Military Academy Royal Military Academy
Of Tunisia Of Belgium

Target Tracking For Robot Collaboration

Elaborated By

Officer Student

Wahiba JOMAA

Graduation Project Report (March - June 2008)
submitted in the fulfillment of the requirements for the
degree of Engineer on Computer Sciences

Promoter: Professor Yvan BAUDOIN

Supervisor: Ir. Geert DE CUBBER

Abstract

WAHIBA JOMAA."Target Tracking for Robot Collaboration” Research Project Dissertation
under the direction of Professor BAUDOIN.

Nowadays robots have reached a level of sophistication such that it is now productive to

include robot-assisted search teams in urban search and rescue scenarios.

The perceptual interface to the human operator is often a video display that relays images
from a camera on the robot. Research into issues concerned with human-robot interaction has
suggested that if more intelligence were placed on the robot, it could lessen the load on the

human operator and improve performance in the search task.

Within this thesis we focus on the relative performance in a search task in which the robot is

controlled by a remote human operator.

The goal of this thesis is to enable the mobile robot CASTOR to follow an a priori defined
target. This target can be any colored object (in the thesis a red one chosen). In the case of this
application, the target object will be another (master) robot, called ROBUDEM. By
implementing this robot following behavior, further robot collaboration tasks can be achieved.

Résumé

Wahiba JOMAA. "Target Tracking for Robot Collaboration”, thése du projet de recherche
sous la direction du professeur BAUDOIN.

De nos jours les robots ont atteint un bon niveau de sophistication qui est maintenant
productif et capable d’inclure les groupes de recherche des robots assistés dans des zones
urbaines et des scénarios de sauvetage.

L’interface de perception pour I’opérateur humain est souvent un affichage vidéo qui récupére
les images d’une caméra montée sur le robot. Les recherches sur des questions entourant les
interactions entre I'nomme et le robot ont suggéré que plus d'intelligence est développée pour
le robot plus que la charge sur I'opérateur humain est diminuée et les performances dans la

tache de recherche sont améliorés.

Dans cette thése nous avons essayé d’améliorer la performance relative a une tache de

recherche ou le robot est contrélé a distance par un opérateur humain.

L'objectif de cette thése est de permettre au robot mobile CASTOR de suivre, a priori, une
cible bien défini. Cette cible peut étre n'importe quel objet coloré (dans cette application la
couleur rouge est choisit). Dans le cas de cette application, I'objet cible sera un autre (master)
robot, appelé ROBUDEM. En mettant en ceuvre ce comportement de suivi du robot, des
taches de collaboration peuvent étre atteints.

To my parents for their patience and their permanent support,

To my brothers Hamza, Bilel, Mabrouk and my sister Samira for their warm
heartedness and love,

To my aunt Monia and her husband Kouthair,

To all those who saved no efforts to assist me to go forward towards success

Acknowledgments

I am grateful to Professor BAUDOUIN, the supervisor of my
internship for allowing me to work with him on this project.

Special thanks to my promoter Mr. DE CUBEER for all guidance
through my internship. I am in dept to him for his open door policy as
well as his competence and experience. His guidance, encouragement
and availability equipped me with patience and eagerness to meet my
needs.

I like to express thanks to all the people who have contributed for the
achievement of this work and who gave me the opportunity to enjoy
this instructive and enriching in Belgium.

I want also to thank Miss VERBIEST for her help guidance during
the work and for my English Teacher Ms KHEDHER for her help on
the redaction of this report.

Last but definitively not least, I would to thank especially my parents

and my friends who have stood by me in need.

Table of Contents

ADSEIACE c.coveeeeeeieteee ettt ettt e e e e e s e sttt e e e e e e s s st aaaaeeeen e ii
RESUME.....coeeeeeeeeieeeee ettt ettt e e e e e e s st e e e e e e s s ssssbataeaaaeessnnsaes iii
W AYol g Lo X Y] [=To [0 T 4 I=3 0 1 &SRR v
LISE Of FIGQUIES evveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e ix
LISt Of TADICS ..ottt Xi
Chapter 1: Teleoperation OVEIVIEW...............uceeeeeeeeeeeeeeiiiiiiieeeeeeeseseesessssiiieeeeeees 1
. INEFOAUCEION .ot e e e 1
O D L= 4114 Lo X 1
Ill. Introducing Teleoperated RODOLS........cccceeeeeeeeeeeeeiriiiiieeeeeeeeeeeeveririnnns 1
IV. A literature overview of the first Teleoperated machine 2
V. Fields of APPLICALIONScuee e, 3
V.1. SUbMQAriNeS Fildouveeeeeeeeeeiiiiiiiieeeeeeeecciitteeee e e eeecciiaveaaa e e e 3
VY o Yo Lol = o =] (o RPN 3
LV T 1Y 11 e 1 VA =1 Lo RPN 4
V.4, MEAICAl Filld ...t 4
V.5, INAUSEIY FI@IG.........ceeeeeeeeeeeeeeeeeee ettt e et tee e e e e e e e aaesanaans 5

VI, TRESIS GOQI ...ttt e 5
VII. TRESIS OQULIINE.......ccovveeeaeeeeeeeeeeeeee e 5
Chapter 2: System deSCriptioNccoeeeeeeeeeeee ettt e e 6
[] 10T [V ot { (o s OO OO ST TUPPUPPPP 6
. HOEAWQAIE ..ottt ettt e e e 6
Y e PP 6

(AR Yo T=Tel] (ol 14 [£ X 7

1.3 COMEBIQ ...ttt 8
Y o DO 9

1.5 COMMUNICATION BOX ..o 10

Vi

1.6 PQUE Of PINCEIS.cceeveveeeeeeeeeeeeeeettiteeee e e e e eeeeestttee e e e e e e aeveesssasaneneaaaes 11

1.7 CONIOl PANEI CASE ..ot 11
I1.8 S€NSOI INtEIfACE BOX.......uuvueeeeeeieeeeeeiieassssasssssssssssssssssssssssssssssssssssssnreenees 13
11.9 BOX With @l@CtIONICScevvveeeeeeiiiiiieaee ettt 15
[O o Yo To =194 U 4] (o T Lo L= 15
N Yo Yo [-2 16
Y R T T =Ty o ol = = 1LY/ | 16
I11.2 SOftware SPECIfiCAtIONSouuvveueeeeeeeeeeeeeeetiteeee e e e eeeeettieeaeeaaaaen 17
IV. Operation Of the Program..............uueeeueeeeeeeeeeeeeieiiiiieeeeeeeeeeeevvisrieeeens 27
Ve CONCIUSION ...t 28
Chapter 3: Hue tracking OVEervieWcccevvveveeiieeiiiiiiiiieeiiieieeeeeeieeeeeeeeeeeee, 29
. INEFOAUCEION ettt e e e e e e e 29
Il. Color Target Detection and Parameters Estimationcccccccccuuuunn... 29
1.1 COIOTN MOGEIS ...t e e e s 29
1.2 COIOr TArget DELECTIONcccevvvveceeeeeeeeeeeeeeeicteeee e e e e e eeeeeetsiaeaeeeaaeens 31
1.3 Noise Suppression and Image Segmentationccccceeveeeeeeeeeneennnnnn, 35
1.4 Target Image Position and Size Estimationccccccuuvvvuieeeeeseeneennnnnn, 38
HI. CAMEIA MO ...ttt e st eaa e e e e 39
IV. Most Important files and claSSesccceeeeeeeeeeeeevveiiiiieeeeeeeeeeeeeiiiinnnn, 40
Ve CONCIUSION ...ttt e 41
Chapter 4: Hue Tracking Model for CASTOR robot platform.............cccceeeeeen...... 42
I 121 70T [V o1 { (o o B U PPPUR S OOPPPPPPPPPR 42
[/ o To Lo TR CY g0 2] <] ¢ Lo AU 42
B = (V=3 I g [ol 4 o U 43
HI.1. Hmin and HMAX VAIUESuvvevveeeieeiieiiiiiiiaaeeeeeseciiiiiaaa e eeseiin 44
I11.2 Center and Size detection................ceueeeeeeeccuuieeeeeeeeisssiiiiiieeeeeeeeesesiinn, 45
IV. RODOE CONLIOL...ccnniiiieeeeeeeeeeee et 46
V. System MOodifiCatioNs.........uuueeeeeeeeeeeeeiiiieeeieeeieeeeieeeeeeeeeeeeeeeeeeeee e, 50

Vi

V.1 Hardware MOdifiCAtiONcceeeeeeeeeeeeeiiiiiiieeeeeeeeeeeeeiiiiiiiseeeeeesesssessnnns 50

V.2 Software MOdifiCQtioncccceeeeeeeeeeeiuiiiiieeeeeeeeeeeeeiiiiitseeeeaeaeeevesnnnns 50

VI. Technical Problemscoccueeeieiiiieeeieieee e 51
CONCIUSION ...ttt e e e e 52
L]0 oo Id] o]) VAR 53
V=] oL o Te o] ¢} VR 54
WY oY o L=d Lo | (o =L R 55

viii

List of Figures

1o [V I ot I o)V €T 11 2RSS 2
Figure 2 : VICIOr DY GENAVIR ...ttt sttt be st b et ene i 3
FIgure 3 : EXOMAIS DY ESA ...ttt sttt st et st e s ae e et e e e et e sbeenaensesteesaensesseeseenns 3
Figure 4 : RoOburoct by RODOSOM...........ooieeee e s 4
Figure 5 : The first robot @NAESTNELIST........cc.oviiieeeee e 4
Figure 6 : Example of robot application in the INAUSEIYcccoviiienneceeeee e 5
Figure 7: The CASTOR RODOL.......cueeeececee ettt st sttt e st saenbesreenaenes 6
Figure 8: Camera Pair Of PINCEIScc.oiiieeiecececee ettt s be et s be e re et e besre e nns 8
Figure 9: Steering camera and rear SIde CAMEIAccevueiririririeieieeee ettt seens 8
Figure 10: Arm, @S @ WHOIE......ceoiieeeee ettt sttt et e s b e e st e testeesaensesseeseenes 9
Figure 11: Communication box seen from the tOPoci e 10
Figure 12: Communication Box Seen From the Front..........cccocoevevienienie e 10
FIgUre 13: PAIT Of PINCEIS ..ottt sttt st ese e 11
Figure 14: The Control PANEl CaASE........cccevuiiieierieiieeseeeeeste ettt ste et ste ettt esaesre e naesees 12
Figure 15: InSide CONLIOl PANEIcviiiieeeeieceeeee ettt sttt e be e 13
Figure 16: SENSOr INTEIACE BOX.....cciiiiiiiieieicie ettt teeste e ste e e e st e st e s e s ae s aesateete e teebeeseenseennnas 14
Figure 17:Elements inside eleCtroNiCS DOX.........cocvecieiiieeiesi ettt 15
Figure 18: Loader/Unloader and tWO DAttEriESc.ccveeeeieiieeeiiceceee ettt 15
Figure 19:The HMI INTEITACEoi ettt e st te et eere e reennes 16
Figure 20 : RGB COlOr MOGELc.ooiiiiiiieicieeesseee sttt st 30
Figure 21: HIS ColOr MOGELociiieieiceeee ettt sttt et e aesneeneeneas 30
Figure 22 : Geometrical Model of Perceptual Color SPacecccvevevevieeieicceeeeceeeeee e, 31
(o (U T o TU TS = ox 1 o] o S 32

Figure 24 : RGB Histogram of Red SPNEre ...t 32

Figure 25: Detection Results without Thresholdingccccevieieveiiieccee e 35
Figure 26 : Application of the Intensity Threshold............cccoooieiieeii e 36
Figure 27: Application of the Saturation Thresholdccoeoieiiniieie e 36
Figure 28: Application of both Intensity and Saturation Thresholds..........c.ccceveveiiininenincneenne 36
Figure 29:0riginal Target IMaQE.......cciei ettt sttt ste e et steereesesaeesneneas 37
Figure 30: Classification RESUILSc.ccvceeiiiicieeceeee ettt sttt et 38
Figure 31: Detected Target after Morphological Filteringccccoeoeirineneneieneresereeeeeeeeene 38
Figure 32 : Gravity Center and Moments of the Detected Target Imagecccccevveveveverveceennenne. 39
Figure 33 : Image captured from the robOt CAMEra.........ccocveiieieciiiiceceeeeee e 43
Figure 34 : CASTOR MOAIfICALIONccueeiiiiiicii ettt sttt te e te e te e reesaeesraesenas 50
Figure 35 : NEW HMI INTEITACEc.ooiiieieeee ettt 51

List of Tables

Table 1 : The different resulting (R, G, B) VAIUES.........ccveiiiieiiee et sne e 45
Table 2 : Target size and CeNter dEtECHION.........ccvvverire et 45
Table 3: Counter 1 variation With M_CenterX........ccooioieieiiiieeseceeese et 47
Table 4 : Distance and m_Total variation with the COUNEr 2ccoovvieeiii e 48

xi

Chapter 1: Teleoperation Overview

L Introduction

The major goals of robotics is to realize multipurpose service robots that can solve several
complex tasks while acting within changing environments such as home infrastructure or
outdoors. However robots still have neither creativity nor the ability to think. Therefore,
robots will necessarily need to be supervised or directly teleoperated at some point.

Teleoperation of robotic systems in hostile and unknown environment is of particular
importance in that it aids or replaces the manipulator in handling difficult and possibly

dangerous activities.

II. Definitions

The term teleoperation refers simply to the operation of a vehicle or system over a distance.
Broadly, understanding all interaction with a mobile robot is part of this definition.
Traditionally, teleoperation is divided into direct teleoperation and supervisory control.

In direct teleoperation, the operator closes all control loops himself, where as in supervisory
control a remarkable amount of the control is exercised by the teleoperator, i.e., the
teleoperator is a robot.

The term teleoperation refers to direct teleoperation, while supervisory control is handled
under human - robot interaction. Moreover, the term traditional teleoperation refers to direct
teleoperation over a distance without a line of sight, but telepresence equipment is noticeable.

In today’s digital world, one has to note that even in the case of the direct teleoperation there
usually exist control loops in the teleoperator. Typically these loops control the position or the

velocity of the “directly” controlled actuators.

III. Introducing Teleoperated Robots

Many dangerous tasks are more and more expensive and painful for humans. To get to
humans demining for example, it is rather slow, tedious, dangerous and expensive. The
detection is not always reliable. Big effort is made to remove a single mine.

Robots do not require such a complex infrastructure to perform this task. Indeed, a robot
could be cheaper to achieve some messy tasks in more than one dangerous environment than a

human being, in space a robot costs less than Human. Once a robotic system is successfully

Chapterl Teleoperation Ouverview

built and tested, it can be duplicated easily at reduced costs. Human, on the other hand, is
priceless. Robots can be used to take over the most dangerous jobs.

“Time is money”. Therefore Humans need time to be trained to accomplish some tasks and
get some rest after wards. Robots are never tired and can be deployed 24 hours a day,
provided there is enough energy.

Teleoperation platform allows a user to execute or to control remote tasks, i.e. without being
present simultaneously where the action takes place. Tele-operation tries to minimize risks
during dangerous works: spatial exploration, toxic device to operate...etc. It could also allow
scientists to go where a human cannot: volcanoes, smart caves, mined areas...etc.

To help the user to accomplish such tasks, other users or an autonomous or teleautonomous
robot could be used. Assistance robots complete human faculties and allow the system to take
advantage over computer capacities to realize repetitive tasks, physically hard work, and to
use at its best the expert dexterity to look, fall and react at the right time.

IV. A literature overview of the first Teleoperated machine

When the tasks to be done demanded better skills from robots, teleoperation was born. This is
a new technique which combines human abilities and machine capacities.

The first teleoperated systems were created after the Second World War, to manipulate
radioactive substances in nuclear industry. They were composed of two symmetrical arms,
one of them (slave) reproduced the master's movements; the other arm (master) was
controlled by a human operator

In 1951, in France, Raymond Goertz designs the first teleoperated articulated arm E-1(see
figurel), for the Atomic Energy Commission. The design is based entirely on mechanical
coupling between the master and slave arms (using steel cables and pulleys). Derivatives of
this design are still seen in places where handling of small nuclear samples is required. This

is generally regarded as the major milestone in force feedback technology.

Figure 1 : E-1 by Goertz

Chapterl Teleoperation Ouverview

V. Fields of Applications

Robots are designed for many purposes. In manufacturing, they are used for welding, riveting,
scraping and painting. They are also deployed for demolition, fire and bomb fighting, nuclear
site inspection, industrial cleaning, laboratory use, medical surgery, agriculture, forestry,
office mail delivery as well as a myriad of other tasks. Increasingly, more artificial
intelligence is being added. For example, some robots can identify objects in a pile, select the

objects in the appropriate sequence and assemble them into a unit.

V.1. Submarines Field
Robots are mainly used for submarine mapping and exploration. VICTOR is an example of
submarines; the vehicle can be reached 6000m depth in several times and used continuously

during more than 70hours.

Figure 2 : Victor by GENAVIR

V.2. Space Field

Using robots in space exploration is perfect for teleoperation for more safety and the law

costs. Many robots were designed for space discovery and since space is an unfamiliar

environment the use of robots has been very useful and helpful.

Figure 3 : Exomars by ESA

Chapterl Teleoperation Ouverview

V.3. Military Field

Robots can be used underwater, on the air or on the ground. The most recurrent applications
are: demining, mine detection, closed loop controlling, taking surveillance photographs,

launching missiles at ground targets and many other tasks.

Figure 4 : Roburoc6 by Robosoft

V.4. Medical Field

Robots can be used in Endoscopic surgery, with micro mechanicals manipulations in which

they minimize risks and damages, in Telesurgery, like that specialists can operate over

distances (teleoperated robots).And they can also replace a member of the body.

This is an example of a prototype machine that sleeps and wakes up the patient alone, it has

been invented by doctors at the hospital Foch in Suresnes.

3,

Figure 5 : The first robot anaesthetist

Chapterl Teleoperation Ouverview

V.5. Industry Field

Robots are used in many sectors of industry, but the automotive industry is the leader in robot
utilization and applications worldwide: parts assembling and production, cleaning, painting,

welding of instruments....

Figure 6 : Example of robot application in the industry

VI. Thesis Goal
In this project, we present the implementation of the Hue Tracking model to the CASTOR

platform based on teleoperation and using simple joystick interface as input device, and the

experimental results using this model to teleoperate and control the CASTOR robot.

VII. Thesis Outline

This Chapter ketch the relevant background on teleoperation and robotics fields of
application. Chapter 2 gives a general view of our system and some technical specifications of
the robot. Chapter 3 discusses the target detection and representation issues, giving details of
the color target detection, representation, noise suppression, target size evaluation and all
related models of the tracking. Chapter 4 presents our approach to implement the tracking
model on robot system. Appendices are added at the end of the dissertation for more details

on some implementation aspects.

Chapter 2: System description

L Introduction

This chapter is a description of the CASTOR robot, which is mainly a mobile intervention
robot. It can be used in hostile environments, like for instance nuclear, chemical,
bacteriological ... It can also be used in dangerous undertakings like demining, rendering
explosives harmless...

This chapter describes the hardware and software aspects and specifications of the robot
without going into too much detail.

I. Hardware

I1.1 Parts

The most prominent parts are (see Figure7):

Figure 7: The CASTOR Robot

Chapter?2 System description

e (1) pair of pincers

e (2)arm

e (3) communication box: radio-communication + video-transmission (alternatively the
rollable cable can be used for communication)

e (4) counterweight

e (5) motor

e (6) wheel (with caterpillar track)

e (7) box with electronics

1.2 Specifications

e Dimensions: length x width x height = 730 x 400 x 520 mm
e Weight:
0 Basic version: 47kg
o Pair of pincers: 2,7 kg
o Counterweight: 15 kg
e Propulsion: 4 wheels with diameter of 260 mm driven by electrical motors
e Energy: electrical energy provided by 2 rechargeable cadmium/nickel batteries, 24
volt consisting out of 12 elements of each 1.2 volt

e (Communication:

O range communication via radio: 300 m
o length cable that is connected to the control panel and the robot: 125 m

Radio Communication

A half duplex digital connection with:
o Power: 100m W
0 Symbols/sec: 4800 bauds
o Frequency: 224 MHz
This connection can be used in 10 channels around the 224 MHz frequency.
Video Communication
o High Frequency HF: 1.25 GHz

o Power:1W

Chapter?2 System description

o Performance:

speed: from 0 to 50 m/min
maximum gradient: 25°

maximum attainable height: 860 mm
surmountable threshold: 120 mm

O O O o o

lifting capacity:
v’ arm + pair of pincers half expanded: 10 kg

v'arm + pair of pincers completely expanded: 5 kg

I1.3 Camera

There are several cameras (see Figures 8, 9):
e camera pair of pincers (1)
e rear side camera (2)

e steering camera (3)

Figure 9: Steering camera and rear side camera

Chapter?2 System description

I1.4 Arm

The arm is fixed on the platform for the accessories. The arm consists out of three prominent
parts:

e Thearm

e The forearm

e Equipped with the necessary to fix the pair of pincers. Optional is rotation of the pair of

pincers. The pair of pincers can be manually attached in 5 different positions: -30°, 0°, 30°,
60°, and 90°.
v Range arm: 0 to 210°

v" Range forearm: 0 to 230°

Figure 10: Arm, as a whole

e (1) Sub base fixing arm
e (2)Arm

e (3) Forearm

e (4) Moto-reducer arm

e (5) Moto-reducer of forearm (engine in the tube)

e (7) Pincer support

Chapter?2 System description

II.5 Communication Box

Parts (see figure 11):
e A rollable cable (rolls by certain command on the control panel)
e A transmitter for video-signals

. An antenna for radio-communication

rollable cable
\

radio antenna

O

video antenna

Figure 11: Communication box seen from the top

=

o
>

Figure 12: Communication Box Seen From the Front

-
ézg |

The communication box is equipped with connections for the accessories: connection for the arm,
the cameras, the electronics box (see Figure 12):

e (1) connection rear camera with zoom / pan / tilt (optional)

e (2) connection for rear camera

e (3) connection for extra rear camera

e (4) connection for the arm and (5) connection for the electronics box

10

Chapter?2 System description

I1.6 Pair of Pincers

The pair of pincers is directly fixed on the extremity of the arm. The capacity of the opening
is approximately 250 mm with a clamping force of 30 daN to 180mm opening. Parts (Figure
12):

Figure 13: Pair of Pincers

(1) the pair of pincers themselves

(2) mechanism for open and closing

(3) motor

(4) motor for rotation

II.7 Control Panel Case

The case allows the control of the robot from a distance by means of a joystick (see Figure 14).
The main parts of the case are made up out of a transmitter/receptor and a portable computer,
with a 15 inch LCD TFT screen that visualizes the images sent from the robot by cable or HF
(Radio).
As for the power supply there are two options: either the rechargeable battery (lead 12 V, 4.5 AH)
incorporated in the case or the electrical mains of 220V.

e autonomy: 3 h

e weight: 13 kg

11

Chapter?2 System description

Figure 14: The Control Panel Case

e (1) Antenna radio

e (2) Led power under 220V and charge underway
e (3) Socket

e (4) Switch put in charge for the Control Panel Case under 220V
e (5) Led battery relieved (80%)

e (6) Powered Led

e (7) On/Off switch

e (8) Video release on RCA

e (9) umbilical cable connector

e (10) PC screen with HMI

e (11) Video antenna

e (12) Joystick

e (13) Joystick selection for locomotion

e (14) Joystick selection for the arm

e (15) Laptop and (16) key function to command the robot

12

Chapter?2 System description

Elements inside Control Panel Case:

W B : "'
: T '_

-, Yoagqus .

r

P y

¥ =

- -n-.- ‘1"'5..‘ .

Figure 15: Inside Control Panel

(1) interface card

(2) modem radio

(3) battery

(4) USB grabber (permits to transform the video signal into a digital signal compatible
with USB port)
(5) PC charger

(6) video receiver

(7) Control Panel Case charger

IL.8 Sensor Interface Box

The robot is equipped with a box where several sensors can be connected to, see Figure 16. These
sensors are controlled from the control panel. The measurements made by these sensors are sent

to the control panel and are processed there.

13

Chapter?2 System description

Figure 16: Sensor Interface Box

e (1) J22 connector 5 pts for activation of sensor N°1 (TOR1 on command post)

e (2) J23 connector 5 pts for activation of sensor N°2 (TOR2 on command post)

e (3) J24 connector 5 pts for activation of sensor N°3 (TOR3 on command post)

e (4) J25 connector 5 pts for activation of sensor N°4 (TOR4 on command post)

e (5) J21 connector 5 pts for activation of sensor N°5 (TOR5 on command post)

e (6) J29 connector 3 pts for analogue input sensor N°1 (Sensor 1 on command post)
e (7) J30 Connector 3 pts for analogue input sensor N°2 (Sensor 2 on command post)
e (8) J31 connector 3 pts for analogue input sensor N°3 (Sensor 3 on command post)
e (9) J32 connector 3 pts for analogue input sensor N°4 (sensor 4 on command post)
e (10) J33 Connector 3 pts for analogue input sensor N°5 (Sensor 5 on command post)
e (11) J28 free connector for 4th camera

e (12) J27 connector for camera pair of pincers

e (13) J26 connector for complete control of pincers

14

Chapter?2 System description

IL.9 Box with electronics

Figure 17:Elements inside electronics box

(1) Robot movement card

(2 Arm movement card

(3) Microcontroller card

(4) TOR Input/ output carda

(5) Interface carda
(6) Modem

II.10 Loader/Unloader

The loader / unloader allows recharging or unloading of two blocks batteries simultaneously.
It works in charge with a common of 2.5A and cuts automatically by the end of load (still with

small a common of maintenance).

Figure 18: Loader/Unloader and two batteries

15

Chapter?2 System description

e (1) Sector connector
e (2) LED charging indicator
e (3) Load Connectors

III. Software

III.1 Interface HMI

13

IHM Pilotage CASTOR

[N
o

[any
[y

[any
N

a

Captew 4 Capteur 5

TO To TOR 4 TORS

Figure 19:The HMI Interface

(1) video signal coming from the robot

(2) indicator transmission state: synchronization / connection

(3) indicator mode of transmission (radio or cable)

(4) indicator battery level

(5) 5 analogue values coming from the sensors on the robot
(6) indicator of the state of (ON or OFF) the 5 devices

(7) indicator angle of the displacement of the robot

(8) indicator for the speed of the displacement of the robot (forward or backwards)

16

Chapter?2 System description

¢ (9) button to activate full screen

(10) button to activate access to the settings of the video (hue, contrast, brightness, color)

(11) button to activate access to the settings of the dimensions of the video signal and the

serial port

(12) function buttons action menu

(13) indicator of the active camera on the robot

Function Buttons

v F1:
v F2:
v F3:
v Fa:
v’ F5:
v F6:
v FT:
v F8:
v Fo:

Command to roll cable

Command to change camera viewpoint

Command for transmission mode: Cable or RF

Command to open pair of pincers

Command to close pair of pincers

Command to rotate pair of pincers in clockwise direction
Command to rotate pair of pincers in counter clockwise direction
Command to activate TOR 1

Command to activate TOR 2

v" F10: Command to activate TOR 3
v' F11: Command to activate TOR4
v' F12: Command to activate TOR 5

II1.2 Software Specifications

The software of the CASTOR robot consists of two distinct parts:

The software on the PC it allows sending information to control the robot. It also allows

receiving and handling a bit stream coming from the robot which contains different

measurements made by the sensors on the robot.

The embedded software it allows the control over the actions of the robot dependent on the

information received from the control panel. It also allows sending a bit stream with the

measurements from the sensors to the control panel.

I11.2.1 Software on the PC

The software that governs the control over the robot is located on the PC (Windows XP) and

consists out of an HMI written in C++, developed under Visual C++.

17

Chapter?2 System description

It visualizes the video in a window and represents the state of the robot by indicators or graph
bars (level of the battery of the robot, quality of the radio-connection, values from the analogue
sensors, etc...)

The software gets information from the command-buttons pushed on the keyboard and constructs
the bit stream TC (Tele Command) that will be sent to the robot via the serial port. Similarly the
PC will periodically receive the bit stream TM (Tele Measurement) coming from the robot, and

display the information in this stream on the screen.

i. Different Classes

e Class CCaptureVideo: related to the video.
e Class CControlimageDlg: related to the settings for the video.
v Hue
v’ Saturation
v’ Brightness
v" Contrast
e Class CVisuRob: required to display the angle of the robot orientation while moving.
e Class CFullScreenDIg: required to display the video in full screen.
e Class CAfficheur: required to display the analogue sensor values in the HMI interface.
e Class CJauge: required to display the bar graph for the battery level.
e Class InterfComm: related to:
v' Initializing communication
v' Building bit stream
v' Sending bit stream
v Receiving bit stream, CRC
o Function InitComm(): initializes communication
o Function BuildTrame (BYTE * content): Builds the bit stream in the right format:
v Heading
v' Data
v' CRC

o0 Function SendTrame(): vehicles the data to the class PortSerie (function
PortWrite(unsigned char* Byte, int nNumberOfBytesToWTrite)) to handle

the details of data sending.

18

Chapter?2 System description

o0 Function ReceiveTrame(): Gets a hold of the data coming from the robot through
the class PortSerie (function PortRead(unsigned char* Data, int
nb_read_need, int& nb_read)) and Checks the validity of the data through CRC.

e Class PortSerie: Deals with communication through the serial port:
v' initializing port (Portlnitialize(...))
v' Writing (PortWrite(...))
v" Reading (PortRead(...))
o Class CIHM_PilotApp: Defines and initializes the application.
e Class CIHM_PilotDlg:
o Initializes the main dialog
0 Processes:
v’ the joystick input
v" the function buttons
v' the values of the analogue sensor entries
v’ other buttons pushed on the dialog (FullScreen, Properties Video, Settings
Dimensions + Communication Port)
0 Function OnlnitDialog():
v Reads parameters out of configuration file: LitParametres()
Defines joystick
Initializes video
Initializes communication port
Initializes interface
Starts thread :InterfaceComThread = HANDLE_begin thread (

RN NEENEEN

startlnterfaceCom, ...)

0 Function OnTimer(UINT nlDEvent): tasks:
v To refresh joystick
= speed + direction determined
= movement arm + forearm determined
= this information is stored in the bit stream being sent to the robot
v which function buttons are being pushed
= every button is tested

= accordingly the bit stream is adjusted

19

Chapter?2 System description

v" The HMI interface reflects the above information by means of several
indicators

v’ After the data are collected they are copied in the global variable
Global_OutData; the thread startinterfaceCom (LPVOID Ip) will send
these data to the robot.

v The bit stream coming from the robot is received and will be handled here,
the analogue values are extracted from the bit stream and displayed on the
interface

v The function is called every 200 ms

e Global function: startInterfaceCom(LPVOID lp)
o Sending and receiving bit streams
v" For synchronization
v For data exchange
0 Thread: Constant loop of

v Building bit stream with Global_OutData

v Sending bit stream

v’ Receiving bit stream

il. Most Important Files

e IHM_Pilot.h: it is the main header file for the application. It includes other project specific
headers and declares the CIHM_PilotApp application class.

e IHMPilot.cpp: it is the main application source file that contains the application class
CIHM_PilotApp.

e IHM_PilotDIg.h: it contains the declaration of one’s CIHM_PilotDIg class. This class
defines the behavior of your application's main dialog.

e |IHM_PilotDIg.cpp: This file contains the definition of one’s CIHM_PilotDlg class.
This class defines the behavior of one’s application's main dialog. Its important functions
are: OnlnitDialog() OnTimer(UINT nIDEvent).

e CaptureVideoSimple.h: contains declarations of: class CCaptureVideo class
CWndCaptureVideo.

e CaptureVideo.cpp: contains definition of: class CCaptureVideo

e InterfComm.h: contains declaration of: class CinterfComm, global variable

InterfaceComThread

20

Chapter?2 System description

e InterfComm.cpp: contains definition of: class CinterfComm

¢ InterfaceCommunication.cpp: contains definition of: global function (thread):
startlnterfaceCom(LPVOID lp)

e PortSerie.h: contains declaration of: class PortSerie

e PortSerie.cpp: contains definition of: class PortSerie

111.2.2 Bit streams Exchanged between the Control Panel and the Robot

The control panel sends a bit stream to the robot every 200 ms. When the robot receives this

bit stream, a response bit stream is sent from the robot to the control panel.

1. Bit stream sent from the control panel to the robot:

This bit stream consists out of 11 octets:
e 2 octets in the beginning of the stream
e 4 octets for analogue entries (on the side of the PC)
e 3 octets for ON / OFF entries (on the side of the PC)
e 2 octets for Cyclic Redundancy Check (CRC)
In more detail:
e Octet n°1: hexadecimal value: 0x12
e Octet n°2; hexadecimal value: 0x34
e Octet n°3: Analogue entry: instruction forearm
Value coming from the joystick, X-axis, right button pushed. Represented by 8 bits.
e Octet 0°4: Analogue entry: instruction arm
Value coming from the joystick, Y-axis, right button pushed. Represented by 8 bits.
e Octet n°5: Analogue entry: instruction forwards / backwards
Value coming from the joystick, Y-axis, left button pushed. Represented by 8 bits.
e Octet n°6: Analogue entry: instruction left / right

Value coming from the joystick, X-axis, left button pushed. Represented by 8 bits.

21

Chapter?2 System description

e Octetn°7: TOR 1: ON / OFF states

v' Bit 7: Brake (no brake=0, brake=1)

v' Bit 6 :Active h
v Bit 5 : Direction control

v’ Bit 4: Pan/ Tilt/ zoom 1 & 2/ Pincers / Rotation pincers control referenced motors » referenced
v Bit 3: Pan/ Tilt/ zoom 1 & 2/ Pincers / Rotation pincers motors

v/ Bit2: Pan/Tilt/zoom 1 & 2/ Pincers / Rotation pincers J

00xxx = motors pincers, rotation pincers, pan, tilt. zoom 1, zoom 2 deactivated
10000 = motor pincers activated in opening mode

11000 = motor pincers activated in closing mode

10001 = rotation motor pincers activated in clockwise mode

11001 = rotation motor pincers activated in counter clockwise mode
10010 = motor zoom 2 activated in clockwise mode

11010 = motor zoom 2 activated in counter clockwise mode

10011 = motor zoom 1 activated in clockwise mode

11011 = motor zoom 1 activated in counter clockwise mode

10100 = motor tilt activated in up mode

11100 = motor tilt activated in down mode

10110 = motor pan activated in clockwise mode

O 0O 0O O o O o o o o o o o

11110 = motor pan activated in counter clockwise mode

00 = camera n°1 pincers
v' Bit 1: Selection camera . 10 = camera n°2 extra
Selection

v’ Bit 0: Selection camera 01 = camera n°3 steering

11 = camera n°4 rear
e QOctetn°8: TOR 2: ON / OFF states

v Bit 7: TOR 4 OFF=0/ ON=1

v Bit6: TOR 2 OFF=0/ON=1

v" Bit 5: roll cable = 1/ Deactivate roll cable =0
v Bit4: TOR 1 OFF=0/ON=1

v Bit3:TOR 3 OFF=0/ ON=1

v’ Bit 2: validation tir, set to 1

22

Chapter?2 System description

v Bit1: TOR 5 OFF=0/ ON=1
v" Bit 0: RF mode= 0/ Cable mode =1

e Octet n°9: TOR 3: ON / OFF states

e Octet n°10: CRC

e Octetn°11: CRC

The CRC octets are calculated as follows: CRC with 16 bits = Octet 1 + Octet 2+...+ Octet 9

Duration of the bit stream TC:
v" 4800 baud/s
1 symbol =1 bit
4800 bps
11 octets = 11 x 8= 88 bits
Duration = 88/4800~18 ms

v
v
v
v

ii. Bit stream sent from the robot to the control panel

This bit stream consists out of 14 octets:

e 2 octets in the beginning of the stream

e 9 octets for the analogue entries (on the side of the robot)

e 1 octet for ON / OFF entries (on the side of the robot)

e 2 octets for Cyclic Redundancy Check (CRC)

In more detail:
e Octet n°1: hexadecimal value: 0x12
e Octet n°2: hexadecimal value: 0x34
e Octet n°3: Value battery

12 bits are used to represent the value: the 8 MSB here and the 4 LSB in octet n°9
e Octet n°4: Value analogue entry 1

12 bits are used to represent the value: the 8 MSB here and the 4 LSB in octet n°9
e Octet n°5: Value analogue entry 2

12 bits are used to represent the value: the 8 MSB here and the 4 LSB in octet n°10
e Octet n°6: Value analogue entry 3

12 bits are used to represent the value: the 8 MSB here and the 4 LSB in octet n°10
e Octet n°7: Value analogue entry 4

12 bits are used to represent the value: the 8 MSB here and the 4 LSB in octet n°11

23

Chapter?2 System description

Octet n°8: Value analogue entry 5
12 bits are used to represent the value: the 8 MSB here and the4 LSB in octet n°11
Octet n°9: Value battery (4 LSB)/Value analogue entry 1(4 LSB)
v/ Bit0to 3 =4 LSB value battery
v' Bit4to 7 =4 LSB value analogue entry 1
Octet n°10: Value analogue entry 2 (4 LSB)/ Value analogue entry 3 (4 LSB)
v' Bit0to 3 =4 LSB value analogue entry 2
v/ Bit4to 7 = 4 LSB value analogue entry 3
Octet n°11: Value analogue entry 4 (4 LSB) / Value analogue entry 5 (4 LSB)
v' Bit0to 3 =4 LSB value analogue entry 4
v/ Bit4to 7 = 4 LSB value analogue entry 5
Octet n°12: Not used, BitOto 7 setto 0
Octet n°13: CRC
Octet n°14: CRC

The CRC octets are calculated in the following manner: CRC with 16 bits = Octet1+Octet2+
... + Octet 12
Duration of the bit stream TM:
v 4800 Baud/s
v" 4800 symbol = 1 bit
v" 4800 bps
v’ 14 octets = 14 x 8 = 112 bits
Duration = 112/4800~ 23 ms
Duration TC: 18 ms
Duration TM: 23 ms
Frequency thus is 1/ (23+18) ~24 Hz

iii. Calibration Analogue Values

For the calibration of the analogue entries the following procedure must be followed:
Calculate the gains A, B, C to obtain a measurement curve following the following equation:
y=Ax?+Bx+C

With: x, the value of potential difference volt

y, the output in the desired measurement unit

24

Chapter?2 System description

The gains are then multiplied as follows:

A=A*Coeff?

B = B*Coeff

C=C

The coefficient multiplication depends on the resolution of the analogue entries:

For example, when 12 bits are used:

Analogue Oto+5V => Resolution = Coeff 5/ 2
Oto+10V => 107 2%
5to+5V => 10/ 2%
10 to +10V => 20 / 2

Config_IHM.txt: file with parameters for the configuration of the analogue entries between 0
and +/- 10 V.

Config_IHM_-10_+10.txt: file with parameters for the configuration of the analogue entries
between -10 and +10 V.

111.2.3 Input/output Cards

i. Input/output Card Robot:

Configuration Card:

v Port A output

v Port B input

v Port C low when input, high when output
Configuration word: 0x81 = 1000 0001b

Bit n°

PORT A: 0 Bit1l (MSB) selection camera
Bit 0 (LSB) selection camera
relay communication RF/Cable
relay cut video
free output
free output
Command roll back

~N o oA oW N e

free output

25

Chapter?2 System description

Bit n°
PORT B: 0 Command break
1 Bit4 P/T/Z/P/O (pan/tilt/zoom/orientation)
2 Bit3P/T/Z/PIO
3 Bit2P/T/Z/PIO
4 Bit1P/T/Z/PIO
5 BIit0P/T/Z/PIO
6 free output
7 tobeforcedtol
Bit n°
PORT C: 0 Not used
Not used
Not used
Not used

1
2
3
4 Break orientation pair of pincers
5 to be forced to 0

6 free output

7 tobeforcedtoO

Analogue entries

Channel n°® 0 Level battery robot (0/10V)

1 Entry sensor n°1 (0/10V)
2 Entry sensor 0°2 (0/10V)
3 Entry sensor n°3 (0/10V)
4 Entry sensor 0°4 (0/10V)
5 Entry sensor 0°5 (0/10V)
6 Not used

7 Not used

Analogue outputs

Channel n° 1 Instruction forward / backwards
2 Instruction left / right
3 Instruction arm

4 Instruction forearm

26

Chapter?2 System description

ii. Input/output Card PC

The entries that need to be managed on the PC side are:
e Joystick (port USB 1)
o0 X-axis for the direction of the robot, or the control over forearm
o Y-axis for moving the robot forward or backwards, or the control over the arm

Left joystick button for the control over the movement of the robot

Right joystick button for the control over the arms
Video (port USB 2)

Function buttons
The outputs that need to be managed on the PC side are:

e Displaying the video in a window or in full screen

e Displaying the battery level of the robot on an analogical bar graph with 100%=27 V to

10%=24 V.

e Displaying the 5 analogue sensor values from the with 4 digits

e Displaying by means of indicators the ON/OFF states of the devices connected to the
interface box (Red=OFF, Green=ON) TORL... TOR5.

IV. Operation of the program

The next graph explains the program running, the system initialization (video, port, interface
initializations...etc) are made first, than the program is running in a loopback, this is the
manual mode (the control of the robot is made by the operator):
The operator:

e selects the camera

e selects the mode of transmission

e Controls the pair of pincers

e Controls the direction and the speed with the joystick

27

Chapter?2 System description

System Initialization TOR

vV v
CIHM_PilotDlg::OnTimer

L N

Joystick Arm

\B@A

Speed and Direction

Ve

A\ 4

Analogue Entries]

Function Buttons

7y
6, F7
4, F5
v

Pair of Pincers Pair of Pincers .
) [roll cable Transm|55|on Mode] [Camera Selection]
open or close rotation

V. Conclusion

The CASTOR robot is a teleoprated platform, based on the continuous exchange of video
frames with the Control Panel which makes the control of the robot more easier and allows
the use of the robot in different tasks specially when the task take place where the operator

shouldn’t or can’t go.

28

Chapter 3: Hue tracking overview

I. Introduction
For our application the color of the target is used as criterion of recognition, thus the

HueTracker project is implemented to our program. This chapter is a description of the
methodology adopted on this project. The approach of color detection, target parameters

(center, size, position...) estimation and noise suppression will be explained.

II. Color Target Detection and Parameters Estimation
Many methods have been developed for target recognition and tracking purposes: the active

contour method [1], the optical flow based method [2], the color based method [3] [4]. For the
HueTracker project the advantage of color image is taken and color was used as a feature for
recognizing the target. Color target detection and description could be done using either edge
detection methods or region segmentation approaches. The digital color image pixel is
considered as a vector, the digitalized color image as a vector field, and the edge detection has
been made in a vector space. For this application, the HUE was used as chromatic
identification criteria, and simplified the identification and the segmentation process for

saving the computational cost, in order to meet the requirements of a real-time application. [5]

L1 Color Models
To represent a colored image, several models are available, the three most widely used being:

RGB1, YIQ2 and HIS3. [6][7]

1.1.1 RGB Color Model

The most frequently used color model is the RGB color model. In this model, each color

image pixel signal is decomposed into three primary color components: Red, Green and Blue.
Each primary color component includes both color and intensity information that are mixed
together. One color is represented as a vector in the RGB space, as shown in Figure 20. This

color model is often used in image display on a color monitor.

! Stands for Red, Green and Blue

Z stands for Y-the luminance component, I-the in phase chromatic component and Q-the quadrature chromatic
component.

® stands for Hue, Lightness and Saturation.

29

Chapter3 Hue tracking overview

v

R

Figure 20 : RGB Color Model

[.1.2 YIQ Color Model
The second model is the YIQ color model, which is used in commercial color TV

broadcasting. Basically, YIQ is a recoding of RGB for ensuring the transmission efficiency
(because it transmits two chromatic signals, instead of three, it uses the same bandwidth of
frequency) for maintaining the compatibility with monochrome TV standards and also the
color information. The principal advantage of the Y1Q model in image processing is that the
luminance () and the color information (I and Q) are decoupled. The relationship between
the RGB model and the YIQ model is defined as follows:

vyl [0.299 0587 0114 R
| |=|0596 -0.275 -0321|G @
Q| |0212 -0523 0311 |B

1.1.3 HIS Color Model

In the HIS color model, the characteristics used to distinguish one color from another are
brightness (1), hue (H), and saturation (S). Brightness embodies the chromatic notion of
intensity. Hue is an attribute associated with the dominant wavelength in a mixture of light
waves. Saturation refers to the relative purity of the amount of white light mixed with a hue.

The model is shown in Figure 21:

White
Blue] A
Intensity
Magenta Cyan A

Red Green

Red Yellow Green

Black

Figure 21: HIS Color Model

30

Chapter3 Hue tracking overview

The hue value is represented as the angle between the pure red color and the color of interest.
From Figure22 we can clearly see that a constant hue value (a constant angle value),
corresponds in fact to a vertical plane in the model. This angle value is independent from the
intensity or lightness (the height of the solid in Figure21 or the height of the horizontal plane
in Figure 22) of the color of interest; it is also independent from the saturation (the length of
the vector in Figure21 or the diameter of the cone in Figure 22) of the color of interest.

The relationships between the HIS model and the RGB model are defined as follows [6]:

I=1(R+G + B) (2)
3 .

Y . R,G,B

=1 (R+G+B)[mm()] e

{ 3[(R-G)+(R-B)] } 5o
(R-GY +(R-B)G-B)[" B
1[(R-G)+(R-B)] } B G

(4)
27 —C0s {[(R ~G) +(R-B)G- B)]yz

C)WHWE

1 GEOMETRICAL
LIGHTNESS MODEL OF
PERCEPTUAL
COLOR SPACE
FOR REFLECTING
OBJECTS

HUE

CONSTANT HUE
LU GREEN vELLOowW /(PLANE)
——

coNsTANT __ PUR
LIGHTNESS
{PLANE)

ORANGE

CONSTANT -~
SATURATION

(CONE) B p
| BLACK 7 Jk CONSTANT CHROMA
(CYLINDER)

Figure 22 : Geometrical Model of Perceptual Color Space

L2 Color Target Detection

The hue describes the color information. Using it for target detection the influence of intensity
and saturation can be reduced. The major problem in using the HIS color space for target
description and detection is the computational time needed to transform the original
(acquired) image from the RGB space to the SHI space. In the Hue Tracking project a method

31

Chapter3 Hue tracking overview

using the hue information for target detection is proposed without any color space

transformation.

|.2.2 Object’s Hue

As it can be seen from Figures 21 and 22, a pure color can be clearly defined by a single hue

value. However, due to the non-uniformity of the reflection and absorption properties of light
falling colored surface, a range of hue values representing an interval is needed to represent a
given color. The hue interval for a given color could be represented by the minimum hue

H

value (min) and the maximum hue value(l'I max). Each color may be parameterized by the

two planar surfaces, in the HIS space, defined by (Hmin) and (H) These mentioned planar

surfaces, Figure 23, could be described directly in the RGB space.

Intensity

hue plan

Figure 23 : Hue Section

Figure 23 shows the RGB histogram of a red color, as it can be seen, the distribution is

elongated in the R direction.

30 Hue Histogram

Figure 24 : RGB Histogram of Red Sphere

32

Chapter3 Hue tracking overview

Figure 24 shows the RGB values of a red sphere. Notice that, the Green and Blue values are

nearly equal.

|.2.3 Pixel's Classification

Let Pmin and Prox the two points of the RGB space, corresponding toHmin and Hma

respectively:
pmin:(Rnin’Gmin’ Brnin):Rnin'T+Gmin. T+B’“i”.E 5)
ﬁmax:(Rnan G\nax’ Bma>) — Rnax'r+e1nax' T+ BmaX. lz (6)

Where T : 1 and K the unit direction vectors of the Red, Green and Blue axis; respectively.
The equations of the two vertical planes can be set in the RGB space. One passes through the

(Rmin’Gmin’ Bmin) point, the black point and the white point, and the other passes through the

G, B

(R rmox+ Brnoc) point, the black point and the white point. Both are orthogonal to the hue

max !

plane, as shown in Figure 23.

The normal to the horizontal hue plane is (1, 1, 1), which is denote aslz(l’l’l) =l +]+k .
Therefore, the normal to these two vertical planes can be found by using the following two

vector cross product functions:

— —

i J k
ﬁmin:1>< =l 1 1 1 :(anin_Qnin)T+(Rnin_anin)j—i_(Qnin_R‘nin)R
I:inin Ghﬂn Bmir

()
Where ﬁmi” is the normal to the vertical plane that passes through H min and
i J k
FL*nax:_:l:><ﬁ71z:1x: 1 1 1 :(Bnanr}alrﬁRnax_Bna)T{Qnax_Rna)E
Rnax Qnax Bna((8)

Where M3 s the normal to the vertical plane that passes through ~ M3 These two

vertical planes separate the hue plane into two sections, as shown in Figure23.

33

Chapter3 Hue tracking overview

R,G,B)

To classify a given (pixel in a section of a hue region, which side of the vertical

planes the pixel belongs to, should be checked. This can be done mathematically using the dot
product of the pixel vector and the normal to the vertical planes. Suppose the pixel is
expressed as

p=R-i+G-j+B-k=(R,G,B) o

Then, for a pixel that belongs to the vertical plane defined by Hm'n, we get

ﬁ.ﬁnin:(anin_Qnin)(R_B)+(Rnin_Bmin)(G_B):O (10)

A pixel that belongs to the right side of the vertical plane defined by Hm'“, verifies the
following equation:

ﬁ’ﬁnin:(anin_qnil)(R_a*’(Rnin_B“iJ(G_a>O)

The same holds to vertical plane defined by Hmax for a pixel that is on the left side of the

plane or on the plane, the following function is true:

por},AB G R B4R, . B.JGB0)

Therefore, in the RGB space, we use Equations (10),(11) and (12) to classify the image pixels
according to their hue information, without any transformation from the RGB space to the
HIS space. For a real time application this saves a lot of computation time. In summary, the

classification scheme is given by:

HRGBH..H, l:q: 1 (ﬁﬁmnzq and(p.ﬁnaxgq

0 otherwise
(13)

Where q is the value of the pixel in the obtained binary image representing the classification

results. This binary image is used for the next image processing steps.

34

Chapters3 Hue tracking overview

L.3 Noise Suppression and Image Segmentation

The misclassified pixels in the Target detection are considered as noise so they should be
filtered. Two filtering methods are introduced, namely a threshold based filtering and a

mathematical morphology approaches.

I.3.1 Threshold Filtering

In general, the worst case of pixel classification occurs when the pixel is too dark (the
amplitude of the RGB value is very small) or too close to white (the relative differences
among amplitudes of the R, G and B values are very small). These pixels have limited color
information and their hue values are very sensitive to noise. Two approaches are used to
suppress these two kinds of noise.

The detection of the very dark pixels, having an intensity value less than an estimated low
threshold at first. The threshold is estimated using Equation (2).

Then the detection of the bright pixels, i.e. pixels with a very low saturation value. A
threshold for the saturation value of a pixel is estimated using Equation (3).

The thresholding applied during the pixel classification process, does not affect the speed of
the method. From equations (2) and (3) only a sum is used to estimate the intensity and
saturation parameters the thresholds values are determined experimentally, by selecting very
dark and very bright areas, respectively. The results of this approach are illustrated in the
following figures, for the detection of a red sphere.

Figure 25 shows the detection result without thresholding.

Figure 25: Detection Results without Thresholding

35

Chapters3 Hue tracking overview

Figure 26 shows the detection results, after application of the intensity threshold only.

e - il

Figure 26 : Application of the Intensity Threshold

Figure 27 shows the detection results after application of the saturation threshold only.

Figure 27: Application of the Saturation Threshold

Finally, Figure 28 shows the detection results after the application of both thresholds

Figure 28: Application of both Intensity and Saturation Thresholds

36

Chapters3 Hue tracking overview

I.3.2 Morphological Filtering

Morphological Filtering is applied for noise removal, region connection and region
segmentation
Two basic operations, namely, Erosion and Dilation, are used with two other operations

Opening and Closing.

In practice, two image buffers are used. One contains the original image, the second contains
the structuring element as mask.

The applications of these operations will give the following results:

e Wipeout all the isolated dots whose size is smaller than the size of the mask and thin
lines whose width is less than the width or height of the mask
e Fill out holes in the detected objects, and produce connected regions.

e Clear up all the boundaries of the objects.

In this example, a circular structuring element has been used for both the erosion and dilation
operations. It shows first the original image (Figure29), represents the classification results

(Figure 30), and shows the segmentation results (Figure 31).

Figure 29:Original Target Image

37

Chapters3 Hue tracking overview

Figure 30: Classification Results

Figure 31: Detected Target after Morphological Filtering

L4 Target Image Position and Size Estimation

After noise suppression, a connected and well-segmented target image is extracted, as shown
in Figure31. For the purpose of target tracking and three-dimensional position estimation, an
estimation of the position and size of the target image is needed. For the convenience of
estimation, as a target, a colored sphere is used, so the target shape, as viewed by the camera,

will always appear the same: a circle.

I.4.1 Region of Interest

Two methods are used for the target search during the target detection and tracking step. A
full search is made at the initialization of the system. During this, the full image is used for

color pixel classification and target detection. Having detected the target, adaptive filters are

38

Chapter3 Hue tracking overview

used to predict the position and size of the tracked target for the next coming images. These
parameters (position and size) are used to define a search window (or region of interest), it

thus the reduction of the computational time and provides a higher signal to noise ratio.

|.4.2 Target Image Diameter Estimation

A colored sphere is used as the target so as it appears (circular shape). It will not change when

the camera sees it from different points of views.

1.4.3 Target Image Size and Position Estimation

The estimation of the target image size and its position is in fact an image description
problem. The gravity center and the inertial moments are used as descriptors. The mean
values of the coordinates of the detected target image pixels are defined as the target gravity
center. The second order moments of the detected target boundaries are used as target size

descriptors.

The target image gravity center is shown as the point (Y’ 7) in figure32.

|

0

Figure 32 : Gravity Center and Moments of the Detected Target Image

IIl. Camera Model

The camera used in the HueTracker project was a controllable camera, but in our project
cameras mounted in the robot aren’t controllable. We will be interested just in only one
camera.

The camera used should be mounted parallel to the robot axe; this way the orientation of the
robot will be easier. So we have chosen to use the camera pair of pincers in which the position

has been changed.

39

Chapter3 Hue tracking overview

IV. Most Important files and classes
Most Important Files

e HueTracker.h: the main header file for the HueTracker application. It declares the
CHueTracker application class.

e HueTracker.cpp: This is the main source file that contains the definition of: class

CHueTracker.

Different Classes and procedures

eClass CHueTracker: required to get all the target data.

e OnHueClassification():Classifies pixels as belonging to the target object or not.

e OnMorphologyFiltering(): Main function for morphology filter.

e OnErode(): Erodes image for morphology filter.

e OnDilate(): Dilates image for morphology filter.

e OnOpen() and OnClose().: Sub functions for morphology filter.

e OnShowResult(): Outputs the morphology filtered image buffer.

e OnTargetCenter(): Calculates the center of the recognized target object in the image plane.
e OnTargetSize():Calculates the size of the recognized target object in the image plane.

e OnWindowSizeAndPosition():Calculates the new size of the window surrounding the
target object, which will be processed in the next loop.

e SearchTargetlnit(): Initialization of the target tracking procedure , put the
camera in home position

eOnimageConfigure(): Tests if camera reacts

eOnCalculateDistance(): Calculates the distance to the target object by scaling its
size in the image plane

eOnCameraOrientationControl(): Controls the camera, thus the target object stays
centered in the image plane

e ZoomControl(): Controls the zoom of the camera

e¢OnCircleEstimation: Controls if the target is a circle

eSearchTarget(BYTE* image): This function is given one grabbed frame (image) and it

returns O if target is not found, 1 if the target is found.

40

Chapter3 Hue tracking overview

V. Conclusion

In this Chapter the approach used for the target detection and parameters estimation was
described. As mentioned, the target used is a colored sphere. A color based classification
scheme was proposed for the discrimination between the target and background pixels, and
mathematical morphology operators then applied for region segmentation and noise reduction.
Finally, the target is parameterized by its center position and size. In the next chapter we will

explain our approach to implement the Hue Tracking model to the CASTOR robot platform in

order to track the moving color target.

41

Chapter 4: Hue Tracking Model for CASTOR robot
platform

L Introduction

This chapter is a description of the work carried out and the level of advancement.

The first step was to retrieve the image from the camera, since HueTracker project is based on
image treatment.

The second step was to treat the image with the Hue Tracking model to determine the target
size, position, center...and finally to enable the robot to follow the target with specified
descriptions.

In the next parts we will explain the methodology adopted and the level of the work achieved.

II. Image Grabbing

The MSDN library gives many methods to retrieve an image from a camera.

The first function tried was the GetCurrentimage method that retrieves a copy of the current
image being displayed by the VMR.

This method can be called at any time, no matter what state the filter is in, whether running
stopped or paused. However, frequent calls to this method will degrade video playback
performance.

The second method is the GetCurrentBuffer, the most used with DirectX and it’s the chosen
one to be used in our application.

The GetCurrentBuffer method retrieves a copy of the buffer associated with the most recent
sample. The buffer is directly used with the Tracking module.

The function GrabData() is the function responsible for the call of the GetCurrentBuffer and

for retrieving the buffer.

42

Chapter4 Hue Tacking Model for CASTOR robot platform

The next image is an image captured from the robot camera; the current running image is

saved in the folder “c:\DevVisual\Debug\imgl.bmp”.

Figure 33 : Image captured from the robot camera

III. Hue Tracking

The buffer retrieved from the GrabData() is used with the function SearchTarget(BYTE
*buffer). The SearchTarget applies a succession of functions to the buffer to get the target
size, position and center. The target data will be used to control the robot.

The most important functions used to the target detection in the HueTracker model are:
OnHueClassification()

OnMorphologyFiltering()

OnErode()

OnDilate()

OnOpen() and OnClose()

OnShowResult()

OnTargetCenter()

OnTargetSize()

SearchTarget(BYTE* image)

N N N N N VD N N N

43

Chapter4

Hue Tacking Model for CASTOR robot platform

The call of the functions and their use between classes is illustrated as follows:

l

Class

/ IHM_PilotDlg \

1. Grabbing call

(2)

2. Hue Tracking call

(4) l

3. Robot Control

_

J

(1) Call of GrabData(
(2) Buffer

)

\
\ v
\ 3) | 2. Image Grabbing

Class

f CCaptureVideo \

1. Graph running

.

J

|

CHueTracker
Class

Applying Hue Tracking

Model

(3) Call of SearchTarget(BYTE™* Buffer)

(4) Target Data

II1.1. Hmin and Hmax Values

The different conditions of lightness, the variation of the environment and the background

have an influence on the detected zone.

We have used the Adobe Photoshop, to get in different distances and conditions the (R, G, B)

values of the center, thus we can determine the Huin and H m

The different hue values are fixed as follows:

v Rmax =200

v Rmin =150

v' Gmax =50
v' Gmin =15
v' Bmax =70
v' Bmin =20

44

Chapter4

Hue Tacking Model for CASTOR robot platform

The findings results are illustrated in the following table:

Distance Im 2m 3m More than 4m
(R,G,B)
R 205 206 193 189
White Background G 12 44 34 50
B 60 67 38 72
R 178 170 157 165
The soil as a G 49 35 30 53
background
B 57 59 69 59

Table 1 : The different resulting (R, G, B) values

II1.2 Center and Size detection

We have taken several catches to check the modified parameters; the following table

illustrates the detected target center and size from different distances:

Distance Iim 2m 3m 4m
Backgroun

m_CenterX 370 362 354 342

White Background | m_CenterY 381 483 531 499

m_Total 8446 2914 1248 640

m_CenterX 274 304 322 340

The soil as a m_CenterY 375 467 500 515
background

m_Total 9986 2608 1562 754

Table 2 : Target size and center detection

v' (m_CenterX, m_CenterY): Target center coordinates

v' m_Total: Target size (with number of pixels)

45

Chapter4 Hue Tacking Model for CASTOR robot platform

IV. Robot Control

The robot control is based on an exchange of bit streams between the robot and the control

panel case, the next graph shows the frames construction, treatment and circulation on both

the PC and the robot.

PC

A 4
Frame construction

Frame Issue

ROBOT

A 4

Frame Reception

REC-NOK

L
Frame Reception

REC-NOK

REC-OK
A 4

Frame Treatment

v REC-OK

Frame Treatment

A 4

Frame construction

\ 4

Frame Issue

To control the robot the speed and direction are required. The values of the speed and the

direction have been defined as follows

v" For left turning : Direction = 0.3

Speed =0.5
v" For right turning : Direction = -0.3
Speed = 0.5
v" For straight way : Direction = 0.5
Speed =1

Where -1<Speed<1 and -1<Direction<1

e Speed=0.5 s Speed = Null
e Speed=1 — Speed = Max
e Direction=05 c—> Direction = Straight

46

Chapter4 Hue Tacking Model for CASTOR robot platform

For our application, the control of the robot arm is not taken into consideration it will be done

manually with the Joystick.

Three modes for the robot have been defined with these specified parameters: Left, Right and
Straight. These defined modes will not be changed during the program running but the

number of repetition of those modes is variable.

The two most important data for our application, returned by the Hue Tracking functions, are
the target size and the target center coordinates. These data are required to define time
duration of the defined modes to be executed. Therefore two counters are used for that:
Counter 1 and Counter 2.

If the target center is in the right part of the image (m_CenterX>320), similarly if it is on the
left of the image (m_CenterX<320), the robot should turn to the right (or to the left). As a
consequence, the running time of the robot has been estimated under the control of Counter 1.
Straight ahead the distance has to be estimated under the control of Counter 2.

The different counters values depend on the m_CenterX and m_Total.

The next two relations define the manner in which the counters are calculated:

v" Counter 1 = |m_CenterX - 320|/ C1 [a]
v" Counter 2=C2/ m_Total [b]

Where C1 and C2 are two constants experimentally determined.
The following table illustrates the number of counters made on the left mode or the right one

to have the target in the middle of the image:

m_CenterX 23 299 190 633 64

Counter 1 3 0 1 3 2

Table 3: Counter 1 variation with m CenterX

We have estimate C1=110, relation [a] is also:
Counter 1 = |m_CenterX - 320|/ 110

47

Chapter4 Hue Tacking Model for CASTOR robot platform

The following table illustrates for different values of Counter 2, the distance made by the

robot and the correspondent m_Total:

Counter 2 1 2 3 4 5
Distance (m) 1.3 2.5 3.7 4.5 5.6
m_Total 7022 2599 1799 712 153

Table 4 : Distance and m Total variation with the Counter 2

We can conclude from the table that m_Total made an important variation with the distance.
We have estimate C2=8000, relation [b] is also:
Counter 2 = 8000/ m_Total

The next graph describes the algorithm used in the program:

v' RED_Follow: when the button “RED FOLLOW?” is pushed, it returns RedStart = true
and the program of grabbing and tracking starts.
v' STOP: when the button “STOP* is pushed all modes are putted to false and the

application is stopped.

The program is executed in loopback: the function OnTimer. The next graph describes the
new loop of control added to the original program.

The control of the arm, pair of pincers, selected camera and roll of the cable is still under the
operator direction.

48

Chapter4

Hue Tacking Model for CASTOR robot platform

STOP

RED_Follow

RedStart=false, Left=false
RedStart=true

Right = false, Straight=false

A

0: Target not found

RedStart=true

; }
i

OnTimer
RedStart=false

Buffer#NULL
GrabData()

SearchTarget

Buffer=NULL

m_CenterX>320

Counter#Counterl

\ 4

1: Target found m_CenterX, m_Total

Robot Control

m_CenterX<320

Counter#Counterl

y Vv
Right

Y A
Left

Counter=Counterl

\ 4

Counter=Counterl

A\ 4

Straight

A

Counter=Counter?2

[

LStraight

Counter#Counter2

If RedStart = false, the manual control of the speed and the direction is activated.

49

Chapter4 Hue Tacking Model for CASTOR robot platform

V. System Modifications
V.1 Hardware Modification

The pair of pincers camera position has been changed parallel to the robot axis, like that the

target will be easy localized and we can keep it in the center of the image by orientating the

robot. Figure 34 shows the new position of the camera:

FETHT

Figure 34 : CASTOR modification

V.2 Software Modification

The next image shows the new HMI interface, two buttons have been added

e RED FOLLOW : to start the grabbing and the tracking aplication

e STOP : to stop the application and to return manual mode

50

Chapter4 Hue Tacking Model for CASTOR robot platform

IHM Pilotage CASTOR

TOR 21F9) TOR 3(F10) TOR 4(F11) TORG(F12)

Figure 35 : New HMI Interface

VI. Technical Problems

During our work, we have faced some technical problems.

crean
Contallmage
Proprigtés [HM

v’ Batteries problems: the batteries of the robot were very old and didn’t maintain the

load. At the last part of the project, which was the test of the robot control, we were

obliged to do the work with a single battery because the second has become unusable.

This generated a loss of time.

v" Interference problems: even if the robot is used in the laboratory (indoor), sometimes

the signal is disturbed, which makes the control of the robot very difficult.

51

Conclusion

This paper described the CASTOR robot platform and the implementation of the Hue

Tracking model in order to recognize the target and to allow for the robot to follow it.

It can be pointed out that the objectives of this project have been successfully achieved, even
if we had some trouble to resolve some problems with the robot control. The Hue Tracking
model has been functional and robot is able to detect the target and to localize it.

As the proposed interface does not provide force feedbacks, the operator detects physical
contacts and collisions between the robot and the environment visually from the robot’s
camera images, which is rather difficult especially when using only one camera as it is in our
application.

There are also difficulties in monitoring collisions between the environment and the robot
which are out of the camera image range. We hope to cope with these difficulties by
enhancing the autonomy of the robot in the future practice.

Adding some sensors to objects avoidance and using the work previously performed, may
lead to greater efficiency in the control of robot.

Concerning the personal experience, this work helped me to improve and to expand my
knowledge with the C + + and DirectX and to learn more about an important domain as

robotic.

It helps me to have a close view on robots platform, robots control and the development of

robots intelligence and autonomy.

52

Bibliography

MUTO008-User's Manual castor RMA_vf.
MUTO0012-User's Manual Logiciel_uf.

Ping Hong, “VISUAL SERVOING FOR ROBOT NAVIGATION: Application in
Humanitarian Demining”, VUB-RMA 2001.

Kristel Verbiest, “ Report CASTOR”, 2006.

[1] Nicholas Hollinghurst and Roberto Cipolla, “Uncalibrated Stereo Hand-
Eye Coordination”, Image and Vision Computing, Volume 12, Number 3, pp. 187-
192, April 1994.

[2] Ryuzo Okada et al., “Object Tracking based on Optical Flow and Depth”,
Proceedings of IEEE/SICE/RSJ International Conference on MFI, pp. 565-571,
1996.

[3] Stephen J. McKenna, Yogesh Raja and Shaogang Gong, “Tracking Color
Objects Using adaptive mixture Models”, Image and Vision Computing, Vol. 17,
pp. 225-231, 1999.

[4] Rafael Garcia, Joan Batlle and Marc Carreras, “Real-Time Tracking of
Mobile Robots in Structured Environments”, Proceedings of Automation 99, pp.
207-212.

[6] Rafael G.Gonzalez and Richard E.Woods, “Digital Image Processing”
Addison-Wesley Publishing Company, Inc., 1993.

[7] Charles Poynton, “A Guided Tour of Color Space”, Proceedings of the
SMPTE Advanced Television and Electronic Imaging Conference, San Francisco,
pp. 167-180, Feb. 1995.

[8] Hannes Filippi. “Wireless Teleoperation of Robotic Manipulators”, Espoo
Finland, August 2007.

[9] Casper, J., and Murphy, R. R. “Human-Robot Interactions During the
Robot Assisted Urban Search and Rescue Effort at the World Trade Center,” IEEE
Tansactions on Systems Man, and Cybernetics, Part B, vol. 33, no. 3,pp. 367-385,
Jun. 20083.

53

Webography

http:/ /www.used-robots.com /robot-education.php?page=robot+timeline
http:/ /www.answers.com /topic/robot¢cat=technology

http:/ /hapticshistory.chc61.uci.cu/haptic/site/pages/Machine-Haptics-
BackGround.php

http:/ /www.geckosystems.com /industries/robot_history.php

blog.wired.com/cars/2007/11/motown-blues--a.html.

54

http://www.used-robots.com/robot-education.php?page=robot+timeline
http://www.answers.com/topic/robot?cat=technology
http://hapticshistory.chc61.uci.cu/haptic/site/pages/Machine-Haptics-BackGround.php
http://hapticshistory.chc61.uci.cu/haptic/site/pages/Machine-Haptics-BackGround.php
http://www.geckosystems.com/industries/robot_history.php

Appendices

55

ABBREVIATIONS

HMI = Human Machine Interface (Interface Homme Machine)

TOR = Tout Ou Rien (All or Nothing)

TC = Telecommande (the data which make up the commands for the different elements
of the robot, it is sent from the control panel to the robot)

TM = Telemesure (measurement of the data of the environment that is sent to the
control panel where it will be displayed)

CRC = Cyclic Redundancy Check

LSB = Least Significant Bit

MSB = Most Significant Bit

VMR = Video Mixing Renderer

56

C++ CODE FOR IMAGE GRABBING

CaptureVideoSimple.h

#if

Idefined(AFX_CAPTUREVIDEO H_ 057736B5 B61B 4850 8D82 E181E0B25B61 IN
CLUDED)

#define

AFX_CAPTUREVIDEO H_ 057736B5 B61B_4850 8D82 E181E0B25B61 INCLUDED
[mmm e e e 1/

/I Copyright DILLIP KUMAR KARA 2004

/l 'You may do whatever you want with this code, as long as you include this
/I copyright notice in your implementation files.

/I Comments and bug Reports: codeguru_bank@yahoo.com

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

/[CaptureVideo.h : header file

#include <atlbase.h>

#include <windows.h>

#include <dshow.h>

#include "D3d9.h"

#include "vmr9.h"

#include "header.h"

#include <time.h>

enum PLAYSTATE {STOPPED, PAUSED, RUNNING, INIT};
#define WM_GRAPHNOTIFY WM_USER+1
#ifndef SAFE_RELEASE

#define SAFE_RELEASE(X)
if (NULL !=x)

x->Release();
X = NULL;
}
#endif
typedef struct strimageParams{
long minBright;
long maxBright;
long valBright;

long minContrast;
long maxContrast;
long valContrast;

long minSaturation;
long maxSaturation;
long valSaturation;

57

C++ Code for image grabbing

long minHue;
long maxHue;
long valHue;

long minAlpha;

long maxAlpha;

long valAlpha;
}strimageParams;

// CCaptureVideo window
class CCaptureVideo
{
/I Construction
public:
CCaptureVideo();
/I Attributes
public:
void StopCapture();
bool StartCompositeVideo();
void StartSVideo();
void RemoveGraphFromRot(DWORD pdwRegister);
void UnlntializeVideo();
void zoomRectangle(CPoint p1, CPoint p2, int tailleX, int tailleY);
void DrawRect();
void Fulllmage(int sizex, int sizey);
void SethwWnd(HWND hwnd);
void getTaillelmage(int *x, int *y);
void RespectRatio(BOOL ratio);
strimageParams GetlmageParams(void);
HRESULT GetCurrentValue(void);
HRESULT InitializeVideo(HWND hwWnd);
void repaint(HWND hwnd, HDC hdc);
/I Operations
public:
I/ Overrides
/I ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CCaptureVideo)
I }YAFX_VIRTUAL
/I Implementation
public:
virtual ~CCaptureVideo();
/I Generated message map functions
protected:
I{{AFX_MSG(CCaptureVideo)
/I NOTE - the ClassWizard will add and remove member functions here.
IN}YAFX_MSG
afx_msg HRESULT OnGraphNotify(WPARAM wp , LPARAM Ip);
protected:

void DisplayMesg(TCHAR* szFormat, ...);

58

C++ Code for image grabbing

LRESULT ClearInterfaces(WPARAM wp, LPARAM Ip);
void Closelnterfaces();

HRESULT AddGraphToRot(lUnknown* pUnkGraph, DWORD* pdwRegister);
HRESULT CaptureVideo();

HRESULT HandleGraphEvent();

HRESULT ChangePreviewState(int nShow);

HRESULT FindCaptureDevice(IBaseFilter** ppSrcFilter);
HRESULT Getlnterfaces();

HRESULT SetupVideoWindow();

e Renderer------------------ //

HRESULT ConfigRenderer();

private:

public:

+

UINT chSVideo, chCompVideo , chWwebCam , chFullScreen , chAlwaysOnTop ;
int nVVSourceCount;

int nAnalogCount;

int sizeX;// taille de I'image acquise

int sizeY;

strimageParams imageParams;

CBrush m_emptyBrush;

DWORD m_dwGraphRegister;

BOOL bDevCheck;

HWND m_hApp;

IBaseFilter *pVmr;

[f-=mmmmmm - Renderer----------------- Il

IMediaControl* m_pMC,;
IMediaEventEx* m_pME;
IGraphBuilder* m_pGraph;
ICaptureGraphBuilder2* m_pCapture ;
IBaseFilter* pSrcF;

PLAYSTATE m_psCurrent;

BOOL bVideo;

int vType;

ISampleGrabber *pGrabber;
IBaseFilter *pGrabberF;

IAMVideoProcAmp *pProcAmp;
inline BOOL getlsVideo(){return bVideo;};
unsigned char* GrabData(); /[call grab data first

T L
II{{AFX_INSERT_LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the previous

line.

#endif //
Idefined(AFX_CAPTUREVIDEO_H_ 057736B5_B61B_4850 8D82_E181E0B25B61_ IN
CLUDED)

59

C++ Code for image grabbing

CaptureVideoSimple.cpp

/I CaptureVideo.cpp : implementation file

I/ Copyright DILLIP KUMAR KARA 2004

/I 'You may do whatever you want with this code, as long as you include this
/I copyright notice in your implementation files.

/I Comments and bug Reports: codeguru_bank@yahoo.com

#include "stdafx.h"

#include "CaptureVideoSimple.h"
#include "header.h"

#include <math.h>

#include <SYS/timeb.h>

#include <wingdi.h>

#include <windows.h>

#include <winuser.h>

#include <time.h>

#include <AFXWIN.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] =__ FILE__;
#endif

#define REGISTER_FILTERGRAPH

/I define the ratio of focal length over pixel size
#define k3 (0.0521488*768/(32.0*1.e-3))
#define k4 (0.0521488*576/(26.6*1.e-3))
#define OutOfBorders(x,y,width1,width2 heightl,height2) ((x)<(widthl) || (y)<(heightl) ||
(x)>=(width2) || (y)>=(height2))

long pBufferSize;
unsigned char* pBuffer;
unsigned int gWidth=0;
unsigned int gHeight=0;
unsigned int gChannels=0;
VIDEOINFOHEADER *pVih;
T
I/l CCaptureVideo
CCaptureVideo::CCaptureVideo()
{
// Initialization
m_hApp=NULL,;
m_dwGraphRegister=0;
nAnalogCount =0; // Counting Analog devices
m_pMC = NULL;
m_pME = NULL;
m_pGraph = NULL,; // IFilterGraph2 provides AddSourceFileForMoniker()
m_pCapture = NULL,
pSrcF = NULL ;

60

C++ Code for image grabbing

pProcAmp = NULL;

pVmr = NULL,;

pWc= NULL;
}
CCaptureVideo::~CCaptureVideo()

{

}
HRESULT CcCaptureVideo::CaptureVideo()

{
HRESULT hr;
IBaseFilter *pSrcFilter=NULL;
/I Get DirectShow interfaces
hr = GetInterfaces();
if (FAILED(hr))
{
DisplayMesg(TEXT ("Failed to get video interfaces! hr=0x%x"), hr);
return hr;

/I Attach the filter graph to the capture graph
hr = m_pCapture->SetFiltergraph(m_pGraph);
if (FAILED(hr))
{
DisplayMesg(TEXT ("Failed to set capture filter graph! hr=0x%x"), hr);
return hr;
}
I/l Use the system device enumerator and class enumerator to find
/I a video capture/preview device, such as a desktop USB video camera.
hr = FindCaptureDevice(&pSrcFilter);
if (FAILED(hr))
{

/I Don't display a message because FindCaptureDevice will handle it
return hr;
}
if(bDevCheck == FALSE)
{ return E_FAIL; }

/I Add Capture filter to our graph.
hr = m_pGraph->AddFilter(pSrcFilter, L"Video Capture");
if (FAILED(hr))
{
DisplayMesg(TEXT("Couldn't add the capture filter to the graph! hr=0x%x\r\n\r\n"")
TEXT("If you have a working video capture device, please make sure\r\n")
TEXT("that it is connected and is not being used by another application.\r\n\r\n™"), hr);
pSrcFilter->Release();
return hr;
}
Il Create the Sample Grabber.
hr = CoCreatelnstance(CLSID_SampleGrabber, NULL, CLSCTX_INPROC_SERVER,
I1D_IBaseFilter, (void**) & pGrabberF);

61

C++ Code for image grabbing

if (FAILED(hr)) { return hr; }
hr = m_pGraph->AddFilter(pGrabberF, L"Sample Grabber");
if (FAILED(hr)) { return hr; }

pGrabberF->Querylnterface(1ID_ISampleGrabber, (void**)&pGrabber);

AM_MEDIA _TYPE mt;

ZeroMemory(&mt, sizeof(AM_MEDIA_TYPE));

mt.majortype = MEDIATYPE_Video;

mt.subtype = MEDIASUBTYPE_RGB24;

hr = pGrabber->SetMediaType(&mt);

if (FAILED(hr)) { return hr; }

hr = pGrabber->SetOneShot(FALSE);

hr = pGrabber->SetBufferSamples(TRUE);

hr = pSrcFilter->Querylnterface(11D_IAMVideoProcAmp, (void**)&pProcAmp);

ConfigRenderer();

/I Add Renderer filter to our graph.

hr = m_pGraph->AddFilter(pVmr, L"VMR9");

/I Render the preview pin on the video capture filter

I/ Use this instead of m_pGraph->RenderFile

hr = m_pCapture->RenderStream (&PIN_CATEGORY_PREVIEW, MEDIATYPE_Video,

pSrcFilter,pGrabberF, pvVmr);
if (FAILED(hr))
{

DisplayMesg(TEXT("Couldn't render the video capture stream. hr=0x%x\r\n")
TEXT("The capture device may already be in use by another application.\r\n\r\n")
TEXT("The sample will now close."), hr);
pSrcFilter->Release();

return hr;
}
hr = pGrabber->GetConnectedMediaType(&mt);
if (FAILED(hr)) { return hr; }

pVih = (VIDEOINFOHEADER *)mt.pbFormat;
gChannels = pVih->bmiHeader.biBitCount / 8;
gWidth = pVih->bmiHeader.biWidth;
gHeight = pVih->bmiHeader.biHeight;
/I Now that the filter has been added to the graph and we have
/l rendered its stream, we can release this reference to the filter.
pSrcFilter->Release();
#ifdef REGISTER_FILTERGRAPH
/[Add our graph to the running object table, which will allow
/I the GraphEdit application to "spy™ on our graph
hr = AddGraphToRot(m_pGraph, &m_dwGraphRegister);

if (FAILED(hr))
{
DisplayMesg(TEXT ("Failed to register filter graph with ROT! hr=0x%x"), hr);
m_dwGraphRegister = 0;
}
#endif
/[Start previewing video data
hr = m_pMC->Run();

62

C++ Code for image grabbing

if (FAILED(hr))
{
DisplayMesg(TEXT("Couldn't run the graph! hr=0x%x"), hr);
return hr;
}
/l Remember current state
m_psCurrent = RUNNING;
Sleep(300); // wait until the graph running
return S_OK;

}
unsigned char* CCaptureVideo::GrabData()

{
HRESULT hr;
HANDLE fh;
BITMAPFILEHEADER bmphdr;
DWORD nWritten;

if (pGrabber == 0)

return O;
long Size = 0;
hr = pGrabber->GetCurrentBuffer(&Size, NULL);
if (FAILED(hr)) { return O; }

else if (Size != pBufferSize) {
pBufferSize = Size;
if (pBuffer 1=0)
delete[] pBuffer;
pBuffer = new unsigned char[pBufferSize];
}
hr = pGrabber->GetCurrentBuffer(&pBufferSize, (long*)pBuffer);
if (FAILED(hr))
{ return 0; }

else {
memset(&bmphdr, 0, sizeof(bmphdr));//allocation de la mémoire
bmphdr.bfType = (M' << 8) | 'B";// spécifier le type du fichier:bomp
/I spécifier la taille du fichier
bmphdr.bfSize = sizeof(bmphdr) + sizeof(BITMAPINFOHEADER) + pBufferSize;
IIspécifier le offset, en bit, dés le début du fichier jusqu'au les bits du la bitmap
bmphdr.bfOffBits = sizeof(bmphdr) + sizeof(BITMAPINFOHEADER);
fh = CreateFile("imgl.omp”, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, NULL);
WriteFile(fh, &bmphdr, sizeof(bmphdr), &nWritten, NULL);
WriteFile(fh, &pVih->bmiHeader, sizeof(BITMAPINFOHEADER), &nWritten, NULL);
WriteFile(fh, pBuffer, pBufferSize, &nWritten, NULL);
CloseHandle(fh);
return pBuffer;

¥
¥

63

C++ CODE FOR HUE TRACKING

HueTracker.h

T |||
/Il FILE: HueTracker.h
/[ll PROJECT: HueTracker
/Il TASK: Implementation of the CHueTracker class
/Il ORIGINALLY WRITTEN BY: Hong Ping
/I EDITED BY: Geert De Cubber and Wahiba Jomaa
/Il REQUIRES: -
T |||
/Imoved from FirstEasyC24.cpp
#include ".\cppsource\PIDController.h"
#include ".\cppsource\Systemldentification.h"
#include ".\cppsource\KalmanFilter.h"
#include ".\cppsource\FullStateFeedbackController.h"
#include ".\cppsource\AdaptiveFilter.h"
#include ".\cppsource\AdaptiveFilterl.h"
#include ".\cppsource\LowPassFilter.h"
class CHueTracker
{
public:
CHueTracker(int width, int height);
~CHueTracker();
BYTE *m_pun8IimageBuffer, *m_pun8AlignedBuffer;
UINT32 m_un32ImageHeight,m_un32ImageWidth, m_un32ImageSize;
protected:
/lremoved static keyword before these functions
void OnShowResult();
void OnClose();
void OnOpen();
void OnDilate();
void OnErode();
void OnMorphologyFiltering();
void OnHueClassification();
/I Implementation
/Imove members to protected or private as much as possible

public:

float m_AngleX, m_AngleY;

int m_gl, m_g2;

int m_rl, m_r2;

int m_gL1, m_gL2;

int m_rL1, m rL2;
/Ipointers to objects, instances created in constructor
CPIDController *pPIDx, *pPIDy;
CSystemldentification *pSysldentX, *pSysldentY;;
CKalmanFilter *pKalmX, *pKalmY;

64

C++ Code for Hue Tacking

CFullStateFeedbackController *pFeBaCtrX,*pFeBaCtrY;

CAdaptiveFilter *pAdapX, *pAdapY, *pAdapH, *pAdapW;
CAdaptiveFilterD *pAdapldenX, *pAdapldenY;
CLowpassFilter2 *pLoPassl, *pLoPass2, *pLoPass3;

CLowpassFilter2* pLoPass31;
CLowpassFilter2* pLoPass21;
CLowpassFilter2* pLoPass11

long intm_EndTime;

long int m_BeginTime;

/Iremoved static keyword before these functions
void OnTargetSize();

void OnTargetCenter();

void OnWindowSizeAndPosition();
BOOL SearchTarget(BYTE * image);
long int m_Total,

unsigned char *m_pBinarylmageBufferl;
unsigned char *m_pBinarylmageBuffer;
/Iremoved from globally defined in HueTracker.cpp
/Iremoved static keyword

int m_WindowPositionY1;

int m_WindowPositionX1,;

int m_WindowPositionY2;

int m_WindowPositionX2;

int m_WindowHeight;

int m_WindowLength;

int m_MomentY;

int m_MomentX;

int m_CenterY;,

int m_CenterX;

intm_r1l; // (Bmin-Gmin)
intm_g11; // (Bmax-Gmax)
intm_r22; // (Rmin-Bmin)
intm_g22; // (Rmax-Bmax)

int m_Threshold3;

int m_Threshold2;

/I moved from SearchTarget

BOOL m_bTargetFound,

private:
float *m_RequiredSysParametersX, *m_RequiredSysParametersY:;
int m_MaskSize;
int m_Tolerance;

}

HueTracker.cpp

T T nn§§n

/Il FILE: HueTracker.cpp
/lIl PROJECT: HueTracker

/Il TASK: Implementation of the target tracking algorithm

/Il ORIGINALLY WRITTEN BY: Hong Ping

65

C++ Code for Hue Tacking

/I EDITED BY: Geert De Cubber and Wahiba Jomaa
/Il REQUIRES: Camera library for the control of the camera
T |||
#include "StdAfx.h"
#include <SYS/timeb.h>
#include "HueTracker.h"
#include <stdio.h>
/I define the ratio of focal length over pixel size
#define k3 (0.0521488*768/(32.0*1.e-3))
#define k4 (0.0521488*576/(26.6*1.e-3))
#define OutOfBorders(x,y,widthl,width2,heightl,height2) ((x)<(widthl) || (y)<(heightl) ||
(x)>=(width2) || (y)>=(height2))
extern float *myvector(long nl, long nh);
extern void free_myvector(float *v, long nl, long nh);
/I CHueTracker construction/destruction
CHueTracker::CHueTracker(int width, int height)
{
/Imoved from global static defined above
[linitialize member variables
m_CenterX = 0;
m_CenterY = 0;
m_MomentX = 0;
m_MomentY = 0;
m_WindowHeight = 0;
m_WindowLength = 0;
m_WindowPositionY1 = 0;
m_WindowPositionX1 = 0;
m_WindowPositionY?2 = 0;
m_WindowPositionX2 = 0;
m_Total =0;
/I create PIDController objects
pPIDx = new CPIDController((float)0.9,(float)0.0,(float)0.0,(float)1.570796326795 ,(float)-
1.570796326795);
pPIDy = new CPIDController((float)0.9,(float)0.0,(float)0.0,(float)0.7853981633974,(float)-
0.7853981633974);
/I create System ldentification objects
pAdapldenX = new CAdaptiveFilterD(2,(float)0.71,(float)0.3,(float)0.001,(float)0.00001,0);
pAdapldenY = new CAdaptiveFilterD(2,(float)0.81,(float)0.5,(float)0.001,(float)0.00001,0);
/[create Kalman filter objects
pKalmX = new CKalmanFilter(4,2,(float) 8.81,(float) 0.51);
pKalmY = new CKalmanFilter(4,2,(float) 6.81,(float) 0.51);
/I create Full State Feedback Controller objects
pFeBaCtrX = new CFullStateFeedbackController(2);
pFeBaCtrY = new CFullStateFeedbackController(2);
[initialize the required system parameters
m_RequiredSysParametersX = myvector(1,2);
m_RequiredSysParametersY = myvector(1,2);
m_RequiredSysParametersX[1] = (float) (0.336*2);
m_RequiredSysParametersX[2] = (float) (-0.288*2);
m_RequiredSysParametersY|[1] = (float) (0.336*0.5);//was 2 instead of 0.2

66

C++ Code for Hue Tacking

m_RequiredSysParametersY[2] = (float) (-0.288*0.5);//was 2 instead of 0.2
/I create Adaptive Filter objects
pAdapX = new CAdaptiveFilter(2,(float)0.000021,(float)0.000001,(float)1.0e-
11,(float)0.00001);
pAdapY = new CAdaptiveFilter(2,(float)0.000021,(float)0.000001,(float)1.0e-
11,(float)0.00001);
pAdapH = new CAdaptiveFilter(2,(float)0.0000001,(float)0.000000001,(float)5.0e-
18,(float)0.00001);
pAdapW = new CAdaptiveFilter(2,(float)0.0000001,(float)0.000000001,(float)5.0e-
18,(float)0.00001);
/I create Lowpass Filters for distance measurement
pLoPassl = new CLowpassFilter2((float)-
0.532697,(float)0.607466,(float)0.2112234,(float)0.4224468,(float)0.2112234);
pLoPass2 = new CLowpassFilter2((float)-
0.397552,(float)0.199651,(float)0.2112234,(float)0.4224468,(float)0.2112234);
pLoPass3 = new CLowpassFilter2((float)-
0.3467604,(float)0.046383,(float)0.2112234,(float)0.4224468,(float)0.2112234);
/I create Lowpass Filters for diameter measurement
/I the definition of parameters can be seen from the class definition
pLoPass11 = new CLowpassFilter2((float)-0.532697,(float)0.607466,
(float)0.2112234,(float)0.4224468,(float)0.2112234);
pLoPass21 = new CLowpassFilter2((float)-0.397552,(float)0.199651,
(float)0.2112234,(float)0.4224468,(float)0.2112234);
pLoPass31 = new CLowpassFilter2((float)-0.3467604,(float)0.046383,
(float)0.2112234,(float)0.4224468,(float)0.2112234);
/linitialize image size

m_un32ImageSize=width*height*3;

m_un32ImageWidth=width;

m_un32ImageHeight=height;

m_pBinarylmageBuffer = (PUINT8)Virtual Alloc(NULL,
m_un32ImageHeight*m_un32ImageWidth, MEM_COMMIT, PAGE_READWRITE);
if(m_pBinarylmageBuffer == NULL)

{
AfxMessageBox(""Cannot allocate a new binary buffer", MB_OK | MB_APPLMODAL |
MB_ICONSTOP);

return;

}
L e
/I Allocate image buffer
L e

m_pBinarylmageBufferl = (PUINT8)Virtual Alloc(NULL,
m_un32ImageHeight*m_un32ImageWidth, MEM_COMMIT, PAGE_READWRITE);
if(m_pBinarylmageBufferl == NULL)

{
AfxMessageBox(""Cannot allocate a new binary bufferl”, MB_OK | MB_APPLMODAL |
MB_ICONSTOP);

return;

67

C++ Code for Hue Tacking

}

m_Tolerance = 30;

m_WindowPositionX1 = 0;
m_WindowPositionX2 = m_un32IlmageWidth;
m_WindowPositionY1 = 0;
m_WindowPositionY2 = m_un32ImageHeight;

/I for hue classification

m_rl=m_rll =100-15; // (Bmin-Gmin)
m_gl=m_gl11 =20-50; // (Bmax-Gmax)
m_r2 = m_r22 = 200-100; // (Rmin-Bmin)
m_g2 =m_g22 =120-20; // (Rmax-Bmax)

m_rL1 =m_rl;// 100-15; // (Bmin-Gmin)
m_gL1 = m_g1;// 20-50; // (Bmax-Gmax)
m_rL2 =m_r2;//200-100; // (Rmin-Bmin)
m_gL2 = m_g2;//120-20; // (Rmax-Bmax)

m_Threshold3=20;
m_Threshold2=40;

/I morphology filter
m_MaskSize = 5;
m_AngleX = 0.0;
m_AngleY = 0.0;

/I The target size
float m_RealDiameter = (float) 0.17;

/lload stored parameters

FILE *filep;

inti;

filep = fopen("Para.txt","r");

if (filep==NULL)

{
AfxMessageBox("file error");
}
else
{
for (i=1;i<=4;i++)
{
fscanf(filep,"%f",&pAdapldenX->m_TapWeightVector[i]);
}
for (i=1;i<=4;i++)
{
fscanf(filep,"%f",&pAdapldenY->m_TapWeightVector[i]);
}
}
fclose(filep);
}

CHueTracker::~CHueTracker()

68

C++ Code for Hue Tacking

if (m_pun8ImageBuffer)
delete [] m_pun8ImageBuffer;
if(m_pBinarylmageBuffer)
delete [] m_pBinarylmageBuffer;
if(m_pBinarylmageBufferl)
delete [] m_pBinarylmageBufferl,;
free_myvector(m_RequiredSysParametersX,1,2);
free_myvector(m_RequiredSysParametersY,1,2);

}

/I PROCEDURE: OnHueClassification

/I TASK: Classify pixels as belonging to the target object or not
void CHueTracker::OnHueClassification()

{

inti, j, k, w, bp=3,w1;

intil,i2,jl,j2;

int R, G, B, r, m, threshold?2,

threshold3,r11, r22, g11, g22;

unsigned char *buf, *bufl;

ril =m_ri1i, /I (Bmin-Gmin)
gll=m_g11; /I (Bmax-Gmax)
r22 =m_r22, /I (Rmin-Bmin)
g22 =m_g22; /I (Rmax-Bmax)

threshold3 = m_Threshold3;
threshold2 = m_Threshold2;
w =m_un32ImageWidth*bp;
w1l = m_un32ImageWidth;
[* the buffer is used to store the original image */
buf = m_pun8lmageBuffer;
[* the buffer is used to store the created binary image */
bufl = m_pBinarylmageBuffer;
i1 = m_WindowPositionY1;
i2 = m_WindowPositionY2;
j1 = m_WindowPositionX1;
j2 = m_WindowPositionX2;
for (i=il; i<i2; i++)
{
for(j=j1; j<j2; j++)
{
bufl[i*wl + j]=0; /* clear the buffer */
k= i*w + j*bp;
B = (int) buf[0+K];
G = (int) buf[1+K];
R = (int) buf[2+K];
m = R+G+B;

[* if the pixel's intensity is too small */
if(m<threshold2) goto label,
r=R;

69

C++ Code for Hue Tacking

If(G<r) r=G;
if(B<r) r=B;

[* if the saturation is too small */

if(m*(100-threshold3)<300*r) goto label;
/* if the pixel is belong to the specified hue region */
if((r11*(R-B)+r22*(G-B))<0) goto label;
if((g11*(R-B)+g22*(G-B))>0) goto label;
/* if true then set a flag to create the binary image */

bufl[i*wl+j]=1;
label: :

}
}
/l PROCEDURE: OnMorphologyFiltering
/I TASK: Main function for morphology filter
void CHueTracker::OnMorphologyFiltering()
{
OnOpen();
OnClose();
}
/I PROCEDURE: OnErode
/Il TASK: Erode image for morphology filter
void CHueTracker::OnErode()
{ N
int i
int height1,height2,width1,width2,w;
int 11, 12;

unsigned char *eroded;

unsigned char *image;

unsigned char *buffer;

int mask_size2 = m_MaskSize>>1,;
image = m_pBinarylmageBuffer;
eroded = m_pBinarylmageBufferl,;
w = m_un32ImageWidth;
heightl = m_WindowPositionY1;
height2 = m_WindowPositionY2;
widthl = m_WindowPositionX1;
width2 = m_WindowPositionX2;

for(i=heightl; i<height2; i++) {
for(j=width1; j<width2; j++) {
eroded[i*w+j] = image[i*w+j];
for(I11=-mask_size2; I1<=mask_size2; 11++) {

for(I12=-mask_size2; I2<=mask_size2; 12++) {
if('OutOfBorders(j+12,i+11,width1,width2,heightl,height?) &&
(image[(i+11)*w+j+I2] < eroded[i*w+]]))
eroded[i*w+]j] = image[(i+I1)*w+j+12];

70

C++ Code for Hue Tacking

}
buffer= m_pBinarylmageBuffer;
m_pBinarylmageBuffer = m_pBinarylmageBufferl,;
m_pBinarylmageBufferl = buffer;
return;

}

/[PROCEDURE: OnDilate
/I TASK: Dilate image for morphology filter
void CHueTracker::OnDilate()

{ N

int i

int 11, 12;

int height1,height2,widthl,width2,w;

unsigned char*dilated;

unsigned char*image;

unsigned char *buffer;

int mask_size2 = m_MaskSize>>1;

image m_pBinarylmageBuffer;
dilated m_pBinarylmageBufferl,

w = m_un32ImageWidth;

heightl = m_WindowPositionY1;
height2 = m_WindowPositionY2;
widthl = m_WindowPositionX1;
width2 = m_WindowPositionX2;

for(i=heightl; i<height2; i++) {
for(j=widthl; j<width2; j++) {
dilated[i*w+]] = image[i*w+j];
for(I11=-mask_size2; I1<=mask_size2; 11++) {
for(I12=-mask_size2; I2<=mask_size2; 12++) {
if('OutOfBorders(j+12,i+11,width1,width2,heightl,height?) &&
(image[(i+11)*w+j+12] > dilated[i*w+]]))
dilated[i*w+j] = image[(i+I1)*w+j+12];

}
}
}
}
buffer= m_pBinarylmageBuffer;
m_pBinarylmageBuffer = m_pBinarylmageBufferl,;
m_pBinarylmageBufferl = buffer;
return;
}

// PROCEDURE: OnOpen
/I TASK: Sub function for morphology filter
void CHueTracker::OnOpen()
{
OnErode();
OnDilate();
return;}

71

C++ Code for Hue Tacking

/l PROCEDURE: OnClose
/Il TASK: Sub function for morphology filter
void CHueTracker::OnClose()
{
OnDilate();
OnErode();
return;
}
// PROCEDURE: OnShowResult
/I TASK: Output the morphology filtered image buffer
void CHueTracker::OnShowResult()

{
int j, k, w, bp=3,w1,k1,k2;
unsigned char *buf, *bufl;
w = m_un32ImageHeight*m_un32ImageWidth*bp;
w1l =m_un32ImageHeight*m_un32ImageWidth;
k1 =m_CenterX + m_CenterY*m_un32ImageWidth - 3;
k2 = m_CenterX + m_CenterY*m_un32IlmageWidth + 3;
[* the buffer is used to store the original image */
buf = m_pun8lmageBuffer;
/* the buffer is used to store the created binary image */
bufl = m_pBinarylmageBuffer;
for (j=0, k=0 ; j<w ; j+=bp, k++)
{
if(bufl[k]==1)
{
[* to visualize it */
/*
buf[0+j]=255;
buf[1+j]=255;
buf[2+j]=255;
*/
}
if(bufl[k]==2)
{
[* to visualize it */
buf[0+}]=0;
buf[1+j]=255;
buf[2+}]=0;
}
if(k>k1 && k<k?2)
{
buf[1+j] = 0;
buf[2+]] = O;
}
}
return;
}

// PROCEDURE: OnTargetCenter

/I TASK: Calculate the center of the recognized target object in the image plane

72

C++ Code for Hue Tacking

void CHueTracker::OnTargetCenter()

{

int heightl, height2, width1, width2, width;
inti};
intrll,r22,911,9g22,m,threshold2,threshold3;
intrL1,rL2,gL1,gL2;
unsigned char *buffer, *bufferl, R, G, B, r;
long int X,Y;
static int counter = 0;
char bufferx[20];
heightl = m_WindowPositionY1;
height2 = m_WindowPositionY2;
widthl =m_WindowPositionX1;
width2 =m_WindowPositionX2;
width =m_un32ImageWidth;
buffer = m_pBinarylmageBuffer;
bufferl = m_pun8ImageBuffer;
m_CenterX =m_CenterY = X =Y =m_Total =0;
counter++;
if(counter ==7)
{
rll=m_rl;
r22=m_r2;
911 =m_g1,;
022 =m_g2;
rLl=m rL1,;
rL2=m_rL2;
gL1=m_gL1,
gL2 =m_gL2;
threshold2 = m_Threshold2;
threshold3 = m_Threshold3;
}
for(i=heightl;i<height2;i++)
{
for(j=widthl;j<width2;j++)

if(buffer[i*width+j] == 1)

{ |
Y +=1;
X+=j;
m_Total++;
if(counter 1= 7) goto label;
B = bufferl[(i*width+j)*3];
G = bufferl[(i*width+j)*3+1];
R = bufferl[(i*width+j)*3+2];
m = R+G+B;
/I if the intensity is too small
if(m<threshold2) goto label;
/I select the smallest one
r=R;

73

C++ Code for Hue Tacking

if(G<r) r=G;

if(B<r) r = B;

/I if the saturation is too small

if(m*(100-threshold3)<300*r) goto label;

/I to find the new target hue region
if((r11*(R-B)+r22*(G-B))<0 && (rL1*(R-B)+rL2*(G-B))>0)

r11=B-G;
r22=R-B;
goto label;

}
if((g11*(R-B)+g22*(G-B))>0 && (gL1*(R-B)+gL2*(G-B))<0)

9l1=B-G;
g22 =R - B;
}
label:
}
}
}
if(counter ==7)
{
[l update the hue region
m_rll =rll;
m_r22 =r22;
m_gl1 =gl1;
m_g22 = g22;
/I reset the counter
counter = 0;
}
if(m_Total !1=0)
{
m_CenterX = X/m_Total;
m_CenterY = Y/m_Total;
}
/I if the target is not found
if(m_Total == 0)
{
m_CenterX = 0;
m_CenterY = 0;
m_WindowPositionY1 = 0;
m_WindowPositionY2 = m_un32ImageHeight;
m_WindowPositionX1 = 0;
m_WindowPositionX2 = m_un32ImageWidth;
}
}

74

C++ Code for Hue Tacking

/l PROCEDURE: OnTargetSize
/I TASK: Calculate the size of the recognized target object in the image plane
void CHueTracker::OnTargetSize()
{
int heightl, height2, width1, width2, width, height;
inti};
unsigned char *buffer;
long int X, Y, Total;
heightl = m_WindowPositionY1;
height2 = m_WindowPositionY2;
widthl =m_WindowPositionX1;
width2 =m_WindowPositionX2;
width =m_un32ImageWidth;
height = m_un32ImageHeight;
buffer = m_pBinarylmageBuffer;
m_MomentX =m_MomentY = X =Y = Total =0;
for(i=heightl;i<height2-1;i++)
{
for(j=widthl;j<width2;j++)
{
if(buffer[i*width+j] == 1)
{
X +=(m_CenterX - j)*(m_CenterX -);
Total++;
goto label;
}
}
label: for(j=widthl;j<width2;j++)
{
if(buffer[(i+1)*width - j] == 1)
{

X += (m_CenterX - (width-j))*
(m_CenterX - (width-j));

Total++;

goto labell;

labell: ;
}
if(Total !1=0)
{

}

Total = 0;
for(j=width1;j<width2;j++)
{

m_MomentX = X/Total;

for(i=heightl;i<height2-1;i++)
{ if(buffer[i*width+j] == 1)
{

Y += (m_CenterY - i)*(m_CenterY -i);

75

C++ Code for Hue Tacking

Total++;
goto label2;

¥
¥
label2: for(i=heightl;i<height2-1;i++)
if(buffer[(height-1-i)*width + j] == 1)
{

Y += (m_CenterY - (height-i))*(m_CenterY - (height-i));

Total++;
goto label3;
}
}
label3: ;
¥
if(Total 1= 0)
{
m_MomentY = Y/Total;
}
return;
}

// PROCEDURE: OnWindowSizeAndPosition

/Il TASK: Calculate the new size of the window surrounding the target object, which will be

Il processed in the next loop

void CHueTracker::OnWindowSizeAndPosition()

{
int W = m_un32ImageWidth;
int H = m_un32ImageHeight;
I/l The window's half size
m_WindowHeight = (int)(0.042*m_MomentY + m_Tolerance);
m_WindowLength = (int)(0.042*m_MomentX + m_Tolerance);
/I The upper-left corner position of the window
m_WindowPositionX1 = m_CenterX - m_WindowLength;
if(m_WindowPositionX1 < 0) m_WindowPositionX1 = 0;
m_WindowPositionX2 = m_CenterX + m_WindowLength;
if(m_WindowPositionX2 > W) m_WindowPositionX2 = W;
m_WindowPositionY1 = m_CenterY - m_WindowHeight;
if(m_WindowPositionY1 < 0) m_WindowPositionY1 = 0;
m_WindowPositionY2 = m_CenterY + m_WindowHeight;
if(m_WindowPositionY2 > H) m_WindowPositionY?2 = H;
/I if the target is not found reset the window's size
if(m_CenterX == 0 && m_CenterY ==0)

{
m_WindowPositionX1 = 0;
m_WindowPositionX2 = W;
m_WindowPositionY1 = 0;
m_WindowPositionY2 = H;

}

return;

76

C++ Code for Hue Tacking

¥

/I PROCEDURE: SearchTarget

/Il TASK: Target tracking procedure: the function is given one grabbed frame (image)
I and must position the camera so the detected target object is centered in the

I image plane and the distance to this target object is calculated.

1 Repeat this function for continuous target tracking

I Returns 0 if target is not found (means target is not positioned in the middle)

BOOL CHueTracker::SearchTarget(BYTE* image)
{
unsigned char VV = 0x18;
unsigned char WW = 0x14;
unsigned char chl,ch2,ch3,ch4,ch5,ch6,ch7,ch8;
chl = OxF;
ch2 = 0xC;
ch3 = 0x9;
ch4 = 0x0;
ch5 = OxF;
ch6 = OXE;
ch7 = 0xD,
ch8 = 0x4;
struct timeb t;
Il record the beginning time
ftime(&t);
m_BeginTime = t.time*1000+t.millitm;
m_pun8ImageBuffer = image;
/lcopy frame into buffer
if (m_pun8ImageBuffer==NULL)
AfxMessageBox("buffer unitialized"); // No image buffer acquired = problem
static RECT RectlmageSize = {0, 0, 640, 576 };

77

C++ Code for Hue Tacking

OnShowResult();

OnWindowSizeAndPosition();
I/ record the ending time
ftime(&t);
m_EndTime = t.time*1000+t.millitm;
/lcheck condition to be here
m_bTargetFound = 0;
if(m_Total !=0)
{

}

return m_bTargetFound;

m_bTargetFound = 1;

78

C++ CODE FOR ROBOT CONTROL

IHM PilotDlg.h

/[IHM_PilotDlg.h : header file
II{{AFX_INCLUDES()

#include "jaugel2.h"

#include "afficheur.h”

#include "visurob4.h"

IIP}AFX_INCLUDES

#if

Idefined(AFX_IHM_PILOTDLG_H__ 3D5ECOE6_1BD8 4AF9 9619 6B4E3343F241_ IN
CLUDED)

#define

AFX_IHM_PILOTDLG_H__ 3D5ECOE6_1BD8_4AF9 9619 6B4E3343F241_ INCLUDED
#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include "header.h"

#include "CaptureVideoSimple.h"

#include "cal_joystick.h"

#include "cyxfiltre.h"

#include "InterfComm.h"

#include "DefTrames.h"

#include "StaticBitmap.h"

#include "MyPropSheet.h"

#include <vector>

#include "CaptureVideoSimple.h"

#include <wingdi.h>

#include ".\huetracker\huetracker.h"

#define BITMAP_ID 0x4D42 // 1D bitmap universel
using namespace std;
T
/[CIHM_PilotDlg dialog

#define FILE_CONFIG "Config_IHM.txt"

#define NAME_ENTREES_ANA(canal) "CALIB_ENTREES_ANA _"#canal
class stCalib

{
/Il Variables
public:
double m_a;
double m_b;
double m_c;
double m_plage_morte;
double m_valmin;
double m_valmax;
CFiltrePasseBas m_FiltrePasseBas;
private:

79

C++ Code for Robot Control

char m_Canal[MAX_PATH];
/Il Constructeur
public:
stCalib(char* Canal,double Freq);
~stCalib();
Y
class CIHM_PilotDlg : public CDialog
{
/I Construction
public:

CIHM_PilotDIg(CWnd* pParent = NULL);// standard constructor

CCaptureVideo capVideo;
Joystick *Joy;
stCalib m_CalibJoyX;
stCalib m_CalibJoyY;
vector<stCalib> m_ListCalibInputAna;
CPoint CadreZoom1,;
CPoint CadreZoom2;
bool bGettingZoom;
bool bZoomed;
UINT TimerID;
/Il Liaison RS232
t_Port m_ComPort;
t BaudRate m_BdRate;
/Il Controle de la Video
int m_tailleVideoX;
int m_tailleVideoY;
bool m_ratio;
bool ~m_ParaAnalsBipolaire;
M
CHueTracker *pHue;
M
// Dialog Data
IHI{{AFX_DATA(CIHM_PilotDlg)
enum { IDD = IDD_IHM_PILOT_DIALOG },
CStaticm_StaticCamConduiteCitrl;
CStaticm_StaticCamArCitrl;
CStaticm_StaticCamPinceCitrl;
CStaticm_StaticCamAvantCtrl;
CStaticm_StaticRadio;
CStaticm_StaticCable;
CStaticBitmapm_Tor5Ctrl;
CStaticBitmapm_Tor4Ctrl;
CStaticBitmapm_Tor3Ctrl;
CStaticBitmapm_Tor2Ctrl;
CStaticBitmapm_Tor1Ctrl;
CStaticm_textTrans;
CStaticm_robot;
CStaticm_Aiguille;
CSliderCtrl m_Vitesse;

80

C++ Code for Robot Control

CStaticBitmapm_defautTrans;
CJaugem_JaugeBatterie;
CVisuRob m_VitRob;
CAfficheur —m_AffCaptlCtrl;
CAfficheur m_AffCapt2Ctrl;
CAfficheur m_AffCapt3Citrl;
CAfficheur m_AffCapt4Ctrl;
CAfficheur m_AffCapt5Citrl;
IIPYAFX_DATA
/I ClassWizard generated virtual function overrides
II{{AFX_VIRTUAL(CIHM_PilotDlIg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
II}YAFX_VIRTUAL
/I Implementation

protected:
HICON m_hlcon;
CBrush m_StaticBrush;
bool bControllmage;
tDefTC defTrame[NB_TC];
int nbCam;
int nbComm;

int cur_sel_cam;

int cur_sel_comm;

bool test_touche(int touche);

int test_all_touche(bool& IsAlreadyPress);

void LitParametres();

void InitailiseTrame();

bool straight;

bool left;

bool right;

int counter;

int m_weigth;

int m_height;

int counterl,;

int counter2;

bool RedStart;

/I Generated message map functions
II{{AFX_MSG(CIHM_PilotDlg)

virtual BOOL OninitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM IParam);
afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDraglcon();

afx_msg void OnControlimage();

afx_msg void OnTimer(UINT nIDEvent);

afx_msg void OnFullscreen();

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnProprietes();

afx_msg void OnDestroy();

81

C++ Code for Robot Control

afx_msg HBRUSH OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor);

afx_msg void OnRED_FOLLOW();
afx_msg void OnSTOP();
INYAFX_MSG
DECLARE_MESSAGE_MAP()

}
IH{{AFX_INSERT_LOCATION}}

/I Microsoft Visual C++ will insert additional declarations immediately before the previous

line.
#endif //

Idefined(AFX_IHM_PILOTDLG_H_ 3D5ECOE6_1BD8_4AF9 9619 6B4E3343F241 IN

CLUDED)

IHM PilotDlg.cpp

/[IHM_PilotDlg.cpp : implementation file
#include "stdafx.h"

#include <stdlib.h>

#include <afxwin.h>

#include <process.h>
#include <math.h>

#include <direct.h>

#include <dshow.h>

#include <SYS/timeb.h>
#include <stdio.h>

#include <time.h>

#include "IHM_Pilot.h"
#include "IHM_PilotDlg.h"
#include "ControlimageDlg.h"
#include "PropPagel.h"
#include "PropPage2.h"
#include "MyPropSheet.h"
#include "FullScreenDlg.h"
#include "CyxConstant.h"

#define SAFE_RELEASE(X) { if (X) x->Release(); x = NULL; }

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;
#endif

extern CIHM_PilotApp theApp;

#define k3 (0.0521488*768/(32.0*1.e-3))
#define k4 (0.0521488*576/(26.6*1.e-3))

#define OutOfBorders(x,y,width1,width2,heightl,height2) ((x)<(widthl) || (y)<(heightl) ||

(X)>=(width2) || (y)>=(height2))
#define NUM_FRAMES_TO_GRAB 360
int X, Total;

T T T

/I CAboutDlIg dialog used for App About
class CAboutDlg : public CDialog

82

C++ Code for Robot Control

{
public:
CAboutDlg();
// Dialog Data
II{{AFX_DATA(CAboutDIg)
enum { IDD = IDD_ABOUTBOX };
INYAFX_DATA
/I ClassWizard generated virtual function overrides
I{{AFX_VIRTUAL(CAboutDIg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
INYAFX_VIRTUAL
/I Implementation
protected:
IH{{AFX_MSG(CAboutDIg)
INYAFX_MSG
DECLARE_MESSAGE_MAP()

}

CAboutDIg::CAboutDlIg() : CDialog(CAboutDlg::IDD)

{
II{{AFX_DATA_INIT(CAboutDIg)
IIP}YAFX_DATA_INIT

}

void CAboutDIg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
II{{AFX_DATA_MAP(CAboutDIg)
IIP}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

IH{{AFX_MSG_MAP(CAboutDIg)

/' No message handlers

INYAFX_MSG_MAP
END_MESSAGE_MAP()
e
/I CIHM_PilotDlg dialog
CIHM_PilotDlg::CIHM_PilotDIg(CWnd* pParent /*=NULL*/)

: CDialog(CIHM_PilotDlIg::1DD,
pParent),m_CalibJoyX("CALIB_JOY_AXE_X",5),m_CalibJoyY("CALIB_JOY_AXE_Y"5)
{

II{{AFX_DATA_INIT(CIHM_PilotDIg)

IIP}AFX_DATA_INIT
/I Note that Loadlcon does not require a subsequent Destroylcon in Win32

m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

bControlimage = false;

bGettingZoom = false;

bZoomed = false;

nbCam = 4;

nbComm = 2;

/] controle de la video

83

C++ Code for Robot Control

m_tailleVideoX = 720;
m_tailleVideoY = 576;
m_ratio = false;
m_ParaAnalsBipolaire = false;
cur_sel cam=0;
cur_sel_comm =0;
/lIred_follow declarations
straight = false;
left = false;
right = false;
counter = 0;
counterl = 0;
counter2=0;
RedStart= false;
BEGIN_MESSAGE_MAP(CIHM_PilotDlg, CDialog)
IH{{AFX_MSG_MAP(CIHM_PilotDIg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_CONTROLIMAGE, OnControlimage)
ON_WM_TIMER()
ON_BN_CLICKED(IDC_FULLSCREEN, OnFullscreen)
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()
ON_BN_CLICKED(IDC_PROPRIETES, OnProprietes)
ON_WM_DESTROY()
ON_WM_CTLCOLOR()
ON_BN_CLICKED(IDC_RED_FOLLOW, OnRED_FOLLOW)
ON_BN_CLICKED(IDC_STOP, OnSTOP)
IIF}YAFX_MSG_MAP
END_MESSAGE_MAP();
}strPosOCX;
T
/I CIHM_PilotDlg message handlers
BOOL CIHM_PilotDIg::OnInitDialog()
{
CDialog::OnlInitDialog();
DWORD id_int;
/[Add "About..." menu item to system menu.
m_weigth=640;
m_height=576;
pHue = (CHueTracker*)new CHueTracker(m_weigth,m_height);
/[IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);
CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu !'= NULL)
{
CString strAboutMenu;
strAboutMenu.LoadString(IDS_ABOUTBOX);

84

C++ Code for Robot Control

if (IstrAboutMenu.IsEmpty())
{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
}

¥

/' Set the icon for this dialog. The framework does this automatically

/I when the application's main window is not a dialog

Setlcon(m_hlcon, TRUE); Il Set big icon

Setlcon(m_hlcon, FALSE); I/ Set small icon

/1l Lecture du fichier de paramétres

LitParametres();

/1 Definir un Joystick

Joy = GetFirstJoystick((int)theApp.m_hinstance, (int)m_hWnd, false);

if(1Joy->good())

AfxMessageBox("Le joystick n'est pas branché !") ;

/Il Video Intialization

HRESULT hr = capVideo.InitializeVideo(m_hWnd) ;

iIf(FAILED(hr) || 'capVideo.StartCompositeVideo())

AfxMessageBox("Probleme de capture image Video !") ;
else
capVideo.Fulllmage(m_tailleVideoX, m_tailleVideoY);
CenterWindow(CWnd::GetDesktopWindow()) ;
CheckRadioButton(IDC_TRANS_CABLE, IDC_TRANS_RF, IDC_TRANS_CABLE);
CheckRadioButton(IDC_CAM_CONDUITE, IDC_CAM_AVANT, IDC_CAM_AV);

Interf.SetComPort(m_ComPort);

Interf.SetBaudRate(T_4800);

Interf.SetDatalLength(TAILLE_ TRAME_OUT);

if(Interf.InitComm() == NOK)

AfxMessageBox("Impossible d'ouvrir le port comm spcécifié, spécifier un nouveau dans
Propriétés IHM");

SetWindowPos(NULL, 0,0,1024, 768, SWP_SHOWWINDOW);

I/ Positionement de I''HM
m_JaugeBatterie.SetWindowPos(&wndTop,245, 630, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);
m_VitRob.SetWindowPos(&wndTop,790, 630, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);
m_VitRob.SetAngle(0.0);
m_AffCapt1Ctrl.SetWindowPos(&wndTop , 340, 620, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);
m_AffCapt2Ctrl.SetWindowPos(&wndTop , 427, 620, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);
m_AffCapt3Ctrl.SetWindowPos(&wndTop , 513, 620, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);;
m_AffCapt4Ctrl.SetWindowPos(&wndTop , 608, 620, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);
m_AffCapt5Ctrl.SetWindowPos(&wndTop , 690, 620, 0, 0, SWP_NOSIZE |
SWP_SHOWWINDOW);

/Il Callage de la vitesse
m_Vitesse.SetRange(-100, 100, TRUE);

85

C++ Code for Robot Control

m_Vitesse.SetPos(0);
m_Vitesse.ShowWindow(SW_SHOW);
GetDlgltem(IDC_CADRE_VIDEO)->SetWindowPos(NULL, 0, 0, m_tailleVideoX+5,
m_tailleVideoY+5, SWP_SHOWWINDOW);
if(capVideo.getlsVideo())
capVideo.RespectRatio(m_ratio);
/Il On initilialise la trame a 0
InitailiseTrame();
m_StaticBrush.CreateSolidBrush(::GetSysColor(COLOR_BTNFACE));
/Il creation de la tache de visualisation
TimerID=SetTimer(1, 200, NULL);
/Il La tache d'affichage est valide
ISIHMOK=true;
/I] creation de la tache d'acquisition
InterfaceComhThread =(HANDLE)_beginthread(startinterfaceCom, 0xF4240, &id_int);
return TRUE; // return TRUE unless you set the focus to a control
I racking

}
void CIHM_PilotDlIg::InitailiseTrame()

{

/Il On initilialise la trame a 0
memset(Global_OutData,0, TAILLE_TRAME_OUT);

Global_OutData[defTrame[CMD_DIRECTION].octet-1] = 0x80;
Global_OutData[defTrame[CMD_AVANCE].octet-1] = 0x80;
Global_OutData[defTrame[CMD_AVANT_BRAS].octet-1] = 0x80;
Global_OutData[defTrame[CMD_BRAS].octet-1] = 0x80;

}

void CIHM_PilotDIg::OnTimer(UINT nIDEvent)

{

static bool attente_reponse = false;
static bool IsAlreadyPush=false;
BYTE OutData[TAILLE_ TRAME_MAX],vitesse=0,direction=0;
double vit=0, dir=0;
static int tentative = 0;
char str[50];
int res,touche;
strTrame theTrameTM;
bool IsAlreadyPress=false;
unsigned char * the_image;
/Il Verrue spécialement pour rafraichir la jauge
/Il seulement quand on ne tire pas sur la batterie (moteur ,..)
bool IsRefresh=true;
I/l Rafraichissement Joystick
if(Joy->good())
{
/Il Lecture du joystick
Joy->UpdateState();
/I Calibration de la mesure du joystick
vit = m_CalibJoyX.m_a*Joy->GetAxisPos(1)*Joy->GetAxisPos(1)
+ m_CalibJoyX.m_b*Joy->GetAxisPos(1)

86

C++ Code for Robot Control

+ m_CalibJoyX.m_c;
dir = m_CalibJoyY.m_a*Joy->GetAxisPos(0)*Joy->GetAxisPos(0)
+ m_CalibJoyY.m_b*Joy->GetAxisPos(0)
+ m_CalibJoyY.m_c;
if(Joy->GetlsForceFeedback())
Joy->SetForceFeedback(100,0);
}
/Il Gestion plage morte
vit = (vit>-m_CalibJoyX.m_plage_morte && vit<m_CalibJoyX.m_plage_morte) ? 0.0:vit;
dir = (dir>-m_CalibJoyY.m_plage_morte && dir<m_CalibJoyY.m_plage_morte) ? 0.0:dir;
/Ivit = m_CalibJoyX.m_FiltrePasseBas.Getvalue(vit);
/[dir = m_CalibJoyY.m_FiltrePasseBas.Getvalue(dir);
/Il Gestion des saturations
vit = (vit>1.0) ? 1.0:vit;
vit = (vit<-1.0) ? -1.0:vit;
dir = (dir>1.0) ? 1.0:dir;
dir = (dir<-1.0) ? -1.0:dir;
/Il Transformation en données Castor
vit = 0.5*(-1*vit + 1);
dir = 0.5*%(-1*dir + 1);
/Il Transformation ens octets
vitesse= (BYTE)(vit*255.0);
/lif(vitesse < 0x90 && vitesse > 0x70) vitesse = 0x80;
direction = (BYTE)(dir*255.0);
/lif(direction < 0x87 && direction > 0x7A) direction = 0x80;
/I Initialisation du contenu de la trame
memset(OutData, 0, TAILLE_TRAME_OUT);
Il Gestion des touches de fonction pour envoi ordres dans trame TC
/Il le bouton 1 commande la LOCOMOTION
if(Joy->good() && Joy->GetButtonPos(1))

OutData[defTrame[CMD_DIRECTION].octet-1] = direction ;

OutData[defTrame[CMD_AVANCE].octet-1] = vitesse;
OutData[defTrame[CMD_AVANT_BRAS].octet-1] = 0x80;
OutData[defTrame[CMD_BRAS].octet-1] = 0x80;

double dir_radian = (dir*Pl);
m_Vitesse.SetPos((int)(100 - 200*vit));
if(vit<0.5)
m_VitRob.SetAngle(dir_radian);
else
m_VitRob.SetAngle(-dir_radian);
IsRefresh=false;
}
/I le bouton 2 commande le BRAS
else if(Joy->good() && Joy->GetButtonPos(2))
{
OutData[defTrame[CMD_DIRECTION].octet-1] = 0x80;
OutData[defTrame[CMD_AVANCE].octet-1] = 0x80;
OutData[defTrame[CMD_AVANT_BRAS].octet-1] = vitesse;
OutData[defTrame[CMD_BRAS].octet-1] = direction;

87

C++ Code for Robot Control

m_Vitesse.SetPos(0);
m_VitRob.SetAngle(-P1/2.0);
IsRefresh=false;

}
else
{
OutData[0] = 0x80;
OutData[1] = 0x80;
OutData[2] = 0x80;
OutData[3] = 0x80;
m_Vitesse.SetPos(0);
m_VitRob.SetAngle(-P1/2.0);
¥
if(RedStart)
{
the_image = capVideo.GrabData();
bool bl = pHue->SearchTarget((BYTE*) the_image);
if(bl=1)
{
X = pHue->m_CenterX;
Total = pHue->m_Total;
counterl = abs(X-320)/150;
if(Total!=0)
{ if(Total<15000 && Total>500)
counter2 = 8000/Total,
else if(Total>15000)
counter2=1,
}
else
counter2=0;
}
if(X1=0)
{
if(X<320)
{
right=true;
straight=true;
}
else
{
left=true;
straight=true;
}
}
}
if (straight)
{
for(int i=0;i<counter2;i++)
{
dir=0.5;

88

C++ Code for Robot Control

vit=1;

direction = (BYTE)(dir*255.0);

vitesse= (BYTE)(vit*255.0);
OutData[defTrame[CMD_DIRECTION].octet-1] = direction ;

OutData[defTrame[CMD_AVANCE].octet-1] = vitesse;
OutData[defTrame[CMD_AVANT_BRAS].octet-1] = 0x80;
OutData[defTrame[CMD_BRAS].octet-1] = 0x80;
}
straight=false;
if (left)
{
for(int i=0;i<counterl;i++)
{
dir=0.3;
vit=0.6;

direction = (BYTE)(dir*255.0);
vitesse= (BYTE)(vit*255.0);
OutData[defTrame[CMD_DIRECTION].octet-1] = direction ;
OutData[defTrame[CMD_AVANCE].octet-1] = vitesse;
OutData[defTrame[CMD_AVANT_BRAS].octet-1] = 0x80;
OutData[defTrame[CMD_BRAS].octet-1] = 0x80;
}

left=false;

}
if (right)

for(int i=0;i<counterl;i++)
{
dir=-0.3;
vit=0.6;
direction = (BYTE)(dir*255.0);
vitesse= (BYTE)(vit*255.0);
OutData[defTrame[CMD_DIRECTION].octet-1] = direction ;
OutData[defTrame[CMD_AVANCE].octet-1] = vitesse;
OutData[defTrame[CMD_AVANT_BRAS].octet-1] = 0x80;
OutData[defTrame[CMD_BRAS].octet-1] = 0x80;

right=false;

}
¥
CDialog::OnTimer(nIDEvent);

}
void CIHM_PilotDIg::OnRED_FOLLOW()

{
// TODO: Add your control notification handler code here
RedStart = true;

}
void CIHM_PilotDIg::OnSTOP()

{
// TODO: Add your control notification handler code here

89

C++ Code for Robot Control

counter=0;
RedStart=false;
right=false;
left=false;
straight=false;

90

	Abstract
	Résumé
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1: Teleoperation Overview
	I. Introduction
	II. Definitions
	IV. A literature overview of the first Teleoperated machine
	V. Fields of Applications
	V.1. Submarines Field
	V.2. Space Field
	V.3. Military Field
	V.4. Medical Field
	V.5. Industry Field

	VI. Thesis Goal
	VII. Thesis Outline

	Chapter 2: System description
	II. Hardware
	II.7 Control Panel Case
	II.8 Sensor Interface Box
	II.9 Box with electronics
	II.10 Loader/Unloader

	Software
	III.1 Interface HMI
	III.2 Software Specifications
	III.2.1 Software on the PC
	i. Different Classes
	ii. Most Important Files

	III.2.2 Bit streams Exchanged between the Control Panel and the Robot
	i. Bit stream sent from the control panel to the robot:
	ii. Bit stream sent from the robot to the control panel
	iii. Calibration Analogue Values

	III.2.3 Input/output Cards
	i. Input/output Card Robot:
	ii. Input/output Card PC

	IV. Operation of the program
	V. Conclusion

	Chapter 3: Hue tracking overview
	I. Introduction
	II. Color Target Detection and Parameters Estimation
	I.1 Color Models
	I.1.1 RGB Color Model
	I.1.2 YIQ Color Model
	I.1.3 HIS Color Model

	I.2 Color Target Detection
	I.2.2 Object’s Hue
	I.2.3 Pixel’s Classification

	I.3 Noise Suppression and Image Segmentation
	I.3.1 Threshold Filtering
	I.3.2 Morphological Filtering

	I.4 Target Image Position and Size Estimation
	I.4.1 Region of Interest
	I.4.2 Target Image Diameter Estimation
	I.4.3 Target Image Size and Position Estimation

	III. Camera Model
	IV. Most Important files and classes
	V. Conclusion

	Chapter 4: Hue Tracking Model for CASTOR robot platform
	I. Introduction
	II. Image Grabbing
	III. Hue Tracking
	III.1. Hmin and Hmax Values
	III.2 Center and Size detection

	IV. Robot Control
	V. System Modifications
	V.1 Hardware Modification
	V.2 Software Modification

	VI. Technical Problems

	Conclusion
	Bibliography
	Webography
	Appendices

