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Abstract

An Integrated, Modular Simulation

System for Education and Research

Douglas Hiranaka

Simulation is the most powerful learning and research tool in engineering.

However, simulation of aircraft has only been available to students with advanced

preparation in aircraft dynamics and programming skills. This paper describes the

development and evolution of a low cost flight simulation lab into a modular, powerful,

flexible, easy to use and accurate flight modeling system.

With the advent of cheap, fast personal computers and powerful software

packages flight simulation can be available to all levels of flight dynamics analysts.

Input/output (I/O) hardware has matured and evolved from expensive specialty items to

mass produced consumer products, and the equations of motion for a standard

configuration aircraft are well understood. The Cal Poly simulation lab has computers,

equations of motion, a simulation cab, desktop input inceptors, and CAD design packages

to analyze and design aircraft and control systems. Individual components don t make up

a simulator any more than a stack of chips make up a computer.

After creating several tools to add to the basic simulator, a sophisticated and

flexible system was developed that could be used by engineers and students with almost

any level of preparation. Simulink, along with Real Time Workshop, provide a flexible

and powerful environment that separate the hardware drivers and simulation software

into individual functions and allow the components to be assembled in any combination.

The system was verified by creating simulations using several verified models and

comparing output from the Simulink model with the output from Real Time Workshop.
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Introduction

Computer Aided
The goals of research and education are very similar: to gain a better

understanding of the world through the systematic exploration of it. Looking at the world

using only one tool is as limiting as observing the world using only one sense.

Understanding differs from knowledge in the scope of information. Knowledge is being

aware about something while understanding involves being thoroughly familiar with the

topic. The ability to experiment with and manipulate things allows understanding to

begin [Ref. 1] Theory and equations provide the basis for understanding engineering.

However there is usually no single tool provided that ties all of the theories and equations

together to demonstrate how the topic being studied fits into the complex set of dynamics

that make up a complete aircraft. Modeling an aircraft provides the bridge between the

theoretical and real world. Referring to model each time a new topic is introduced

provides reinforcement that each topic is related to a whole discipline.

Computer simulation provides the kind of modeling that could be available to

every engineering student. Engineering students have access to personal computers that

are used mostly for data reduction and presentation. Personal computers have become

powerful enough to provide real time simulation of simple aircraft from the desktop [Ref.

2]. Joysticks used for game type simulators are common and drivers exist to allow their

use for input to a engineering simulation. High resolution scenery exists that is available

in the public domain to provide an out the window view. The popularity of video games

has provided everything for a high fidelity high resolution visual simulation of an aircraft

except the equations of motion required to provide the dynamics to the model. Cal Poly
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has been developing a set of the basic equations of motion [Ref. 2] which exist in several

computer languages.

Since research and education have the same goals, the tools used by both

disciplines should be the same. The tools should be powerful, flexible, easy to set up and

use and provide useful information to the users rapidly and accurately. The ideal tool can

be used by both students and researchers, providing insight at various levels to

correspond with the experience of the user. Having students gain experience using the

same tools and analysis techniques that they will use after completing their education

provides insight into the theoretical as well as the practical aspects of the discipline. The

Cal Poly simulation lab includes computers, a basic flight model, a full scale aircraft

cockpit cab with a force feedback system, CAD software to analyze and design flight

control systems, a desktop FlyBox inceptor, an ethernet hub and high resolution graphics

monitors and cards. The individual tools exist that would provide researchers at any level

a complete flight modeling laboratory.

The challenge is to provide the flexibility of a system that is easy enough to be

used by engineering students while providing the power and flexibility required by

researchers. A simulator in its most basic form consists of a computer, equations of

motion, some form of control input and output of the calculated state information to the

user. Providing useful prediction of performance and flying qualities requires a method to

verify the accuracy of the flight model. Until recently a flexible model required expert

programming skills. To have a model simple enough for students required enough

simplification of the model that it was no longer accurate enough for research. Since the

model was hard coded, very little could be done to modify it unless the student had

access to the source code, a compiler and a programmer.
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The combination of several technologies maturing at the same time along with the

advent of low cost powerful computing hardware and software packages, has allowed the

creation of a modeling system that is much more powerful than the components that

make up the system. Tools have been assembled to rapidly create high-resolution high

fidelity flight simulations. Simulink [Ref. 3] with Real Time Workshop [Ref. 4] provide a

user friendly simulation environment that eliminates the need for a skilled programmer to

produce most types of simulations. Simulink/RTW generate c programming source and a

stand alone executable from a Simulink symbolic diagram in one step, providing true

Pictures to Code  capability as represented in Figure 1.

Non-linear 6 DOF EOM or

state-space or

transfer function

G

K

Command output

Auto-code

Augmented

non-linear

aircraft

simulation

Matlab / Simulink S-Functions

Student pilot

Visu

al

Cues

Compiled C  code

Simulated

instruments

Simulated Cockpit

View

Figure 1 General User Progress "Pictures to Code"
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Simulink is a graphical user interface for The Mathworks MATrix LABoratory

(Matlab) dynamic system simulation software. Essentially Simulink is an environment

that allows a user to program  a problem graphically. Two additional capabilities allow

the system the power and flexibility required to provide unlimited growth of the basic

system. The first is an Applications Programmer Interface (API) which allows users to

create custom S-functions to extend the basic capabilities of the system. An S-function is

a user created Simulink function that uses compiled c code that is dynamically linked to

the rest of a simulation. S-functions are used to write functions to extend the basic

capabilities of the Simulink system. Since S-functions use c code, existing models can be

included in the Simulink environment allowing use of any of the built in Simulink

functions. An example is to start with Cal Poly s  basic 6-Degree of Freedom airplane

model, convert the code to an S-function, then add a auto pilot simply by putting a

Proportional, Derivative, Integral (pid) function block in a feedback loop. To code up and

debug a pid compensator would take several days. Including one in a Simulink model,

wiring  it up, and creating a set of gains requires about an hour.

A user created S-function can include just about any valid c function including

calls to hardware and communications. Simulink provides its modeling capabilities in

batch runs. The integration time step can be set to any value but the simulation runs as

fast as the processor can perform the calculations. Simulink does not come with any

functions to delay the code to the actual time increment set by the numerical integration

time step. An add on product called Real Time Workshop (RTW) adds real time

capability to Simulink along with three other functions. First RTW is a automatic c

language code generator. RTW generates compilable c code to create a stand alone

executable program that runs in DOS or Unix [Ref. 5]. Second RTW creates real time
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Figure 2 FlyBox Inceptor

code. To process simple equations of motion takes about a millisecond.  RTW uses a

hardware timer driven interrupt to delay the program to equal the integration time step. If

a integration time step of 10 milliseconds (0.010 sec) is selected in the model, RTW

delays the program 0.009 seconds more so that the code is running at the same rate as the

integration step size. Third RTW combines hardware drivers into the program to drive

any device [Ref. 6] that can be connected to a computer. An inceptor device (input device

- eg. Joystick) such as the BG Systems FlyBox represented in Figure 2, is included by

wrapping  the S-function IO code around the software drivers supplied by the device

manufacturer. The RTW software includes any custom S-functions as well as built in

Simulink blocks allowing applications

of any level of complexity. In theory

anything that can be represented by a

Simulink diagram can be simulated in

real time. Aircraft are complex

dynamic systems which are ideal for

the Simulink/Real Time Workshop

pair. Real-time, or batch simulation and flight control law code is generated from a

Simulink model of an aircraft, subsystem or component. The ability to include hardware

drivers allows pilot in the loop as well as hardware in the loop and inflight simulations.

Since the simulations are created on a PC, tools used in research and industry become

available to anyone with the resources to set up, operate and program a PC.

TCP/IP protocols used for network/internet based communications can be

included as functions in the Simulink environment allowing computing to be distributed

to other machines. The software developed takes advantage of the fact that personal
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computers are now fast enough to do a single sophisticated simulation task in real time

and inexpensive enough to purchase enough to do each of the tasks required. Networking

takes care of distributing the information each computer requires to complete its part of

the simulation. After processing is complete each computer either sends the data out as

output, such as graphics to a screen, or sends the data calculated back over the network to

the main computer.  This technique  is known as parallel computing.

The modular structure of model creation allow students to study the dynamics of

various aircraft from basic bare airframe  aircraft to advanced artificially stabilized

aircraft with closed loop  digital flight control laws. The aircraft can be simulated in a

variety of ways from a batch simulation with canned inputs on the desktop using a single

personal computer (PC) to real-time simulation on an easily re-configurable fixed-based

simulator including actual flight hardware driven by multiple PCs and or workstations.

The engineering student quickly builds and tests a model of a bare-airframe, designs the

control laws to tailor the response types and flying qualities [Ref. 7], then performs tests

of the resulting augmented aircraft via batch simulation or joy-stick inceptor on the

desktop PC or electronic force feedback inceptor in a fixed-based simulator.  Using

Matlab/Simulink on a PC, consistent and verifiable real-time and batch simulation code

can be auto-coded from block diagrams representing the equations of the simulation and

architecture of the control laws.

The development of Fly-By-Wire (FBW) flight control systems has produced

dramatic advances in aircraft handling qualities and performance [Ref. 10].  However,

this increase in design complexity now requires extensive training and experience for the

engineer to be able to analyze these complex systems rapidly and cost-effectively.  This

training is based upon fundamental understanding of highly coupled flight mechanics,
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along with the fundamentals in FBW flight control systems.  This combination of

disciplines must be tied together with hands-on experience working with control systems

dynamics. Demonstrating the resulting handling qualities to engineering students of their

designs of Fly By Wire  flight control systems has been nearly impossible due to the

high cost of computer hardware and the long time required for skilled engineers to

program the source code for the simulation and the control laws. Frequency domain

analysis provides little intuitive basis for the student.  The hands-on learning that spawns

mental connections between modal analysis and the time domain is best demonstrated by

pilot-in-the-loop simulation [Ref. 9]. Simulink/RTW provides a means to create a pilot in

the loop simulation. Seeing coupled responses such as a Dutch roll mode allows

correlation of magnitudes of the motion with the position and rate graphs.

Aircraft handling qualities analysis has traditionally been conducted by engineers

analyzing control systems with Computer Assisted Design (CAD) packages.  Using

CAD, the engineers generate batch time or frequency histories [Ref. 15] of the designs of

the FBW flight control systems. The engineers do not interact with the design nor fly the

design.  If a model exhibits complex cross coupling gaining, intuition of the plant is

impaired.  The time required to write real-time simulation source code for control laws,

aerodynamic models and the hardware interfaces for a real-time simulation prohibits

engineers from direct interaction with their designs until the later stages of design when

changes are much more difficult. The ability to go from pictures to code  allow rapid

development of prototype systems by substituting hardware drivers for simulated

components in an existing simulation then auto-generating executable code. An example

of the flexibility of the system is demonstrated by the difference in the amount of time

required to convert the code from c++ to S-functions and for students to create the same
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simulation after the conversion. The conversion from c++ to S-functions took six months

whereas Sr. level undergraduate students were able to create complex models in hours.

Research Objectives
Originally the objectives of the research were to extend the basic capabilities of

the Cal Poly flight simulation laboratory providing a first and second order linear model

for the rotational axes of a Cessna 172 in landing mode. The model was to be used to

perform handling qualities research into the effects of time delay [Ref. 19, 20, 21, 22, 23,

24.] on the pitch channel of input using Cal Poly s force feedback stick and rudder.

However after the model was created, tested and verified a system was found that allows

rapid development of an advanced simulation lab. Using The Mathworks Simulink

graphical simulation environment as a base, along with Real Time Workshop auto coding

software to generate simulation executables from the Simulink models, a completely

modular simulator was established. Once the existing modeling software and hardware

drivers were incorporated, additional software tools were created to provide a system that

is inexpensive, flexible, powerful, easy to use and provides students with tools industry

and research are just starting to use [Ref. 9].

The Mathworks provides a API for including user created functions in

simulations. C MEX functions extend the basic matlab scripting language by allowing

compiled c language functions to be included in the Matlab workspace. Cmex S-

functions allow users to create custom functions that can be included in Simulink models.

Since the functions are compiled very complex functionality can be added to the basic

Matlab/Simulink enviorinment.
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Initially a Borland c compiler was used to generate C MEX and C MEX S-

functions. After discovering that the scripts included with the RTW only supported

creation of  C MEX functions, a Watcom c compiler was configured to create both C

MEX and C MEX S-functions. The supplied scripts were run using the example F-14

Simulink model and a batch mode program was created and the output confirmed with

the results published in the user manual. Using the numerical integrators created for the

F-4/F15 Phantom/EAGLE simulator (PhEagle) linear simulation, a procedure for creating

a S-function was established and verified against the data generated from the original

functions. Next a procedure for creating real time code was established and verified using

the numerical integrator S-functions and comparing the run time with an external clock to

verify the timing functions. The final verification was to compare Simulink s built in

integrators with the user created numerical integrators using the same integration

techniques.

After the procedure for creating S-function blocks was established, existing Cal

Poly c++ code used to access various hardware used for input and output to and from the

simulation cab was converted to Simulink S-functions. A 6-Degree of Freedom model

originally created to demonstrate program coding of a point mass model was converted to

a S-function and verified. Several functions were changed and several were added after

tools in Simulink and Matlab showed that the model was not producing acceptable

results. A Euler integrator and coordinate transform S-function was created to allow liner

transfer function and state space models to be flown  in a virtual world.

Next, four models of varying complexity, modified to include pilot input and

graphical output, were flown to verify the concept and the ability of the auto-coder to

generate stand alone executable program code. Starting with a transfer function model,
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then a simple one axis closed loop state space model of a X29-A fixed wing jet and a

complex state space model of a Kaman SH2-F with a closed loop flight control system

were modified to fly  on the system. Next a model was created from the ground up to

provide fixed-wing six degree of freedom nonlinear equations of motion to fly open loop

as well as to provide a airframe  to wrap closed loop flight controls around.

The models of the X29-A and SH2-F used for verification of the rapid

prototyping capability of the Cal Poly simulation lab had the control law gains optimized

using the CONDUIT software. NASA s CONDUIT [Ref. 8] is a set of utilities to perform

handling qualities analysis and control law optimization. Simulink based CONDUIT uses

the same models that can be easily modified to create a real-time simulation. The model

is created on a PC and then ported to a workstation for flying qualities analysis and

control gain optimization using CONDUIT. After the gain optimization has been

completed the gains can be reset in the original model on the PC and new simulation code

generated and flown immediately. This is the concept behind RIPTIDE [Ref. 9] (Real

time Interactive Prototype Technology Integration/Development Environment) a NASA

rapid prototyping project that uses RTW to generate simulations and eventually flight

control law code using Silicon Graphics IRIX workstations. The Cal Poly flight

simulation and controls laboratory duplicates much of the capability of the

CONDUIT/RIPTIDE system using networked PC s rather than expensive workstations.

 Finally a procedure for performing model identification (verification) was

demonstrated using NASA’s CIFER [Ref. 12, 13, 15, 16.] software. Handling qualities

for many types of aircraft such as helicopters [Ref. 11] cannot be completely predicted

before the aircraft is built. For these aircraft NASA s CIFER (Comprehensive

Identification from FrEquency Response) program, is used to identify the characteristics
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of the aircraft. The results of the data returned from CIFER can be used to correct a flight

simulation [Ref. 14] for further development of the aircraft and flight  control system

[Ref. 13]. CIFER is a set of utilities tied together with a common interface that process

time domain [Ref. 12](frequency sweep) data into frequency domain data (bode plots).

Conducting a manual frequency sweep (CHIRP) provides data for the program to process

into transfer functions and stability derivatives. CIFER includes a utility to fit low order

transfer functions [Ref. 17] to the high order identified systems. Data created for the Cal

Poly simulation lab tutorial was processed using CIFER and a simple Simulink model.

The model and data were incorporated into a internet based tutorial to demonstrate

system identification to users of the Cal Poly simulation lab. A flight data collection

system created in the Cal Poly flight controls lab provides the capability to collect

frequency data for existing aircraft. The system uses low cost consumer grade sensors

sending signals through a pcm/cia A/D card to a laptop personal computer.

The system created is flexible, powerful, inexpensive, expandable, verified, and

easy to use, fulfilling all of the original design objectives. The software code generator

was also verified and includes the tools and techniques that can be used to verify future

simulation models
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PhEagle I

PhEagle Hardware - Sim Cab
The heart of pilot-in-the-

loop simulation is the interface

between the pilot and the

simulation. Cal Poly s simulation

laboratory has a two seat tandem

fighter cockpit cab (Figure 3.),

with analog stick and instrument

computers to run the mechanical

steam gauge  instruments as well

as drive the force feedback torque motors for pilot force feedback or state cueing to the

center stick and rudder pedal inceptors.

Sim Cab F-4/F-15 PHantom/EAGLE
Cal Poly simulation cab, on loan from

NASA Dryden, combines an F-4 Phantom cockpit

with the center control stick from a F-15 Eagle

(Figure 4.) providing controls and instrumentation

on par with any modern high performance fighter

aircraft. The cab was originally used to train F-4

pilots then converted to a F-15 stick with force

feedback to the pedals and stick to conduct

handling qualities research. The force feedback

Figure 3 PhEagle Simulation Cab

Figure 4 F-15 Eagle Stick
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allows the cab to simulate actual aerodynamic control forces or feed back force or cueing

proportional to any of the aircraft s current states for research into the simulated aircraft s

handling qualities [Ref. 25]. The hybrid cab contributed to the simulation labs nickname

the PhEagle.

The force feedback stick provides Cal Poly with the ability to perform advanced

handling qualities research. Handling qualities is defined as flying qualities which allow a

mission to be accomplished with ease and precision [Ref. 7]. Feedback of the aircraft

states to the pilot is an important quantity to provide good handling qualities. Feedback

through the controls is important enough to be included in the MIL-STD-1797 [Ref. 7]

Military Standard Flying Qualities of Piloted Aircraft. However little information is

available about which states to feed back and how to cue the pilot through the controls.

The MIL-STD-1797 provides only basic guidelines for the force gradients and one state

in each control axis to be fed back (Table 1).

The MIL-STD-1797 was used to set up the basic feedback for the PhEagle I. Two

types of pilot induced oscillation (PIO) can be predicted using batch and fixed base, pilot-

in-the-loop, simulation [Ref. 5]. A PIO is a phenomena where the pilot sends commands

to the plane in a cyclical fashion where his input ends up sending exactly the wrong

command to the airframe from the desired response. An example of this is trying to

Table 1 Aircraft control Stick and Pedal Feedbacks

Axis Feedback state Force Gradient Maximum Force

Pitch Nz 8 lbf/g 50 lbf

Roll Roll Rate — p 1 lbf/deg/sec 25 lbf

Yaw Side Slip (Beta) 1 lbf/deg 100 lbf
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highlight some text on a word processing document  and over shooting the desired

sentence and then correcting up the page and overshooting again etc. Cal Poly s basic

simulation lab provides many capabilities that are available to anyone with access to

personal computers. The programmable PhEagle handling qualities force stick and pedals

allow Cal Poly to expand the knowledge base on pilot feedback.

Siblinc
The PhEagle’s dial instruments

are run through an analog computer

called the Siblinc. The input to the

Siblinc is in the form of reference

voltages sent from a PC through an off

the shelf  digital to analog (D/A)

converter card. The voltages are

amplified in the Siblinc to drive the

instruments. The Siblink  is the tall tower

on the left of Figure 5.

Stick Computer
All of the functions of the stick are

handled through a separate analog computer

(the center tower in Figure 5.). The stick

computer buffers command inputs from the

stick, rudder pedals and two throttles

(Figure 6.) to the PC s analog to digital A/D

Figure 5 Siblinc and Stick Computer

Figure 6 Engine Throttles
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card and sends commands from the PC s D/A card through an amplifier to the sick and

rudder pedal torque motors. The amount of torque generated by the motors can be set

statically through the stick computers front panel or by varying the reference voltages

from the PC to the stick computer. The stick computer also sends back to the IO (PC)

computer stick position, force, and trim position and velocity. Feeding back force to the

position,  virtual spring and damping can be created. By feeding back force and damping

proportional to any of the modeled states can be used to enhance the handling qualities of

an aircraft [Ref. 25].

PhEagle Hardware - Computers
The heart of the simulation lab is the computer network. There are 4 Pentium 166

MHz computers connected by Ethernet to provide the simulation dynamics, high

resolution texture mapped graphics and, input-output (IO) to the simulation cab. By

separating the simulation tasks to processes that are only dependant on input once each

integration time step or once every several time steps, a flexible computing environment

using as many or as few computers as are required for each simulation is possible. Since

the information is sent over a network the machine acting as the master controlling the

simulation could be any computer. Substituting a Unix workstation for a PC calculating

the equations of motion for a complex simulation such as a helicopter blade element

model running in real time would be seamless.

Low-cost PC s
Since each task in the system is performed on a separate PC with little special

hardware, upgrades to the system can be made incrementally, spreading the cost of

hardware upgrades over as much time as is required. Slower machines can be quickly set
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up to perform the less processor intensive tasks such as IO. An additional cost savings is

achieved by using a switching box to allow the various computers to be controlled by one

monitor, keyboard, and mouse. The Instructor Station  (Figure 7.) is the single point of

IO from the operator to the system. The graphics

computers have separate outputs to the out the

window screens.

Analog to Digital - Input
The A/D card uses variations in voltage as

input and converts the signal from a analog voltage to

a digital number corresponding to the level of

voltage.  Potentiometers are used to vary the

reference voltage from the stick and pedals. Any

device that can be connected to a  linear or rotating potentiometer can be used for input to

the simulator.

Digital to Analog — Output
The instruments (Figure 8.) and

the force feedback are run using a

reference voltage sent out from the

computer then amplified to run the

actuators (voltage meters) in the

instruments and torque motors

connected to the stick and pedals. Any

device that can be controlled using a

voltage signal can be used as output from the D/A card.

Figure 7 Instructor Station

Figure 8 PhEagle Instruments
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Graphics Cards - Voodoo II
Graphics require the greatest

amount of processing power in a visual

simulation. The PhEagle currently has

provisions for up to 3 views, each view is

processed by a single computer

providing enough speed for real time

high resolution texture mapped graphics

(Figure 9). Each computer only requires

the position, orientation, and direction that the view is displaying. Each computer gets the

information once an integration step. The graphics are handled by providing three

computers with the same terrain database and software. By sending the position and

orientation to the three computers the rest of the graphics are processed separately. The

graphics computers’ only special pieces of hardware are network cards and Quantum 3D

graphics cards based on 3Dfx Voodoo graphics chips. The card provides hardware

texture mapping, z buffering, and Gouraud shading. The card has a pixel fill rate of 90

million pixels per second at 800 x 600 resolution, which translates to 5 to 10 thousand

polygons being shaded at 30 Hz. The three default views available in PhEagle I are out

the cockpit window, looking out the front and slightly to the sides. The view direction is

set on the computer that is doing the graphics for the view  through the software.  The

direction that the view is looking is simple to change allowing great flexibility in

placement of the side view monitors. Placing the side monitor directly to the side allows

for close formation flying while placing the monitors close together allows a wider

panoramic view out the front. The Center Monitor has the additional task of displaying

Figure 9 Graphics Front View
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the Heads Up Display (HUD). While changing the HUD is not a basic task, various

HUD s can be substituted to test effects of symbology and HUD dynamics [Ref. 27, 28].

The graphics are not limited to three views. As many views are available as computers

that can be connected to the network and supplied with graphics cards. Tower  views

can be processed on a separate computer with the same graphics set up and a graphical

model of the aircraft included in the visual database, using the position and orientation

information to position the aircraft model in the terrain database. Since the graphics

computers are only receiving position and orientation information and the source can be

anything it is possible to play back  flight test data or previous simulations by sending

the saved state information to the graphics computers using a function to send the data at

the correct rate. Since the playback is not limited to real time, very long period

characteristics can be seen by playing the frames back quickly, or very short period

dynamics can be seen by playing back the data very slowly.

Network
The key to being able to use PC s is the Ethernet network. Using a standard

TCP/IP socket protocol the main simulation computer (the Spiegle) integrates the

equations of motion and sends out position and orientation information to the graphics

computers (the Eagle and Phantom), and state information to and from the IO computer

(the PhEagle). The network can support multiple simulations as sources providing muti-

aircraft simulations such as formation flight, air to air refueling, and/or aerial combat.

Parallel Computing
Parallel computing is a technique used by super computers to split up tasks to

processes that can be done at the same time by separate CPU s. Simulation of any kind of

vehicle lends it self to parallel processing by having at least five separate tasks that need
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to be performed at the same time. These include: Pilot input (stick)/output (instruments),

equations of motion, table look up of stability derivatives used by the equations of

motion, and out the window graphics. For a simple fixed wing rigid body aircraft the

single most computationally intensive task is the out the window graphics. Using a

Ethernet network and TCP/IP sockets for communication the tasks can easily be broken

up and run on separate computers, with each machine being sent the aricraft states over

the network. Separating the graphics from the flight model and having separate

computers process each view, frame rates exceeding 30hz for each view are possible.

The Cal Poly simulation lab currently has 4 166 MHz Pentium computers

(Pheagle, Spiegle, Eagle and Phantom) (Figure 10.), Ethernet hub, and simulation cockpit

cab with feedback stick and mechanical instrumentation, 3 high-resolution graphics cards
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and monitors and computer code to simulate various aircraft and run and connect the

various pieces of hardware and graphics. Pheagle is the primary equations of motion

(EOM) engine and will control the flow of data to and from the other computers. In

addition to the EOM engine, the computer has one of the graphics cards to send graphics

to the left view (the side view requiring less processing not having the Heads up display

to process). Spiegle is the IO computer containing the A/D, D/A and digital cards that

process data to and from the sim cab and also has one of the side views to process. Eagle

is the main graphics engine that has the front view and HUD to process. Phantom is a

backup IO computer with Win95 for the backup functions and a partition of Linux to

provide remote access to the sim lab for researchers operating off site. Phantom is also

being set up to provide hardware in the loop support for remotely piloted vehicles using

the backup A/D, D/A cards and separate software from the stick IO to use the IO cards

for both functions at the same time. Using the TCP/IP socket software, several Silicon

Graphics workstations available can be included in the system to provide extra computing

power when required. The portability of C code allow functions programmed on a PC

system to be ported to the Unix computer when more computing power is required.
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PhEagle I Software
The software originally written for the simulation system has gone through

several generations of development. The equations of motion, heads up display and

handling qualities tasks were originally written in c and Fortran for use on a Silicon

Graphics workstation. The software was originally encompassed by a project called

PANGLOSS named after the ever optimistic character Dr. Pangloss in Voltaire s

Candide  [Ref. 26]. The PANGLOSS project has the lofty goals to create a complete

package of software that takes a design from a blank sheet of paper to a flying simulation

utilizing a complete set of stability derivatives.  The project combines computer aided

drafting (CAD), computer aided Engineering (CAE), computational fluid dynamics and

simulation. As the project matured and PC s become more powerful, the simulation code

was ported to a PC and converted to c++. TCP/IP network socket and A/D D/A drivers

were written for the PC s and Graphics were created to work with the Quantum 3D cards.

Development of PhEagle I
Using c++ to develop the original software for the PhEagle has allowed rapid and

structured creation of the basic capabilities of the system. The system is run and

maintained by student technicians and researchers. To change the force set up on the stick

or verify the flight model requires an expert programmer familiar with the modeling

software and hardware drivers. The programmer must have a thorough knowledge of c++

programming, the source code, and the hardware as well as control theory. The c++ code

is powerful and flexible and allows the system unlimited expansion. It does require a

substantial investment to learn how the various parts of program code and hardware

interact.
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Existing Simulation Tools
There are two main types of simulation of fixed wing and rotary wing aircraft:

batch and real time. Both can be further divided into categories that include various

combinations of simulated and actual hardware in the loop, and piloted, and pre

programmed automatic paper pilot  inputs [Ref. 29, 30, 31.]

Batch simulation requires one or more computers and can include simulated or

actual hardware. Real time simulation requires one or more computers, actual or

simulated hardware. Piloted simulation also requires an inceptor device (possibly with

feedback), graphical or mechanical instrumentation, and one or more graphical displays.

To simulate an aircraft one must start with a basic set of equations of motion for

the aircraft and add complexity to simulate more complex behavior or include simulated

or actual systems into the basic system. The basic equations of motion for fixed wing

aircraft assume a rigid body. Actual aircraft are not rigid and most aircraft also contain

various complex systems that could be modeled.

Simulation of a flying vehicle can be done at a variety of levels of complexity

from treating the aircraft as a set of simple transfer functions, to a complex and coupled

state space system, to a basic nonlinear 6 degree of freedom (6 DOF) rigid body to a

complex modeling of all the known components involved [Ref. 32]. With the computing

power available with a single Pentium processor models up to a basic 6 DOF rigid body

can be included in a real-time pilot in the loop simulation. Batch simulations of any

complexity can be performed with the corresponding increase in processing time for the

additional complexity.
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General
Using multi processor Silicon Graphics workstations and the built in TCP/IP and

shared memory capabilities native to Unix, simulations can be performed on a single

machine doing complex rotor state calculations using a joystick and one or more screens.

Simulator cab motion, more complex graphics, complex simulation of components such

as powerplants or navigation aids (e.g. inertial navigation) all require multiple computers.

Cal Poly
The software available for the PhEagle I lab include a three axis transfer function

model, a state space model, and a basic nonlinear 6 DOF rigid body model.

Transfer Function
A stand-alone three-axis transfer function model was created to demonstrate

transfer function models as a means of describing a dynamic system. The model was also

to be used for handling qualities research [Ref. 16] to provide a simple model with known

dynamics to vary control stick force shaping and processing time delay. The transfer

function model uses first and second order differential equations transformed through a

Laplace transform to the frequency domain [Ref. 33]. A transfer function is a ratio of

output to the input of a system over a range of frequencies. Using literal factors

approximations for the pitch, roll, and yaw axes, a simple model of the dynamics of an

aircraft can be rapidly synthesized [Ref. 32]. The first order system models an over-

damped spring damper system that provides a variable delay to the system. A first order

function models the roll axis of a conventional aircraft. The second order system acts like

a spring damper system with the natural frequency and damping ratio variable. The

second order system is used to model the short period oscillations of an aircraft s

longitudinal (pitch) and lateral (yaw) axis. Each axis is isolated dynamically providing
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great control over the model dynamics. Usually the system would be described as a state

space as described by Equation1. Integrating a state space usually requires a single

technique of numerical integration. Part of the reason for creating the model was to

demonstrate Euler and Runge-Kutta numerical integration techniques. Each model was

set up to use separate numerical integrators for each output axis.

To perform the first order integration s a Euler numerical integrator was created

and tested using Matlab. Matlab was selected to take advantage of its interpreted

language which uses a syntax very similar to c. Note that by rearranging the terms of a

first order transfer function (equations 2-4) the Euler technique is derived. The results

from the coded Euler integrator were compared to the Euler integrator supplied by

Mathworks. When the resulting plots overlaid exactly for the same input and time step

the function was included in the simulator.

Equation 1
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The integration of the second order system transfer function used a Runge-Kutta 4

(RK4) scheme (equation 5). The frequency and magnitude matched exactly with the

Mathworks supplied integrator. At .01 sec the difference was less than 0.25%. To verify

that 0.25% was within the range acceptable for accurate modeling a study was conducted

to compare the fixed step numerical integrators available form Mathworks as well as the

ones available from ISI in the System Build modeling software. At a dt of 0.05 using the

RK4 integrators and the same three transfer functions there was a 0.55% difference

between the maximum overshoots for the transfer functions. For a time step of 0.05 the

Mathworks integrators (Dormand-Prince, Runge-Kutta4, Bogacki-Shampine, Heun)

varied less than 0.5%. The Euler integrator response error was 100% using a 0.05 sec dt

compared with the other methods. The time step was reduced to 0.001 sec where the error

between the Euler method was reduced to less than 1%. The results of the study indicate

that caution should be taken to verify that a fine enough time increment is being used

when relying on the  Euler technique.

To provide input and output for the integrators, code for a joystick and basic

software VGA graphics were obtained from a public domain simulator Build Your Own

Flight Simulator (BYOFS) in c++ [Ref. 34]. The code for the simulator was written in

Equation 5
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c++, so the integrators were recoded in c++. The simulator was modified by removing the

original equations of motion as well as all unused game code. Two setup files were

included to store the calibration for the game joysticks and to store the springing and

damping ratios for the numerical integrators. The graphics were simplified to increase the

screen display area and simulate a simple Heads up Display (HUD) (Figures 11 & 12).

The new integrators were added to the simulators existing classes and the code modified

to provide input to the integrators. The output from the integrators was sent to the base

class while a linear airspeed was hard wired . State information was output to the

graphics and Heads Up Display. A second version of the code was modified by removing

the game joystick classes then combining graphics and equations of motion classes into

the stick and instrument classes in the PhEagle I c++ code. Modifications were then

made to the timing classes to change from a floating  time scheme where the integration

time step is estimated from the length of the previous computational cycle to a fixed time

step were the length of the frame  is hard coded and all of the computations must be

completed before the end of the frame. A fixed time scheme always involves unused

CPU time while the program waits to be released to the graphics. A fixed time step is

required to guarantee a smooth, accurate and consistent visual simulation.

Figure 11 BYOFS Original Screen Figure 12 Snoopy Screen
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Only simple tests using rules of thumb were used to test the integrators since the

functions had been tested in the Matlab environment. After brief testing it was observed

that the model didn t behave correctly to control inputs. The pitch always stayed in the

world axis while the roll and yaw were correct. The attitude dynamics were removed

from the simulator and a function was added to integrate body rates p, q, r (roll, pitch,

yaw) into the Euler angles Psi, Theta and Phi (yaw, pitch, and roll) in the world axis. The

Euler Transform also integrates the body linear rates u, v, w to the world positions x, y, z.

With all of the original game dynamics removed from the game simulator a basic IO

template was available to wrap around various dynamics models. Programs using the

game IO have been given the suffix snoopy  to provide an indication of the IO used for

the programs.

The Euler and RK4 integrators original Matlab code have been incorporated in to

the FASAND simulator (described later) to demonstrate the use of numerical integration

to simulate several systems. The Euler integrator is being used to model simple actuators.

The RK4 integrator is being used to model engine dynamics.

State Space
A state space model is being developed to allow a model of any level of cross

coupling to be created and run with the PhEagle cab to allow handling qualities research

to be conducted. A state space is a linear system modeling primary axis (the output

desired) and cross coupling of control input to other axes. This capability is being

developed as a separate part of system development and will not be described at this time.
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Figure 13 Symbolic Model of 6 DOF Functions

Basic 6-DOF Nonlinear, Rigid Body, Steady-State Subsonic Aerodynamics
A single point 6 degree of freedom nonlinear rigid body model of an aircraft [Ref.

32] was created to provide the basis for more advanced models. The simulation has been

divided into three main functions: Forces and moments, accelerations, coordinate

transform and state update. Figure 13 shows a symbolic representation of functions and

where the states are calculated.  The diagram also shows how the states are used by the

other functions to calculate the forces and momentes or positions and orientations. It is

also easy to see where the final states are output. Note that in order avoid algebraic loops

a unit delay must be included in the feedback states. The aircraft is represented at any

time by the states summarized in Table 2. The states include the position and orientation
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of the aircraft in

inertial space, as well

as the body axis

velocities and

rotational rates. The forces and moments function starts with stability derivatives read in

from a ASCII based Standard Aircraft Data (SAD) file. The file contains 48 elements

describing the physical and aerodynamic characteristics of the modeled aircraft along

with some initial conditions for the flight condition. The function uses a single sad file at

one point in the flight envelope. The function is intended to be used as a quick check of

the dynamics of a developing aircraft at one point. To provide complete dynamics for a

training type simulator would require a complex lookup table that would require one or

more dedicated computers doing the interpolation from the look up tables. Table  3

summarizes the information contained in a typical SAD file.

Table 3. SAD File

100               1 Initial Altitude [ft]

0.002377      2 Starting Density  [slugs/ft^3]

175.05          3 initial forward velocity U [ft/sec]

0                   4 Starting Altitude [ft]

184           5 Wing reference area — S [ft^2]

33.4          6 Wing span — b [ft]

5.7           7 Wing mean aerodynamic chord- MAC  [ft]

2750          8 Aircraft weight [lbs]

1048          9   Moments of inerita Ixx [slug-ft^2]

3000          10 Iyy [slug-ft^2]

3530          11 Izz [slug-ft^2]

0             12 Ixz [slug-ft^2]

0.41          13 CL1 - Initial total lift coefficient

0.05          14 CD1 - Initial total drag coefficient

0.05          15 CTX1 - Initial thrust coefficient

0             16 Cm1 - Initial pitch moment coefficient

0             17 CmT1 - Initial pitch moment due to thrust

Table 2  State Vector

x, y, z Location of aircraft in inertial coordinates

u, v, w Body axis velocity components

p, q, r Body axis rotation rates

Φ, Θ, Ψ Aircraft Euler angles
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0             18 Cmu  - Pitch moment due to forward velocity

-0.683        19 Cma  - Pitch moment due to angle of attack

-4.36         20 Cmadothat  - Pitch moment due to rate of alpha

-9.96         21 Cmqhat  - Pitch moment due to pitch rate

0             22 CmTu - Pitch moment due to thrust  and u

0             23 CmTa  - Pitch moment due to thrust and alpha

0             24 CLu  Lift due to forward velocity

4.44          25 CLa  Lift due to angle of attack

0.0           26 CLadothat Lift due to rate of alpha

3.8           27 CLqhat  Lift due to pitch rate

0.33          28 CDa  - Drag due to angle of attack

0             29 CDu - Drag due to forward velocity

0.0           30 CTXu  - Change in thrust due to velocity

0.355         31 CLdE  - Lift due to elevator deflection

0.00          32 CDdE  - Drag due to elevator deflection

-0.923        33 CmdE  - Pitch control

-0.074        34 CRollbeta Clbeta  - Roll due to side slip (dihedral effect)

-0.41         35 CRollphat Clp  - Roll damping

0.107         36 CRollrhat Clr  - Roll due to yaw

0.134         37 CRolldA CldA - Roll control

0.0107        38 CRolldR CldR — Roll due to rudder

0.071         39 Cnbeta - Yaw due to side slip

-0.0575       40 Cnphat — Yaw due to roll (dutch roll)

-0.125        41 Cnrhat — Yaw damping

-0.0035       42 CndA — Yaw due to aileron (adverse or proverse yaw)

-0.072        43 CndR — Yaw control

-0.564        44 Cybeta — Side damping

0.0           45 Cyphat — Sway due to roll

0.0           46 Cyrhat — Sway due to Yaw

0.0             47 CydA — Sway due to Aileron

0.0 48 CydR — Sway due to Rudder
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The model currently uses a Taylor expansion of the forces on a point mass to

model the linear accelerations (Table 4). Moments are then applied to a rigid body to

obtain the rotational accelerations. The translational forces are applied to the body in the

airpath axis. Note that there is an assumption that the difference between airpath axis (the

direction the aircraft is going) and body axis (the direction the aircraft is actually pointed:

x out the nose, y out the right wing and z out the bottom) is small (small angle

approximation). This is only valid for small alpha and beta. As the small angle

approximation is exceeded the alpha starts to be mapped into drag and Beta reduces

overall drag causing changes in the aircraft dynamics. The control deflections are used to

determine additional forces and moments added to the aerodynamic forces and moments.

Once the total forces and moments are

summed the forces and moments are

applied to the mass and inertias of the

airframe to determine the translational

and rotational accelerations. Table 5

shows F=ma rearranged to a=F/m to

obtain the accelerations on the body. The equations include the gravity component in

Table 4  Force and Moment Derivative Equations
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Table 5  Equations of Motion
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each of the linear force terms. The body axis accelerations are integrated to body axis

velocities and rates. Table 6 shows how the body axis velocities are then combined with

the previous Euler angles to obtain the world axis velocities (Table 6) (u out the nose, v

out the right wing, w down). The world axis velocities are integrated to obtain the current

position in the world (flat earth — X North, Y East, Z toward the center of the earth)

coordinate axis. Table 7 shows how the body axis rates (p about the long axis, q about the

wing axis, r about the vehicle vertical axis) are combined with the previous Euler angles

to obtain the Euler rates. The Euler rates are integrated to obtain the current Euler angles

Ψ - yaw (positive east and 0 degrees north), Θ - pitch (positive up and 0 degrees level

from the horizon - flat earth), Φ - roll (positive right wing down, 0 degrees no roll).

Finally the angles are reduced to remain in the first multiple of pi.

The model was originally created and tested as a Matlab m file program

(FASAND) to demonstrate the coding of 6 DOF equations of motion in a generic

programming language. The code is functional, however, on a PC the rate of integration

limits the usefulness as a research tool. The version intended to be used for batch

simulations is the Simulink S-function. In addition to the basic equations of motion the

FASAND code includes the wind2body transform function and the Euler and RK4

Table 7  Euler Rate Equations

∂Φ/∂t = p+(qsinΦ+ rcosΦ)tanΘ

∂Θ/∂t = qcosΦ - rsinΦ

∂Ψ/∂t = (qsinΦ + rcosΦ)secΘ

Table 6 Euler velocity Equations

∂X/∂t = ucosΘcosΨ + v(sinΦsinΘcosΨ - cosΦsinΨ) + w(cosΦsinΘcosΨ+sinΦsinΨ)

∂Y/∂t = ucosΘsinΨ + v(sinΦsinΘsinΨ+cosΦcosΨ)+w(cosΦsinΘsinΨ-sinΦcosΨ)

∂Z/∂t = usinΘ + vsinΦcosΘ+wcosΦcosΘ
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integrators. All the upgrades and bugs fixed in the Simulink 6 DOF S-function have been

included in the FASAND code.
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PhEagle II

PhEagle II Introduction and Objectives
After adding several simulations to the Cal Poly simulation lab using c++ it was

found that it took months to understand the complete set of classes to perform all of the

functions. Each new function required intensive planning to include in the class structure

that existed. The RIPTIDE simulation environment was discovered that provided all of

the flexibility of the original c++ based system at Cal Poly while being function based

and graphically oriented. Since each function is self contained the system requires much

less coordination to develop. PhEagle II is a PC based rapid simulation environment

which uses the Simulink simulation environment as a base to tie all of the Cal Poly

simulation hardware and software into a flight simulation and controls laboratory. RTW

provides the means to create stand alone programs that include any combination of the

hardware and software.

PhEagle phase II took the existing hardware drivers and software and converted

the code to Simulink S-functions. The conversion and testing revealed that some of the

functions didn t provide satisfactory results. The functions were modified to include a

broader range of inputs and outputs and more complete modeling dynamics. Finally

several new functions were created to expand the basic capabilities of the system.

Simulink
Simulink is an add on package to Matlab that uses a graphical interface to allow

rapid modeling of dynamic systems. Through the graphical user interface provide by

Simulink, engineers get a visual representation of connections between the hardware, and

control system. Using Simulink as an interface to the simulation hardware drivers allows
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the setup of the force feedback  system to be performed by non-programmers. Software

tools were created to allow engineers to fly  transfer function and state space models

that previously would have required expert programmers to create. Flying a transfer

function allows rapid development of preliminary designs. First cut designs use literal

factors to estimate the gross handling qualities for a design iteration by using spring and

damping values obtained from the literal factors. The Transfer functions are then

analyzed using frequency domain techniques. Finally, it is possible to use PhEagle II to

fly  the equations. Gross handling qualities are rapidly evaluated early in a design

allowing more time to be spent refining performance and handling characteristics. Since

the RTW auto-coder creates a stand alone DOS executable program students can

substitute generic game joysticks and software graphics for the complex simulation lab

IO to allow code generated at the laboratory to be run on any PC.

The wraparound template that provides the input and output connection between

the function and Simulink is called a C MEX S-function. The user code is called through

an S-function in Simulink with as many input and output channels as required. The C

MEX API provides a gateway  function to the Matlab environment, while the C MEX

S-function is the gateway to the Simulink environment. With a couple of restrictions,

most c code can be placed in the S-function template.

The first restriction is that only basic keyboard input is allowed. Mathworks

supplies a modified interrupt function for the keyboard which limits escape codes from

interrupting the program. To get around this restriction, a TCP/IP communications block

was created to allow communications outside the simulation software/hardware. This

allows the user to create a GUI using Matlabs  programming language to provide the
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instructor a graphical interface to control the simulation that runs as a separate process or

even on a separate computer.

The second restriction is that there is no direct support for graphical output. Users

can write their own graphics wrapped in the S-function template.

Keeping in mind the two limitations, just about any thing that can be written in c

can be used as an S-function including reading from and writing to hardware, storage,

TCP/IP communications, graphics, timing functions and custom math functions and

models.

Simulink model code is platform independent as long as only generic c S-function

code blocks are included in the model.  This feature has the advantage that a model can

be created on a desktop PC, then be ported to a Unix based workstation. Using a

workstation, advanced analysis and optimization programs can be made  available. The

speed increase possible using a workstation could allow real time execution if the model

is complex enough that real time execution is not possible on a PC. Some hardware

drivers can be ported between platforms as long as the c code is generic. The BG systems

FlyBox uses a serial port with generic c code drivers so the S-function drivers should

function on a PC as well as a Unix workstation. The generic nature of the c and S-

function  code was demonstrated by running the Euler S-function and the 6 DOF S-

function blocks on both a PC and a several Silicon Graphics workstations including an

Indigo and an Onyx.

On a Windows 95 system the user can only use 32 bit program code to link into

the S-functions. This caused all of the 16 bit snoopy game IO functions used to test the

original desktop simulation functions to be abandoned. A new set of 32 bit game joystick



37

functions were found and graphics output were found that uses the World up virtual

reality viewer with the

output using OpenGL

(Figure 14).

Help files have

been provided by

creating a Matlab

script macro with the

same name as the S-

function. Typing in:

>>help 6-DOF  at

the Matlab prompt will provide text to give the user background on the S-function 6-

DOF.

Modular Problem Setup
Models in Simulink can be created in small components to allow testing of each

component using various types of canned inputs to test the output of the component.

Since S-functions are functions, good programming practice of creating and testing small

components is encouraged. The 6 DOF was created using the function testing

methodology. The program was broken up into three major functions, forces,

accelerations, and transforms. Each component was wired up with constants and manual

calculations were compared with the results. When each function was producing correct

results the function was included into the main function. Throughout the development,

flexibility was constantly evaluated. Most functions can be built up from the basic

Figure 14 Screen  Shot of World Up VR Player
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Simulink block set, however, when maximum performance is required compiled c code

usually provides increased speed.

Simulink Time block
Two methods are available to allow real time simulation through Simulink. Real

Time Workshop described earlier, and including a S-function timing block in Simulink to

time each simulation step and release the program when the end of the time frame is

reached.

Using an interrupt driven block of S-function code is being investigated to

provide real time capability in the Simulink environment using a PC s internal timing

chip. The amount of delay required is significant as the 6 DOF model finishes 10 seconds

of integration using a 10 millisecond integration step in less that a second.

Hardware Setup and Test

The hardware S-functions created to work with RTW were compiled to dll s to

determine if the functions would work in the regular Simulink environment. The driver

functions for the stick and the instruments function normally in the standard Simulink

batch mode. A delay function was required as a batch simulation finish time of 100,000

seconds finished in seconds. Since the drivers function properly in the standard Simulink

environment, Simulink can be used to perform force setup without a timing block on the

stick and pedals. To slow down the simulation, an extremely small time step for the

integration or including a delay loop to slow down the processing to close to real time is

required. Since the force stick hardware drivers do not require a specific time step, setup

of the stick forces is done without having to generate executable code which takes several

minutes each time.
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Real Time Workshop
To generate the final executable program a Simulink model must include the

source code for all of the user supplied S-functions. Any custom functions that will run in

the Simulink environment can be included in the auto-coding to run in a stand alone

application.

Stand-alone Code
The real-time workshop code generator creates an executable that runs in the 32

bit DOS window of Windows 98. Using the TCP/IP connection, two forms of IO are

being provided that Mathworks didn t supply. There was no provision for keyboard input

to a real-time workshop application so modifying the program as it was running was

limited to using the supplied external mode  interface which allows one process to run

Simulink coupled to another process running the real time application. This allows

Simulink to be linked with running simulation code providing the ability change control

parameters inside the simulation while the program is running. The user simply changes

the values in the Simulink block and the value is immediately updated in the running

program. This allows different control gain sets to be used during the simulation or

parameters such as time delay to be added to the simulation to demonstrate the resulting

deterioration in handling qualities. This also allows a separate computer to provide a

instructor  station to control pilot in the loop simulations. Graphics is the second form

of output that is not supported by the RTW coder.  Graphics has been in two forms: 1) an

interface to the World Up VR viewer was adapted to run through the Simulink

environment.and, 2) PhEagle I graphics are being added through the network capability

using the existing TCP/IP sockets. Since the graphics computers only require a state

vector providing position and orientation information, the Simulink model can use the
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existing graphics by creating a TCP/IP to graphics  S-function to plug into the graphics

TCP/IP server socket.

Hardware in the Loop
The ability to provide hardware in the loop code was the feature that initiated the

use of real time workshop. Since the PhEagle simulation cab uses A/D and D/A IO, the

simulator is already hardware in the loop. Using back up IO cards the hardware

capabilities exist now to include many types of flight hardware into the current system.

Existing Infrastructure
Creating the output to the instruments and the input from the stick has created a

infrastructure for doing hardware in the loop simulations. The input from the stick is in

analog voltage varied through potentiometers located on the stick. The instruments are

voltage meters that use the output reference voltage to command the position of the

needles. After all the stick and instruments are hooked up on Spiegel, unused channels

remain available on both the input and output cards that can be used for hardware in the

loop input and output. The addition of hardware requires very small changes to the

Simulink S-functions. The Phantom computer has D/A cards and software currently

being used as a backup system for Spiegel. Phantom is available to provide hardware in

the loop IO through the Ethernet.

PhEagle II — Software

Starting with bits and pieces of simulation and IO program functions created by

various Cal Poly alumni in Fortran, c, and c++, along with new functions, the PhEagle II

Simulink/RTW library was created, tested, and verified.
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To confirm the program code, several complete stand alone simulators and IO

functions were written to test the new code before incorporating them into S-functions.

Where graphics and joystick input were required for verification, the Snoopy IO package

was used. Virtually all of the stand alone program code that was created for use in the Cal

Poly simulation lab has been converted to S-functions. The components have become

part of a simulation laboratory using the same hardware and software through the

conversion of the pieces to S-functions.

To verify the CMEX S-function, a first order Euler, then a second order numerical

integrator (using a Runge-Kutta 4 integration method) were placed into the S-function

template and imported into Simulink blocks. The Euler block was tested against a

Simulink first order transfer function using the Euler integration scheme. The RK4

integrator test code uses three different damping ratios corresponding to the commanded

pitch, roll, and yaw angles. The test sent three step input signals to the integrators. The

results were compared to the same system set up using second order transfer functions

and the built in Simulink RK4 integrators. Both functions matched with the Simulink

functions with less than 0.5% difference.

The next step was to create a transfer function model of the same system as the

custom S-function block.  The values were entered into the block, the time step was set to

the same value, and Runge-Kutta was selected for integration.

To verify the process and accuracy of the code generated by RTW, the RK4

numerical integrators created to test the S-functions were placed in a new model and auto

coded in batch mode. The program was run and the results were automatically saved to a

text file for analysis. The results from the output file were compared with the output from

the PhEagle I numerical integrators, the original output from the S-function run in the



42

Simulink environment, and Mathworks’ versions of the RK4 integrator. The output from

the RTW generated code matched all of the other versions of the same code with the

same 0.5% variation between the new RK4 integrator and the Mathworks RK4 integrator,

verifying the batch mode.

Modular Structure
Conversion of the various functions required to create a simulation has reduced

the total number of lines of code that require maintenance. There is one copy of each of

the input, output, hardware, graphics, and flight models to keep track of. RTW creates a

simulation using the same S-function code tied to the icon in the Simulink diagram rather

than having a separate copy for each simulator as would be the case with stand alone

simulations. Since the RTW autocoder requires c source code for any of the S-functions

the functions are provided as open  code to allow future researchers at Cal Poly to

update and modify the existing functions, or use them as templates to create new

functions to expand the capabilities of the system.

Adding new functions to the PhEagle II system only requires that the functions

use the S-function IO template. All other inputs and outputs requirements of the function

are labeled in the Simulink environment S-block. To make the block more intuitive, a

Mask  can be put over the block allowing an icon of the functions use to be applied.

Including Existing IO Functions
All existing IO functions that were available as source code from PhEagle I were

converted from c++ code to c code. A new data structure was created that is compatible

with c. Error trapping that was originally part of a complex set of c++ classes were

incorporated into the functions as stand alone code. Only program code that was actively

being used was incorporated in the S-functions. While c code is less powerful than c++,
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its similarity to other structured languages students have been exposed to allows less

experienced programmers to maintain the code and create new functions. Since S-

functions are functions instead of programs, the development and testing process is

simplified.

Expanding the Possible
The process of separating the IO and modeling functions into Simulink S-

functions without adding other functions provides greater flexibility to the researchers.

The ability to select and set up model components one at a time allows a simulation to be

built up and tested systematically to the level required for each kind of data collection.

Output - D to A
Starting with the c++ code created for PhEagle I, a Simulink D/A S-function was

created to provide input to a simulation from the PheEagle stick, pedals, and throttles.

The code had to be converted to c code to function inside the S-function template. The

process of converting the D/A driver to c necessitated several changes to the original

code. C++ uses classes as a structure to construct programs. C++ provides flexibility by

allowing generalized functions to be created. Since c++ is an extension of the c language,

all of the extensions had to be duplicated within the scope of the c language. Since the

flexibility (and complexity) of overloaded classes were not required for simulation, the

specific cases required for the S-functions were cut and pasted from the c++ classes.

Creating the D/A S-function required a new data structure, simplification of the

function structure, separation of the D/A and A/D functionality from a single function,

and simplified error trapping. To keep the functions as simple as possible the A/D and

D/A functions were separated into an input block and an output block respectivly. The
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D/A (output) block is the code for both the 12 and 16 bit D/A cards. This is possible

because both cards use the same code with different base addresses and different offsets

for the resolution used by each card. C pointer arithmetic is still powerful enough to

provide the flexibility to handle 12 and 16 bit addressing in the same function.

Testing the function before it was included into the S-function template required

writing a stand alone program to send signals to the instruments. Once the functionality

was confirmed, the c code was stripped of the test function and placed in the S-function

template supplied by The Mathworks. The function was wired  to constant input blocks

and a simulation was run. The functionality was first confirmed on a static set of inputs

and then on a set of dynamic sine function inputs.

Instruments
To simplify the setup of the instruments, the offset and gain from the digital counts

have been incorporated into the S-function code. The following instruments (table 8.) are

available through the S-function. There is also a basic S-function with just a basic set of

flight instruments and no stick force outputs. The calibration of the stick is in progress.

Basic stick dynamics and force shaping functions are in the process of being created.

Table 8 Instrument Output

Channel Gauge Range - input units Output Units
1 pitch8Ball (Pitch angle theta) +-Pi/2, rad deg
2 roll8Ball (Roll angle phi) +-Pi, rad deg
3 yaw8Ball (Yaw angle psi) +-Pi, rad deg
4 directinal Gyro(Yaw angle psi) +-Pi, rad deg
5 g meter Nz (g’s) -4 +9 g’s
6 vertDevPoint +-1
7 rudderball (Beta - side slip) +-1
8 aoaMeter (Alpha -angle of attack) -10 40, deg deg
9 mach meter 0 6 mach number
10 airspeed 0 700 knots
11 sideslip angle (beta - sideslip) +-15, deg deg
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12 left engine rpm 10 110 percent rpm
13 right engine rpm 10 110 percent rpm
14 vertical speed indicator 0 60,000 feet
15 vertical speed indicator 0 6,000 feet/min

12 bit channels
0 right nozzel 0 100
1 left nozzel 0 100
2 internal pressure 1 12 psi
3 course deviation indicator +-1
4 cd horizontal indicator +-1
5 cd vertical indicator +-1
5 right engine temp 200 1,400 deg
7 left engine temp 200 1,400 deg
8 left fuel 0 100 percent
9 right fuel 0 100 percent
10 ptotal 0 7,000 psi
11 stick pitch force +-1 not calibrated
12 stick roll force +-1 not calibrated
13 pedal yaw force +-1 not calibrated

 Input - A to D
The same changes to the c++ code were made to the stick, pedal and throttle A/D

functions. The function sets the gain and offset so that the input to the model is

normalized to +-1.

Stick
The stick was tested by connecting the stick block to a numerical output block and

scope  to view the numerical and dynamic output from the stick block. The stick output

units were normalized to allow any commanded units to be set from the Simulink

diagram. Note that some of the ranges have reversed signs from the rest of the outputs

and the throttles are normalized to between 0 and 1.  This has no effect on the output

from the S-Function as the output is a single numerical value per time step. Table 9

shows the inputs that are available from the stick through the stick computer:
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Table 9 Cab Inputs

Input from cab output range

pitch command angle +-1

pitch force +-1

ptich trim def +-1

pitch velocity +-1

pritch trim position +-1

roll command angle +-1

roll force +-1

roll trim def +-1

roll trim position +-1

roll velocity +-1

yaw comand angle +-1

yaw force +-1

yaw trim position +-1

yaw control velocity +-1

right throttle +-1

left throttle +-1

Feedback
Originally the feedback of the stick forces was done in the simulation code. The

S-function provides only a force input. Any feedback architecture is done in the Simulink

block diagram.

Force
The force at the stick is controlled by the gain input to the S-function. By feeding

back a state to the force input of the stick, cueing of the states is possible.

Active Sick Cueing
Creating canned responses to certain airframe or power plant states allows a pilot

to be cued  actively that he is approaching a limit or a limit is changing. The most

common form of active stick cueing is a stick shaker to inform the pilot that stall of the
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wing is imminent. A sine wave input with a frequency of about 5 hz would provide the

input for a stick shaker.

Graphics
Graphics is currently being provided by the World Up VR viewer. The graphics

for PhEagle I are still being developed and will be incorporated as soon as they are

available. The PhEagle I uses the Ethernet to send the data to the graphics hardware.

PhEagle Iionly requires a TCP/IP client S-function to access the remote graphics

computers. Graphics is a whole area that can be investigated. Since there can be more

than one computer processing equations of motion it is conceivable that any number of

computers can be added to the network to provide formation or air to air combat

simulation. A graphics subsystem can be created to handle expansions of the system

beyond PhEagle II.

Network (TCP/IP)
A TCP/IP communications template block is included to allow for future

expansion of the remote parallel processing capabilities of the PhEagle II system. The

block is being used to send states to the graphics computers. The block can also be used

for multiple aircraft simulations, playback of flight test or earlier simulation data to the

graphics system, and hardware in the loop simulation.
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Key Features of Simulations
Stability and controls engineers use models of varying complexity to analyze and

design control systems for aircraft. These range from simple first and second order

differential equation models of the rotational and linear dynamics of only the primary

axis dynamics, to complex state space models, to full non linear equations of motion

models. To verify the 6 DOF non linear model, two state space models were created and

compared to the dynamics of the 6 DOF model. Finally a transfer function model was

created using the literal factors approximations for natural frequency and damping ratio

demonstrated in [Ref. 33]. The transfer functions were built up using the Euler block to

allow the model to be flown. The three models demonstrate the same aircraft modeled at

three levels of complexity and allow the models to be flown side by side to compare the

dynamics produced by each set of equations. The models will be described from the most

simple (transfer function) to the most complex (6 DOF) rather than the order they were

created.

Usually transfer function models are used for batch simulation to obtain time

histories or frequency domain plots of the motions to check individual responses of a

aircraft configuration to a control input. The models are used to get a feel for the basic

dynamics of an aircraft during the earliest stages of design. Flying the equations provide

a connection between the parameters obtained from the equations and how the aircraft

response is affected by changes to the parameters.

State space and full nonlinear simulations are usually done later in the

development of aircraft due to the overhead of coding the equations of motion and

control systems. Autocoding software allow models at any stage in the development of an

aircraft to be created and flown .
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Since the transfer functions and state space models only provide perturbation

information some modifications need to be made to the simple models in order to be

flown .

Linear
The most simple and therefore the first kind of model used to analyze a new

aircraft is a linearized first or second order transfer function model. The basic flying

qualities can be estimated from these simple models with very acceptable results for a

first pass estimation. Using relatively few equations, a first cut gross estimate can be

made of the flying qualities of a proposed aircraft. The derivatives are estimated from

statistical data collected from sources like the Air Force DATCOM. The most simple

model created using the Simulink/RTW environment was a transfer function model. The

model was built up from loops to provide rate information to the Euler function block.

Figure 15. shows the same model as a transfer function, a series of loop closures, and a
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subsystem with inputs and outputs. The Simulink diagram was built up using variables in

the blocks to allow the use of a initialization file to load the natural frequency (ωn) and

damping (ζ) variables into the model. This allows one model to be used and modified

quickly by loading various init files with variations in the model parameters.

Transfer function models treat an aircraft as a linear or rotational spring mass

system. The model has no motion except by being perturbed from a steady state. The

results are only valid for conditions fairly close to the steady state.

State space models can model off axis dynamics as well as on axis dynamics with

the most sophisticated models able to model all of the coupled dynamics for the

condition. These are still not as complete as a 6 DOF nonlinear model as aerodynamic

and other nonlinear effects occur off the trim condition. A model was created with

separate longitudinal and lateral state space matrices. The derivatives were

dimensionalized using Cal Poly Archangel v1.0 software. A second state space model

(figure 16) was created using a state space model used as an example in [Ref. 33]
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Modifications Required to Fly
Flying  a linear transfer function and the simple state space models require

giving the model a steady state motion to be perturbed from. Starting the model from the

trim  (Initial) condition and performing a numerical integration on the differential

equations allow the student to see the effects of perturbations on the math model. The

state space model has the speed directly connected to the throttles with the perturbations

from the model summed in before the speed is fed to the Euler block.

To be able to fly  the aircraft the equations need a world to fly in and the

capability to be oriented in the virtual space. In a standard simulator this is done by

defining and keeping track of the position and orientation using world coordinates and

the Euler angles  Psi - compass heading, Theta - pitch (angle above or below the

horizon), and Phi - roll angle. The definition of the orientation must be in this order or the

virtual aircraft will have an orientation  other than the one expected. The World Up

.5925

to knots

57.3

to deg2

57.3

to deg1

psi

Theta

Phi

deg Theta

deg Phi

deg Psi

to deg

elev

ail

rud

Elev

Ail

Rud

to command rad

1

to alt
In1

beta delata rad

phi delta rad

p delta rad/sec

psi delta rad

r delata rad

lat output

aileron  rad

rudder rad
Out1

lat input

176.4

ft/sec
Sum

elevator

Aileron

Rudder

Right Throttle

Left Throttle

Stick

x’ = Ax+Bu
 y = Cx+Du

Navion
Archangel 1.0
Longitudinal
StateSpace

x’ = Ax+Bu
 y = Cx+Du

Navion
Archangel 1.0

Lateral
StateSpace

In1

u delta ft/sec

alpha delta rad

theta delta rad

q delta rad/sec

Long output

Airspeed ,700 knots

Altimeter 06000 ft

Pitch8ball + 90 deg

Roll8ball + 180 deg

Yaw + 180 deg

gmeter 4 +9 g’s

Alpha 10 +40 deg

Beta +1 15 deg

Lrpm 10 110%

Rrpm 10 110 %

Vert speed + 6000 ft/min

Yaw Force +1

Roll Force +1

Pitch Force +1

Instruments & Force

p rad/sec

q rad/sec

r rad/sec

alpha rad

beta rad

u ft/sec

v ft/sec

w ft/sec

X ft

Y ft1

Z ft

Psi rad

Theta rad

Phi rad

Euler Transform

0

Constant1

0

Constant

|u|

Abs

Figure 16 Archangel State Space Model



52

viewer has the end of the runway conveniently located at the (0,0,0) location in the

virtual world. This makes setups for basic tests rapid and simple. The World up viewer

uses quaternions to keep track of the world angles, but the models do not yet so it is still

possible to stop the simulation if the model passes through straight up or straight down.

In addition to having a space to fly in, the model requires commanded input and

output to allow the pilot to observe theresponses.

Euler  Block

To allow a transfer function model to be flown , a Euler S-function block was

created to give position and orientation to the simple model which supplies rate

information. The Euler transform was separated from the 6 DOF simulator and converted

to a stand alone S-functions. The block takes in as part of the parameter set up the initial

position, orientation and velocity. The block starts using the initial position and

orientation, then takes in angle rates in the body coordinates and integrates them to get a

change in angle then transforms the body angles to world axis to orient the aircraft. The

velocities are transformed from the body axis to the wind axis through the angles alpha

and beta. The transform from body axis to wind axis is the transpose of the transform

from wind axis to body axis used in the 6 DOF model. The alpha and beta inputs allow

the model to take in angle of attack and sideslip angles from a state space model and have

the aircraft oriented correctly. The wind axis velocity components are transformed

through the Euler angles to the world axis. Finally the wind axis velocity components in

world coordinates are integrated to get a change in position in the world coordinate axis.

To test the block, the velocity and angle rates were connected to constant value

blocks in Simulink and integrated for several seconds. Once the proper dynamics were



53

observed, the Euler block was flown  using the stick and no other dynamics to confirm

the correct responses to the commanded input rates.

Trim Attitude and Speed
Since the model is linear and actual aircraft are highly nonlinear, the model is

valid only for small perturbations from the initial trim  conditions. It is difficult to see

when the model has departed from the conditions where the model is valid. Since the

same model is available in the three levels of complexity a side by side comparison of the

models is possible.

Feel

Transfer function and state space models are perfect for setting up and

determining the feel system dynamics. Models with known dynamics can be quickly

created to test various states fed back to the feel system to determine if feeding back the

state has positive, negative, or no effects on the handling qualities. The effects of the feel

system itself can be modeled and tested by using a simple but known transfer function to

determine the effects of the dynamics of the feel system. For example if the Nz/dE (g

forces to elevator deflection) transfer function is known, the pitch feel system can use the

output to send to the stick force.

6-DOF Non linear
Non-linear simulations require no modifications to the auto-coding process. The

S-function containing the non-linear equations of motion are included in the Simulink

model and connected to the aerodynamic, gear, and thrust model. The source code is

placed in the Matlab search path to allow the code to be included in the final program.
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The 6 degree of freedom (3 translational and 3 rotational degrees) non-linear rigid

body model  created for PhEagle II started as a Fortran program demonstrating a very

basic nonlinear simulation. The code was converted to a Matlab program called

Fundamentals of Aircraft Simulation And Nonlinear Dynamics (FASAND) then

debugged before conversion  to a Simulink S-function. FASAND is used in the

simulation lab to demonstrate the use of batch simulation and coding of the equations of

motion. Matlab code is very similar to c code so very little change was required to

convert to a C MEX S-function. The nonlinear S-function block allows the PhEagle II to

model bare airframe dynamics as well as closed loop control systems for aircraft.

The original model made two assumptions that produced dynamics that were not

satisfactory. First the model originally assumed a trim  condition were the thrust equals

the drag and the rotational moments are all balanced in steady state. This was a gross

simplification that resulted in an unstable long period (phugoid) mode. Using the

assumption simplified the development of the equations of motion since a trimmer  did

not need to be run before each simulation.  The simulation was modified to have the base

drag for the condition input through the SAD file and the thrust is set to a constant value

equaling the trim drag from the SAD file. The drag changes with changes in velocity

while the thrust remains constant. The model still assumes balanced moments as initial

conditions. Future changes to the model will necessitate determining the trim  (steady

state) condition to start the model. This can be done manually by varying the parameters

until the state desired is achieved or can be automated by the creation and use of a

trimmer  (a program to alternately vary a control then integrate the model a few time

steps until the steady state condition desired is achieved). The model required manual

trimming of the altitude, speed and density from the published values in [Ref. 33]. The
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Equation 7 Wind to β
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original published values were sea level, 176.4 ft/sec, and 0.0023769 slugs/ft^3. The final

values established for trimming the model are: 2.153 ft, 175.215 ft/sec , and 0.00237254

slugs/ft^3. The atmosphere was trimmed rather than the controls as the model is assumed

to have the controls trimmed for the condition. Before the trim of the model was refined

the initial conditions perturbed the model enough to excite the phugoid mode at the start

of a simulation. For a man in the loop simulation the small perturbation was not

distinguishable, however the motion was significant in batch simulations during

validation of the model.

The second change from the most basic model is to correct for the assumption that

the aircraft body axis is the same as the airpath axis (the difference between the direction

the aircraft is pointed and the direction it is actually going). Originally  the model was to

only map the lift and drag forces to the body axis [Ref. 32]. After referencing the PhEagle

I c++ code, the PhEagle II S-function included the side forces [Fy] to the coordinate

transform. The transform was done in two stages from airpath axis through the angle beta

along the airpath z axis (equation 7.). Then through the angle alpha along the beta y axis

to the aircraft body axis (equation 8.). The

transform were multiplied together then

multiplied by the force vector to obtain the

final transform matrix (equation 9).  The
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difference between the two axes are the angle of attack (alpha) and the side slip angle

(beta). In actual flight the airpath and aircraft body axes rarely coincide. The effects of

the difference in angles adds to the overall drag as some of the lift is mapped to the drag

and some of the original drag is mapped to the down force [+Fz] of the aircraft and

therefore affects the natural frequency, and damping, of the longitudinal and lateral long

period oscillations. The simulator originally did not re-map the forces calculated in

airpath axis to the aircraft body axis. The re-mapping of the  forces changed the dynamics

of the model so that there was much less climb associated with a step input of negative

(up command) elevator. The re-mapping of the forces also affected the natural frequency

and damping in the long period [phugoid] mode. Re-mapping added damping to the

system and decreased the natural frequency. Figure 17 shows the changes in ζ, ωn and θ

for the mapping of the lift force into the drag force.
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Figure 17 Navion Long Period Longitudinal Dynamics
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The model assumes a trim alpha angle and balanced initial moments. The

program will require changes to include the trim alpha and initial moments to determine

the trim  elevator position.

The point mass model can model-fixed wing aircraft, spacecraft, and basic

dynamics of rotorcraft (without the rotor dynamics). The atmosphere model extends high

enough to allow aircraft that require reaction controls to be tested.

The input for the model is a ASCII text file in the format of the Standard Aircraft

Data SAD file. The filename is set by double clicking on the 6-DOF block and changing

the name in the parameter block for the function. The block was initially tested outputting

only the position and orientation states. After working with the model it was found that it

is desirable to output all the states available and to separate some of the inputs to separate

functions (Figure 18.). The density of the atmosphere was sent in as a input from a

separate function to allow more simple or more complex models of the atmosphere to be

added. Additional forces and moment inputs (Figure 18) have been added to allow for

more complex components to be added such as landing gear. The additional force and

moment inputs allow for turbulence, transonic and supersonic aerodynamics, non rigid

body dynamics as well as rotorcraft blade element dynamics to be included.



58

There is a built-in Simulink function which passes the time step to the S-function

code such that the Simulink environment sets the time step for simulation.  The S-

function will take and use any size time step for the numerical integrators that

environment passes in. Passing the time increment into the existing code, the new code is

not limited to a hard-coded dt and can run at whatever time step the rest of the model is

using. The model uses a course time step of 0.0417 sec (24 HZ) for real time simulation

and as fine as required for batch simulations. The Mathworks supplies integrators that can

be used by code in the S-functions, but for many users that have existing math models,

Simulink provides the ability to wrap the S-function IO around the existing code. The

equations of motion can then be imported to the Simulink environment as a block to wrap

a control system around.  Mathworks supplies a make script to include all of its libraries
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that are required to complete the programs.  The script adds the code, then compiles

completed code into a 32 bit dynamic link library (dll) [win95] or the equivalent in Unix.
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6 DOF Model Verification

The 6 DOF model used a L-

17 Navion piston engine, propeller

driven light Air Force liason aircraft

shown in Figure 19. for validation.

The aircraft was used to demonstrate

stability analysis calculations  in [Ref. 33] Using the state space model, as well as input

from undergraduate students testing the FASAND program, several errors were found in

the first edition of the text book that were providing dynamics that were inconsistent with

an aircraft of the type modeled in the text. The roll control derivative was off by two

orders of magnitude causing a roll time constant of 17 seconds rather than 0.15 sec. The

yaw-roll (Clδr) coupling was off by an order of magnitude causing a severe dutch roll.

The sign for aileron control (Clδa) was reversed. The results produced reversed roll

responses in the state space and 6 DOF models. Since the FASAND code runs as a batch

at close to actual time using fairly large time steps the initial verification consisted of

checking various dynamics by hand calculating time constants and damping ratios using

the published characteristics.

To have a complete baseline set of dynamics, the stability derivatives were

entered into the program Archangel. The program dimensionalizes the non-dimensional

derivatives, given a set of initial conditions, then combines and arranges the derivatives

into two state space systems for the longitudinal and lateral directions. A second state

space was set up using dervatives published in [Ref. 33]. The two state spaces matched in

most places however there were a couple of places that the dynamics differed. The State

spaces were used to create flying models for the PhEagle lab and to set up as Linearly

Figure 19 L-17 Navion
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Time Invariant (LTI) systems in Matlab to obtain time histories to compare to each other

and the 6DOF simulation. The LTI systems used a unit step input while the 6 DOF model

used a 2 degree step input to scale the response so that they could be compared on a time

history. The perturbation was kept small in the 6 DOF in an attempt to keep the dynamics

as close to the linearized system as possible, however the stepsize could still be large

enough to introduce the nonlinear effects for the non-linear model. Note that in all the

graphs the 6 DOF response is the dotted line. The first axis compared was the pitch in the

short period. Figure 20. shows the two state space models have very similar short period

wn and damping while the 6 DOF is less damped and higher frequency. The Long period

dynamics show similar differences between the state space models and the 6 DOF. The

wn is higher and less damped than the state space but the time constants are the same.

The pitch angle response (figure 21.) is one where the state space models differed. The

natural frequency of the 6 DOF model falls between the two state space models. The 6

DOF model shown in Figure 18 has the correction for the forces mapped from the wind

axis to the body axis. The effect of the mapping is to decrease the natural frequency and

increase the damping in the long period dynamics. Figure 21 shows the decrease in

natural frequency from the Archangel model, and the decrease in damping compared to
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both models. The two state space models in the lateral axis provided the same response

for a step input. The 6 DOF in rudder to beta (figure 22) exhibits a similar difference

from the state space models as the pitch response. Figure 20. shows that the 6 DOF model

is less damped and a higher frequency than the state space models. The mapping of the

forces reduce the drag for a sideslip condition by mapping the drag to a drag and a pure

side force. The result is a higher frequency than the model without the mapping and less

damping than the unmapped model. The Roll rate to aileron (figure 22) response matched

the state space the closest. The roll angle response also exhibits the same difference in

natural frequency and reduced damping compared to the state space model. Both models

show the same under damping and the washout of the angle due to the dihedral effect in

the wings. Figure 23. shows the characteristic washout of the roll angle due to the

dihedral effect. Without flight test data further refinement of the model is not possible.

The model has demonstrated the correct behavior that an conventional airplane would

display to the control inputs, with the time constants approximately correct and damping

close to a linear model. The final verification used the World up viewer to display an

external view of the model to view the coupled responses. The same step input was
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applied to the model and the graphical output was observed. For pitch both the short

period and phugoid were observed in the correct magnitudes. A step input to the roll

control resulted in adverse yaw (yaw away from the roll input) and finished with a roll

angle in the direction of the control input. The roll angle washed out and a spiral

divergence was initiated. A pulse to the rudder displayed the charateristic rotation of the

tail of the airplane in the dutch roll mode with a entry into the spiral mode from the

induced roll angle once the dutch roll died out. Tools described in the CIFER section

provide the information that will allow a complete verification of the model with an

actual aircraft.
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Standard Atmosphere
A C MEX S-function block was created (Figure 24) to replace the hardwired

atmosphere function. The original function estimated the atmosphere up to the first

isothermal layer. This

limited the function

to altitudes less than

36,090 ft the cruising

altitude of

commercial airliners.

The S-function

standard atmosphere

function calculates

the pressure, temperature, density, and speed of sound up to 47 kilometers or about

155,000 ft. using altitude as an input. Using the altitude output from the 6-DOF function

required including a unit delay block in the Simulink model to avoid a algebraic loop.

The delay and initial condition must be set to match the models starting altitude and time

step. The C MEX S-function does the calculations using SI units, the conversion to

4
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English engineering units is done in Simulink as shown in Figure 24. The block takes in

as parameters the sea level temperature and pressure. This allows the user to set up non-

standard conditions to match flight test data that has not been normalized. The input is in

Kelvin and Newtons/meter^2.

Input
Creating the 6 DOF model as a S-function allowed the model to use any of the

canned  inputs available from Simulink as well as the new PhEagle stick input block.

The ability to use the standard Simulink/Matlab functions allowed the analysis of the

aircraft to be done all using a single CAD/CAE package.  Access to a workstation allows

CONDUIT to be used to analyze a bare airframe or optimize a control system. A paper

pilot would be a matter of creating Simulink subsystems or S-functions to model piloted

inputs.

Output
The output has been expanded from basic text screen output and basic graphics to

the Simulink scope, to workspace  function, to file  as well as numerical output and

advanced graphics of the World up viewer and PhEagle I out the window graphics. The

ability to produce ASCII file output of the control inputs and airframe dynamics allow the

use of the NASA program CIFER for simulation model verification. A function has been

created to convert ASCII files to Fortran unformatted binary files. CIFER requires a

Fortran binary file of the input and output for each channel desired for identification.

Feel
With all of the states being written out, actual aircraft control feel as well as

artificial state feedback feel can be incorporated with the 6 DOF model. By making the

feel proportional to the dynamic pressure and Nz the actual feel of an aircraft can be
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modeled. By feeding back any of the other states the effect on handling qualities can be

investigated.
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Control System - Closed Loop
Using Simulink/Real-time-workshop PhEagle II allows engineers the capability to

rapidly create simulations of closed loop flight control systems. These can be systems

closed around state space or full nonlinear aircraft models. The ability to model closed

loop control systems allows students and professional engineers to fly the aircraft/flight

control system to confirm analysis of the control laws. Classic linear analysis only looks

at one or two axis at a time. Flying the model tells the engineer right away if there is

something that requires more detailed analysis or optimization. Flying the closed loop

full state model of the Kaman SH-2f gave a researcher insight to behaviors in the aircraft

that were part of the physical system that could not be compensated with the flight

control system.

User manual - Intranet/Internet
Using a combination of intranet and internet web pages the documentation for the

simulation laboratory is maintained on the host computer with the basic instructions

being the home page of the browser on the PhEagle computer. The rest of the information

publicly available will be kept on the locus web server: http://locus.aero.calpoly.edu/sim

Source code for the PhEagle II will be kept on the PhEagle computer and the FASAND

source code on the locus server sim page. The www web page describes the facilities and

software capabilities of the PhEagle system and the simulation and controls laboratory.

Verification of Concept
To validate the software aspects of the pictures to code concept, several models

were modified to allow inceptor input and graphics output using NASA Ames RIPTIDE

[Real-time Interactive Prototype Technology Integration/Development Environment]

rapid simulation facility. The facility at the time consisted of a SGI ONYX with 4
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R10000 processors an inceptor Flybox  and high resolution texture mapped graphics

database which includes a basic heads up display (HUD) system. The RIPTIDE system

was verified using a verified GENHEL blade element model of a UH-60 helicopter.

Three models were used to conduct the test which was done in four stages: The

Flybox and graphics were tested using a simple transfer function model to test the Euler

motion and orientation block. A simple one axis state space model of the X-29A in pitch

was modified with transfer functions for yaw and roll and given motion with the Euler

function. A complex state space model of a Kaman SH-2f with a model following flight

control system was modified to use the Flybox and graphics. And the 6 DOF nonlinear

model of a Navion liaison aircraft was connected to the Flybox and graphics and flown.

CONDUIT
The feedback and feedforward gains for the X-29A and the SH-2F were obtained

using NASA Ames CONDUIT (CONtrol Designers Unified InTerface) software.

CONDUIT  is a collection of aircraft handling qualities evaluation [Ref. 18] and

optimization tools. CONDUIT works to find a optimal solution satisfying multiple

handling qualities metrics (specs) and all the potentially competing requirements. The

researchers created the control system architecture and applied the handling qualities spec

to constrain the design problem to reach a solution. Altering the control system gains to

satisfy all the imposed HQ specs at the same time improved handling qualities. Usually

only a few handling qualities specs can be satisfied for any design because of the time

involved in checking the spec for a new gain configuration.

The X-29A and the SH-2f models used verified state space models from NASA

Dryden and Kaman corporation as part of NASA/Cal Poly research projects into control

system optimization research. The researchers started with the control systems used for
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the actual aircraft as a baseline then modified the architecture to improve the handling

qualities optimizing the gains using CONDUIT after each modification. Dozens of

configurations were tested before the final architecture was achieved.

The pictures to code model of the SH-2f was used by the researcher to confirm

the control behavior and to observe the degradation of the control laws as the trim

condition moved away from the baseline used to generate the control system gains.

X-29A - Pitch axis only, State
Space, Fixed Wing Model With
Feedback

The first aircraft model used

was a thesis project completed at the

NASA Ames research center by Mark

Morel. The aircraft model is a

verified pitch axis only state space

model of the X-29A (figure 25.)

provided by NASA Dryden research

center with a quickness  pre-filter added to the original control system to improve the

handling qualities. After adding the quickness filter, the system gains were optimized

using the CONDUIT software. The trim speed of the  model is 726 feet/second.

Modifications Required to Fly
The Simulink model of the X-29a contains outputs for: Forward velocity (body

axis), alpha (angle of attack), q (pitch rate), theta (pitch angle world coordinates), Nz

(g s), stick actuator rate, flap actuator rate, and canard actuator rate. The outputs from the

state space are all perturbations from a steady state. An example is that even though the

trim speed of the  model is 726 feet/second, if the speed output from the state space is fed

Figure 25 NASA X-29A
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directly to the Euler block the output speed is zero until the system in perturbed then the

speed just oscillates until trim is achieved again which is 0 ft/sec. The output speed was

modified so that the output from the model was summed with a constant input block in

(figure 26.) the flight  model. The pitch rate was output from the model so it was fed

straight into the Euler  block.

The model was pitch axis only so a yaw position attitude hold and roll rate

command attitude hold was added using simple transfer functions.

The input was from a Flybox inceptor with the input passed through shared

memory to the flight model. The graphics was set up on its own processor with the input

from shared memory from the flight model. The connection of the inceptor to the flight

model then to the graphics output was created through the Simulink diagram and the

whole model was held to real time with a timing S-function block included in the flight

model.

Observations of Flight Model
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Flying the X-29a provided the least amount of insight to the changes in control

laws and handling qualities. Developing a procedure for creating the executable code and

setting the timing block provided the most information from the model. The timing block

was written at NASA Ames and the first version required the user to estimate the amount

of time that needed to be delayed to reach the end of the time frame. The integration was

carried out on its own processor and each time step required about a millisecond to

compute while the dt for the integration was 16 milliseconds so the timing block had to

delay the integration s for 15 milliseconds. The first few flights had the delay incorrect

resulting in the model flying at a frame rate much faster than real time.

Once the timing was worked out there remains some questions about the flight

model. The baseline model was reported to have tendencies toward sluggish responses

which was observed flying the base gains. The final configuration with a quickness pre-

filter added and all of the control gains optimized using CONDUIT was much more

responsive in pitch with good damping. The model showed some tendency toward pilot

induced oscillations (PIO) in the roll direction as the roll was set up to be a transfer
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function and the dynamics were very simple. It is believed that the roll channel included

excessive time delay resulting in the reported PIO. Several engineers tested the model

and observed similar tendencies in the roll channel.

Kaman SH-2 - 3 Axis Non-Linear State Space Helicopter Model with Feedback
A verified full state,

state space model of the

Kaman SH-2f helicopter

(Figure 27.) was obtained

from a NASA/Cal Poly

research project. The model

was created using a model

following architecture with

the trim conditions at 35

knots in transitional forward flight. A model following control system uses dynamics

identified using programs like NASA s CIFER. Model following control systems use a

low order(1st or 2nd order) fit of the high order dynamics identified. The low order

transfer functions are inverted and combined with feedbacks and cross feeds to  remove

undesired cross coupling of the controls and to wash out the dynamics of the original

plant. A model that the control system is designed to follow is placed in the forward path.

Part of the original research task was to attempt to satisfy as many of the helicopter

handling qualities specifications [Ref. 37] as possible using the control architecture and

CONDUIT software to fine tune the control gains.

Figure 27 Kaman SH2-F
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Modifications Required to Fly
The model of the SH-2f was a 6 DOF state space model of the helicopter. The

model (Figure 28) required fewer modification to fly than the X-29a as there were

outputs for airspeed as well as all the linear and rotational rates and positions. The Flybox

input was included in the model and wired  up to the inputs and the graphics and HUD

were wired  to the outputs of the model the timing block was included and set.

Observations of Flight Model
The procedure for setting the timing of the model to real time was still not

complete during the testing of the SH-2f. The timing error was found after a engineer

familiar with the dynamics of the helicopter noticed that the model was still flying much

faster than the actual helicopter would. Despite the error in timing with the model a great

deal was learned about the flying qualities and dynamics of the flight and control models.

The control gains were tested to confirm decoupling of the axis then, doublets

were performed to confirm damping ratio. No force feedback was available on the

version of RIPTIDE used for the evaluation so actual handling qualities information was

limited. No actual piloted evaluations of the model were conducted. All flights were
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made by handling qualities engineers. However, much insight to the nature of a linearized

model and limitations of the control system and airframe were obtained from the

exercise.

Since the SH-2f model was a state space model with the trim condition in forward

flight, interesting things happened when the helicopter was flown too far from the trim

conditions. Since the dynamics are linearized, slowing to hover speeds did not model the

correct thrust available from the rotor as well as not modeling ground effects, so the

model could barely maintain a hover. The control laws were optimized for forward flight

so the rate command attitude hold made hover tasks a challenge. The decoupling of the

axis did reduce pilot workload considerably even with a less than optimal command

system for the task.

Control Laws and Trim
In forward flight as the model exceeded trim conditions and flew faster, the

control laws attempted to maintain a zero sideslip angle where the actual helicopter trims

to a greater and greater sideslip angle. When the tail rotor ran out of control power to

maintain the desired sideslip the model simply produced a uncorrectable yaw which

rapidly increased to the limit of the integrator and the simulation had to be aborted.

Insight into Control Laws
Using automatic tools like CONDUIT that tune the control gains from the

originals require checking the various responses to control inputs to verify that something

unexpected did not occur during the optimization process. The ability to rapidly create a

flyable model allows spot checks on the responses of the model. Substituting the full

nonlinear model for the linearized plant allow the control laws to be tested in a complex

environment close to the final aircraft.
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North American Aviation Navion — Fixed Wing 6-DOF Non-linear
The 6 DOF nonlinear equation of motion model was tested using a SAD file

created using the stability derivatives of a North American Aviation Navion in the

appendix of [Ref 33.]. The process of creating the model and debugging the program

code uncovered several sign and magnitude errors in the derivatives and the state space

model of the Navion. The errors in the stability derivatives illustrates the requirement for

verified flight data to be used to confirm the validity of a flight model. Several other

modeling deficiencies were observed during testing of the model. The model

demonstrates the flexibility of allowing external forces to be input to the system. There is

no engine built in to the model. To add the ability to change the thrust in the model a

force of —200 lbf is scaled and summed by the simulator cab throttle so that at full throttle

there is no added external force added and in the idle position there is a —200 lbf input to

the model to counteract the approximately 200 lbf of thrust generate by the model at trim.

This provided a throttlable engine to a model that originaly didn t include one.

Model Assumptions
The model used for the tests used stability derivatives for a single trim point.

Since the aerodynamic forces are integrated for each time step rather than linearized as

the state space model elements are, the model is accurate much farther from the trim

point than the state space model but still has limitations for departing too far from the

original trim condition.

The model originally assumed that thrust and drag are balanced for the trim

condition. For trim flight the assumption is true, however after testing the model the

assumption for thrust equaling drag proved to provide inaccurate dynamics. The model

was always divergent in the phugoid mode while the actual aircraft is damped in phugoid
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mode. The aircraft was divergent despite commands to the inceptor to correct the

oscillations. After the base drag was included and the initial thrust was set to a constant

value equal the opposite of the base drag the model demonstrated a damped long period

with a frequency just slightly higher than the value published for the aircraft.

There is no provision to model a stall or limit alpha on the main wing or the tail,

so putting a step input with too great a control deflection produces poor results after a

very short interval as the alpha limits of the wing are exceeded.

Portability
The c code for the 6 DOF EOM model was created and debugged using a PC then

ported to an IRIX operating system Silicon Graphics Onyx. Since the c code uses only

generic math functions only minimal changes were required to the code to compile on the

Onyx. The math model itself required no changes. The differences were in the S-function

interface and the changes were minimal. All of the modeling functions for PhEagle II

were ported to the SGI to confirm portability. The IO functions were not ported as the c

code is specific to the IO cards located in the PC s.

SAD Files
The aircraft data used in the S-functions are standard aircraft data (SAD) files

written in ASCII format, so the input files are portable between the PC s and

workstations. The SAD files contain physical characteristics describing an aircraft along

with non-dimensional stability derivatives in a standard order. In addition to providing

information to the simulator, the SAD file can be used to create linearized transfer

functions and a state space model of the aircraft.
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Test Setup for Feedback
Two models for the PhEagle were set up to test the force feedback system and the

S-function code. The first uses the 6-DOF model with Nz and p fed back to the stick. The

second model has no dynamics in the model so feed back can be set up and tested

independently of the flight model.

Portability of Simulations - Unix to PC
The Simulink model code is completely portable between a PC and a Unix

workstation and the X-29a and the 6-DOF have been run on both. The SH-2f has been

checked to confirm enough processing speed to run in real time on a PC.

Analysis Tools
Simulink is a graphical front end that runs in the Matlab environment. Several

blocks are included to provide an interface to the Matlab workspace. The ability to send

data from a simulation to the Matlab workspace allows immediate analysis of a

simulation or control system.

Matlab Analysis Tools
The data that can be passed to the Matlab includes time histories as well as

frequency domain data. This allows plots of multiple configurations as well as

comparisons between a model and data collected from the actual aircraft.

CIFER
The time domain provides a reasonable first cut confirmation of a math model.

Time domain analysis is performed by perturbing the system (with a step or impulse)

then collecting the response of the airframe as a plot of the magnitude of the motion. To

validate the model over the complete range of input and output frequencies a frequency

domain  analysis is required. For the responses to control inputs, aircraft models can be
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simplified to resemble a spring-damper system. Analysis of spring damper systems are

performed using frequency domain [bode] plots (figure 29). NASA Ames CIFER

software provides the tools

necessary to process time

histories into frequency domain

data.

To get a bode plot the

motion of the control input and

the airframes response to the

control is required. The

maneuver that is used in
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frequency analysis is a oscillation of the controls starting at a low frequency then

progressing to as high a frequency as the pilot can attain without exceeding strict safety

limits. The maneuver is called a CHIRP. Note that in figure 30 the input the magnitude

stays constant while in the output the magnitude drops off. This is characteristic for a

damped second order system. On the right of the figure is the Frequency plot (bode plot)

processed by CIFER. Compare the bode plot from CIFER to the bode plot in Figure 29.

Note that in the Figure 29 the magnitude line breaks down and then stays slanted. In the

CIFER plot the magnitude line breaks back up. This is incorrect. However notice the

third coherence plot. Coherence is a measure of the linearity of the system, the accuracy

of the output data at the corresponding frequency. The same frequency where the

coherence plot breaks downward is the frequency that the magnitude breaks upward. The

coherence plot tells the user that where the magnitude breaks upward the data is no

longer valid. CIFER is also able to fit a low order [first or second order] transfer function

to the bode plot. The original transfer function was obtained by doing a second order fit

to the frequency data within the frequency range where the coherence was at or close to

one. Given a complete set of control inputs and outputs, CIFER can create a full set of

dimensional stability derivatives and state space model.

To demonstrate the procedure for creating, converting moving and processing

CHIRP data using CIFER a Simulink model was created to produce the time history files

and several programs were created to save and convert the output data to a format CIFER

uses for input.

CIFER requires a binary file with a separate file for each control and response.

Each file contains a column of numbers representing the position of the control or the

acceleration or angular rate of the airframe. To demonstrate the procedure for collecting
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the data and converting to the proper format a Simulink model [chirp.mdl] (Figure 31)

was created to generate a CHIRP and collect the input and output data. The chirp went

from 0.2 to 12 RAD/sec and was sampled over 60 seconds at a sample rate of 0.02

seconds using a Dormand-Prince numerical integration technique. The data were sent to

the Matlab workspace and a Matlab .m file [maketext.m] was created to save the data to

ASCII files before.txt and after.txt. A transfer function was used to model the dynamics

of a small aircraft. The model used a natural frequency of 6.0272 RAD/sec and a

damping ratio of 0.68852. The natural frequency and damping ratio were derived from a

small general aviation aircraft, a Cessna 172 [Ref. 36]. Two Fortran programs [atobin.f,

atobout.f] were created to convert the ASCII data files to unformatted Fortran binary

format files which CIFER uses for input. The output files [before.bin, after.bin] were

copied to the CIFER directory structure and processed in CIFER to bode plots then to a

low order equivalent system transfer function.

The CIFER software and html tutorial reside on a Silicon Graphics Indigo

workstation [Daniel] located in the Cal Poly controls lab. The web page contains

everything required to create and process a chirp to a bode plot and low order equivalent

simOut

dynamics to wrkSpace

36.3271

s  +8.2998s+36.32712

Transfer Fcn

Out Airframe

In Stick

inputCmd

Cmd to wrkSpace

Chirp Signal

Figure 31 CIFER Tutoreial Sample Tranfer Function Model
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transfer function. The ability to verify that a math model is valid with documentation to

show where the model is valid is crucial to publishing the results obtained using the Cal

Poly simulation lab. Access  to tools industry and research is using is vital to the training

of future engineers.

Stability information for a fixed wing, standard configuration aircraft are well

known and can be predicted accurately. However rotorcraft and aircraft with unusual

configurations cannot always have the stability information predicted accurately, industry

and research identify the aircraft after construction using CIFER to refine the control

laws to conform with the actual behavior of the airframe. CIFER is also used to modify

and confirm simulation models with the actual aircraft.

Data Collection
The Cal Poly controls group created a flight test data acquisition system to collect

in-flight data from the University s Cessna 150 aircraft. The system is based on solid

state sensors and a portable laptop personal computer. The data are collected using a

PCMCIA analog to digital card using software written by graduate students. The states

that are currently available for measurement are: Barometric airspeed, barometric

altitude, outside air temperature, engine rpm, intake temperature, barometric vertical

velocity, aircraft attitude rates, aircraft linear accelerations, there are provisions for gps

input as well as control position. A means to mount the control position potentiometers

on the Cal; Poly Cessna 150 that is acceptable to the Federal Aviation Administration has

not been determined yet. Using the data collection system with CIFER to verify and

modify the 6-DOF flight model, an accurate model can be created for virtually any

aircraft.
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Conclusions

Converting existing software code to Simulink S-functions has provided a

flexible, powerful, easy to use, modular simulation laboratory for the Cal Poly controls

group. A basic capability has been provided upon which to build a complete

computational flight modeling laboratory.

Using systematic testing of the software, a procedure was established to create

and verify future simulations using Simulink, RTW and CIFER.  Taking existing

simulation code and creating Simulink blocks provides the fastest way to create

simulations.  Creating Simulink driver blocks for the hardware-in-the-loop inceptor and

instrument systems for Cal Poly’s fixed base simulator allows rapid creation of basic

models, or rapid set up of complex configurations. Once the basic model functions

correctly, various configurations can be rapidly created by substituting more complex

input/output blocks and more complex feedback architectures as well as creating more

complete instrument setups from the basic model. The engineer creates the block

diagrams in Simulink representing the FBW flight control system and bare-airframe

model, then adds the stick and instrument blocks.  RTW auto-codes and compiles the C-

code representing the block diagrams.  The compiled auto-code is ready for immediate

pilot-in-the-loop and or hardware in the loop simulation.  This system enables rapid

design, analysis, and testing of aircraft and components for various levels of engineering

students. Innovative and new aircraft can be rapidly loaded and flown in a variety of

configurations.  High level accurate models of fly by wire flight control systems can be

created and tested on a desktop.
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Lessons Learned

Building a simulation system requires more than a simulation cab and some

software. To be useful the system must be easy to setup and use, and be verifiable and

maintainable by people other than the original programmer. To create better simulations,

changes to the code are continually required and flexibility in the combinations of

hardware and software is a must.

Parallel Capabilities
Parallel computing is the strategy used to gain large increases in computing

power. The nature of simulation of aircraft provides tasks that can be easily separated and

run in parallel. The components required to create a basic parallel computing system

using personal computers have existed for a while. Custom software combined with the

Simulink/RTW programs and a Ethernet network running TCP/IP protocol provide the

means to rapidly set up and run a parallel computing system.

Open Code - Maintainability
The key to software that is maintainable is code that is common and well

documented. C is a programming language that is familiar and powerful without being

complex. Students exposed to Fortran have little difficulty maintaining c code. Since the

real time workshop system requires the original source code to auto code the Simulink

diagram, despite the fact that Simulink uses dynamically linked libraries to execute the

program, the source is available to researchers requiring alterations of the functions. The

documentation is available in four places: help files supplied as .m functions with the S-

functions, a hardcopy kept with the PhEagle hardware, the comments in the source code

and a html document on Spiegle.
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Future Work

PhEagle II provides basic flexible simulation capabilities upon which to build a

complete simulation laboratory. More advanced functions can be added to the basic 6-

DOF model to provide more accurate flight dynamics over a greater range of conditions.

Providing external force and moment inputs to the basic 6-DOF rigid body model allow

most advanced dynamics to be added to the existing model by creating new Simulink

subsystems or S-functions. Additions to the system can include but are not limited to

(some functions require a more complex base model than the existing 6 DOF function):

Advanced Aerodynamics

Ground effects

Transonic

Supersonic

Hypersonic

Helicopter Rotor Dynamics

Momentum Theory

Blade Element

Non-Rigid Structures
Non-rigid structure dynamics can be added using a S-function sending the forces

through the force and moment inputs supplied in the basic 6-DOF rigid body model.

Propulsions

Multiple-Engine Model

Non-Centerline Propulsion
Thrust vectoring
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Complex Modeling of Various Systems

Landing Gear

Additional Hardware in the Loop
Adding software to provide a pulse width modulation command output to provide

servo motor command capability.

Coordinate Transform to Place Eyepoint in Cockpit
The current model has the eyepoint of the pilot at the center of gravity. A

translation will be required to move the eyepoint to the correct position for the pilot in

any specific aircraft. This is a simple coordinate tranform moving the viewpoint in the

body axis system.

Simulink Blocks

Real-time Timing Block for use on a PC
Simulink runs in batch mode integrating the equations of motion as fast as the

processor will allow. Including the stick, instrument or hardware blocks allows the

simulation to get data from outside the Simulink environment. Including a timing block

in the Simulink diagram to delay the next iteration of the differential equations to the

actual amount of time as the dt used for the numerical integration s provides actual real

time data input to a simulation without having to autocode the simulation. The process of

auto coding takes about 10 minutes for a average size simulation diagram. The timing

block would provide a means to do setup of the feel system and other IO hardware

through the regular Simulink environment.

Flybox
Cal Poly has a BG systems Flybox serial port inceptor. The c source code is

available providing the opportunity to add desktop input to a Silicon Graphics
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workstation or PC for function testing without having a test pilot or having to jump in and

out of the sim cab.

Graphics
PhEagle I has advanced graphics with several channels available through a

TCP/IP link with the simulation computer. The TCP/IP protocol for the information was

not complete at the time when the PhEagle II project was initiated, however all that is

required to add the graphics is to include a TCP/IP block in the Simulink block

configured to output to states required as inputs to the graphics computer.
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Appendix

Euler Help File

%***** euler.m

% Given the transfer function 1/s+10 solving the differential equation,

% this routine returns the values at the next time ste

% In this version we use the euler method

% to integrate.

%***** integrate to get current state

% dt=time increment

% Theta = pitch angle

% deltaE = elevator angle

DegToRad = 0.01745329

tFinal = 1;

dt=0.01;

OldTheta = 0;

deltaE =25*DegToRad;

t = 0;

index=1;

while t <= tFinal;

 deltaTheta(index)=(-10*OldTheta*dt)+10*deltaE*dt;

 %***** Update the derivatives for the integrations

 OldTheta=OldTheta+deltaTheta(index);

 theta(index)=OldTheta;

 t = t + dt;

 time(index)=t;

 index=index+1;

end; %Outer loop

plot(time,theta),

xlabel(’Time - sec’)

ylabel(’theta’)

grid
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RK4 (Runge-Kutta) Help file

%script RK4()

%RK4.m

% Given the transfer function 0.0165/(s^2+0.186s+0.0165) solving the differential

% equation, this routine returns the values at the next time step

% In this version we use the fourth-order Runge-Kutta method

% to integrate.

%

% integrate to get current state

% dt=time increment

% Theta = pitch angle

% deltaE = elevator angle

%   This function is free to copy and distribute for educational purposes as long

%   as this notice is included. No guarantee expressed or otherwise is made of the

%   accuracy of the code.

%   Eric Vinande/Doug Hiranaka 4-98

%   Copyright (c) 1998 by Cal Poly San Luis Obispo

hold on;

%clear;

DegToRad = 0.01745329;

%***** begin inputs *****

K = 1.0;

wn = 0.12845;

zeta = 0.5;

deltaE = 1.0;

dt = 0.5;

tFinal = 100;

%***** end of inputs *****

%***** coefficients for Runge-Kutta method *****

a = 2.0*zeta*wn;

b = wn^2.0;

c = wn^2.0;

Theta(1)=0;

z(1)=0;

t = dt;

Time(1)=0;

index=2;

while t <= tFinal;

    k1=dt*z(index-1);

    l1=dt*(-a*(z(index-1))-b*(Theta(index-1))+K*c*deltaE);

    k2=dt*(z(index-1)+l1/2.0);

    l2=dt*(-a*(z(index-1)+l1/2.0)-b*(Theta(index-1)+k1/2.0)+K*c*deltaE);

    k3=dt*(z(index-1)+l2/2.0);

    l3=dt*(-a*(z(index-1)+l2/2.0)-b*(Theta(index-1)+k2/2.0)+K*c*deltaE);
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    k4=dt*(z(index-1)+l3/2.0);

    l4=dt*(-a*(z(index-1)+l3/2.0)-b*(Theta(index-1)+k3/2.0)+K*c*deltaE);

    Theta(index) = Theta(index-1) + 1/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4);

 z(index)     = z(index-1)     + 1/6.0*(l1 + 2.0*l2 + 2.0*l3 + l4);

    t = t + dt;

    Time(index)=t;

 index=index+1;

end; %***** Outer loop *****

plot(Time,Theta,’r’);

xlabel(’Time - sec’);

ylabel(’Theta’);

grid on;
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RK4 (Runge-Kutta) c++ class — test function

// rk4.cpp

//

// This is a test program to integrate a second order tranfer function

// Given the transfer function 0.0165/(s^2+0.186s+0.0165) solving the

// differential equation, this function returns the values at the

// next time step

// In this version we use the fourth-order Runge-Kutta method

// to do the integration.

// 3/06/98 Eric Vinande - original function, Doug Hiranaka —

// modified the code

// to a c++ function

#include <stdio.h>

#include <math.h>

#include <dos.h>

#include <conio.h>

#include <stdlib.h>

void main()

{

//======================================================================

// function opens input file and reads the data from the file to the

// shape class

//======================================================================

FILE  *fout;

printf ("Starting the function\n");

//   fp = fopen("fcube.dat", "r");

// if (!fp){

// printf("can not open intput file\n");

// exit(1);

// }

// printf("input file open!\n");

// fscanf(fp,"%i %i ",&number_of_vertices,&number_of_lines); // Read #vert, #lines

// printf("%i %i \n",number_of_vertices,number_of_lines);

// printf("number of lines = %i\n",number_of_lines);

//======================================================================

// function does the actual integration to get the current state

//======================================================================

// variables

// dt=time increment

// Theta = pitch angle

// deltaE = elevator angle

// float DegToRad = 0.01745329;

float Theta[250], z[250], Time[250], K, wn, zeta;

//***** begin inputs

printf("\n\nEnter K (steady-state gain)\n");

scanf("%f",&K);
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// float K = 10.0;

printf("\nEnter wn [natural frequency (rad./sec.)]\n");

scanf("%f",&wn);

// float wn = 0.12845;

printf("\nEnter zeta (damping)\n");

scanf("%f",&zeta);

// float zeta = 0.724;

float deltaE = 1.0;

float dt = 0.5;

float tFinal = 100;

float  a, b, c;

float k1, l1, k2, l2, k3, l3, k4, l4;

//***** end of inputs

//***** coefficients for Runge-Kutta method

a = 2.0*zeta*wn;

b = wn*wn;

c = wn*wn;

Theta[1]=0;

z[1]=0;

float t = dt;

Time[1]=0;

int index=2;

while (t <= tFinal) {

 k1=dt*z[index-1];

 l1=dt*(-a*(z[index-1])-b*(Theta[index-1])+K*c*deltaE);

 k2=dt*(z[index-1]+l1/2.0);

 l2=dt*(-a*(z[index-1]+l1/2.0)-b*(Theta[index-1]+k1/2.0)+K*c*deltaE);

 k3=dt*(z[index-1]+l2/2.0);

 l3=dt*(-a*(z[index-1]+l2/2.0)-b*(Theta[index-1]+k2/2.0)+K*c*deltaE);

 k4=dt*(z[index-1]+l3/2.0);

 l4=dt*(-a*(z[index-1]+l3/2.0)-b*(Theta[index-1]+k3/2.0)+K*c*deltaE);

 Theta[index] = Theta[index-1] + 1/6.0*(k1 + 2.0*k2 + 2.0*k3 + k4);

 z[index]     = z[index-1]     + 1/6.0*(l1 + 2.0*l2 + 2.0*l3 + l4);

 Time[index]=t;

 t = t + dt;

 index++;

} // while loop

// output write to a file

fout = fopen("rk4out.m", "w");

if (!fout){

printf("can not open output file\n");

exit(1);

}

printf("output file open!\n");

fprintf(fout,"t=[ ");

for (int j=1; j<(index); j++)
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{

// write array to file

fprintf(fout,"%lf ",Time[j]);

if (feof (fout)) printf("End of file...\n");

fprintf(fout,"\n");

}

fprintf(fout,"] theta=[ ");

for (int l=1; l<(index); l++)

{

// write array to file

fprintf(fout,"%lf " ,Theta[l]);

if (feof (fout)) printf("End of file...\n");

fprintf(fout,"\n");

}

fprintf(fout,"]");

printf("Done writing to file!!!");

fclose(fout);

printf("number of lines = %i\n",j);

printf("Done writing to file. GAME OVER Have a nice day.\n");

} // end of main
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Snoopy 2nd order RK4 Class

//-------+---------+---------+---------+---------+---------+---------+-------

// Copyright (c) 1991-1992 Betz Associates. All rights reserved.

//

// File Name: AIRCRAFT.H

// Project:   Flights of Fantasy

// Creation:  August 2, 1992

// Author:    Mark Betz (MB)

//

// Machine:   IBM PC and Compatibles

// Change History

// ------ -------

//

//      Date            Rev. Author Purpose

//      ----            ----    ------      -------

//      8-2-1992        1.0     MB          initial development

//      8-29-1992       1.1b    MB          first beta

//      9-26-1992       1.1     MB          publication release

//      8-23-1995       2.0     mickRacky   second edition update

//   6-10-1998      D.Hiranaka  modified with rk4 variables

//

// Description

// -----------

//      This file contains definitions for structures, and prototypes of

//      interface functions for the aircraft model.

//

//-------+---------+---------+---------+---------+---------+---------+-------

#ifndef AIRCRAFT_H

#define AIRCRAFT_H

// This is the aircraft model state vector type. It holds the current state

// of the aircraft, controls, attitude, and velocities, as well as the

// current view status. This struct is modified by the functions in

// aircraft.cpp, input.cpp, and fsmain.cpp. However, the only declaration

// of this type (in the current version) is in fsmain.cpp. The other modules

// get it by reference during function calls

struct state_vect {

int aileron_pos;           // aileron position -15 to 15

int elevator_pos;          // elevator position -15 to 15

int throttle_pos;          // throttle position 0 to 16

int rudder_pos;            // rudder position -15 to 15

boolean button1;           // stick buttons, true if pressed

boolean button2;

boolean ignition_on;       // ignition state on/off (true/false)

   boolean engine_on;         // engine running if true

   int rpm;                   // rpm of engine

   byte fuel;                 // gallons of fuel

   byte fuelConsump;          // fuel consumption in gallons/hr.

int x_pos;                 // current location on world-x

int y_pos;                 // current location on world-y

int z_pos;                 // current location on world-z

double pitch;              // rotation about x 0 to 255

double yaw;                // rotation about y 0 to 255
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double roll;               // rotation about z 0 to 255

float h_speed;             // horizontal speed (airspeed, true)

float v_speed;             // vertical speed during last time slice

   float delta_z;             // z distance travelled in last pass

   float efAOF;               // effective angle of flight

   float climbRate;           // rate of climb in feet per minute

int altitude;              // altitude in feet

   boolean airborne;          // true if the plane has taken off

   boolean stall;             // true if stall condition

   boolean brake;             // true if brake on

   byte view_state;           // which way is the view pointing

byte sound_chng;           // boolean true if sound on/off state chngd

float pK;  // (p)itch axis steady state gain

float pzeta;  // (p)itch axis damping coefficient

float pwn;  // (p)itch axis natural frequency (rad/sec)

float rK;  // (r)oll axis steady state gain

float rzeta;  // (r)oll axis damping coefficient

float rwn;  // (r)oll axis natural frequency (rad/sec)

   float yK;  // (y)aw axis steady state gain

float yzeta;  // (y)aw axis damping coefficient

   float ywn;  // (y)aw axis natural frequency (rad/sec)

   double p;

   double q;

   double r;

   double psidot;

   double phidot;

   double thetadot;

int order;                 // 1 for first order, 2 for second order

};

// struct delta_vect is used by the aircraft modeling functions in

// aircraft.cpp as a container for the current delta values for the

// aircraft rotations.

struct delta_vect

{

    double dPitch;             // delta change in pitch (deg.) per ms

    double dYaw;               // delta change in yaw (deg.) per ms

    double dRoll;              // delta change in roll (deg.) per ms

 double Psi;

 double PhiDot;

 double Theta;

 float OldPhiDot;

 float Oldrz;

 float OldTheta;

 float Oldpz;

 float OldPsi;

    float Oldyz;

};

// the AirCraft class

class AirCraft: public state_vect
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{

private:

void  CalcPowerDyn();

void  CalcFlightDyn();

float CalcTurnRate();

void  CalcROC();

void  ApplyRots();

protected:

void  DoWalk();

public:

inline boolean AnyButton()

{ return (button1 || button2) ; }

// start up the aircraft model. This must be called at program start-up

boolean InitAircraft( int mode );

// shut down the aircraft model. You have to call this one at exit.

// If you don’t the very least that will happen is that the sound

// will stay on after the program terminates

void Shutdown();

      void GetZetaOmega();

// subseqent functions are the hooks to the rest of the program.

// RunFModel() is called to iterate the flight model one step.

// It is normally called once per frame, but will work properly

// no matter how often you call it per frame (up to some

// theoretical limit at which timer inaccuracy at low microsecond

// counts screws up the delta rate calculations)

void RunFModel();

void ResetACState( );

void LandAC( );

// Called from GetControls() to remap surface deflection:

void ReduceIndices();

// change ignition to opposite state: off or on

void ToggleIgnition();

void ToggleBrakes();

// ACDump() performs a text-mode screen dump of the flight model’s

// internal data. It is only called when the program is running in

// debugging mode

void ACDump( int x, int& y );

};

// ReportFrameRate() reports the average of the last 500 elapsed frame

// times. Called once at program termination

void ReportFrameRate();

#endif
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Modified Main c++ class - Snoopy

//-------+---------+---------+---------+---------+---------+---------+-------

// Copyright 1991-1992 Betz Associates. All rights reserved.

//

// File Name: FSMAIN.CPP

// Project:   Snoopy linear simulation

// Creation:  January 21, 1992

// Author:    Mark Betz (MB)

// Machine:   IBM PC and Compatibles

// Change History:

// ------ -------

//

//      Date            Rev.  Author    Purpose

//      ----            ----    ------      -------

//      1-21-1992       1.0     MB          Initial development

//      8-29-1992       1.1b    MB          first beta

//      9-26-1992       1.1     MB          publication release

//      9-12-1995       2.0     mracky      update for C++; rename:

//

// Project:   Building Your Own Flight Sim in C++

//

//      10-22-95        2.1     mracky      fix title display, DEBUG mode,

//   04-22-98        2.2     DKH   convert to Snoopy project

//

// Description

// -----------

//      Main module for the Snoopy Group Flight Simulator

//-------+---------+---------+---------+---------+---------+---------+-------

#include <dos.h>

#include <stdlib.h>

#include <bios.h>

#include <math.h>

#include <conio.h>

#include <mem.h>

#include "types.h"            // generic data types

#include "htimer.h"           // hi-res timer class

#include "pcx.h"

#include "aircraft.h"         // aircraft reaction functions

#include "viewcntl.h"

#include "fcontrol.h"      // event handling

#include "screen.h"       // video functions

#include "detect.h"       // cpu detect

byte huge* TESTPTR = NULL;

//boolean CPU_386;            // global flag, true if 386 processor

AirCraft Snoopy;      // one AirCraft object

FControlManager controler;     // one flight controler (event manager)

// This block declares world, view, and image objects

Pcx bkground;        // Class instance for bkground image
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int opMode;                   // operating mode flag

int oldVmode;                 // Save area for previous video mode

int checkpt = 0;              // Tracks program progress for use in

// shutdown

const DEBUG = 0;              // operating mode constants

const FLIGHT = 1;

const WALK = 2;

const HELP = 3;

const VERSION = 4;

const MAX_ARGS = 1;           // maximum number of cl parameters

const MAJ_VER = 2;            // major and minor version numbers

const MIN_VER = 1;

const VER_LET = 0;            // letter, if any, to follow minor version num

// called when program ends, or if an error occurs during program execution.

// the systems which are shutdown depend on the value of chekpt, which is

// incremented as the system is set up at program start.

void ShutDown()

{

if (checkpt >= 2)

ViewShutDown();         // viewcntl.cpp

if (checkpt >= 3)

Snoopy.Shutdown();           // aircraft.cpp

setgmode( oldVmode );      // screen.asm

// note that the FControlManager will "shutdown" when the destructor

// is called.

}

// this function provides a dump of the aircraft state vector values (see the

// struct definition in AIRCRAFT.H). If debug is true it is output

// with the proper header and footer for a realtime dump. If debug is false

// it is formatted to be output at the end of the program.

void VectorDump()

{

int i;

state_vect tSV;

tSV = (state_vect)Snoopy;

gotoxy(3, 1);

cprintf("State vector realtime dump:");

i = 1;

ViewParamDump( 35, i );

Snoopy.ACDump( 35, i );

i = 3;

gotoxy(3, i++);

cprintf("right aileron: %i       ", -tSV.aileron_pos);

gotoxy(3, i++);

cprintf("left aileron:  %i       ", tSV.aileron_pos);

gotoxy(3, i++);

cprintf("elevator:      %i       ", tSV.elevator_pos);

gotoxy(3, i++);
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cprintf("rudder:        %i       ", tSV.rudder_pos);

gotoxy(3, i++);

cprintf("throttle:      %i       ", tSV.throttle_pos);

gotoxy(3, i++);

cprintf("ignition:      %u       ", tSV.ignition_on);

gotoxy(3, i++);

cprintf("engine on:     %i       ", tSV.engine_on);

gotoxy(3, i++);

cprintf("prop rpm:      %i       ", tSV.rpm);

gotoxy(3, i++);

cprintf("fuel level:    %i       ", tSV.fuel);

gotoxy(3, i++);

cprintf("x coordinate:  %i       ", tSV.x_pos);

gotoxy(3, i++);

cprintf("y coordinate:  %i       ", tSV.y_pos);

gotoxy(3, i++);

cprintf("z coordinate:  %i       ", tSV.z_pos);

gotoxy(3, i++);

cprintf("pitch:         %f       ", tSV.pitch);

gotoxy(3, i++);

cprintf("effect. pitch: %f       ", tSV.efAOF);

gotoxy(3, i++);

cprintf("roll:          %f       ", tSV.roll);

gotoxy(3, i++);

cprintf("yaw:           %f       ", tSV.yaw);

gotoxy(3, i++);

cprintf("speed (H):     %f       ", tSV.h_speed);

gotoxy(3, i++);

cprintf("speed (V):     %f       ", tSV.v_speed);

gotoxy(3, i++);

cprintf("rate of climb: %f       ", tSV.climbRate);

gotoxy(3, i++);

cprintf("altitude:      %i       ", tSV.altitude);

}

// reports program status at termination. Based on the value of checkpt it

// knows whether this is an abnormal term, and prints the leadin accordingly

void Terminate( char* msg, char* loc )

{

int exit_code;

ShutDown();

// REV 2.0 rename program (but this shouldn’t be hardcoded anyway).

// this whole checkpt thing should be made into a throw from the

// various points where the program has failed.

cprintf("FSIM.EXE ==>\r\n");

if (checkpt < 4) {

 cprintf( "A critical error occured in function " );

 cprintf( "%s\r\n", loc );

 cprintf( "Error: " );

 cprintf( "%s, causing controlled termination\r\n", msg );

 exit_code = 1;

}

else {

 cprintf("%s in ", msg );

 cprintf("%s\r\n", loc );
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 exit_code = 0;

}

if (opMode != DEBUG)

 ReportFrameRate();

exit(exit_code);

}

// REV 2.1 separate screen fade from draw title screen

//         this way the world can be loaded while the title is displayed

void EraseScreen()

{

fadepalout( 0, 256 );

// following call doesn’t matter since the fadepalout routine does

// this as part of the fade

   // ClrPalette( 0, 256 );

SetGfxBuffer(0);

ClearScr( 0 );

}

// displays the title screen and waits for a keypress

boolean DoTitleScreen()

{

 boolean result = true;

 // HTimer pixTimer; // REV 2.1 remove timer from title display

 if (bkground.load("title.pcx"))

result = false;

 if (result) {

putwindow( 0, 0, 320, 200, bkground.Image() );

fadepalin( 0, 256, bkground.Palette() );

}

 return( result );

}

// called from main() at program startup to initialize the control, view,

// and flight model systems

void StartUp()

{

// CPU_386 = detect386();         // check for 386 processor

if (!detectvga())

Terminate( "No VGA/analog color monitor detected", "main()");

Snoopy.GetZetaOmega(); // prompt for springing and dampin for the diff eq

controler.InitControls(); // input.cpp: initialize controls

checkpt = 1;

clrscr();                      // conio.h: clear the text screen

if ((opMode == FLIGHT) || (opMode == WALK)) // if not debugging or

  // walking...

{

setgmode( 0x13 );                 // screen.asm: set graphics mode

ClrPalette( 0, 256 );             // screenc.cpp: clear the palette

if (opMode == FLIGHT)

 if ( !DoTitleScreen() )        // display the title

Terminate( "error loading title image", "DoTitleScreen()");

}

if ( !InitView( &bkground, opMode ))
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Terminate( "Graphics/View system init failed", "main()" );

checkpt = 2;                         // update progress flag

if ( !Snoopy.InitAircraft( opMode ))

Terminate( "Aircraft initialization failed", "main()" );

checkpt = 3;                         // update progress flag

EraseScreen(); // REV 2.1

}

// display control help

void DisplayHelp()

 {

 gotoxy(1, 1);

 cprintf("        The Waite Group’s ’Flights of Fantasy’ (c) 1992,1995\r\n");

 cprintf("----------------------------------------------------------------\r\n");

 cprintf("* cmd line args:     H, h or ? - display this help screen\r\n");

 cprintf("                     D or d    - enable debugging dump mode\r\n");

 cprintf("                     W or w    - enable world traverse mode\r\n");

 cprintf("                     V or v    - diplay program version\r\n");

 cprintf("\r\n");

 cprintf("* view control keys: F1        - look forward\r\n");

 cprintf("                     F2        - look right\r\n");

 cprintf("                     F3        - look behind\r\n");

 cprintf("                     F4        - look left\r\n");

 cprintf("\r\n");

 cprintf("* engine control:    I or i - toggle ignition/engine on/off\r\n");

 cprintf("                     +/-    - increase/decrease throttle setting\r\n");

 cprintf("\r\n");

 cprintf("* sound control:     S or s - toggle sound on/off\r\n");

 cprintf("\r\n");

 cprintf("* aircraft control:  pitch up   - stick back, or down arrow\r\n");

 cprintf("                     pitch down - stick forwardd, or up arrow\r\n");

 cprintf("                     left roll  - stick left, or left arrow\r\n");

 cprintf("                     right roll - stick right, or right arrow\r\n");

 cprintf("                     rudder     - ’<’ or ’>’ keys\r\n");

 cprintf("                     brake      - ’b’ or ’B’\r\n");

 }

// this function parses the command line parameters. Accepted command line

// parameters are:

//                   d, D     :  start FOF in debugging dump mode

//                   h, H, ?  :  display a command list before starting

//                   w, W     :  start FOF in world traverse mode

//                   v, V     :  display program version number

void ParseCLP( int argc, char* argv[] )

{

int i;

if (argc <= (MAX_ARGS + 1)) {

for (i = 1; i < argc; i++)  {

if ((*argv[i] == ’d’) || (*argv[i] == ’D’))

opMode = DEBUG;

else if (*argv[i] == ’?’)

opMode = HELP;

else if ((*argv[i] == ’h’) || (*argv[i] == ’H’))
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opMode = HELP;

else if ((*argv[i] == ’w’) || (*argv[i] == ’W’))

opMode = WALK;

else if ((*argv[i] == ’v’) || (*argv[i] == ’V’))

opMode = VERSION;

else

Terminate("invalid command line parameter","ParseCLP()");

}

}

 else if (argc > (MAX_ARGS + 1))

Terminate("extra command line parameter","ParseCLP()");

}

// handles a ground approach by determining from pitch and roll whether

// the airplane has landed safely or crashed

void GroundApproach()

{

// handle approaching the ground

// REV 2.1 change debug mode to reset aircraft.

if ((opMode == FLIGHT)||

    (opMode == DEBUG) ) {

if ( (Snoopy.airborne) && (Snoopy.altitude <= 0)) {

if ( ((Snoopy.pitch > 10) ||

  (Snoopy.pitch < -10)) ||

 ((Snoopy.roll > 10) ||

  (Snoopy.roll < -10)) )

{

if( opMode == DEBUG) {

gotoxy(3,1);

cprintf(" CRRAAASSSSHHHHH!!!! Go find a real Pilot you Looser!");

}

else

ShowCrash();               // viewcntl.cpp

Snoopy.ResetACState();    // aircraft.cpp

delay(200);

controler.ResetControls();

while( !controler.AnyPress() );    // input.cpp

}

else

Snoopy.LandAC();    // aircraft.cpp

}

}

}

// this function displays the program version number

void DisplayVersion()

 {

 cprintf(" ŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ¨\r\n");

 cprintf("…                                   …\r\n");

 cprintf("ØŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒŒ_\r\n");

 gotoxy( 4, 2 );

 cprintf("Snoopy Linear Flight Simulator, Version %i.%i%c", MAJ_VER, MIN_VER, VER_LET);

 gotoxy( 4, 6 );

 }
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// program entry point

void main( int argc, char* argv[])

{

window(1,1,80,25);                   // conio.h: set a text window

clrscr();                            // conio.h: clear the screen

textcolor(7);                        // conio.h: set the text color

oldVmode = *(byte *)MK_FP(0x40,0x49); // store the text mode

opMode = FLIGHT;                     // assume normal operating mode

ParseCLP( argc, argv );              // parse command line args

if (opMode == HELP)  {           // if this is a help run

 DisplayHelp();  // then display the command

 exit(0); // list and exit

}

if (opMode == VERSION) {

 DisplayVersion();

 exit(0);

 }

StartUp();

controler.GetControls(Snoopy);                    // input.cpp: run one control pass

 // to initialize

the state vector

// main flight loop

while(!controler.Exit())  {                     // input.cpp: check for exit command

controler.GetControls(Snoopy);                // input.cpp: get control settings

Snoopy.RunFModel();                // aircraft.cpp: run flight model

GroundApproach();

if (!UpdateView( Snoopy ))         // aircraft.cpp: make the next frame

 Terminate("View switch file or memory error","UpdateView()");

if (opMode != DEBUG)             // if not debugging...

 blitscreen( bkground.Image() ); // display the new frame

else                             // else if debugging...

 VectorDump();                 // do the screen dump

}

checkpt = 4;                         // update progress flag

Terminate("Normal program termination", "main()");

 }
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Instrument D/A Simulink S-function

/****************************************************************************

*  MODULE:    al_inst.c

*

*  AUTHOR(S): Friz Anderson / Douglas Hiranaka

*

*  DATE:      September 25, 1998

*

*  Copyright (c) ALL RIGHTS RESERVED

*

*  REVISION HISTORY:

*

*  REV AUTHOR DATE      DESCRIPTION

*  0   crf    11-5-97   Creation cabtest.cpp

*  1   dkh    6-11-98   reduced to instruments only

*  2   dkh    7-11-98   put into c-mex S-function format

*

* S-mex: See simulink/src/sfuntmpl.doc

*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.3

*

* This S-function block sends values to the instruments from the computer to

* the PhEagle flight sim cab. This is the a basic version of the outputs

* to the Sim cab sending out only the altitude, airspeed, attitude, direction

* g’s, angle of attack, side slip, L-rpm, R-rpm, Vertical speed, and the

* forces back to the sim cab stick. The stick positions are read in the

* stick block - ph_stick.c

*

****************************************************************************/

#define S_FUNCTION_NAME al_inst

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <dos.h>

#include <bios.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#include <stdio.h>

#include "cyda.h"

char errorChecking;

float pi = 3.14159;

struct DAC d16, d12;
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struct DACChannel

   altimeter,

   pitch8Ball,

   roll8Ball,

   yaw8Ball,

   rudderBall,

   airspeed,

   dirGyro,

   gMeter,

   vertDevPoint,

   aoaIndicator,

   machIndicator,

   airspeed,

   sideslipAngle,

   leftEngRPM,

   rightEngRPM,

   verspeedIndicator,

   rightNozz,

   leftNozz,

   internalPress,

   courseDirIndicator,

   cdHorIndicator,

   cdVerIndicator,

   leftEngTemp,

   rightEngTemp,

   leftEngFuel,

   rightEngFuel,

   pTotGauge,

   yawForceOut,

   rollForceOut,

   pitchForceOut;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, 0);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

    if (!ssSetNumInputPorts(S, 1)) return;

    ssSetInputPortWidth(S, 0, 29);

    ssSetInputPortDirectFeedThrough(S, 0, 1);

    if (!ssSetNumOutputPorts(S,0)) return;

/*    ssSetOutputPortWidth(S, 0, 1); */

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}
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/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START

#if defined(MDL_START)

/* Function: mdlstart ========

 */

static void mdlStart(SimStruct *S)

{

   d16.nBits=16;

d16.baseAddr=0x340;

d16.nLimit = -5.0;

d16.pLimit = 5.0;

d16.nChannels = 16;

d16.vDefault = 0.0;

   d12.nBits=12;

d12.baseAddr=0x300;

d12.nLimit = -5.0;

d12.pLimit = 5.0;

d12.nChannels = 16;

d12.vDefault = 0.0;

errorChecking=0;  /****** 0 turns off 1 truns on ******/

/***** DACChannel 16 bit channels *****/

   roll8Ball.channelNumber=1;

roll8Ball.minV=pi;

roll8Ball.maxV=-pi;

yaw8Ball.channelNumber=2;

yaw8Ball.minV=-pi;

yaw8Ball.maxV=pi;

dirGyro.channelNumber=3;

dirGyro.minV=-pi;

dirGyro.maxV=pi;

 gMeter.channelNumber=4;

gMeter.minV=-4;

gMeter.maxV=9;

  pitch8Ball.channelNumber=5;

pitch8Ball.minV=0.5*pi;

pitch8Ball.maxV=-0.5*pi;

   vertDevPoint.channelNumber=6;

vertDevPoint.minV=-10;

vertDevPoint.maxV=40;
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rudderBall.channelNumber=7;

rudderBall.minV=-1.0;

rudderBall.maxV=1.0;

   aoaIndicator.channelNumber=8;

aoaIndicator.minV=-10;

aoaIndicator.maxV=40;

   machIndicator.channelNumber=9;

machIndicator.minV=0;

machIndicator.maxV=6;

   airspeed.channelNumber=10;

airspeed.minV=0.0;

airspeed.maxV=700.0;

   sideslipAngle.channelNumber=11;

sideslipAngle.minV=15;

sideslipAngle.maxV=-15;

   leftEngRPM.channelNumber=12;

leftEngRPM.minV=110;

leftEngRPM.maxV=10;

   rightEngRPM.channelNumber=13;

rightEngRPM.minV=10;

rightEngRPM.maxV=110;

  altimeter.channelNumber =14;

altimeter.minV=0.0;

altimeter.maxV=6e4;

   verspeedIndicator.channelNumber=15;

verspeedIndicator.minV=-sqrt(6000);

verspeedIndicator.maxV=sqrt(6000);

   /***** DACChannel 12 bit channels *****/

   rightNozz.channelNumber=0;

rightNozz.minV=0;

rightNozz.maxV=100;

   leftNozz.channelNumber=1;

leftNozz.minV=0;

leftNozz.maxV=100;

   internalPress.channelNumber=2;

internalPress.minV=1;

internalPress.maxV=12;

   courseDirIndicator.channelNumber=3;

courseDirIndicator.minV=-1;

courseDirIndicator.maxV=1;

   cdHorIndicator.channelNumber=4;

cdHorIndicator.minV=-1;

cdHorIndicator.maxV=1;
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   cdVerIndicator.channelNumber=5;

cdVerIndicator.minV=-1;

cdVerIndicator.maxV=1;

   leftEngTemp.channelNumber=6;

leftEngTemp.minV=200;

leftEngTemp.maxV=1400;

   rightEngTemp.channelNumber=7;

rightEngTemp.minV=200;

rightEngTemp.maxV=1400;

   leftEngFuel.channelNumber=8;

leftEngFuel.minV=0;

leftEngFuel.maxV=100;

   rightEngFuel.channelNumber=9;

rightEngFuel.minV=0;

rightEngFuel.maxV=100;

   pTotGauge.channelNumber=10;

pTotGauge.minV=0;

pTotGauge.maxV=7000;

   yawForceOut.channelNumber=11;

yawForceOut.minV=-1;

yawForceOut.maxV=1;

   rollForceOut.channelNumber=12;

rollForceOut.minV=-1;

rollForceOut.maxV=1;

   pitchForceOut.channelNumber=13;

pitchForceOut.minV=-1;

pitchForceOut.maxV=1;

   errorChecking=1;

   DACCardInit(&d16);

   DACCardInit(&d12);

   DACChannelInit(&altimeter,&d16);

   DACChannelInit(&pitch8Ball,&d16);

   DACChannelInit(&roll8Ball,&d16);

   DACChannelInit(&yaw8Ball,&d16);

   DACChannelInit(&rudderBall,&d16);

   DACChannelInit(&airspeed,&d16);

   DACChannelInit(&dirGyro,&d16);

   DACChannelInit(&gMeter,&d16);

   DACChannelInit(&aoaIndicator,&d16);

   DACChannelInit(&machIndicator,&d16);

   DACChannelInit(&sideslipAngle,&d16);

   DACChannelInit(&leftEngRPM,&d16);

   DACChannelInit(&rightEngRPM,&d16);

   DACChannelInit(&verspeedIndicator,&d16);
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   DACChannelInit(&rightNozz,&d12);

   DACChannelInit(&leftNozz,&d12);

   DACChannelInit(&internalPress,&d12);

   DACChannelInit(&courseDirIndicator,&d12);

   DACChannelInit(&cdHorIndicator,&d12);

   DACChannelInit(&leftEngTemp,&d12);

   DACChannelInit(&rightEngTemp,&d12);

   DACChannelInit(&leftEngFuel,&d12);

   DACChannelInit(&rightEngFuel,&d12);

   DACChannelInit(&pTotGauge,&d12);

   DACChannelInit(&yawForceOut,&d12);

   DACChannelInit(&rollForceOut,&d12);

   DACChannelInit(&pitchForceOut,&d12);

   }

#endif /* MDL_START */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *    y = 2*u

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

      InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/*      printf("Working.....%g",*uPtrs[0]); */

      set(&altimeter,(int)*uPtrs[0]);

/*      set(&altimeter,4000); */

      set(&pitch8Ball,*uPtrs[1]);

      set(&roll8Ball,*uPtrs[2]);

      set(&yaw8Ball,*uPtrs[3]);

set(&dirGyro,*uPtrs[4]);

      set(&gMeter,*uPtrs[5]);

      set(&vertDevPoint,*uPtrs[6]);

      set(&rudderBall,-*uPtrs[7]);

      set(&aoaIndicator,*uPtrs[8]);

      set(&machIndicator,*uPtrs[9]);

      set(&airspeed,*uPtrs[10]);

      set(&sideslipAngle,*uPtrs[11]);

      set(&leftEngRPM,*uPtrs[12]);

      set(&rightEngRPM,*uPtrs[13]);

      set(&verspeedIndicator,*uPtrs[14]);

      set(&rightNozz,*uPtrs[15]);

      set(&leftNozz,*uPtrs[16]);

      set(&internalPress,*uPtrs[17]);

      set(&courseDirIndicator,*uPtrs[18]);

      set(&cdHorIndicator,*uPtrs[19]);

      set(&cdVerIndicator,*uPtrs[20]);

      set(&rightEngTemp,*uPtrs[21]);

      set(&leftEngTemp,*uPtrs[22]);

      set(&rightEngFuel,*uPtrs[23]);

      set(&leftEngFuel,*uPtrs[24]);

      set(&pTotGauge,*uPtrs[25]);
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      set(&yawForceOut,*uPtrs[26]);

      set(&rollForceOut,*uPtrs[27]);

      set(&pitchForceOut,*uPtrs[28]);

}

/*---------------------------------------------------------------------------

 *                   Source code for DACCard

 *---------------------------------------------------------------------------*/

/***** setup for d/a *****/

void DACCardInit(struct DAC *card)

{

    short channel;

    unsigned short count;

    unsigned short addr1;

    float voltage;

    voltage=0;

    if (card->nBits > 16 || card->nBits < 2)

        printf("DAC error:  Cannot set for %d bits\n", card->nBits);

    card->maxCount = (unsigned short)((1 << card->nBits) - 1);

    card->gainVtoCounts = (float)card->maxCount/(card->pLimit - card->nLimit);

    card->vOffset = -(card->nLimit);

    for (channel = 0; channel < card->nChannels; channel++) {

        if (channel >= card->nChannels)

            printf("DACCard: channel %d is out of range\n", channel);

        if (card->vDefault > card->pLimit || card->vDefault < card->nLimit) {

          if (errorChecking)

                printf("DACCard:  Voltage %1.3f is out of range\n", card->vDefault);

            voltage = (voltage > card->pLimit) ? card->pLimit : card->nLimit;

        }

        count = (unsigned short)(card->gainVtoCounts*(voltage + card->vOffset));

        addr1 = card->baseAddr + (channel << 1);

        outpw(addr1, count);

    }

}

/*---------------------------------------------------------------------------

 *                   Source code for DACChannel class

 *--------------------------------------------------------------------------*/

/***** Setup for Dac channel *****/

void DACChannelInit(struct DACChannel *chan, struct DAC *Card)

{

 float min, max;

    if (chan->channelNumber >= Card->nChannels) {

        printf("DACCard: channel %d is out of range\n", chan->channelNumber);

    }

    else

    chan->addr = Card->baseAddr + (chan->channelNumber << 1);

    if (chan->min == chan->max) {

        min = Card->nLimit;

        max = Card->pLimit;

        chan->gain = (float)(Card->maxCount)/(max - min);

    }
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    else {

    chan->gain = (float)(Card->maxCount)/(chan->maxV - chan->minV);

    }

    chan->offset = -(chan->min);

}

/*--------------------------------------------------------------------------*/

void set(struct DACChannel *Chan, float value)

{

    unsigned short count;

    float checkMin, checkMax;

    if (Chan->max < Chan->minV) {

        checkMin = Chan->maxV;

        checkMax = Chan->minV;

    } else {

        checkMax = Chan->maxV;

        checkMin = Chan->minV;

    }

    if (value > checkMax || value < checkMin) {

        if (errorChecking)

            printf("DACChannel:  Value %1.3f is out of range\n", value);

        value = (value > Chan->maxV) ? Chan->maxV : Chan->minV;

    }

    count = (unsigned short)(Chan->gain*(value + Chan->offset));

    outpw(Chan->addr, count);

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Instrument Help File

function

allinst(altitude,pitch,roll,yaw,direction,fz,ball,alpha,mach,aispeed,beta,l_rpm,r_rpm,h_dot,rnozz,lnozz,intpre

ss,CDI,CDh,CDV,ltemp,rtemp,lfuel,rfuel,ptot,fpitch,froll,fyaw)

%allinst.c Simulink/RTW s-function pheagle Flight sim output block

%

%  allinst(altitude,pitch,roll,yaw,direction,fz,ball,alpha,mach,

%  aispeed,beta,l_rpm,r_rpm,h_dot,rnozz,lnozz,intpress,CDI,CDh,

%  CDV,ltemp,rtemp,lfuel,rfuel,ptot,fpitch,froll,fyaw)

%  This function sends commands to the instruments through a A to D

%  card. This block is a complete set of the outputs for the PhEagle

%  cab. The block includes outputs for the stick force system. All

%  the output is being handled with the output blocks to keep the

%  number of duplicate functions to a minimum.

%

%  The range and nominal units for the inputs are given any

%  conversion is left up to the user. Any non-standard units

%  should be noted to the pilot trying to interpret the instruments.

%

%inputs: channel, gauge, range, input units, (output units)

%  0 Altitude  0 60,000, feet

% 1 pitch8Ball(Pitch angle theta), +-Pi/2, rad, (deg)

%  2 roll8Ball (Roll angle phi), +- Pi, rad, (deg)

%  3 yaw8Ball(Yaw angle psi), +- Pi (deg)

%  4 dirGyro (Yaw angle psi), +- Pi (deg)

%  5 g meter Nz (g’s) -4 +9 (g’s)

%  6  vertDevPoint +-1

% 7 rudderball (Beta - side slip) +-1

% 8 aoaMeter (Alpha - angle of attack) -10 40, degrees, (deg)

%  9 mach meter  0 6, mach number

%  10 Airspeed  0 700, knots

% 11 sidslipAngle (Beta - side slip) +-15 degrees, (deg)

%  12 Left engine rpm 110 10 (percent rpm)

%  13 Right engine rpm 10 110 (percent rpm)

%  14 Vertical Speed Indicator +- 6000 feet/min, (ft/min)

%***** 12 bit channels *****

%  15 right Nozzel - 0 - 100

%  16 left Nozzel - 0 - 100

% 17 internal pressure  1 12

%  18 Course Deviation indicator -1 1

%  19 cd Horizontal indicator -1 1

%  20 cd Vertical Indicator -1 1

%  21 right Engine Temp 200  1400 deg

% 22 left engine Temp 200 1400 deg

%  23 right engine fuel 0 100

%  24 left eengione fuel 0 100

%  25 ptotal 0 7000%  0 left Nozzel - 0 - 700, knots

% 7 internal pressure (Beta - side slip) +-15 degrees, (deg)

%  8 Course Deviation indicator 110 10 (percent rpm)

%  9 cd Horizontal indicator 10 110 (percent rpm)

%  10 cd Vertical Indicator +- 6000 feet/min, (ft/min)

%***** Stick forces: CAUTION Pilot must be in CAB when used. *****

%  26 pitch force +-1, (lbs)



115

%  27 roll force +-1, (lbs)

%  28 yaw force +-1, (lbs)

%

%

%  NOTE: this is a help block only there is no function

%  attached to this m-file

%

%   Doug Hiranaka 9-27-98

%   Copyright (c) 1998 by Penguin Aeronautics.
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Stick D/A Simulink S-function

/****************************************************************************

*  MODULE:    al_stick.c

*

*  AUTHOR(S): Fritz Anderson / Doug Hiranaka

*

*  DATE:      September 25, 1998

*

*  Copyright (c) ALL RIGHTS RESERVED

*  Cal Poly San Luis Obispo 1998

*

*  REVISION HISTORY:

*

*  REV AUTHOR DATE      DESCRIPTION

*  0   crf    11-5-97   Creation cabtest.cpp

*  1   dkh    6-11-98   reduced to stick only

*  2   dkh    7-11-98   put into s-mex format

*

* S-mex: See simulink/src/sfuntmpl.doc

*

* S-mex Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.3

*

* This S-function block Reads the commanded stick position from the

* PhEagle flight sim cab. This is the a basic version of the inputs

* from the Sim cab sending out only the stick, pedal and throttle position

* from the cab. The forces are set in the instrument block - ph_inst.c

*

****************************************************************************/

#define S_FUNCTION_NAME al_stick

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <dos.h>

#include <bios.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#include <math.h>

#include <stdio.h>

#include "sticki.h"

float oldVals[16];

struct PCLabCard aToD12;

struct ADCChannel rThrottle, lThrottle,

       pitchPos, pitchForce, pitchTrimDef, pitchTrimPos, pitchVelocity,

       rollPos, rollForce, rollTrimDef, rollTrimPos, rollVelocity,

       rudderPos, rudderForce, rudderTrimPos, rudderVelocity;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:
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 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, 0);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

/*    ssSetNumContStates(S, 0);

    ssSetNumDiscStates(S, 0); */

    ssSetNumInputPorts(S, 0);

/*    ssSetInputPortWidth(S, 0, 0); */

/*    ssSetInputPortDirectFeedThrough(S, 0, 1); */

    if (!ssSetNumOutputPorts(S,1)) return;

    ssSetOutputPortWidth(S, 0, 16);

    /* Stick, rudder, and throttles */

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START   /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ========================================

 * Abstract:

 *    Initialize the da cards.

 */

static void mdlStart(SimStruct *S)

{

    unsigned short int addr;

    addr=0x220;

    aToD12.addr=0x220;

    aToD12.maxADCount=4095;

    aToD12.minADVoltage=-5.0;

    aToD12.maxADVoltage=5.0;

    aToD12.nADChannels=16;

    aToD12.nDAChannels=2;

    aToD12.base= addr;

    aToD12.cnt0= addr +  0;

    aToD12.cnt1=addr +  1;

    aToD12.cnt2=addr +  2;
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    aToD12.cntCtrl=addr +  3;

    aToD12.da1Low=addr +  4;

    aToD12.da1High=addr +  5;

    aToD12.da2Low=addr +  6;

    aToD12.da2High=addr +  7;

    aToD12.adLow=addr +  4;

    aToD12.adHigh=addr +  5;

    aToD12.diLow=addr +  6;

    aToD12.diHigh=addr +  7;

    aToD12.cli=addr +  8;

    aToD12.gainCtrl=addr +  9;

    aToD12.muxCtrl=addr + 10;

    aToD12.modeCtrl=addr + 11;

    aToD12.softAD=addr + 12;

    aToD12.doLow=addr + 13;

    aToD12.doHigh=addr + 14;

    /* ADCChannel */

    rThrottle.cNumber  = 0;

    rThrottle.minV = 0.0;

    rThrottle.maxV = 1.0;

    lThrottle.cNumber  = 1;

    lThrottle.minV = 0.0;

    lThrottle.maxV =  1.0;

    pitchPos.cNumber  = 2;

    pitchPos.minV = -1.0;

    pitchPos.maxV =  1.0;

 pitchForce.cNumber  = 3;

    pitchForce.minV = 1.0;

    pitchForce.maxV =  1.0;

    pitchTrimDef.cNumber  = 4;

    pitchTrimDef.minV = -1.0;

    pitchTrimDef.maxV =  1.0;

    pitchTrimPos.cNumber  = 5;

    pitchTrimPos.minV = -1.0;

    pitchTrimPos.maxV =  1.0;

    pitchVelocity.cNumber  = 6;

    pitchVelocity.minV = -1.0;

    pitchVelocity.maxV =  1.0;

    rollPos.cNumber  = 7;

    rollPos.minV = -1.0;

    rollPos.maxV =  1.0;

    rollForce.cNumber  = 8;

    rollForce.minV = 1.0;

    rollForce.maxV =  1.0;

    rollTrimDef.cNumber  = 9;

    rollTrimDef.minV = -1.0;

    rollTrimDef.maxV =  1.0;
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    rollTrimPos.cNumber  = 10;

    rollTrimPos.minV = -1.0;

    rollTrimPos.maxV =  1.0;

    rollVelocity.cNumber  = 11;

    rollVelocity.minV = -1.0;

    rollVelocity.maxV =  1.0;

    rudderPos.cNumber  = 12;

    rudderPos.minV = -1.0;

    rudderPos.maxV =  1.0;

    rudderForce.cNumber  = 13;

    rudderForce.minV = 1.0;

    rudderForce.maxV =  1.0;

    rudderTrimPos.cNumber  = 14;

    rudderTrimPos.minV = -1.0;

    rudderTrimPos.maxV =  1.0;

    rudderVelocity.cNumber  = 15;

    rudderVelocity.minV = -1.0;

    rudderVelocity.maxV =  1.0;

    /* Set up for the card and the channels */

    PCLabCardInit(&aToD12);

    ADCChannelInit(&pitchPos, &aToD12);

 ADCChannelInit(&pitchForce, &aToD12);

    ADCChannelInit(&pitchTrimDef, &aToD12);

    ADCChannelInit(&pitchTrimPos, &aToD12);

    ADCChannelInit(&pitchVelocity, &aToD12);

    ADCChannelInit(&rollPos, &aToD12);

    ADCChannelInit(&rollForce, &aToD12);

    ADCChannelInit(&rollTrimDef, &aToD12);

    ADCChannelInit(&rollTrimPos, &aToD12);

    ADCChannelInit(&rollVelocity, &aToD12);

    ADCChannelInit(&rudderPos, &aToD12);

    ADCChannelInit(&rudderForce, &aToD12);

    ADCChannelInit(&rudderTrimPos, &aToD12);

    ADCChannelInit(&rudderVelocity, &aToD12);

    ADCChannelInit(&rThrottle, &aToD12);

    ADCChannelInit(&lThrottle, &aToD12);

}

#endif /* MDL_START */

#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */

#if defined(MDL_INITIALIZE_CONDITIONS)

/* Function: mdlInitializeConditions ========================================

 * Abstract:

 *    Initialize the state. Note, that if this S-function is placed



120

 *    with in an enabled subsystem which is configured to reset states,

 *    this routine will be called during the reset of the states.

 */

static void mdlInitializeConditions(SimStruct *S)

{

   }

#endif /* MDL_INITIALIZE_CONDITIONS */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *         simply passes states y[n] = x[n]

 *

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

    real_T            *y    = ssGetOutputPortRealSignal(S,0);

    float newVal;

      newVal = doConversion(&pitchPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[0];

      oldVals[0] = newVal;

      y[0] = (int)newVal;

   newVal = doConversion(&pitchForce,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[1];

      oldVals[1] = newVal;

      y[1] = (int)newVal;

      newVal = doConversion(&pitchTrimDef,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[2];

      oldVals[2] = newVal;

      y[2] = (int)newVal;

      newVal = doConversion(&pitchTrimPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[3];

      oldVals[3] = newVal;

      y[3] = (int)newVal;

      newVal = doConversion(&pitchVelocity,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[4];

      oldVals[4] = newVal;

      y[4] = (int)newVal;

      newVal = doConversion(&rollPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[5];

      oldVals[5] = newVal;

      y[5] = (int)(-newVal);

      newVal = doConversion(&rollForce,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[6];

      oldVals[6] = newVal;

      y[6] = (int)newVal;

      newVal = doConversion(&rollTrimDef,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[7];

      oldVals[7] = newVal;
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      y[7] = (int)newVal;

      newVal = doConversion(&rollTrimPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[8];

      oldVals[8] = newVal;

      y[8] = (int)newVal;

      newVal = doConversion(&rollVelocity,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[9];

      oldVals[9] = newVal;

      y[9] = (int)newVal;

      newVal = doConversion(&rudderPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[10];

      oldVals[10] = newVal;

      y[10] = (int)(-newVal);

      newVal = doConversion(&rudderForce,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[11];

      oldVals[11] = newVal;

      y[11] = (int)newVal;

      newVal = doConversion(&rudderTrimPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[12];

      oldVals[12] = newVal;

      y[12] = (int)newVal;

      newVal = doConversion(&rudderVelocity,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[13];

      oldVals[13] = newVal;

      y[13] = (int)newVal;

      newVal = doConversion(&rThrottle,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[14];

      oldVals[14] = newVal;

      y[14] = (int)newVal;

      newVal = doConversion(&lThrottle,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[15];

      oldVals[15] = newVal;

      y[15] = (int)newVal;

}

#define MDL_UPDATE  /* Change to #undef to remove function */

#if defined(MDL_UPDATE)

   /* Function: mdlUpdate ======================================================

    * Abstract:

    *    This function is called once for every major integration time step.

    *    Discrete states are typically updated here, but this function is useful

    *    for performing any tasks that should only take place once per

    *    integration step.

    */

   static void mdlUpdate(SimStruct *S, int_T tid)

   {

   }

#endif /* MDL_UPDATE */
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#define MDL_DERIVATIVES  /* Change to #undef to remove function */

#if defined(MDL_DERIVATIVES)

   /* Function: mdlDerivatives =================================================

    */

   static void mdlDerivatives(SimStruct *S)

   {

   }

#endif /* MDL_DERIVATIVES */

/*-------------------------------------------------------------------------*/

void PCLabCardInit(struct PCLabCard *card)

{

/*    dCard = new DACCard(12, card->da1Low, 0.0, 5.0, 2, 0.0);

    if (!dCard) printf("PCLabCard:  Unable to allocate memory for DAC\n"); */

    outportb(card->gainCtrl, 0x00);

    outportb(card->modeCtrl, 0x01);

}

/*-------------------------------------------------------------------------*/

float doConversion(struct ADCChannel *Chan, struct PCLabCard *Card)

{

    float value;

    unsigned short bHigh, bLow, flag = 1;

    if (Chan->cNumber >= Card->nADChannels)

        printf("PCLabCard: Analog channel %d is out of range\n", Chan->cNumber);

    outportb(Card->muxCtrl, Chan->cNumber);

    outportb(Card->softAD, 0xff);

    delay(1);

    while (flag) {

        bHigh = inportb(Card->adHigh);

        bLow  = inportb(Card->adLow);

        flag = bHigh & 0x10;

    }

    Chan->adcount= (bHigh << 8) | (bLow & 0x00ff);

    value = Chan->gain*(float)Chan->adcount + Chan->offset;

    return value;

}

/*-------------------------------------------------------------------------*/

/*                   Source code for ADCChannel class                      */

/*-------------------------------------------------------------------------*/

void ADCChannelInit(struct ADCChannel *chan, struct PCLabCard *card)

{

    float value;

    chan->adcount=0;

    if (chan->minV == chan->maxV) {

        chan->minV = card->minADVoltage;

        chan->maxV = card->maxADVoltage;

    }

    chan->gain = (chan->maxV - chan->minV)/(float)(card->maxADCount);

    chan->offset = chan->minV;

    value = chan->gain*(float)chan->adcount + chan->offset;

}
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/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Abbreviated Instrument D/A Simulink S-function

/****************************************************************************

*  MODULE:    ph_inst.c

*

*  AUTHOR(S): Friz Anderson / Douglas Hiranaka

*

*  DATE:      September 25, 1998

*

*  Copyright (c) ALL RIGHTS RESERVED

*

*  REVISION HISTORY:

*

*  REV AUTHOR DATE      DESCRIPTION

*  0   crf    11-5-97   Creation cabtest.cpp

*  1   dkh    6-11-98   reduced to instruments only

*  2   dkh    7-11-98   put into s-mex format

*

* S-mex: See simulink/src/sfuntmpl.doc

*

* Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.3

*

* This S-function block sends values to the instruments from the computer to

* the PhEagle flight sim cab. This is the a basic version of the outputs

* to the Sim cab sending out only the altitude, airspeed, attitude, direction

* g’s, angle of attack, side slip, L-rpm, R-rpm, Vertical speed, and the

* forces back to the sim cab stick. The stick positions are read in the

* stick block - ph_stick.c

*

****************************************************************************/

#define S_FUNCTION_NAME ph_inst

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <dos.h>

#include <bios.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#include <stdio.h>

#include "cyda.h"

char errorChecking;

float pi = 3.14159;

struct DAC d16, d12;

struct DACChannel

   altimeter,

   pitch8Ball,
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   roll8Ball,

   yaw8Ball,

   rudderBall,

   airspeed,

   dirGyro,

   gMeter,

   aoaIndicator,

   sideslipAngle,

   leftEngRPM,

   rightEngRPM,

   verspeedIndicator,

   yawForceOut,

   rollForceOut,

   pitchForceOut;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, 0);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

    if (!ssSetNumInputPorts(S, 1)) return;

    ssSetInputPortWidth(S, 0, 14);

    ssSetInputPortDirectFeedThrough(S, 0, 1);

    if (!ssSetNumOutputPorts(S,0)) return;

/*    ssSetOutputPortWidth(S, 0, 1); */

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START

#if defined(MDL_START)

/* Function: mdlstart ========

 *  Abstract:

 *     Initialize the da cards.

 */

static void mdlStart(SimStruct *S)
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{

   d16.nBits=16;

d16.baseAddr=0x340;

d16.nLimit = -5.0;

d16.pLimit = 5.0;

d16.nChannels = 16;

d16.vDefault = 0.0;

   d12.nBits=12;

d12.baseAddr=0x300;

d12.nLimit = -5.0;

d12.pLimit = 5.0;

d12.nChannels = 16;

d12.vDefault = 0.0;

errorChecking=0;  /****** 0 turns off 1 truns on ******/

/***** DACChannel 16 bit channels *****/

altimeter.channelNumber =14;

altimeter.minV=0.0;

altimeter.maxV=6e4;

pitch8Ball.channelNumber=5;

pitch8Ball.minV=0.5*pi;

pitch8Ball.maxV=-0.5*pi;

roll8Ball.channelNumber=1;

roll8Ball.minV=pi;

roll8Ball.maxV=-pi;

yaw8Ball.channelNumber=2;

yaw8Ball.minV=-pi;

yaw8Ball.maxV=pi;

rudderBall.channelNumber=7;

rudderBall.minV=-1.0;

rudderBall.maxV=1.0;

airspeed.channelNumber=10;

airspeed.minV=0.0;

airspeed.maxV=700.0;

dirGyro.channelNumber=3;

dirGyro.minV=-pi;

dirGyro.maxV=pi;

 gMeter.channelNumber=4;

gMeter.minV=-4;

gMeter.maxV=9;

   aoaIndicator.channelNumber=8;

aoaIndicator.minV=-10;

aoaIndicator.maxV=40;

   sideslipAngle.channelNumber=11;

sideslipAngle.minV=15;

sideslipAngle.maxV=-15;



127

   leftEngRPM.channelNumber=12;

leftEngRPM.minV=110;

leftEngRPM.maxV=10;

   rightEngRPM.channelNumber=13;

rightEngRPM.minV=10;

rightEngRPM.maxV=110;

   verspeedIndicator.channelNumber=15;

verspeedIndicator.minV=-sqrt(6000);

verspeedIndicator.maxV=sqrt(6000);

   /***** DACChannel 12 bit channels *****/

   yawForceOut.channelNumber=11;

yawForceOut.minV=-1;

yawForceOut.maxV=1;

   rollForceOut.channelNumber=12;

rollForceOut.minV=-1;

rollForceOut.maxV=1;

   pitchForceOut.channelNumber=13;

pitchForceOut.minV=-1;

pitchForceOut.maxV=1;

   errorChecking=1;

   DACCardInit(&d16);

   DACCardInit(&d12);

   DACChannelInit(&altimeter,&d16);

   DACChannelInit(&pitch8Ball,&d16);

   DACChannelInit(&roll8Ball,&d16);

   DACChannelInit(&yaw8Ball,&d16);

   DACChannelInit(&rudderBall,&d16);

   DACChannelInit(&airspeed,&d16);

   DACChannelInit(&dirGyro,&d16);

   DACChannelInit(&gMeter,&d16);

   DACChannelInit(&aoaIndicator,&d16);

   DACChannelInit(&sideslipAngle,&d16);

   DACChannelInit(&leftEngRPM,&d16);

   DACChannelInit(&rightEngRPM,&d16);

   DACChannelInit(&verspeedIndicator,&d16);

   DACChannelInit(&yawForceOut,&d12);

   DACChannelInit(&rollForceOut,&d12);

   DACChannelInit(&pitchForceOut,&d12);

}

#endif /* MDL_START */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *    y = 2*u

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{
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    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 /*   real_T            *y    = ssGetOutputPortRealSignal(S,0); */

      set(&airspeed,*uPtrs[0]);

      printf("Working.....%g",*uPtrs[0]);

 set(&altimeter,(int)*uPtrs[1]);

      set(&altimeter,4000);

      set(&pitch8Ball,*uPtrs[2]);

      set(&roll8Ball,*uPtrs[3]);

      set(&yaw8Ball,*uPtrs[4]);

set(&dirGyro,*uPtrs[4]);

      set(&rudderBall,*uPtrs[7]);

      set(&gMeter,*uPtrs[5]);

      set(&aoaIndicator,*uPtrs[6]);

      set(&sideslipAngle,*uPtrs[7]);

      set(&leftEngRPM,*uPtrs[8]);

      set(&rightEngRPM,*uPtrs[9]);

      set(&verspeedIndicator,*uPtrs[10]);

      set(&yawForceOut,*uPtrs[11]);

      set(&rollForceOut,*uPtrs[12]);

      set(&pitchForceOut,*uPtrs[13]);

}

/*---------------------------------------------------------------------------

 *                   Source code for DACCard

 *---------------------------------------------------------------------------*/

/***** setup for d/a *****/

void DACCardInit(struct DAC *card)

{

    short channel;

    unsigned short count;

    unsigned short addr1;

    float voltage;

    voltage=0;

    if (card->nBits > 16 || card->nBits < 2)

        printf("DAC error:  Cannot set for %d bits\n", card->nBits);

    card->maxCount = (unsigned short)((1 << card->nBits) - 1);

    card->gainVtoCounts = (float)card->maxCount/(card->pLimit - card->nLimit);

    card->vOffset = -(card->nLimit);

    for (channel = 0; channel < card->nChannels; channel++) {

        if (channel >= card->nChannels)

            printf("DACCard: channel %d is out of range\n", channel);

        if (card->vDefault > card->pLimit || card->vDefault < card->nLimit) {

          if (errorChecking)

                printf("DACCard:  Voltage %1.3f is out of range\n", card->vDefault);

            voltage = (voltage > card->pLimit) ? card->pLimit : card->nLimit;

        }

        count = (unsigned short)(card->gainVtoCounts*(voltage + card->vOffset));

        addr1 = card->baseAddr + (channel << 1);

        outpw(addr1, count);

    }

}
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/*---------------------------------------------------------------------------

 *                   Source code for DACChannel class

 *--------------------------------------------------------------------------*/

/***** Setup for Dac channel *****/

void DACChannelInit(struct DACChannel *chan, struct DAC *Card)

{

 float min, max;

    if (chan->channelNumber >= Card->nChannels) {

        printf("DACCard: channel %d is out of range\n", chan->channelNumber);

    }

    else

    chan->addr = Card->baseAddr + (chan->channelNumber << 1);

    if (chan->min == chan->max) {

        min = Card->nLimit;

        max = Card->pLimit;

        chan->gain = (float)(Card->maxCount)/(max - min);

    }

    else {

    chan->gain = (float)(Card->maxCount)/(chan->maxV - chan->minV);

    }

    chan->offset = -(chan->min);

}

/*--------------------------------------------------------------------------*/

void set(struct DACChannel *Chan, float value)

{

    unsigned short count;

    float checkMin, checkMax;

    if (Chan->max < Chan->minV) {

        checkMin = Chan->maxV;

        checkMax = Chan->minV;

    } else {

        checkMax = Chan->maxV;

        checkMin = Chan->minV;

    }

    if (value > checkMax || value < checkMin) {

        if (errorChecking)

            printf("DACChannel:  Value %1.3f is out of range\n", value);

        value = (value > Chan->maxV) ? Chan->maxV : Chan->minV;

    }

    count = (unsigned short)(Chan->gain*(value + Chan->offset));

    outpw(Chan->addr, count);

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}
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#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Abbreviated Instrument Help File

function ph_inst(airspeed,altitude,pitch,roll,yaw,fz,alpha,beta,l_rpm,r_rpm,h_dot,fpitch,froll,fyaw)

%ph_inst.c Simulink/RTW s-function pheagle Flight sim output block

%

%  ph_inst(airspeed,altitude,pitch,roll,yaw,fz,alpha,beta,l_rpm,r_rpm,h_dot,fpitch,froll,fyaw)

%  This function sends commands to the instruments through a A to D

%  card. This block is a basic set of the outputs for the PhEagle

%  cab. The block includes outputs for the stick force system. All

%  the out put is being handled with the output blocks to keep the

%  number of duplicat functions to a minimum.

%

%  The range and nominal units for the inputs are given any

%  conversion is left up to the user. Any non-standard units

%  should be noted to the pilot trying to interpret the instruments.

%

%inputs: channel, gauge, range, input units, (output units)

%  0 Airspeed - 0 - 700, knots

%  1 Altitude - 0 - 60,000, feet

% 2 pitch8Ball(Pitch angle theta), +-Pi/2, rad, (deg)

%  3 roll8Ball (Roll angle phi), +- Pi, rad, (deg)

%  4 yaw8Ball(Yaw angle psi), +- Pi (deg)

%  4 dirGyro (Yaw angle psi), +- Pi (deg)

%  5 g meter Nz (g’s) -4 +9 (g’s)

% 6 aoaMeter (Alpha - angle of attack) -10 40, degrees, (deg)

% 7 sidslipAngle (Beta - side slip) +-15 degrees, (deg)

%  8 Left engine rpm 110 10 (percent rpm)

%  9 Right engine rpm 10 110 (percent rpm)

%  10 Vertical Speed Indicator +- 6000 feet/min, (ft/min)

%     Stick forces: CAUTION Pilot must be in CAB when used.

%  11 pitch force +-1, (lbs)

%  12 roll force +-1, (lbs)

%  13 yaw force +-1, (lbs)

%

%

%  NOTE: this is a help block only there is no function

%  attached to this m-file

%

%   Doug Hiranaka 9-27-98

%   Copyright (c) 1998 by Penguin Aeronautics.



132

Abbreviated Stick D/A Simulink S-function

/****************************************************************************

*  MODULE:    ph_stick.c

*

*  AUTHOR(S): Fritz Anderson / Doug Hiranaka

*

*  DATE:      September 25, 1998

*

*  Copyright (c) ALL RIGHTS RESERVED

*  Cal Poly San Luis Obispo 1998

*

*  REVISION HISTORY:

*

*  REV AUTHOR DATE      DESCRIPTION

*  0   crf    11-5-97   Creation cabtest.cpp

*  1   dkh    6-11-98   reduced to stick only

*  2   dkh    7-11-98   put into s-mex format

*

* S-mex: See simulink/src/sfuntmpl.doc

*

* S-mex Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.3

*

* This S-function block Reads the commanded stick position from the

* PhEagle flight sim cab. This is the a basic version of the inputs

* from the Sim cab sending out only the stick, pedal and throttle position

* from the cab. The forces are set in the instrument block - ph_inst.c

*

****************************************************************************/

#define S_FUNCTION_NAME ph_stick

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <dos.h>

#include <bios.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <conio.h>

#include <math.h>

#include <stdio.h>

#include "sticki.h"

float oldVals[5];

struct PCLabCard aToD12;

struct ADCChannel rThrottle, lThrottle, pitchPos, rollPos, rudderPos;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)
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{

    ssSetNumSFcnParams(S, 0);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

/*    ssSetNumContStates(S, 0);

    ssSetNumDiscStates(S, 0); */

    ssSetNumInputPorts(S, 0);

/*    ssSetInputPortWidth(S, 0, 0); */

/*    ssSetInputPortDirectFeedThrough(S, 0, 1); */

    if (!ssSetNumOutputPorts(S,1)) return;

    ssSetOutputPortWidth(S, 0, 5);

    /* Stick, rudder, and throttles */

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START   /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ========================================

 * Abstract:

 *    Initialize the da cards.

 */

static void mdlStart(SimStruct *S)

{

    unsigned short int addr;

    addr=0x220;

    aToD12.addr=0x220;

    aToD12.maxADCount=4095;

    aToD12.minADVoltage=-5.0;

    aToD12.maxADVoltage=5.0;

    aToD12.nADChannels=16;

    aToD12.nDAChannels=2;

    aToD12.base= addr;

    aToD12.cnt0= addr +  0;

    aToD12.cnt1=addr +  1;

    aToD12.cnt2=addr +  2;

    aToD12.cntCtrl=addr +  3;

    aToD12.da1Low=addr +  4;

    aToD12.da1High=addr +  5;
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    aToD12.da2Low=addr +  6;

    aToD12.da2High=addr +  7;

    aToD12.adLow=addr +  4;

    aToD12.adHigh=addr +  5;

    aToD12.diLow=addr +  6;

    aToD12.diHigh=addr +  7;

    aToD12.cli=addr +  8;

    aToD12.gainCtrl=addr +  9;

    aToD12.muxCtrl=addr + 10;

    aToD12.modeCtrl=addr + 11;

    aToD12.softAD=addr + 12;

    aToD12.doLow=addr + 13;

    aToD12.doHigh=addr + 14;

    /* ADCChannel */

    rThrottle.cNumber  = 0;

    rThrottle.minV = 0.0;

    rThrottle.maxV = 1.0;

    lThrottle.cNumber  = 1;

    lThrottle.minV = 0.0;

    lThrottle.maxV =  1.0;

    pitchPos.cNumber  = 2;

    pitchPos.minV = -1.0;

    pitchPos.maxV =  1.0;

    rollPos.cNumber  = 7;

    rollPos.minV = -1.0;

    rollPos.maxV =  1.0;

    rudderPos.cNumber  = 12;

    rudderPos.minV = -1.0;

    rudderPos.maxV =  1.0;

    /* Set up for the card and the channels */

    PCLabCardInit(&aToD12);

    ADCChannelInit(&rThrottle, &aToD12);

    ADCChannelInit(&lThrottle, &aToD12);

    ADCChannelInit(&pitchPos, &aToD12);

    ADCChannelInit(&rollPos, &aToD12);

    ADCChannelInit(&rudderPos, &aToD12);

}

#endif /* MDL_START */

#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */

#if defined(MDL_INITIALIZE_CONDITIONS)

/* Function: mdlInitializeConditions ========================================

 * Abstract:

 *    Initialize the state. Note, that if this S-function is placed

 *    with in an enabled subsystem which is configured to reset states,

 *    this routine will be called during the reset of the states.

 */

static void mdlInitializeConditions(SimStruct *S)

{

   }
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#endif /* MDL_INITIALIZE_CONDITIONS */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *         simply passes states y[n] = x[n]

 *

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

    real_T            *y    = ssGetOutputPortRealSignal(S,0);

    float newVal;

      newVal = doConversion(&pitchPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[0];

      oldVals[0] = newVal;

      y[0] = (int)newVal;

      newVal = doConversion(&rollPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[1];

      oldVals[1] = newVal;

      y[1] = (int)(-newVal);

      newVal = doConversion(&rudderPos,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[2];

      oldVals[2] = newVal;

      y[2] = (int)(-newVal);

      newVal = doConversion(&rThrottle,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[2];

      oldVals[3] = newVal;

      y[3] = (int)newVal;

      newVal = doConversion(&lThrottle,&aToD12);

      newVal = 0.4*newVal + 0.6*oldVals[2];

      oldVals[4] = newVal;

      y[4] = (int)newVal;

}

#define MDL_UPDATE  /* Change to #undef to remove function */

#if defined(MDL_UPDATE)

   /* Function: mdlUpdate ======================================================

    * Abstract:

    *    This function is called once for every major integration time step.

    *    Discrete states are typically updated here, but this function is useful

    *    for performing any tasks that should only take place once per

    *    integration step.

    */

   static void mdlUpdate(SimStruct *S, int_T tid)

   {

   }

#endif /* MDL_UPDATE */

#define MDL_DERIVATIVES  /* Change to #undef to remove function */

#if defined(MDL_DERIVATIVES)

   /* Function: mdlDerivatives =================================================



136

    */

   static void mdlDerivatives(SimStruct *S)

   {

   }

#endif /* MDL_DERIVATIVES */

/*-------------------------------------------------------------------------*/

void PCLabCardInit(struct PCLabCard *card)

{

/*    dCard = new DACCard(12, card->da1Low, 0.0, 5.0, 2, 0.0);

    if (!dCard) printf("PCLabCard:  Unable to allocate memory for DAC\n"); */

    outportb(card->gainCtrl, 0x00);

    outportb(card->modeCtrl, 0x01);

}

/*-------------------------------------------------------------------------*/

float doConversion(struct ADCChannel *Chan, struct PCLabCard *Card)

{

    float value;

    unsigned short bHigh, bLow, flag = 1;

    if (Chan->cNumber >= Card->nADChannels)

        printf("PCLabCard: Analog channel %d is out of range\n", Chan->cNumber);

    outportb(Card->muxCtrl, Chan->cNumber);

    outportb(Card->softAD, 0xff);

    delay(1);

    while (flag) {

        bHigh = inportb(Card->adHigh);

        bLow  = inportb(Card->adLow);

        flag = bHigh & 0x10;

    }

    Chan->adcount= (bHigh << 8) | (bLow & 0x00ff);

    value = Chan->gain*(float)Chan->adcount + Chan->offset;

    return value;

}

/*-------------------------------------------------------------------------*/

/*                   Source code for ADCChannel class                      */

/*-------------------------------------------------------------------------*/

void ADCChannelInit(struct ADCChannel *chan, struct PCLabCard *card)

{

    float value;

    chan->adcount=0;

    if (chan->minV == chan->maxV) {

        chan->minV = card->minADVoltage;

        chan->maxV = card->maxADVoltage;

    }

    chan->gain = (chan->maxV - chan->minV)/(float)(card->maxADCount);

    chan->offset = chan->minV;

    value = chan->gain*(float)chan->adcount + chan->offset;

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.
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 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Header file for Stick S-functions

//---------------------------------------------------------------------------

//  MODULE:    sticki.h

//

//  AUTHOR(S): Fritz Anderson/Douglas Hiranaka

//

//  DATE:      April 1, 1997

//

//  Copyright (c) by Systems Technology Incorporated ALL RIGHTS RESERVED

//  The data and methods contained in this document are proprietary to

//  Systems Technology Incorporated.

//

//  REVISION HISTORY:

//

//  REV AUTHOR DATE    DESCRIPTION

//  0   fga    4-1-97  Creation

//  1   dh     9-14-98 converted to c

//---------------------------------------------------------------------------

#ifndef _sticki_h

#define _sticki_h

#include <conio.h>

#ifdef _MSVC_

#define inport(addr) _inpw(addr)

#define inportb(addr) _inp(addr)

#define outportb(addr, val) _outp(addr, val)

#endif

#define inportb(addr) inp(addr)

#define outportb(addr, val) outp(addr, val)

//---------------------------------------------------------------------------

struct PCLabCard{

unsigned short int addr;

/* register addresses */

unsigned short maxADCount,

    minADVoltage, maxADVoltage,

    nADChannels,  nDAChannels,

    base,         cnt0,

    cnt1,         cnt2,

    cntCtrl,      da1Low,

    da1High,      da2Low,

    da2High,      adLow,

    adHigh,       diLow,

    diHigh,       cli,

    gainCtrl,     muxCtrl,

    modeCtrl,     softAD,

    doLow,        doHigh;

};

/* remember to cut an paste the da code requred */

/*-------------------------------------------------------------------------*/
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struct ADCChannel{

short cNumber;

float minV;

float maxV;

unsigned short adcount;

float gain;

float offset;

};

void PCLabCardInit(struct PCLabCard *card);

float doConversion(struct ADCChannel *Chan, struct PCLabCard *Card);

void ADCChannelInit(struct ADCChannel *chan, struct PCLabCard *card);

/*-------------------------------------------------------------------------*/

#endif
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Abbreviated Stick Help file

function [pitch,roll,yaw,r_throttle, l_throttle]=ph_stick()

%ph_stick.c Simulink/RTW s-function Pheagle Flight sim cab input.

%

%  [pitch,roll,yaw,r_throttle, l_throttle]=ph_stick()

%  This is a basic input block that reads stick, pedal and throttle

% positions from the Pheagle sim cab. The forces are done with

%  the instrument/output block so that all the input and all the

%  output are done in the same blocks.

%

%  The limits for the stick output are set at +-1 so

%  any other limits can be set using a gain block to alter the

%  control signal comming out.

%

%outputs:

% pitch command angle +- 1

% roll command angle +- 1

% yaw command angle +- 1

%  right throttle - 0 to 1

%  left throttle - 0 to 1

%

%  NOTE: this is a help block only there is no function

%  attached to this m-file

%

%   Doug Hiranaka 9-27-98

%   Copyright (c) 1998 by Penguin Aeronautics.
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Six Degree of Freedom Point mass Non-Linear Simulink S-function

/*

 * File : sixdof1.c

 * Abstract:

 *  This C-file S-function is the basis for a 6 degree of freedom non-linear

 * equation of motion point mass simulator.

 *

 * This program is free to copy and distribute for educational purposes as long

 * as this notice is included.

 *

 *   Doug Hiranaka 7/96 Original coding

 *                 9/98 Converted to S-function

 *                 11/05/98 Added SAD file input

 *                 11/21/98 Added drag, thrust

 *                 12/20/98 Added full state output, force and moment input

 *                 12/30/98 Added Wind2Body()

 *   Copyright (c) 1996-98 Cal Poly State University

 *

 * See simulink/src/sfuntmpl.doc

 *

 * Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

 * $Revision: 1.3 $

 */

#define S_FUNCTION_NAME sixdof1

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

/*========================================================================*

 * Number of S-function parameters and macros to access from the simstruct *

 *========================================================================*/

#define NUM_PARAMS        (1)

#define INPUT_FILE_PARAM       (ssGetSFcnParam(S,0))

/*==================================================*

 * Macro to access the S-function parameter values *

 *==================================================*/

#define SAD_FILE_NAME  mxGetString(INPUT_FILE_PARAM,fname,99)

#define N_COLS  100  /* max number of characters per line in input file */

#define readline(c, f) if (!fgets(c, N_COLS, f)) {free(c); printf("Not enough memory");}

void Accelerate( );

void ForcesMoments( );

void read_derivs(char *fname, double *dp);

void UpdateState( );

void Wind2Body(float FxWind, float FyWind, float FzWind, double AirSpeed);

#define pi 3.14159

#define g 32.17   /***** (ft/sec^2) *****/
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#define Deg2Rad 0.01745329

#define Rad2Deg 57.2957795

#define TwicePi 2.0*pi

#define HalfPi pi/2.0

char fname[100];

double dp[50];

/***** properties *****/

float Rho, Mass, Ixx, Iyy, Izz, Ixz, Ixy, Iyz, Area, Span, Chord;

/***** states *****/

float u, v, w, p, q, r, Theta, Phi, Psi, xx, yy, zz, Alpha, Beta, dt;

float STheta, SPhi, SPsi, CTheta, CPhi, CPsi, TTheta, SecTheta;

/***** derivatives *****/

float CL, CD, CLAlpha, CDAlpha, CmAlpha, CLAlphaDot, CmAlphaDot,

      CLq, Cmq, CLm, CDM, CmM, CLDelE, CmDelE, Cm0, CyBeta, ClBeta,

      CnBeta, Clp, Cnp, Clr, Cnr, ClDelA, CnDelA, CyDelR, ClDelR, CnDelR;

/***** Controls *****/

float Deflect_Elevator, Deflect_Aileron, Deflect_Rudder;

/***** Forces moments *****/

static float Fx, Fy, Fz, PitchingMoment, RollingMoment, YawingMoment;

static double Thrust;

/***** Accelerations *****/

float pDot, qDot, rDot, uDot, vDot, wDot;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, NUM_PARAMS);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

#ifdef oldtype

    ssSetNumContStates(S, 0);

    ssSetNumDiscStates(S, 0);

#endif

    if (!ssSetNumInputPorts(S, 1)) return;

  ssSetInputPortWidth(S, 0, 10);

/*ssSetNumInputs(S, 3); */

    /* ssSetDirectFeedThrough(S,1);*/

    ssSetInputPortDirectFeedThrough(S, 0, 1);

    if (!ssSetNumOutputPorts(S,1)) return;

  ssSetOutputPortWidth(S, 0, 20);

    /*ssSetNumOutputs(S, 6);*/

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:
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 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */

#if defined(MDL_INITIALIZE_CONDITIONS)

/* Function: mdlInitializeConditions ========================================

 * Abstract:

 *    Initialize the state. Note, that if this S-function is placed

 *    with in an enabled subsystem which is configured to reset states,

 *    this routine will be called during the reset of the states.

 */

static void mdlInitializeConditions(SimStruct *S)

{

   float u0;

   SAD_FILE_NAME;

   /*read_derivs("navion.tsf", dp); *//***** load the design parameters *****/

read_derivs(fname, dp);

   /***** set up physical attributes of the aircraft *****/

Mass = dp[7]/32.2;  /* mass (sl) */

Ixx  = dp[8]; /* Inertia about x axis: integral (y^2+z^2) dm (sl -ft^2) */

   Iyy  = dp[9]; /* Inertia about y axis: (sl -ft^2) */

   Izz  = dp[10]; /* Inertia about z axis: (sl -ft^2) */

   Ixz  = dp[11];    /* Ixz integral (x z) dm  (sl -ft^2) */

   Ixy  = 0.0;    /* Ixy integral (x y) dm  (0.0 in this version)(sl -ft^2) */

   Iyz  = 0.0;    /* Iyz integral (y z) dm  (0.0 in this version)(sl -ft^2) */

   /* These are the initial values of the state vector: */

   Rho=dp[1];

   u0 = dp[2]; /* Velocity component in body x direction        (ft/sec) */

   v = 0.0;    /* Velocity component in body y direction        (ft/sec) */

   w = 0.0;    /* velocity component in body z direction        (ft/sec) */

   p = 0.0;    /* roll rate                                     (rad/sec) */

   q = 0.0;    /* pitch rate                                    (rad/sec) */

   r = 0.0;    /* yaw rate                                      (rad/sec) */

   Theta = 0.0;/* body pitch angle                              (rad) */

   Phi = 0.0;  /* roll angle                                    (rad) */

   Psi = 0.0;  /* Yaw angle                                     (rad) */

   xx = 0.0; /* absolute x position of the c.g.               (ft) */

yy = 0.0;

zz = -dp[0];

Area = dp[4];/* Reference area (s)(usualy wing area)          (ft) */

Span = dp[5]; /* Reference span (b)                            (ft) */

Chord = dp[6]; /* Reference chord (c)(usualy MAC)               (ft) */

/* Stability derivatives

 *  All derivatives are dimensionless. Ref. Airforce - DATCOM

 *  Alpha and Beta and control derivatives are per radian.

 * forcesmoments has been modified to use the Airforce DATCOM techniques

  * The data and conversion use the Navion example in

 * "Flight Sability and Control" Robert C. Nelson McGraw-Hill Inc. 1989 */
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/* Parameter    Value           Description

 * Name

 *----------    -----           -----------

 *   Dimensionless stability derivatives (logitudinal) */

CL         =  dp[12];  /* Lift */

CD         =  dp[13];  /* Drag */

CLAlpha    =  dp[24]; /* Lift curve slope (per radian) */

CDAlpha    =  dp[27];  /* Drag curve slope */

CmAlpha    =  dp[18]; /* Pitching moment curve slope*/

CLAlphaDot = dp[25];

CmAlphaDot = dp[19];  /* Pitching moment to angle of attack rate */

CLq        = dp[26];   /* Change in lift to pitch rate */

Cmq        = dp[20];  /* Pitch damping */

CLm        = 0.0;

CDM        =  0.0;

CmM        =  0.0;

CLDelE     =  dp[30]; /* heave to elevator */

 CmDelE     =  dp[32]; /* Pitch control to elevator (Note sign - -> up) */

/* Cm0        = dp[15]; */

/*   Dimensionless stability derivatives (lateral) */

CyBeta     = dp[43]; /* Sway */

ClBeta     = dp[33]; /* roll rate to beta dihedral */

CnBeta     = dp[38]; /* yaw rate to beta */

Clp        = dp[34];  /* roll damping */

Cnp        = dp[39];/* yaw moment to roll rate */

Clr        = dp[35]; /* roll moment to yaw rate */

 Cnr        = dp[40]; /* yaw damping */

ClDelA     = dp[36]; /* roll control */

CnDelA     = dp[41];/* yaw due to aileron - adverse yaw */

CyDelR     = dp[47]; /* sway to rudder */

ClDelR     = dp[37]; /* roll rate due to rudder */

CnDelR     = dp[42]; /* yaw due to rudder */

Beta = 0.0; /***** Beta is the Side slip angle *****/

Alpha = 0.0;

u = u0*cos(Beta)*cos(Alpha);

v = u0*sin(Beta);

w = -u0*sin(Alpha);

Thrust = CD*.5*Rho*Area*u0*u0;/***** trim thrust = drag *****/

   Deflect_Rudder = 0.0; /***** initialize *****/

   Deflect_Aileron = 0.0;

   Deflect_Elevator = 0.0;

   Alpha = 0.0;

   Beta = 0.0;

/***** pre-calculate the trig functions *****/

/***** theta - pitch angle, psi - yaw angle, phi - roll angle *****/

Theta=0;

Psi=0;

Phi=0;

STheta=sin(Theta);

SPhi=sin(Phi);

SPsi=sin(Psi);

CTheta=cos(Theta);

CPhi=cos(Phi);
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CPsi=cos(Psi);

TTheta=tan(Theta);

SecTheta=1.0;

if (CTheta > 1e-6)

   SecTheta = 1.0/CTheta;

/*  u_Trim = u0;

 UpdateState();*/

}

#endif /* MDL_INITIALIZE_CONDITIONS */

/* ENTRY POINT FOR FLIGHT MODEL LOOP

 * This function takes as parameters references to a state_vect structure

 * containing the control input from the current pass, as well as the

 * values for all other aircraft data from the previous pass. */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

   /* Function: mdlOutputs ======================================================

    * Abstract:

    *    This function is called once for every major integration time step.

    *

    * Control vector:

    * Deflect_Elevator = uPtrs[0]

    * Deflect_Aileron = uPtrs[1]

   * Deflect_Rudder = uPtrs[2]

    * Rho = uPtrs[3]

    * Fx = uPtrs[4]

 * Fy = uPtrs[5]

 * Fz = uPtrs[6]

 * PitchingMoment = uPtrs[7]

 * RollingMoment = uPtrs[8]

 * YawingMoment = uPtrs[9]

 *

    * Output vector values:

    *   y[0] = xx

    *   y[1] = yy

    *   y[2] = zz

    *   y[3] = Psi

    *   y[4] = Theta

    *   y[5] = Phi

 *   y[6] = u

 *   y[7] = v

 *   y[8] = w

 *   y[9] = p

 *   y[10]= q

 *   y[11]= r

 *   y[12]= Alpha

 *   y[13]= Beta

    *   y[14]= pDot



146

 *   y[15]= qDot

  *   y[16]= rDot

 *   y[17]= uDot

 *   y[18]= vDot

    *   y[19]= wDot

    *

    */

    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

    real_T            *y    = ssGetOutputPortRealSignal(S,0);

    time_T stepSize;

   stepSize = ssGetStepSize(S);

    dt=stepSize;

    Deflect_Elevator = *uPtrs[0];/* take in values from uPtrs */

 Deflect_Aileron = *uPtrs[1];

 Deflect_Rudder = *uPtrs[2];

    Rho = *uPtrs[3];

    Fx = *uPtrs[4];

 Fy = *uPtrs[5];

 Fz = *uPtrs[6];

 PitchingMoment = *uPtrs[7];

 RollingMoment = *uPtrs[8];

 YawingMoment = *uPtrs[9];

    ForcesMoments( );           /* find the current rates of change */

    Accelerate( );

    UpdateState( );               /* apply them to current rotations */

    y[0] = xx; /* send out values through the y vector */

  y[1] = yy;

 y[2] = zz;

 y[3] = Psi;

 y[4] = Theta;

 y[5] = Phi;

    y[6] = u;

    y[7] = v;

    y[8] = w;

    y[9] = p;

    y[10]= q;

    y[11]= r;

    y[12]= Alpha;

    y[13]= Beta;

    y[14]= pDot;

    y[15]= qDot;

    y[16]= rDot;

    y[17]= uDot;

    y[18]= vDot;

    y[19]= wDot;

   }

/* This function models the forces and moments acting on the aircraft

 * first the aircraft is treated as a point mass and accelerated linearly

 * then rotational properties are applied and the mass becomes three

 * dimensional and is rotated. */

void ForcesMoments( )

{



147

    static float OldAlpha, AlphaDot, Alpha_Pert,

    Alpha_Trim, Beta_Pert, Beta_Trim, u_Pert,  u_Trim,

    Two_u, pHat, qHat, rHat,

    AlphaDotHat, Alt, QS;

    static double TrueSpeed, AirSpeed;

    static float FxWind, FyWind, FzWind;

/*  float Cx=0.0; */

    float Cy=0.0;

  float Cz=0.0;

 float Cl=0.0;

 float Cm=0.0;

 float Cn=0.0;

/***** initialize environment *****/

 OldAlpha = Alpha;

  Alpha=atan(w/u);

 Beta=atan(v/(sqrt(u*u+w*w)));

 AlphaDot = (Alpha - OldAlpha)/dt;

 Alpha_Pert = Alpha;

 Beta_Pert = Beta;

#ifdef junk

 Alpha_Pert = Alpha - Alpha_Trim;

 Beta_Pert = Beta - Beta_Trim;

 u_Pert = u - u_Trim;

#endif

 TrueSpeed=sqrt(u*u+v*v+w*w);

 AirSpeed=sqrt(u*u+v*v+w*w);

/***** set up variable to dimensionalize derivvatives *****/

 Two_u = 2.0 * AirSpeed;

 pHat=p*Span/Two_u;

 qHat=q*Chord/Two_u;

 rHat=r*Span/Two_u;

  AlphaDotHat =AlphaDot*Chord/Two_u;

 Alt= -zz; /***** altitude - simple atmospheric model *****/

   FxWind=0;

   FyWind=0;

   FzWind=0;

   /* Rho=rhoSAD; */ /***** change this to read in from the inport *****/

    QS=0.5*Rho*AirSpeed*AirSpeed*Area; /***** dynamic press - q * area *****/

/***** Compute the force in the Drag [x] direction Wind axis excluding controls *****/

 /* CD=0; */

 FxWind = -(CD+CDAlpha*Alpha_Pert)*QS;

 /***** Compute the force in the Y direction Wind axis excluding controls *****/

 FyWind =(CyBeta*Beta_Pert)*QS;

 /***** Compute the force in the Lift [z] direction - wind axis excluding controls *****/

 FzWind = -(CL+CLAlpha*Alpha_Pert+CLAlphaDot*AlphaDotHat+CLq*qHat)*QS;

 /***** Compute the pitching moment excluding controls. *****/

 Cm0=0.0;

 PitchingMoment+=(Cm0+CmAlpha*Alpha_Pert+CmAlphaDot*AlphaDotHat+Cmq*qHat)*QS*Chord;
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 /***** Compute the rolling moment excluding controls. *****/

 RollingMoment+=(ClBeta*Beta_Pert+Clp*pHat+Clr*rHat)*QS*Span;

 /***** Compute the yawing moment excluding controls. *****/

 YawingMoment+=(CnBeta*Beta_Pert+Cnp*pHat+Cnr*rHat)*QS*Span;

 /***** Compute the forces and moments due to controls deflections and

  * rates. This includes throttle setting effects. This routine

  * modifies the already computed values of the forces and moments in

     * wind axis. ******/

 /***** Controls done here *****/

 Cy = CyDelR*Deflect_Rudder;

 Cz = CLDelE*Deflect_Elevator;

 Cl = ClDelA*Deflect_Aileron+ClDelR*Deflect_Rudder;

 Cm = CmDelE*Deflect_Elevator;

 Cn = CnDelA*Deflect_Aileron+CnDelR*Deflect_Rudder;

 /*Fx=Fx+Cx*QS;*/ /*****dimensionalize and add the control forces *****/

 FyWind +=Cy*QS;

 FzWind -=Cz*QS; /***** Lift caused by elevator - Lift is negative z *****/

 RollingMoment+=Cl*QS*Span;

 PitchingMoment+=Cm*QS*Chord;

 YawingMoment+=Cn*QS*Span;

    Wind2Body(FxWind, FyWind, FzWind, AirSpeed);

 Fx=Fx + Thrust; /***** Thrust force Body axis *****/

}

void Accelerate( )

{

  /* load deltaVect struct with delta change values for roll, pitch, and

 yaw based on control position and airspeed */

  uDot=Fx/Mass-g*STheta-q*w+r*v;

  vDot=Fy/Mass+g*CTheta*SPhi-r*u+p*w;

  wDot=Fz/Mass+g*CTheta*CPhi-p*v+q*u;

  /***** tau=I*Thetadot -> Thetadot=tau/I - w x H *****/

  pDot=(q*r*(Iyy-Izz)/Ixx+(RollingMoment/Ixx)+(Ixz/Ixx)*(q*(p*((Ixx-Iyy)/Izz)-

r*(Ixz/Izz)+p)+YawingMoment/Izz))*(1/(1-(Ixz/Ixx)*(Ixz/Izz)));

  qDot=p*r*(Izz-Ixx)/Iyy + PitchingMoment/Iyy+(r*r-p*p)*Ixz/Iyy;

  rDot=p*q*(Ixx-Iyy)/Izz+(pDot-q*r)*(Ixz/Izz)+YawingMoment/Izz;

}

/* This function applies the current angular rates of change to the
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 * current aircraft rotations, and checks for special case conditions

 * such as pitch exceeding +/-90 degrees */

void UpdateState( )

{

    float xDot, yDot, zDot, PsiDot, ThetaDot, PhiDot;

    static float OlduDot, OldvDot, OldwDot, OldpDot,

    OldqDot, OldrDot, OldPhiDot, OldThetaDot, OldPsiDot,

    OldxDot, OldyDot, OldzDot;

/***** Initialize the previous velocities for the integrator *****/

     OldxDot=0.0;

   OldyDot=0.0;

 OldzDot=0.0;

 OlduDot=0.0;

 OldvDot=0.0;

 OldwDot=0.0;

 OldpDot=0.0;

 OldqDot=0.0;

 OldrDot=0.0;

 Fx=0.0; /***** Initialize the force and moment variables. *****/

 Fy=0.0;

 Fz=0.0;

 PitchingMoment=0.0;

 RollingMoment=0.0;

 YawingMoment=0.0;

    u+=(3.0*uDot-OlduDot)/2.0*dt;

    v+=(3.0*vDot-OldvDot)/2.0*dt;

    w+=(3.0*wDot-OldwDot)/2.0*dt;

    p+=(3.0*pDot-OldpDot)/2.0*dt;

    q+=(3.0*qDot-OldqDot)/2.0*dt;

    r+=(3.0*rDot-OldrDot)/2.0*dt;

    /***** Precalculate trig functions *****/

    STheta=sin(Theta);

    SPhi=sin(Phi);

    SPsi=sin(Psi);

    CTheta=cos(Theta);

    CPhi=cos(Phi);

    CPsi=cos(Psi);

    TTheta=STheta/CTheta;

    SecTheta=1.0;

    if (CTheta!=0.0)

        SecTheta = 1.0/CTheta;

    PhiDot=p+(q*SPhi+r*CPhi)*TTheta; /***** This is the Euler angle transformation *****/

    ThetaDot=q*CPhi-r*SPhi; /***** from body to world coordinates *****/

    PsiDot=(q*SPhi+r*CPhi)*SecTheta;

    /***** This transforms velocity components to world coordinates *****/



150

    xDot=u*CTheta*CPsi+v*(SPhi*STheta*CPsi-CPhi*SPsi)+w*(CPhi*STheta*CPsi+SPhi*SPsi);

    yDot=u*CTheta*SPsi+v*(SPhi*STheta*SPsi+CPhi*CPsi)+w*(CPhi*STheta*SPsi-SPhi*CPsi);

    zDot= -u*STheta+v*SPhi*CTheta+w*CPhi*CTheta;

    Theta+=(3.0*ThetaDot-OldThetaDot)/2.0*dt; /***** Euler angle integration *****/

    Phi+=(3.0*PhiDot-OldPhiDot)/2.0*dt;

    Psi+=(3.0*PsiDot-OldPsiDot)/2.0*dt;

    xx+=(3.0*xDot-OldxDot)/2.0*dt; /***** position integration *****/

    yy+=(3.0*yDot-OldyDot)/2.0*dt;

    zz+=(3.0*zDot-OldzDot)/2.0*dt;

    OlduDot=uDot; /***** Update the derivatives for the integrations *****/

    OldvDot=vDot;

    OldwDot=wDot;

    OldpDot=pDot;

    OldqDot=qDot;

    OldrDot=rDot;

    OldThetaDot=ThetaDot;

    OldPhiDot=PhiDot;

    OldPsiDot=PsiDot;

    OldxDot=xDot;

    OldyDot=yDot;

    OldzDot=zDot;

/* handle bounds checking on roll and yaw at 180 or -180 */

 if (Phi > pi)

 Phi = -pi + (Phi - pi);

 else if (Phi < -pi)

 Phi = pi + (Phi - -pi);

 if (Psi > pi)

 Psi = -pi + (Psi - pi);

 else if (Psi < -pi)

 Psi = pi + (Psi - -pi);

 /* handle special case when aircraft pitch passes the vertical */

 if ((Theta > HalfPi) || (Theta < -HalfPi))

 {

 if (Phi >= 0)

 Phi -= pi;

 else if (Phi < 0)

 Phi += pi;

 if (Psi >= 0)

 Psi -= pi;

 else if (Psi < 0)

 Psi += pi;

 if (Theta > 0)

 Theta = (pi - Theta);

       else if (Theta < 0)

          Theta = (-pi - Theta);

 }

}

void Wind2Body(float FxWind, float FyWind, float FzWind, double AirSpeed)

{

float vSquared, AlphaSpeed, combo;
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vSquared = u*u+w*w;

AlphaSpeed = sqrt(vSquared);

combo = -v/(AlphaSpeed*AirSpeed);

Fx += FxWind*u/AirSpeed+FyWind*u*combo-FzWind*w/AlphaSpeed;

Fy += FxWind*v/AirSpeed+FyWind*AlphaSpeed/AirSpeed;

Fz += FxWind*w/AirSpeed+FyWind*w*combo+FzWind*u/AlphaSpeed;

}

/****************************************************************************/

void read_derivs(char *fname, double *dp)

{

   FILE *f;

   char *c;

   int i;

   if (!(f = fopen(fname, "rt"))) {free(c); printf("Could Not open file");}

   if (!(c = (char *)malloc(N_COLS*sizeof(char))));{ printf("Memory not dynamically allocated");}

   for (i = 0; i < 48; i++, dp++)

   {

      readline(c,f);

      *dp = atof(c);

   }

   free(c);

   fclose(f);

}

/****************************************************************************/

/* Function: mdlUpdate =====================================================

 * Abstract:

 *    perform action at major integration time step

 */

static void mdlUpdate(SimStruct *S, int_T tid)

{

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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SAD file: Navion.tsf

2.153           1 Alt1      [ft]

0.00237254      2 Density1  [slugs/ft^3]

175.215           3 U1    175.054    [ft/sec]

0             4 Attitude1 [rad]

184           5 Area      [ft^2]

33.4          6 Span      [ft]

5.7           7 Chord     [ft]

2750          8 Weight    [lbs]

1048          9 Ixx       [slug-ft^2]

3000          10 Iyy       [slug-ft^2]

3530          11 Izz       [slug-ft^2]

0             12 Ixz       [slug-ft^2]

0.41          13 CL1 .41

0.05          14 CD1

0.05          15 CTX1

0             16 Cm1

0             17 CmT1

0             18 Cmu

-0.683        19 Cma

-4.36         20 Cmadothat

-9.96         21 Cmqhat

0             22 CmTu

0             23 CmTa

0             24 CLu

4.44          25 CLa

0.0           26 CLadothat

3.8           27 CLqhat

0.33          28 CDa

0             29 CDu

0.0           30 CTXu

0.355         31 CLdE

0.00          32 CDdE

-0.923        33 CmdE

-0.074        34 CRollbeta Clbeta

-0.41         35 CRollphat Clp -.92

0.107         36 CRollrhat Clr

0.134         37 CRolldA CldA

0.0107        38 CRolldR CldR

0.071         39 Cnbeta

-0.0575       40 Cnphat

-0.125        41 Cnrhat

-0.0035       42 CndA

-0.072        43 CndR

-0.564        44 Cybeta

0.0           45 Cyphat

0.0           46 Cyrhat

0             47 CydA

0.0           48 CydR
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Wind to Body Axis Coordinate Transform

%script wind2body()

%

% function wind2body.m

%

% This script transforms a 3d force vector from the flight path coordinate

% axis to the aircraft body axis through 2 transforms multiplied. The

% function is an extension of McRuer et.al. ch.4 transforming the lift and

% drag vectors calulated in airpath axis to body axis. All forces

% calulated in airpath axis must be transformed to the body axis. The

% Fy was added to the force vector then the transoform was expanded

% to pass the y force through. The final matrix takes all three axis

% forces from airpath to the aircraft body axis system. Without the

% transform the only place a simulation is valid is in trim. Without

% the transform the dynammics are slightly off and the flight path is

% significanly in error. The transform maps some of the lift to drag

% and some of the drag to down (Alpha), and side force (Beta).

%

% This transform must tbe done before any body axis forces eg. thrust

% are added to the system.

%

% Inputs: NA

% Outputs: NA

%

% Usage: wind2body

%

% Doug Hiranaka

% Cal Poly San Luis Obispo

% San Luis Obispo, CA

%% Created: 12/30/98

% Last Modified:

%

%***** Do this twice - once using trig functions and once using

%      trig definitions.

%

% This will be a two axis rotation (A=Alpha, B=Beta, s=sin, c=cos)

% combining: wind to beta

% |  cB sB 0 | Dw

% | -sB cB 0 | Fyw

% |   0  0 1 | Lw

% and: beta to body

% |  cA  0 sA | X1

% |   0  1  0 | Y1

% |  sA  0 cA | Z1

% to get:

% |  cAcB -cAsB -sA | Fxb

% |  sB      cB   0 | Fyb
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% |  sAcB -sAsB  cA | Fzb

% Test data

FxWind = 100;

FyWind = 30;

FzWind = 300;

u=100;

v=50;

w=50;

%***** Trig functions first *****

alpha = atan(w/u);

beta = asin(v/AirSpeed);

%alpha = asin(w/AlphaSpeed)*57.3

%alpha = acos(u/AlphaSpeed)*57.3

%beta = asin(v/AirSpeed)*57.3

%***** just lift and drag *****

FxBody = FxWind*cos(alpha)*cos(beta)-FzWind*sin(alpha);

FyBody = FxWind*sin(beta);

Fzbody = FxWind*sin(alpha)*cos(beta)+FzWind*cos(alpha);

%***** with side force *****

FxBody = FxWind*cos(alpha)*cos(beta)-FyWind*cos(alpha)*sin(beta)-FzWind*sin(alpha)

FyBody = FxWind*sin(beta)+FyWind*cos(beta)

Fzbody = FxWind*sin(alpha)*cos(beta)-FyWind*sin(beta)*sin(alpha)+FzWind*cos(alpha)

%***** Without trig functions *****

% computers are VERY SLOW at trig functions and fast at mult ok at divide

% sA = w/AlphaSpeed

% cA = u/Alphaspeed

% sB = v/Airspeed

% cB = AlphaSpeed/Airspeed

vSquared = u*u+w*w;
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AirSpeed = sqrt(v*v+vSquared);

AlphaSpeed = sqrt(vSquared);

combo = -v/(AlphaSpeed*AirSpeed);

FxBody = FxWind*u/AirSpeed+FyWind*u*combo-FzWind*w/AlphaSpeed

FyBody = FxWind*v/AirSpeed+FyWind*AlphaSpeed/AirSpeed

FzBody = FxWind*w/AirSpeed+FyWind*w*combo+FzWind*u/AlphaSpeed
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Standard Atmosphere Simulink S-function

/* S-function std_atms

 *

 * File : std_atms.c

 *

 * This C-file S-function estimates the values for temperature, pressure,

 * speed of sound, and density from sea level to 35.0 km. Original

 * function written as a AERO 215 assignment.

 *

 * Inputs: Geometric altitude in meters.

 *         Sea level pressure: std = P0=1.013 X 10^5 Nm^2

 *         Temperature at Sea level: std = T0=288 K

 *

 * Outputs: rho

 *          speed of sound

 *          temperature

 *          pressure

 *

 * Douglas Hiranaka

 * Cal Poly San Luis Obispo

 * San Luis Obispo, CA

 *

 * See simulink/src/sfuntmpl.doc

 *

 * Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

 * $Revision: 1.3 $

 * Created 1/28/95 Fortran code

 * Last Modified: 1/4/99 DH converted to c, added hard constant

 * values at the transitions and converted function to S-function.

 */

#define S_FUNCTION_NAME  std_atms

#define S_FUNCTION_LEVEL 2

#include <stdio.h>

#include <math.h>

#include "simstruc.h"

/*========================================================================*

 * Number of S-function parameters and macros to access from the simstruct *

 *========================================================================*/

#define NUM_PARAMS        (2)

#define SEA_LEVEL_TEMPERATURE_PARAM    (ssGetSFcnParam(S,0))

#define SEA_LEVEL_PRESSURE_PARAM       (ssGetSFcnParam(S,1))

/*==================================================*

 * Macro to access the S-function parameter values *

 *==================================================*/

#define BASE_PRESS ((real_T) mxGetPr(SEA_LEVEL_PRESSURE_PARAM)[0])

#define BASE_TEMP ((real_T) mxGetPr(SEA_LEVEL_TEMPERATURE_PARAM)[0])

#define LapseRate1 -0.006489

#define LapseRate2 0.003

#define Y 1.4

#define R 287.05
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double Alt, TempK, Press, Density, VSound, T0,P0;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, NUM_PARAMS);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

    if (!ssSetNumInputPorts(S, 1)) return;

    ssSetInputPortWidth(S, 0, 1);

    ssSetInputPortDirectFeedThrough(S, 0, 1);

    if (!ssSetNumOutputPorts(S,1)) return;

    ssSetOutputPortWidth(S, 0, 4);

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START

#if defined(MDL_START)

/* Function: mdlstart

 * Initialize the state variables

 */

static void mdlStart(SimStruct *S)

{

/***** Value for sea level TEMPERATURE in K. *****/

  T0=BASE_TEMP;

/*  T0=288.16; */

  /***** Value for sea level PRESSURE in N/m^2 *****/

 P0=BASE_PRESS;

/* P0=101325.0; */

 Alt=1.0;

}

#endif /* MDL_START */

/* Function: mdlOutputs =======================================================

 * Abstract: Using this the function as a gateway. Lookup is
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 *           in estimate();

 *

 *   Alt=*uPtrs[0]; meters

 *

 *   y[0] = TempK; Kelvin

 *   y[1] = Press; N/m^3

 *   y[2] = Density; N/kg^3

 *   y[3] = VSound; m/sec

 *

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

    real_T            *y    = ssGetOutputPortRealSignal(S,0);

    Alt=*uPtrs[0];

    estimate();

    y[0] = TempK;

 y[1] = Press;

    y[2] = Density;

    y[3] = VSound;

}

void estimate( ){

  double TBase, PBase;

  /***** Value for sea level TEMPERATURE in K. *****/

  /***** T0=288.16; is std *****/

  /***** Value for sea level PRESSURE in N/m^2 *****/

  /***** P0=101325.0; is std *****/

  /***** Altitude (m) Temp. (K) Press. (N/m^2) Density (N/Kg^3) Acolustic Vel (M/Sec) *****/

  if (Alt<=11000.0){

    TempK=T0+LapseRate1*Alt;

    Press=P0*pow((TempK/T0),(-9.81/(LapseRate1*R)));

  }

  if ((Alt>11000.0) && (Alt<=25000.0)){

    PBase = 22700;

    TempK = 216.66;

    Press = PBase*exp((-9.81*(Alt-11000.0))/(R*TempK));

  }

  if (Alt>25000.0){

    TBase=216.66;

    PBase=2527.3;

    TempK=((Alt-25000.0)*LapseRate2+TBase);

    Press=PBase*pow((TempK/TBase),(-9.81/(LapseRate2*R)));

  }

  Density=(Press/(R*TempK));

  VSound=sqrt(Y*R*TempK);

  return;

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)
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{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Euler Coordinate Transform and Integrator Simulink S-function

/*

 * File : to_euler.c

 * Abstract:

 *  [x,y,Z,psi,theta,phi] = 2_euler(p,q,r,alpha,beta,u,v,w)

 *  returns position vectors x,y,z and euler angles psi, theta and

 *  phi from open or closed loop flight control models. The inputs

 *  required are the old position, the angular rates to be provided

 *  by the flight model, alpha and beta (can be zero) and airspeed

 *  which can be a gain block providing constant airspeed. The

 *  routine stores the position x, y, z states and angle psi, theta,

 *  phi, states for the next integration.

 *  The initial position and angles are input through the s-function

 *  block parameters in the order x, y, z, psi, theta, phi.

 *

 * Inputs: rotation rates body axis - p,q,r [rad/sec]

 *         angle of attack and sideslip - alpha, beta [degrees]

 *         Linear velocity body axis - u, v, w [ft/sec]

 *

 * Outputs: position flat earth - x, y, x [ft]

 *          orientation Euler - Psi, Theta, Phi [rad]

 *

 * Douglas Hiranaka

 * Cal Poly San Luis Obispo

 * San Luis Obispo, CA

 *

 * See simulink/src/sfuntmpl.doc

 *

 * Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

 * $Revision: 1.3 $

 * Created 9/21/98

 */

#define S_FUNCTION_NAME to_euler

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <math.h>

/*========================================================================*

 * Number of S-function parameters and macros to access from the simstruct *

 *========================================================================*/

#define NUM_PARAMS        (6)

#define X_POS_PARAM       (ssGetSFcnParam(S,0))

#define Y_POS_PARAM       (ssGetSFcnParam(S,1))

#define Z_POS_PARAM       (ssGetSFcnParam(S,2))

#define PSI_ANGLE_PARAM   (ssGetSFcnParam(S,3))

#define THETA_ANGLE_PARAM (ssGetSFcnParam(S,4))

#define PHI_ANGLE_PARAM   (ssGetSFcnParam(S,5))

/*==================================================*

 * Macros to access the S-function parameter values *

 *==================================================*/
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#define INIT_X     ((real_T) mxGetPr(X_POS_PARAM)[0])

#define INIT_Y     ((real_T) mxGetPr(Y_POS_PARAM)[0])

#define INIT_Z     ((real_T) mxGetPr(Z_POS_PARAM)[0])

#define INIT_PSI   ((real_T) mxGetPr(PSI_ANGLE_PARAM)[0])

#define INIT_THETA ((real_T) mxGetPr(THETA_ANGLE_PARAM)[0])

#define INIT_PHI   ((real_T) mxGetPr(PHI_ANGLE_PARAM)[0])

/* States - not using the simstruct to save the states*/

   float X; /* Previous locations to update*/

float YY;

float Z;/* altitude */

   float Psi; /* euler yaw angle - RAD*/

float Theta; /* euler angle */

float Phi;/* euler angle */

   float OldThetaDot;

   float OldPhiDot;

   float OldPsiDot;

   float OldxDot;

   float OldyDot;

   float OldzDot;

   const float TwicePi = 3.1415927*2.0;

const float Deg2Rad = 0.01745329;

   const float Rad2Deg = 57.2957795;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, NUM_PARAMS);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

    ssSetNumContStates(S, 0);

    ssSetNumDiscStates(S, 0);

    if (!ssSetNumInputPorts(S, 1)) return;

    ssSetInputPortWidth(S, 0, 8);

    ssSetInputPortDirectFeedThrough(S, 0, 1);

    if (!ssSetNumOutputPorts(S,1)) return;

    ssSetOutputPortWidth(S, 0, 6);

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================



162

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START

#if defined(MDL_START)

/* Function: mdlstart

 * Initialize the state variables

 */

static void mdlStart(SimStruct *S)

{

X = INIT_X; /* initial locations feet */

YY = INIT_Y;

Z = INIT_Z;/* negative altitude */

Psi = INIT_PSI*Deg2Rad; /* euler yaw angle - input degs */

Theta = INIT_THETA*Deg2Rad; /* euler angle */

Phi = INIT_PHI*Deg2Rad;/* euler angle */

}

#endif /* MDL_START */

/* Function: mdlOutputs =======================================================

 * Abstract:

 *    inputs:

 *    p = *uPtrs[0]  body roll rate ***** Input in Deg/Sec *****

 *    q = *uPtrs[1]  body pitch rate

 * r = *uPtrs[2]  body yaw rate

 * alpha = *uPtrs[3] angle of attack - set to 0 if supplying v & W

 * beta = *uPtrs[4] side slip - set to 0 if supplying v & W

 * u = *uPtrs[5] If letting this routine do alpha and beta

 *    v = *uPtrs[6] then v and w whould be 0!!!!

 *    w = *uPtrs[7] ***** Ft/Sec *****

 *

 * outputs:

 * y[0] = x position FEET

 * y[1] = y position

 * y[2] = z altitude

 * y[3] = psi - euler yaw ***** OUTput in degrees *****

 * y[4] = theta - euler pitch

 * y[5] = phi - euler roll

 *

 *    states: not using s-function states

 *    x position FEET

 * y position

 * z -altitude

 *    psi - euler yaw ***** Keeps angles in RADIANS ******

 * theta - euler pitch

 * phi - euler roll

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

    int_T             i;
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    InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

    real_T            *y    = ssGetOutputPortRealSignal(S,0);

    time_T stepSize;

   /* Note this will "blow up" if aircraft passes through

       90 degrees Straight up */

   /* Inputs */

float p = *uPtrs[0]; /* body roll rate (per frame) */

float q = *uPtrs[1]; /* body pitch rate (per frame) */

float r = *uPtrs[2];/* body yaw rate (per frame) */

   /* not including rudder-only effects YET!!! */

   float alpha = *uPtrs[3];

   float beta = *uPtrs[4];

   float u = *uPtrs[5]; /* Airspeed body x - forward */

   float v = *uPtrs[6]; /* Airspeed body y - right */

   float w = *uPtrs[7]; /* Airspeed body z - down */

   float uWind, vWind, wWind, sAlpha, cAlpha, sBeta, cBeta;

   float dt;

   /* Outputs */

   float xDot, yDot, zDot, psiDot, thetaDot, phiDot;

   /* pre calculate all the angle trig functions */

   float STheta, SPhi, SPsi;

float CTheta, CPhi, CPsi;

   float TTheta, SecTheta;

   stepSize = ssGetStepSize(S);

   dt = stepSize; /* sec */

   STheta=sin(Theta);

   SPhi=sin(Phi);

   SPsi=sin(Psi);

CTheta=cos(Theta);

   CPhi=cos(Phi);

   CPsi=cos(Psi);

   TTheta = tan(Theta);

   SecTheta=1.0;

   if (CTheta !=0.0)

       SecTheta=1.0/CTheta;

   /* This is the Euler Angle Conversion */

   phiDot = p + (q*SPhi+r*CPhi)*TTheta;

   thetaDot = q*CPhi - r*SPhi;

   psiDot = (q*SPhi+r*CPhi)*SecTheta;

   Theta=fmod(Theta,TwicePi); /***** if angle is greater than 2Pi reduce below 2pi *****/

   Phi=fmod(Phi,TwicePi);

   Psi=fmod(Psi,TwicePi);

   /* Redo the angles to account for alpha and beta

     (where the aircraft is going, not where it is pointed)

     conversion from body to wind axis! */
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   /* calulate the trig functions first */

   sAlpha=sin(alpha);

   cAlpha=cos(alpha);

   sBeta=sin(beta);

   cBeta=cos(beta);

  /* coordinate transform for the velocity and position

     from airspeed body axis to world axis */

   uWind = u*cAlpha*cBeta+v*sBeta+w*sAlpha*cBeta;

   vWind = -u*cAlpha*sBeta+v*cBeta-w*sAlpha*sBeta;

   wWind = -u*sAlpha+w*cAlpha;

   xDot = uWind*CTheta*CPsi+vWind*(SPhi*STheta*CPsi-CPhi*SPsi)+wWind*(CPhi*STheta*CPsi+SPhi*SPsi);

   yDot = uWind*CTheta*SPsi+vWind*(SPhi*STheta*SPsi+CPhi*CPsi)+wWind*(CPhi*STheta*SPsi-SPhi*CPsi);

   zDot = -uWind*STheta+vWind*SPhi*CTheta+wWind*CPhi*CTheta;

   Theta +=(3.0*thetaDot-OldThetaDot)/2.0*dt; /***** Pitch Euler angle integration *****/

   Phi +=(3.0*phiDot-OldPhiDot)/2.0*dt; /* roll */

   Psi +=(3.0*psiDot-OldPsiDot)/2.0*dt; /* yaw */

   OldThetaDot=thetaDot;

   OldPhiDot=phiDot;

   OldPsiDot=psiDot;

   y[3]=Psi; /* Angle output vector - yaw DEGREES */

   y[4]=Theta; /* Pitch */

   y[5]=Phi; /* roll */

   X +=(3.0*xDot-OldxDot)/2.0*dt; /***** position integration *****/

   YY +=(3.0*yDot-OldyDot)/2.0*dt;

   Z +=(3.0*zDot-OldzDot)/2.0*dt;

   y[0] = X; /* Position output vector */

   y[1] = YY;

   y[2] = Z;

   OldxDot=xDot;

   OldyDot=yDot;

   OldzDot=zDot;

}

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */
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#endif
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Euler Transform Help File

function [x,y,Z,psi,theta,phi] = 2_euler(p,q,r,alpha,beta,u,v,w)

%2_euler.c Flight sim angle conversion, and position integrator.

%

%  [x,y,Z,psi,theta,phi] = 2_euler(p,q,r,alpha,beta,u,v,w)

%  returns position vectors x,y,z and euler angles psi, theta and

% phi from open or closed loop flight control models. The inputs

% required are the angular rates to be provided by the flight model,

%  alpha and beta (can be zero) and airspeed components u, v, w

%  which can be a gain block providing constant airspeed. The

% routine stores the position x, y, z states and angle psi, theta,

%  phi, states for the next integration.

%

%  The initial position and angles are input through the s-function

%  block parameters in the order x, y, z, psi, theta, phi. Position

%  in feet and angles in degrees.

%

%  The euler angle conversion:

%  phiDot = p + (q*SPhi+r*CPhi)*TTheta;

%  thetaDot = q*CPhi - r*SPhi;

%  psiDot = (q*SPhi+r*CPhi)*SecTheta;

%

%  This function reduces angles to values between zero and two Pi

%

%  The euler velocity conversion:

%  xDot = u*CTheta*CPsi+v*(SPhi*STheta*CPsi-CPhi*SPsi)+w*(CPhi*STheta*CPsi+SPhi*SPsi);

%  yDot = u*CTheta*SPsi+v*(SPhi*STheta*SPsi+CPhi*CPsi)+w*(CPhi*STheta*SPsi-SPhi*CPsi);

%  zDot = -u*STheta+v*SPhi*CTheta+w*CPhi*CTheta;

%

%inputs:

%  p  body roll rate - nose up***** Input in Deg/Sec *****

%  q  body pitch rate - right wing down

% r  body yaw rate nose right

% alpha angle of attack - set to 0 if supplying v & W

% beta  side slip - set to 0 if supplying v & W

% u  forward If letting this routine do alpha and beta

%  v  right wing then v and w whould be 0!!!!

%  w  down ***** Ft/Sec *****

%

%outputs:

% x position FEET

% y position

% z altitude

% psi - euler yaw - nose right ***** OUTput in degrees *****

%  theta - euler pitch - nose up

% phi - euler roll - right wing down

%

%states: not using s-function states

%  x position FEET

% y position

% z -altitude

%  psi - euler yaw ***** Keeps angles in RADIANS ******

% theta - euler pitch

%  phi - euler roll

%
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%  NOTE: this is a help block only there is no function

%  attached to this m-file

%

%   Doug Hiranaka 7-12-98

%   Copyright (c) 1998 by Penguin Aeronautics.
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Game Joystick Driver Simulink S-function

/****************************************************************************

*  MODULE:    game_stick.c

*

*  AUTHOR(S): Eyal Lebedinsky / Doug Hiranaka

*

*  DATE:      February 11, 1999

*

*  Copyright (c) ALL RIGHTS RESERVED

*  Cal Poly San Luis Obispo 1998

*

*  REVISION HISTORY:

*

*  REV AUTHOR DATE      DESCRIPTION

*

* This was part of the flight simulator ’fly8’.

* Author: Eyal Lebedinsky (eyal@ise.canberra.edu.au).

*  0   EL               Creation joytest.c

*  1   dkh    2-8-99    removed test functions

*  2   dkh    2-11-99   converted into s-mex format

*

* S-mex: See simulink/src/sfuntmpl.doc

*

* S-mex Copyright (c) 1990-1998 by The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.3

*

* This S-function block Reads the commanded stick position from a game

* joystick and sends out values from +-1

*

****************************************************************************/

#define S_FUNCTION_NAME game_stk

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include <stdlib.h>

#include <string.h>

/* #include <conio.h> */

#include <stdio.h>

/* This is part of the flight simulator ’fly8’.

 * Author: Eyal Lebedinsky (eyal@ise.canberra.edu.au). */

#define JS_PORT 0x201

#define JS_TIMEOUT 32000

#define JS_READ inp (JS_PORT)

typedef unsigned short Ushort;

typedef unsigned int Uint;

typedef unsigned long Ulong;

#define READING (JS_TIMEOUT-i)

struct stick {

Ushort a[4];

Ushort b[4];

};
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typedef struct stick STICK;

/* Function: mdlInitializeSizes ===============================================

 * Abstract:

 *   Setup sizes of the various vectors.

 */

static void mdlInitializeSizes(SimStruct *S)

{

    ssSetNumSFcnParams(S, 0);

    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

        return; /* Parameter mismatch will be reported by Simulink */

    }

    ssSetNumInputPorts(S, 0);

/*    ssSetInputPortWidth(S, 0, 0); */

/*    ssSetInputPortDirectFeedThrough(S, 0, 1); */

    if (!ssSetNumOutputPorts(S,1)) return;

    ssSetOutputPortWidth(S, 0, 2);

    /* Stick, rudder, and throttles */

    ssSetNumSampleTimes(S, 1);

    /* Take care when specifying exception free code - see sfuntmpl.doc */

    ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes =========================================

 * Abstract:

 *    Specifiy that we inherit our sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

    ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

    ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_START   /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ========================================

 * Abstract:

 *    Initialize the da cards.

 */

static void mdlStart(SimStruct *S)

{

}

#endif /* MDL_START */

#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */

#if defined(MDL_INITIALIZE_CONDITIONS)

/* Function: mdlInitializeConditions ========================================

 * Abstract:

 *    Initialize the state. Note, that if this S-function is placed

 *    with in an enabled subsystem which is configured to reset states,

 *    this routine will be called during the reset of the states.
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 */

static void mdlInitializeConditions(SimStruct *S)

{

   }

#endif /* MDL_INITIALIZE_CONDITIONS */

static int near

readjoy (STICK *s, int mode, int mask, int nread, int delay)

{

register int i;

register Uint m;

unsigned int t, x1, y1, x2, y2, minx1, miny1, minx2, miny2;

int js, tt, ntimes;

minx1 = miny1 = minx2 = miny2 = 0xffffU; /* avoid compiler warning */

memset (s->a, 0, sizeof (s->a));

for (ntimes = 0;;) {

i = JS_TIMEOUT;

t = READING;

x1 = y1 = x2 = y2 = t;

outp (JS_PORT, 0); /* set trigger */

for (m = mask; m;) {

while (!(~JS_READ & m) && --i)

;

if (!i)

break;

tt = READING;

js = ~JS_READ & m;

if (js & 0x01) {

x1 = tt;

m &= ~0x01;

}

if (js & 0x02) {

y1 = tt;

m &= ~0x02;

}

if (js & 0x04) {

x2 = tt;

m &= ~0x04;

}

if (js & 0x08) {

y2 = tt;

m &= ~0x08;

}

}

if (minx1 > (x1 -= t))

minx1 = x1;

if (miny1 > (y1 -= t))

miny1 = y1;

if (minx2 > (x2 -= t))

minx2 = x2;

if (miny2 > (y2 -= t))

miny2 = y2;

if (++ntimes >= nread) /* read more? */

break;



171

if (0 != (i = delay)) { /* delay? */

tt = 1234;

for (i *= 10; i-- > 0;)

tt *= 19;

}

}

js = m | ~mask;

s->a[0] = (js & 0x01) ? 0 : minx1; /* analog 1 */

s->a[1] = (js & 0x02) ? 0 : miny1; /* analog 2 */

s->a[2] = (js & 0x04) ? 0 : minx2; /* analog 3 */

s->a[3] = (js & 0x08) ? 0 : miny2; /* analog 4 */

js = ~JS_READ;

s->b[0] = !!(js & 0x10); /* button 1 */

s->b[1] = !!(js & 0x20); /* button 2 */

s->b[2] = !!(js & 0x40); /* button 3 */

s->b[3] = !!(js & 0x80); /* button 4 */

return (m);

}

/* Function: mdlOutputs =======================================================

 * Abstract:

 *         simply passes states y[n]

 *

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

   real_T            *y    = ssGetOutputPortRealSignal(S,0);

   int i;

   double XOut, YOut;

Ulong testno;

STICK s[1];

i = 3;

/* for (testno = 1;;) { */

i = readjoy (s, 0, 3, 1, 0);

/* This section calibrates the output for a Kraft KC3 stick */

/* and normalizes the outputs */

      XOut=1-s->a[0]/290.0;

YOut=1-s->a[1]/290.0;

      if (XOut < 0.0) XOut/=2.3;

      if (XOut > 0.0) XOut*=1.048;

      if (YOut < 0.0) YOut/=2.3;

      if (YOut > 0.0) YOut*=1.048;

      y[0] = XOut;

   y[1] = YOut;

/* } */

}

#define MDL_UPDATE  /* Change to #undef to remove function */

#if defined(MDL_UPDATE)

   /* Function: mdlUpdate ======================================================

    * Abstract:
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    *    This function is called once for every major integration time step.

    *    Discrete states are typically updated here, but this function is useful

    *    for performing any tasks that should only take place once per

    *    integration step.

    */

   static void mdlUpdate(SimStruct *S, int_T tid)

   {

   }

#endif /* MDL_UPDATE */

#define MDL_DERIVATIVES  /* Change to #undef to remove function */

#if defined(MDL_DERIVATIVES)

   /* Function: mdlDerivatives =================================================

    */

   static void mdlDerivatives(SimStruct *S)

   {

   }

#endif /* MDL_DERIVATIVES */

/* Function: mdlTerminate =====================================================

 * Abstract:

 *    No termination needed, but we are required to have this routine.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */

#include "simulink.c"      /* MEX-file interface mechanism */

#else

#include "cg_sfun.h"       /* Code generation registration function */

#endif
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Navion Lateral State Space Setup - Archangel

%

%navion lateral state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% used to validate the FASAND code. The A and B matricies were

% obtained from Arcangle 1.0 by inputing the example non-dimensional

% derivatives provided in appendix A of "Flight stability and

% control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 8-98

%   Copyright (c) 1996-98 by Penguin Aeronautics.

ANavionLatA=[ -0.2531035 0.1834322 0        0 -1

               0         0         1        0  0

             -15.86694   0        -8.370129 0  2.1844

               0         0         0        0  1

               4.519665  0        -0.348499 0 -0.75761 ];

ANavionLatB=[ 0          0.0704561

              0          0

             28.73202    2.294273

              0          0

             -0.2228004 -4.583323 ];

ANavionLatC=[ 1 0 0 0 0

              0 1 0 0 0

              0 0 1 0 0

              0 0 0 1 0

              0 0 0 0 1 ];

ANavionLatD=[ 0 0

              0 0

              0 0

              0 0

              0 0 ];

states = {’beta’ ’phi’ ’p’ ’psi’ ’r’};

inputs = {’aileron’ ’rudder’};

output = {’sideslip’ ’bank angle’ ’bank rate’ ’yaw angle’ ’yaw rate’};

aLatSys = ss(ANavionLatA,ANavionLatB,ANavionLatC,ANavionLatD,’statename’,states,...

   ’inputname’,inputs,...

   ’outpurname’,output);
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Navion Longitudianal State Space Setup — Archangle

%

%Navion longitudianl state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% used to validate the FASAND code. The A and B matricies were

% obtained from Arcangle 1.0 by inputing the example non-dimensional

% derivatives provided in appendix A of "Flight stability and

% control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 8-98

%   Copyright (c) 1998-99 by Penguin Aeronautics.

ANavionLonA=[ -0.0448765    6.297068 -32.174 0

              -0.002097989 -2.014955   0     1

               0            0          0     1

               0.01899917  -6.906006   0    -2.974 ];

ANavionLonB=[  0

              -0.1593115

               0

             -11.65435  ];

ANavionLonC=[ 1 0 0 0

              0 1 0 0

              0 0 1 0

              0 0 0 1 ];

ANavionLonD=[ 0

              0

              0

              0 ];

states = {’u’ ’alpha’ ’theta’ ’q’};

inputs = {’elevator’};

output = {’speed’ ’angle of attack’ ’pitch angle’ ’pitch rate’};

aLonSys = ss(ANavionLonA,ANavionLonB,ANavionLonC,ANavionLonD,’statename’,states,...

   ’inputname’,inputs,...

   ’outpurname’,output);
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Navion Complete State Space Setup - Archangel

%

%Navion complete state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% used as a template to set up a state space model in Simulink.

% This script loads the matricies to be used in the simulation.

% The A and B matricies were

% obtained from Arcangle 1.0 by inputing the example non-dimensional

% derivatives provided in appendix A of "Flight stability and

% control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 1-99

%   Copyright (c) 1999 by Penguin Aeronautics.

ANavionLonA=[ -0.0448765 6.297068 -32.174 0

   -0.002097989 -2.014955 0 1

   0 0 0 1

   0.01899917 -6.906006 0 -2.974]

ANavionLonB=[0

   -0.1593115

   0

   -11.65435]

ANavionLonC=[1 0 0 0

   0 1 0 0

   0 0 1 0

   0 0 0 1]

ANavionLonD=[0

   0

   0

   0]

%states = {’u’ ’alpha’ ’theta’ ’q’};

%inputs = {’elevator’}

%output = {’speed’ ’angle of attack’ ’pitch angle’ ’pitch rate’}

%sys = ss(ANavionLonA,ANavionLonB,ANavionLonC,ANavionLonD,’statename’,states,...

%   ’inputname’,inputs,...

%   ’outpurname’,output)

ANavionLatA=[ -0.2531035 0.1834322 0 0 -1

   0 0 1 0 0

   -15.86694 0 -8.370129 0 2.1844

   0 0 0 0 1

   4.519665 0 -0.348499 0 -.75761]
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ANavionLatB=[0 .0704561

   0 0

   28.73202 2.294273

   0 0

   -.2228004 -4.583323]

ANavionLatC=[ 1 0 0 0 0

    0 1 0 0 0

    0 0 1 0 0

    0 0 0 1 0

    0 0 0 0 1]

ANavionLatD=[0 0

   0 0

   0 0

   0 0

   0 0]

%states = {’beta’ ’phi’ ’p’ ’psi’ ’r’};

%inputs = {’aileron’ ’rudder’}

%output = {’sideslip’ ’bank angle’ ’bank rate’ ’yaw angle’ ’yaw rate’}

%sys = ss(ANavionLatA,ANavionLatB,ANavionLatC,ANavionLatD,’statename’,states,...

%   ’inputname’,inputs,...

%  ’outpurname’,output)
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Navion Lateral State Space Setup - Nelson

%

%navion lateral state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% used to validate the FASAND code. The A and B matricies were

% dimensional derivatives provided in appendix A of "Flight

% stability and control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 8-98

%   Last Update: 1/25/99 DH Corrected control matrix beta to de

%

%   Copyright (c) 1998-99 by Penguin Aeronautics.

NNavionLatA=[ -0.2531035  0     -1.0   0.182

             -16.02      -8.40   2.19  0

               4.448     -0.350 -0.760 0

               0          1      0     0     ];

NNavionLatB=[ 0          0.0704561

             28.73202    2.294273

              -.2228004 -4.583323

              0          0        ];

%(1,2) WAS 12.3587

NNavionLatC=[ 1 0 0 0

              0 1 0 0

              0 0 1 0

              0 0 0 1 ];

NNavionLatD=[ 0 0

              0 0

              0 0

              0 0 ];

states = {’beta’ ’p’ ’r’ ’phi’};

inputs = {’aileron’ ’rudder’};

output = {’sideslip’ ’roll rate’ ’yaw rate’ ’roll angle’};

nLatSys = ss(NNavionLatA,NNavionLatB,NNavionLatC,NNavionLatD,’statename’,states,...

   ’inputname’,inputs,...

   ’outpurname’,output);
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Navion Longitudinal State Space Setup — Nelson

%

%Navion longitudinal state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% used to validate the FASAND code. The A and B matricies were

% obtained from dimensional derivatives provided in appendix A

% of "Flight stability and control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 8-98

%   Last Modified: 1/25/99 DH corrected state and control (ref. McRuer) matrices

%   Copyright (c) 1998-99 by Penguin Aeronautics

NNavionLonA=[ -0.0448765 0.036      0   -32.174

              -0.369    -2.014955 168.8   0

               0.0019   -0.0396    -2.948 0

               0         0          1     0     ];

%(3,2)was -2.948

NNavionLonB=[  0

             -28.2856

             -11.65435

               0       ];

%2 was -27.94324

NNavionLonC=[ 1 0 0 0

              0 1 0 0

              0 0 1 0

              0 0 0 1 ];

NNavionLonD=[ 0

              0

              0

              0 ];

states = {’u’ ’w’ ’q’ ’theta’};

inputs = {’elevator’};

output = {’speed’ ’heave’ ’pitch rate’ ’pitch angle’};

nLonSys = ss(NNavionLonA,NNavionLonB,NNavionLonC,NNavionLonD,’statename’,states,...

   ’inputname’,inputs,...

   ’outpurname’,output);
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Navion Complete State Space Setup - Nelson

%

%navion state space setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a state space model of the Navion example aircraft

% template file to set up a state space to run a state space

% model in Simulink. The A and B matricies were

% dimensional derivatives provided in appendix A of "Flight

% stability and control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 1-99

%   Last Update:

%

%   Copyright (c) 1998-99 by Penguin Aeronautics.

NNavionLonA=[ -0.0448765 0.036 0 -32.174

   -0.369 -2.014955 168.8 0

   0.0019 -0.0396 -2.948 0

   0 0 1 0]

NNavionLonB=[0

   -28.2856

   -11.65435

     0]

NNavionLonC=[ 1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1]

NNavionLonD=[0

   0

   0

   0]

%states = {’u’ ’w’ ’q’ ’theta’};

%inputs = {’elevator’}

%output = {’speed’ ’heave’ ’pitch rate’ ’pitch angle’}

%sys = ss(NNavionLonA,NNavionLonB,NNavionLonC,NNavionLonD,’statename’,states,...

%   ’inputname’,inputs,...

%   ’outpurname’,output)

NNavionLatA=[ -0.2531035 0 -1.0 0.182

   -16.02 -8.40 2.19 0

   4.448 -0.350 -0.760 0

   0 1 0 0]
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NNavionLatB=[0 0.0704561

   28.73202 2.294273

   -.2228004 -4.583323

   0 0]

NNavionLatC=[ 1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1]

NNavionLatD=[0 0

   0 0

   0 0

   0 0]

%states = {’beta’ ’p’ ’r’ ’phi’};

%inputs = {’aileron’ ’rudder’}

%output = {’sideslip’ ’roll rate’ ’yaw rate’ ’roll angle’}

%sys = ss(NNavionLatA,NNavionLatB,NNavionLatC,NNavionLatD,’statename’,states,...

%   ’inputname’,inputs,...

%   ’outpurname’,output)
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Navion Transfer Function Setup

%

%Navion transfer function setup

%FASAND Fundamentals of Aircraft Simulation And Nonlinear Dynamics

%

% This is a tranfer function model of the Navion example aircraft

% template file to set up a litteral factors tranfer function

% model to run in Simulink. The litteral factors were calculated

% using equations in "Flight stability and control" Robert C. Nelson

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 1-99

%   Last Update:

%

%   Copyright (c) 1998-99 by Penguin Aeronautics.

% pitch (q) zw

qNavionZ = .9725;

qNavionW = 2.55;

% roll (p) zw

TauPNavion = 8.4036;

%pNavionZ = .1725;

%pNavionW = 2.8989;

% yaw (r) zw

rNavionZ = 0.254;

rNavionW = 2.17;

%c172.m

%Cessna 172 longitudianl transfer function

%

% This is a transfer function model of a Cessna 172 aircraft

% used to demonstrate the CIFER code. The values for the coefficients

% were obtained from appendix of Roscam Stability and Control

%

%  This Script is free to copy and distribute for educational purposes as long

%   as this notice is included.

%

%   Doug Hiranaka

%

%   Created: 1-99

%   Copyright (c) 1998-99 by Penguin Aeronautics.

%

% wn approx 6 zeta approx .6

% create a tranfer function system

num = [36.3271];

den = [1 8.2998 36.3271];
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% create a frequency vector

w=0.1:0.1:100;

[mag,phase]=bode(num,den,w);

% convert the magnatude to db

db=20*log10(mag);

figure;

% plot the bode results on a single plot

subplot(211),semilogx(w,db,’r.’)

title(’Amplitude Response (db) vs. freq.’)

grid

subplot(212),semilogx(w,phase,’r--’)

title(’Phase Response (degree) vs. freq.’)

grid

%or use a LTI system

sys = tf(num,den);

%bode(sys)

% create a time history of the data

figure;

impulse(sys);

figure;

rlocus(sys);

sgrid;


