depends on the size of
the region under RAN-
BAR supervision
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We sum up the major attacks which we have tackled in our vineyard application inTable 4. Referring to
these security threats, a secure agriculture WSN application for vineyardmonitoring shall be equipped with the
following modules:

1. Persistent and replicated storage of monitored data at various nodes

The tinyPEDS module provides persistent and replicated data storage. Thereadings collected from a
group of motes in a region are backed up on another geographical region. This guarantees the availability
of the measurements whenever an attack results in a partial handicap of the network.

2. Plausibility check of monitored data

RANBAR is a plausibility check that runs on the aggregator nodes in order todiscard poisoned read-
ings inserted by an intruder. This module is desirable when the integrity of the data is important. It
is based on statistical model that can probabilistically filter out malicious values after receiving several
measurements.

3. WSN access control supporting relaxed mobility

When a farmer needs to retrieve the data from the network, a reactive protocol is needed in order to route
the query towards the destination. For this reason we use the Lightweight UNderlay Adhoc Routing
(LUNAR) adapted for ad-hoc and wireless sensor networks called tinyLUNAR. The tinyLUNAR is a re-
active end-to-end connection oriented routing protocol that uses a label switching forwarding technology.
It offers a native support for data-centric and address-centric communications.

4. Reliability

The reading values of the light and the moisture vary slowly in time as well as geographically. These
climatic and bio-chemical facts yield a sort of a natural replication of the measurements resulting into a
remedy against loosing measurement packets before storage. While reliability before storage is elective,
it is mandatory for querying data from the network. Once the need of retrieving the data rises up, the
querying mechanism needs to be reliable. This reliability is ensured by the nanoTCP transport protocol,
an end-to-end connection oriented protocol using acknowledgements and retransmissions.

5. Energy efficiency and aggregation

In order to extend the network life time, we decrease the number of messagescommunicated. Our chosen
way is to adopt clustered network architecture. Sensors of each clustercollect readings periodically
and send them to an elected aggregator who aggregates the readings andsends a single message with
the computed measurement values to be backed-up. Being an aggregator node means higher energy
consumption. Therefore a ”fair” load balancing scheme is needed which efficiently distributes the load
between the nodes. We use PANEL for the periodical aggregator electionbased on a moving reference
point. The closest node to the reference point in a cluster is chosen as theaggregator of the cluster.

1.2 Vehicular

1.2.1 Sensor data type

For the Vehicular WSN we plan to use sensors that measure the temperature on the road as well as detect a
moving obstacle on the road (see Figure 2).

1.2.2 Amount of Sensors

The amount of sensors per critical region on the road should not be morethan 10 sensor nodes plus one sink
node.

1.2.3 Sampling Rate

Continuously at the sensor nodes, temporary at the sink node.
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1.2.4 Transmission Rate

The road condition at critical days (indicated by the weather forecast) is monitored continuously; let’s say every
10-15 minutes in a push mode. A push mode is only required in case the road temperature is in the range of
the freezing point. For the measurement of movement pattern, we use the pullmode in case a moving object is
detected.

1.2.5 Spatial Extension

We are aiming to use WSN technology in front of tunnels or bridges (temperature) or at curves on a country
road. The spatial extension of the WSN is rather limited, say 100x20m with notmore than 10 sensor nodes and
one sink node.

1.2.6 Lifetime

The lifetime should be as long as possible. To flatly balance the energy a potential demonstrator will contain a
derivate of a non-manipulable aggregator election protocol.

1.2.7 Security Requirements

We foresee that in the near future, two types of wireless networks will operate in an integrated manner aiming
at an increased level of public safety and liability; Vehicular Ad Hoc Networks (VANETs) and Wireless Sensor
Networks (WSNs).

The WSN-VANET scenario is aiming at a WSN roadside architecture for provisioning the two comple-
mentary services; the accident prevention and the post-accident investigation. The envisioned WSN Security
architecture is stimulated by the understanding that WSN roadside islands will only be rolled-out when hard-
ware costs are close to the minimum. Therefore, we are aiming at purely SW based security solutions which
do not rely on costly HW components like road side units (RSU) or tamper resistant modules on sensor nodes.

The main objective of the WSN is to detect danger that neither the driver northe car sensors can easily
detect. These can be, for example, formation of ice at very particular segment of the road or animals irrupting
out of woods. WSNs deployed at those areas could collect and process the data in order to clean it, and finally,
if needed, send critical data or warnings to the car. The On-Board Unit (OBU) of the car decides how to react on
this piece of information, e.g., warn the driver, trigger the automatic speed reduction, or engage further probing.

To improve the safety of other drivers and virtually extending the range ofcommunication of the WSN,
the car will try to geo-broadcast the warning to car that might drive into the danger. By using position-based
ad-hoc network routing, only the cars in the region of interest (defined by the first car) will receive the warning
packet.

To support the post-accident investigation service, sensor nodes continuously measure the road condition
and store this information within the WSN itself. Storing the road condition over thelong time may be of
interest for a forensic team. In contrast to the accident prevention service such a liability service will be limited
to a well specified group of end-users, e.g., insurance companies or theroad patrol. Information stored within
the WSN will be helpful to judge a driver’s driving style according to the road condition at the moment of an
accident.

The type of attacks we have to face for such a service is eavesdroppingover the wireless and/or bogusly
getting access to the WSN. In addition to these two, since the data are stored for a relative long time within
the roadside WSN, data shall not be stored in plaintext. An attacker, who physically reads out the whole WSN
or a fraction of it, would gain knowledge of the stored data. We also emphasize, that for the post-accident
investigation service the integrity and the resilience of the stored environmental data is required. Also, it
would be beneficial that monitored data are persistently stored at many nodes to prevent data loss in case nodes
disappear or simply get stolen.

1.2.7.1 Attacks on the Road Safety applications and its counter-measures

The motivation of the attacker can differ:

c©UbiSec&Sens consortium 2007 Page 16 of (61)



UbiSec&Sens Deliverable D<0.2>

Figure 2: Overall WSN roadside architecture for Intelligent TransportSystems

• An attacker is willing to harm people or provoke accidents. To achieve this, she will either try to modify
data or to disrupt the service. For example, the WSN could be corrupted to tell ”there is no danger”,
while in reality, there is currently a high risk on the road.

• The attacker is simply malicious, and wants to disrupt the service. She will launch DoS attacks, jamming
attacks, or destroy physically nodes.

• The attacker is greedy. She would use the WSN data for her own business. For example, stealing WSN
that she does not own to build some valuable database.
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Table 5: Attacks in the vehicular scenario
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to suc-
ceed

Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

Manipulating
sensors read-
ings

Data poison-
ing

Sensors Cold/hot packs
as much as sen-
sors in a certain
region

Sensor readings
are manipulated
directly

100-250 depend-
ing on prices for
hot/cold packs

< Clever Out-
siders

RANBAR if ap-
plied to much
broader region

Depends on the size
of the region under
RANBAR supervi-
sion

Manipulating
road con-
ditions
monitored

Disturbing
the traffic

Network
commu-
nication

Powerful wire-
less communi-
cation device(s)
Laptop)

manipulate routing
tables to become
part of most of the
routes attacking
CDA schemes

1. Some hours
traffic monitoring
2. just commu-
nicate fake data
from captured
motes

Knowledgeable
Insiders

provable secure
routing, im-
proved/combined
CDA schemes

Hard Attack is mit-
igated to have the
least impact on the
system

DoS Degrade
WSN
lifetime,
interrupt
service

Network
commu-
nication

Laptop Attack broadcasts
many messages,
which will be
received and com-
puted by sensors

Minimal Knowledgeable
Insiders

Query authentica-
tion. If too many
forgeries detected,
go to sleep to save
energy, if scenario
permits

Attack is mitigated.
Attacker needs
more resources to
succeed

Jamming Interrupt ser-
vice

Network
commu-
nication

Laptop, power-
ful wireless de-
vice

Attacker jams the
wireless medium
for one or more
nodes

Minimal Clever Outsiders Not tackled by
Ubisec&Sens be-
cause the problem
is at the physical
layer

-

Eavesdrop-
ping /
Memory
extraction

Appropriate
data for
personal use

Network
com-
muni-
cation,
memory
protec-
tion

Laptop, wireless
communication,
specialised
electronic tools

Attacker attacks
physically a sensor
node and reads out
its memory

Expensive: thou-
sands of euros.
Possibly time
consuming

Knowledgeable
Insider - Funded
Organisations

Use of Privacy
Homomorphism to
conceal data in an
efficient way

Infeasible

Continued on next page
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Table 5 – continued from previous page
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to suc-
ceed

Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

Manipulating
Node Elec-
tion

Redirect
traffic to
corrupted
nodes

Network
proto-
cols

Laptop, spe-
cialised elec-
tronic tools

After successful
corruption of a few
nodes, the attacker
tries to redirect
to these nodes
by electing them
aggregator at any
round

Expensive: thou-
sands of euros.
Possibly time
consuming

Knowledgeable
Insider

Use of secure ag-
gregator election:
SANE or PANEL
with security
extension

Infeasible

Destruction
of nodes

Interrupt the
service / De-
stroy specific
data

- None The attacker de-
stroys random or
specific nodes with
an hammer

Cheap < Clever Out-
siders

tinyPEDS provides
self-organisation
(with the help of
node election and
flexible routing)
and replication of
data

The attack is mit-
igated. Some data
might be lost de-
spite replication.
Service might be
interrupted if the
connectivity of the
WSN is brought
down to a critical
point.
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Clearly, the priority for the WSN operator is to thwart harmful attacks as it could endanger people life. We
sum up the different attacks on the road safety application in Table 5. With respect to these security threats, a
security architecture for a roadside WSN serving as accident prevention shall be equipped with the following
modules:

1. WSN access control supporting relaxed mobility

The reader device from the police or the insurance company is not necessarily required to pass the WSN
with high velocity (if at all). Our routing and forwarding solution, tinyLUNAR,currently supports well
nomadic mobility pattern. For the access control, with the Canetti-Benenson authentication scheme, the
query can be initially broadcast from spatially anywhere in the WSN, thus mobility is well supported.

2. Persistent and replicated storage of monitored data at various nodes

The tinyPEDS provides persistent and replicated data storage. If the attacker tries to destroy the data on
the nodes, she will have to destroy many of them at very different places, since the data is replicated.

3. Encrypted storage of aggregated data which can still be applied to simple in-network computing

If an attacker tries to read out memory, she will fail as the decrypting key is not on the node itself, and
therefore she cannot read it.

4. Integrity of monitored data

Monitored data should be authenticated to verify the originator as well as to ensure that the data have
not been manipulated at transit. Memory protection on the node is a hard task since the hardware is
not tamper-resistant. However, we could use at our advantage the dis-symmetry of the WSN: the reader
device is trusted, along with being much more powerful. Therefore, memory protection can be ensured
by using MAC with one-way chained keys. To protect aggregation, Manulis resilient data aggregation
scheme can be used if the data is not encrypted.

5. Resilience and plausibility check of monitored data

Monitored data should, besides being authenticated, also be recognised ifsame manipulated data have
already ’wrongly’ been monitored. In the vehicular scenario, the first aggregation will not be encrypted,
allowing the aggregator to detect outliers thanks to the RANBAR module and discard them from the
aggregated value.

1.3 Homeland Security

The Homeland Security scenario will illustrate the usage of a WSN to physically secure an area, such as a
building floor, against unauthorised access. This scenario has practical applicability in many situations and
could be used, for example, by a special operations team to secure an area that is going to be visited by a VIP.
In this way, after a thorough inspection by officers, the WSN would be installed and configured allowing the
area to be left unattended or under the supervision of a very reduced task force.

The WSN prototype for Homeland Security applications will integrate relevantrouting, security and re-
liability components from WP1-WP3. This is an ”In-lab” prototype with 15-25 nodes running in a secure
way.

1.3.1 Sensor Data Type

The Homeland Security application scenario will use the following types of sensors:

Movement detector infrared/microwave sensors that detect people’s presence or movement;

Acoustic sensormicrophone-based sensor used to detect voices, objects falling or othersounds;

Smoke detector sensors that detect smoke due to a fire or significant amounts of particles or dust in the air;

Tamper detector micro switches or other types of electrical switches that may detect the repositioning of the
WSN node, the opening of its enclosure or other type of interference with it;
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Intrusion detector magnetic switches, pressure switches or other types of switches used, for example, to
detect the opening of doors or windows.

The interfaces with the sensors described above use both digital and analog inputs. Most sensors are digital
(binary output: active/inactive) but the acoustic sensor is analog and willbe read using an Analog-to-Digital
Converter (ADC). This approach allows a simple adaptation in the future to other types of sensors to allow, for
example, the detection of biological threats or anomalous radiation levels, broadening the application area of
the WSN to more vast and complex security scenarios.

1.3.2 Amount of Sensors

As described in the project’s Technical Annex, the Homeland Security WSNprototype is supposed to use a
number of nodes in the range 15 to 25. We will target the use of 20 nodes, 18 of which will include sensors
and the remaining 2 will be used as sink nodes (see Figure 3 for an illustration). We anticipate the use of the
following sensors:

• 8 movement detectors;

• 4 acoustic sensors;

• 1 smoke detector;

• 5 Tamper/Intrusion detectors (electrical switches);

1.3.3 Sampling Rate

The different sensors will have to be sampled at an adequate rate in order to allow gathering of relevant infor-
mation with the required temporal detail (e.g., evolution of an analog quantity) and without loosing sporadic
events (for example, short pulses in electrical switches). Given the nature of the sensors and considering the
mechanical natural of the electrical switches, we propose the use of a 100ms period between samples, i.e.,
sampling rate of 10Hz. This sampling rate has an impact in power consumption and it should be as low as
possible.

1.3.4 Transmission Rate

In the Homeland Security application scenario sensors will be sampled and processed at an adequate rate, but
will only generate messages whenever some predefined level is exceeded (in case of analog sensors) or when a
binary sensor is activated. This is expected to occur infrequently and thealarm information to be transmitted
will occupy only a few bytes.

Besides the alarm information described above, and because of securityreasons, each sensor will have
to send periodically an ”alive” report message informing it is working properly and that it has not detected
anything abnormal. To guarantee that a sensor does not stop fulfilling its mission without notice (because
it was damaged, tampered with, cannot communicate due to RF interference orsimply because it run-out of
battery power), we propose that each node should send an ”alive” message once each minute.

This traffic can be easily accommodated considering the data link transmission rate but may have an impact
in power consumption. To minimise this, some sort of data aggregation of these ”alive” messages should be
implemented, to reduce the amount of messages sent to the sink nodes.

1.3.5 Spatial Extension

As described in the ”Scenario Definition and Initial Threat Analysis” deliverable (D0.1), the inter-node spacing
varies according to type of sensor and application. For presence/intrusion detection, an inter-node spacing of 5
m is considered acceptable.

For the Homeland Security WSN prototype, we will consider a scenario with 3 rooms, each about 20 m2.
Each room will have 6 nodes, as illustrated in figure 3, for a total of 18 nodes, all equipped with sensors.
These nodes may elect among them nodes that will perform aggregation functions. Additionally, there will be
a sink node associated with the portable reader and a sink node associatedwith the Control Center. In total, an
application scenario could use 20 nodes.
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Figure 3: Laboratory homeland security scenario covering 3 rooms in a single floor

1.3.6 Lifetimes

As described in the ”Scenario Definition and Initial Threat Analysis” deliverable (D0.1), the lifetime of a
security WSN may range from 10 hours to a few days, which is very common for high-risk security events. A
few very unusual missions may last for longer periods.

For the Homeland Security WSN prototype, a lifetime of 24 or 48 hours is considered acceptable, since it
is enough for most security events.

1.3.7 Security Requirements

Several techniques might be employed by an attacker in order to jeopardizedetection and/or tracking by the
Homeland Security WSN (HS-WSN). Each of these techniques presents different degrees of complexity, as
well as different difficulties in terms of the equipment and technical skills required to apply them. From the
point of view of the attacker, it is also important to apply such techniques without being detected, otherwise the
interference with the HS-WSN will itself lead to an alert situation and trigger the action of the security teams.

1. To physically damage the sensor nodes. In case the attacker succeeds damaging the HS-WSN devices,
she will henceforth be able to penetrate the target area and carry out its mission undetected. Another
possible objective is to destroy the data stored locally at the sensor nodes.

2. To change the location and/or direction of the sensors. In case of directional sensors, if the attacker
succeeds directing them away from the action spots (e.g., changing the direction of a movement detector),
she will henceforth be able to penetrate the target area and carry out her mission undetected. The attacker
can also try to change the location of the sensors, so that even if detected,her position will not be correctly
estimated, preventing the system to track her across the target area.

3. To jam the HS-WSN radio transmissions. By preventing HS-WSN inter-node communication, the at-
tacker does not allow detecting sensors to send their alert messages to the monitoring platforms, allowing
her to carry out her mission undetected. It can constitute a preliminary attackto perform attacks of type
1 or 2 (see above).

4. To replay messages intercepted from the HS-WSN. The attacker may try topenetrate the HS-WSN using
compatible devices to transmit extra traffic through the HS-WSN (e.g., dummy status messages) in order
to overload network resources, preventing the transmission of critical data like intrusion alerts. This extra
traffic is composed of HS-WSN transmissions intercepted by the attacker andhence are valid from the
point of view of the protocol message structure.

c©UbiSec&Sens consortium 2007 Page 22 of (61)



UbiSec&Sens Deliverable D<0.2>

5. To forge false messages transmitted through the HS-WSN. The attacker may try to penetrate the HS-WSN
using compatible devices to transmit extra traffic through the HS-WSN (e.g., dummy status messages)
in order to overload network resources, preventing the transmission of critical data like intrusion alerts.
Alternatively, the attacker may forge false alarms in order to generate mistrust regarding the HS-WSN
system, or to overload the security teams, turning their attention away from spots where the attacker
intends to penetrate the target area.

6. To intercept HS-WSN transmissions in order to guess if/when she is beingdetected. The attacker may
try to know if/when she is being detected by passively intercepting and analysing HS-WSN traffic. This
will allow her to constantly adapt her actions in order not to be seized by the intervening security teams.

We sum up the major attacks which we have tackled in our homeland security application in Table 6.
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Table 6: Attacks in the homeland security scenario
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to succeed Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

To replay
HS-WSN
messages

To overload
the network
or to keep
sending
”keep-alive”
messages
from de-
stroyed
sensors

Sensors,
net-
work,
moni-
toring
plat-
forms

Wireless com-
munication
device(s) com-
patible with
HS-WSN proto-
cols

To replay new
messages obeying
to the protocols
in use in the HS-
WSN, and hence
are interpreted as
messages generated
by HS-WSN nodes

It requires having
at least a node
whose PHY and
Data Link layers
are compatible
with those of the
target WSN

Knowledgeable
Insiders

Inclusions of se-
quence numbers
in the message
payload

With sequence num-
bers, the attack is
only possible when
the sequence number
repeats, which does
not happen during a
single mission.

To change
the location
and/or direc-
tion of the
sensors

To carry out
an intrusion
without
being de-
tected/tracked

Sensors None To turn the sensors
towards useless di-
rections, and/or to
change their loca-
tion

Assuming that
the sensors are
well positioned
and concealed,
this attack can be
difficult unless an
attack of type 3 is
previously carried
out

Clever Out-
siders

The delivery of
alarm messages is
guaranteed by the
DTSN transport
protocol

It is still difficult,
since even if the
position of a sensor
node is changed to
a harmless position,
the attacker must
be careful not to be
detected by this or
other sensor node
in the course of the
attack, otherwise the
corresponding alarm
is surely delivered
to the monitoring
platform, even if
the channel was
temporarily jammed
to cover the attack

Continued on next page
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Table 6 – continued from previous page
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to succeed Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

To forge
false mes-
sages trans-
mitted
through the
HS-WSN

To overload
the network,
to generate
mistrust, to
overload the
intervening
security
teams

Sensors,
net-
work,
moni-
toring
plat-
forms

Wireless com-
munication
device(s) com-
patible with
HS-WSN proto-
cols

To forge new mes-
sages obeying to
the protocols in
use in the HS-
WSN, and hence
are interpreted as
messages generated
by HS-WSN nodes

It requires having
at least a node
whose PHY and
Data Link layers
are compatible
with those of the
target WSN

Knowledgeable
Insiders

Inclusion of mes-
sage integrity
check, obtained
using encryp-
tion keys. Both
symmetric and
asymmetric ciphers
are supported

It requires a more
powerful CPU and
knowledge to per-
form cryptanalysis
in order to obtain
the encryption keys
from the plaintext
and integrity check

To jam the
HS-WSN ra-
dio transmis-
sions

To carry out
an intrusion
without
being de-
tected/tracked

Network
commu-
nication

High Tx power
wireless com-
munication
device(s) (PHY
layer only). In
case the HS-
WSN operating
frequency is
not known, a
signal detector
is needed

To transmit an high
Tx power signal
that interferes
with HS-WSN
communications

To locally jam RF
communications
using an high
Tx power device
is not difficult,
it just requires
knowledge of the
WSN operating
frequencies. The
cost is in the
same order of
magnitude of
a single sensor
node. In case
signal detection is
needed, the cost
rises significantly

Clever Out-
siders

”Keep-alive” mes-
sages sent by sen-
sor nodes, with as-
sociated timer at the
sink node

Can be carried
out, but is always
detected, generating
alarm. This will trig-
ger the intervention
of security teams
in the area of the
affected sensors.

Continued on next page
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Table 6 – continued from previous page
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to succeed Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

To intercept
HS-WSN
transmis-
sions in or-
der to guess
if/when he
is being
detected

to constantly
adapt action
in order not
to be seized
by security
teams

Network
commu-
nication

Wireless com-
munication
device(s) com-
patible with
HS-WSN proto-
cols. A Laptop
or PDA can be
used, but it is
not mandatory
(e.g., if the wire-
less device has
output LEDs)

To passively snoop
the HS-WSN traffic
using compatible
wireless devices
able to understand
HS-WSN protocols,
and look for rele-
vant data fields that
can reveal the alarm
status of the sur-
rounding sensors.
A simple version of
this attack consists
of simply inferring
alarms from the
amount of detected
traffic

It requires hav-
ing at least a net-
work node plus
PDA/Laptop, able
to receive and in-
terpret the WSN
messages

Knowledgeable
Insiders

The messages are
encrypted, in a way
that the resulting
cipher is not the
same for the same
plaintext in two
different messages.
Since this requires
synchronization
between sender and
receiver, the se-
quence numbers are
used as Initializa-
tion Vectors (IV).
Both symmetric
and asymmetric
ciphers are sup-
ported. In order to
deny the attacker
the possibility of
differentiating the
”keep-alive” mes-
sages from alarms
based on the period-
icity of the former,
the ”keep-alive”
messages shall be
sent at irregular
intervals, according
to a pseudo-random
pattern

It requires a more
powerful CPU and
knowledge to per-
form cryptanalysis
in order to obtain
the encryption keys
from the plaintext
and integrity check.
Traffic pattern
analysis becomes
more difficult and
requires long-term
statistical analysis
of inter-message
intervals

Continued on next page
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Table 6 – continued from previous page
Attack
name

Goal System
parts to
attack

Technical
means needed
to attack

Technical attack
description

Effort to succeed Attacker type UBI supported
countermeasures

Effort to succeed
after applying UBI
countermeasures

To physically
damage the
sensor nodes

To carry out
an intrusion
without
being de-
tected/tracked.
To destroy
the data
stored lo-
cally at the
sensor nodes

Sensors At most an
hammer or other
simple tool, but
usually requires
destroying the
sensor from a
distance using
a long-reach
tool or even
a shooting
weapon

To eliminate or
damage the sensor
nodes

Assuming that
the sensors are
well positioned
and concealed,
this attack can be
difficult unless an
attack of type 3 is
previously carried
out

Clever Out-
siders

”Keep-alive” mes-
sages sent by
sensor nodes, with
associated timer
at the sink node.
TinyDSM supports
distributed storage
of the events de-
tected by sensor
nodes, thus mini-
mizing the chance
that they are lost
when the nodes are
destroyed

Can be carried
out, but is always
detected, generat-
ing alarm. This
will trigger the
intervention of se-
curity teams, and
eventual replace-
ment/repositioning
of the destroyed
nodes
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In order to counter these threats, The UbiSec&Sens HS-WSN shall includes the following mechanisms:

1. Issuance of ”Keep-alive” messages from the sensor nodes to the monitoring station. This will allow
permanent monitoring of the status of each sensor node, detecting any malfunctions that might arise
either due to technical problems (e.g., node naturally running out of energy) or an attack, in particular
attacks of type 1, 3 and 4. The failure to receive a ”keep-alive” message during an given interval of time
(this is a configuration parameter) will be considered equivalent to an alarm situation and will trigger the
intervention of the security teams.

2. Guaranteed delivery of alarm messages based on the DTSN transport protocol. In case an attack of
type 2 is temporarily covered by an attack of type 3, it may happen that the attacker is detected by
the intrusion detection device before of while she changes its position, but the sensor node will not be
able to immediately alert the monitoring station, since the RF channel is being jammed. DTSN will
ensure that once the attack of type 3 is finished (the attacker may not want itto last for a long time,
otherwise the absence of ”keep-alive messages” will reveal the attack -see above), the sensor node will
resume retransmission of the alarm message, which will then reach the monitoringstation and trigger the
intervention of the security teams.

3. Inclusion of sequence numbers in the message payload. A smart attacker might try to covertly overload
the HS-WSN simply by replaying a huge quantity of status messages that would then be transmitted all
the way to the monitoring station, leading to the battery depletion of nodes along theused routing paths.
While the ”keep-alive” messages allow the detection of the situation after the attack has already produced
its effect, the use of sequence will allow immediate detection of the attempt to replay any message.

4. Inclusion of an integrity-check sequence (ICS) within the packet payload (based on wither symmetric
or asymmetric cryptography). This functionality is used to authenticate the sensor nodes. Since only
the sensor nodes and the monitoring station know the secret keys used either produce and/or validate
the ICS, the attacker will have a very low probability of success correct message forging. Consequently,
such an attempt will be promptly detected. Although asymmetric presents a highersecurity level, it is
too time-consuming from point of view of the scenario requirements (the alarmdelivery latency should
stay below 5 seconds), and thus symmetric cryptography will in practice be preferred.

5. Encryption of ”keep-alive” and alarm messages. This functionality willprevent the attacker from cor-
rectly interpreting the ”keep-alive” and alarm messages, being then unable to distinguish them. This will
deny her the capability to know when she is being detected, buying time to intervention of the security
teams in case a detection alarm is issued by a sensor node. Although asymmetricpresents a higher secu-
rity level, it is too time-consuming from point of view of the scenario requirements (the alarm delivery
latency should stay below 5 seconds), and thus symmetric cryptography willin practice be preferred.

6. Avoidance of periodicity of message generation. Although the previousfunctionality denies the attacker
the possibility to interpret the HS-WSN messages based on the content, analysis of the channel activity
may be enough to identify and distinguish different message types. As such, it is of utmost importance
to avoid the periodicity of maintenance messages, like ”keep-alive” messages, by introducing some ran-
domness for the generation inter-packet intervals.
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2 Hardware and Software Evaluations

In this chapter we present hardware and software solutions that are currently available for realisation of wireless
sensor network applications. We are focussing on existing hardware architectures for which we investigate
their energy efficiency with a special focus on public key cryptography, since these are the most power hungry
operations a sensor node will have to execute. We also investigate the current operating systems as well as
middleware approaches for wireless sensor networks. By that this chapter explores the currently available
design space for realisation of WSN applications. We will use our results to define an idealised hardware
architecture as well as an optimised middleware solution later in this document. We will also use our findings
for the description of an initial soft- and hardware architecture which will be used for our demonstrator set-up.

2.1 Hardware

In this section we will describe and evaluate the off-the-shelf sensor nodes and their components. The sensor
nodes will be evaluated with respect to available resources (processingpower, memory, sensors, type of radio
device) and, after that, with respect to the needed resources (energy).

2.1.1 Criteria

The main issue the designers of Wireless Sensor Networks have to cope withis the limited energy. Of course,
this problem depends on the application and specific implementation but if the nodes are not constraint with
respect to energy then most of the problems do not exist. Thus, since theyare usually powered by batteries,
we assume that the nodes in a Wireless Sensor Network have only limited amountof energy available. This
implies the need for energy saving mechanisms in order to extend the lifetime of thenetwork and, on the other
hand, to reduce the maintenance effort. This becomes even more important ifreplacing of batteries in the
application field is not practicable or even not possible. Thus, here we willfocus on nodes based on 8-bit and
16-bit processing units as they currently promise the best energy consumption to processing power ratio. There
are also nodes available that are equipped with 32-bit processing units, but they require much more energy what
limits their lifetime.

The applicability of a Wireless Sensor Network is strongly dependent on theoverall lifetime of the network
as a set of nodes. There are many ways to define the lifetime of a network, e.g., first dead node, a fixed
percentage of dead nodes, lack of area coverage or partitioning of thenetwork. The kind of definition is
application dependent, but in general, the more efficient a single node is withrespect to energy consumption
the longer the overall lifetime of the network.

In the following subsections we will present the MICA family [17] and the TMote Sky [6] as examples of
the off-the-shelf wireless sensor nodes.

2.1.2 Micro Controllers / Processors

Here we will try to evaluate the processing units of the sensor nodes. The members of the MICA family
(MICA2DOT, MICA2 and MICAz) use the 8-bit ATmega128L[4] micro controller from ATMEL. The second
group includes sensor nodes based on the 16-bit MSP430F1611[22]from Texas Instruments, like TelosB[16]
and Tmote Sky[6]. The Tmote Sky node is actually slightly modified TelosB, but these changes do not influence
the performance of the node. Thus, the features of these two nodes arethe same, unless otherwise noted.

In the first step we evaluate these micro controllers using general information from their specifications. Both
ATmega128L and MSP430F1611 can run with maximum clock frequency of 8MHz (at 3 V supply voltage)
and as usual for nowadays micro controllers are equipped with diverseon-chip peripherals. Table 7 presents
the comparison of the peripherals available and some parameters of both microcontrollers.

In the next step we use the information from the micro controllers’ documentations to calculate the overall
energy consumption and also the amount of energy consumed per clock cycle. In each case the estimated power
consumption is calculated at 3V power supply voltage and at maximum clock frequency specified for the node.

MICA2DOT ATmega128L at 4 MHz → 5.5 mA → 16.5 mW → 4.125 nJ per clock cycle
MICA2, MICAz ATmega128L at 7.37 MHz → 10 mA → 30 mW → 4.07 nJ per clock cycle
Tmote Sky MSP430F1611 at 8 MHz → 4.8 mA → 14.4 mW → 1.8 nJ per clock cycle
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Table 7: ATmega128L and MSP430F1611 on chip peripherals and parameters
Peripheral ATmega128L MSP430F1611

or parameter

word width 8 bit 16 bit
voltage range 2.7 - 5.5 V 1.8 - 3.6 V
voltage range 2.7 - 5.5 V 2.7 - 3.6 V

(flash programming)
program memory 128 kB flash 48 kB flash

data memory 4 kB RAM 10 kB RAM
4 kB EEPROM 256 B flash

AD converter 8 channel 10 bit 8 channel 12 bit
Hardware multiplier Yes Yes

External memory Yes (64 kB) No
interface

Serial interfaces 2 USART, SPI, I2C 2 USART (2 SPI, I2C)

The performance ratio between MICA2DOT and MICA2 or MICAz (MICAx) can be estimated easily since
both use the ATmega. The amount of clock cycles will not change for a calculation and the only difference
will be the time needed to perform it. Thus, the performance ratio between nodes belonging to the MICA
family is equal to the clock frequency ratio, i.e., pure speed ratio. If we hadused the performance figures of
the MICA2DOT as one unit, then the performance of MICAx would be about1,85. However, this increased
performance results in increased energy consumption, what actually results in roughly the same energy costs
of a calculation on all nodes from the MICA family.

The comparison of energy consumed per clock cycle on both MSP430 andATmega shows that the MSP430
requires only about 44% of the energy consumed by ATmega running at about the same clock frequency.
However, the question is what is the performance ratio between these two micro controllers. In this case the
estimation is not that straight-forward as for the nodes of the MICA family because the MSP430 operates on
16-bit words and ATmega on 8-bit words. That is the reason why these numbers only show the needed amount
of energy and do not really compare the computing power of each processing unit.

We will estimate the performance ratio between these micro controllers using public key cryptography
calculations. The reason for this choice of evaluation method is twofold. On the one hand, our project is
security related and on the other hand the public key cryptography operations are the most demanding ones.
As the measurement data we use measurements from [11]. In this paper the authors present the time needed
by TelosB and MICA nodes to perform the server side handshake step of the secure SSL/TLS communication.
These measurements were recorded for two kinds of underlying cryptosystem, i.e., for RSA and for ECC based
handshake. In order to make the results independent from the type of radio device, table 8 presents the time
needed for the calculation only.

We will further normalise the computational performance of all the nodes using the result of the worst one.
Combining the ratio with the previously presented power consumption of each node we estimate the energy
needed by these public key cryptography operations on each sensor node.

The modulo exponentiation with the big private exponent is the main and most expensive part of the full
RSA-1024 handshake. The complete handshake needs about 22 seconds on MICA2DOT, 12 seconds on MI-
CAx and about 5.7 seconds on TelosB sensor node.

In the case of full ECC-160 handshake, where the main and most expensive operation is the scalar point
multiplication, the time needed was 1.6 second on MICA2DOT, 0.87 second on MICAx and 0.5 second on
TelosB.

Based on the measurements for the ECC handshake the computing performance of the TelosB is about 3.2
compared to the performance of the MICA2DOT. The TelosB is also about 1.75 times faster than the MICAx
nodes. This is the advantage of the 16-bit processing unit of the TelosB.

Knowing the time needed by each type of node we estimate the power consumed by the nodes while
calculating the above mentioned operations (see Table 9). Based on these results we create another factor, the
power consumption ratio—the power consumed by the cryptographic operations normalised using the power

c©UbiSec&Sens consortium 2007 Page 30 of (61)



UbiSec&Sens Deliverable D<0.2>

Table 8: Time needed by the sensor nodes to perform SSL/TLS handshake
Sensor node RSA-1024 Performance

handshake ratio (RSA)
MICA2DOT 22.00 s 1.00

MICA2/MICAz 12.00 s 1.83
TelosB 5.70 s 3.86

Sensor node ECC-160 Performance
handshake ratio (ECC)

MICA2DOT 1.60 s 1.00
MICA2/MICAz 0.87 s 1.85

TelosB 0.50 s 3.20

Table 9: Power consumed by the sensor nodes to perform SSL/TLS handshake
Sensor node RSA-1024 Power consumption

handshake ratio (RSA)
MICA2DOT 363.00 mJ 1.00

MICA2/MICAz 360.00 mJ 0.99
TelosB 82.10 mJ 0.23

Sensor node ECC-160 Power consumption
handshake ratio (ECC)

MICA2DOT 26.40 mJ 1.00
MICA2/MICAz 26.10 mJ 0.99

TelosB 7.20 mJ 0.27

consumed by the least effective node.
Since the clock cost is almost the same for all nodes of the MICA family the power consumption will also

be the same. What is interesting, the TelosB node equipped with the MSP430 micro controller needs only
23–27% of the power consumed by the ATmega based MICA nodes performing the same operation.

Additional information needed to compare both micro controllers is the currentconsumed in power safe
modes. These modes are used in case there are no calculation tasks for thecontroller and it is waiting for ex-
ternal or internal interrupts. Both ATmega128L and MSP430F1611 support several power save modes, but the
most interesting are those, where the power consumption is minimised but the interrupts and internal peripher-
als like the watchdog timer are still enabled. Table 10 presents the current consumed by the micro controllers
in comparable power save modes.

2.1.3 Size of Memory

As already mentioned the ATmega128L is equipped with 128 kB flash code memory, 4 kB EEPROM data
memory and 4 kB RAM. The MSP430F1611 has 48 kB flash code memory, 256bytes flash data memory and
10 kB RAM. This shows that the ATmega128L provides more code memory, more nonvolatile data memory,
but less RAM. But the ATmega micro controller can use up to 64 kB external RAM when needed. However,
the external RAM imposes additional power consumption. In case of the MSP430, the RAM memory cannot

Table 10: ATmega128L and MSP430F1611 current consumption in powersave modes
Power save mode ATmega128L MSP430F1611

CPU OFF, max 2.5 mA max 0.4 mA
peripherals at 4 MHz
CPU OFF, 15µA 5 µA

peripherals OFF
WDT ON, interrupts ON
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Table 11: AT45DB041B and M25P80 flash memory parameters
Parameter AT45DB041B M25P80

operating voltage 2.7 - 3.6 V 2.7 - 3.6 V
(2.5 - 3.6 V)

standby current max 10µA max 50µA

typ 2µA

deep power down current max 10µA

WRITE current max 35 mA max 15 mA
typ 15 mA

READ current max 10 mA max 4 mA
(at 20 MHz SPI) typ 4 mA

Table 12: Current and power consumption of the ZigBee transceiver CC2420. Power consumption calculated
at 3V supply voltage. Power consumption per bit at transmission speed of 250 kbit/s

Type of Current Power Power per bit
transmission [mA] [mW] [µWs/bit]

RX 18.8 56.4 0.226
TX -25 dBm 8.5 25.5 0.102
TX -15 dBm 9.9 29.7 0.119
TX -10 dBm 11.0 33.0 0.132
TX -5 dBm 14.0 42.0 0.168
TX 0 dBm 17.4 52.2 0.209

be extended.

Both micro controllers can use an external serial flash data memory. Such memory chips with SPI interface
are used on all sensor nodes. The nodes from the MICA family use external 4 Mbit (512 kB) flash chip
AT45DB041B and the Tmote Sky uses 8 Mbit (1 MB) M25P80 chip. Table 11 provides some information
about their parameters. It shows that the M25P80 chip consumes more energy in the standby mode, but needs
much less in active modes. However, the M25P80 supports deep power down mode, that reduces its power
consumption and requires only one instruction to enter and one to leave the mode. The advantage of the
AT45DB041B flash is that it is also available in a 2.5 V version.

2.1.4 Radio

All four types of sensor nodes use single chip transceivers. MICA2 and MICA2DOT use 433 MHz or 868
MHz radio chip CC1000 [21] and MICAz and TelosB use ZigBee 2.4 GHz radio chip CC2420 [20], both from
Chipcon (now part of Texas Instruments). The two radio types differ in performance. ZigBee devices transmit
data with 250 kbit/s data rate with maximum power of 0 dBm and CC1000 chip allows data rates up to 76.8
kbit/s with maximum power of 10 dBm (433 MHz) or 5 dBm (868 MHz). The MICAnodes that use the cc1000
chip use Manchester encoding reducing the maximum transmission rate to 38.4 kbit/s.

The power consumption data for both chips are shown in Table 12 and Table13. This data shows that the
higher power consumption of cc2420 is compensated by the lower cost of per bit transmission.

The cc1000 transceiver uses 3-wire configuration interface and 2-wire data interface. It also provides analog
RSSI signal that can be connected to one of the micro controllers ADC inputs. The cc2420 chip uses SPI
compatible 4-wire interface for configuration and data. Additionally it provides digital signals for clear channel
assessment (CCA) two input and output FIFO interface signals (FIFO and FIFOP) and timing signal SFD. The
RSSI and LQI values can be accessed over the SPI interface, i.e., by reading internal registers.

The standard SPI interface used by the cc2420 transceiver reducesthe programming effort needed to inter-
face the chip.
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Table 13: Power consumption of the 433 MHz and 868 MHz transceiver CC1000. Power consumption calcu-
lated at 3V supply voltage. Power consumption per bit at transmission speedof 38.4 kbit/s

Type of Current Power Power per bit
transmission [mA] [mW] [µWs/bit]
433 MHz

RX 7.4 22.2 0.578
TX -20 dBm 5.3 15.9 0.414
TX -5 dBm 8.9 26.7 0.696
TX 0 dBm 10.4 31.2 0.812
TX 5 dBm 14.8 44.6 1.160

TX 10 dBm 26.7 80.1 2.086

868 MHz
RX 9.6 28.8 0.750

TX -20 dBm 8.6 25.8 0.672
TX -5 dBm 13.8 41.4 1.078
TX 0 dBm 16.5 49.5 1.290
TX 5 dBm 25.4 76.2 1.984

TX 10 dBm —– —– —–

2.1.5 Connection to Sensors / AD Converter

There are several options how to connect sensors to the considered micro controllers. Depending on the kind
of sensor the data transmission may be digital (connected to SPI or I2C interface) or analog (via ADC).

The considered sensor nodes come per default without any sensors.The Tmote Sky node can be ordered
with a sensor suite, i.e., temperature, relative humidity and light sensors. These are mounted directly on the
sensor node board. The temperature and humidity sensor SHT11 (or SHT15) [34] is a digital one, the light
sensors are two photodiodes connected to the ADC inputs of the micro controller. The SHT11 delivers 12
bit data, requires supply voltage between 2.4 and 5.5 V and consumes about 550 µA during measuring and
maximum 1µA in sleep mode.

The sensor equipment for the MICA family is more flexible, i.e., there are external sensor boards that can
be connected to the main sensor node. For instance, the MTS300 board [15] provides temperature (thermistor),
light (photoresistor) and acoustic sensors. The latter is a microphone with preamplifier with digitally con-
trolled gain. The components used for the acoustic sensor require a minimum operating voltage of 2.4 V (the
MAX4466 preamlifier) and 2.7 V (the digital potentiometer AD5242), the consumed current is about 25µA

in active mode. The current flow in the thermistor and photoresistor circuits isabout 270µA assuming 3 V
supply voltage while active (the resistance of the active element together withan additional resistor is about 11
Kohm). All these sensors are connected to the ADC inputs of the micro controller.

2.2 Software Architecture

2.2.1 Selecting the Operating System

Aiming at creating flexible network architecture the choice of an appropriateoperating system is essential.
In this section we summarise three existing mainstream operating systems (OS) for wireless sensor networks.
For the analysis we chose TinyOS [14] as de-facto standard operating system supplied with sensor nodes and
two operating systems which outlive their experimental phase: MANTIS OS [2] and Contiki [7]. TinyOS
developed at the University of California, Berkeley is a completely event-driven system. On contrary, the
second operating system represents a class of multi-threaded operating systems, like those we all experience in
all current computers. The design of Contiki combines the two previous paradigms. We present an overview
of these operating systems focusing on the richness of provided functionality and flexibility of the application
development process.

There are two general approaches that are used in the operating systems design: The event-driven and
multi-threaded approaches. The major idea behind a purely event-drivensystem is as follows. The execution
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of a certain task is implemented as a handler of either an internal (a request from an internal event scheduler)
or external (HW interrupt) event. Once a particular event handler is called, the task’s code is executed until it is
completed. On contrary, in the threaded approach the execution of a task can be interrupted and the processor
resources are reallocated to another task. In this way it is the task of the kernel to keep the execution of different
programs consistent.

Below we present the results of the cross comparison of the three operating systems mentioned above.
In this document we mainly highlight the advantages and limitations of the systems and do not present the
detailed description of the OS’s. Therefore, for these details we refer the reader to the corresponding system
specifications. We present the comparison against the following factors.

• The underlying OS design paradigm;

• The degree of usage in the WSN community;

• The type of license for the development and modifications to the core functionality;

• OS structure and flexibility of code updates;

• The programming concept for writing applications;

• Potential ability for integration with general purpose network simulators.

The conclusions below were drawn based on our extensive experience of programming under TinyOS and
preliminary practical analysis of Contiki OS. We did not perform practicalinvestigations of MANTIS by the
reason described below in the text. The conclusions about this system arethe result of an extensive study of the
available documentation.

2.2.1.1 TinyOS

TinyOS is an operating system designed specifically for wireless sensor nodes at the University of California,
Berkeley. Below we list the highlights of TinyOS.

• TinyOS is a component based operating system that uses the event-driven design paradigm. In addition
to this TinyOS implements a concurrency model which allows for two distinct execution modes: asyn-
chronous and synchronous executions. In the synchronous mode a computational task once scheduled
runs until the completion. In asynchronous mode a running task can be interrupted by an external HW
interrupt. In this case the CPU resources are given to the interrupt handler code. Note that in TinyOS
there is no dynamic context switching. This means that the programmer has to protect the critical vari-
ables manually (”atomic” declaration) when there is a risk of its modification during the asynchronous
execution mode.

• TinyOS is de-facto standard operating system supplied with commonly used for WSN research Berkeley
motes.

• A complete binary image of TinyOS kernel together with all applications is built during the compilation.
When a sensor node needs another functionality, which is not present inthe original image, another
complete image should be downloaded to the node. Normally a sensor node keeps several binaries with
different functionality stored in the re-writable flash memory.

• TinyOS specifies own extension to the standard C, called NesC. All applications are written in NesC.
Upon compilation the NesC code first translates to ANSI C and the resulting intermediate file is compiled
to the binary image.

• TinyOS is supplied with own simulation facility, named TOSSIM. It is a tool that is primarily used for
debugging the TinyOS functionality. It may also be used for simple networkingsimulations. However,
TOSSIM is not a general purpose network simulator, therefore, complexsimulations with heterogeneous
and sophisticated network settings and scenarios are not possible.
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The major advantage of Tiny OS is the minimal code size amongst all three considered systems. The event-
driven nature of the OS is proven to be efficient for a large class of WSNapplications. However, the system has
a number of serious limitations which makes its usage in the scope of UbiSec&Sensproject questionable. Note,
that we intentionally do not talk about drawbacks of the system but about itslimitations for the UbiSec&Sens
project.

The major limitation of a purely event-driven OS is a known problem of application blocking because of the
execution of a time consuming code. This problem is especially critical when a sensor node performs crypto
operations. The experience described in [2] demonstrates that such operations as well as complex processing
with float type numbers may result in the buffer overflow problem for the packets waiting for transmission. This
problem can be relaxed to some extent by advanced programming skills of thedeveloper, however this might
also be problematic for security related applications as we describe below. As in the UbiSec&Sens project
security is the key aspect in every work package the above mentioned problem places serious limitation on
usage of TinyOS as a ”working horse” operating system.

Regarding the code size, which as it is mentioned above is the smallest of the three systems, the fact that
several complete images with different functionalities should be stored insidethe sensor node seriously relaxes
this advantage. In order to ensure the level of network flexibility specifiedin the UbiSec&Sens project having
several images inside the sensor nodes is unavoidable. As a result potentially large amount of memory, which
otherwise would be used for storing the measured information would be consumed for the system purposes.
From the point of view of the code distribution for update purposes, broadcasting the entire system image is not
efficient from the bandwidth and energy consumption prospective. There exists a solution [24] which allows
modular updates of running applications. Maté is virtual machine implemented in TinyOS. A Mate application
is a byte-code which is transmitted over the network and interpreted by the virtual machine on each sensor
node.

2.2.1.2 MANTIS

MANTIS is an operating system designed at the University of Colorado using an opposite to TinyOS paradigm.
MANTIS is a purely threaded operating system. Below we list the highlights of MANTIS.

• MANTIS is an operating system that uses time-sliced multi-threading design paradigm. A running task
in this system may be interrupted during the execution and the control is moved toa concurrent task.
When interrupted a run-time context of the task is saved and afterwards restored upon regaining the CPU
resources.

• MANTIS is currently a completed product with implementations available for Mica motes and the de-
velopment environment for major operating systems.

• Permission to use, copy, modify, and distribute MANTIS is regulated by the eCOS-style license that
allows developers to keep their own non-OS code (e.g., applications, drivers), but requires modifications
to the core MANTIS to be given back to the project.

• MANTIS OS have a structure of a general purpose operating system. Itconsists of a kernel with common
to all applications functionalities, the device drivers, and a set of applications which run as concurrent
threads. The operating system allows reprogramming (updating the code) on different levels of granu-
larity. In the extreme cases either an entire binary image can be updated or a particular thread can be
reprogrammed. The dynamic reprogramming capability is implemented as a system call library. Each
application may write a modified code to this library through system calls.

• MANTIS uses the standard ANSI C for writing the kernel and applications. This allows for more con-
venient application development process and high level of portability between different general purpose
operating systems.

• MANTIS is supplied with own development tool chain, which include diversesimulation and debugging
facilities. It is possible, for example, to perform heterogeneous experiments with virtual nodes running
as processes on stationary PCs and real nodes with running MANTIS OS. However, the issue of inte-
gration with a general purpose network simulator is not addressed. Nevertheless, taking into account the
underlying C programming language this task seems feasible.
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The major advantage of the operating system is the eliminated problem of application blocking during
the execution of a computation-expensive part of the code. For the implementation of threads a conventional
multithreading approach is used. Namely, once a task is interrupted its run-time context is saved in the RAM
memory. Upon regaining the CPU resources the context is restored. In MANTIS the context of single thread
consumes 128 B of memory. In this way MANTIS supports up to several tensof concurrent threads on a sensor
node with 4 kB of RAM (Mica2 motes).

2.2.1.3 Contiki

Contiki is an operating system developed at SICS, Swedish Institute of Computer Science. It is an event-driven
operating system with a possibility of multithreading. Below we list the highlights of Contiki.

• In an original way Contiki combines the advantages of the event-driven and multi-threading OS design
paradigms. The kernel is organised as an event scheduler that passes the CPU control to multiple con-
current threads. In contrast to the time-sliced approach the control is passed between the processes by
submitting an event to the event list of the scheduler.

• Contiki is a relatively young operating system. Developed originally for ”ancient” Commodore 64 plat-
form it was the only operating system with full IP networking capabilities for this type of computers.
Currently the ports of Contiki exist for all commonly used research sensor platforms. The system is
supplied with the development tool chain for Linux and Cygwin environments.

• Contiki OS has a structure of an usual personal computer OS. It consists of a compact kernel with device
drivers, common libraries and a set of applications. The operating systemallows reprogramming (up-
dating the code) on different levels of granularity. It is for example possible to update the entire binary
image, specific drivers, and service libraries. A particular application orpart of the OS can be dynam-
ically replaced over the wireless network interface. The code is distributedas binary executable files.
Upon reception, the code is dynamically linked, initialised and launched by the operating system.

• Contiki uses the standard ANSI C for writing the kernel and applications. This allows for more con-
venient application development process and high level of portability between different general purpose
operating systems.

• Contiki is supplied with own simulation facility. The standard development tool chain for a particular
sensor platform is used for the development and debugging. In the caseof Telos motes based on TI MSP
430 microcontroller a MSP specific gcc compiler and debugger are used. As it is the case with other
sensor OS, the issue of integration with a general purpose network simulator is not addressed in Contiki.
Nevertheless, taking into account the underlying C programming language potentially this task seems
feasible.

In comparison to the previously considered operating systems the size of Contiki’s kernel is larger than in
TinyOS but smaller than in MANTIS. Despite of slightly larger size than TinyOS,Contiki has a number of
functional advantages over the former. The major one is a flexible combination of the event-driven kernel and
the multithreaded library. In the multi-threaded mode each thread requires a separate stack. As in MANTIS
the size of the thread’s context in RAM is 128 B. In comparison to MANTIS, the less restrictive license type
allows for a contribution-oriented experimentation with the core functionality ofthe operating system.

Applications in Contiki are compiled independently of the kernel. The resultingexecutable binary can be
uploaded to the sensor nodes over the network. The size of the transmitted code is much smaller than that of
the kernel. This functionality makes Contiki very suitable for a wireless sensor network with diverse target
application areas.

The networking functionality in Contiki is presented by a highly optimised and compact implementation
of the entire TCP/IP protocol stack included as a part of the kernel. This issue can be considered both as an
advantage and to a certain degree as a limitation of the system. On one hand, it isnice to have a working
communication stack out of the box and be able to communicate with the sensor nodes using conventional
network protocols. On the other hand, we believe that the full TCP/IP stackis not always needed in wireless
sensor networks and therefore should be included in the architecture asan optional functional component.

c©UbiSec&Sens consortium 2007 Page 36 of (61)



UbiSec&Sens Deliverable D<0.2>

A clear advantage of the system is the usage of the standard ANSI C for programming the kernel and
applications. This makes Contiki potentially suitable for easier integration with a general purpose network
simulator.

2.2.1.4 Summary

There are numbers of existing operating systems which appeared to be outside the scope for this study. Amongst
the most interesting solutions we highlight JavaOS [40] from SUN Microsystems, FreeRTOS [39] and SOS
[41].

In the context of wireless sensor networks there are pros and cons ofusing each of the above reviewd
operating systems. For example, the major advantage of the event-driven OS is low memory consumption
during its execution. However, the major disadvantage of such OS is a potential for blocking the execution of
other tasks during servicing the time-consuming operations, e.g., cryptographic operations. On the other hand,
the major advantage of purely thread-based OS is a concurrent execution of multiple processes. However,
amongst the disadvantages of this approach the most critical one is RAM memory consumption during the
context switching.

2.3 Middleware Approaches

Wireless sensor networks are mainly used to gather data about a certain environment (see for example [30]).
This especially holds true for the application fields selected in this project. Dueto this focus the research in
the middleware area has somewhat concentrated on supporting data storage and retrieval issues in WSNs. We
reviewed approaches such as tinyDB [25], Cougar [44] and Hood [42] to name just a few in milestone M3.1 to
which we refer for detailed information.

There are several approaches towards flexible middleware for wireless sensor networks. They try to provide
application independent support to applications but are mainly focussing on communication issues in one form
or another. In [45] authors introduce the concept of reconfigurabilityfor middleware in pervasive computing.
Here the major part (if not all components of the middleware) is located on a PDA device and the task of the
middleware is merely the discovery provision of available data. In [37] the authors propose an application
independent scheme for defining groups of sensors to provide easy adaptability of a WSN to new applications.
Here part of the adaptation logic is placed on the sensor nodes. A similar approach exploiting roles of sensor
node is proposed in [23].

Our middleware approach differs from those cited above by that we are focusing on a very specific function-
ality i.e., security instead of trying to provide a communication or programming abstraction. In our approach
flexibility is addressing support of a wide range of application and by individual support of the security needs
of each application. I.e., we are trying to provide a tailor made security solutionfor each application. In order
to achieve this goal we are working towards a middleware compiler which selects security modules based on
application and sensor node requirements and constraints respectively.In this area some work has been done,
but none focuses on WSN and security issues but aims at a similar goal i.e., providing tool support for devel-
opment of a certain middleware. Most approaches are based on model driven architecture (MDA) [3]. The tool
sets Cadena [13], VEST [36] and CoSMIC [1] are MDA based and try tosupport development of platforms
for embedded systems. By that, they provide functionality similar to our approach, but the difference is that
we focus on security and do not use MDA but defined our platform architecture independently of any formal
model. In addition only VEST supports the modelling of security aspects.

In [8] the authors discuss the integration of security aspects into a formal method based development of
networked embedded systems. The focus of the security analysis language (SAL) is merely on information
flow between networked entities. By that, it might be a way to model security requirements of applications
residing on top of the UbiSec&Sens modules and to verify whether or not ourmiddleware compiler selected
the correct security modules.
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Tmote Sky (in kBytes) MICA (in kBytes)

ROM program memory 48 128
RAM for variables 10 4
External Flash for data storage1024 512

Table 14: Available memory in popular sensor nodes.

3 Requirements Analysis

In this chapter we discuss to which extent the existing system architectures composed of hardware and software
can fulfil the requirements defined by our scenarios. Here we are againfocusing on energy issues and use
memory as a second parameter. The latter clearly shows that the software packages that are installed at the
sensor nodes need to be as small as possible and that there is a very strong need to be able to exchange parts of
the software configuration, since the deployment of all security modules is infeasible. The available energy is
pretty limited as well, allowing only small duty cycles.

3.1 Software Parameters

The design of software for wireless sensor devices is a challenging taskthat must be done under strong con-
sideration of the hardware constraints. Table 14 summarises the available memory resources for the two sensor
node families mentioned in section 2.

The extremely limited computational resources of wireless sensor nodes place hard requirements on the
software. It is important to note that the operating system itself consumes a substantial part of the node’s
memory. Table 15 shows that about 50% of MICA node RAM memory is already consumed by the operating
system.

Table 16 shows the memory footprint for the software modules grouped by categories where UbiSec&Sens
toolbox will provide a contribution. The data in the table are given for sensor motes running TinyOS operating
system.

3.2 Evaluation of Hardware with Respect to Scenarios’ requirements

The main requirement that has to be satisfied by the hardware is the lifetime of thesensor nodes. Table 17
presents the theoretical lifetime of each node assuming that in the active mode the micro controller is working
all the time and the radio chip is transmitting 20% of the active time with 0 dBm output power. In the non
active mode the micro controller is in power save mode and radio chip is switchedoff. The Table shows also
the lifetime of each node for duty cycle different than 100%. The available amount of energy is taken from
[29].

It must be emphasised that the comparison here is only duty cycle based, i.e.,the actual amount of compu-
tations each node is able to process in these diverse duty cycle settings differ as mentioned in section 2.1.2.

Anyway, Table 17 shows that for the agriculture scenario the duty cycle cannot be much more than 1 % to
reach the requested lifetime of 5 months. In the homeland security scenario if the requested lifetime is about
two days, all nodes manage this lifetime even with 100 % duty cycle. But if the requested lifetime shall be

Functionality Memory footprint
RAM(Bytes) ROM(Bytes)

Basic Send/Receive over radio
interface functionality

86 2988

Processor specific management
functionality

18 1876

Operating system specific 2000 4236
Total: 2104 9000

Table 15: Memory occupied by operating system software on a node fromthe MICA family.
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Table 16: Memory footprint for selected software pieces
SW Category Software item RAM, Bytes ROM, Bytes Comments

Application TinyPeds 500 1000
(excl. dependencies)

Reliable Transport DTSN N/A 6459 Configuration: maximum num-
ber of supported flows, and tx/rx
window sizes + caching window

Networking TinyLUNAR 1738 3400 1783B is the memory consumed
by interface supporting func-
tionality. The implementation of
Tiny Lunar is under intensive de-
velopment. The memory foot-
print may differ considerably in
the future.

TinyAODV (Intel) 337 2750
DSDV (INOV) N/A 1123
PathDCS N/A 1764 Routing protocol for data centric

storage
MintRoute N/A 1400
BVR N/A 1411 Beacon vector routing

Supporting software TinyRNG 463 10532 Random number generator [10]
compiled for Mica2 motes

ElGamal over ECC 700 4400 Security modules for privacy ho-
momorphism

several days or weeks there must be a kind of duty cycle management in order to extend the lifetime. The same
holds for the vehicular scenario, where the lifetime shall be as long as possible.

Nevertheless, if the required lifetime exceeds the manageable lifetime with a reasonable duty cycle, i.e., the
duty cycle is not enough to perform all needed calculations, additional energy sources, like solar cells, might
be used. This holds especially for outdoor scenarios.

Table 17: Lifetime of the evaluated nodes considering diverse duty cycle settings
Duty cycle [%] Tmote Sky MICAz MICA2 MICA2DOT

Lifetime in days
100 3.15 1.93 1.96 1.93
80 3.93 2.41 2.45 2.41
50 6.28 3.86 3.91 3.85
20 15.69 9.62 9.74 9.57
10 31.38 19.15 19.39 19.00
5 62.50 37.92 38.30 37.45
1 300.50 173.61 177.56 164.28
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4 Hardware & Software Specification

In this section we discuss the architecture of systems that are build using the UbiSec&Sens toolbox. In the first
subsection we develop an idealised sensor node hardware. The major idea is to show which parameter settings
would provide easy development of WSN applications allowing for strong security means and long lifetime as
well as supreme sensing and storage capabilities. Thereafter, we shortlyexplain which hardware platforms will
be used for the planned demonstrators and how they differ from the idealised sensor nodes. In the systems’
architecture subsection we first introduce the different parties that areinteracting in a WSN application, as
well as the basic network architecture. The major part of the subsection is devoted to the idealise middleware
architecture. We will discuss this architecture from different views showing special aspects with respect to life
cycle of the overall system and to roles of involved devices.

4.1 Hardware specification

In this section we will discuss the hardware that would satisfy the requirements for a WSN the most. This
discussion will have two parts, first, a sensor node that can be built rightnow using components available
on the market, and second, an idealised node with custom made ultra optimised chips that may become truth
in several years. Additionally, we will discuss the application of hardwareaccelerators for the most energy
consuming operations, e.g., symmetric cryptography. This falls somewhere between the up to date sensor
node approach and the futuristic one, because there are already some hardware accelerators available, but their
application still requires additional effort in custom chip design.

4.1.1 The Optimal Node Configurations

The combination of on-the-shelf components can lead to two possible semi-optimal node configurations de-
pending on the available energy and required lifetime. They are both semi-optimal because each solution has
some drawback.

The first configuration is a powerful node with great processing power and huge memories. An on-the-shelf
example of such a node is the Imote2 [18] from CrossBow. This node is based on the Intel XScale PXA271
32-bit processor usually used in Personal Digital Assistant (PDA) devices. According to the documentation this
node has 256 kB Static RAM, 32 MB DRAM and 32 MB flash memory. The clock frequency is between 13
and 416 MHz what makes it actually a small computer. The radio chip is the cc2420 chip known from MICAz
and Tmote Sky / TelosB nodes. Powered by three AAA battery cells, this node consumes about 390µA in deep
sleep mode (i.e., even memory clock is stopped) and about 44 mA in active mode (at 13 MHz) with radio on,
what reduces its lifetime if additional energy sources like solar cells are notused.

Obviously, such a node is not the target platform for an application that shall run for several weeks or
months, but anyway it may be a potential platform for short period computation hungry applications, e.g., like
our homeland security scenario. Assuming the node is powered by the AA batteries like MICAx and Tmote
Sky nodes are, and the available energy is calculated for the same conditions, this node’s lifetime is about two
months if in deep sleep mode only. On the other hand, if in active mode only, the lifetime is about 14 hours.
The node is powered by three AAA battery cells, what actually causes thatthe amount of available energy is
even smaller.

That was an extreme example of an on-the-shelf powerful sensor node. The high energy consumption is the
reason we do not consider this kind of hardware any further. The following examples will be more theoretical
hardware configurations with gravity point at either computational power or lifetime of the node.

In order to create a sensor node that may run for a long time there is a need toidentify components that
require the least energy. Of course it will be appreciated if the performance of these would also be quite
good. Section 2 shows that the 16 bit MSP430 micro controller is quite powerful and energy efficient as well.
Comparing to the 8-bit ATmega it is the best choice for the sensor node micro controller. The only disadvantage
is quite small code flash memory.

There are other micro controllers on the market as well, but none of them reaches the energy efficiency of
the MSP430. There is for instance a more energy efficient version of theAtmel micro controller than the one
used in the MICA nodes—the ATmega1281 [5]. This micro controller is a little bit less energy efficient than
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Table 18: Parameters of the STR711FR2 32 bit micro controller
Parameter Value

operating voltage 3 - 3.6 V
active current at 16 MHz 27 mA (from flash)
(all peripherals ON) 23 mA (from RAM)
active current at 16 MHz 21 mA (from flash)
(all peripherals OFF) 16 mA (from RAM)
low power waiting 37µA
for interrupt current
(CPU clock OFF,
peripherals at slow CLK)
stop current 18µA (RTC ON)
(CPU clock OFF, 10µA (RTC OFF)
peripherals clock OFF)
standby current 10µA

the MSP430, offers more code space and external memory interface, accepts voltage down to 1.8 V, but is still
8 bit, thus its computational power is comparable to the one provided by its older brother (ATmega128L).

Another component that fits into the requirements is the radio transceiver from Nordic Semi nRF24L01 [33].
According to its documentation the chip requires about 12 mA in transmit and receive mode, what is much less
than the cc2420 for the same output power at the same supply voltage (TX: 17.4 mA, RX: 18.8 mA)(more about
cc2420 in Table 12). More, the nRF24L01 transceiver manages the transmission rate of 2 Mbits per second
what makes the energy cost per bit even lower. However, the protocolis not ZigBee compliant and the cc2420
offers an on board AES hardware accelerator for the transmitted data.

Another part is the external data flash memory. Here one can go in the direction of reducing the current
consumption and choose smaller one, like for instance the 25AA1024 [19] 128 kB SPI EEPROM chip from
Microchip, or choose a bigger one, like the M25P80 or AT45DB041B flash as in Tmote Sky or MICA nodes
that need only a little bit more (about twice) energy while reading or writing andneed supply voltage higher
than 2.5 or 2.7 V but provide more space to store the collected data.

If the computational power of the MSP430 micro controller is not enough andthe design of the sensor node
application allows higher energy consumption then a 32 bit micro controller may be chosen. But instead of
using the XScale processor we propose applying an ARM based micro controller. A perfect example could
for instance be the single voltage STR711FR2 [38] 32 bit micro controller from STMicroelectronics. It has
256 kB code flash, 64 kB RAM, 16 kB data flash on board and external memory interface as well. Multiple
communication interfaces simplify the connection to sensors etc. But what is important, it may run up to
60 MHz delivering reasonable computing power but also consumes reasonable amount of energy (see Table
18). This micro controller running from flash at 16 MHz consumes about three times that much energy as the
ATmega128L but offers probably much more than three times the computation power. But the very important
thing is that in the low power mode and waiting for external or internal wake-up sources the ST711FR2 needs
only 18µA or 37 µA current, respectively. This is 10 (or 20) times less compared to the processing unit of
the Imote2 node, what results in 10 (or 20) times longer lifetime in sleep mode. In standby mode the current
consumption goes even lower, but in this case the unit is reseted after wake-up.

The disadvantage here is the need for a quite high supply voltage, i.e., 3 V. To cope with this requirement,
either more than two 1.5 V batteries or a more sophisticated power supply approach is needed. An example
here could be a step-up/step-down DC/DC converter that delivers 3 V from input voltage e.g., between 1.8 V
and 5.5 V. In this case, however, the additional energy costs have to be considered. That is why the accepted
operating voltage for micro controller and other components is that important.

Adding some application specific sensors to the node accomplishes the designof an energy efficient node
built from on the shelf components. The choice here is to use simple analog components like thermistors,
photodiodes and photoresistors or more sophisticated and maybe more accurate digital sensors. The advantage
of the latter is that they deliver the data in digital form, thus problems with conversion, normalisation and
linearity do not exist.
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Table 19: Comparison ofGF (2m) ECPM hardware designs.
Ref Field Platform Time Size
IHP GF(2163) 0.25µm ASIC 0.08 1.0mm2, 35Kgates
IHP GF(2163) Xilinx XC2VP70 0.11 5598 LUTs
[32] GF(2163) 0.13µm ASIC 0.19 117.5 Kgates
[12] GF(2163) Xilinx XCV2000E 0.14 19508 LUTs
[27] GF(2167) Xilinx XCV400E 0.21 3002 LUTs
[31] GF(2191) Xilinx XCV3200E 0.06 ≈30000 LUTs
[35] GF(2163) Xilinx XCV2000E 0.05 25763 LUTs
[43] GF(2191) 0.35µm ASIC 6.21 1.31mm2

[9] GF(2233) 0.13µm ASIC 6.68 71 Kgates

4.1.2 Idealised Hardware

If we think of an ideal sensor node and the availability of components does not really matter then the previous
subsection gives an overview of its desired features. It should be as computationally powerful as possible and
should need almost no energy, or even harvest the energy it needs. An additional advantage might be the small
size of the complete node, possibly a single chip solution.

One possibility to achieve this may be application of highly efficient hardware accelerators. There are many
fields where they can be applied, from the most energy hungry operations like public key cryptography to the
network protocol layers. Since pure hardware solutions may be a kind ofnon flexible it should be combined
with a piece of software, however, its processing should be very efficient.

The next subsections gives more details on the available and future solutions in hardware accelerators for
public key cryptography operations and on potential approaches of harvesting energy.

4.1.3 Hardware Crypto Accelerators

The existence of hardware accelerators for cryptographic primitives would help to relax energy constraints
and thus allow for better security at low lifetime penalty. In this subsection we are discussing some hardware
accelerators for elliptic curve cryptography.

Optimisations of implementations and applied algorithms turn many cryptographic algorithms more and
more suitable for wireless sensor networks. However, if we consider implementations of elliptic curve cryp-
tography for WSNs it still takes hundreds of milliseconds to complete a cryptographic operation. Even if time
consumption can be tolerated, the required energy is a serious problem. Every millisecond the node is calcu-
lating is a millisecond that brings it closer to death. Hardware accelerators are considerable means to reduce
time and this way also the energy required for cryptographic operations. If, as described in [28] a 163 bit ECC
operation merely requires 13µJ, it corresponds to a node computation time of less than 1 millisecond. It is a
value that is negligible in comparison to other operations or even the needed transmission power.

In the literature several hardware accelerators for ECC have been proposed (see Table 19). However, most
of them are focused either on absolute best speed or minimum gate area. None of both approaches yields to best
results regarding the requirements of WSNs. The fast implementations [31, 35, 12] need a high amount of area
so that it foils the idea of small cheap devices. In contrast, the small units [43, 27] usually need so much time
that the total energy (i.e., power x time) per cryptographic operation is veryhigh. Within the UbiSec&Sens
project IHP developed an ECC accelerator that promises to minimise the total required energy while limiting
the needed gate area. The reported energy consumption is 13µJ for a 163 bit EC point multiplication and 27µJ
for a 233bit ECPM requiring gate areas of 1.0mm2 and 1.4mm2, respectively (IHP CMOS 0.25µm).

Table 19 shows the comparison of the IHP design and other known hardware implementations of acceler-
ators for the EC scalar point multiplication. Due to different hardware configurations and different amount of
functionality, the numbers cannot be compared directly.

For example, the design presented in [32] supports not only ECs based on GF(2m) but the curves on prime
fieldsGF (p), as well. This renders this ASIC design to the most configurable EC co-processor. The hardware
proposed in [12] also supports not only one curve but all ECs based on binary extension fieldsGF (2m) up to a
size ofm = 256. Both these designs achieve flexibility at the cost of large area and poor performance compared
to the IHP implementation. The design described in [27] is a very area efficient implementation of an EC, based
on GF (2167). It does not reach the speed of our design but it is very small. With a LUT number of 3002, it
requires about half of the area of the IHP design on the FPGA. Unfortunately, no data of this design’s energy
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consumption has been published. From our knowledge the fastest ECC design was reported in [35]. It requires
merely 50µs for a 163 bit ECPM, i.e., it is 40% faster than the IHP design, but with its 25000 LUTs it is about
five times larger than the IHP implementation. In contrast, the ASIC design presented in [43] is very small and
manufactured in the 0.35µm technology has a size of 1.31mm2. It supports two fields, but requires more than
6 ms for an ECPM. The energy consumption reported for this design is 213µJ for an ECPM inGF (2191), what
is about the tenfold of the IHP design. Another design that reports the power consumption is the commercially
offered one presented in [9]. With this design a 233 bit ECPM requires 6 msand a total energy of 140µJ for
the 50 MHz design, manufactured as 0.13µm ASIC.

The comparison clearly indicates that the IHP approach outperforms all other designs if area and processing
time are taken into account. From our knowledge it is the most energy efficient implementation that has been
reported. Consequently it is recommended to take it as reference implementation for an ECC accelerator for
WSNs.

4.1.4 Energy Harvesting

Though today’s sensor nodes usually depend on battery power it is considerable that they can harvest the energy
they need. The most obvious and known variation is the application of solar energy. If the nodes are deployed
outside where they can harness the sun as voltage producer it would be agreat opportunity to prolong the life
time of the network without the need to change batteries anymore.

Beside this well known solar approach several new sources for energy harvesting are emerging. In ap-
plication areas that have high temperature differences it is possible to exploit the Seebeck effect that directly
produces voltage. Another source of voltage can be kinetic or mechanical strain. Due to the piezoelectric effect
some crystals are able to generate voltage in response to mechanical effects. The mechanic strain can be caused
by the movement of the device, but also by seismic vibrations and even soundwaves. However, the gained
electrical energy by today’s technologies is mostly not sufficient to supplya complete sensor node. A last
possibility for energy harvesting is the harnessing of ubiquitous radio waves as source of voltage (like RFIDs).
But unless the device is not close to the radio source it is very unlikely to gainenough energy to drive a sensor
node.

Finally, it can be stated that energy harvesting technologies exist, but theirpotential application is very
depended on the environment. Anyway, the efficiency of these technologies is still very limited. However, for
a small part of the node, maybe a wake-up-mechanism, they are considerably applicable, while the actual node
hardware can still be driven by traditional battery power.

4.2 System Architecture

In this subsection we differentiate between the network architecture and themiddleware architecture. The
former reflects the network entities and their interaction, whereas the latter concerns the software architecture
of each entity.

4.2.1 Network Architecture

We are considering heterogeneous networks, i.e., networks consisting of a wired and a wireless part. The latter
is formed by sensor nodes which can be connected via gateways to a wirednetwork. In the wired network a
control center resides where the application is running. We do not require connectivity for 24 hours seven days
a week, but allow or even better require the wireless part of the network torun correct for longer periods w/o
connectivity to its control center.

We allow more than one gateway to be part of the network which has significant benefits regarding load
balancing inside the WSN due to allowed alternate paths to different WSN areas. In addition, multiple gateways
improve reliability i.e., help to prevent WSN partitioning or isolation of WSN parts.

Figure 4 shows such a network and identifies four types of entities:

• Sensor nodes

• Gateways

• Readers
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Figure 4: Network set-up consisting of a heterogeneous network and four specific device classes

• Control Center

A Gateway is a fixed base station. It is constituted by a WSN node (sink) and aPC or equivalent computing
platform. A gateway links the WSN to the Control Center using an external network. A gateway is usually
connected to the mains power, and has better physical protection mechanismsthan sensor nodes have. Gateways
have considerable computing and storage resources, and they may also perform aggregation and data storage
functions.

A Reader is a portable device such as a PDA or equivalent computing platform. It allows a user to access the
WSN directly as it includes a user interface, and is capable to connect to a sensor node. In a way, a Reader can
be thought as a portable Control Center, with reduced functionality. A Reader allows a user to approach a WSN
or to traverse it, and access information about specific sensors, aggregated data or data stored in the network.
It allows also receiving alarms from the WSN. A Reader can be very useful in situations a WSN becomes
partitioned. If a Reader needs to access global information from the Control Center it will use an external
network (e.g., WiFi, GPRS, UMTS) to establish a data connection and request the required information.

The Control Center runs applications that support the management of the WSN and allow access to data
from specific sensors and aggregated data, and also to receive alarms.

Mobility aspects

In the majority of possible set-ups the sensor nodes, gateways and the control center will be stationary whereas
readers will be mobile.

In order to support mobility of readers appropriately the WSN needs to know about readers somewhat in
advance. As soon as such a device approaches the WSN it will announce itself and the WSN network will
reconfigure. If the Reader moves very slowly compared to the time needed for routing algorithms to produce
new routes, it can be seen as an additional gateway. However, if the reader moves fast compared to re-routing
restrictions may apply to the functionality. For example, it may only access data inits vicinity, which is defined
by the time needed to reestablish properly. I.e., the faster the mobile device moves the smaller its vicinity.

The support of mobile devices has significant impact on the realisation of authentication and authorisation
mechanisms. I.e., due to the fact that a mobile device may set-up connections to any sensor node, each sensor
node needs the capability to deal with these issues. This requires the AA means to be really lightweight with
respect to processing effort and memory consumption (See Figure 5).
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Figure 5: A mobile reader here depicted as a car may move through a WSN whileretrieving data from the
WSN

4.2.2 The Toolbox Approach

The major advantage of the UbiSec&Sens approach is that it addresses flexiblity or more precise adaptability
from the very beginning. The security provided by the UbiSec&Sens toolbox can be tailor made on a per
application basis and even be adapted during the life cycle of a certain application. This level of flexibility is
achieved by a modular middleware architecture and by introducing the concept of a middleware compiler.

4.2.3 Middleware Compiler

The general task of middleware platforms is to provide a certain level of abstraction that simplifies the devel-
opment of applications for an application and/or device domain. The UbiSec&Sens project provides suitable
building blocks to provide middleware-like functionality by realizing

• High level APIs

• Basic and Complex security services

• Networking support

Since the gravity center of this project is security for WSN as such and notfor a specialised application
domain or even a single appliction several solutions for each security service are required to be capable to
provide security for a wide range of applications.

The set of security modules developed in this project do not constitute a concrete middleware but span a
wide range of possible secure middleware configurations, which might be used by other more abstract mid-
dleware approaches or directly by certain applications. Thus, UbiSec&Sens security modules are the building
blocks for a concrete instantiation of a secure middleware for a certain application.

The selection of the suitable security modules is done by our middleware compiler. In order to generate a
suitable set of security modules for a certain application reasonable constraints need to be defined in advance.
These constraints are on one hand due to the limitations of wireless sensor nodes and on the other hand im-
posed by the security that the application under development requires. The hardware driven constraints are
for example processing power and available energy to name just a few. Application dependent constraints are
lifetime of the overall network, security features like secrecy of measureddata or similar. In order to define the
relevant constraints an XML based description language for sensor nodes and application requirements is un-
der development. Also the role, e.g., whether or not a sensor node will be an aggregator influences its software
set-up. The sensor node description provides information concerning the hardware set-up of a sensor node plus
relevant information of its software configuration such as operating system used and already allocated memory.

In addition to the description of the above mentioned constraints the UbiSec&Sens security modules provide
a self description. This description provides information concerning the functionality of the module, and the
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Figure 6: The middleware compiler appropriate UbiSec&Sens modules are selected due to application require-
ments and sensor node constraints.

resources—memory footprint and processing power—required by the module. If the module provides a com-
plex functionality its description also contains information on potential dependencies of other UbiSec&Sens
security modules. For example cipher mechanisms may require that a secure random number generator is
deployed together with the cipher mechanism itself.

Figure 6 illustrates the idea of the middleware compiler. The result of a successful compiler run is an
instance of the UbiSec&Sens secure middleware.

If the configuration of sensor nodes is changed during their life time, this is recorded at the WSN configu-
ration map repository (see Figure 7). The repository always reflects themiddleware instantiation of all sensor
nodes starting from the first set-up. The current set-up of all nodes within a certain part or with a common
task is used as an additional constraint whenever a code update is required after deployment. By that interoper-
ability inside the WSN can be guaranteed, e.g., the use of different aggregator node election algorithms can be
avoided.

4.2.4 Middleware Architecture

The UbiSec&Sens middleware architecture distinguishes between four typesor classes of components, where
each component consist of one or more modules. These classes are:

• sensor node abstraction layer

• basic services

• complex services

• middleware core

The sensor node abstraction layer is the only operating system and hardware dependent component. It has
to be adapted individually for each OS/hardware combination that shall be supported.

Basic services are modules that do not support several functionality but just one. But they may rely on other
basic services such as cipher means do since they require random number generators to be deployed.

Complex services provide a multitude of different functionalities for example aggregation and persistent
storage of sensor reading can be provided by the tinyPEDs service. Inorder to fulfil their tasks complex services
may require support from basic services, e.g., to do encryption or decryption. But complex services may be
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Figure 7: The UbiSec&Sens Middleware architecture: control center configuration at the left sensor node
configuration at the right hand side

implemented in a monolithic way so that they do not need any basic services to fulfil their tasks. Therefore they
may access the abstraction layer directly as basic services do.

The middleware core consists of modules that are necessary to guaranteeproper functionality of the other
modules and those that are needed on all devices, which set-up an UbiSec&Sens powered system:

• Dynamic code update module: This module is necessary to allow reconfiguration of sensor nodes during
their lifetime. Potential triggers can be newly detected vulnerabilities of securitymodules or a simple
reconfiguration due to deployment of new applications.

• Message interpreter: provides local intelligence which is needed to decidefor example whether or not
the current sensor node is capable to answer a query correctly or whether it has to forward the mes-
sage. In addition it is a kind of middleware scheduler which passes incoming data to the corresponding
middleware modules.

• State management module (SMM): The SMM monitors the sensor node and maintains its state. By that
it can trigger a code update for example if the sensor node reaches the management state, which might
be caused by expiration of timers or by external triggers such as detectionof malicious nodes.

The general middleware architecture is mainly independent of the device type. I.e., the deviations between
sensor nodes, readers and control centers are minor. The major differences concern the presence of the sensor
node abstraction layer, which is only needed at sensor nodes, and the inclusion of the UbiSec&Sens middle-
ware compiler which is necessary only at the control center. Reader devices may be equipped with their own
middleware compiler that may be tailored for specific maintenance tasks if they provide sufficient resources.

Figure 7 depicts the UbiSec&Sens middleware architecture for sensor nodes and control centers.
The concrete instantiation of the middleware, i.e., the modules deployed at the sensor nodes, reader devices

and at the control center depends on:

• the currently running application
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Figure 8: Dependency graph of asymmetric cipher mechanisms as used by the UbiSec&Sens middleware
compiler

• the current role of the sensor node

• sensor node capabilities

4.2.4.1 Middleware APIs

Our middleware architecture as outlined so far provides merely a logical viewon how complex functionality
can be grouped instead of defining abstract or concrete APIs betweenmiddleware layers or modules. We clearly
point out that such generic APIs are by design not needed. In our approach each module provides a module
description that provides a) a method or call signature, b) the resourcesneeded by the module as well as c)
dependencies of other modules. These module description are used by our middleware compiler to generate a
certain instance of our middleware. Since the compiler is also influenced by theapplication under development
there is no need for a module independent and more general API. If an application programmer wants to bypass
some UbiSec&Sens modules she still can do that by using the module description.

Figure 8 shows how a basic service is composed of even more elementary building blocks. The rectangles
with the red border describe implementation independent functionality and provide an method/function call
interface that can be used by all implementations that are directly linked to this description.
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Figure 9: Sensor node states before and after deployment

4.2.4.2 Core Components

State Management Module

Each sensor node can be in one of the following five states:

• M0 production: the node is manufactured and a simple version of DCU is available at the node

• M1 customisation: all modules that are needed for the application are determined by our middleware
compiler and loaded onto the sensor node by DCU in a secure environment. After that the node is ready
for deployment.

• M2 initialisation: the sensor nodes are deployed and are performing the network set-up, e.g., exploring
their neighbourhood and setting up routing information etc.

• M3 normal operating: the sensor node executes its application specific task.

• M4 management: The management state can be separated in at least two parts;the re-configuration mode
and the self-repair mode. In the re-configuration mode nodes perform maintenance work, which usually
do not require a subsequent initialisation phase but sometimes a dynamic codeupdate. In the self-repair
mode more severe errors are treated. This implies usually a subsequent initialisation phase, and most
probably a dynamic code update. Transition from state M3 to M5 can be due toan unexpected operation
or message received by the sensor node.
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• M5 DCU: During this state the node performs a dynamic code update. The newcode is stored on the
node and is verified by appropriate methods such as verification of a digitalsignature. Subsequently, the
new code is installed.

The task of the state management module is to monitor the nodes behaviour and to react appropriate. I.e., as
long as the node is not in the state M4 no action has to be taken. If the state M4 is achieved the task of the SMM
is to decide about the next steps. Whether a dynamic code update or re-start of the sensor node are necessary
depends on the trigger which initiated the transition from M3 to M4. If DCU is executed the control center has
to verify whether or not just the requesting node has to be updated or whether other nodes in its vicinity also
need to be re-programmed.

Figure 9 shows the sensor node state as well as the SMM with its two major decisions.

Dynamic Code Update (DCU)

The diagram shown in figure 9 refers to DCU in state M1 and state M5. This means that the system requires the
capability to change the functionality running on the sensor node right afterproduction (M1) and also during
runtime whenever it is needed (M5). In kernel based operating systems like Contiki such dynamic updates are
not very challenging. Processes can be added or stopped and executable code can be stored or removed from
the node.

In very resource efficient operating systems like TinyOS that merge operating system and application to
one image it is not that straightforward to change the functionality. Recently several mechanisms have been
developed that provide code update functionality for TinyOS. We are focussing on FlexCup [26] that allows to
change methods at runtime.

It is presumed that the control center controls the code management functionality. It knows which node
has which code unit in memory. Based on these information the control centersends new code segments to
particular nodes or broadcasts code that has to be incorporated into the running systems.

Message Interpreter

The message interpreter consists of two parts. It has a static part that is responsible for dealing with all messages
that are directed to the middleware core components DCU and SMM. In addition, its configurable part depends
on the services deployed on the node. In order to properly support theconfigurable part the message interpreter
uses a kind of registry which is shared with and maintained by the DCU module. Each time a module is
exchanged, deleted or additionally installed the DCU module updates the registry. Thus, the message interpreter
always knows which modules are available. Depending on the currently available modules and the node’s
current role and the message address the message interpreter decides what to do. In principle it is a three stages
decision chain.

1. If the node is not the intended recipient the message is forwarded.

2. If the node is the intended recipient the message interpreter checks whether or not the corresponding
module is deployed. Ifyes, it is checked whether or not the sensor node runs in the appropriate role. If
yesthe message is delivered, otherwise it forwarded to a more appropriate node.

3. If the node is the intended recipient but the corresponding module is notdeployed the SMM is informed
about this misalignment. The SMM can then decide what to do. Options are sending a misalignment
message back to the control center, requiring a code update or just ignore the misalignment. The reaction
of the SMM will depend on the sender of the message, i.e., if the sender is a well known trustworthy
party some action will be taken otherwise the misalignment might be ignored.

Abstraction layer

The abstraction layer provides generic interfaces to basic and complex services so they can be developed inde-
pendent of the underlying operating system. Due to the nature of the UbiSec&Sens modules under development
we foresee two interfaces: a storage and a communication interface. The former will provide memory manage-
ment functionality such as allocation of memory, store and fetch operations ofdata items used by higher layers.
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The communication interface handles incoming and outgoing messages. The latter are passed as payload to the
appropriate OS dependent interface. Incoming messages are passed tothe message interpreter after removing
all protocol headers and trailers if necessary.
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5 Initial architecture for UbiSec&Sens demonstrators

Based on the requirements specified by the UbiSec&Sens target usage scenarios and the analysis of available
hardware and software, in this section we outline major system components for the set-up of project’s demon-
strators. The functionality of the software modules developed in the scope of the UbiSec&Sens project will be
demonstrated by three scenario specific installations. The description of themajor parameters for the installa-
tions is given in Section 1. Below we specify the main building blocks of the softand hardware platforms.

5.1 Hardware platforms for demonstrators

Since the development of own hardware platform is outside the research scope for the UbiSec&Sens project
the choice of particular technology is mainly motivated by the degree of popularity of one or another platform
and availability of the equipment amongst the partners. We chose popular hardware from Crossbow as the
default development platform for the UbiSec&Sens toolbox. Specifically, the functionality of the developed
toolbox will be demonstrated on TelosB and MicaZ devices. It is important to note that being developed for
such resource constrained devices as aforementioned we foresee easy transition of the UbiSec&Sens modules
to more advanced future devices with richer computational, sensing and storing functionality.

5.2 Software platform for demonstrators

As we have shown above all available operating systems have their pros and cons. For example, TinyOS offers a
flexible component-based programming model. With respect to a possibility to dynamically update the installed
software on sensor nodes at runtime TinyOS offers less efficient mechanisms than for example Contiki. On the
other hand, TinyOS offers a variety of the existing software modules and drivers that other operating systems
cannot offer. In addition TinyOS is the most popular development platformin the domain of academic sensor
networking research. Since own low-level development and maintenanceof the operating system functionality
is outside the research scope for the UbiSec&Sens project we based ourchoice of the operating system on
the degree of popularity of a particular platform, the available expertise among partners and availability of the
existing software modules. After the analysis we chose TinyOS version 2.x as the default platform for the
UbiSec&Sens software.

Having several years experience of joint development of software modules in projects involving multiple
independent partners we foresee integration of future software modules from the beginning of the toolbox
development. Figure 10 shows a preliminary stub architecture for the UbiSec&Sens software toolbox. In the
description to follow we adopt the TinyOScomponentnotation when referring to specific pieces of software. A
set of specific UbiSec&Sens software components that will be implemented in thescope of the stub architecture
and adopted for the project’s demonstrators is described in Section 5.3.
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Figure 10: Software architecture for the demonstrators setup
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5.2.1 Application components

As application components we regard pieces of software that assure end-user services described in the scenario
specification section. It is a wrapper piece of code that includes wiring ofthe interfaces from other software
parts of the architecture and invoking lower-level services needed forcorrect functioning of the application.

5.2.2 Services components

As service components we define software pieces that provide helper functionalities on different layers to
other applications and services. Examples of service components are random number generators, encryption /
decryption techniques, in-network processing functionality, distributed data storage etc.

5.2.3 Networking component

Networking component contains a set of functionalities associated with data transmission over network inter-
faces. We foresee a single instance of the networking component. In order to clarify the reason for this decision,
consider routing protocols as an example. As we have shown in Section 3.1 implementation of a single routing
protocol is heavy in terms of memory consumption. At the same time, parts of different routing schemes are
functionally similar. As an example consider two different reactive routing schemes: one scheme is capable of
setting up a multicast tree but not a unicast path, another functions in an opposite way. Due to the reactive na-
ture of these routing schemes the functionally common part is the mechanism forpropagation of route request
and route reply messages.

In the scope of workpackage WP1 we attempt to minimize the implementation complexity of several net-
work protocols needed for a particular application by extracting functionally common parts and wrapping them
around the protocol specific functionalities. The networking component will provide well defined interfaces
toward application and service level programmers that allow to customize the network layer functionality in a
flexible way.

5.2.4 Middleware component

The functionality of themiddleware componentis described above in Section 4.2.4. In the demonstrator the
middleware component should show interfaces toward external user commands and the commands issued by
different components internally.

5.2.5 Internal Information Base

This component is responsible for configuring, storing and providing theinformation needed by other system
components. The three types of functionality that will be represented in the demonstrators by this component
are:

1. Meta description of services needed for the middleware component.

2. Data storage /access related functionality.

3. Identity Module.

Identity module

Identity module is the essential part of the software architecture. The termidentity in this context includes:

• Node’s low-level addresses (i.e., MAC addresses, unicast/multicast network addresses).

• Application level names associated with the node.

• Location information, including geographical coordinates, coordinates ina local coordinate system.

• Functional roles that a particular nodes plays at the moment (i.e., cluster head, aggregator, sink etc.).
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Figure 11: Specific software modules included in the UbiSec&Sens security toolbox

Some identity information is due to its nature configured statically at the deploymenttime and not altered
afterwards. To this class of identity information we attribute GPS coordinates for static WSNs, hardware spe-
cific addresses. Another type of identity information such as roles, locality-constrained addresses and similar
are auto-configured during the WSN bootstrap phase and maintained during the main operation phase. It is im-
portant that the design of this block should include protection from concurrent write access and the information
consistency check.

5.3 UbiSec&Sens software modules for planed demonstrators

In this section we describe specific software modules that will be included in the UbiSec&Sens security toolbox.
Figure 11 shows planned, specified and implemented pieces of software in the UbiSec&Sens project. The
modules are grouped into three categories: Networking components, security components, and secure services
and middleware components. The modules for which exist at least a preliminary implementation for TinyOS
are shown by the shaded rectangles in the figure. The specified and implemented in a network simulator but not
implemented on real hardware modules are shown by empty rectangles with the text. The planned modules are
shown by dashed rectangles with the text. The figure also indicates currently integrated modules, this is shown
by the bold arrows. The dashed arrows show the short term plan for modules integration. Below we summarize
the content of each module.

5.3.1 Networking components

Note that the detailed specification of the modules outlined below falls beyond thescope for this deliverable
and will be reported in other documents (i.e., D1.1).

5.3.1.1 TinyLUNAR

TinyLUNAR is a reactive end-to-end connection oriented routing protocol. The protocol is an adopted to the
specifics of sensor networks routing scheme originally developed for mobile wireless ad-hoc networks. The
Lightweight UNderlay Adhoc Routing (LUNAR) is a layer 2 protocol that utilizes an extended label-switching
forwarding technology. The major property of LUNAR is a simplicity of implementation in comparison to
other protocols developed for MANETs. This is achieved by reducing theroute maintenance phase of the
protocol to the minimum: In LUNAR all established paths automatically and periodically expire and rebuild
again upon demand from the application. TinyLUNAR inherits the simplicity of its predecessor. In addition,
it offers a flexible interface to the application level programmer to specify thedestination node. The current
implementation of tinyLUNAR in TinyOS for MICA and Telos motes offers a competitive performance and
stability compared to its counterparts, e.g., tinyAODV. The goal of future development of the protocol is to
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include a native support for data aggregation and in-network processing. This will be done by implementing
support for multicast and convergecast flows.

5.3.1.2 DSDV

The Destination-Sequenced Distance-Vector Routing (DSDV) implementation developed for UbiSec&Sens is
a simplified implementation of the original MANET routing protocol, adapted to the resource restrictions that
apply in WSNs. DSDV is a table-driven routing scheme for ad hoc mobile networks based on the classic
Bellman-Ford algorithm. It was developed by C. Perkins in 1994. The main contribution of the algorithm was
to solve the routing loop problem. Each entry in the routing table contains a sequence number, the sequence
numbers are even if a link is present, otherwise an odd number is used. Thenumbers are generated by the
destination, and the emitter needs to send out the next update with this number. In the original version, routing
information was exchanged between nodes by sending full dumps infrequently and smaller incremental updates
more frequently. In this implementation the routing information is disseminated as smallperiodic updates only,
with no full dumps being generated.

5.3.1.3 DTSN

Distributed Transport for Sensor Networks (DTSN) is a novel reliable transport protocol for convergecast and
unicast communications in Wireless Sensor Networks (WSNs). In DTSN, thesource completely controls the
loss recovery process in order to minimize the overhead associated with control and data packets. The basic
loss recovery algorithm is based on Selective Repeat ARQ, employing bothpositive and negative acknowl-
edgments. DTSN is able to detect when all packets of a session are lost, besides scattered gaps in the packet
sequence. Caching at intermediate nodes is used to avoid the inefficiency of the strictly end-to-end transport
reliability TCP-like model, commonly employed in broadband networks. Reliability differentiation is achieved
by means of the smart integration of partial buffering at the source, integrated with erasure coding and caching
at intermediate nodes. The implementation of DTSN in UbiSec&Sens correspondsto the basic service, which
considers only total reliability and no reliability differentiation.

5.3.1.4 Secure Aggregator Node Election (SANE)

Secure aggregator node election is a protocol which ensures an non-manipulable election of a cluster-head
from a fixed set of nodes. The protocol is based on random contributions of each member of the group which
all together provide a value indicating which node is elected as the new aggregator. Security is based on
commitment based security protocols.

5.3.1.5 PANEL

PANEL is a Position-based Aggregator Node ELection protocol, meaning that the protocol uses the geograph-
ical position information of the sensor nodes to determine the set of aggregator nodes in each epoch during the
lifetime of the network. PANEL assumes that the sensor field is divided into geographical clusters. In each
epoch, a reference point is computed by every node in each cluster in a distributed manner based on the epoch
number. The aggregator role in each cluster is then taken by the node that isthe closest to the cluster’s reference
point. The messages used in the aggregator node election algorithm are alsoused to establish routing tables in
the sensor nodes that belong to the cluster. These tables are then used to send the data to be aggregated to the
aggregator nodes. The reference points can also be used to route messages toward the aggregator of a distant
cluster, which is useful in case of query processing and in case of backing up data collected by an aggregator at
another aggregator. This latter functionality is designed into PANEL in orderto support TinyPEDS.

5.3.1.6 GPSR

GPSR stands for Greedy Perimeter Stateless Routing. It is a position based routing protocol that was not
developed within the project, but that can be re-used here for inter-cluster routing in combination with PANEL.
In particular, GPSR can be used to route backup data and queries towardthe reference point of a distant cluster.
Once the message reaches the cluster, the routing algorithm switches to the intra-cluster routing protocol which
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uses the tables established during the aggregator node election phase. GPSR uses greedy forwarding as long
as possible, and it switches to face routing when a void is encountered andthe message cannot be forwarded
towards the destination in a greedy manner.

5.3.1.7 RSI

The Robust Self-Initialization (RSI) protocol is a distributed self-stabilizingaddress assignment protocol for
WSNs, which is: i) more energy efficient than previous address assignment protocols (most were developed
for MANETS); ii) robust against malicious behaviour of a limited amount of nodes; iii) able to join network
partitions.

The protocol was proven to be a probabilistically self-stabilized protocol, even though it uses a limited num-
ber of messages. The energy efficiency is obtained by eliminating ACK messages, and by using the reception
strength of each message to optimize the number of messages required. The robustness is achieved by entering
in whisperingmode whenever a sensor node detects an attack. Finally, the protocol uses aprivate nicknames
technique in order to solve the address collisions when previously disjoint networks connect.

5.3.2 Network Security Components

5.3.2.1 Concealed Data Aggregation (CDA)

Concealed data aggregation ensures end-to-end encryption of convergecast traffic with in-network processing.
Aggregation functions can be average, movement detection, variance etc. The applied encryption scheme for
CDA is a symmetric homomorphic encryption scheme which can be the Domingo-Ferrer encryption transfor-
mation or the stream-cipher based scheme from Castelluccia, Mykletun and Tsudik.

5.3.2.2 WSN Access Control

The WSN access control mechanism at the sink node and at each sensornode within the WSN ensures that only
authorised reader devices can request data from the WSN. WSN access control is linked to the query mapping
which is described below.

5.3.2.3 RU: Recognition Unicast

This module contains the implementation of a protocol which provides authentication between two commu-
nication participants in applications of WSNs. These participants can be eithertwo sensor nodes or a sensor
node and the base station. The protocol enjoys a modular construction andis based on a cryptographic pseudo-
random function which can be instantiated with a message authentication code or a symmetric encryption
scheme. Parts of this protocol can also be used for the authentication of messages exchanged between partici-
pants during the execution of some higher level protocol.

5.3.2.4 RM: Recognition Multicast

This module provides implementation of the authentication scheme for the multicast communication in which
the base station broadcasts a message to all sensor nodes in the network. The scheme is based on a random
key pre-distribution and one-bit MACs. This scheme is efficient in terms of energy and remains secure against
node captures, which is extremely relevant for WSNs. Additionally, the module does not depend on the sensor
network topology, so it can be applied in most scenarios and applications, i.e., the scheme is relevant for mobile
readers and fixed sinks, as well for mesh or hierarchical networks.

5.3.2.5 RC: Recognition Convergecast

This module provides implementation of the framework for the in-network aggregation which focuses on the
scenario with a single aggregator node. It is a novel solution which enjoysmodularity and provable security
and is based solely on efficient symmetric cryptographic primitives such as hash functions and message authen-
tication codes. The framework makes use of the authenticated broadcast channel between the base station and
sensor nodes as well as individual secret keys shared between each node and the base station. Additionally, it
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makes use of an underlying aggregator election protocol. Together with these building blocks the framework
can be used as a stand alone aggregation application or can be part of some higher level applications.

5.3.2.6 PRESENT

This module provides encryption and decryption functionalities of the block cipher PRESENT. PRESENT is
a lightweight symmetric block cipher which was developed within the UbiSec&Sensproject. It operates on
64-bit messages either with 80-bit keys or 128-bit keys and is a substitutionpermutation network (SPN) with
32 rounds.

5.3.2.7 Topology Aware Group Keying (TAGK)

The topology aware group keying is a key pre-distribution approach which is shaped for CDA. TAGK is needed
in cases when applying a symmetric homomorphic scheme based on group keys. The encryption scheme from
Domingo-Ferrer is such a scheme. TAGK distributes per “routable region”a subset of keys from a key pool.
Each node with the same key is in the role of a sensing node whereas the remaining nodes act as aggregator
nodes, forwarding nodes or are in idle mode.

5.3.2.8 Topology Aware Unique Keying (TAUK)

The topology aware unique keying is a key pre-distribution scheme which provides key pre-distribution in the
bootstrapping phase of the WSN for CDA based on a symmetric homomorphic encryption with single pairwise
keys between the sink and each sensor node. In addition the TAUK provides key refreshment. This KPD can
be applied to the homomorphic scheme from Castelluccia, Mykletun and Tsudik and therefore helps reducing
data overhead due to ID transmission during the transmission phase.

5.3.3 Secure services and middleware

5.3.3.1 TinyRNG

TinyRNG is a cryptographic random number generator for wireless sensors network nodes. It uses transmission
bit errors on a wireless sensor network, which are a very good source of randomness. We demonstrated that
these errors are randomly distributed and uncorrelated from one sensor to another. Furthermore, these errors
are difficult to observe and manipulate by an attacker. TinyRNG was designed and implemented for sensor
networks, leveraging these results. The design was conducted with the aimof security, efficiency and low
memory footprint in mind. It provides backward and forward security as well as production of random numbers
with cryptographic quality, and resistance to reboot attacks. Moreover,it can be used trough the standard
TinyOS interface for random numbers, therefore reducing application porting effort to the minimum.

5.3.3.2 Tiny Persistent Encrypted Data Storage (tinyPEDS)

The tiny persistent encrypted data storage is a middleware solution which provides distributed encrypted data
storage within the WSN. Data are encrypted in a homomorphic way in a nested arrangement by applying
symmetric as well as asymmetric homomorphic encryption. The sensed data can be aggregated over the time
and over the region. Data replica are stored to handle exhausting nodes.They are transmitted to the actual
cluster head in the right hand neighbourhood.

5.3.3.3 Tiny Distributed Shared Memory (tinyDSM)

The basic idea of the tinyDSM is to provide means that allow sensor nodes to share their sensor readings
in an application dependent way. By that any of these sensor nodes cananswer queries for which it has the
appropriate data stored. So, this information is available also when some nodes are exhausted or in a sleep mode.
In addition, tinyDSM supports an events mechanism, which allows to specify a threshold and messages that
have to be sent and/or actions that have to be triggered in case the threshold is passed. tinyDSM is configured
via policies. The policy file specifies for instance the replication strategy i.e., how many replica of a certain
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data item are required, etc. It also provides the event definitions as well as a specification of how much of the
memory of the sensor node has to be reserved for a certain data item.

The tinyDSM distinguishes three priorities of its messages. Event triggered messages have the highest
priority since they might be alarm messages that have to be delivered as fast as possible. Update messages have
the second highest priority due to the fact that they are needed to update replicas and by that ensure consistency
of the stored data. The least priority is given to queries since they do not change the systems state.

5.3.3.4 Query mapping

The query mapping module is a software module which maps “user-friendly” SQL like queries from a reader
device to the sink node. Query mapping at the sink node translates user-friendly queries to controlled flooding
messages. Whereas the user-friendly queries may be the same for all provided middleware approaches like
tinyPEDS, tinyDSM or CDA, the controlled flooding messages for the wirelesspart are already adapted to the
specific middleware solution.

5.3.3.5 RANBAR

RANBAR is an outlier elimination technique designed for sensor networks. RANBAR is based on the
RANSAC (RANdom SAmple Consensus) paradigm, which gives us a hint onhow to instantiate a model if
there are a lot of compromised data elements. However, the paradigm does not specify an algorithm and it uses
a guess for the number of compromised elements, which is usually not known inreal life environments. The
RANBAR algorithm eliminates the need for the guess, therefore it is capable tohandle a high percentage of
outlier measurement data by leaning on only one assumption, namely that the sample is i.i.d. in the unattacked
case.

5.3.3.6 DCU

The dynamic code update (DCU) module provides means to exchange code between sensor nodes and the
control center in a secure way. A more detailed description is given in section 4.2.4.

5.3.3.7 configKIT

The selection of UbiSec&Sens modules according to the requirements of a certain application and to the set-up
of a certain sensor node is computed by the configKIT. It will be installed only on the control center, see 4.2.3.
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