
ParFlow User’s Manual

GMWI 2014-01
July, 2014 v.693

Reed M. Maxwell1, Stefan J. Kollet2, Steven G. Smith3, Carol S. Woodward4, Robert D. Falgout5,
Ian M. Ferguson6, Nicholas Engdahl6, Laura E. Condon6, Sonya Lopez6, James Gilbert6, Lindsay
Bearup6, Jennifer Jefferson6, Christine Pribulick6, Chuck Baldwin, William J. Bosl 7, Richard
Hornung8, Steven Ashby9

1Department of Geology and Geological Engineering and Integrated GroundWater Modeling Center, Colorado
School of Mines, Golden, CO, USA. rmaxwell@mines.edu

2Institute for Bio- and Geosciences, Agrosphere (IBG-3) and Centre for High-Performance Scientific Computing
in Terrestrial Systems, Research Centre Jülich, Jülich, Germany. s.kollet@fz-juelich.de

3Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA. USA.
4Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA. cswood-

ward@llnl.gov
5Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA.
6Department of Geology and Geological Engineering and Integrated GroundWater Modeling Center, Colorado

School of Mines, Golden, CO, USA.
7Children’s Hospital Informatics Program, Harvard Medical School, Boston, MA, USA.
8Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA.
9Pacific Northwest National Laboratory, Richland, WA, USA.

Suggested citation: Maxwell, R.M., S.J. Kollet, S.G. Smith, C.S. Woodward, R.D. Falgout, I.M.
Ferguson, N. Engdahl, L.E. Condon, S.R. Lopez, J. Gilbert, L. Bearup, J. Jefferson, C. Prubilick,
C. Baldwin, W.J. Bosl, R. Hornung, S. Ashby, ParFlow User’s Manual. Integrated GroundWater
Modeling Center Report GWMI 2014-01, 159p.

ParFlow is released under the GNU LPGL License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

This manual is licensed under the GNU Free Documentation License.

Copyright c© 2014 Reed M. Maxwell, Stefan J. Kollet, Ian M. Ferguson, Steven G. Smith, Carol S. Woodward, Nicholas

Engdahl, Laura E. Condon. Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant

Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU Free

Documentation License”. Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

This computer software and documentation was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor the University of California nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or

the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of

the United States Government or the University of California, and shall not be used for advertising or product endorsement

purposes.

Contents

1 Introduction 1

1.1 How to use this manual . 2

1.2 Published Studies That Have Used ParFlow . 2

2 Getting Started 7

2.1 Installing ParFlow . 7

2.1.1 External Libraries . 11

2.2 Running the Sample Problem . 12

2.3 ParFlow Solvers . 12

3 The ParFlow System 15

3.1 Defining the Problem . 15

3.1.1 Basic Domain Definition . 15

3.1.2 Setting Up a Real Domain . 16

3.2 Running ParFlow . 19

3.3 Restarting a Run . 20

3.4 Visualizing Output . 21

3.5 Directory of Test Cases . 21

3.6 Annotated Input Scripts . 22

3.6.1 Harvey Flow Example . 23

3.6.2 Little Washita Example . 37

4 Manipulating Data: PFTools 55

4.1 Introduction to the ParFlow TCL commands (PFTCL) 55

4.2 PFTCL Commands . 55

4.3 Common examples using ParFlow TCL commands (PFTCL) 69

5 Model Equations 73

5.1 Steady-State, Saturated Groundwater Flow . 73

5.2 Richards’ Equation . 73

5.3 Terrain Following Grid . 74

5.4 Overland Flow . 74

i

ii CONTENTS

5.5 Multi-Phase Flow Equations . 75

5.6 Transport Equations . 77

5.7 Notation and Units . 78

5.8 Water Balance . 79

6 ParFlow Files 81

6.1 Main Input File (.tcl) . 82

6.1.1 Input File Format Number . 83

6.1.2 Computing Topology . 83

6.1.3 Computational Grid . 84

6.1.4 Geometries . 86

6.1.5 Timing Information . 89

6.1.6 Time Cycles . 91

6.1.7 Domain . 92

6.1.8 Phases and Contaminants . 92

6.1.9 Gravity, Phase Density and Phase Viscosity 93

6.1.10 Chemical Reactions . 94

6.1.11 Permeability . 94

6.1.12 Porosity . 99

6.1.13 Specific Storage . 100

6.1.14 dZMultipliers . 100

6.1.15 Manning’s Roughness Values . 102

6.1.16 Topographical Slopes . 103

6.1.17 Retardation . 104

6.1.18 Full Multiphase Mobilities . 105

6.1.19 Richards’ Equation Relative Permeabilities 105

6.1.20 Phase Sources . 108

6.1.21 Capillary Pressures . 109

6.1.22 Saturation . 110

6.1.23 Internal Boundary Conditions . 112

6.1.24 Boundary Conditions: Pressure . 113

6.1.25 Boundary Conditions: Saturation . 117

6.1.26 Initial Conditions: Phase Saturations . 119

6.1.27 Initial Conditions: Pressure . 119

6.1.28 Initial Conditions: Phase Concentrations . 120

6.1.29 Known Exact Solution . 121

6.1.30 Wells . 122

6.1.31 Code Parameters . 126

6.1.32 SILO Options . 130

6.1.33 Richards’ Equation Solver Parameters . 131

6.1.34 Spinup Options . 134

6.1.35 CLM Solver Parameters . 135

CONTENTS iii

6.2 ParFlow Binary Files (.pfb) . 141
6.3 ParFlow CLM Single Output Binary Files (.c.pfb) 142
6.4 ParFlow Scattered Binary Files (.pfsb) . 143
6.5 ParFlow Solid Files (.pfsol) . 144
6.6 ParFlow Well Output File (.wells) . 145
6.7 ParFlow Simple ASCII and Simple Binary Files (.sa and .sb) 148

7 GNU Free Documentation License 149

GNU Free Documentation License 149

1. APPLICABILITY AND DEFINITIONS . 149
2. VERBATIM COPYING . 150
3. COPYING IN QUANTITY . 151
4. MODIFICATIONS . 151
5. COMBINING DOCUMENTS . 153
6. COLLECTIONS OF DOCUMENTS . 153
7. AGGREGATION WITH INDEPENDENT WORKS 153
8. TRANSLATION . 153
9. TERMINATION . 154
10. FUTURE REVISIONS OF THIS LICENSE . 154
11. RELICENSING . 154

iv CONTENTS

Chapter 1

Introduction

ParFlow (PARallel FLOW) is an integrated hydrology model that simulates surface and sub-
surface flow. ParFlow [2, 23, 28, 34] is a parallel simulation platform that operates in three
modes:

1. steady-state saturated;

2. variably saturated;

3. and integrated-watershed flow.

ParFlow is especially suitable for large scale problems on a range of single and multi-processor
computing platforms. ParFlow simulates saturated and variably saturated subsurface flow in
heterogeneous porous media in three spatial dimensions using a mulitgrid-preconditioned conjugate
gradient solver [2] and a Newton-Krylov nonlinear solver [23]. ParFlow has recently been extended
to coupled surface-subsurface flow to enable the simulation of hillslope runoff and channel routing
in a truly integrated fashion [28]. ParFlow is also fully-coupled with the land surface model CLM
[12] as described in [41, 29]. The development and application of ParFlow has been on-going for
more than 20 years [47, 48, 46, 49, 50, 51, 52, 53, 54, 55, 66, 67, 17, 24, 25, 7, 8, 34, 25, 25, 52, 13, 3,
40, 33, 17, 31, 55, 21, 27, 43, 14, 39, 30, 29, 38, 36, 37, 44, 28, 41, 61, 45, 60, 65, 23, 35, 59, 58, 57, 2]
and resulted in some of the most advanced numerical solvers and multigrid preconditioners for
massively parallel computer environments that are available today. Many of the numerical tools
developed within the ParFlow platform have been turned into or are from libraries that are
now distributed and maintained at LLNL (Hypre and SUNDIALS, for example). An additional
advantage of ParFlow is the use of a sophisticated octree-space partitioning algorithm to depict
complex structures in three-space, such as topography, different hydrologic facies, and watershed
boundaries. All these components implemented into ParFlow enable large scale, high resolution
watershed simulations.

ParFlow is primarily written in C, uses a modular architecture and contains a flexible com-
munications layer to encapsulate parallel process interaction on a range of platforms. CLM is fully-
integrated into ParFlow as a module and has been parallelized (including I/O) and is written in
FORTRAN 90/95. ParFlow is organized into a main executable pfdir/pfsimulator/parflow_exe

1

2 CHAPTER 1. INTRODUCTION

and a library pfdir/pfsimulator/parflow lib (where pfdir is the main directory location) and
is comprised of more than 190 separate source files. ParFlow is structured to allow it to be
called from within another application (e.g. WRF, the Weather Research and Forecasting at-
mospheric model) or as a stand-alone application. There is also a directory structure for the
message-passing layer pfdir/pfsimulator/amps for the associated tools pfdir/pftools for CLM

pfdir/pfsimulator/clm and a directory of test cases pfdir/test.

1.1 How to use this manual

This manual describes how to use ParFlow, and is intended for hydrologists, geoscientists, en-
vironmental scientists and engineers. This manual is written assuming the reader has a basic
understanding of Linux / UNIX environments, how to compose and execute scripts in various pro-
gramming languages (e.g. TCL), and is familiar with groundwater and surface water hydrology,
parallel computing, and numerical modeling in general. In Chapter 2, we describe how to install
ParFlow, including building the code and associated libraries. Then, we lead the user through
a simple ParFlow run and discuss the automated test suite. In Chapter 3, we describe the
ParFlow system in more detail. This chapter contains a lot of useful information regarding how
a run is constructed and most importantly contains two detailed, annotated scripts that run two
classical ParFlow problems, a fully saturated, heterogeneous aquifer and a variably saturated,
transient, coupled watershed. Both test cases are published in the literature and are a terrific
initial starting point for a new ParFlow user.

Chapter 4 describes data analysis and processing. Chapter 5 provides the basic equations
solved by ParFlow. Chapter 6 describes the formats of the various files used by ParFlow.
These chapters are really intended to be used as reference material. This manual provides some
overview of ParFlow some information on building the code, examples of scripts that solve certain
classes of problems and a compendium of keys that are set for code options.

1.2 Published Studies That Have Used ParFlow

ParFlow has been used in a number of research studies published in the literature. What follows
are tables of ParFlow references with information on topics, types of problem and application.
1.1, 1.2, 1.3 and 1.4 describe any coupled physics, categorize the scale and domain and discuss
what processes within ParFlow are used. For this last set of columns, TB=Turning Bands,
TFG=Terrain Following Grid, VS= Variably Saturated and Vdz=Variable DZ.

1.2. PUBLISHED STUDIES THAT HAVE USED PARFLOW 3

Table 1.1: List of ParFlow references with application and process details.

Reference Coupled

Model

Application Scale Domain TB TFG VS Vdz

[1] Ajami et al. (2014) CLM Spin Up (initial
conditions)

Watershed Ringkobing
Fjord

X

[9] Condon and Maxwell (2014) CLM Agriculture Watershed Little
Washita,
OK

X X

[10] Condon and Maxwell (2014) CLM Agriculture Watershed Little
Washita,
OK

X X

[11] Cui et al. (2014) SLIM-
FAST

Model
Develop-
ment (nitrogen
biogeochemistry)

Column-
Hillslope

Idealized X X

[42] Maxwell et al. (2014) Model
Comparison

Many Idealized X X

[47] Meyerhoff et al. (2014) - Stochastic
runoff genera-
tion,
conditioning

Hillslope Idealized X X

[48] Meyerhoff et al. (2014) SLIM-
FAST

Karst
Environments

Aquifer Transects
in Santa Fe
River
Watershed

X

[51] Shrestha et al. (2014) COSMO-
CLM

Model
Development
(TerrSysMP)

Watershed Idealized;
Rur
catchment

X X

[4] Atchley et al. (2013) SLIM-
FAST;
CrunchFlow

Risk
Assessment

Aquifer Idealized X

[5] Atchley et al. (2013) SLIM-
FAST;
CrunchFlow

Risk
Assessment

Aquifer Idealized X X

[7] Condon and Maxwell (2013) CLM Agriculture Sub-
Watershed

Little
Washita,
OK

X X

[8] Condon et al. (2013) CLM Subsurface
Heterogene-
ity (land sur-
face fluxes)

Watershed Upper Kla-
math, OR

X X X

[15] de Rooij et al. (2013) SLIM-
FAST

Model Devel-
opment (sur-
face particles)

Hillslope Idealized X

4 CHAPTER 1. INTRODUCTION

Table 1.2: List of ParFlow references with application and process details (cont.).

Reference Coupled

Model

Application Scale Domain TB TFG VS Vdz

[34] Maxwell (2013) Model
Development

Idealized X X X

[49] Mikkelson et al. (2013) CLM Mountain Pine
Beetle

Hillslope Idealized X X

[67] Williams et al. (2013) WRF Atmosphere,
DART, Data
Assimilation

Watershed Idealized X X

[6] Bürger et al. (2012) ParFlow
Web

Model
Develop-
ment (ParFlow
Web)

- - X

[19] Ferguson and Maxwell (2012) CLM Agriculture Watershed Little
Washita,
OK

X

[52] Siirila et al. (2012) SLIM-
FAST

Risk
Assessment

Aquifer Idealized X

[53] Siirila and Maxwell (2012) SLIM-
FAST

Risk
Assessment

Aquifer Idealized X

[54] Siirila and Maxwell (2012) SLIM-
FAST

Risk
Assessment

Aquifer Idealized X

[3] Atchley and Maxwell (2011) CLM Subsurface
Heterogene-
ity (land sur-
face processes)

Hillslope Golden,
CO

X X

[13] Daniels et al. (2011) - Regional Streamflow Owens Val-
ley, CA
floodplain

X

[18] Ferguson and Maxwell (2011) CLM Agriculture Watershed Little
Washita,
OK

X

[40] Maxwell et al. (2011) WRF Atmosphere Watershed Little
Washita,
OK

X

1.2. PUBLISHED STUDIES THAT HAVE USED PARFLOW 5

Table 1.3: List of ParFlow references with application and process details (cont.).

Reference Coupled

Model

Application Scale Domain TB TFG VS Vdz

[46] Meyerhoff and Maxwell (2011) - Subsurface
Hetero-
geneity (runoff
generation)

Hillslope Idealized X X

[66] Williams and Maxwell (2011) WRF Atmosphere Watershed Idealized X X

[17] Ferguson and Maxwell (2010) CLM Agriculture Watershed Little
Washita,
OK

X

[31] Kollet et al. (2010) CLM Computational
Scaling

Hillslope Idealized X X

[33] Maxwell (2010) CLM Subsurface
Heterogeneity
(infiltration)

Hillslope Rainer
Mesa
(Nevada
Test Site)

X X

[50] Rihani et al. (2010) CLM Subsurface
Heterogene-
ity (land en-
ergy fluxes)

Hillslope Idealized X

[55] Sulis et al. (2010) - Model
Comparison
(CATHY)

Hillslope Idealized X

[21] Frei et al. (2009) - Groundwater-
Surface water
exchange

Catchment Consumnes
River

X X

[27] Kollet et al. (2009) CLM Heat Transport
(ParFlowE)

Column Wagineng,
NL

X

[26] Kollet (2009) CLM Subsurface
Heterogeneity
(evapotranspiration)

Column,
Hillslope

Idealized X X

6 CHAPTER 1. INTRODUCTION

Table 1.4: List of ParFlow references with application and process details (cont.).

Reference Coupled

Model

Application Scale Domain TB TFG VS Vdz

[43] Maxwell et al. (2009) SLIM Subsurface
Transport

Hillslope Nevada
Test Site

X

[30] Kollet and Maxwell (2008) SLIM-
FAST

Residence
Time
Distributions

Watershed Little
Washita,
OK

X

[29] Kollet and Maxwell (2008) CLM Subsurface
Heterogene-
ity (land en-
ergy fluxes)

Watershed Little
Washita,
OK

X

[39] Maxwell and Kollet (2008) - Subsurface
Heterogeneity
(runoff)

Hillslope Idealized X X

[38] Maxwell and Kollet (2008) CLM Climate
Change (land-
energy
feedbacks to
groudnwater)

Watershed Little
Washita,
OK

X

[44] Maxwell et al. (2007) particles Subsurface
Transport

Aquifer Cape Cod,
MA

X

[37] Maxwell et al. (2007) ARPS,
CLM

Model
Development
(ARPS)

Watershed Little
Washita,
OK

X

[28] Kollet and Maxwell (2006) - Model Devel-
opment (Over-
land
Flow) & Sub-
surface Hetero-
geneity
(shallow over-
land flow)

Catchment Idealized X X

[41] Maxwell and Miller (2005) CLM Model Devel-
opment (CLM)

Column Valdai,
Russia

X

[61] Tompson et al. (2005) - Subsurface
Transport

Aquifer Nevada
Test Site

[45] Maxwell et al. (2003) - Subsurface
Transport

Aquifer Forebay
Aquifer

[58] Tompson et al. (1999) - Subsurface
Transport

Aquifer Nevada
Test Site

[57] Tompson et al. (1998) - Subsurface
Transport

Aquifer LLNL Site

Chapter 2

Getting Started

This chapter is an introduction to setting up and running ParFlow. In § 2.1, we describe how to
install ParFlow. In § 2.2, we lead the user through a simple groundwater problem, supplied with
the ParFlow distribution. In § 2.3 we describe the solver options available for use with ParFlow

applications.

2.1 Installing ParFlow

ParFlow is distributed as source code only and must be configured and built (compiled) on each
machine on which you would like to run simulations. ParFlow uses a configure/make system based
on the standard GNU autoconf configure system. This replaces the home grown set of scripts used
in previous versions and is much more portable to a range of machines. Though we will cover some
basic guidelines for the installation of ParFlow here, many tips and tricks for building ParFlow

on a range of systems may be found at the ParFlow blog: http://parflow.blogspot.com

For greater portability the ParFlow build process separates configuration and compilation of
the simulator and associated tools. This separation allows easier porting to platforms where the
architecture is different on the nodes and the front-end.

These instructions are for building ParFlow on a range of serial and parallel linux, unix
and OSX machines, including stand-alone single and multi-core to large parallel clusters. These
instructions do NOT include compilation on Windows machines.

ParFlow requires a Standard ANSI C and FORTRAN 90/95 compiler to build code. Many
versions of C and Fortran are compatible with ParFlow (e.g. Intel or IBM). However, GCC and
gFortran, available for free on almost every platform, are good options. They may be found at:

http://gcc.gnu.org/

and

http://gcc.gnu.org/wiki/GFortran

ParFlow also requires TCL/TK version 8.0 (or higher). TCL/TK can be obtained from:

7

8 CHAPTER 2. GETTING STARTED

http://www.tcl.tk/

These three packages are often pre-installed on most computers and generally do not need to be
installed by the user. The following steps are designed to take you through the process of installing
ParFlow from a source distribution. ParFlow uses the gnu package autoconf to create a
configuration file for building and installing the ParFlow program.

1. Setup

Decide where you wish to install Parflow and associated libraries. The following environment
variable should be set up in your .profile, .cshrc, or other file. Set the environment variable
PARFLOW_DIR to your chosen location (if you are using bash or a bourne syntax shell):

export PARFLOW_DIR=~/parflow

If you are using a csh like shell you will need the following in your .cshrc file:

setenv PARFLOW_DIR ~/parflow

The variable PARFLOW_DIR specifies the location of the installed version of ParFlow. This
is where executables and support files will be placed. If you have a directory which is shared
on multiple architectures you can set different PARFLOW_DIRs on the different machines (for
example ~/parflow-arch1 and ~/parflow-arch2). We will use the ~/parflow directory as
the root directory for building ParFlow in this user manual; you can use a different directory
if you wish.

2. Extract the source

Extract the source files from the distribution compressed tar file or much more commonly the
svn repository. This example assumes the parflow.tar.Z file is in your home directory and
you are building it in a directory ~/parflow.

mkdir ~/parflow

cd ~/parflow

gunzip ../parflow.tar.Z

tar -xvf ../parflow.tar

3. Build and install ParFlow

This step builds the ParFlow library and executable that runs on a serial or parallel machine.
The library is used when ParFlow is used as a component of another simulation (e.g. WRF).

cd $PARFLOW_DIR

cd pfsimulator

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1

make

make install

2.1. INSTALLING PARFLOW 9

This will build a parallel version of /parflow using the MPI1 libraries but no other options
(a very basic installation with few features commonly used). You can control build options
for /parflow in the configure step by adding other options to that command-line. For a list
of all the configure options, use

./configure --help

to list them. Note that ParFlow defaults to building a sequential version so --with-amps

is needed when building for a parallel computer. You can explicitly specify the path to the
MPI to use with the --with-mpi option to configure. This controls AMPS which stands for
AnotherM essage Passing Sytem. AMPS is a flexible message-passing layer within ParFlow

that allows a common code core to be quickly and easily adapted to different parallel envi-
ronments.

4. Build and install pftools

pftools is a package of utilities and a TCL library that is used to setup and postprocess
Parflow files. The input files to ParFlow are TCL scripts so TCL must be installed on the
system.

The first command will build ParFlow and the bundled tools and install them in the
$PARFLOW_DIR directory. The second command will build and install the documentation.
A bare-bones configure and build looks like:

cd $PARFLOW_DIR

cd pftools

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1

make

make install

make doc_install

Note that pftools is NOT parallel but some options for how files are written are based on
the communication layer so pftools needs to have the same options that were used to build
the ParFlow library.

If TCL is not installed in the system locations (/usr or /usr/local) you need to specify the
path with the --with-tcl=<PATH> configure option.

See ./configure --help for additional configure options for pftools.

5. Running a sample problem

There is a test directory that contains not only example scripts of ParFlow problems but
the correct output for these scripts as well. This may be used to test the compilation process
and verify that ParFlow is installed correctly. If all went well a sample ParFlow problem
can be run using:

cd $PARFLOW_DIR

10 CHAPTER 2. GETTING STARTED

cd test

tclsh default_single.tcl 1 1 1

Note that PAFLOW_DIR must be set for this to work and it assumes tclsh is in your path. Make
sure to use the same TCL as was used in the pftools configure. The entire suite of test cases
may be run at once to test a range of functionality in ParFlow. This may be done by:

cd $PARFLOW_DIR

cd test

make check

6. Notes and other options:

ParFlow may be compiled with a number of options using the configure script. Some
common options are compiling CLM as in [41, 29] to compile with timing and optimization or
to use a compiler other than gcc. To compile with CLM add --with-clm to the configure line
such as:

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1 --with-clm

Common options are:

• to include the CLM module: --with-clm

• to include the SILO library which provides greater file output formats that are compat-
ible with the VisIt rendering package and must first be compiled separately (see below):
--with-silo=$SILO_DIR

• to include the Hypre library which provides greater solver flexibility and options and
also needs to be downloaded and built separately: --with-hypre=$HYPRE_DIR

• to write a single, undistributed ParFlow binary file: --with-amps-sequential-io

• to write timing information in the log file: --enable-timing

All these options combined in the configure line would look like:

cd $PARFLOW_DIR

cd pfsimulator

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1 --with-clm

--enable-timing --with-silo=$SILO_DIR --with-hypre=$HYPRE_DIR

--with-amps-sequential-io

make

make install

pftools needs to be compiled and built with compatible options that correspond toParFlow.
For the options above, pftools would be built as follows:

2.1. INSTALLING PARFLOW 11

cd $PARFLOW_DIR

cd pftools

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1 --with-silo=$SILO_DIR

--with-amps-sequential-io

make

make install

make doc_install

Note that CLM and Hypre are not used by pftools and those options do not need to be
included, however the file formats (SILO and single file PFB) are very important and need to
match exactly what is specified in pfsimulator.

To enable detailed timing of the performance of several different components within ParFlow

use the --enable-timing option. To use compiler optimizations use the --enable-opt=STRING
where the =STRING is an optional flag to specify the level and type of optimization.

IMPORTANT NOTE: Optimization and debugging are controlled independent of one an-
other. So to compile with optimization and no debugging you need to specify both --enable-opt=STRING
AND --disable-debug.

It is often desirable to use different C and F90/95 compilers (such as Intel or Portland Group)
to match hardware specifics, for performance reasons or simply personal preference. To change
compilers, set the CC, FC and F77 variables (these may include a path too). For example, to
change to the Intel compilers in c-shell:

setenv CC icc

setenv FC ifort

setenv F77 ifort

2.1.1 External Libraries

Many of the features of ParFlow use a file structure called Silo. Silo is a free, open-source, format
detailed at:

https://wci.llnl.gov/codes/silo/

Support for Silo is integrated into ParFlow but the Silo libraries must be built separately and
then linked into ParFlow during the build and configure process. This may be done using the
--with-silo=PATH where the PATH is the location of the Silo libraries.

Some features of ParFlow need to call the solver package Hypre externally. These include
the command options PFMG, SMG and PFMGOctree. Hypre is a free, open-source, library
detailed at:

https://computation.llnl.gov/casc/hypre/software.html

12 CHAPTER 2. GETTING STARTED

Support for Hypre 2.4.0b or later is integrated into ParFlow but the libraries must be built
separately and then linked into ParFlow during the build and configure process. This may be
done using the --with-hypre=PATH where the PATH is the location of the Hypre libraries.

2.2 Running the Sample Problem

Here, we assume that ParFlow is already built. The following steps will allow you to run a simple
test problem supplied with the distribution.

1. We first create a directory in which to run the problem, then copy into it some supplied
default input files. So, do the following anywhere in your $HOME directory:

mkdir foo

cd foo

cp $PARFLOW_DIR/examples/default_single.tcl .

chmod 640 *

We used the directory name foo above; you may use any name you wish1. The last line
changes the permissions of the files so that you may write to them.

2. Run ParFlow using the pftcl file as a TCL script

tclsh default_single.tcl

You have now successfully run a simple ParFlow problem. For more information on running
ParFlow, see § 3.2.

2.3 ParFlow Solvers

ParFlow can operate using a number of different solvers. Two of these solvers, IMPES (running in
single-phase, fully-saturated mode, not multiphase) and RICHARDS (running in variably-saturated
mode, not multiphase, with the options of land surface processes and coupled overland flow) are
detailed below. This is a brief summary of solver settings used to simulate under three sets of
conditions, fully-saturated, variably-saturated and variably-saturated with overland flow. A com-
plete, detailed explanation of the solver parameters for ParFlow may be found later in this manual.
To simulate fully saturated, steady-state conditions set the solver to IMPES, an example is given
below. This is also the default solver in ParFlow, so if no solver is specified the code solves using
IMPES.

pfset Solver Impes

1We use foo and bar just as placeholders for whatever directory you wish you use, see also
http://en.wikipedia.org/wiki/Foobar

2.3. PARFLOW SOLVERS 13

To simulate variably-saturated, transient conditions, using Richards’ equation, variably/fully
saturated, transient with compressible storage set the solver to RICHARDS. An example is below.
This is also the solver used to simulate surface flow or coupled surface-subsurface flow.

pfset Solver Richards

To simulate overland flow, using the kinematic wave approximation to the shallow-wave equa-
tions, set the solver to RICHARDS and set the upper patch boundary condition for the domain
geometry to OverlandFlow, an example is below. This simulates overland flow, independently or
coupled to Richards’ Equation as detailed in [28]. The overland flow boundary condition can sim-
ulate both uniform and spatially-distributed sources, reading a distribution of fluxes from a binary
file in the latter case.

pfset Patch.z-upper.BCPressure.Type OverlandFlow

For this case, the solver needs to be set to RICHARDS:

pfset Solver Richards

ParFlow may also be coupled with the land surface model CLM [12]. This version of CLM has
been extensively modified to be called from within ParFlow as a subroutine, to support parallel
infrastructure including I/O and most importantly with modified physics to support coupled oper-
ation to best utilize the integrated hydrology in ParFlow [41, 29]. To couple CLM into ParFlow

first the --with-clm option is needed in the ./configure command as indicated in § 2.1. Second,
the CLM module needs to be called from within ParFlow, this is done using the following solver
key:

pfset Solver.LSM CLM

Note that this key is used to call CLM from within the nonlinear solver time loop and requires that
the solver bet set to RICHARDS to work. Note also that this key defaults to not call CLM so if this
line is omitted CLM will not be called from within ParFlow even if compiled and linked. Currently,
CLM gets some of it’s information from ParFlow such as grid, topology and discretization, but
also has some of it’s own input files for land cover, land cover types and atmospheric forcing.

14 CHAPTER 2. GETTING STARTED

Chapter 3

The ParFlow System

The ParFlow system is still evolving, but here we discuss how to define the problem in § 3.1, how
to run ParFlow in § 3.2, and restart a simulation in § 3.3. We also cover options for visualizing the
results in § 3.4 and summarize the contents of a directory of test problems provided with ParFlow

in § 3.5. Finally in § 3.6 we walk through two ParFlow input scripts in detail.

The reader is also referred to § 4 for a detailed listing of the of functions for manipulating
ParFlow data.

3.1 Defining the Problem

There are many ways to define a problem in ParFlow, here we summarize the general approach
for defining a domain (§ 3.1.1) and simulating a real watershed (§ 3.1.2).

In all cases the “main” ParFlow input file is the .tcl file. This input file is a TCL script with
some special routines to create a database which is used as the input for ParFlow. See § 6.1 for
details on the format of this file. The input values into ParFlow are defined by a key/value pair.
For each key you provide the associated value using the pfset command inside the input script.

Since the input file is a TCL script you can use any feature of TCL to define the problem. This
manual will make no effort to teach TCL so refer to one of the available TCL manuals for more
information (“Practical Programming in TCL and TK” by Brent Welch [63] is a good starting
point). This is NOT required, you can get along fine without understanding TCL/TK.

Looking at the example programs in the test directory (§ 3.5) and going through the annotated
input scripts included in this manual (§ 3.6) is one of the best ways to understand what a ParFlow
input file looks like.

3.1.1 Basic Domain Definition

ParFlow can handle complex geometries and defining the problem may involve several steps. Users
can specify simple box domains directly in the tcl script. If a more complicated domain is required,
the user may convert geometries into the .pfsol file format (§ 6.5) using the appropriate PFTools

15

16 CHAPTER 3. THE PARFLOW SYSTEM

conversion utility (§ 4). Alternatively, the topography can be specified using .pfb files of the slopes
in the x and y directions.

Regardless of the approach the user must set the computational grid within the .pfb script as
follows:

#---

Computational Grid

#---

pfset ComputationalGrid.Lower.X -10.0

pfset ComputationalGrid.Lower.Y 10.0

pfset ComputationalGrid.Lower.Z 1.0

pfset ComputationalGrid.DX 8.89

pfset ComputationalGrid.DY 10.67

pfset ComputationalGrid.DZ 1.0

pfset ComputationalGrid.NX 18

pfset ComputationalGrid.NY 15

pfset ComputationalGrid.NZ 8

The value is normally a single string, double, or integer. In some cases, in particular for a list
of names, you need to supply a space seperated sequence. This can be done using either a double
quote or braces.

pfset Geom.domain.Patches "left right front back bottom top"

pfset Geom.domain.Patches {left right front back bottom top}

For commands longer than a single line, the TCL continuation character can be used,

pfset Geom.domain.Patches "very_long_name_1 very_long_name_2 very_long_name_3 \

very_long_name_4 very_long_name_5 very_long_name_6"

3.1.2 Setting Up a Real Domain

This section provides a brief outline of a sample workflow for setup ParFlow CLM simulation of a
real domain. Of course there are many ways to accomplish this and users are encouraged to develop
a workflow that works for them.

This example assumes that you are running with ParFlow CLM and it uses slope files and an
indicator file to define the topography and geologic units of the domain. An alternate approach
would be to define geometries by building a .pfsol file (§ 6.5) using the appropriate PFTools

conversion utility(§ 4).
The general approach is as follows:

3.1. DEFINING THE PROBLEM 17

1. Gather input datasets to define the domain. First decide the resolution that you would like
to simulate at. Then gather the following datasets at the appropriate resolution for your
domain:

(a) Elevation (DEM)

(b) Soil data for the near surface layers

(c) Geologic maps for the deeper subsurface

(d) Land Cover

2. Create consistent gridded layers that are all clipped to your domain and have the same number
of grid cells

3. Convert gridded files to .pfb (§ 6.2). One way to accomplish this is by reformatting the
gridded outputs to the correct ParFlow .sa order (§ 6.7) and to convert the .sa file to
.pfb using the conversion tools (see § 4.3 Example 1)

4. Calculate slopes in the x and y directions from the elevation dataset. This can be done with
the built in tools as shown in § 4.3 Example 5. In most cases some additional processing of
the DEM will be required to ensure that the drainage patterns are correct. To check this
you can run a “parking lot test” by setting the permeability of surface to almost zero and
adding a flux to the top surface. If the results from this test don’t look right (i.e. your runoff
patterns don’t match what you expect) you will need to go back and modify your DEM. The
built in ParFlow tools pitfill and flatfill can be used to address some issues. (These tools
are also shown in § 4.3 Example 5).

5. Create an indicator file for the subsurface. The indicator file is a 3D .pfb file with the same
dimensions as your domain that has an integer for every cell designating which unit it belongs
to. The units you define will correspond to the soil types and geologic units from your input
datasets.

6. Determine the hydrologic properties for each of the subsurface units defined in the indicator
file. You will need: Permeability, specific storage, porosity and vanGenuchten parameters.

7. At this point you are ready to run a ParFlow model without CLM and if you don’t need
to include the land surface model in your simulations you can ignore the following steps.
Either way, at this point it is advisable to run a “spinup” simulation to initialize the water
table. There are several ways to approach this. One way is to start with the water table at a
constant depth and run for a long time with a constant recharge forcing until the water table
reaches a steady state. There are some additional key for spinup runs that are provided in
§ 6.1.34.

8. Convert land cover classifications to the IGBP1 land cover classes that are used in CLM.

1http://www.igbp.net

18 CHAPTER 3. THE PARFLOW SYSTEM

1. Evergreen Needleleaf Forest

2. Evergreen Broadleaf Forest

3. Deciduous Needleleaf Forest

4. Deciduous Broadleaf Forest

5. Mixed Forests

6. Closed Shrublands

7. Open Shrublands

8. Woody Savannas

9. Savannas

10. Grasslands

11. Permanent Wetlands

12. Croplands

13. Urban and Built-Up

14. Cropland/Natural Vegetation Mosaic

15. Snow and Ice

16. Barren or Sparsely Vegetated

17. Water

18. Wooded Tundra

9. Create a CLM vegm file that designates the land cover fractions for every cell (Refer to the
clm input directory in the Washita Example for an sample of what a vegm file should look
like).

10. Create a CLM driver file to set the parameters for the CLM model (Refer to the clm input

directory in the Washita Example for a sample of a CLM driver file).

11. Assemble meteorological forcing data for your domain. CLM requires the following variables
(also described on p. 136):

• DLWR: Long wave radiation [W/m2]

• DSWR: Visible or short-wave radiation [W/m2].

• APCP: Precipitation [mm/s]

• Temp: Air Temperature [K]

• UGRD: East-west wind speed [m/s]

• SPFH: Specific humidity [kg/kg]

• Press: Atmospheric pressure [pa]

• VGRD: South-to-North wind speed [m/s]

3.2. RUNNING PARFLOW 19

If you choose to do spatially heterogenous forcings you will need to generate separate files for
each variable. The files should be formatted in the standard ParFlow format with the third
(i.e. z dimension) as time. If you are doing hourly simulations it is standard practice to put
24 hours in one file, but you can decide how many time steps per file. For an example of
heterogenous forcing files refer to the NLDAS directory in the Washita Example)

Alternatively, if you would like to force the model with spatially homogenous forcings, then
a single file can be provided where each variable is a column and rows designate time steps.

12. Run your simulation!

3.2 Running ParFlow

Once the problem input is defined, you need to add a few things to the script to make it execute
ParFlow. First you need to add the TCL commands to load the ParFlow command package.

#

Import the ParFlow TCL package

#

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

This loads the pfset and other ParFlow commands into the TCL shell.

Since this is a script you need to actually run ParFlow. These are normally the last lines of
the input script.

#---

Run and Unload the ParFlow output files

#---

pfrun default_single

pfundist default_single

The pfrun command runs ParFlow with the database as it exists at that point in the file. The
argument is the name to give to the output files (which will normally be the same as the name of
the script). Advanced users can set up multiple problems within the input script by using different
output names.

The pfundist command takes the output files from the ParFlow run and undistributes them.
ParFlow uses a virtual file system which allows files to be distributed across the processors. The
pfundist takes these files and collapses them into a single file. On some machines if you don’t do
the pfundist you will see many files after the run. Each of these contains the output from a single
node; before attempting using them you should undistribute them.

Since the input file is a TCL script run it using TCL:

20 CHAPTER 3. THE PARFLOW SYSTEM

tclsh runname.tcl

NOTE: Make sure you are using TCL 8.0 or later. The script will not work with earlier releases.

One output file of particular interest is the <run name>.out.log file. This file contains informa-
tion about the run such as number of processes used, convergence history of algorithms, timings and
MFLOP rates. For Richards’ equation problems (including overland flow) the <run name>.out.kinsol.log

file contains the nonlinear convergence information for each timestep. Additionally, the <run name>.out.tx

contains all information routed to standard out of the machine you are running on and often con-
tains error messages and other control information.

3.3 Restarting a Run

A ParFlow run may need to be restarted because either a system time limit has been reached,
ParFlow has been prematurely terminated or the user specifically sets up a problem to run in
segments. In order to restart a run the user needs to know the conditions under which ParFlow

stopped. If ParFlow was prematurely terminated then the user must examine the output files
from the last “timed dump” to see if they are complete. If not then those data files should be
discarded and the output files from the next to last “timed dump” will be used in the restarting
procedure. As an important note, if any set of “timed dump” files are deleted remember to also
delete corresponding lines in the well output file or recombining the well output files from the
individual segments afterwards will be difficult. It is not necessary to delete lines from the log file
as you will only be noting information from it. To summarize, make sure all the important output
data files are complete, accurate and consistent with each other.

Given a set of complete, consistent output files - to restart a run follow this procedure :

1. Note the important information for restarting :

• Write down the dump sequence number for the last collection of “timed dump” data.

• Examine the log file to find out what real time that “timed dump” data was written out
at and write it down.

2. Prepare input data files from output data files :

• Take the last pressure output file before the restart with the sequence number from
above and format them for regular input using the keys detailed in § 6.1.27 and possibly
the pfdist utility in the input script.

3. Change the Main Input File § 6.1 :

• Edit the .tcl file (you may want to save the old one) and utilize the pressure initial
condition input file option (as referenced above) to specify the input files you created
above as initial conditions for concentrations.

4. Restart the run :

3.4. VISUALIZING OUTPUT 21

• Utilizing an editor recreate all the input parameters used in the run except for the
following two items :

– Use the dump sequence number from step 1 as the start count.

– Use the real time that the dump occured at from step 1 as the start time.

3.4 Visualizing Output

While ParFlow does not have any visualization capabilities built-in, there are a number flexible,
free options. Probably the best option is to use VisIt. VisIt is a powerful, free, open-source, render-
ing environment. It is multiplatform and may be downloaded directly from: https://visit.llnl.gov/
The most flexible option for using VisIt to view ParFlow output is to write files using the SILO
format, which is available either as a direct output option (described in § 6.1.31) or a conversion
option using pftools. Many other output conversion options exist as described in § 4 and this allows
ParFlow output to be converted into formats used by almost all visualization software.

3.5 Directory of Test Cases

ParFlow comes with a directory containing a few simple input files for use as templates in making
new files and for use in testing the code. These files sit in the /test directory described earlier.
This section gives a brief description of the problems in this directory.

crater2D.tcl An example of a two-dimensional, variably-saturated crater infiltration problem
with time-varying boundary conditions. It uses the solid file crater2D.pfsol.

default_richards.tcl The default variably-saturated Richards’ Equation simulation test script.

default_single.tcl The default parflow, single-processor, fully-saturated test script.

forsyth2.tcl An example two-dimensional, variably-saturated infiltration problem with layers of
different hydraulic properties. It runs problem 2 in [20] and uses the solid file fors2_hf.pfsol.

harvey.flow.tcl An example from [44] for the Cape Cod bacterial injection site. This example is
a three-dimensional, fully-saturated flow problem with spatially heterogeneous media (using
a correlated, random field approach). It also provides examples of how tcl/tk scripts may be
used in conjunction with ParFlow to loop iteratively or to run other scripts or programs. It
uses the input text file stats4.txt. This input script is fully detailed in § 3.6

default_overland.tcl An overland flow boundary condition test and example script based
loosely on the V-catchment problem in [28]. There are options provided to expand this
problem into other overland flow-type, transient boundary-type problems included in the file
as well.

LW_var_dz_spinup.tcl An example that uses the Little Washita domain to demonstrate a steady-
state spinup initialization using P-E forcing. It also demonstrates the variable dz keys.

22 CHAPTER 3. THE PARFLOW SYSTEM

LW_var_dz.tcl An example that uses the Little Washita domain to demonstrate surface flow
network development. It also uses the variable dz keys.

Evap_Trans_test.tcl An example that modifies the default_overland.tcl to demonstrate
steady-state external flux .pfb files.

overland_flux.tcl An example that modifies the default_overland.tcl to demonstrate tran-
sient external flux .pfb files.

/clm/clm.tcl An example of how to use ParFlow coupled to clm. This directory also includes
clm-specific input. Note: this problem will only run if --with-clm flag is used during the
configure and build process.

water_balance_x.tcl and water_balance_y.tcl. An overland flow example script that uses
the water-balance routines integrated into pftools. These two problems are based on simple
overland flow conditions with slopes primarily in the x or y-directions. Note: this problem
only will run if the Silo file capability is used, that is a --with-silo=PATH flag is used during
the configure and build process.

pfmg.tcl and pfmg_octree.tcl. Tests of the external Hypre preconditioner options. Note: this
problem only will run if the Hypre capability is used, that is a --with-hypre=PATH flag is
used during the configure and build process.

test_x.tcl A test problem for the Richards’ solver that compares output to an analytical solution.

/washita/tcl_scripts/LW_Test.tcl A three day simulation of the Little Washita domain using
ParFlow CLM with 3D forcings.

3.6 Annotated Input Scripts

This section contains two annotated input scripts:

• § 3.6.1 contains the harvey flow example (harvey.flow.tcl) which is an idealized domain
with a heterogenous subsurface. The example also demonstrates how to generate multiple
realizations of the subsurface and add pumping wells.

• § 3.6.2 contains the Little Washita example (LW_Test.tcl) which simulates a moderately
sized (41km by 41km) real domain using ParFlow CLM with 3D meteorological forcings.

To run ParFlow, you use a script written in Tcl/TK. This script has a lot of flexibility, as it
is somewhere in between a program and a user interface. The tcl script gives ParFlow the data
it requires (or tells ParFlow where to find or read in that data) and also tells ParFlow to run.

To run the simulation:

1. make any modifications to the tcl input script (and give a new name, if you want to)

3.6. ANNOTATED INPUT SCRIPTS 23

2. save the tcl script

3. For Linux/Unix/OSX: invoke the script from the command line using the tcl-shell, this looks
like: >tclsh filename.tcl

4. Wait patiently for the command prompt to return (Linux/Unix/OSX) indicating that ParFlow
has finished. Intermediate files are written as the simulation runs, however there is no other
indication that ParFlow is running.

To modify a tcl script, you right-click and select edit from the menu. If you select open, you
will run the script.

Note: The units for K (ım/d, usually) are critical to the entire construction. These length
and time units for K set the units for all other variables (input or generated, throughout the entire
simulation) in the simulation. ParFlow can set to solve using hydraulic conductivity by literally
setting density, viscosity and gravity to one (as is done in the script below). This means the pressure
units are in length (meters), so pressure is now so-called pressure-head.

3.6.1 Harvey Flow Example

This tutorial matches the harvey_flow.tcl file found in the /test directory. This example is di-
rectly from [44]. This example demonstrates how to set up and run a fully saturated flow problem
with heterogeneous hydraulic conductivity using the turning bands approach [56]. Given statistical
parameters describing the geology of your site, this script can be easily modified to make as many
realizations of the subsurface as you like, each different and yet having the same statistical param-
eters, useful for a Monte Carlo simulation. This example is the basis for several fully-saturated
ParFlow applications [53, 54, 52, 4, 5, 11].

When the script runs, it creates a new directory named /flow right in the directory where the
tcl script is stored. ParFlow then puts all its output in /flow. Of course, you can change the
name and location of this output directory by modifying the tcl script that runs ParFlow.

Now for the tcl script:

#

Import the ParFlow TCL package

#

These first three lines are what link ParFlow and the tcl script, thus allowing you to use a
set of commands seen later, such as pfset, etc.

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

#---

File input version number

#---

pfset FileVersion 4

24 CHAPTER 3. THE PARFLOW SYSTEM

These next lines set the parallel process topology. The domain is divided in x,y and z by P, Q
and R. The total number of processors is P*Q*R (see § 6.1.2).

#--

Process Topology

#--

pfset Process.Topology.P 1

pfset Process.Topology.Q 1

pfset Process.Topology.R 1

Next we set up the computational grid (see § 3.1 and § 6.1.3).

#--

Computational Grid

#--

Locate the origin in the domain.

pfset ComputationalGrid.Lower.X 0.0

pfset ComputationalGrid.Lower.Y 0.0

pfset ComputationalGrid.Lower.Z 0.0

Define the size of the domain grid block. Length units, same as those on hydraulic conductivity.

pfset ComputationalGrid.DX 0.34

pfset ComputationalGrid.DY 0.34

pfset ComputationalGrid.DZ 0.038

Define the number of grid blocks in the domain.

pfset ComputationalGrid.NX 50

pfset ComputationalGrid.NY 30

pfset ComputationalGrid.NZ 100

This next piece is comparable to a pre-declaration of variables. These will be areas in our
domain geometry. The regions themselves will be defined later. You must always have one that is
the name of your entire domain. If you want subsections within your domain, you may declare these
as well. For Cape Cod, we have the entire domain, and also the 2 (upper and lower) permeability
zones in the aquifer.

#--

The Names of the GeomInputs

#--

pfset GeomInput.Names "domain_input upper_aquifer_input lower_aquifer_input"

3.6. ANNOTATED INPUT SCRIPTS 25

Now you characterize your domain that you just pre-declared to be a box (see § 6.1.4), and you
also give it a name, domain.

#--

Domain Geometry Input

#--

pfset GeomInput.domain_input.InputType Box

pfset GeomInput.domain_input.GeomName domain

Here, you set the limits in space for your entire domain. The span from Lower.X to Upper.X

will be equal to the product of ComputationalGrid.DX times ComputationalGrid.NX. Same for
Y and Z (i.e. the number of grid elements times size of the grid element has to equal the size of the
grid in each dimension). The Patches key assigns names to the outside edges, because the domain
is the limit of the problem in space.

#--

Domain Geometry

#--

pfset Geom.domain.Lower.X 0.0

pfset Geom.domain.Lower.Y 0.0

pfset Geom.domain.Lower.Z 0.0

pfset Geom.domain.Upper.X 17.0

pfset Geom.domain.Upper.Y 10.2

pfset Geom.domain.Upper.Z 3.8

pfset Geom.domain.Patches "left right front back bottom top"

Just like domain geometry, you also set the limits in space for the individual components (upper
and lower, as defined in the Names of GeomInputs pre-declaration). There are no patches for these
geometries as they are internal to the domain.

#--

Upper Aquifer Geometry Input

#--

pfset GeomInput.upper_aquifer_input.InputType Box

pfset GeomInput.upper_aquifer_input.GeomName upper_aquifer

#--

Upper Aquifer Geometry

#--

pfset Geom.upper_aquifer.Lower.X 0.0

pfset Geom.upper_aquifer.Lower.Y 0.0

26 CHAPTER 3. THE PARFLOW SYSTEM

pfset Geom.upper_aquifer.Lower.Z 1.5

pfset Geom.upper_aquifer.Upper.X 17.0

pfset Geom.upper_aquifer.Upper.Y 10.2

pfset Geom.upper_aquifer.Upper.Z 1.5

#--

Lower Aquifer Geometry Input

#--

pfset GeomInput.lower_aquifer_input.InputType Box

pfset GeomInput.lower_aquifer_input.GeomName lower_aquifer

#--

Lower Aquifer Geometry

#--

pfset Geom.lower_aquifer.Lower.X 0.0

pfset Geom.lower_aquifer.Lower.Y 0.0

pfset Geom.lower_aquifer.Lower.Z 0.0

pfset Geom.lower_aquifer.Upper.X 17.0

pfset Geom.lower_aquifer.Upper.Y 10.2

pfset Geom.lower_aquifer.Upper.Z 1.5

Now you add permeability data to the domain sections defined above (§ 6.1.11). You can
reassign values simply by re-stating them – there is no need to comment out or delete the previous
version – the final statement is the only one that counts.

#--

Perm

#--

Name the permeability regions you will describe.

pfset Geom.Perm.Names "upper_aquifer lower_aquifer"

You can set, for example homogeneous, constant permeability, or you can generate a random
field that meets your statistical requirements. To define a constant permeability for the entire
domain:

#pfset Geom.domain.Perm.Type Constant

#pfset Geom.domain.Perm.Value 4.0

However, for Cape Cod, we did not want a constant permeability field, so we instead generated
a random permeability field meeting our statistical parameters for each the upper and lower zones.

3.6. ANNOTATED INPUT SCRIPTS 27

Third from the bottom is the Seed. This is a random starting point to generate the K field. Pick
any large ODD number. First we do something tricky with Tcl/TK. We use the native commands
within tcl to open a text file and read in locally set variables. Note we use set here and not
pfset. One is a native tcl command, the other a ParFlow-specific command. For this problem,
we are linking the parameter estimation code, PEST to ParFlow. PEST writes out the ascii file
stats4.txt (also located in the /test directory) as the result of a calibration run. Since we are
not coupled to PEST in this example, we just read in the file and use the values to assign statistical
properties.

we open a file, in this case from PEST to set upper and lower # kg and sigma

#

set fileId [open stats4.txt r 0600]

set kgu [gets $fileId]

set varu [gets $fileId]

set kgl [gets $fileId]

set varl [gets $fileId]

close $fileId

Now we set the heterogeneous parameters for the Upper and Lower aquifers (see § 6.1.11). Note
the special section at the very end of this block where we reset the geometric mean and standard
deviation to our values we read in from a file. Note: ParFlow uses Standard Deviation not
Variance.

pfset Geom.upper_aquifer.Perm.Type "TurnBands"

pfset Geom.upper_aquifer.Perm.LambdaX 3.60

pfset Geom.upper_aquifer.Perm.LambdaY 3.60

pfset Geom.upper_aquifer.Perm.LambdaZ 0.19

pfset Geom.upper_aquifer.Perm.GeomMean 112.00

pfset Geom.upper_aquifer.Perm.Sigma 1.0

pfset Geom.upper_aquifer.Perm.Sigma 0.48989794

pfset Geom.upper_aquifer.Perm.NumLines 150

pfset Geom.upper_aquifer.Perm.RZeta 5.0

pfset Geom.upper_aquifer.Perm.KMax 100.0

pfset Geom.upper_aquifer.Perm.DelK 0.2

pfset Geom.upper_aquifer.Perm.Seed 33333

pfset Geom.upper_aquifer.Perm.LogNormal Log

pfset Geom.upper_aquifer.Perm.StratType Bottom

pfset Geom.lower_aquifer.Perm.Type "TurnBands"

pfset Geom.lower_aquifer.Perm.LambdaX 3.60

pfset Geom.lower_aquifer.Perm.LambdaY 3.60

pfset Geom.lower_aquifer.Perm.LambdaZ 0.19

28 CHAPTER 3. THE PARFLOW SYSTEM

pfset Geom.lower_aquifer.Perm.GeomMean 77.0

pfset Geom.lower_aquifer.Perm.Sigma 1.0

pfset Geom.lower_aquifer.Perm.Sigma 0.48989794

pfset Geom.lower_aquifer.Perm.NumLines 150

pfset Geom.lower_aquifer.Perm.RZeta 5.0

pfset Geom.lower_aquifer.Perm.KMax 100.0

pfset Geom.lower_aquifer.Perm.DelK 0.2

pfset Geom.lower_aquifer.Perm.Seed 33333

pfset Geom.lower_aquifer.Perm.LogNormal Log

pfset Geom.lower_aquifer.Perm.StratType Bottom

#pfset lower aqu and upper aq stats to pest/read in values

pfset Geom.upper_aquifer.Perm.GeomMean $kgu

pfset Geom.upper_aquifer.Perm.Sigma $varu

pfset Geom.lower_aquifer.Perm.GeomMean $kgl

pfset Geom.lower_aquifer.Perm.Sigma $varl

The following section allows you to specify the permeability tensor. In the case below, perme-
ability is symmetric in all directions (x, y, and z) and therefore each is set to 1.0.

pfset Perm.TensorType TensorByGeom

pfset Geom.Perm.TensorByGeom.Names "domain"

pfset Geom.domain.Perm.TensorValX 1.0

pfset Geom.domain.Perm.TensorValY 1.0

pfset Geom.domain.Perm.TensorValZ 1.0

Next we set the specific storage, though this is not used in the IMPES/steady-state calculation.

#--

Specific Storage

#--

specific storage does not figure into the impes (fully sat)

case but we still need a key for it

pfset SpecificStorage.Type Constant

pfset SpecificStorage.GeomNames ""

pfset Geom.domain.SpecificStorage.Value 1.0e-4

ParFlow has the capability to deal with a multiphase system, but we only have one (water)
at Cape Cod. As we stated earlier, we set density and viscosity artificially (and later gravity) both

3.6. ANNOTATED INPUT SCRIPTS 29

to 1.0. Again, this is merely a trick to solve for hydraulic conductivity and pressure head. If you
were to set density and viscosity to their true values, the code would calculate k (permeability).
By using the normalized values instead, you effectively embed the conversion of k to K (hydraulic
conductivity). So this way, we get hydraulic conductivity, which is what we want for this problem.

#--

Phases

#--

pfset Phase.Names "water"

pfset Phase.water.Density.Type Constant

pfset Phase.water.Density.Value 1.0

pfset Phase.water.Viscosity.Type Constant

pfset Phase.water.Viscosity.Value 1.0

We will not use the ParFlow grid based transport scheme. We will then leave contaminants
blank because we will use a different code to model (virus, tracer) contamination.

#--

Contaminants

#--

pfset Contaminants.Names ""

As with density and viscosity, gravity is normalized here. If we used the true value (in the [L]
and [T] units of hydraulic conductivity) the code would be calculating permeability. Instead, we
normalize so that the code calculates hydraulic conductivity.

#--

Gravity

#--

pfset Gravity 1.0

#--

Setup timing info

#--

This basic time unit of 1.0 is used for transient boundary and well conditions. We are not using
those features in this example.

pfset TimingInfo.BaseUnit 1.0

30 CHAPTER 3. THE PARFLOW SYSTEM

Cape Cod is a steady state problem, so these timing features are again unused, but need to be
included.

pfset TimingInfo.StartCount -1

pfset TimingInfo.StartTime 0.0

pfset TimingInfo.StopTime 0.0

Set the dump interval to -1 to report info at the end of every calculation, which in this case
is only when steady state has been reached.

pfset TimingInfo.DumpInterval -1

Next, we assign the porosity (see § 6.1.12). For the Cape Cod, the porosity is 0.39.

#--

Porosity

#--

pfset Geom.Porosity.GeomNames domain

pfset Geom.domain.Porosity.Type Constant

pfset Geom.domain.Porosity.Value 0.390

Having defined the geometry of our problem before and named it domain, we are now ready to
report/upload that problem, which we do here.

#--

Domain

#--

pfset Domain.GeomName domain

Mobility between phases is set to 1.0 because we only have one phase (water).

#--

Mobility

#--

pfset Phase.water.Mobility.Type Constant

pfset Phase.water.Mobility.Value 1.0

Again, ParFlow has more capabilities than we are using here in the Cape Cod example. For
this example, we handle monitoring wells in a separate code as we assume they do not remove a
significant amount of water from the domain. Note that since there are no well names listed here,
ParFlow assumes we have no wells. If we had pumping wells, we would have to include them
here, because they would affect the head distribution throughout our domain. See below for an
example of how to include pumping wells in this script.

3.6. ANNOTATED INPUT SCRIPTS 31

#--

Wells

#--

pfset Wells.Names ""

You can give certain periods of time names if you want to (ie. Pre-injection, post-injection,
etc). Here, however we do not have multiple time intervals and are simulating in steady state, so
time cycle keys are simple. We have only one time cycle and it’s constant for the duration of the
simulation. We accomplish this by giving it a repeat value of -1, which repeats indefinitely. The
length of the cycle is the length specified below (an integer) multiplied by the base unit value we
specified earlier.

#--

Time Cycles

#--

pfset Cycle.Names constant

pfset Cycle.constant.Names "alltime"

pfset Cycle.constant.alltime.Length 1

pfset Cycle.constant.Repeat -1

Now, we assign Boundary Conditions for each face (each of the Patches in the domain defined
before). Recall the previously stated Patches and associate them with the boundary conditions
that follow.

pfset BCPressure.PatchNames "left right front back bottom top"

These are Dirichlet BCs (i.e. constant head over cell so the pressure head is set to hydrostatic–
see § 6.1.24). There is no time dependence, so use the constant time cycle we defined previously.
RefGeom links this to the established domain geometry and tells ParFlow what to use for a datum
when calculating hydrostatic head conditions.

pfset Patch.left.BCPressure.Type DirEquilRefPatch

pfset Patch.left.BCPressure.Cycle "constant"

pfset Patch.left.BCPressure.RefGeom domain

Reference the current (left) patch to the bottom to define the line of intersection between the
two.

pfset Patch.left.BCPressure.RefPatch bottom

Set the head permanently to 10.0m. Pressure-head will of course vary top to bottom because
of hydrostatics, but head potential will be constant.

pfset Patch.left.BCPressure.alltime.Value 10.0

32 CHAPTER 3. THE PARFLOW SYSTEM

Repeat the declarations for the rest of the faces of the domain. The left to right (X) dimension
is aligned with the hydraulic gradient. The difference between the values assigned to right and left
divided by the length of the domain corresponds to the correct hydraulic gradient.

pfset Patch.right.BCPressure.Type DirEquilRefPatch

pfset Patch.right.BCPressure.Cycle "constant"

pfset Patch.right.BCPressure.RefGeom domain

pfset Patch.right.BCPressure.RefPatch bottom

pfset Patch.right.BCPressure.alltime.Value 9.97501

pfset Patch.front.BCPressure.Type FluxConst

pfset Patch.front.BCPressure.Cycle "constant"

pfset Patch.front.BCPressure.alltime.Value 0.0

pfset Patch.back.BCPressure.Type FluxConst

pfset Patch.back.BCPressure.Cycle "constant"

pfset Patch.back.BCPressure.alltime.Value 0.0

pfset Patch.bottom.BCPressure.Type FluxConst

pfset Patch.bottom.BCPressure.Cycle "constant"

pfset Patch.bottom.BCPressure.alltime.Value 0.0

pfset Patch.top.BCPressure.Type FluxConst

pfset Patch.top.BCPressure.Cycle "constant"

pfset Patch.top.BCPressure.alltime.Value 0.0

Next we define topographic slopes and Mannings n values. These are not used, since we do not
solve for overland flow. However, the keys still need to appear in the input script.

#---

Topo slopes in x-direction

#---

topo slopes do not figure into the impes (fully sat) case but we still

need keys for them

pfset TopoSlopesX.Type "Constant"

pfset TopoSlopesX.GeomNames ""

pfset TopoSlopesX.Geom.domain.Value 0.0

#---

Topo slopes in y-direction

#---

3.6. ANNOTATED INPUT SCRIPTS 33

pfset TopoSlopesY.Type "Constant"

pfset TopoSlopesY.GeomNames ""

pfset TopoSlopesY.Geom.domain.Value 0.0

#---

Mannings coefficient

#---

mannings roughnesses do not figure into the impes (fully sat) case but we still

need a key for them

pfset Mannings.Type "Constant"

pfset Mannings.GeomNames ""

pfset Mannings.Geom.domain.Value 0.

Phase sources allows you to add sources other than wells and boundaries, but we do not have
any so this key is constant, 0.0 over entire domain.

#--

Phase sources:

#--

pfset PhaseSources.water.Type Constant

pfset PhaseSources.water.GeomNames domain

pfset PhaseSources.water.Geom.domain.Value 0.0

Next we define solver parameters for IMPES. Since this is the default solver, we do not need
a solver key.

#---

Solver Impes

#---

We allow up to 50 iterations of the linear solver before it quits or converges.

pfset Solver.MaxIter 50

The solution must be accurate to this level

pfset Solver.AbsTol 1E-10

We drop significant digits beyond E-15

34 CHAPTER 3. THE PARFLOW SYSTEM

pfset Solver.Drop 1E-15

#--

Run and Unload the ParFlow output files

#---

Here you set the number of realizations again using a local tcl variable. We have set only one
run but by setting the n_runs variable to something else we can run more than one realization of
hydraulic conductivity.

this script is setup to run 100 realizations, for testing we just run one

###set n_runs 100

set n_runs 1

Here is where you tell ParFlow where to put the output. In this case, it is a directory called
flow. Then you cd (change directory) into that new directory. If you wanted to put an entire
path rather than just a name, you would have more control over where your output file goes. For
example, you would put file mkdir ‘‘/cape_cod/revised_statistics/flow" and then change
into that directory.

file mkdir "flow"

cd "flow"

Now we loop through the realizations, again using tcl. k is the integer counter that is incre-
mented for each realization. When you use a variable (rather than define it), you precede it with$.
The hanging character { opens the do loop for k.

#

Loop through runs

#

for {set k 1} {$k <= $n_runs} {incr k 1} {

The following expressions sets the variable seed equal to the expression in brackets, which
increments with each turn of the do loop and each seed will produce a different random field of K.
You set upper and lower aquifer, because in the Cape Cod site, these are the two subsets of the
domain. Note the seed starts at a different point to allow for different random field generation for
the upper and lower zones.

#

set the random seed to be different for every run

#

pfset Geom.upper_aquifer.Perm.Seed [expr 33333+2*$k]

pfset Geom.lower_aquifer.Perm.Seed [expr 31313+2*$k]

3.6. ANNOTATED INPUT SCRIPTS 35

The following command runs ParFlow and gives you a suite of output files for each realiza-
tion. The file names will begin harvey_flow.1.xxxxx, harvey_flow.2.xxxx, etc up to as many
realizations as you run. The .xxxxx part will designate x, y, and z permeability, etc. Recall that in
this case, since we normalized gravity, viscosity, and density, remember that we are really getting
hydraulic conductivity.

pfrun harvey_flow.$k

This command removes a large number of superfluous dummy files or un-distributes parallel
files back into a single file. If you compile with the -- with-amps-sequential-io option then a
single ParFlow file is written with corresponding XXXX.dist files and the pfundist command
just removes these .dist files (though you don’t really need to remove them if you don’t want to).

pfundist harvey_flow.$k

The following commands take advantage of PFTools (see § 4.2) and load pressure head output
of the /parflow model into a pressure matrix.

we use pf tools to convert from pressure to head

we could do a number of other things here like copy files to different

format

set press [pfload harvey_flow.$k.out.press.pfb]

The next command takes the pressures that were just loaded and converts it to head and loads
them into a head matrix tcl variable.

set head [pfhhead $press]

Finally, the head matrix is saved as a ParFlow binary file (.pfb) and the k do loop is closed
by the } character. Then we move up to the root directory when we are finished

pfsave $head -pfb harvey_flow.$k.head.pfb

}

cd ".."

Once you have modified the tcl input script (if necessary) and run ParFlow, you will have
as many realizations of your subsurface as you specified. Each of these realizations will be used
as input for a particle or streamline calculation in the future. We can see below, that since we
have a tcl script as input, we can do a lot of different operations, for example, we might run a
particle tracking transport code simulation using the results of the ParFlow runs. This actually
corresponds to the example presented in the SLIM user’s manual.

this could run other tcl scripts now an example is below

#puts stdout "running SLIM"

#source bromide_trans.sm.tcl

We can add options to this script. For example if we wanted to add a pumping well these
additions are described below.

36 CHAPTER 3. THE PARFLOW SYSTEM

Adding a Pumping Well

Let us change the input problem by adding a pumping well:

1. Add the following lines to the input file near where the existing well information is in the
input file. You need to replace the “Wells.Names” line with the one included here to get both
wells activated (this value lists the names of the wells):

pfset Wells.Names {new_well}

pfset Wells.new_well.InputType Recirc

pfset Wells.new_well.Cycle constant

pfset Wells.new_well.ExtractionType Flux

pfset Wells.new_well.InjectionType Flux

pfset Wells.new_well.X 10.0

pfset Wells.new_well.Y 10.0

pfset Wells.new_well.ExtractionZLower 0.5

pfset Wells.new_well.ExtractionZUpper 0.5

pfset Wells.new_well.InjectionZLower 0.2

pfset Wells.new_well.InjectionZUpper 0.2

pfset Wells.new_well.ExtractionMethod Standard

pfset Wells.new_well.InjectionMethod Standard

pfset Wells.new_well.alltime.Extraction.Flux.water.Value 0.50

pfset Wells.new_well.alltime.Injection.Flux.water.Value 0.75

For more information on defining the problem, see § 3.1.
We could also visualize the results of the ParFlow simulations, using VisIt. For example, we

can turn on SILO file output which allows these files to be directly read and visualized. We would
do this by adding the following pfset commands, I usually add them to the solver section:

pfset Solver.WriteSiloSubsurfData True

pfset Solver.WriteSiloPressure True

pfset Solver.WriteSiloSaturation True

You can then directly open the file harvey_flow.#.out.perm_x.silo (where # is the realization
number). The resulting image will be the hydraulic conductivity field of your domain, showing the
variation in x-permeability in 3-D space. You can also generate representations of head or pressure
(or y or z permeability) throughout your domain using ParFlow output files. See the section on
visualization for more details.

3.6. ANNOTATED INPUT SCRIPTS 37

3.6.2 Little Washita Example

This tutorial matches the LW_Test.tcl file found in the /test/washita/tcl_scripts directory
and corresponds to [9, 10]. This script runs the Little Washita domain for three days using
ParFlow CLM with 3D forcings. The domain is setup using terrain following grid (§ 5.3) and
subsurface geologes are specified using a .pfb indicator file. Input files were generated using the
workflow detailed in § 3.1.2.

Now for the tcl script:

#

Import the ParFlow TCL package

#

These first three lines are what link ParFlow and the tcl script, thus allowing you to use a
set of commands seen later, such as pfset, etc.

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

#---

File input version number

#---

pfset FileVersion 4

These next lines set the parallel process topology. The domain is divided in x,y and z by P, Q
and R. The total number of processors is P*Q*R (see § 6.1.2).

#--

Process Topology

#--

pfset Process.Topology.P 1

pfset Process.Topology.Q 1

pfset Process.Topology.R 1

Before we really get started make a directory for our outputs and copy all of the required input
files into the run directory. These files will be described in detail later as they get used.

#---

Make a directory for the simulation and copy inputs into it

#---

exec mkdir "Outputs"

cd "./Outputs"

38 CHAPTER 3. THE PARFLOW SYSTEM

ParFlow Inputs

file copy -force "../../parflow_input/LW.slopex.pfb" .

file copy -force "../../parflow_input/LW.slopey.pfb" .

file copy -force "../../parflow_input/IndicatorFile_Gleeson.50z.pfb" .

file copy -force "../../parflow_input/press.init.pfb" .

#CLM Inputs

file copy -force "../../clm_input/drv_clmin.dat" .

file copy -force "../../clm_input/drv_vegp.dat" .

file copy -force "../../clm_input/drv_vegm.alluv.dat" .

puts "Files Copied"

Next we set up the computational grid (see § 3.1 and § 6.1.3).

#--

Computational Grid

#--

Locate the origin in the domain.

pfset ComputationalGrid.Lower.X 0.0

pfset ComputationalGrid.Lower.Y 0.0

pfset ComputationalGrid.Lower.Z 0.0

Define the size of the domain grid block. Length units, same as those on hydraulic conductivity.

pfset ComputationalGrid.DX 1000.0

pfset ComputationalGrid.DY 1000.0

pfset ComputationalGrid.DZ 2.0

Define the number of grid blocks in the domain.

pfset ComputationalGrid.NX 41

pfset ComputationalGrid.NY 41

pfset ComputationalGrid.NZ 50

This next piece is comparable to a pre-declaration of variables. These will be areas in our
domain geometry. The regions themselves will be defined later. You must always have one that
is the name of your entire domain. If you want subsections within your domain, you may declare
these as well. Here we define two geometries one is the domain and one is for the indicator file
(which will also span the entire domain).

3.6. ANNOTATED INPUT SCRIPTS 39

#---

The Names of the GeomInputs

#---

pfset GeomInput.Names "box_input indi_input"

Now you characterize the domain that you just pre-declared to be a box (see § 6.1.4), and you
also give it a name, domain.

#---

Domain Geometry Input

#---

pfset GeomInput.box_input.InputType Box

pfset GeomInput.box_input.GeomName domain

Here, you set the limits in space for your entire domain. The span from Lower.X to Upper.X

will be equal to the product of ComputationalGrid.DX times ComputationalGrid.NX. Same for
Y and Z (i.e. the number of grid elements times size of the grid element has to equal the size of the
grid in each dimension). The Patches key assigns names to the outside edges, because the domain
is the limit of the problem in space.

#---

Domain Geometry

#---

pfset Geom.domain.Lower.X 0.0

pfset Geom.domain.Lower.Y 0.0

pfset Geom.domain.Lower.Z 0.0

pfset Geom.domain.Upper.X 41000.0

pfset Geom.domain.Upper.Y 41000.0

pfset Geom.domain.Upper.Z 100.0

pfset Geom.domain.Patches "x-lower x-upper y-lower y-upper z-lower z-upper"

Now we setup the indicator file. As noted above, the indicator file has integer values for every
grid cell in the domain designating what geologic unit it belongs to. The GeomNames list should
include a name for every unit in your indicator file. In this example we have thirteen soil units and
eight geologic units. The FileName points to the indicator file that ParFlow will read. Recall
that this file into the run directory at the start of the script.

#---

Indicator Geometry Input

#---

pfset GeomInput.indi_input.InputType IndicatorField

pfset GeomInput.indi_input.GeomNames "s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 g1 g2 g3

pfset Geom.indi_input.FileName "IndicatorFile_Gleeson.50z.pfb"

40 CHAPTER 3. THE PARFLOW SYSTEM

For every name in the GeomNames list we define the corresponding value in the indicator file.
For example, here we are saying that our first soil unit (s1) is represented by the number “1” in
the indicator file, while the first geologic unit (g1) is represented by the number “21”. Note that
the integers used in the indicator file do not need to be consecutive.

pfset GeomInput.s1.Value 1

pfset GeomInput.s2.Value 2

pfset GeomInput.s3.Value 3

pfset GeomInput.s4.Value 4

pfset GeomInput.s5.Value 5

pfset GeomInput.s6.Value 6

pfset GeomInput.s7.Value 7

pfset GeomInput.s8.Value 8

pfset GeomInput.s9.Value 9

pfset GeomInput.s10.Value 10

pfset GeomInput.s11.Value 11

pfset GeomInput.s12.Value 12

pfset GeomInput.s13.Value 13

pfset GeomInput.g1.Value 21

pfset GeomInput.g2.Value 22

pfset GeomInput.g3.Value 23

pfset GeomInput.g4.Value 24

pfset GeomInput.g5.Value 25

pfset GeomInput.g6.Value 26

pfset GeomInput.g7.Value 27

pfset GeomInput.g8.Value 28

Now you add permeability data to the domain sections defined above (§ 6.1.11). You can re-
assign values simply by re-stating them – there is no need to comment out or delete the previous
version – the final statement is the only one that counts. Also, note that you do not need to assign
permeability values to all of the geometries names. Any geometry that is not assigned its own per-
meability value will take the domain value. However, every geometry listed in Porosity.GeomNames

must have values assigned.

#---

Permeability (values in m/hr)

#---

pfset Geom.Perm.Names "domain s1 s2 s3 s4 s5 s6 s7 s8 s9 g2 g3 g6 g8"

pfset Geom.domain.Perm.Type Constant

pfset Geom.domain.Perm.Value 0.2

pfset Geom.s1.Perm.Type Constant

3.6. ANNOTATED INPUT SCRIPTS 41

pfset Geom.s1.Perm.Value 0.269022595

pfset Geom.s2.Perm.Type Constant

pfset Geom.s2.Perm.Value 0.043630356

pfset Geom.s3.Perm.Type Constant

pfset Geom.s3.Perm.Value 0.015841225

pfset Geom.s4.Perm.Type Constant

pfset Geom.s4.Perm.Value 0.007582087

pfset Geom.s5.Perm.Type Constant

pfset Geom.s5.Perm.Value 0.01818816

pfset Geom.s6.Perm.Type Constant

pfset Geom.s6.Perm.Value 0.005009435

pfset Geom.s7.Perm.Type Constant

pfset Geom.s7.Perm.Value 0.005492736

pfset Geom.s8.Perm.Type Constant

pfset Geom.s8.Perm.Value 0.004675077

pfset Geom.s9.Perm.Type Constant

pfset Geom.s9.Perm.Value 0.003386794

pfset Geom.g2.Perm.Type Constant

pfset Geom.g2.Perm.Value 0.025

pfset Geom.g3.Perm.Type Constant

pfset Geom.g3.Perm.Value 0.059

pfset Geom.g6.Perm.Type Constant

pfset Geom.g6.Perm.Value 0.2

pfset Geom.g8.Perm.Type Constant

pfset Geom.g8.Perm.Value 0.68

The following section allows you to specify the permeability tensor. In the case below, perme-
ability is symmetric in all directions (x, y, and z) and therefore each is set to 1.0. Also note that we
just specify this once for the whole domain because we want isotropic permeability everywhere. You
can specify different tensors for different units by repeating these lines with different Geom.Names.

42 CHAPTER 3. THE PARFLOW SYSTEM

pfset Perm.TensorType TensorByGeom

pfset Geom.Perm.TensorByGeom.Names "domain"

pfset Geom.domain.Perm.TensorValX 1.0d0

pfset Geom.domain.Perm.TensorValY 1.0d0

pfset Geom.domain.Perm.TensorValZ 1.0d0

Next we set the specific storage. Here again we specify one value for the whole domain but
these lines can be easily repeated to set different values for different units.

#---

Specific Storage

#---

pfset SpecificStorage.Type Constant

pfset SpecificStorage.GeomNames "domain"

pfset Geom.domain.SpecificStorage.Value 1.0e-5

ParFlow has the capability to deal with a multiphase system, but we only have one (water) in
this example. As we stated earlier, we set density and viscosity artificially (and later gravity) both
to 1.0. Again, this is merely a trick to solve for hydraulic conductivity and pressure head. If you
were to set density and viscosity to their true values, the code would calculate k (permeability).
By using the normalized values instead, you effectively embed the conversion of k to K (hydraulic
conductivity). So this way, we get hydraulic conductivity, which is what we want for this problem.

#---

Phases

#---

pfset Phase.Names "water"

pfset Phase.water.Density.Type Constant

pfset Phase.water.Density.Value 1.0

pfset Phase.water.Viscosity.Type Constant

pfset Phase.water.Viscosity.Value 1.0

This example does not include the ParFlow grid based transport scheme. Therefore we leave
contaminants blank.

#---

Contaminants

#---

pfset Contaminants.Names ""

As with density and viscosity, gravity is normalized here. If we used the true value (in the [L]
and [T] units of hydraulic conductivity) the code would be calculating permeability. Instead, we
normalize so that the code calculates hydraulic conductivity.

3.6. ANNOTATED INPUT SCRIPTS 43

#---

Gravity

#---

pfset Gravity 1.0

Next we set up the timing for our simulation.

#---

Timing (time units is set by units of permeability)

#---

This specifies the base unit of time for all time values entered. All time should be expressed
as multiples of this value. To keep things simple here we set it to 1. Because we expressed our
permeability in units of m/hr in this example this means that our basin unit of time is 1hr.

pfset TimingInfo.BaseUnit 1.0

This key specifies the time step number that will be associated with the first advection cycle of
the transient problem. Because we are starting from scratch we set this to 0. If we were restarting a
run we would set this to the last time step of your previous simulation. Refer to § 3.3 for additional
instructions on restarting a run.

pfset TimingInfo.StartCount 0.0

StartTime and StopTime specify the start and stop times for the simulation. These values
should correspond with the forcing files you are using.

pfset TimingInfo.StartTime 0.0

pfset TimingInfo.StopTime 72.0

This key specifies the timing interval at which ParFlow time dependent outputs will be writ-
ten. Here we have a base unit of 1hr so a dump interval of 24 means that we are writing daily
outputs. Note that this key only controls the ParFlow output interval and not the interval that
CLM outputs will be written out at.

pfset TimingInfo.DumpInterval 24.0

Here we set the time step value. For this example we use a constant time step of 1hr.

pfset TimeStep.Type Constant

pfset TimeStep.Value 1.0

Next, we assign the porosity (see § 6.1.12). As with the permeability we assign different values
for different indicator geometries. Here we assign values for all of our soil units but not for the
geologic units, they will default to the domain value of 0.4. Note that every geometry listed in
Porosity.GeomNames must have values assigned.

44 CHAPTER 3. THE PARFLOW SYSTEM

#---

Porosity

#---

pfset Geom.Porosity.GeomNames "domain s1 s2 s3 s4 s5 s6 s7 s8 s9"

pfset Geom.domain.Porosity.Type Constant

pfset Geom.domain.Porosity.Value 0.4

pfset Geom.s1.Porosity.Type Constant

pfset Geom.s1.Porosity.Value 0.375

pfset Geom.s2.Porosity.Type Constant

pfset Geom.s2.Porosity.Value 0.39

pfset Geom.s3.Porosity.Type Constant

pfset Geom.s3.Porosity.Value 0.387

pfset Geom.s4.Porosity.Type Constant

pfset Geom.s4.Porosity.Value 0.439

pfset Geom.s5.Porosity.Type Constant

pfset Geom.s5.Porosity.Value 0.489

pfset Geom.s6.Porosity.Type Constant

pfset Geom.s6.Porosity.Value 0.399

pfset Geom.s7.Porosity.Type Constant

pfset Geom.s7.Porosity.Value 0.384

pfset Geom.s8.Porosity.Type Constant

pfset Geom.s8.Porosity.Value 0.482

pfset Geom.s9.Porosity.Type Constant

pfset Geom.s9.Porosity.Value 0.442

Having defined the geometry of our problem before and named it domain, we are now ready to
report/upload that problem, which we do here.

#---

Domain

#---

pfset Domain.GeomName "domain"

Mobility between phases is set to 1.0 because we only have one phase (water).

3.6. ANNOTATED INPUT SCRIPTS 45

#--

Mobility

#--

pfset Phase.water.Mobility.Type Constant

pfset Phase.water.Mobility.Value 1.0

Again, ParFlow has more capabilities than we are using here in this example. Note that since
there are no well names listed here, ParFlow assumes we have no wells. If we had pumping wells,
we would have to include them here, because they would affect the head distribution throughout
our domain. See § 3.6.1 for an example of how to include pumping wells in this script.

#---

Wells

#---

pfset Wells.Names ""

You can give certain periods of time names if you want. For example if you aren’t running with
CLM and you would like to have periods with rain and periods without. Here, however we have only
one time cycle because CLM will handle the variable forcings. Therefore, we specify one time cycle
and it’s constant for the duration of the simulation. We accomplish this by giving it a repeat value
of -1, which repeats indefinitely. The length of the cycle is the length specified below (an integer)
multiplied by the base unit value we specified earlier.

#---

Time Cycles

#---

pfset Cycle.Names "constant"

pfset Cycle.constant.Names "alltime"

pfset Cycle.constant.alltime.Length 1

pfset Cycle.constant.Repeat -1

Now, we assign Boundary Conditions for each face (each of the Patches in the domain defined
before). Recall the previously stated Patches and associate them with the boundary conditions
that follow.

#---

Boundary Conditions

#---

pfset BCPressure.PatchNames [pfget Geom.domain.Patches]

The bottom and sides of our domain are all set to no-flow (i.e. constant flux of 0) boundaries.

pfset Patch.x-lower.BCPressure.Type FluxConst

pfset Patch.x-lower.BCPressure.Cycle "constant"

46 CHAPTER 3. THE PARFLOW SYSTEM

pfset Patch.x-lower.BCPressure.alltime.Value 0.0

pfset Patch.y-lower.BCPressure.Type FluxConst

pfset Patch.y-lower.BCPressure.Cycle "constant"

pfset Patch.y-lower.BCPressure.alltime.Value 0.0

pfset Patch.z-lower.BCPressure.Type FluxConst

pfset Patch.z-lower.BCPressure.Cycle "constant"

pfset Patch.z-lower.BCPressure.alltime.Value 0.0

pfset Patch.x-upper.BCPressure.Type FluxConst

pfset Patch.x-upper.BCPressure.Cycle "constant"

pfset Patch.x-upper.BCPressure.alltime.Value 0.0

pfset Patch.y-upper.BCPressure.Type FluxConst

pfset Patch.y-upper.BCPressure.Cycle "constant"

pfset Patch.y-upper.BCPressure.alltime.Value 0.0

The top is set to an OverlandFLow boundary to turn on the fully-coupled overland flow routing.

pfset Patch.z-upper.BCPressure.Type OverlandFlow

pfset Patch.z-upper.BCPressure.Cycle "constant"

pfset Patch.z-upper.BCPressure.alltime.Value 0.0

Next we define topographic slopes and values. These slope values were derived from a digital
elevation model of the domain following the workflow outlined in § 3.1.2. In this example we read
the slope files in from .pfb files that were copied into the run directory at the start of this script.

#---

Topo slopes in x-direction

#---

pfset TopoSlopesX.Type "PFBFile"

pfset TopoSlopesX.GeomNames "domain"

pfset TopoSlopesX.FileName "LW.slopex.pfb"

#---

Topo slopes in y-direction

#---

pfset TopoSlopesY.Type "PFBFile"

pfset TopoSlopesY.GeomNames "domain"

pfset TopoSlopesY.FileName "LW.slopey.pfb"

And now we define the Mannings n, again just one value for the whole domain in this example.

3.6. ANNOTATED INPUT SCRIPTS 47

#---

Mannings coefficient

#---

pfset Mannings.Type "Constant"

pfset Mannings.GeomNames "domain"

pfset Mannings.Geom.domain.Value 5.52e-6

Following the same approach as we did for Porosity we define the relative permeability inputs
that will be used for Richards’ equation implementation (§ 6.1.19). Here we use VanGenuchten

parameters. Note that every geometry listed in Porosity.GeomNames must have values assigned.

#---

Relative Permeability

#---

pfset Phase.RelPerm.Type VanGenuchten

pfset Phase.RelPerm.GeomNames "domain s1 s2 s3 s4 s5 s6 s7 s8 s9 "

pfset Geom.domain.RelPerm.Alpha 3.5

pfset Geom.domain.RelPerm.N 2.0

pfset Geom.s1.RelPerm.Alpha 3.548

pfset Geom.s1.RelPerm.N 4.162

pfset Geom.s2.RelPerm.Alpha 3.467

pfset Geom.s2.RelPerm.N 2.738

pfset Geom.s3.RelPerm.Alpha 2.692

pfset Geom.s3.RelPerm.N 2.445

pfset Geom.s4.RelPerm.Alpha 0.501

pfset Geom.s4.RelPerm.N 2.659

pfset Geom.s5.RelPerm.Alpha 0.661

pfset Geom.s5.RelPerm.N 2.659

pfset Geom.s6.RelPerm.Alpha 1.122

pfset Geom.s6.RelPerm.N 2.479

pfset Geom.s7.RelPerm.Alpha 2.089

pfset Geom.s7.RelPerm.N 2.318

pfset Geom.s8.RelPerm.Alpha 0.832

pfset Geom.s8.RelPerm.N 2.514

48 CHAPTER 3. THE PARFLOW SYSTEM

pfset Geom.s9.RelPerm.Alpha 1.585

pfset Geom.s9.RelPerm.N 2.413

Next we do the same thing for saturation (§ 6.1.22) again using the VanGenuchten parameters
Note that every geometry listed in Porosity.GeomNames must have values assigned.

#---

Saturation

#---

pfset Phase.Saturation.Type VanGenuchten

pfset Phase.Saturation.GeomNames "domain s1 s2 s3 s4 s5 s6 s7 s8 s9 "

pfset Geom.domain.Saturation.Alpha 3.5

pfset Geom.domain.Saturation.N 2.

pfset Geom.domain.Saturation.SRes 0.2

pfset Geom.domain.Saturation.SSat 1.0

pfset Geom.s1.Saturation.Alpha 3.548

pfset Geom.s1.Saturation.N 4.162

pfset Geom.s1.Saturation.SRes 0.000001

pfset Geom.s1.Saturation.SSat 1.0

pfset Geom.s2.Saturation.Alpha 3.467

pfset Geom.s2.Saturation.N 2.738

pfset Geom.s2.Saturation.SRes 0.000001

pfset Geom.s2.Saturation.SSat 1.0

pfset Geom.s3.Saturation.Alpha 2.692

pfset Geom.s3.Saturation.N 2.445

pfset Geom.s3.Saturation.SRes 0.000001

pfset Geom.s3.Saturation.SSat 1.0

pfset Geom.s4.Saturation.Alpha 0.501

pfset Geom.s4.Saturation.N 2.659

pfset Geom.s4.Saturation.SRes 0.000001

pfset Geom.s4.Saturation.SSat 1.0

pfset Geom.s5.Saturation.Alpha 0.661

pfset Geom.s5.Saturation.N 2.659

pfset Geom.s5.Saturation.SRes 0.000001

pfset Geom.s5.Saturation.SSat 1.0

3.6. ANNOTATED INPUT SCRIPTS 49

pfset Geom.s6.Saturation.Alpha 1.122

pfset Geom.s6.Saturation.N 2.479

pfset Geom.s6.Saturation.SRes 0.000001

pfset Geom.s6.Saturation.SSat 1.0

pfset Geom.s7.Saturation.Alpha 2.089

pfset Geom.s7.Saturation.N 2.318

pfset Geom.s7.Saturation.SRes 0.000001

pfset Geom.s7.Saturation.SSat 1.0

pfset Geom.s8.Saturation.Alpha 0.832

pfset Geom.s8.Saturation.N 2.514

pfset Geom.s8.Saturation.SRes 0.000001

pfset Geom.s8.Saturation.SSat 1.0

pfset Geom.s9.Saturation.Alpha 1.585

pfset Geom.s9.Saturation.N 2.413

pfset Geom.s9.Saturation.SRes 0.000001

pfset Geom.s9.Saturation.SSat 1.0

Phase sources allows you to add sources other than wells and boundaries, but we do not have
any so this key is constant, 0.0 over entire domain.

#---

Phase sources:

#---

pfset PhaseSources.water.Type "Constant"

pfset PhaseSources.water.GeomNames "domain"

pfset PhaseSources.water.Geom.domain.Value 0.0

In this example we are using ParFlow CLM so we must provide some parameters for CLM

(§ 6.1.35). Note that CLM will also require some additional inputs outside of the tcl script. Refer
to /washita/clm_input/ for examples of the CLM vegm and driver files. These inputs are also
discussed briefly in § 3.1.2.

#--

CLM Settings:

--

First we specify that we will be using CLM as the land surface model and provide the name
of a directory that outputs will be written to. For this example we do not need outputs for each
processor or a binary output directory. Finally we set the dump interval to 1, indicating that we
will be writing outputs for every time step. Note that this does not have to match the dump
interval for ParFlow outputs. Recall that earlier we set the ParFlow dump interval to 24.

50 CHAPTER 3. THE PARFLOW SYSTEM

pfset Solver.LSM CLM

pfset Solver.CLM.CLMFileDir "clm_output/"

pfset Solver.CLM.Print1dOut False

pfset Solver.BinaryOutDir False

pfset Solver.CLM.CLMDumpInterval 1

Next we specify the details of the meteorological forcing files that clm will read. First we provide
the name of the files and the directory they can be found in. Next we specify that we are using 3D

forcing files meaning that we have spatially distributed forcing with multiple time steps in every
file. Therefore we must also specify the number of times steps (MetFileNT) in every file, in this
case 24. Finally, we specify the initial value for the CLM counter.

pfset Solver.CLM.MetFileName "NLDAS"

pfset Solver.CLM.MetFilePath "../../NLDAS/"

pfset Solver.CLM.MetForcing 3D

pfset Solver.CLM.MetFileNT 24

pfset Solver.CLM.IstepStart 1

This last set of CLM parameters refers to the physical properties of the system. Refer to § 6.1.35
for details.

pfset Solver.CLM.EvapBeta Linear

pfset Solver.CLM.VegWaterStress Saturation

pfset Solver.CLM.ResSat 0.1

pfset Solver.CLM.WiltingPoint 0.12

pfset Solver.CLM.FieldCapacity 0.98

pfset Solver.CLM.IrrigationType none

Next we set the initial conditions for the domain. In this example we are using a pressure .pfb
file that was obtained by spinning up the model in the workflow outlined in § 3.1.2. Alternatively,
the water table can be set to a constant value by changing the ICPressure.Type. Again, the input
file that is referenced here was was copied into the run directory at the top of this script.

#---

Initial conditions: water pressure

#---

pfset ICPressure.Type PFBFile

pfset ICPressure.GeomNames domain

pfset Geom.domain.ICPressure.RefPatch z-upper

pfset Geom.domain.ICPressure.FileName press.init.pfb

Now we specify what outputs we would like written. In this example we specify that we would
like to write out CLM variables as well as Pressure and Saturation. However, there are many
options for this and you should change these options according to what type of analysis you will
be performing on your results. A complete list of print options is provided in § 6.1.31.

3.6. ANNOTATED INPUT SCRIPTS 51

#--

Outputs

--

#Writing output (all pfb):

pfset Solver.PrintSubsurfData False

pfset Solver.PrintPressure True

pfset Solver.PrintSaturation True

pfset Solver.PrintMask True

pfset Solver.WriteCLMBinary False

pfset Solver.PrintCLM True

pfset Solver.WriteSiloSpecificStorage False

pfset Solver.WriteSiloMannings False

pfset Solver.WriteSiloMask False

pfset Solver.WriteSiloSlopes False

pfset Solver.WriteSiloSubsurfData False

pfset Solver.WriteSiloPressure False

pfset Solver.WriteSiloSaturation False

pfset Solver.WriteSiloEvapTrans False

pfset Solver.WriteSiloEvapTransSum False

pfset Solver.WriteSiloOverlandSum False

pfset Solver.WriteSiloCLM False

Next we specify the solver settings for the ParFlow (§ 6.1.33). First we turn on solver Richards
and the terrain following grid. We turn off variable dz.

#---

Set solver parameters

#---

ParFlow Solution

pfset Solver Richards

pfset Solver.TerrainFollowingGrid True

pfset Solver.Nonlinear.VariableDz False

We then set the max solver settings and linear and nonlinear convergence tolerance settings.
The linear system will be solved to a norm of 10−8 and the nonlinear system will be solved to
less than 10−6. Of note in latter key block is the EtaChoice and that we use the analytical
Jacobian (UseJacobian=True). We are using the FullJacobian preconditioner, which is a more
robust approach but is more expensive.

pfset Solver.MaxIter 25000

pfset Solver.Drop 1E-20

pfset Solver.AbsTol 1E-8

52 CHAPTER 3. THE PARFLOW SYSTEM

pfset Solver.MaxConvergenceFailures 8

pfset Solver.Nonlinear.MaxIter 80

pfset Solver.Nonlinear.ResidualTol 1e-6

pfset Solver.Nonlinear.EtaChoice EtaConstant

pfset Solver.Nonlinear.EtaValue 0.001

pfset Solver.Nonlinear.UseJacobian True

pfset Solver.Nonlinear.DerivativeEpsilon 1e-16

pfset Solver.Nonlinear.StepTol 1e-30

pfset Solver.Nonlinear.Globalization LineSearch

pfset Solver.Linear.KrylovDimension 70

pfset Solver.Linear.MaxRestarts 2

pfset Solver.Linear.Preconditioner PFMG

pfset Solver.Linear.Preconditioner.PCMatrixType FullJacobian

This key is just for testing the Richards’ formulation, so we are not using it.

#---

Exact solution specification for error calculations

#---

pfset KnownSolution NoKnownSolution

Next we distribute all the inputs as described by the keys in § 4.2. Note the slopes are 2D files,
while the rest of the ParFlow inputs are 3D so we need to alter the NZ accordingly following
example 4 in § 4.3.

#---

Distribute inputs

#---

pfset ComputationalGrid.NX 41

pfset ComputationalGrid.NY 41

pfset ComputationalGrid.NZ 1

pfdist LW.slopex.pfb

pfdist LW.slopey.pfb

pfset ComputationalGrid.NX 41

pfset ComputationalGrid.NY 41

pfset ComputationalGrid.NZ 50

pfdist IndicatorFile_Gleeson.50z.pfb

pfdist press.init.pfb

Now we run the simulation. Note that we use a tcl variable to set the run name.

3.6. ANNOTATED INPUT SCRIPTS 53

#---

Run Simulation

#---

set runname "LW"

puts $runname

pfrun $runname

All that is left is to undistribute files.

#---

Undistribute Files

#---

pfundist $runname

pfundist press.init.pfb

pfundist LW.slopex.pfb

pfundist LW.slopey.pfb

pfundist IndicatorFile_Gleeson.50z.pfb

puts "ParFlow run Complete"

54 CHAPTER 3. THE PARFLOW SYSTEM

Chapter 4

Manipulating Data: PFTools

4.1 Introduction to the ParFlow TCL commands (PFTCL)

Several tools for manipulating data are provided in PFTCL command set. Tools can be accessed
directly from the TCL shell or within a ParFlow input script. In both cases you must first load
the ParFlow package into the TCL shell as follows:

#

To Import the ParFlow TCL package

#

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

In addition to these methods xpftools provides GUI access to most of these features. However
the simplest approach is generally to include the tools commands within a tcl script. The following
section lists all of the available ParFlow TCL commands along with detailed instructions for their
use. § 4.2 provides several examples of pre and post processing using the tools. In addition, a list of
tools can be obtained by typing pfhelp into a TCL shell after importing ParFlow. Typing pfhelp
followed by a command name will display a detailed description of the command in question.

4.2 PFTCL Commands

The tables that follow 4.1, 4.2 and 4.3 provide a list of ParFlow commands with short descriptions
grouped according to their function. The last two columns in this table indicate what examples
from § 4.3, if any, the command is used in and whether the command is compatible with a terrain
following grid domain formulation.

55

56 CHAPTER 4. MANIPULATING DATA: PFTOOLS

Table 4.1: List of PFTools commands by function.
Name Short Description Examples Compatible with

TFG?

pfhelp Get help for PF Tools X
Mathematical Operations

pfcellsum datasetx + datasety X
pfcelldiff datasetx - datasety X
pfcellmult datasetx * datasety X
pfcelldiv datasetx / datasety X
pfcellsumconst dataset + constant X
pfcelldiffconst dataset - constant X
pfcellmultconst dataset * constant X
pfcelldivconst dataset / constant X
pfsum Sum dataset 7, 9 X
pfdiffelt Element difference X
pfprintdiff Print difference X
pfmdiff Calculate area where the difference

between two datasets is less than a
threshold

X

pfprintmdiff Print the locations with differences
greater than a minimum threshold

X

pfsavediff Save the difference between two
datasets

X

pfaxpy y=alpha*x+y X
pfgetstats Calculate dataset statistics (min, max,

mean, var, stdev)
X

pfprintstats Print formatted statistics X
pfstats Calculate and print dataset statistics

(min, max, mean, var, stdev)
X

Calculate physical parameters
pfbfcvel Calculate block face centered velocity
pfcvel Calculate Darcy velocity
pfvvel Calculate Darcy velocity at cell vertices
pfvmag Calculate velocity magnitude given

components
pfflux Calculate Darcy flux
pfhhead Calculate hydraulic head 2
pfphead Calculate pressure head from hydraulic

head
pfsattrans calculate saturated transmissivity X
pfupstreamarea Calculate upstream area X
pfeffectiverecharge Calculate effective recharge X
pfwatertabledepth Calculate water table from saturation X
pfhydrostatic Calculate hydrostatic pressure field
pfsubsurfacestorage Calculate total sub-surface storage 7 X
pfgwstorage Calculate saturated subsurface storage X
pfsurfacerunoff Calculate total surface runoff 9 X
pfsurfacestorage Calculate total surface storage 8 X

4.2. PFTCL COMMANDS 57

Table 4.2: List of PFTools commands by function (cont.).
Name Short Description Examples Compatible with

TFG?

DEM Operations
pfslopex Calculate slopes in the x-direction 5 X
pfslopey Calculate slope in the y-direction 5 X
pfchildD8 Calculate D8 child X
pfsegmentD8 Calculate D8 segment lengths X
pfslopeD8 Calculate D8 slopes X
pfslopexD4 Calculate D4 slopes in the x-direction X
pfslopeyD4 Calculate D4 slopes in the y-direction X
pffillflats Fill DEM flats 5 X
pfmovingavgdem Fill dem sinks with moving average X
pfpitfilldem Fill sinks in the dem using iterative pit-

filling routine
5 X

pfflintslawfit Calculate Flint’s Law parameters X
pfflintslaw Smooth DEM using Flints Law X
pfflintslawbybasin Smooth DEM using Flints Law by basin X

Topmodel functions
pftopodeficit Calculate TOPMODEL water deficit X
pftopoindex Calculate topographic index X
pftopowt Calculate watertable based on topo-

graphic index
X

pftoporecharge Calculate effective recharge X
Domain Operations

pfcomputedomain Compute domain mask 3 X
pfcomputetop Compute domain top 3, 6, 8, 9 X
pfextracttop Extract domain top 6 X
pfcomputebottom Compute domain bottom 3 X
pfsetgrid Set grid 5 X
pfgridtype Set grid type X
pfgetgrid Return grid information X
pfgetelt Extract element from domain 10 X
pfextract2Ddomain Build 2D domain X
pfenlargebox Compute expanded dataset X
pfgetsubbox Return subset of data X
pfprintdomain Print domain 3 X
pfbuilddomain Build a subgrid array from a ParFlow

database
X

Dataset operations
pflistdata Return dataset names and labels X
pfgetlist Return dataset descriptions X
pfprintlist Print list of datasets and their labels X
pfnewlabel Change dataset label X
pfnewdata Create new dataset X
pfprintgrid Print grid X
pfnewgrid Set grid for new dataset X
pfdelete Delete dataset X
pfreload Reload dataset X
pfreloadall Reload all current datasets X
pfprintdata Print all elements of a dataset X
pfprintelt Print a single element X

58 CHAPTER 4. MANIPULATING DATA: PFTOOLS

Table 4.3: List of PFTools commands by function (cont.).
Name Short Description Examples Compatible with

TFG?

File Operations
pfload Load file All X
pfloadsds Load Scientific Data Set from HDF file X
pfdist Distribute files based on processor

topology
4 X

pfdistondomain Distribute files based on domain X
pfundist Undistribute files X
pfsave Save dataset 1,2,5,6 X
pfsavesds Save dataset in an HDF format X
pfwritedb Write the settings for a PF run to a

database
X

4.2. PFTCL COMMANDS 59

Detailed descriptions of every command are included below in alphabetical order. Note that the required
inputs are listed following each command. Commands that perform operations on data sets will require an
identifier for each data set it takes as input. Inputs listed in square brackets are optional and do not need
to be provided.

pfaxpy alpha x y

This command computes y = alpha*x+y where alpha is a scalar and x and y are identifiers representing
data sets. No data set identifier is returned upon successful completion since data set y is overwritten.

pfbfcvel conductivity phead

This command computes the block face centered flow velocity at every grid cell. Conductivity and
pressure head data sets are given as arguments. The output includes x, y, and z velocity components
that are appended to the Tcl result.

pfbuilddomain database

This command builds a subgrid array given a ParFlow database that contains the domain parameters
and the processor topology.

pfcelldiff datasetx datasety mask

This command computes cell-wise differences of two datasets (diff=datasetx-datasety). This is the
difference at each individual cell, not over the domain. Datasets must have the same dimensions.

pfcelldiffconst dataset constant mask

This command subtracts a constant value from each (active) cell of dataset (dif=dataset - constant).

pfcelldiv datasetx datasety mask

This command computes the cell-wise quotient of datasetx and datasety (div = datasetx/datasety).
This is the quotient at each individual cell. Datasets must have the same dimensions.

pfcelldivconst dataset constant mask

This command divides each (active) cell of dataset by a constant (div=dataset/constant).

pfcellmult datasetx datasety mask

This command computes the cell-wise product of datasetx and datasety (mult = datasetx * datasety).
This is the product at each individual cell. Datasets must have the same dimensions.

pfcellmultconst dataset constant mask

This command multiplies each (active) cell of dataset by a constant (mult=dataset * constant).

pfcellsum datasetp datasetq mask

This command computes the cellwise sum of two datasets (i.e., the sum at each individual cell, not
the sum over the domain). Datasets must have the same dimensions.

pfcellsumconst dataset constant mask

This command adds the value of constant to each (active) cell of dataset.

pfchildD8 dem

This command computes the unique D8 child for all cells. Child[i,j] is the elevation of the cell to
which [i,j] drains (i.e. the elevation of [i,j]’s child). If [i,j] is a local minima the child elevation set the
elevation of [i,j].

60 CHAPTER 4. MANIPULATING DATA: PFTOOLS

pfcomputebottom mask

This command computes the bottom of the domain based on the mask of active and inactive zones.
The identifier of the data set created by this operation is returned upon successful completion.

pfcomputedomain top bottom

This command computes a domain based on the top and bottom data sets. The domain built will
have a single subgrid per processor that covers the active data as defined by the top and botttom.
This domain will more closely follow the topology of the terrain than the default single computation
domain.

A typical usage pattern for this is to start with a mask file (zeros in inactive cells and non-zero in
active cells), create the top and bottom from the mask, compute the domain and then write out the
domain. Refer to example number 3 in the following section.

pfcomputetop mask

This command computes the top of the domain based on the mask of active and inactive zones. This
is the land-surface in clm or overland flow simulations. The identifier of the data set created by this
operation is returned upon successful completion.

pfcvel conductivity phead

This command computes the Darcy velocity in cells for the conductivity data set represented by the
identifier ‘conductivity’ and the pressure head data set represented by the identifier ‘phead’. (note:
This ”cell” is not the same as the grid cells; its corners are defined by the grid vertices.) The identifier
of the data set created by this operation is returned upon successful completion.

pfdelete dataset

This command deletes the data set represented by the identifier ‘dataset’. This command can be
useful when working with multiple datasets / time series, such as those created when many timesteps
of a file are loaded and processed. Deleting these datasets in between reads can help with tcl memory
management.

pfdiffelt datasetp datasetq i j k digits [zero]

This command returns the difference of two corresponding coordinates from ‘datasetp’ and ‘datasetq’
if the number of digits in agreement (significant digits) differs by more than ‘digits’ significant digits
and the difference is greater than the absolute zero given by ‘zero’.

pfdist filename

Distribute the file onto the virtual file system. This utility must be used to create files which ParFlow
can use as input. ParFlow uses a virtual file system which allows each node of the parallel machine to
read from the input file independently. The utility does the inverse of the pfundist command. If you
are using a ParFlow binary file for input you should do a pfdist just before you do the pfrun. This
command requires that the processor topology and computational grid be set in the input file so that
it knows how to distribute the data. NOTE: When distributing slope files the NZ must be set to 1 to
indicate a two dimensional file.

pfdistondomain filename domain

Distribute the file onto the virtual file system based on the domain provided rather than the processor
topology as used by pfdist. This is used by the SAMRAI version of which allows for a more com-
plicated computation domain specification with different sized subgrids on each processor and allows
for more than one subgrid per processor. Frequently this will be used with a domain created by the
pfcomputedomain command.

4.2. PFTCL COMMANDS 61

pfeffectiverecharge precip et slopex slopey dem

This command computes the effective recharge at every grid cell based on total precipitation minus
evapotranspiration (P-ET)in the upstream area. Effective recharge is consistent with TOPMODEL
definition, NOT local P-ET. Inputs are total annual (or average annual) precipitation (precip) at each
point, total annual (or average annual) evapotranspiration (ET) at each point, slope in the x direction,
slope in the y direction and elevation.

pfenlargebox dataset sx sy sz

This command returns a new dataset which is enlarged to be of the new size indicated by sx, sy and
sz. Expansion is done first in the z plane, then y plane and x plane.

pfextract2Ddomain domain

This command builds a 2D domain based off a 3D domain. This can be used for a pfdistondomain
command for Parflow 2D data (such as slopes and soil indices).

pfextracttop top data

This command computes the top of the domain based on the top of the domain and another dataset.
The identifier of the data set created by this operation is returned upon successful completion.

pffillflats dem

This command finds the flat regions in the DEM and eliminates them by bilinearly interpolating
elevations across flat region.

pfflintslaw dem c p

This command smooths the digital elevation model dem according to Flints Law, with Flints Law
parameters specified by c and p, respectively. Flints Law relates the slope magnitude at a given cell
to its upstream contributing area: S = c*A**p. In this routine, elevations at local minima retain the
same value as in the original dem. Elevations at all other cells are computed by applying Flints Law
recursively up each drainage path, starting at its terminus (a local minimum) until a drainage divide
is reached. Elevations are computed as:

dem[i,j] = dem[child] + c*(A[i,j]**p)*ds[i,j]

where child is the D8 child of [i,j] (i.e., the cell to which [i,j] drains according to the D8 method); ds[i,j]
is the segment length between the [i,j] and its child; A[i,j] is the upstream contributing area of [i,j];
and c and p are constants.

pfflintslawbybasin dem c0 p0 maxiter

This command smooths the digital elevation model (dem) using the same approach as ”pfflints law”.
However here the c and p parameters are fit for each basin separately. The Flints Law parameters
are calculated for the provided digital elevation model dem using the iterative Levenberg-Marquardt
method of non-linear least squares minimization, as in ”pfflintslawfit”. The user must provide initial
estimates of c0 and p0; results are not sensitive to these initial values. The user must also specify the
maximum number of iterations as maxiter.

pfflintslawfit dem c0 p0 maxiter

This command fits Flint’s Law parameters c and p for the provided digital elevation model dem using
the iterative Levenberg-Marquardt method of non-linear least squares minimization. The user must
provide initial estimates of c0 and p0; results are not sensitive to these initial values. The user must
also specify the maximum number of iterations as maxiter. Final values of c and p are printed to
the screen, and a dataset containing smoothed elevation values is returned. Smoothed elevations are

62 CHAPTER 4. MANIPULATING DATA: PFTOOLS

identical to running pfflintslaw for the final values of c and p. Note that dem must be a ParFlow dataset
and must have the correct grid information – dx, dy, nx, and ny are used in parameter estimation and
Flint’s Law calculations. If gridded elevation values are read in from a text file (e.g., using pfload’s
simple ascii format), grid information must be specified using the pfsetgrid command.

pfflux conductivity hhead

This command computes the net Darcy flux at vertices for the conductivity data set ‘conductivity’
and the hydraulic head data set given by ‘hhead’. An identifier representing the flux computed will
be returned upon successful completion.

pfgetelt dataset i j k

This command returns the value at element (i,j,k) in data set ‘dataset’. The i, j, and k above must
range from 0 to (nx - 1), 0 to (ny - 1), and 0 to (nz - 1) respectively. The values nx, ny, and nz are
the number of grid points along the x, y, and z axes respectively. The string ‘dataset’ is an identifier
representing the data set whose element is to be retrieved.

pfgetgrid dataset

This command returns a description of the grid which serves as the domain of data set ‘dataset’. The
format of the description is given below.

• (nx, ny, nz)

The number of coordinates in each direction.

• (x, y, z)

The origin of the grid.

• (dx, dy, dz)

The distance between each coordinate in each direction.

The above information is returned in the following Tcl list format: nx ny nz x y z dx dy dz

pfgetlist dataset

This command returns the name and description of a dataset if an argument is provided. If no
argument is given, then all of the data set names followed by their descriptions is returned to the
TCL interpreter. If an argument (dataset) is given, it should be the it should be the name of a loaded
dataset.

pfgetstats dataset

This command calculates the following statistics for the data set represented by the identifier dataset:minimum,
maximum, mean, sum, variance, and standard deviation.

pfgetsubbox dataset il jl kl iu ju ku

This command computes a new dataset with the subbox starting at il, jl, kl and going to iu, ju, ku.

pfgridtype gridtype

This command sets the grid type to either cell centered if ‘gridtype’ is set to ‘cell’ or vetex centered if
‘gridtype’ is set to ‘vertex’. If no new value for ‘gridtype’ is given, then the current value of ‘gridtype’
is returned. The value of ‘gridtype’ will be returned upon successful completion of this command.

pfgwstorage mask porosity pressure saturation specific_storage

This command computes the sub-surface water storage (compressible and incompressible components)
based on mask, porosity, saturation, storativity and pressure fields, similar to pfsubsurfacestorage, but
only for the saturated cells.

4.2. PFTCL COMMANDS 63

pfhelp [command]

This command returns a list of pftools commands. If a command is provided it gives a detailed
description of the command and the necessary inputs.

pfhhead phead

This command computes the hydraulic head from the pressure head represented by the identifier
‘phead’. An identifier for the hydraulic head computed is returned upon successful completion.

pfhydrostatic wtdepth top mask

Compute hydrostatic pressure field from water table depth

pflistdata dataset

This command returns a list of pairs if no argument is given. The first item in each pair will be an
identifier representing the data set and the second item will be that data set’s label. If a data set’s
identifier is given as an argument, then just that data set’s name and label will be returned.

pfload [file format] filename

Loads a dataset into memory so it can be manipulated using the other utilities. A file format may
preceed the filename in order to indicate the file’s format. If no file type option is given, then the
extension of the filename is used to determine the default file type. An identifier used to represent the
data set will be returned upon successful completion.

File type options include:

• pfb

ParFlow binary format. Default file type for files with a ‘.pfb’ extension.

• pfsb

ParFlow scattered binary format. Default file type for files with a ‘.pfsb’ extension.

• sa

ParFlow simple ASCII format. Default file type for files with a ‘.sa’ extension.

• sb

ParFlow simple binary format. Default file type for files with a ‘.sb’ extension.

• silo

Silo binary format. Default file type for files with a ‘.silo’ extension.

• rsa

ParFlow real scattered ASCII format. Default file type for files with a ‘.rsa’ extension

pfloadsds filename dsnum

This command is used to load Scientific Data Sets from HDF files. The SDS number ‘dsnum’ will
be used to find the SDS you wish to load from the HDF file ‘filename’. The data set loaded into
memory will be assigned an identifier which will be used to refer to the data set until it is deleted.
This identifier will be returned upon successful completion of the command.

pfmdiff datasetp datasetq digits [zero]

If ‘digits’ is greater than or equal to zero, then this command computes the grid point at which the
number of digits in agreement (significant digits) is fewest and differs by more than ‘digits’ significant
digits. If ‘digits’ is less than zero, then the point at which the number of digits in agreement (significant

64 CHAPTER 4. MANIPULATING DATA: PFTOOLS

digits) is minimum is computed. Finally, the maximum absolute difference is computed. The above
information is returned in a Tcl list of the following form: mi mj mk sd adiff

Given the search criteria, (mi, mj, mk) is the coordinate where the minimum number of significant
digits ‘sd’ was found and ‘adiff’ is the maximum absolute difference.

pfmovingaveragedem dem wsize maxiter

This command fills sinks in the digital elevation model dem by a standard iterative moving-average
routine. Sinks are identified as cells with zero slope in both x- and y-directions, or as local minima
in elevation (i.e., all adjacent cells have higher elevations). At each iteration, a moving average is
taken over a window of width wsize around each remaining sink; sinks are thus filled by averaging
over neighboring cells. The procedure continues iteratively until all sinks are filled or the number of
iterations reaches maxiter. For most applications, sinks should be filled prior to computing slopes (i.e.,
prior to executing pfslopex and pfslopey).

pfnewdata {nx ny nz} {x y z} {dx dy dz} label

This command creates a new data set whose dimension is described by the lists nx ny nz, x y z, and
dx dy dz. The first list, describes the dimensions, the second indicates the origin, and the third gives
the length intervals between each coordinate along each axis. The ‘label’ argument will be the label
of the data set that gets created. This new data set that is created will have all of its data points set
to zero automatically. An identifier for the new data set will be returned upon successful completion.

pfnewgrid {nx ny nz} {x y z} {dx dy dz} label

Create a new data set whose grid is described by passing three lists and a label as arguments. The
first list will be the number of coordinates in the x, y, and z directions. The second list will describe
the origin. The third contains the intervals between coordinates along each axis. The identifier of the
data set created by this operation is returned upon successful completion.

pfnewlabel dataset newlabel

This command changes the label of the data set ‘dataset’ to ‘newlabel’.

pfphead hhead

This command computes the pressure head from the hydraulic head represented by the identifier
‘hhead’. An identifier for the pressure head is returned upon successful completion.

pfpitfilldem dem dpit maxiter

This command fills sinks in the digital elevation model dem by a standard iterative pit-filling routine.
Sinks are identified as cells with zero slope in both x- and y-directions, or as local minima in elevation
(i.e., all adjacent neighbors have higher elevations). At each iteration, the value dpit is added to
all remaining sinks. The procedure continues iteratively until all sinks are filled or the number of
iterations reaches maxiter. For most applications, sinks should be filled prior to computing slopes
(i.e., prior to executing pfslopex and pfslopey).

pfprintdata dataset

This command executes ‘pfgetgrid’ and ‘pfgetelt’ in order to display all the elements in the data set
represented by the identifier ‘dataset’.

pfprintdiff datasetp datasetq digits [zero]

This command executes ‘pfdiffelt’ and ‘pfmdiff’ to print differences to standard output. The differences
are printed one per line along with the coordinates where they occur. The last two lines displayed will
show the point at which there is a minimum number of significant digits in the difference as well as
the maximum absolute difference.

4.2. PFTCL COMMANDS 65

pfprintdomain domain

This command creates a set of TCL commands that setup a domain as specified by the provided
domain input which can be then be written to a file for inclusion in a Parflow input script. Note that
this kind of domain is only supported by the SAMRAI version of Parflow.

pfprintelt i j k dataset

This command prints a single element from the provided dataset given an i, j, k location.

pfprintgrid dataset

This command executes pfgetgrid and formats its output before printing it on the screen. The triples
(nx, ny, nz), (x, y, z), and (dx, dy, dz) are all printed on seperate lines along with labels describing
each.

pfprintlist [dataset]

This command executes pflistdata and formats the output of that command. The formatted output
is then printed on the screen. The output consists of a list of data sets and their labels one per line if
no argument was given or just one data set if an identifier was given.

pfprintmdiff datasetp datasetq digits [zero]

This command executes ‘pfmdiff’ and formats that command’s output before displaying it on the
screen. Given the search criteria, a line displaying the point at which the difference has the least
number of significant digits will be displayed. Another line displaying the maximum absolute difference
will also be displayed.

printstats dataset

This command executes ‘pfstats’ and formats that command’s output before printing it on the screen.
Each of the values mentioned in the description of ‘pfstats’ will be displayed along with a label.

pfreload dataset

This argument reloads a dataset. Only one arguments is required, the name of the dataset to reload.

pfreloadall

This command reloads all of the current datasets.

pfsattrans mask perm

Compute saturated transmissivity for all [i,j] as the sum of the permeability[i,j,k]*dz within a column
[i,j]. Currently this routine uses dz from the input permeability so the dz in permeability must be
correct. Also, it is assumed that dz is constant, so this command is not compatible with variable dz.

pfsave dataset -filetype filename

This command is used to save the data set given by the identifier ‘dataset’ to a file ‘filename’ of type
‘filetype’ in one of the ParFlow formats below.

File type options include:

• pfb ParFlow binary format.

• sa ParFlow simple ASCII format.

• sb ParFlow simple binary format.

• silo Silo binary format.

• vis Vizamrai binary format.

66 CHAPTER 4. MANIPULATING DATA: PFTOOLS

pfsavediff datasetp datasetq digits [zero] -file filename

This command saves to a file the differences between the values of the data sets represented by
‘datasetp’ and ‘datasetq’ to file ‘filename’. The data points whose values differ in more than ‘digits’
significant digits and whose differences are greater than ‘zero’ will be saved. Also, given the above
criteria, the minimum number of digits in agreement (significant digits) will be saved.

If ‘digits’ is less than zero, then only the minimum number of significant digits and the coordinate
where the minimum was computed will be saved.

In each of the above cases, the maximum absolute difference given the criteria will also be saved.

pfsavesds dataset -filetype filename

This command is used to save the data set represented by the identifier ‘dataset’ to the file ‘filename’
in the format given by ‘filetype’.

The possible HDF formats are:

• -float32

• -float64

• -int8

• -uint8

• -int16

• -uint16

• -int32

• -uint32

pfsegmentD8 dem

This command computes the distance between the cell centers of every parent cell [i,j] and its child
cell. Child cells are determined using the eight-point pour method (commonly referred to as the D8
method) based on the digital elevation model dem. If [i,j] is a local minima the segment length is set
to zero.

pfsetgrid {nx ny nz} {x0 y0 z0} {dx dy dz} dataset

This command replaces the grid information of dataset with the values provided.

pfslopeD8 dem

This command computes slopes according to the eight-point pour method (commonly referred to as
the D8 method) based on the digital elevation model dem. Slopes are computed as the maximum
downward gradient between a given cell and it’s lowest neighbor (adjacent or diagonal). Local minima
are set to zero; where local minima occur on the edge of the domain, the 1st order upwind slope is
used (i.e., the cell is assumed to drain out of the domain). Note that dem must be a ParFlow dataset
and must have the correct grid information – dx and dy both used in slope calculations. If gridded
elevation values are read in from a text file (e.g., using pfload’s simple ascii format), grid information
must be specified using the pfsetgrid command. It should be noted that ParFlow uses slopex and
slopey (NOT D8 slopes!) in runoff calculations.

pfslopex dem

This command computes slopes in the x-direction using 1st order upwind finite differences based on the
digital elevation model dem. Slopes at local maxima (in x-direction) are calculated as the maximum

4.2. PFTCL COMMANDS 67

downward gradient to an adjacent neighbor. Slopes at local minima (in x-direction) do not drain in
the x-direction and are therefore set to zero. Note that dem must be a ParFlow dataset and must have
the correct grid information – dx in particular is used in slope calculations. If gridded elevation values
are read from a text file (e.g., using pfload’s simple ascii format), grid inforamtion must be specified
using the pfsetgrid command.

pfslopexD4 dem

This command computes the slope in the x-direction for all [i,j] using a four point (D4) method. The
slope is set to the maximum downward slope to the lowest adjacent neighbor. If [i,j] is a local minima
the slope is set to zero (i.e. no drainage).

pfslopey dem

This command computes slopes in the y-direction using 1st order upwind finite differences based on the
digital elevation model dem. Slopes at local maxima (in y-direction) are calculated as the maximum
downward gradient to an adjacent neighbor. Slopes at local minima (in y-direction) do not drain in
the y-direction and are therefore set to zero. Note that dem must be a ParFlow dataset and must
have the correct grid information - dy in particular is used in slope calculations. If gridded elevation
values are read in from a text file (e.g., using pfload’s simple ascii format), grid information must be
specified using the pfsetgrid command.

pfslopeyD4 dem

This command computes the slope in the y-direction for all [i,j] using a four point (D4) method. The
slope is set to the maximum downward slope to the lowest adjacent neighbor. If [i,j] is a local minima
the slope is set to zero (i.e. no drainage).

pfstats dataset

This command prints various statistics for the data set represented by the identifier ‘dataset’. The
minimum, maximum, mean, sum, variance, and standard deviation are all computed. The above
values are returned in a list of the following form: min max mean sum variance (standard deviation)

pfsubsurfacestorage mask porosity pressure saturation specific_storage

This command computes the sub-surface water storage (compressible and incompressible components)
based on mask, porosity, saturation, storativity and pressure fields. The equations used to calculate
this quantity are given in § 5.8. The identifier of the data set created by this operation is returned
upon successful completion.

pfsum dataset

This command computes the sum over the domain of the dataset.

pfsurfacerunoff top slope_x slope_y mannings pressure

This command computes the surface water runoff (out of the domain) based on a computed top,
pressure field, slopes and mannings roughness values. This is integrated along all domain boundaries
and is calculated at any location that slopes at the edge of the domain point outward. This data is in
units of [L3T−1] and the equations used to calculate this quantity are given in § 5.8. The identifier of
the data set created by this operation is returned upon successful completion.

pfsurfacestorage top pressure

This command computes the surface water storage (ponded water on top of the domain) based on a
computed top and pressure field. The equations used to calculate this quantity are given in § 5.8. The
identifier of the data set created by this operation is returned upon successful completion.

68 CHAPTER 4. MANIPULATING DATA: PFTOOLS

pftopodeficit profile m trans dem slopex slopey recharge ssat sres porosity mask

Compute water deficit for all [i,j] based on TOPMODEL/topographic index. For more details on
methods and assumptions refer to toposlopes.c in pftools.

pftopoindex dem sx sy

Compute topographic index for all [i,j]. Here topographic index is defined as the total upstream
area divided by the contour length, divided by the local slope. For more details on methods and
assumptions refer to toposlopes.c in pftools.

pftoporecharge riverfile nriver trans dem sx sy

Compute effective recharge at all [i,j] over upstream area based on topmodel assumptions and given
list of river points. Notes: See detailed notes in toposlopes.c regarding assumptions, methods, etc.
Input Notes: nriver is an integer (number of river points) river is an array of integers [nriver][2] (list
of river indices, ordered from outlet to headwaters) is a Databox of saturated transmissivity dem is a
Databox of elevations at each cell sx is a Databox of slopes (x-dir) – lets you use processed slopes! sy
is a Databox of slopes (y-dir) – lets you use processed slopes!

pftopowt deficit porosity ssat sres mask top wtdepth

Compute water depth from column water deficit for all [i,j] based on TOPMODEL/topographic index.

pfundist filename, pfundist runname

The command undistributes a ParFlow output file. ParFlow uses a distributed file system where
each node can write to its own file. The pfundist command takes all of these individual files and
collapses them into a single file.

The arguments can be a runname or a filename. If a runname is given then all of the output files
associated with that run are undistributed.

Normally this is done after every pfrun command.

pfupstreamarea slope_x slope_y

This command computes the upstream area contributing to surface runoff at each cell based on the
x and y slope values provided in datasets slope_x and slope_y, respectively. Contributing area is
computed recursively for each cell; areas are not weighted by slope direction. Areas are returned as
the number of upstream (contributing) cells; to compute actual area, simply multiply by the cell area
(dx*dy).

pfvmag datasetx datasety datasetz

This command computes the velocity magnitude when given three velocity components. The three
parameters are identifiers which represent the x, y, and z components respectively. The identifier of
the data set created by this operation is returned upon successful completion.

pfvvel conductivity phead

This command computes the Darcy velocity in cells for the conductivity data set represented by the
identifier ‘conductivity’ and the pressure head data set represented by the identifier ‘phead’. The
identifier of the data set created by this operation is returned upon successful completion.

pfwatertabledepth top saturation

This command computes the water table depth (distance from top to first cell with saturation = 1).
The identifier of the data set created by this operation is returned upon successful completion.

pfwritedb runname

This command writes the settings of parflow run to a pfidb database that can be used to run the
model at a later time. In general this command is used in lieu of the pfrun command.

4.3. COMMON EXAMPLES USING PARFLOW TCL COMMANDS (PFTCL) 69

4.3 Common examples using ParFlow TCL commands (PFTCL)

This section contains some brief examples of how to use the pftools commands (along with standard TCL
commands) to postprocess data.

1. Load a file as one format and write as another format.

set press [pfload harvey_flow.out.press.pfb]

pfsave $press -sa harvey_flow.out.sa

###

Also note that PFTCL automatically assigns

#identifiers to each data set it stores. In this

example we load the pressure file and assign

#it the identifier press. However if you

#read in a file called foo.pfb into a TCL shell

#with assigning your own identifier, you get

#the following:

#parflow> pfload foo.pfb

#dataset0

In this example, the first line is typed in by the

#user and the second line is printed out

#by PFTCL. It indicates that the data read

#from file foo.pfb is associated with the

#identifier dataset0.

2. Load pressure-head output from a file, convert to head-potential and write out as a new file.

set press [pfload harvey_flow.out.press.pfb]

set head [pfhhead $press]

pfsave $head -pfb harvey_flow.head.pfb

3. Build a SAMARI compatible domain decomposition based off of a mask file

#---

This example script takes 3 command line arguments

for P,Q,R and then builds a SAMRAI compatible

domain decomposition based off of a mask file.

#---

Processor Topology

set P [lindex $argv 0]

set Q [lindex $argv 1]

set R [lindex $argv 2]

pfset Process.Topology.P $P

pfset Process.Topology.Q $Q

70 CHAPTER 4. MANIPULATING DATA: PFTOOLS

pfset Process.Topology.R $R

Computational Grid

pfset ComputationalGrid.Lower.X -10.0

pfset ComputationalGrid.Lower.Y 10.0

pfset ComputationalGrid.Lower.Z 1.0

pfset ComputationalGrid.DX 8.8888888888888893

pfset ComputationalGrid.DY 10.666666666666666

pfset ComputationalGrid.DZ 1.0

pfset ComputationalGrid.NX 10

pfset ComputationalGrid.NY 10

pfset ComputationalGrid.NZ 8

Calculate top and bottom and build domain

set mask [pfload samrai.out.mask.pfb]

set top [pfcomputetop $mask]

set bottom [pfcomputebottom $mask]

set domain [pfcomputedomain $top $bottom]

set out [pfprintdomain $domain]

set grid_file [open samrai_grid.tcl w]

puts $grid_file $out

close $grid_file

#---

The resulting TCL file samrai_grid.tcl may be read into

a Parflow input file using source samrai_grid.tcl.

#---

4. Distributing input files before running

#--

A common problem for new ParFlow users is to

distribute slope files using

the 3-D computational grid that is

set at the begging of a run script.

This results in errors because slope

files are 2-D.

To avoid this problem the computational

grid should be reset before and after

distributing slope files. As follows:

#---

#First set NZ to 1 and distribute the 2D slope files

pfset ComputationalGrid.NX 40

4.3. COMMON EXAMPLES USING PARFLOW TCL COMMANDS (PFTCL) 71

pfset ComputationalGrid.NY 40

pfset ComputationalGrid.NZ 1

pfdist slopex.pfb

pfdist slopey.pfb

#Reset NZ to the correct value and distribute any 3D inputs

pfset ComputationalGrid.NX 40

pfset ComputationalGrid.NY 40

pfset ComputationalGrid.NZ 50

pfdist IndicatorFile.pfb

5. Calculate slopes from an elevation file

#Read in DEM

set dem [pfload -sa dem.txt]

pfsetgrid {209 268 1} {0.0 0.0 0.0} {100 100 1.0} $dem

Fill flat areas (if any)

set flatfill [pffillflats $dem]

Fill pits (if any)

set pitfill [pfpitfilldem $flatfill 0.01 10000]

Calculate Slopes

set slope_x [pfslopex $pitfill]

set slope_y [pfslopey $pitfill]

Write to output...

pfsave $flatfill -silo klam.flatfill.silo

pfsave $pitfill -silo klam.pitfill.silo

pfsave $slope_x -pfb klam.slope_x.pfb

pfsave $slope_y -pfb klam.slope_y.pfb

6. Calculate and output the subsurface storage in the domain at a point in time.

set saturation [pfload runname.out.satur.00001.silo]

set pressure [pfload runname.out.press.00001.silo]

set specific_storage [pfload runname.out.specific_storage.silo]

set porosity [pfload runname.out.porosity.silo]

set mask [pfload runname.out.mask.silo]

set subsurface_storage [pfsubsurfacestorage $mask $porosity \

$pressure $saturation $specific_storage]

set total_subsurface_storage [pfsum $subsurface_storage]

puts [format "Subsurface storage\t\t\t\t : %.16e" $total_subsurface_storage]

7. Calculate and output the surface storage in the domain at a point in time.

set pressure [pfload runname.out.press.00001.silo]

72 CHAPTER 4. MANIPULATING DATA: PFTOOLS

set mask [pfload runname.out.mask.silo]

set top [pfcomputetop $mask]

set surface_storage [pfsurfacestorage $top $pressure]

set total_surface_storage [pfsum $surface_storage]

puts [format "Surface storage\t\t\t\t : %.16e" $total_surface_storage]

8. Calculate and output the runoff out of the entire domain over a timestep.

set pressure [pfload runname.out.press.00001.silo]

set slope_x [pfload runname.out.slope_x.silo]

set slope_y [pfload runname.out.slope_y.silo]

set mannings [pfload runname.out.mannings.silo]

set mask [pfload runname.out.mask.silo]

set top [pfcomputetop $mask]

set surface_runoff [pfsurfacerunoff $top $slope_x $slope_y $mannings $pressure]

set total_surface_runoff [expr [pfsum $surface_runoff] * [pfget TimeStep.Value]]

puts [format "Surface runoff from pftools\t\t\t : %.16e" $total_surface_runoff]

9. Calculate overland flow at a point using Manning’s equation

#Set the location

set Xloc 2

set Yloc 2

set Zloc 50 #This should be a z location on the surface of your domain

#Set the grid dimension and Mannings roughness coefficient

set dx 1000.0

set n 0.000005

#Get the slope at the point

set slopex [pfload runname.out.slope_x.pfb]

set slopey [pfload runname.out.slope_y.pfb]

set sx1 [pfgetelt $slopex $Xloc $Yloc 0]

set sy1 [pfgetelt $slopey $Xloc $Yloc 0]

set S [expr ($sx**2+$sy**2)**0.5]

#Get the pressure at the point

set press [pfload runname.out.press.00001.pfb]

set P [pfgetelt $press $Xloc $Yloc $Zloc]

#If the pressure is less than zero set to zero

if {$P < 0} { set P 0 }

set QT [expr ($dx/$n)*($S**0.5)*($P**(5./3.))]

puts $QT

Chapter 5

Model Equations

In this chapter, we discuss the model equations used by ParFlow for its fully and variably saturated
flow, overland flow, and multiphase flow and transport models. First, section 5.1 describes steady-state,
groundwater flow (specified by solver IMPES). Next, section 5.2 describes the Richards’ equation model
(specified by solver RICHARDS) for variably saturated flow as implemented in ParFlow. Section 5.3
describes the terrain following grid formulation. Next, the overland flow equations are presented in section
5.4. In section 5.5 we describe the multi-phase flow equations (specified by solver IMPES), and in section
5.6 we describe the transport equations. Finally, section 5.7 presents some notation and units and section
5.8 presents some basic water balance equations.

5.1 Steady-State, Saturated Groundwater Flow

Many groundwater problems are solved assuming steady-state, fully-saturated groundwater flow. This follows
the form often written as:

∇ · q = Q(x) (5.1)

where Q is the spatially-variable source-sink term (to represent wells, etc) and q is the Darcy flux [L2T−1]
which is commonly written as:

q = −K∇H (5.2)

where K is the saturated, hydraulic conductivity tensor [LT−1] and H [L] is the head-potential. Inspection
of 5.17 and 5.18 show that these equations agree with the above formulation for a single-phase (i = 1),
fully-saturated (Si = S = 1), problem where the mobility, λi, is set to the saturated hydraulic conductivity,
K, below. This is accomplished by setting the relative permeability and viscosity terms to unity in 5.19 as
well as the gravity and density terms in 5.18. This is shown in the example in § 3.6, but please note that the
resulting solution is in pressure-head, h, not head potential, H, and will still contain a hydrostatic pressure
gradient in the z direction.

5.2 Richards’ Equation

The form of Richards’ equation implemented in ParFlow is given as,

S(p)Ss
∂p

∂t
−
∂(S(p)ρ(p)φ)

∂t
−∇ · (K(p)ρ(p)(∇p− ρ(p)~g)) = Q, in Ω, (5.3)

73

74 CHAPTER 5. MODEL EQUATIONS

where Ω is the flow domain, p is the pressure-head of water [L], S is the water saturation, Ss is the specific
storage coefficient [L−1], φ is the porosity of the medium, K(p) is the hydraulic conductivity tensor [LT−1],
and Q is the water source/sink term [L3T−1] (includes wells and surface fluxes). The hydraulic conductivity
can be written as,

K(p) =
k̄kr(p)

µ
(5.4)

Boundary conditions can be stated as,

p = pD, on ΓD, (5.5)

−K(p)∇p · n = gN , on ΓN , (5.6)

where ΓD ∪ ΓN = ∂Ω, ΓD 6= ∅, and n is an outward pointing, unit, normal vector to Ω. This is the mixed
form of Richards’ equation. Note here that due to the constant (or passive) air phase pressure assumption,
Richards’ equation ignores the air phase except through its effects on the hydraulic conductivity, K. An
initial condition,

p = p0(x), t = 0, (5.7)

completes the specification of the problem.

5.3 Terrain Following Grid

The terrain following grid formulation transforms the ParFlow grid to conform to topography [34]. This
alters the form of Darcy’s law to include a topographic slope component:

qx = K(p)ρ(p)(
∂p

∂x
cos θx + sin θx) (5.8)

where θx = arctan(S0, x) and θy = arctan(S0, y) which are assumed to be the same as the TopoSlope

keys assigned for overland flow, described below. The terrain following grid formulation can be very useful
for coupled surface-subsurface flow problems where groundwater flow follows the topography. As cells are
distributed near the ground surface and can be combined with the variable δZ capability, the number of
cells in the problem can be reduced dramatically over the orthogonal formulation. For complete details on
this formulation, the stencil used and the function evaluation developed, please see [34].

5.4 Overland Flow

As detailed in [28], ParFlow may simulate fully-coupled surface and subsurface flow via an overland flow
boundary condition. While complete details of this approach are given in that paper, a brief summary of the
equations solved are presented here. Shallow overland flow is now represented in ParFlow by the kinematic
wave equation. In two spatial dimensions, the continuity equation can be written as:

∂ψs

∂t
= ∇ · (~vψs) + qr(x) (5.9)

where ~v is the depth averaged velocity vector [LT−1]; ψs is the surface ponding depth [L] and qr(x) is the a
general source/sink (e.g. rainfall) rate [LT−1]. If diffusion terms are neglected the momentum equation can
be written as:

Sf,i = So,i (5.10)

5.5. MULTI-PHASE FLOW EQUATIONS 75

which is commonly referred to as the kinematic wave approximation. In Equation 5.10 So,i is the bed slope
(gravity forcing term) [−], which is equal to the friction slope Sf,i [L]; i stands for the x- and y-direction.
Mannings equation is used to establish a flow depth-discharge relationship:

vx = −

√

Sf,x

n
ψ2/3
s (5.11)

and

vy = −

√

Sf,y

n
ψ2/3
s (5.12)

where n [TL−1/3] is the Manning’s coefficient.
Though complete details of the coupled approach are given in [28], brief details of the approach are presented
here. The coupled approach takes Equation 5.9 and adds a flux for subsurface exchanges, qe(x).

∂ψs

∂t
= ∇ · (~vψs) + qr(x) + qe(x) (5.13)

We then assign a continuity of pressure at the top cell of the boundary between the surface and subsurface
systems by setting pressure-head, p in 5.3 equal to the vertically-averaged surface pressure, ψs as follows:

p = ψs = ψ (5.14)

If we substitute this relationship back into Equation 5.13 as follows:

∂ ‖ ψ, 0 ‖

∂t
= ∇ · (~v ‖ ψ, 0 ‖) + qr(x) + qe(x) (5.15)

Where the ‖ ψ, 0 ‖ operator chooses the greater of the two quantities, ψ and 0. We may now solve this term
for the flux qe(x) which we may set equal to flux boundary condition shown in Equation 5.6. This yields the
following equation, which is referred to as the overland flow boundary condition [28]:

−K(ψ)∇ψ · n =
∂ ‖ ψ, 0 ‖

∂t
−∇ · (~v ‖ ψ, 0 ‖)− qr(x) (5.16)

This results a version of the kinematic wave equation that is only active when the pressure at the top cell of
the subsurface domain has a ponded depth and is thus greater than zero. This method solves both systems,
where active in the domain, over common grids in a fully-integrated, fully-mass conservative manner.

5.5 Multi-Phase Flow Equations

The flow equations are a set of mass balance and momentum balance (Darcy’s Law) equations, given respec-
tively by,

∂

∂t
(φSi) + ∇ · ~Vi − Qi = 0, (5.17)

~Vi + λi · (∇pi − ρi~g) = 0, (5.18)

for i = 0, . . . , np − 1 (np ∈ {1, 2, 3}), where

λi =
k̄kri
µi

, (5.19)

~g = [0, 0,−g]T , (5.20)

76 CHAPTER 5. MODEL EQUATIONS

Table 5.1: Notation and units for flow equations.

symbol quantity units

φ(~x, t) porosity []
Si(~x, t) saturation []
~Vi(~x, t) Darcy velocity vector [LT−1]
Qi(~x, t) source/sink [T−1]
λi mobility [L3TM−1]

pi(~x, t) pressure [ML−1T−2]
ρi mass density [ML−3]
~g gravity vector [LT−2]

k̄(~x, t) intrinsic permeability tensor [L2]
kri(~x, t) relative permeability []
µi viscosity [ML−1T−1]
g gravitational acceleration [LT−2]

Table 5.1 defines the symbols in the above equations, and outlines the symbol dependencies and units. Here,
φ describes the fluid capacity of the porous medium, and Si describes the content of phase i in the porous
medium, where we have that 0 ≤ φ ≤ 1 and 0 ≤ Si ≤ 1. The coefficient k̄ is considered a scalar here. We also
assume that ρi and µi are constant. Also note that in ParFlow, we assume that the relative permeability
is given as kri(Si). The Darcy velocity vector is related to the velocity vector, ~vi, by the following:

~Vi = φSi~vi. (5.21)

To complete the formulation, we have the following np consititutive relations
∑

i

Si = 1, (5.22)

pi0 = pi0(S0), i = 1, . . . , np − 1. (5.23)

where, pij = pi − pj is the capillary pressure between phase i and phase j. We now have the 3np equations,

(5.17), (5.18), (5.22), and (5.23), in the 3np unknowns, Si, ~Vi, and pi.
For technical reasons, we want to rewrite the above equations. First, we define the total mobility, λT ,

and the total velocity, ~VT , by the relations

λT =
∑

i

λi, (5.24)

~VT =
∑

i

~Vi. (5.25)

After doing a bunch of algebra, we get the following equation for p0:

−
∑

i

{∇ · λi (∇(p0 + pi0) − ρi~g) + Qi} = 0. (5.26)

After doing some more algebra, we get the following np − 1 equations for Si:

∂

∂t
(φSi) + ∇ ·





λi
λT

~VT +
∑

j 6=i

λiλj
λT

(ρi − ρj)~g



 +
∑

j 6=i

∇ ·
λiλj
λT

∇pji − Qi = 0. (5.27)

5.6. TRANSPORT EQUATIONS 77

Table 5.2: Notation and units for transport equation.

symbol quantity units

φ(~x) porosity []
ci,j(~x, t) concentration fraction []
~Vi(~x, t) Darcy velocity vector [LT−1]
λj degradation rate [T−1]
ρs(~x) density of the solid mass [ML−3]]

Fi,j(~x, t) mass concentration [L3M−1]
nI number of injection wells []

γI;ik (t) injection rate [T−1]
ΩI

k(~x) injection well region []
c̄kij() injected concentration fraction []

nE number of extraction wells []

γE;i
k (t) extraction rate [T−1]
ΩE

k (~x) extraction well region []

The capillary pressures pji in (5.27) are rewritten in terms of the constitutive relations in (5.23) so that we
have

pji = pj0 − pi0, (5.28)

where by definition, pii = 0. Note that equations (5.27) are analytically the same equations as in (5.17).
The reason we rewrite them in this latter form is because of the numerical scheme we are using. We now
have the 3np equations, (5.26), (5.27), (5.25), (5.18), and (5.23), in the 3np unknowns, Si, ~Vi, and pi.

5.6 Transport Equations

The transport equations in ParFlow are currently defined as follows:

(

∂

∂t
(φci,j) + λj φci,j

)

+ ∇ ·
(

ci,j ~Vi

)

= (5.29)

−

(

∂

∂t
((1− φ)ρsFi,j) + λj (1− φ)ρsFi,j

)

+

nI
∑

k

γI;ik χΩI
k

(

ci,j − c̄kij
)

−
nE
∑

k

γE;i
k χΩE

k
ci,j

where i = 0, . . . , np − 1 (np ∈ {1, 2, 3}) is the number of phases, j = 0, . . . , nc − 1 is the number of
contaminants, and where ci,j is the concentration of contaminant j in phase i. Recall also, that χA is the
characteristic function of set A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0 if x 6∈ A. Table 5.2 defines the
symbols in the above equation, and outlines the symbol dependencies and units. The equation is basically
a statement of mass conservation in a convective flow (no diffusion) with adsorption and degradation effects
incorporated along with the addition of injection and extraction wells. These equations will soon have to
be generalized to include a diffusion term. At the present time, as an adsorption model, we take the mass
concentration term (Fi,j) to be instantaneous in time and a linear function of contaminant concentration :

Fi,j = Kd;jci,j , (5.30)

78 CHAPTER 5. MODEL EQUATIONS

Table 5.3: Notation and units for reformulated flow equations.

symbol quantity units

~Vi Darcy velocity vector [LT−1]
K̄i hydraulic conductivity tensor [LT−1]
hi pressure head [L]
γ constant scale factor [ML−2T−2]
~g gravity vector [LT−2]

where Kd;j is the distribution coefficient of the component ([L3M−1]). If 5.30 is substituted into 5.29 the
following equation results (which is the current model used in ParFlow) :

(φ+ (1− φ)ρsKd;j)
∂

∂t
ci,j + ∇ ·

(

ci,j ~Vi

)

=

− (φ+ (1− φ)ρsKd;j)λjci,j +

nI
∑

k

γI;ik χΩI
k

(

ci,j − c̄kij
)

−
nE
∑

k

γE;i
k χΩE

k
ci,j (5.31)

5.7 Notation and Units

In this section, we discuss other common formulations of the flow and transport equations, and how they
relate to the equations solved by ParFlow.

We can rewrite equation (5.18) as

~Vi + K̄i · (∇hi −
ρi
γ
~g) = 0, (5.32)

where

K̄i = γλi, (5.33)

hi = (pi − p̄)/γ. (5.34)

Table 5.3 defines the symbols and their units. We can then rewrite equations (5.26) and (5.27) as

−
∑

i

{

∇ · K̄i

(

∇(h0 + hi0) −
ρi
γ
~g

)

+ Qi

}

= 0, (5.35)

∂

∂t
(φSi) + ∇ ·





K̄i

K̄T

~VT +
∑

j 6=i

K̄iK̄j

K̄T

(

ρi
γ

−
ρj
γ

)

~g



 +
∑

j 6=i

∇ ·
K̄iK̄j

K̄T
∇hji − Qi = 0. (5.36)

Note that K̄i is supposed to be a tensor, but we treat it as a scalar here. Also, note that by carefully
defining the input to ParFlow, we can use the units of equations (5.35) and (5.36). To be more precise, let
us denote ParFlow input symbols by appending the symbols in table 5.1 with (I), and let γ = ρ0g (this is
a typical definition). Then, we want:

k̄(I) = γk̄/µ0; (5.37)

5.8. WATER BALANCE 79

µi(I) = µi/µ0; (5.38)

pi(I) = hi; (5.39)

ρi(I) = ρi/ρ0; (5.40)

g(I) = 1. (5.41)

By doing this, k̄(I) represents hydraulic conductivity of the base phase K̄0 (e.g. water) under saturated
conditions (i.e. kr0 = 1).

5.8 Water Balance

ParFlow can calculate a water balance for the Richards’ equation, overland flow and clm capabilities. For
a schematic of the water balance in ParFlow please see [33]. This water balance is computes using pftools
commands as described in § 4. There are two water balance storage components, subsurface and surface,
and two flux calculations, overland flow and evapotranspiration. The storage components have units [L3]
while the fluxes may be instantaneous and have units [L3T−1] or cumulative over an output interval with
units [L3]. Examples of water balance calculations and errors are given in the scripts water_balance_x.tcl
and water_balance_y.tcl. The size of water balance errors depend on solver settings and tolerances but
are typically very small, < 10−10[−].
The water balance takes the form:

∆[V olsubsurface + V olsurface]

∆t
= Qoverland +Qevapotranspiration +Qsourcesink (5.42)

where V olsubsurface is the subsurface storage [L3]; V olsurface is the surface storage [L3]; Qoverland is the
overland flux [L3T−1]; Qevapotranspiration is the evapotranspiration flux passed from clm or other LSM, etc,
[L3T−1]; and Qsourcesink are any other source/sink fluxes specified in the simulation [L3T−1]. The surface
and subsurface storage routines are calculated using the ParFlow toolset commands pfsurfacestorage

and pfsubsurfacestorage respectively. Overland flow out of the domain is calculated by pfsurfacerunoff.
Details for the use of these commands are given in § 4.2 and § 4.3. Qevapotranspiration must be written out
by ParFlow as a variable (as shown in § refCode Parameters) and only contains the external fluxes passed
from a module such as clm or WRF. Note that these volume and flux quantities are calculated spatially over
the domain and are returned as array values, just like any other quantity in ParFlow. The tools command
pfsum will sum these arrays into a single value for the enrite domain. All other fluxes must be determined
by the user.
The subsurface storage is calculated over all active cells in the domain, Ω, and contains both compressible
and incompressible parts based on Equation 5.3. This is computed on a cell-by-cell basis (with the result
being an array of balances over the domain) as follows:

V olsubsurface =
∑

Ω

[S(ψ)Ssψ∆x∆y∆z + S(ψ)(ψ)φ∆x∆y∆z] (5.43)

The surface storage is calculated over the upper surface boundary cells in the domain, Γ, as computed by
the mask and contains based on Equation 5.9. This is again computed on a cell-by-cell basis (with the result
being an array of balances over the domain) as follows:

V olsurface =
∑

Γ

ψ∆x∆y (5.44)

For the overland flow outflow from the domain, any cell at the top boundary that has a slope that points
out of the domain and is ponded will remove water from the domain. This is calculated, for example in the

80 CHAPTER 5. MODEL EQUATIONS

y-direction, as the multiple of Equation 5.12 and the area:

Qoverland = vA = −

√

Sf,y

n
ψ2/3
s ψ∆x = −

√

Sf,y

n
ψ5/3
s ∆x (5.45)

Chapter 6

ParFlow Files

In this chapter, we discuss the various file formats used in ParFlow. To help simplify the description of
these formats, we use a pseudocode notation composed of fields and control constructs.

A field is a piece of data having one of the field types listed in Table 6.1 (note that field types may have
one meaning in ASCII files and another meaning in binary files). Fields are denoted by enclosing the field
name with a < on the left and a > on the right. The field name is composed of alphanumeric characters
and underscores (_). In the defining entry of a field, the field name is also prepended by its field type and
a :. The control constructs used in our pseudocode have the keyword names FOR, IF, and LINE, and the
beginning and end of each of these constructs is delimited by the keywords BEGIN and END.

The FOR construct is used to describe repeated input format patterns. For example, consider the following
file format:

<integer : num_coordinates>

FOR coordinate = 0 TO <num_coordinates> - 1

BEGIN

<real : x> <real : y> <real : z>

END

The field <num_coordinates> is an integer specifying the number of coordinates to follow. The FOR construct
indicates that <num_coordinates> entries follow, and each entry is composed of the three real fields, <x>,
<y>, and <z>. Here is an example of a file with this format:

3

2.0 1.0 -3.5

1.0 1.1 -3.1

Table 6.1: Field types.

field type ASCII binary

integer integer XDR integer
real real -
string string -
double - IEEE 8 byte double
float - IEEE 4 byte float

81

82 CHAPTER 6. PARFLOW FILES

2.5 3.0 -3.7

The IF construct is actually an IF/ELSE construct, and is used to describe input format patterns that
appear only under certain circumstances. For example, consider the following file format:

<integer : type>

IF (<type> = 0)

BEGIN

<real : x> <real : y> <real : z>

END

ELSE IF (<type> = 1)

BEGIN

<integer : i> <integer : j> <integer : k>

END

The field <type> is an integer specifying the “type” of input to follow. The IF construct indicates that if
<type> has value 0, then the three real fields, <x>, <y>, and <z>, follow. If <type> has value 1, then the
three integer fields, <i>, <j>, and <k>, follow. Here is an example of a file with this format:

0

2.0 1.0 -3.5

The LINE construct indicates fields that are on the same line of a file. Since input files in ParFlow are
all in “free format”, it is used only to describe some output file formats. For example, consider the following
file format:

LINE

BEGIN

<real : x>

<real : y>

<real : z>

END

The LINE construct indicates that the three real fields, <x>, <y>, and <z>, are all on the same line. Here is
an example of a file with this format:

2.0 1.0 -3.5

Comment lines may also appear in our file format pseudocode. All text following a # character is a
comment, and is not part of the file format.

6.1 Main Input File (.tcl)

The main ParFlow input file is a TCL script. This might seem overly combersome at first but the basic
input file structure is not very complicated (although it is somewhat verbose). For more advanced users, the
TCL scripting means you can very easily create programs to run ParFlow. A simple example is creating a
loop to run several hundred different simulations using different seeds to the random field generators. This
can be automated from within the ParFlow input file.

The basic idea behind ParFlow input is a simple database. The database contains entries which have
a key and a value associated with that key. This is very similiar in nature to the Windows XP/Vista registry
and several other systems. When ParFlow runs, it queries the database you have created by key names to
get the values you have specified.

6.1. MAIN INPUT FILE (.TCL) 83

The command pfset is used to create the database entries. A simple ParFlow input script contains a
long list of pfset commands.

It should be noted that the keys are “dynamic” in that many are built up from values of other keys.
For example if you have two wells named northwell and southwell then you will have to set some keys which
specify the parameters for each well. The keys are built up in a simple sort of heirarchy.

The following sections contain a description of all of the keys used by ParFlow. For an example of
input files you can look at the test subdirectory of the ParFlow distribution. Looking over some examples
should give you a good feel for how the file scripts are put together.

Each key’s entry has the form:

type KeyName [default value]
Description

Example Useage:

The “type” is one of integer, double, string, list. Integer and double are IEEE numbers. String is a text
string (for example, a filename). Strings can contain spaces if you use the proper TCL syntax (i.e. using
double quotes). These types are standard TCL types. Lists are strings but they indicate the names of a
series of items. For example you might need to specify the names of the geometries. You would do this using
space seperated names (what we are calling a list) “layer1 layer2 layer3”.

The descriptions that follow are organized into functional areas. An example for each database entry is
given.

Note that units used for each physical quantity specified in the input file must be consistent with units
used for all other quantities. The exact units used can be any consistent set as ParFlow does not assume
any specific set of units. However, it is up to the user to make sure all specifications are indeed consistent.

6.1.1 Input File Format Number

integer FileVersion [no default]
This gives the value of the input file version number that this file fits.

Example Useage:
pfset FileVersion 4

As development of the ParFlow code continues, the input file format will vary. We have thus included
an input file format number as a way of verifying that the correct format type is being used. The user can
check in the parflow/config/file_versions.h file to verify that the format number specified in the input
file matches the defined value of PFIN_VERSION.

6.1.2 Computing Topology

This section describes how processors are assigned in order to solve the domain in parallel. P allocates the
number of processes to the grid-cells in x. Q allocates the number of processes to the grid-cells in y. R
allocates the number of processes to the grid-cells in z. Please note R should always be 1 if you are running
with Solver Richards [23] unless youre running a totally saturated domain (solver IMPES).

integer Process.Topology.P [no default]
This assigns the process splits in the x direction.

Example Useage:
pfset Process.Topology.P 2

84 CHAPTER 6. PARFLOW FILES

integer Process.Topology.Q [no default]
This assigns the process splits in the y direction.

Example Useage:
pfset Process.Topology.Q 1

integer Process.Topology.P [no default]
This assigns the process splits in the z direction.

Example Useage:
pfset Process.Topology.R 1

In addition, you can assign the computing topology when you initiate your parflow script using tcl. You
must include the topology allocation when using tclsh and the parflow script.

Example Usage:

[from Terminal] tclsh default_single.tcl 2 1 1

[At the top of default_single.tcl you must include the following]

set NP [lindex $argv 0]

set NQ [lindex $argv 1]

pfset Process.Topology.P $NP

pfset Process.Topology.Q $NQ

pfset Process.Topology.R 1

6.1.3 Computational Grid

The computational grid is briefly described in § 3.1. The computational grid keys set the bottom left corner
of the domain to a specific point in space. If using a .pfsol file, the bottom left corner location of the .pfsol
file must be the points designated in the computational grid. The user can also assign the x, y and z location
to correspond to a specific coordinate system (i.e. UTM).

double ComputationalGrid.Lower.X [no default]
This assigns the lower x coordinate location for the computational grid.

Example Useage:
pfset ComputationalGrid.Lower.X 0.0

double ComputationalGrid.Lower.Y [no default]
This assigns the lower y coordinate location for the computational grid.

Example Useage:
pfset ComputationalGrid.Lower.Y 0.0

double ComputationalGrid.Lower.Z [no default]
This assigns the lower z coordinate location for the computational grid.

Example Useage:
pfset ComputationalGrid.Lower.Z 0.0

integer ComputationalGrid.NX [no default]
This assigns the number of grid cells in the x direction for the computational grid.

6.1. MAIN INPUT FILE (.TCL) 85

Example Useage:
pfset ComputationalGrid.NX 10

integer ComputationalGrid.NY [no default]
This assigns the number of grid cells in the y direction for the computational grid.

Example Useage:
pfset ComputationalGrid.NY 10

integer ComputationalGrid.NZ [no default]
This assigns the number of grid cells in the z direction for the computational grid.

Example Useage:
pfset ComputationalGrid.NZ 10

real ComputationalGrid.DX [no default]
This defines the size of grid cells in the x direction. Units are L and are defined by the units of the

hydraulic conductivity used in the problem.
Example Useage:

pfset ComputationalGrid.DX 10.0

real ComputationalGrid.DY [no default]
This defines the size of grid cells in the y direction. Units are L and are defined by the units of the

hydraulic conductivity used in the problem.
Example Useage:

pfset ComputationalGrid.DY 10.0

real ComputationalGrid.DZ [no default]
This defines the size of grid cells in the z direction. Units are L and are defined by the units of the

hydraulic conductivity used in the problem.
Example Useage:

pfset ComputationalGrid.DZ 1.0

Example Usage:

#---

Computational Grid

#---

pfset ComputationalGrid.Lower.X -10.0

pfset ComputationalGrid.Lower.Y 10.0

pfset ComputationalGrid.Lower.Z 1.0

pfset ComputationalGrid.NX 18

pfset ComputationalGrid.NY 18

pfset ComputationalGrid.NZ 8

pfset ComputationalGrid.DX 8.0

pfset ComputationalGrid.DY 10.0

pfset ComputationalGrid.DZ 1.0

86 CHAPTER 6. PARFLOW FILES

6.1.4 Geometries

Here we define all “geometrical” information needed by ParFlow. For example, the domain (and patches
on the domain where boundary conditions are to be imposed), lithology or hydrostratigraphic units, faults,
initial plume shapes, and so on, are considered geometries.

This input section is a little confusing. Two items are being specified, geometry inputs and geometries.
A geometry input is a type of geometry input (for example a box or an input file). A geometry input can
contain more than one geometry. A geometry input of type Box has a single geometry (the square box
defined by the extants of the two points). A SolidFile input type can contain several geometries.

list GeomInput.Names [no default]
This is a list of the geometry input names which define the containers for all of the geometries defined

for this problem.
Example Useage:

pfset GeomInput.Names "solidinput indinput boxinput"

string GeomInput.geom input name.InputType [no default]
This defines the input type for the geometry input with geom input name. This key must be one of:

SolidFile, IndicatorField, Box.
Example Useage:

pfset GeomInput.solidinput.InputType SolidFile

list GeomInput.geom input name.GeomNames [no default]
This is a list of the names of the geometries defined by the geometry input. For a geometry input type

of Box, the list should contain a single geometry name. For the SolidFile geometry type this should contain a
list with the same number of gemetries as were defined using GMS. The order of geometries in the SolidFile
should match the names. For IndicatorField types you need to specify the value in the input field which
matches the name using GeomInput.geom input name.Value.
Example Useage:

pfset GeomInput.solidinput.GeomNames "domain bottomlayer \

middlelayer toplayer"

string GeomInput.geom input name.Filename [no default]
For IndicatorField and SolidFile geometry inputs this key specifies the input filename which contains

the field or solid information.
Example Useage:

pfset GeomInput.solidinput.FileName ocwd.pfsol

integer GeomInput.geometry input name.Value [no default]
For IndicatorField geometry inputs you need to specify the mapping between values in the input file and

the geometry names. The named geometry will be defined whereever the input file is equal to the specifed
value.
Example Useage:

pfset GeomInput.sourceregion.Value 11

For box geometries you need to specify the location of the box. This is done by defining two corners of
the the box.

6.1. MAIN INPUT FILE (.TCL) 87

double Geom.box geom name.Lower.X [no default]
This gives the lower X real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Lower.X -1.0

double Geom.box geom name.Lower.Y [no default]
This gives the lower Y real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Lower.Y -1.0

double Geom.box geom name.Lower.Z [no default]
This gives the lower Z real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Lower.Z -1.0

double Geom.box geom name.Upper.X [no default]
This gives the upper X real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Upper.X 151.0

double Geom.box geom name.Upper.Y [no default]
This gives the upper Y real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Upper.Y 171.0

double Geom.box geom name.Upper.Z [no default]
This gives the upper Z real space coordinate value of the previously specified box geometry of name

box geom name.
Example Useage:

pfset Geom.background.Upper.Z 11.0

list Geom.geom name.Patches [no default]
Patches are defined on the surfaces of geometries. Currently you can only define patches on Box

geometries and on the the first geometry in a SolidFile. For a Box the order is fixed (left right front back
bottom top) but you can name the sides anything you want.

For SolidFiles the order is printed by the conversion routine that converts GMS to SolidFile format.
Example Useage:

pfset Geom.background.Patches "left right front back bottom top"

Here is an example geometry input section which has three geometry inputs.

88 CHAPTER 6. PARFLOW FILES

#---

The Names of the GeomInputs

#---

pfset GeomInput.Names "solidinput indinput boxinput"

#

For a solid file geometry input type you need to specify the names

of the gemetries and the filename

#

pfset GeomInput.solidinput.InputType SolidFile

The names of the geometries contained in the solid file. Order is

important and defines the mapping. First geometry gets the first name.

pfset GeomInput.solidinput.GeomNames "domain"

#

Filename that contains the geometry

#

pfset GeomInput.solidinput.FileName ocwd.pfsol

#

An indicator field is a 3D field of values.

The values within the field can be mapped

to ParFlow geometries. Indicator fields must match the

computation grid exactly!

#

pfset GeomInput.indinput.InputType IndicatorField

pfset GeomInput.indinput.GeomNames sourceregion concenregion

pfset GeomInput.indinput.FileName ocwd.pfb

#

Within the indicator.pfb file, assign the values to each GeomNames

#

pfset GeomInput.sourceregion.Value 11

pfset GeomInput.concenregion.Value 12

#

A box is just a box defined by two points.

#

pfset GeomInput.boxinput.InputType Box

pfset GeomInput.boxinput.GeomName background

pfset Geom.background.Lower.X -1.0

pfset Geom.background.Lower.Y -1.0

pfset Geom.background.Lower.Z -1.0

pfset Geom.background.Upper.X 151.0

pfset Geom.background.Upper.Y 171.0

6.1. MAIN INPUT FILE (.TCL) 89

pfset Geom.background.Upper.Z 11.0

#

The patch order is fixed in the .pfsol file, but you

can call the patch name anything you

want (i.e. left right front back bottom top)

#

pfset Geom.domain.Patches " z-upper x-lower y-lower \

x-upper y-upper z-lower"

6.1.5 Timing Information

The data given in the timing section describe all the “temporal” information needed by ParFlow. The data
items are used to describe time units for later sections, sequence iterations in time, indicate actual starting
and stopping values and give instructions on when data is printed out.

double TimingInfo.BaseUnit [no default]
This key is used to indicate the base unit of time for entering time values. All time should be expressed

as a multiple of this value. This should be set to the smallest interval of time to be used in the problem. For
example, a base unit of “1” means that all times will be integer valued. A base unit of “0.5” would allow
integers and fractions of 0.5 to be used for time input values.

The rationale behind this restriction is to allow time to be discretized on some interval to enable integer
arithmetic to be used when computing/comparing times. This avoids the problems associated with real value
comparisons which can lead to events occurring at different timesteps on different architectures or compilers.

This values is also used when describing “time cycling data” in, currently, the well and boundary condition
sections. The lengths of the cycles in those sections will be integer multiples of this value, therefore it needs to
be the smallest divisor which produces an integral result for every “real time” cycle interval length needed.
Example Useage:

pfset TimingInfo.BaseUnit 1.0

integer TimingInfo.StartCount [no default]
This key is used to indicate the time step number that will be associated with the first advection cycle

in a transient problem. The value -1 indicates that advection is not to be done. The value 0 indicates
that advection should begin with the given initial conditions. Values greater than 0 are intended to mean
“restart” from some previous “checkpoint” time-step, but this has not yet been implemented.
Example Useage:

pfset TimingInfo.StartCount 0

double TimingInfo.StartTime [no default]
This key is used to indicate the starting time for the simulation.

Example Useage:
pfset TimingInfo.StartTime 0.0

double TimingInfo.StopTime [no default]
This key is used to indicate the stopping time for the simulation.

90 CHAPTER 6. PARFLOW FILES

Example Useage:
pfset TimingInfo.StopTime 100.0

double TimingInfo.DumpInterval [no default]
This key is the real time interval at which time-dependent output should be written. A value of 0 will

produce undefined behavior. If the value is negative, output will be dumped out every n time steps, where
n is the absolute value of the integer part of the value.
Example Useage:

pfset TimingInfo.DumpInterval 10.0

For Richards’ equation cases only input is collected for time step selection. Input for this section is given
as follows:

list TimeStep.Type [no default]
This key must be one of: Constant or Growth. The value Constant defines a constant time step.

The value Growth defines a time step that starts as dt0 and is defined for other steps as dtnew = γdtold

such that dtnew ≤ dtmax and dtnew ≥ dtmin.
Example Useage:

pfset TimeStep.Type Constant

double TimeStep.Value [no default]
This key is used only if a constant time step is selected and indicates the value of the time step for all

steps taken.
Example Useage:

pfset TimeStep.Value 0.001

double TimeStep.InitialStep [no default]
This key specifies the initial time step dt0 if the Growth type time step is selected.

Example Useage:
pfset TimeStep.InitialStep 0.001

double TimeStep.GrowthFactor [no default]
This key specifies the growth factor γ by which a time step will be multiplied to get the new time step

when the Growth type time step is selected.
Example Useage:

pfset TimeStep.GrowthFactor 1.5

double TimeStep.MaxStep [no default]
This key specifies the maximum time step allowed, dtmax, when the Growth type time step is selected.

Example Useage:
pfset TimeStep.MaxStep 86400

double TimeStep.MinStep [no default]
This key specifies the minimum time step allowed, dtmin, when the Growth type time step is selected.

6.1. MAIN INPUT FILE (.TCL) 91

Example Useage:
pfset TimeStep.MinStep 1.0e-3

Here is a detailed example of how timing keys might be used in a simualtion.

#---

Setup timing info [hr]

8760 hours in a year. Dumping files every 24 hours. Hourly timestep

#---

pfset TimingInfo.BaseUnit 1.0

pfset TimingInfo.StartCount 0

pfset TimingInfo.StartTime 0.0

pfset TimingInfo.StopTime 8760.0

pfset TimingInfo.DumpInterval -24

Timing constant example

pfset TimeStep.Type Constant

pfset TimeStep.Value 1.0

Timing growth example

pfset TimeStep.Type Growth

pfset TimeStep.InitialStep 0.0001

TimeStep.GrowthFactor 1.4

TimeStep.MaxStep 1.0

TimeStep.MinStep 0.0001

6.1.6 Time Cycles

The data given in the time cycle section describe how time intervals are created and named to be used for
time-dependent boundary and well information needed by ParFlow. All the time cycles are synched to the
TimingInfo.BaseUnit key described above and are integer multipliers of that value.

list CycleNames [no default]
This key is used to specify the named time cycles to be used in a simulation. It is a list of names and

each name defines a time cycle and the number of items determines the total number of time cycles specified.
Each named cycle is described using a number of keys defined below.
Example Useage:

pfset Cycle.Names constant onoff

list Cycle.cycle name.Names [no default]
This key is used to specify the named time intervals for each cycle. It is a list of names and each name

defines a time interval when a specific boundary condition is applied and the number of items determines
the total number of intervals in that time cycle.
Example Useage:

pfset Cycle.onoff.Names "on off"

integer Cycle.cycle name.interval name.Length [no default]
This key is used to specify the length of a named time intervals. It is an integer multiplier of the value

set for the TimingInfo.BaseUnit key described above. The total length of a given time cycle is the sum

92 CHAPTER 6. PARFLOW FILES

of all the intervals multiplied by the base unit.
Example Useage:

pfset Cycle.onoff.on.Length 10

integer Cycle.cycle name.Repeat [no default]
This key is used to specify the how many times a named time interval repeats. A positive value specifies

a number of repeat cycles a value of -1 specifies that the cycle repeat for the entire simulation.
Example Useage:

pfset Cycle.onoff.Repeat -1

Here is a detailed example of how time cycles might be used in a simualtion.

#---

Time Cycles

#---

pfset Cycle.Names "constant rainrec"

pfset Cycle.constant.Names "alltime"

pfset Cycle.constant.alltime.Length 8760

pfset Cycle.constant.Repeat -1

Creating a rain and recession period for the rest of year

pfset Cycle.rainrec.Names "rain rec"

pfset Cycle.rainrec.rain.Length 10

pfset Cycle.rainrec.rec.Length 8750

pfset Cycle.rainrec.Repeat -1

6.1.7 Domain

The domain may be represented by any of the solid types in § 6.1.4 above that allow the definition of
surface patches. These surface patches are used to define boundary conditions in § 6.1.24 and § 6.1.25 below.
Subsequently, it is required that the union (or combination) of the defined surface patches equal the entire
domain surface. NOTE: This requirement is NOT checked in the code.

string Domain.GeomName [no default]
This key specifies which of the named geometries is the problem domain.

Example Useage:
pfset Domain.GeomName domain

6.1.8 Phases and Contaminants

list Phase.Names [no default]
This specifies the names of phases to be modeled. Currently only 1 or 2 phases may be modeled.

Example Useage:
pfset Phase.Names "water"

list Contaminant.Names [no default]
This specifies the names of contaminants to be advected.

6.1. MAIN INPUT FILE (.TCL) 93

Example Useage:
pfset Contaminants.Names "tce"

6.1.9 Gravity, Phase Density and Phase Viscosity

double Gravity [no default]
Specifies the gravity constant to be used.

Example Useage:
pfset Gravity 1.0

string Phase.phase name.Density.Type [no default]
This key specifies whether density will be a constant value or if it will be given by an equation of state

of the form (rd)exp(cP), where P is pressure, rd is the density at atmospheric pressure, and c is the phase
compressibility constant. This key must be either Constant or EquationOfState.
Example Useage:

pfset Phase.water.Density.Type Constant

double Phase.phase name.Density.Value [no default]
This specifies the value of density if this phase was specified to have a constant density value for the

phase phase name.
Example Useage:

pfset Phase.water.Density.Value 1.0

double Phase.phase name.Density.ReferenceDensity [no default]
This key specifies the reference density if an equation of state density function is specified for the phase

phase name.
Example Useage:

pfset Phase.water.Density.ReferenceDensity 1.0

double Phase.phase name.Density.CompressibilityConstant [no default]
This key specifies the phase compressibility constant if an equation of state density function is specified

for the phase phase—-name.
Example Useage:

pfset Phase.water.Density.CompressibilityConstant 1.0

string Phase.phase name.Viscosity.Type [Constant]
This key specifies whether viscosity will be a constant value. Currently, the only choice for this key is

Constant.
Example Useage:

pfset Phase.water.Viscosity.Type Constant

double Phase.phase name.Viscosity.Value [no default]
This specifies the value of viscosity if this phase was specified to have a constant viscosity value.

Example Useage:
pfset Phase.water.Viscosity.Value 1.0

94 CHAPTER 6. PARFLOW FILES

6.1.10 Chemical Reactions

double Contaminants.contaminant name.Degradation.Value [no default]
This key specifies the half-life decay rate of the named contaminant, contaminant name. At present

only first order decay reactions are implemented and it is assumed that one contaminant cannot decay into
another.
Example Useage:

pfset Contaminants.tce.Degradation.Value 0.0

6.1.11 Permeability

In this section, permeability property values are assigned to grid points within geometries (specified in § 6.1.4
above) using one of the methods described below. Permeabilities are assumed to be a diagonal tensor with
entries given as,





kx(x) 0 0
0 ky(x) 0
0 0 kz(x)



K(x),

where K(x) is the permeability field given below. Specification of the tensor entries (kx, ky and kz) will be
given at the end of this section.

The random field routines (turning bands and pgs) can use conditioning data if the user so desires. It is
not necessary to use conditioning as ParFlow automatically defaults to not use conditioning data, but if
conditioning is desired, the following key should be set:

string Perm.Conditioning.FileName [“NA”]
This key specifies the name of the file that contains the conditioning data. The default string NA

indicates that conditioning data is not applicable.
Example Useage:

pfset Perm.Conditioning.FileName "well_cond.txt"

The file that contains the conditioning data is a simple ascii file containing points and values. The format
is:

nlines

x1 y1 z1 value1

x2 y2 z2 value2

. . . .

. . . .

. . . .

xn yn zn valuen

The value of nlines is just the number of lines to follow in the file, which is equal to the number of data
points.

The variables xi,yi,zi are the real space coordinates (in the units used for the given parflow run) of a
point at which a fixed permeability value is to be assigned. The variable valuei is the actual permeability
value that is known.

Note that the coordinates are not related to the grid in any way. Conditioning does not require that
fixed values be on a grid. The PGS algorithm will map the given value to the closest grid point and that
will be fixed. This is done for speed reasons. The conditioned turning bands algorithm does not do this;

6.1. MAIN INPUT FILE (.TCL) 95

conditioning is done for every grid point using the given conditioning data at the location given. Mapping
to grid points for that algorithm does not give any speedup, so there is no need to do it.

NOTE: The given values should be the actual measured values - adjustment in the conditioning for the
lognormal distribution that is assumed is taken care of in the algorithms.

The general format for the permeability input is as follows:

list Geom.Perm.Names [no default]
This key specifies all of the geometries to which a permeability field will be assigned. These geometries

must cover the entire computational domain.
Example Useage:

pfset GeomInput.Names "background domain concen_region"

string Geom.geometry name.Perm.Type [no default]
This key specifies which method is to be used to assign permeability data to the named geometry,

geometry name. It must be either Constant, TurnBands, ParGuass, or PFBFile. The Constant

value indicates that a constant is to be assigned to all grid cells within a geometry. The TurnBand value
indicates that Tompson’s Turning Bands method is to be used to assign permeability data to all grid cells
within a geometry [56]. The ParGauss value indicates that a Parallel Gaussian Simulator method is to
be used to assign permeability data to all grid cells within a geometry. The PFBFile value indicates that
premeabilities are to be read from the “ParFlow Binary” file. Both the Turning Bands and Parallel Gaussian
Simulators generate a random field with correlation lengths in the 3 spatial directions given by λx, λy, and
λz with the geometric mean of the log normal field given by µ and the standard deviation of the normal
field given by σ. In generating the field both of these methods can be made to stratify the data, that is
follow the top or bottom surface. The generated field can also be made so that the data is normal or log
normal, with or without bounds truncation. Turning Bands uses a line process, the number of lines used
and the resolution of the process can be changed as well as the maximum normalized frequency Kmax and
the normalized frequency increment δK. The Parallel Gaussian Simulator uses a search neighborhood, the
number of simulated points and the number of conditioning points can be changed.
Example Useage:

pfset Geom.background.Perm.Type Constant

double Geom.geometry name.Perm.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset Geom.domain.Perm.Value 1.0

double Geom.geometry name.Perm.LambdaX [no default]
This key specifies the x correlation length, λx, of the field generated for the named geometry, geome-

try name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.LambdaX 200.0

double Geom.geometry name.Perm.LambdaY [no default]
This key specifies the y correlation length, λy, of the field generated for the named geometry, geome-

try name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

96 CHAPTER 6. PARFLOW FILES

pfset Geom.domain.Perm.LambdaY 200.0

double Geom.geometry name.Perm.LambdaZ [no default]
This key specifies the z correlation length, λz, of the field generated for the named geometry, geome-

try name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.LambdaZ 10.0

double Geom.geometry name.Perm.GeomMean [no default]
This key specifies the geometric mean, µ, of the log normal field generated for the named geometry,

geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.GeomMean 4.56

double Geom.geometry name.Perm.Sigma [no default]
This key specifies the standard deviation, σ, of the normal field generated for the named geometry,

geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.Sigma 2.08

integer Geom.geometry name.Perm.Seed [1]
This key specifies the initial seed for the random number generator used to generate the field for the

named geometry, geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
This number must be positive.
Example Useage:

pfset Geom.domain.Perm.Seed 1

integer Geom.geometry name.Perm.NumLines [100]
This key specifies the number of lines to be used in the Turning Bands algorithm for the named geometry,

geometry name.
Example Useage:

pfset Geom.domain.Perm.NumLines 100

double Geom.geometry name.Perm.RZeta [5.0]
This key specifies the resolution of the line processes, in terms of the minimum grid spacing, to be

used in the Turning Bands algorithm for the named geometry, geometry name. Large values imply high
resolution.
Example Useage:

pfset Geom.domain.Perm.RZeta 5.0

double Geom.geometry name.Perm.KMax [100.0]
This key specifies the the maximum normalized frequency, Kmax, to be used in the Turning Bands

algorithm for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.KMax 100.0

6.1. MAIN INPUT FILE (.TCL) 97

double Geom.geometry name.Perm.DelK [0.2]
This key specifies the normalized frequency increment, δK, to be used in the Turning Bands algorithm

for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.DelK 0.2

integer Geom.geometry name.Perm.MaxNPts [no default]
This key sets limits on the number of simulated points in the search neighborhood to be used in the

Parallel Gaussian Simulator for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.MaxNPts 5

integer Geom.geometry name.Perm.MaxCpts [no default]
This key sets limits on the number of external conditioning points in the search neighborhood to be

used in the Parallel Gaussian Simulator for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.MaxCpts 200

string Geom.geometry name.Perm.LogNormal [”LogTruncated”]
The key specifies when a normal, log normal, truncated normal or truncated log normal field is to be

generated by the method for the named geometry, geometry name. This value must be one of Normal, Log,
NormalTruncated or LogTruncate and can be used with either Turning Bands or the Parallel Gaussian
Simulator.
Example Useage:

pfset Geom.domain.Perm.LogNormal "LogTruncated"

string Geom.geometry name.Perm.StratType [”Bottom”]
This key specifies the stratification of the permeability field generated by the method for the named

geometry, geometry name. The value must be one of Horizontal, Bottom or Top and can be used with
either the Turning Bands or the Parallel Gaussian Simulator.
Example Useage:

pfset Geom.domain.Perm.StratType "Bottom"

double Geom.geometry name.Perm.LowCutoff [no default]
This key specifies the low cutoff value for truncating the generated field for the named geometry,

geometry name, when either the NormalTruncated or LogTruncated values are chosen.
Example Useage:

pfset Geom.domain.Perm.LowCutoff 0.0

double Geom.geometry name.Perm.HighCutoff [no default]
This key specifies the high cutoff value for truncating the generated field for the named geometry,

geometry name, when either the NormalTruncated or LogTruncated values are chosen.
Example Useage:

pfset Geom.domain.Perm.HighCutoff 100.0

98 CHAPTER 6. PARFLOW FILES

string Geom.geometry name.Perm.FileName [no default]
This key specifies that permeability values for the specified geometry, geometry name, are given according

to a user-supplied description in the “ParFlow Binary” file whose filename is given as the value. For a
description of the ParFlow Binary file format, see § 6.2. The ParFlow Binary file associated with the named
geometry must contain a collection of permeability values corresponding in a one-to-one manner to the entire
computational grid. That is to say, when the contents of the file are read into the simulator, a complete
permeability description for the entire domain is supplied. Only those values associated with computational
cells residing within the geometry (as it is represented on the computational grid) will be copied into data
structures used during the course of a simulation. Thus, the values associated with cells outside of the geounit
are irrelevant. For clarity, consider a couple of different scenarios. For example, the user may create a file for
each geometry such that appropriate permeability values are given for the geometry and “garbage” values
(e.g., some flag value) are given for the rest of the computational domain. In this case, a separate binary file
is specified for each geometry. Alternatively, one may place all values representing the permeability field on
the union of the geometries into a single binary file. Note that the permeability values must be represented
in precisely the same configuration as the computational grid. Then, the same file could be specified for
each geounit in the input file. Or, the computational domain could be described as a single geouint (in the
ParFlow input file) in which case the permeability values would be read in only once.
Example Useage:

pfset Geom.domain.Perm.FileName "domain_perm.pfb"

string Perm.TensorType [no default]
This key specifies whether the permeability tensor entries kx, ky and kz will be specified as three constants

within a set of regions covering the domain or whether the entries will be specified cell-wise by files. The
choices for this key are TensorByGeom and TensorByFile.
Example Useage:

pfset Perm.TensorType TensorByGeom

string Geom.Perm.TensorByGeom.Names [no default]
This key specifies all of the geometries to which permeability tensor entries will be assigned. These

geometries must cover the entire computational domain.
Example Useage:

pfset Geom.Perm.TensorByGeom.Names "background domain"

double Geom.geometry name.Perm.TensorValX [no default]
This key specifies the value of kx for the geometry given by geometry name.

Example Useage:

pfset Geom.domain.Perm.TensorValX 1.0

double Geom.geometry name.Perm.TensorValY [no default]
This key specifies the value of ky for the geometry given by geom name.

Example Useage:

pfset Geom.domain.Perm.TensorValY 1.0

double Geom.geometry name.Perm.TensorValZ [no default]
This key specifies the value of kz for the geometry given by geom name.

Example Useage:

6.1. MAIN INPUT FILE (.TCL) 99

pfset Geom.domain.Perm.TensorValZ 1.0

string Geom.geometry name.Perm.TensorFileX [no default]
This key specifies that kx values for the specified geometry, geometry name, are given according to a

user-supplied description in the “ParFlow Binary” file whose filename is given as the value. The only choice
for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileX "perm_x.pfb"

string Geom.geometry name.Perm.TensorFileY [no default]
This key specifies that ky values for the specified geometry, geometry name, are given according to a

user-supplied description in the “ParFlow Binary” file whose filename is given as the value. The only choice
for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileY "perm_y.pfb"

string Geom.geometry name.Perm.TensorFileZ [no default]
This key specifies that kz values for the specified geometry, geometry name, are given according to a

user-supplied description in the “ParFlow Binary” file whose filename is given as the value. The only choice
for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileZ "perm_z.pfb"

6.1.12 Porosity

Here, porosity values are assigned within geounits (specified in § 6.1.4 above) using one of the methods
described below.

The format for this section of input is:

list Geom.Porosity.GeomNames [no default]
This key specifies all of the geometries on which a porosity will be assigned. These geometries must

cover the entire computational domain.
Example Useage:

pfset Geom.Porosity.GeomNames "background"

string Geom.geometry name.Porosity.Type [no default]
This key specifies which method is to be used to assign porosity data to the named geometry, geome-

try name. The only choice currently available is Constant which indicates that a constant is to be assigned
to all grid cells within a geometry.
Example Useage:

pfset Geom.background.Porosity.Type Constant

double Geom.geometry name.Porosity.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset Geom.domain.Porosity.Value 1.0

100 CHAPTER 6. PARFLOW FILES

6.1.13 Specific Storage

Here, specific storage (Ss in Equation 5.3) values are assigned within geounits (specified in § 6.1.4 above)
using one of the methods described below.

The format for this section of input is:

list Specific Storage.GeomNames [no default]
This key specifies all of the geometries on which a different specific storage value will be assigned. These

geometries must cover the entire computational domain.
Example Useage:

pfset SpecificStorage.GeomNames "domain"

string SpecificStorage.Type [no default]
This key specifies which method is to be used to assign specific storage data. The only choice currently

available is Constant which indicates that a constant is to be assigned to all grid cells within a geometry.
Example Useage:

pfset SpecificStorage.Type Constant

double Geom.geometry name.SpecificStorage.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset Geom.domain.SpecificStorage.Value 1.0e-4

6.1.14 dZMultipliers

Here, dZ multipliers (δZ ∗m) values are assigned within geounits (specified in § 6.1.4 above) using one of
the methods described below.

The format for this section of input is:

string Solver.Nonlinear.VariableDz [False]
This key specifies whether dZ multipliers are to be used, the default is False. The default indicates a

false or non-active variable dz and each layer thickness is 1.0 [L].
Example Useage:

pfset Solver.Nonlinear.VariableDz True

list dzScale.GeomNames [no default]
This key specifies which problem domain is being applied a variable dz subsurface. These geometries

must cover the entire computational domain.
Example Useage:

pfset dzScale.GeomNames domain

string dzScale.Type [no default]
This key specifies which method is to be used to assign variable vertical grid spacing. The choices

currently available are Constant which indicates that a constant is to be assigned to all grid cells within
a geometry, nzList which assigns all layers of a given model to a list value, and PFBFile which reads in
values from a distributed pfb file.
Example Useage:

6.1. MAIN INPUT FILE (.TCL) 101

pfset dzScale.Type Constant

list Specific dzScale.GeomNames [no default]
This key specifies all of the geometries on which a different dz scaling value will be assigned. These

geometries must cover the entire computational domain.
Example Useage:

pfset dzScale.GeomNames "domain"

double Geom.geometry name.dzScale.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset Geom.domain.dzScale.Value 1.0

string Geom.geometry name.dzScale.FileName [no default]
This key specifies file to be read in for variable dz values for the given geometry, geometry name, if the

type was set to PFBFile.
Example Useage:

pfset Geom.domain.dzScale.FileName vardz.pfb

integer dzScale.nzListNumber [no default]
This key indicates the number of layers with variable dz in the subsurface. This value is the same as

the ComputationalGrid.NZ key.
Example Useage:

pfset dzScale.nzListNumber 10

double Cell.nzListNumber.dzScale.Value [no default]
This key assigns the thickness of each layer defined by nzListNumber. ParFlow assigns the layers

from the bottom-up (i.e. the bottom of the domain is layer 0, the top is layer NZ-1). The total domain
depth (Geom.domain.Upper.Z) does not change with variable dz. The layer thickness is calculated by
ComputationalGrid.DZ *dZScale.
Example Useage:

pfset Cell.0.dzScale.Value 1.0

Example Usage:

#--

Variable dz Assignments

#--

Set VariableDz to be true

Indicate number of layers (nzlistnumber), which is the same as nz

(1) There is nz*dz = total depth to allocate,

(2) Each layers thickness is dz*dzScale, and

(3) Assign the layer thickness from the bottom up.

In this example nz = 5; dz = 10; total depth 40;

Layers Thickness [m]

102 CHAPTER 6. PARFLOW FILES

0 15 Bottom layer

1 15

2 5

3 4.5

4 0.5 Top layer

pfset Solver.Nonlinear.VariableDz True

pfset dzScale.GeomNames domain

pfset dzScale.Type nzList

pfset dzScale.nzListNumber 5

pfset Cell.0.dzScale.Value 1.5

pfset Cell.1.dzScale.Value 1.5

pfset Cell.2.dzScale.Value 0.5

pfset Cell.3.dzScale.Value 0.45

pfset Cell.4.dzScale.Value 0.05

6.1.15 Manning’s Roughness Values

Here, Manning’s roughness values (n in Equations 5.11 and 5.12) are assigned to the upper boundary of the
domain using one of the methods described below.

The format for this section of input is:

list Mannings.GeomNames [no default]
This key specifies all of the geometries on which a different Mannings roughness value will be assigned.

Mannings values may be assigned by PFBFile or as Constant by geometry. These geometries must cover
the entire upper surface of the computational domain.
Example Useage:

pfset Mannings.GeomNames "domain"

string Mannings.Type [no default]
This key specifies which method is to be used to assign Mannings roughness data. The choices currently

available are Constant which indicates that a constant is to be assigned to all grid cells within a geometry
and PFBFile which indicates that all values are read in from a distributed, grid-based ParFlow binary
file.
Example Useage:

pfset Mannings.Type "Constant"

double Mannings.Geom.geometry name.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset Mannings.Geom.domain.Value 5.52e-6

double Mannings.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

Example Useage:
pfset Mannings.FileName roughness.pfb

Complete example of setting Mannings roughness n values by geometry:

6.1. MAIN INPUT FILE (.TCL) 103

pfset Mannings.Type "Constant"

pfset Mannings.GeomNames "domain"

pfset Mannings.Geom.domain.Value 5.52e-6

6.1.16 Topographical Slopes

Here, topographical slope values (Sf,x and Sf,y in Equations 5.11 and 5.12) are assigned to the upper
boundary of the domain using one of the methods described below. Note that due to the negative sign in
these equations Sf,x and Sf,y take a sign in the direction opposite of the direction of the slope. That is,
negative slopes point ”downhill” and positive slopes ”uphill”.

The format for this section of input is:

list ToposlopesX.GeomNames [no default]
This key specifies all of the geometries on which a different x topographic slope values will be assigned.

Topographic slopes may be assigned by PFBFile or as Constant by geometry. These geometries must
cover the entire upper surface of the computational domain.
Example Useage:

pfset ToposlopesX.GeomNames "domain"

list ToposlopesY.GeomNames [no default]
This key specifies all of the geometries on which a different y topographic slope values will be assigned.

Topographic slopes may be assigned by PFBFile or as Constant by geometry. These geometries must
cover the entire upper surface of the computational domain.
Example Useage:

pfset ToposlopesY.GeomNames "domain"

string ToposlopesX.Type [no default]
This key specifies which method is to be used to assign topographic slopes. The choices currently

available are Constant which indicates that a constant is to be assigned to all grid cells within a geometry
and PFBFile which indicates that all values are read in from a distributed, grid-based ParFlow binary
file.
Example Useage:

pfset ToposlopesX.Type "Constant"

double ToposlopeX.Geom.geometry name.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if the type

was set to constant.
Example Useage:

pfset ToposlopeX.Geom.domain.Value 0.001

double ToposlopesX.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

Example Useage:
pfset TopoSlopesX.FileName lw.1km.slope_x.pfb

double ToposlopesY.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

104 CHAPTER 6. PARFLOW FILES

Example Useage:

pfset TopoSlopesY.FileName lw.1km.slope_y.pfb

Example of setting x and y slopes by geometry:

pfset TopoSlopesX.Type "Constant"

pfset TopoSlopesX.GeomNames "domain"

pfset TopoSlopesX.Geom.domain.Value 0.001

pfset TopoSlopesY.Type "Constant"

pfset TopoSlopesY.GeomNames "domain"

pfset TopoSlopesY.Geom.domain.Value -0.001

Example of setting x and y slopes by file:

pfset TopoSlopesX.Type "PFBFile"

pfset TopoSlopesX.GeomNames "domain"

pfset TopoSlopesX.FileName lw.1km.slope_x.pfb

pfset TopoSlopesY.Type "PFBFile"

pfset TopoSlopesY.GeomNames "domain"

pfset TopoSlopesY.FileName lw.1km.slope_y.pfb

6.1.17 Retardation

Here, retardation values are assigned for contaminants within geounits (specified in § 6.1.4 above) using one
of the functions described below. The format for this section of input is:

list Geom.Retardation.GeomNames [no default]
This key specifies all of the geometries to which the contaminants will have a retardation function

applied.
Example Useage:

pfset GeomInput.Names "background"

string Geom.geometry name.contaminant name.Retardation.Type [no default]
This key specifies which function is to be used to compute the retardation for the named contaminant,

contaminant name, in the named geometry, geometry name. The only choice currently available is Linear

which indicates that a simple linear retardation function is to be used to compute the retardation.
Example Useage:

pfset Geom.background.tce.Retardation.Type Linear

double Geom.geometry name.contaminant name.Retardation.Value [no default]
This key specifies the distribution coefficient for the linear function used to compute the retardation of

the named contaminant, contaminant name, in the named geometry, geometry name. The value should be
scaled by the density of the material in the geometry.
Example Useage:

pfset Geom.domain.Retardation.Value 0.2

6.1. MAIN INPUT FILE (.TCL) 105

6.1.18 Full Multiphase Mobilities

Here we define phase mobilities by specifying the relative permeability function. Input is specified differently
depending on what problem is being specified. For full multi-phase problems, the following input keys are
used. See the next section for the correct Richards’ equation input format.

string Phase.phase name.Mobility.Type [no default]
This key specifies whether the mobility for phase name will be a given constant or a polynomial of the

form, (S−S0)
a, where S is saturation, S0 is irreducible saturation, and a is some exponent. The possibilities

for this key are Constant and Polynomial.
Example Useage:

pfset Phase.water.Mobility.Type Constant

double Phase.phase name.Mobility.Value [no default]
This key specifies the constant mobility value for phase phase name.

Example Useage:

pfset Phase.water.Mobility.Value 1.0

double Phase.phase name.Mobility.Exponent [2.0]
This key specifies the exponent used in a polynomial representation of the relative permeability. Cur-

rently, only a value of 2.0 is allowed for this key.
Example Useage:

pfset Phase.water.Mobility.Exponent 2.0

double Phase.phase name.Mobility.IrreducibleSaturation [0.0]
This key specifies the irreducible saturation used in a polynomial representation of the relative perme-

ability. Currently, only a value of 0.0 is allowed for this key.
Example Useage:

pfset Phase.water.Mobility.IrreducibleSaturation 0.0

6.1.19 Richards’ Equation Relative Permeabilities

The following keys are used to describe relative permeability input for the Richards’ equation implementation.
They will be ignored if a full two-phase formulation is used.

string Phase.RelPerm.Type [no default]
This key specifies the type of relative permeability function that will be used on all specified geometries.

Note that only one type of relative permeability may be used for the entire problem. However, parame-
ters may be different for that type in different geometries. For instance, if the problem consists of three
geometries, then VanGenuchten may be specified with three different sets of parameters for the three
different goemetries. However, once VanGenuchten is specified, one geometry cannot later be specified to
have Data as its relative permeability. The possible values for this key are Constant, VanGenuchten,

Haverkamp, Data, and Polynomial.
Example Useage:

pfset Phase.RelPerm.Type Constant

106 CHAPTER 6. PARFLOW FILES

The various possible functions are defined as follows. The Constant specification means that the relative
permeability will be constant on the specified geounit. The VanGenuchten specification means that the
relative permeability will be given as a Van Genuchten function [62] with the form,

kr(p) =
(1− (αp)n−1

(1+(αp)n)m)2

(1 + (αp)n)m/2
, (6.1)

where α and n are soil parameters and m = 1− 1/n, on each region. The Haverkamp specification means
that the relative permeability will be given in the following form [22],

kr(p) =
A

A+ pγ
, (6.2)

where A and γ are soil parameters, on each region. The Data specification is currently unsupported but will
later mean that data points for the relative permeability curve will be given and ParFlow will set up the
proper interpolation coefficients to get values between the given data points. The Polynomial specification
defines a polynomial relative permeability function for each region of the form,

kr(p) =

degree
∑

i=0

cip
i. (6.3)

list Phase.RelPerm.GeomNames [no default]
This key specifies the geometries on which relative permeability will be given. The union of these

geometries must cover the entire computational domain.
Example Useage:

pfset Phase.RelPerm.Geonames domain

double Geom.geom name.RelPerm.Value [no default]
This key specifies the constant relative permeability value on the specified geometry.

Example Useage:

pfset Geom.domain.RelPerm.Value 0.5

integer Phase.RelPerm.VanGenuchten.File [0]
This key specifies whether soil parameters for the VanGenuchten function are specified in a pfb file or by

region. The options are either 0 for specification by region, or 1 for specification in a file. Note that either
all parameters are specified in files (each has their own input file) or none are specified by files. Parameters
specified by files are: α and N.
Example Useage:

pfset Phase.RelPerm.VanGenuchten.File 1

string Geom.geom name.RelPerm.Alpha.Filename [no default]
This key specifies a pfb filename containing the alpha parameters for the VanGenuchten function cell-

by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.RelPerm.Alpha.Filename alphas.pfb

6.1. MAIN INPUT FILE (.TCL) 107

string Geom.geom name.RelPerm.N.Filename [no default]
This key specifies a pfb filename containing the N parameters for the VanGenuchten function cell-by-cell.

The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.RelPerm.N.Filename Ns.pfb

double Geom.geom name.RelPerm.Alpha [no default]
This key specifies the α parameter for the Van Genuchten function specified on geom name.

Example Useage:
pfset Geom.domain.RelPerm.Alpha 0.005

double Geom.geom name.RelPerm.N [no default]
This key specifies the N parameter for the Van Genuchten function specified on geom name.

Example Useage:
pfset Geom.domain.RelPerm.N 2.0

int Geom.geom name.RelPerm.NumSamplePoints [0]
This key specifies the number of sample points for a spline base interpolation table for the Van Genuchten

function specified on geom name. If this number is 0 (the default) then the function is evaluated directly.
Using the interpolation table is faster but is less accurate.
Example Useage:

pfset Geom.domain.RelPerm.NumSamplePoints 20000

int Geom.geom name.RelPerm.MinPressureHead [no default]
This key specifies the lower value for a spline base interpolation table for the Van Genuchten function

specified on geom name. The upper value of the range is 0. This value is used only when the table lookup
method is used (NumSamplePoints is greater than 0).
Example Useage:

pfset Geom.domain.RelPerm.MinPressureHead -300

double Geom.geom name.RelPerm.A [no default]
This key specifies the A parameter for the Haverkamp relative permeability on geom name.

Example Useage:
pfset Geom.domain.RelPerm.A 1.0

double Geom.geom name.RelPerm.Gamma [no default]
This key specifies the the γ parameter for the Haverkamp relative permeability on geom name.

Example Useage:
pfset Geom.domain.RelPerm.Gamma 1.0

integer Geom.geom name.RelPerm.Degree [no default]
This key specifies the degree of the polynomial for the Polynomial relative permeability given on

geom name.
Example Useage:

pfset Geom.domain.RelPerm.Degree 1

108 CHAPTER 6. PARFLOW FILES

double Geom.geom name.RelPerm.Coeff.coeff number [no default]
This key specifies the coeff numberth coefficient of the Polynomial relative permeability given on geom name.

Example Useage:
pfset Geom.domain.RelPerm.Coeff.0 0.5

pfset Geom.domain.RelPerm.Coeff.1 1.0

NOTE: For all these cases, if only one region is to be used (the domain), the background region should
NOT be set as that single region. Using the background will prevent the upstream weighting from being
correct near Dirichlet boundaries.

6.1.20 Phase Sources

The following keys are used to specify phase source terms. The units of the source term are 1/T . So, for
example, to specify a region with constant flux rate of L3/T , one must be careful to convert this rate to the
proper units by dividing by the volume of the enclosing region. For Richards’ equation input, the source
term must be given as a flux multiplied by density.

string PhaseSources.phase name.Type [no default]
This key specifies the type of source to use for phase phase name. Possible values for this key are

Constant and PredefinedFunction. Constant type phase sources specify a constant phase source value
for a given set of regions. PredefinedFunction type phase sources use a preset function (choices are listed
below) to specify the source. Note that the PredefinedFunction type can only be used to set a single
source over the entire domain and not separate sources over different regions.
Example Useage:

pfset PhaseSources.water.Type Constant

list PhaseSources.phase name.GeomNames [no default]
This key specifies the names of the geometries on which source terms will be specified. This is used only

for Constant type phase sources. Regions listed later “overlay” regions listed earlier.
Example Useage:

pfset PhaseSources.water.GeomNames "bottomlayer middlelayer toplayer"

double PhaseSources.phase name.Geom.geom name.Value [no default]
This key specifies the value of a constant source term applied to phase phase name on geometry

geom name.
Example Useage:

pfset PhaseSources.water.Geom.toplayer.Value 1.0

string PhaseSources.phase name.PredefinedFunction [no default]
This key specifies which of the predefined functions will be used for the source. Possible values for this

key are X, XPlusYPlusZ, X3Y2PlusSinXYPlus1,

X3Y4PlusX2PlusSinXYCosYPlus1, XYZTPlus1 and XYZTPlus1PermTensor.
Example Useage:

pfset PhaseSources.water.PredefinedFunction XPlusYPlusZ

The choices for this key correspond to sources as follows:

X: source = 0.0

6.1. MAIN INPUT FILE (.TCL) 109

XPlusYPlusX: source = 0.0

X3Y2PlusSinXYPlus1: source = −(3x2y2+y cos(xy))2−(2x3y+x cos(xy))2−(x3y2+sin(xy)+1)(6xy2+
2x3 − (x2 + y2) sin(xy))
This function type specifies that the source applied over the entire domain is as noted above. This
corresponds to p = x3y2 + sin(xy) + 1 in the problem −∇ · (p∇p) = f .

X3Y4PlusX2PlusSinXYCosYPlus1: source = −(3x22y4+2x+y cos(xy) cos(y))2−(4x3y3+x cos(xy) cos(y)−
sin(xy) sin(y))2 − (x3y4 + x2 + sin(xy) cos(y) + 1)(6xy4 + 2− (x2 + y2 + 1) sin(xy) cos(y) + 12x3y2 −
2x cos(xy) sin(y))
This function type specifies that the source applied over the entire domain is as noted above. This
corresponds to p = x3y4 + x2 + sin(xy) cos(y) + 1 in the problem −∇ · (p∇p) = f .

XYZTPlus1: source = xyz − t2(x2y2 + x2z2 + y2z2)
This function type specifies that the source applied over the entire domain is as noted above. This
corresponds to p = xyzt+ 1 in the problem ∂p

∂t −∇ · (p∇p) = f .

XYZTPlus1PermTensor: source = xyz − t2(x2y23 + x2z22 + y2z2)
This function type specifies that the source applied over the entire domain is as noted above. This
corresponds to p = xyzt+ 1 in the problem ∂p

∂t −∇ · (Kp∇p) = f , where K = diag(1 2 3).

6.1.21 Capillary Pressures

Here we define capillary pressure. Note: this section needs to be defined only for multi-phase flow and should
not be defined for single phase and Richards’ equation cases. The format for this section of input is:

string CapPressure.phase name.Type [”Constant”]
This key specifies the capillary pressure between phase 0 and the named phase, phase name. The only

choice available is Constant which indicates that a constant capillary pressure exists between the phases.
Example Useage:

pfset CapPressure.water.Type Constant

list CapPressure.phase name.GeomNames [no default]
This key specifies the geometries that capillary pressures will be computed for in the named phase,

phase name. Regions listed later “overlay” regions listed earlier. Any geometries not listed will be assigned
0.0 capillary pressure by ParFlow.
Example Useage:

pfset CapPressure.water.GeomNames "domain"

double Geom.geometry name.CapPressure.phase name.Value [0.0]
This key specifies the value of the capillary pressure in the named geometry, geometry name, for the

named phase, phase name.
Example Useage:

pfset Geom.domain.CapPressure.water.Value 0.0

Important note: the code currently works only for capillary pressure equal zero.

110 CHAPTER 6. PARFLOW FILES

6.1.22 Saturation

This section is only relevant to the Richards’ equation cases. All keys relating to this section will be ignored
for other cases. The following keys are used to define the saturation-pressure curve.

string Phase.Saturation.Type [no default]
This key specifies the type of saturation function that will be used on all specified geometries. Note

that only one type of saturation may be used for the entire problem. However, parameters may be differ-
ent for that type in different geometries. For instance, if the problem consists of three geometries, then
VanGenuchten may be specified with three different sets of parameters for the three different goemetries.
However, once VanGenuchten is specified, one geometry cannot later be specified to have Data as its satu-
ration. The possible values for this key are Constant, VanGenuchten, Haverkamp, Data, Polynomial

and PFBFile.
Example Useage:

pfset Phase.Saturation.Type Constant

The various possible functions are defined as follows. The Constant specification means that the
saturation will be constant on the specified geounit. The VanGenuchten specification means that the
saturation will be given as a Van Genuchten function [62] with the form,

s(p) =
ssat − sres

(1 + (αp)n)m
+ sres, (6.4)

where ssat is the saturation at saturated conditions, sres is the residual saturation, and α and n are soil
parameters with m = 1 − 1/n, on each region. The Haverkamp specification means that the saturation
will be given in the following form [22],

s(p) =
α(ssat − sres)

A+ pγ
+ sres, (6.5)

where A and γ are soil parameters, on each region. The Data specification is currently unsupported but
will later mean that data points for the saturation curve will be given and ParFlow will set up the proper
interpolation coefficients to get values between the given data points. The Polynomial specification defines
a polynomial saturation function for each region of the form,

s(p) =

degree
∑

i=0

cip
i. (6.6)

The PFBFile specification means that the saturation will be taken as a spatially varying but constant in
pressure function given by data in a ParFlow binary (.pfb) file.

list Phase.Saturation.GeomNames [no default]
This key specifies the geometries on which saturation will be given. The union of these geometries must

cover the entire computational domain.
Example Useage:

pfset Phase.Saturation.Geonames domain

double Geom.geom name.Saturation.Value [no default]
This key specifies the constant saturation value on the geom name region.

Example Useage:

6.1. MAIN INPUT FILE (.TCL) 111

pfset Geom.domain.Saturation.Value 0.5

integer Phase.Saturation.VanGenuchten.File [0]
This key specifies whether soil parameters for the VanGenuchten function are specified in a pfb file or by

region. The options are either 0 for specification by region, or 1 for specification in a file. Note that either
all parameters are specified in files (each has their own input file) or none are specified by files. Parameters
specified by files are α, N, SRes, and SSat.
Example Useage:

pfset Phase.Saturation.VanGenuchten.File 1

string Geom.geom name.Saturation.Alpha.Filename [no default]
This key specifies a pfb filename containing the alpha parameters for the VanGenuchten function cell-

by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.Filename alphas.pfb

string Geom.geom name.Saturation.N.Filename [no default]
This key specifies a pfb filename containing the N parameters for the VanGenuchten function cell-by-cell.

The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.N.Filename Ns.pfb

string Geom.geom name.Saturation.SRes.Filename [no default]
This key specifies a pfb filename containing the SRes parameters for the VanGenuchten function cell-by-

cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.SRes.Filename SRess.pfb

string Geom.geom name.Saturation.SSat.Filename [no default]
This key specifies a pfb filename containing the SSat parameters for the VanGenuchten function cell-by-

cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.SSat.Filename SSats.pfb

double Geom.geom name.Saturation.Alpha [no default]
This key specifies the α parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.Saturation.Alpha 0.005

double Geom.geom name.Saturation.N [no default]
This key specifies the N parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.Saturation.N 2.0

112 CHAPTER 6. PARFLOW FILES

Note that if both a Van Genuchten saturation and relative permeability are specified, then the soil
parameters should be the same for each in order to have a consistent problem.

double Geom.geom name.Saturation.SRes [no default]
This key specifies the residual saturation on geom name.

Example Useage:
pfset Geom.domain.Saturation.SRes 0.0

double Geom.geom name.Saturation.SSat [no default]
This key specifies the saturation at saturated conditions on geom name.

Example Useage:
pfset Geom.domain.Saturation.SSat 1.0

double Geom.geom name.Saturation.A [no default]
This key specifies the A parameter for the Haverkamp saturation on geom name.

Example Useage:
pfset Geom.domain.Saturation.A 1.0

double Geom.geom name.Saturation.Gamma [no default]
This key specifies the the γ parameter for the Haverkamp saturation on geom name.

Example Useage:
pfset Geom.domain.Saturation.Gamma 1.0

integer Geom.geom name.Saturation.Degree [no default]
This key specifies the degree of the polynomial for the Polynomial saturation given on geom name.

Example Useage:
pfset Geom.domain.Saturation.Degree 1

double Geom.geom name.Saturation.Coeff.coeff number [no default]
This key specifies the coeff numberth coefficient of the Polynomial saturation given on geom name.

Example Useage:
pfset Geom.domain.Saturation.Coeff.0 0.5

pfset Geom.domain.Saturation.Coeff.1 1.0

string Geom.geom name.Saturation.FileName [no default]
This key specifies the name of the file containing saturation values for the domain. It is assumed that

geom name is “domain” for this key.
Example Useage:

pfset Geom.domain.Saturation.FileName "domain_sats.pfb"

6.1.23 Internal Boundary Conditions

In this section, we define internal Dirichlet boundary conditions by setting the pressure at points in the
domain. The format for this section of input is:

string InternalBC.Names [no default]
This key specifies the names for the internal boundary conditions. At each named point, x, y and z

6.1. MAIN INPUT FILE (.TCL) 113

will specify the coordinate locations and h will specify the hydraulic head value of the condition. This real
location is “snapped” to the nearest gridpoint in ParFlow.

NOTE: Currently, ParFlow assumes that internal boundary conditions and pressure wells are separated
by at least one cell from any external boundary. The user should be careful of this when defining the input
file and grid.
Example Useage:

pfset InternalBC.Names "fixedvalue"

double InternalBC.internal bc name.X [no default]
This key specifies the x-coordinate, x, of the named, internal bc name, condition.

Example Useage:
pfset InternalBC.fixedheadvalue.X 40.0

double InternalBC.internal bc name.Y [no default]
This key specifies the y-coordinate, y, of the named, internal bc name, condition.

Example Useage:
pfset InternalBC.fixedheadvalue.Y 65.2

double InternalBC.internal bc name.Z [no default]
This key specifies the z-coordinate, z, of the named, internal bc name, condition.

Example Useage:
pfset InternalBC.fixedheadvalue.Z 12.1

double InternalBC.internal bc name.Value [no default]
This key specifies the value of the named, internal bc name, condition.

Example Useage:
pfset InternalBC.fixedheadvalue.Value 100.0

6.1.24 Boundary Conditions: Pressure

Here we define the pressure boundary conditions. The Dirichlet conditions below are hydrostatic conditions,
and it is assumed that at each phase interface the pressure is constant. It is also assumed here that all
phases are distributed within the domain at all times such that the lighter phases are vertically higher than
the heavier phases.

Boundary condition input is associated with domain patches (see § 6.1.7). Note that different patches
may have different types of boundary conditions on them.

list BCPressure.PatchNames [no default]
This key specifies the names of patches on which pressure boundary conditions will be specified. Note

that these must all be patches on the external boundary of the domain and these patches must “cover” that
external boundary.
Example Useage:

pfset BCPressure.PatchNames "left right front back top bottom"

string Patch.patch name.BCPressure.Type [no default]
This key specifies the type of boundary condition data given for patch patch name. Possible values

114 CHAPTER 6. PARFLOW FILES

for this key are DirEquilRefPatch, DirEquilPLinear, FluxConst, FluxVolumetric, PressureFile,

FluxFile, OverlandFow, OverlandFlowPFB and ExactSolution. The choice DirEquilRefPatch

specifies that the pressure on the specified patch will be in hydrostatic equilibrium with a constant reference
pressure given on a reference patch. The choiceDirEquilPLinear specifies that the pressure on the specified
patch will be in hydrostatic equilibrium with pressure given along a piecewise line at elevation z = 0. The
choice FluxConst defines a constant normal flux boundary condition through the domain patch. This flux
must be specified in units of [L]/[T]. For Richards’ equation, fluxes must be specified as a mass flux and
given as the above flux multiplied by the density. Thus, this choice of input type for a Richards’ equation
problem has units of ([L]/[T])([M]/[L]3). The choice FluxVolumetric defines a volumetric flux boundary
condition through the domain patch. The units should be consistent with all other user input for the problem.
For Richards’ equation fluxes must be specified as a mass flux and given as the above flux multiplied by
the density. The choice PressureFile defines a hydraulic head boundary condition that is read from a
properly distributed .pfb file. Only the values needed for the patch are used. The choice FluxFile defines a
flux boundary condition that is read form a properly distributed .pfb file defined on a grid consistent with
the pressure field grid. Only the values needed for the patch are used. The choices OverlandFlow and
OverlandFlowPFB both turn on fully-coupled overland flow routing as described in [28] and in § 5.4. The
key OverlandFlow corresponds to a Value key with a positive or negative value, to indicate uniform fluxes
(such as rainfall or evapotranspiration) over the entire domain while the key OverlandFlowPFB allows a
.pfb file to contain grid-based, spatially-variable fluxes. The choice ExactSolution specifies that an exact
known solution is to be applied as a Dirichlet boundary condition on the respective patch. Note that this
does not change according to any cycle. Instead, time dependence is handled by evaluating at the time the
boundary condition value is desired. The solution is specified by using a predefined function (choices are
described below). NOTE: These last three types of boundary condition input is for Richards’ equation cases
only!
Example Useage:

pfset Patch.top.BCPressure.Type DirEquilRefPatch

string Patch.patch name.BCPressure.Cycle [no default]
This key specifies the time cycle to which boundary condition data for patch patch name corresponds.

Example Useage:
pfset Patch.top.BCPressure.Cycle Constant

string Patch.patch name.BCPressure.RefGeom [no default]
This key specifies the name of the solid on which the reference patch for the DirEquilRefPatch bound-

ary condition data is given. Care should be taken to make sure the correct solid is specified in cases of
layered domains.
Example Useage:

pfset Patch.top.BCPressure.RefGeom domain

string Patch.patch name.BCPressure.RefPatch [no default]
This key specifies the reference patch on which the DirEquilRefPatch boundary condition data is

given. This patch must be on the reference solid specified by the Patch.patch name.BCPressure.RefGeom
key.
Example Useage:

pfset Patch.top.BCPressure.RefPatch bottom

double Patch.patch name.BCPressure.interval name.Value [no default]
This key specifies the reference pressure value for the DirEquilRefPatch boundary condition or the

6.1. MAIN INPUT FILE (.TCL) 115

constant flux value for the FluxConst boundary condition, or the constant volumetric flux for the FluxVol-

umetric boundary condition.
Example Useage:

pfset Patch.top.BCPressure.alltime.Value -14.0

double Patch.patch name.BCPressure.interval name.phase name.IntValue [no default]
Note that the reference conditions for types DirEquilPLinear and DirEquilRefPatch boundary con-

ditions are for phase 0 only. This key specifies the constant pressure value along the interface with phase
phase name for cases with two phases present.
Example Useage:

pfset Patch.top.BCPressure.alltime.water.IntValue -13.0

double Patch.patch name.BCPressure.interval name.XLower [no default]
This key specifies the lower x coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.XLower 0.0

double Patch.patch name.BCPressure.interval name.YLower [no default]
This key specifies the lower y coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.YLower 0.0

double Patch.patch name.BCPressure.interval name.XUpper [no default]
This key specifies the upper x coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.XUpper 1.0

double Patch.patch name.BCPressure.interval name.YUpper [no default]
This key specifies the upper y coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.YUpper 1.0

integer Patch.patch name.BCPressure.interval name.NumPoints [no default]
This key specifies the number of points on which pressure data is given along the line used in the type

DirEquilPLinear boundary conditions.
Example Useage:

pfset Patch.top.BCPressure.alltime.NumPoints 2

double Patch.patch name.BCPressure.interval name.point number.Location [no default]
This key specifies a number between 0 and 1 which represents the location of a point on the line on

which data is given for type DirEquilPLinear boundary conditions. Here 0 corresponds to the lower end
of the line, and 1 corresponds to the upper end.
Example Useage:

pfset Patch.top.BCPressure.alltime.0.Location 0.0

116 CHAPTER 6. PARFLOW FILES

double Patch.patch name.BCPressure.interval name.point number.Value [no default]
This key specifies the pressure value for phase 0 at point number point number and z = 0 for type

DirEquilPLinear boundary conditions. All pressure values on the patch are determined by first projecting
the boundary condition coordinate onto the line, then linearly interpolating between the neighboring point
pressure values on the line.
Example Useage:

pfset Patch.top.BCPressure.alltime.0.Value 14.0

string Patch.patch name.BCPressure.interval name.FileName [no default]
This key specifies the name of a properly distributed .pfb file that contains boundary data to be read

for types PressureFile and FluxFile. For flux data, the data must be defined over a grid consistent with
the pressure field. In both cases, only the values needed for the patch will be used. The rest of the data is
ignored.
Example Useage:

pfset Patch.top.BCPressure.alltime.FileName ocwd_bc.pfb

string Patch.patch name.BCPressure.interval name.PredefinedFunction [no default]
This key specifies the predefined function that will be used to specify Dirichlet boundary conditions

on patch patch name. Note that this does not change according to any cycle. Instead, time dependence
is handled by evaluating at the time the boundary condition value is desired. Choices for this key include
X, XPlusYPlusZ, X3Y2PlusSinXYPlus1, X3Y4PlusX2PlusSinXYCosYPlus1, XYZTPlus1 and
XYZTPlus1PermTensor.
Example Useage:

pfset Patch.top.BCPressure.alltime.PredefinedFunction XPlusYPlusZ

The choices for this key correspond to pressures as follows.

X: p = x

XPlusYPlusZ: p = x+ y + z

X3Y2PlusSinXYPlus1: p = x3y2 + sin(xy) + 1

X3Y4PlusX2PlusSinXYCosYPlus1: p = x3y4 + x2 + sin(xy) cos y + 1

XYZTPlus1: p = xyzt+ 1

XYZTPlus1PermTensor: p = xyzt+ 1

Example Script:

#---

Initial conditions: water pressure [m]

#---

Using a patch is great when you are not using a box domain

If using a box domain HydroStaticDepth is fine

If your RefPatch is z-lower (bottom of domain), the pressure is positive.

If your RefPatch is z-upper (top of domain), the pressure is negative.

Set water table to be at the bottom of the domain, the top layer is initially dry

pfset ICPressure.Type HydroStaticPatch

pfset ICPressure.GeomNames domain

6.1. MAIN INPUT FILE (.TCL) 117

pfset Geom.domain.ICPressure.Value 2.2

pfset Geom.domain.ICPressure.RefGeom domain

pfset Geom.domain.ICPressure.RefPatch z-lower

Using a .pfb to initialize

pfset ICPressure.Type PFBFile

pfset ICPressure.GeomNames "domain"

pfset Geom.domain.ICPressure.FileName press.00090.pfb

pfset Geom.domain.ICPressure.RefGeom domain

pfset Geom.domain.ICPressure.RefPatch z-upper

6.1.25 Boundary Conditions: Saturation

Note: this section needs to be defined only for multi-phase flow and should not be defined for the single
phase and Richards’ equation cases.

Here we define the boundary conditions for the saturations. Boundary condition input is associated with
domain patches (see § 6.1.7). Note that different patches may have different types of boundary conditions
on them.

list BCSaturation.PatchNames [no default]
This key specifies the names of patches on which saturation boundary conditions will be specified. Note

that these must all be patches on the external boundary of the domain and these patches must “cover” that
external boundary.
Example Useage:

pfset BCSaturation.PatchNames "left right front back top bottom"

string Patch.patch name.BCSaturation.phase name.Type [no default]
This key specifies the type of boundary condition data given for the given phase, phase name, on

the given patch patch name. Possible values for this key are DirConstant, ConstantWTHeight and
PLinearWTHeight. The choice DirConstant specifies that the saturation is constant on the whole
patch. The choice ConstantWTHeight specifies a constant height of the water-table on the whole patch.
The choice PLinearWTHeight specifies that the height of the water-table on the patch will be given by a
piecewise linear function.

Note: the types ConstantWTHeight and PLinearWTHeight assume we are running a 2-phase
problem where phase 0 is the water phase.
Example Useage:

pfset Patch.left.BCSaturation.water.Type ConstantWTHeight

double Patch.patch name.BCSaturation.phase name.Value [no default]
This key specifies either the constant saturation value if DirConstant is selected or the constant water-

table height if ConstantWTHeight is selected.
Example Useage:

pfset Patch.top.BCSaturation.air.Value 1.0

double Patch.patch name.BCSaturation.phase name.XLower [no default]
This key specifies the lower x coordinate of a line in the xy-plane if type PLinearWTHeight boundary

118 CHAPTER 6. PARFLOW FILES

conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.XLower -10.0

double Patch.patch name.BCSaturation.phase name.YLower [no default]
This key specifies the lower y coordinate of a line in the xy-plane if type PLinearWTHeight boundary

conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.YLower 5.0

double Patch.patch name.BCSaturation.phase name.XUpper [no default]
This key specifies the upper x coordinate of a line in the xy-plane if type PLinearWTHeight boundary

conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.XUpper 125.0

double Patch.patch name.BCSaturation.phase name.YUpper [no default]
This key specifies the upper y coordinate of a line in the xy-plane if type PLinearWTHeight boundary

conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.YUpper 82.0

integer Patch.patch name.BCPressure.phase name.NumPoints [no default]
This key specifies the number of points on which saturation data is given along the line used for type

DirEquilPLinear boundary conditions.
Example Useage:

pfset Patch.left.BCPressure.water.NumPoints 2

double Patch.patch name.BCPressure.phase name.point number.Location [no default]
This key specifies a number between 0 and 1 which represents the location of a point on the line for

which data is given in type DirEquilPLinear boundary conditions. The line is parameterized so that 0
corresponds to the lower end of the line, and 1 corresponds to the upper end.
Example Useage:

pfset Patch.left.BCPressure.water.0.Location 0.333

double Patch.patch name.BCPressure.phase name.point number.Value [no default]
This key specifies the water-table height for the given point if type DirEquilPLinear boundary con-

ditions are selected. All saturation values on the patch are determined by first projecting the water-table
height value onto the line, then linearly interpolating between the neighboring water-table height values onto
the line.
Example Useage:

pfset Patch.left.BCPressure.water.0.Value 4.5

6.1. MAIN INPUT FILE (.TCL) 119

6.1.26 Initial Conditions: Phase Saturations

Note: this section needs to be defined only for multi-phase flow and should not be defined for single phase
and Richards’ equation cases.

Here we define initial phase saturation conditions. The format for this section of input is:

string ICSaturation.phase name.Type [no default]
This key specifies the type of initial condition that will be applied to different geometries for given phase,

phase name. The only key currently available isConstant. The choiceConstant will apply constants values
within geometries for the phase.
Example Useage:

ICSaturation.water.Type Constant

string ICSaturation.phase name.GeomNames [no default]
This key specifies the geometries on which an initial condition will be given if the type is set toConstant.
Note that geometries listed later “overlay” geometries listed earlier.

Example Useage:
ICSaturation.water.GeomNames "domain"

double Geom.geom input name.ICSaturation.phase name.Value [no default]
This key specifies the initial condition value assigned to all points in the named geometry, geom input name,

if the type was set to Constant.
Example Useage:

Geom.domain.ICSaturation.water.Value 1.0

6.1.27 Initial Conditions: Pressure

The keys in this section are used to specify pressure initial conditions for Richards’ equation cases only.
These keys will be ignored if any other case is run.

string ICPressure.Type [no default]
This key specifies the type of initial condition given. The choices for this key are Constant, Hydro-

StaticDepth, HydroStaticPatch and PFBFile. The choice Constant specifies that the initial pressure
will be constant over the regions given. The choice HydroStaticDepth specifies that the initial pressure
within a region will be in hydrostatic equilibrium with a given pressure specified at a given depth. The choice
HydroStaticPatch specifies that the initial pressure within a region will be in hydrostatic equilibrium with
a given pressure on a specified patch. Note that all regions must have the same type of initial data - different
regions cannot have different types of initial data. However, the parameters for the type may be different.
The PFBFile specification means that the initial pressure will be taken as a spatially varying function given
by data in a ParFlow binary (.pfb) file.
Example Useage:

pfset ICPressure.Type Constant

list ICPressure.GeomNames [no default]
This key specifies the geometry names on which the initial pressure data will be given. These geometries

must comprise the entire domain. Note that conditions for regions that overlap other regions will have
unpredictable results. The regions given must be disjoint.
Example Useage:

120 CHAPTER 6. PARFLOW FILES

pfset ICPressure.GeomNames "toplayer middlelayer bottomlayer"

double Geom.geom name.ICPressure.Value [no default]
This key specifies the initial pressure value for type Constant initial pressures and the reference pressure

value for types HydroStaticDepth and HydroStaticPatch.
Example Useage:

pfset Geom.toplayer.ICPressure.Value -734.0

double Geom.geom name.ICPressure.RefElevation [no default]
This key specifies the reference elevation on which the reference pressure is given for type HydroStat-

icDepth initial pressures.
Example Useage:

pfset Geom.toplayer.ICPressure.RefElevation 0.0

double Geom.geom name.ICPressure.RefGeom [no default]
This key specifies the geometry on which the reference patch resides for type HydroStaticPatch initial

pressures.
Example Useage:

pfset Geom.toplayer.ICPressure.RefGeom bottomlayer

double Geom.geom name.ICPressure.RefPatch [no default]
This key specifies the patch on which the reference pressure is given for type HydorStaticPatch initial

pressures.
Example Useage:

pfset Geom.toplayer.ICPressure.RefPatch bottom

string Geom.geom name.ICPressure.FileName [no default]
This key specifies the name of the file containing pressure values for the domain. It is assumed that

geom name is “domain” for this key.
Example Useage:

pfset Geom.domain.ICPressure.FileName "ic_pressure.pfb"

6.1.28 Initial Conditions: Phase Concentrations

Here we define initial concentration conditions for contaminants. The format for this section of input is:

string PhaseConcen.phase name.contaminant name.Type [no default]
This key specifies the type of initial condition that will be applied to different geometries for given

phase, phase name, and the given contaminant, contaminant name. The choices for this key are Constant

or PFBFile. The choice Constant will apply constants values to different geometries. The choice PFBFile

will read values from a “ParFlow Binary” file (see § 6.2).
Example Useage:

PhaseConcen.water.tce.Type Constant

string PhaseConcen.phase name.GeomNames [no default]
This key specifies the geometries on which an initial condition will be given, if the type was set to

Constant.

6.1. MAIN INPUT FILE (.TCL) 121

Note that geometries listed later “overlay” geometries listed earlier.
Example Useage:

PhaseConcen.water.GeomNames "ic_concen_region"

double PhaseConcen.phase name.contaminant name.geom input name.Value [no default]
This key specifies the initial condition value assigned to all points in the named geometry, geom input name,

if the type was set to Constant.
Example Useage:

PhaseConcen.water.tce.ic_concen_region.Value 0.001

string PhaseConcen.phase name.contaminant name.FileName [no default]
This key specifies the name of the “ParFlow Binary” file which contains the initial condition values if

the type was set to PFBFile.
Example Useage:

PhaseConcen.water.tce.FileName "initial_concen_tce.pfb"

6.1.29 Known Exact Solution

For Richards equation cases only we allow specification of an exact solution to be used for testing the code.
Only types that have been coded and predefined are allowed. Note that if this is speccified as something
other than no known solution, corresponding boundary conditions and phase sources should also be specified.

string KnownSolution [no default]
This specifies the predefined function that will be used as the known solution. Possible choices for this key

areNoKnownSolution, Constant, X, XPlusYPlusZ, X3Y2PlusSinXYPlus1, X3Y4PlusX2PlusSinXYCosYPlus1,

XYZTPlus1 and XYZTPlus1PermTensor.
Example Useage:

pfset KnownSolution XPlusYPlusZ

Choices for this key correspond to solutions as follows.

NoKnownSolution: No solution is known for this problem.

Constant: p = constant

X: p = x

XPlusYPlusZ: p = x+ y + z

X3Y2PlusSinXYPlus1: p = x3y2 + sin(xy) + 1

X3Y4PlusX2PlusSinXYCosYPlus1: p = x3y4 + x2 + sin(xy) cos y + 1

XYZTPlus1: p = xyzt+ 1

XYZTPlus1: p = xyzt+ 1

double KnownSolution.Value [no default]
This key specifies the constant value of the known solution for type Constant known solutions.

Example Useage:
pfset KnownSolution.Value 1.0

Only for known solution test cases will information on the L2-norm of the pressure error be printed.

122 CHAPTER 6. PARFLOW FILES

6.1.30 Wells

Here we define wells for the model. The format for this section of input is:

string Wells.Names [no default]
This key specifies the names of the wells for which input data will be given.

Example Useage:

Wells.Names "test_well inj_well ext_well"

string Wells.well name.InputType [no default]
This key specifies the type of well to be defined for the given well, well name. This key can be either

Vertical or Recirc. The value Vertical indicates that this is a single segmented well whose action will
be specified by the user. The value Recirc indicates that this is a dual segmented, recirculating, well with
one segment being an extraction well and another being an injection well. The extraction well filters out a
specified fraction of each contaminant and recirculates the remainder to the injection well where the diluted
fluid is injected back in. The phase saturations at the extraction well are passed without modification to the
injection well.

Note with the recirculating well, several input options are not needed as the extraction well will provide
these values to the injection well.
Example Useage:

Wells.test_well.InputType Vertical

string Wells.well name.Action [no default]
This key specifies the pumping action of the well. This key can be either Injection or Extraction. A

value of Injection indicates that this is an injection well. A value of Extraction indicates that this is an
extraction well.
Example Useage:

Wells.test_well.Action Injection

double Wells.well name.Type [no default]
This key specfies the mechanism by which the well works (how ParFlow works with the well data)

if the input type key is set to Vectical. This key can be either Pressure or Flux. A value of Pressure

indicates that the data provided for the well is in terms of hydrostatic pressure and ParFlow will ensure
that the computed pressure field satisfies this condition in the computational cells which define the well. A
value of Flux indicates that the data provided is in terms of volumetric flux rates and ParFlow will ensure
that the flux field satisfies this condition in the computational cells which define the well.
Example Useage:

Wells.test_well.Type Flux

string Wells.well name.ExtractionType [no default]
This key specfies the mechanism by which the extraction well works (how ParFlow works with the

well data) if the input type key is set to Recirc. This key can be either Pressure or Flux. A value of
Pressure indicates that the data provided for the well is in terms of hydrostatic pressure and ParFlow

will ensure that the computed pressure field satisfies this condition in the computational cells which define
the well. A value of Flux indicates that the data provided is in terms of volumetric flux rates and ParFlow

will ensure that the flux field satisfies this condition in the computational cells which define the well.
Example Useage:

6.1. MAIN INPUT FILE (.TCL) 123

Wells.ext_well.ExtractionType Pressure

string Wells.well name.InjectionType [no default]
This key specfies the mechanism by which the injection well works (how ParFlow works with the well

data) if the input type key is set to Recirc. This key can be either Pressure or Flux. A value of Pressure

indicates that the data provided for the well is in terms of hydrostatic pressure and ParFlow will ensure
that the computed pressure field satisfies this condition in the computational cells which define the well. A
value of Flux indicates that the data provided is in terms of volumetric flux rates and ParFlow will ensure
that the flux field satisfies this condition in the computational cells which define the well.
Example Useage:

Wells.inj_well.InjectionType Flux

double Wells.well name.X [no default]
This key specifies the x location of the vectical well if the input type is set to Vectical or of both the

extraction and injection wells if the input type is set to Recirc.
Example Useage:

Wells.test_well.X 20.0

double Wells.well name.Y [no default]
This key specifies the y location of the vectical well if the input type is set to Vectical or of both the

extraction and injection wells if the input type is set to Recirc.
Example Useage:

Wells.test_well.Y 36.5

double Wells.well name.ZUpper [no default]
This key specifies the z location of the upper extent of a vectical well if the input type is set to Vectical.

Example Useage:

Wells.test_well.ZUpper 8.0

double Wells.well name.ExtractionZUpper [no default]
This key specifies the z location of the upper extent of a extraction well if the input type is set to

Recirc.
Example Useage:

Wells.ext_well.ExtractionZUpper 3.0

double Wells.well name.InjectionZUpper [no default]
This key specifies the z location of the upper extent of a injection well if the input type is set to Recirc.

Example Useage:

Wells.inj_well.InjectionZUpper 6.0

double Wells.well name.ZLower [no default]
This key specifies the z location of the lower extent of a vectical well if the input type is set to Vectical.

Example Useage:

Wells.test_well.ZLower 2.0

124 CHAPTER 6. PARFLOW FILES

double Wells.well name.ExtractionZLower [no default]
This key specifies the z location of the lower extent of a extraction well if the input type is set to

Recirc.
Example Useage:

Wells.ext_well.ExtractionZLower 1.0

double Wells.well name.InjectionZLower [no default]
This key specifies the z location of the lower extent of a injection well if the input type is set to Recirc.

Example Useage:

Wells.inj_well.InjectionZLower 4.0

string Wells.well name.Method [no default]
This key specifies a method by which pressure or flux for a vertical well will be weighted before assignment

to computational cells. This key can only be Standard if the type key is set to Pressure; or this key can be
either Standard, Weighted or Patterned if the type key is set to Flux. A value of Standard indicates
that the pressure or flux data will be used as is. A value of Weighted indicates that the flux data is to be
weighted by the cells permeability divided by the sum of all cell permeabilities which define the well. The
value of Patterned is not implemented.
Example Useage:

Wells.test_well.Method Weighted

string Wells.well name.ExtractionMethod [no default]
This key specifies a method by which pressure or flux for an extraction well will be weighted before

assignment to computational cells. This key can only be Standard if the type key is set to Pressure;
or this key can be either Standard, Weighted or Patterned if the type key is set to Flux. A value of
Standard indicates that the pressure or flux data will be used as is. A value of Weighted indicates that
the flux data is to be weighted by the cells permeability divided by the sum of all cell permeabilities which
define the well. The value of Patterned is not implemented.
Example Useage:

Wells.ext_well.ExtractionMethod Standard

string Wells.well name.InjectionMethod [no default]
This key specifies a method by which pressure or flux for an injection well will be weighted before

assignment to computational cells. This key can only be Standard if the type key is set to Pressure;
or this key can be either Standard, Weighted or Patterned if the type key is set to Flux. A value of
Standard indicates that the pressure or flux data will be used as is. A value of Weighted indicates that
the flux data is to be weighted by the cells permeability divided by the sum of all cell permeabilities which
define the well. The value of Patterned is not implemented.
Example Useage:

Wells.inj_well.InjectionMethod Standard

string Wells.well name.Cycle [no default]
This key specifies the time cycles to which data for the well well name corresponds.

Example Useage:

Wells.test_well.Cycle "all_time"

6.1. MAIN INPUT FILE (.TCL) 125

double Wells.well name.interval name.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for a vectical well if the type key is set to Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase pressures (if

any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.test_well.all_time.Pressure.Value 6.0

double Wells.well name.interval name.Extraction.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for an extraction well if the extraction type key is set

to Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase pressures (if

any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.ext_well.all_time.Extraction.Pressure.Value 4.5

double Wells.well name.interval name.Injection.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for an injection well if the injection type key is set to

Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase pressures (if

any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.inj_well.all_time.Injection.Pressure.Value 10.2

double Wells.well name.interval name.Flux.phase name.Value [no default]
This key specifies the volumetric flux for a vectical well if the type key is set to Flux.
Note only a positive number should be entered, ParFlow assignes the correct sign based on the chosen

action for the well.
Example Useage:

Wells.test_well.all_time.Flux.water.Value 250.0

double Wells.well name.interval name.Extraction.Flux.phase name.Value [no default]
This key specifies the volumetric flux for an extraction well if the extraction type key is set to Flux.
Note only a positive number should be entered, ParFlow assignes the correct sign based on the chosen

action for the well.
Example Useage:

Wells.ext_well.all_time.Extraction.Flux.water.Value 125.0

double Wells.well name.interval name.Injection.Flux.phase name.Value [no default]
This key specifies the volumetric flux for an injection well if the injection type key is set to Flux.
Note only a positive number should be entered, ParFlow assignes the correct sign based on the chosen

action for the well.
Example Useage:

Wells.inj_well.all_time.Injection.Flux.water.Value 80.0

double Wells.well name.interval name.Saturation.phase name.Value [no default]
This key specifies the saturation value of a vertical well.

126 CHAPTER 6. PARFLOW FILES

Example Useage:

Wells.test_well.all_time.Saturation.water.Value 1.0

double Wells.well name.interval name.Concentration.phase name.contaminant name.Value
[no default]

This key specifies the contaminant value of a vertical well.
Example Useage:

Wells.test_well.all_time.Concentration.water.tce.Value 0.0005

double Wells.well name.interval name.Injection.Concentration.phase name.contaminant name.Fraction
[no default]

This key specifies the fraction of the extracted contaminant which gets resupplied to the injection well.
Example Useage:

Wells.inj_well.all_time.Injection.Concentration.water.tce.Fraction 0.01

Multiple wells assigned to one grid location can occur in several instances. The current actions taken by the
code are as follows:

• If multiple pressure wells are assigned to one grid cell, the code retains only the last set of overlapping
well values entered.

• If multiple flux wells are assigned to one grid cell, the code sums the contributions of all overlapping
wells to get one effective well flux.

• If multiple pressure and flux wells are assigned to one grid cell, the code retains the last set of
overlapping hydrostatic pressure values entered and sums all the overlapping flux well values to get
an effective pressure/flux well value.

6.1.31 Code Parameters

In addition to input keys related to the physics capabilities and modeling specifics there are some key values
used by various algorithms and general control flags for ParFlow. These are described next :

string Solver.Linear [PCG]
This key specifies the linear solver used for solver IMPES. Choices for this key are MGSemi, PPCG,

PCG and CGHS. The choice MGSemi is an algebraic mulitgrid linear solver (not a preconditioned conju-
gate gradient) which may be less robust than PCG as described in [2]. The choice PPCG is a preconditioned
conjugate gradient solver. The choice PCG is a conjugate gradient solver with a multigrid preconditioner.
The choice CGHS is a conjugate gradient solver.
Example Useage:

pfset Solver.Linear MGSemi

integer Solver.SadvectOrder [2]
This key controls the order of the explicit method used in advancing the saturations. This value can be

either 1 for a standard upwind first order or 2 for a second order Godunov method.
Example Useage:

pfset Solver.SadvectOrder 1

6.1. MAIN INPUT FILE (.TCL) 127

integer Solver.AdvectOrder [2]
This key controls the order of the explicit method used in advancing the concentrations. This value can

be either 1 for a standard upwind first order or 2 for a second order Godunov method.
Example Useage:

pfset Solver.AdvectOrder 2

double Solver.CFL [0.7]
This key gives the value of the weight put on the computed CFL limit before computing a global timestep

value. Values greater than 1 are not suggested and in fact because this is an approximation, values slightly
less than 1 can also produce instabilities.
Example Useage:

pfset Solver.CFL 0.7

integer Solver.MaxIter [1000000]
This key gives the maximum number of iterations that will be allowed for time-stepping. This is to

prevent a run-away simulation.
Example Useage:

pfset Solver.MaxIter 100

double Solver.RelTol [1.0]
This value gives the relative tolerance for the linear solve algorithm.

Example Useage:
pfset Solver.RelTol 1.0

double Solver.AbsTol [1E-9]
This value gives the absolute tolerance for the linear solve algorithm.

Example Useage:
pfset Solver.AbsTol 1E-8

double Solver.Drop [1E-8]
This key gives a clipping value for data written to PFSB files. Data values greater than the negative of

this value and less than the value itself are treated as zero and not written to PFSB files.
Example Useage:

pfset Solver.Drop 1E-6

string Solver.PrintSubsurf [True]
This key is used to turn on printing of the subsurface data, Permeability and Porosity. The data is

printed after it is generated and before the main time stepping loop - only once during the run. The data is
written as a PFB file.
Example Useage:

pfset Solver.PrintSubsurf False

string Solver.PrintPressure [True]
This key is used to turn on printing of the pressure data. The printing of the data is controlled by

values in the timing information section. The data is written as a PFB file.
Example Useage:

128 CHAPTER 6. PARFLOW FILES

pfset Solver.PrintPressure False

string Solver.PrintVelocities [False]
This key is used to turn on printing of the x, y and z velocity data. The printing of the data is controlled

by values in the timing information section. The data is written as a PFB file.
Example Useage:

pfset Solver.PrintVelocities True

string Solver.PrintSaturation [True]
This key is used to turn on printing of the saturation data. The printing of the data is controlled by

values in the timing information section. The data is written as a PFB file.
Example Useage:

pfset Solver.PrintSaturation False

string Solver.PrintConcentration [True]
This key is used to turn on printing of the concentration data. The printing of the data is controlled

by values in the timing information section. The data is written as a PFSB file.
Example Useage:

pfset Solver.PrintConcentration False

string Solver.PrintWells [True]
This key is used to turn on collection and printing of the well data. The data is collected at intervals

given by values in the timing information section. Printing occurs at the end of the run when all collected
data is written.
Example Useage:

pfset Solver.PrintWells False

string Solver.PrintLSMSink [False]
This key is used to turn on printing of the flux array passed from CLM to ParFlow. Printing occurs at

each DumpInterval time.
Example Useage:

pfset Solver.PrintLSMSink True

string Solver.WriteSiloSubsurfData [False]
This key is used to specify printing of the subsurface data, Permeability and Porosity in silo binary file

format. The data is printed after it is generated and before the main time stepping loop - only once during
the run. This data may be read in by VisIT and other visualization packages.
Example Useage:

pfset Solver.WriteSiloSubsurfData True

string Solver.WriteSiloPressure [False]
This key is used to specify printing of the saturation data in silo binary format. The printing of the

data is controlled by values in the timing information section. This data may be read in by VisIT and other
visualization packages.
Example Useage:

pfset Solver.WriteSiloPressure True

6.1. MAIN INPUT FILE (.TCL) 129

string Solver.WriteSiloSaturation [False]
This key is used to specify printing of the saturation data using silo binary format. The printing of the

data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSaturation True

string Solver.WriteSiloConcentration [False]
This key is used to specify printing of the concentration data in silo binary format. The printing of the

data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloConcentration True

string Solver.WriteSiloVelocities [False]
This key is used to specify printing of the x, y and z velocity data in silo binary format. The printing

of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloVelocities True

string Solver.WriteSiloSlopes [False]
This key is used to specify printing of the x and y slope data using silo binary format. The printing of

the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSlopes True

string Solver.WriteSiloMannings [False]
This key is used to specify printing of the Manning’s roughness data in silo binary format. The printing

of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloMannings True

string Solver.WriteSiloSpecificStorage [False]
This key is used to specify printing of the specific storage data in silo binary format. The printing of

the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSpecificStorage True

string Solver.WriteSiloMask [False]
This key is used to specify printing of the mask data using silo binary format. The mask contains values

equal to one for active cells and zero for inactive cells. The printing of the data is controlled by values in
the timing information section.
Example Useage:

pfset Solver.WriteSiloMask True

string Solver.WriteSiloEvapTrans [False]
This key is used to specify printing of the evaporation and rainfall flux data using silo binary format.

130 CHAPTER 6. PARFLOW FILES

This data comes from either clm or from external calls to ParFlow such as WRF. This data is in units of
[L3T−1]. The printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloEvapTrans True

string Solver.WriteSiloEvapTransSum [False]
This key is used to specify printing of the evaporation and rainfall flux data using silo binary format as

a running, cumulative amount. This data comes from either clm or from external calls to ParFlow such as
WRF. This data is in units of [L3]. The printing of the data is controlled by values in the timing information
section.
Example Useage:

pfset Solver.WriteSiloEvapTransSum True

string Solver.WriteSiloOverlandSum [False]
This key is used to specify calculation and printing of the total overland outflow from the domain using

silo binary format as a running cumulative amount. This is integrated along all domain boundaries and is
calculated any location that slopes at the edge of the domain point outward. This data is in units of [L3].
The printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloOverlandSum True

string Solver.TerrainFollowingGrid [False]
This key specifies that a terrain-following coordinate transform is used for solver Richards. This key sets

x and y subsurface slopes to be the same as the Topographic slopes (a value of False sets these subsurface
slopes to zero). These slopes are used in the Darcy fluxes to add a density, gravity -dependent term. This key
will not change the output files (that is the output is still orthogonal) or the geometries (they will still follow
the computational grid)– these two things are both to do items. This key only changes solver Richards, not
solver Impes.
Example Useage:

pfset Solver.TerrainFollowingGrid True

6.1.32 SILO Options

The following keys are used to control how SILO writes data. SILO allows writing to PDB and HDF5 file
formats. SILO also allows data compression to be used, which can save signicant amounts of disk space for
some problems.

string SILO.Filetype [PDB]
This key is used to specify the SILO filetype. Allowed values are PDB and HDF5. Note that you must

have configured SILO with HDF5 in order to use that option.
Example Useage:

pfset SILO.Filetype PDB

string SILO.CompressionOptions []
This key is used to specify the SILO compression options. See the SILOmanual for the DB SetCompression

command for information on available options. NOTE: the options avaialable are highly dependent on the
configure options when building SILO.

6.1. MAIN INPUT FILE (.TCL) 131

Example Useage:
pfset SILO.CompressionOptions ‘‘METHOD=GZIP’’

6.1.33 Richards’ Equation Solver Parameters

The following keys are used to specify various parameters used by the linear and nonlinear solvers in the
Richards’ equation implementation. For information about these solvers, see [64] and [2].

double Solver.Nonlinear.ResidualTol [1e-7]
This key specifies the tolerance that measures how much the relative reduction in the nonlinear residual

should be before nonlinear iterations stop. The magnitude of the residual is measured with the l1 (max)
norm.
Example Useage:

pfset Solver.Nonlinear.ResidualTol 1e-4

double Solver.Nonlinear.StepTol [1e-7]
This key specifies the tolerance that measures how small the difference between two consecutive nonlinear

steps can be before nonlinear iterations stop.
Example Useage:

pfset Solver.Nonlinear.StepTol 1e-4

integer Solver.Nonlinear.MaxIter [15]
This key specifies the maximum number of nonlinear iterations allowed before iterations stop with a

convergence failure.
Example Useage:

pfset Solver.Nonlinear.MaxIter 50

integer Solver.Linear.KrylovDimension [10]
This key specifies the maximum number of vectors to be used in setting up the Krylov subspace in the

GMRES iterative solver. These vectors are of problem size and it should be noted that large increases in
this parameter can limit problem sizes. However, increasing this parameter can sometimes help nonlinear
solver convergence.
Example Useage:

pfset Solver.Linear.KrylovDimension 15

integer Solver.Linear.MaxRestarts [0]
This key specifies the number of restarts allowed to the GMRES solver. Restarts start the development

of the Krylov subspace over using the current iterate as the initial iterate for the next pass.
Example Useage:

pfset Solver.Linear.MaxRestarts 2

integer Solver.MaxConvergencFailures [3]
This key gives the maximum number of convergence failures allowed. Each convergence failure cuts the

timestep in half and the solver tries to advance the solution with the reduced timestep.
The default value is 3.
Note that setting this value to a value greater than 9 may result in errors in how time cycles are

calculated. Time is discretized in terms of the base time unit and if the solver begins to take very small

132 CHAPTER 6. PARFLOW FILES

timesteps smallerthanbasetimeunit1000 the values based on time cycles will be change at slightly incorrect
times. If the problem is failing converge so poorly that a large number of restarts are required, consider
setting the timestep to a smaller value.
Example Useage:

pfset Solver.MaxConvergenceFailures 4

string Solver.Nonlinear.PrintFlag [HighVerbosity]
This key specifies the amount of informational data that is printed to the *.out.kinsol.log file. Choices

for this key are NoVerbosity, LowVerbosity, NormalVerbosity and HighVerbosity. The choice
NoVerbosity prints no statistics about the nonlinear convergence process. The choice LowVerbosity

outputs the nonlinear iteration count, the scaled norm of the nonlinear function, and the number of function
calls. The choice NormalVerbosity prints the same as for LowVerbosity and also the global strategy
statistics. The choice HighVerbosity prints the same as for NormalVerbosity with the addition of further
Krylov iteration statistics.
Example Useage:

pfset Solver.Nonlinear.PrintFlag NormalVerbosity

string Solver.Nonlinear.EtaChoice [Walker2]
This key specifies how the linear system tolerance will be selected. The linear system is solved until a

relative residual reduction of η is achieved. Linear residuall norms are measured in the l2 norm. Choices for
this key include EtaConstant, Walker1 and Walker2. If the choice EtaConstant is specified, then η
will be taken as constant. The choices Walker1 and Walker2 specify choices for η developed by Eisenstat
and Walker [16]. The choice Walker1 specifies that η will be given by |‖F (uk)‖ − ‖F (uk−1) + J(uk−1) ∗
p‖|/‖F (uk−1)‖. The choice Walker2 specifies that η will be given by γ‖F (uk)‖/‖F (uk−1)‖α. For both of
the last two choices, η is never allowed to be less than 1e-4.
Example Useage:

pfset Solver.Nonlinear.EtaChoice EtaConstant

double Solver.Nonlinear.EtaValue [1e-4]
This key specifies the constant value of η for the EtaChoice key EtaConstant.

Example Useage:
pfset Solver.Nonlinear.EtaValue 1e-7

double Solver.Nonlinear.EtaAlpha [2.0]
This key specifies the value of α for the case of EtaChoice being Walker2.

Example Useage:
pfset Solver.Nonlinear.EtaAlpha 1.0

double Solver.Nonlinear.EtaGamma [0.9]
This key specifies the value of γ for the case of EtaChoice being Walker2.

Example Useage:
pfset Solver.Nonlinear.EtaGamma 0.7

string Solver.Nonlinear.UseJacobian [False]
This key specifies whether the Jacobian will be used in matrix-vector products or whether a matrix-free

version of the code will run. Choices for this key are False and True. Using the Jacobian will most likely

6.1. MAIN INPUT FILE (.TCL) 133

decrease the number of nonlinear iterations but require more memory to run.
Example Useage:

pfset Solver.Nonlinear.UseJacobian True

double Solver.Nonlinear.DerivativeEpsilon [1e-7]
This key specifies the value of ǫ used in approximating the action of the Jacobian on a vector with

approximate directional derivatives of the nonlinear function. This parameter is only used when the UseJa-
cobian key is False.
Example Useage:

pfset Solver.Nonlinear.DerivativeEpsilon 1e-8

string Solver.Nonlinear.Globalization [LineSearch]
This key specifies the type of global strategy to use. Possible choices for this key are InexactNewton

and LineSearch. The choice InexactNewton specifies no global strategy, and the choice LineSearch

specifies that a line search strategy should be used where the nonlinear step can be lengthened or decreased
to satisfy certain criteria.
Example Useage:

pfset Solver.Nonlinear.Globalization LineSearch

string Solver.Linear.Preconditioner [MGSemi]
This key specifies which preconditioner to use. Currently, the three choices are NoPC, MGSemi,

PFMGOctree and SMG. The choice NoPC specifies that no preconditioner should be used. The choice
MGSemi specifies a semi-coarsening multigrid algorithm which uses a point relaxation method. The choice
SMG specifies a semi-coarsening multigrid algorithm which uses plane relaxations. This method is more
robust than MGSemi, but generally requires more memory and compute time. The choice PFMGOctree

can be more efficient for problems with large numbers of inactive cells.
Example Useage:

pfset Solver.Linear.Preconditioner MGSemi

string Solver.Linear.Preconditioner.SymmetricMat [Symmetric]
This key specifies whether the preconditioning matrix is symmetric. Choices fo rthis key are Symmetric

and Nonsymmetric. The choice Symmetric specifies that the symmetric part of the Jacobian will be used
as the preconditioning matrix. The choice Nonsymmetric specifies that the full Jacobian will be used as
the preconditioning matrix. NOTE: ONLY Symmetric CAN BE USED IF MGSemi IS THE SPECIFIED
PRECONDITIONER!
Example Useage:

pfset Solver.Linear.Preconditioner.SymmetricMat Symmetric

integer Solver.Linear.Preconditioner.precond method.MaxIter [1]
This key specifies the maximum number of iterations to take in solving the preconditioner system with

precond method solver.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.MaxIter 2

integer Solver.Linear.Preconditioner.SMG.NumPreRelax [1]
This key specifies the number of relaxations to take before coarsening in the specified preconditioner

134 CHAPTER 6. PARFLOW FILES

method. Note that this key is only relevant to the SMG multigrid preconditioner.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.NumPreRelax 2

integer Solver.Linear.Preconditioner.SMG.NumPostRelax [1]
This key specifies the number of relaxations to take after coarsening in the specified preconditioner

method. Note that this key is only relevant to the SMG multigrid preconditioner.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.NumPostRelax 0

logical Solver.EvapTransFile [False]
This key specifies specifies that the Flux terms for Richards’ equation are read in from a .pfb file. This

file has [T−1] units.
Example Useage:

pfset Solver.EvapTransFile True

logical Solver.EvapTransFileTransient [False]
This key specifies specifies that the Flux terms for Richards’ equation are read in from a series of flux

.pfb file. Each file has [T−1] units.
Example Useage:

pfset Solver.EvapTransFileTransient True

string Solver.EvapTrans.FileName [no default]
This key specifies specifies filename for the distributed .pfb file that contains the flux values for Richards’

equation. This file has [T−1] units. For the steady-state option (Solver.EvapTransFile=True) this key should
be the complete filename. For the transient option (Solver.EvapTransFileTransient=True then the filename
is a header and ParFlow will load one file per timestep, with the form filename.00000.pfb.
Example Useage:

pfset Solver.EvapTrans.FileName evap.trans.test.pfb

string Solver.LSM [none]
This key specifies whether a land surface model, such as CLM, will be called each solver timestep. Choices

for this key include none and CLM. Note that CLM must be compiled and linked at runtime for this option
to be active.
Example Useage:

pfset Solver.LSM CLM

6.1.34 Spinup Options

These keys allow for reduced or dampened physics during model spinup or initialization. They are only

intended for these initialization periods, not for regular runtime.

integer OverlandFlowSpinUp [0]
This key specifies that a simplified form of the overland flow boundary condition (Equation 5.16) be used

in place of the full equation. This formulation removes lateral flow and drives and ponded water pressures
to zero. While this can be helpful in spinning up the subsurface, this is no longer coupled subsurface-surface

6.1. MAIN INPUT FILE (.TCL) 135

flow. If set to zero (the default) this key behaves normally.
Example Useage:

pfset OverlandFlowSpinUp 1

double OverlandFlowSpinUpDampP1 [0.0]
This key sets P1 and provides exponential dampening to the pressure relationship in the overland flow

equation by adding the following term: P2 ∗ exp(ψ ∗ P2)
Example Useage:

pfset OverlandSpinupDampP1 10.0

double OverlandFlowSpinUpDampP2 [0.0]
This key sets P2 and provides exponential dampening to the pressure relationship in the overland flow

equation adding the following term: P2 ∗ exp(ψ ∗ P2)
Example Useage:

pfset OverlandSpinupDampP2 0.1

6.1.35 CLM Solver Parameters

string Solver.CLM.Print1dOut [False]
This key specifies whether the CLM one dimensional (averaged over each processor) output file is written

or not. Choices for this key include True and False. Note that CLM must be compiled and linked at runtime
for this option to be active.
Example Useage:

pfset Solver.CLM.Print1dOut False

integer Solver.CLM.IstepStart [1]
This key specifies the value of the counter, istep in CLM. This key primarily determines the start of the

output counter for CLM.It is used to restart a run by setting the key to the ending step of the previous run
plus one. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.IstepStart 8761

String Solver.CLM.MetForcing [no default]
This key specifies defines whether 1D (uniform over the domain), 2D (spatially distributed) or 3D

(spatially distributed with multiple timesteps per .pfb forcing file) forcing data is used. Choices for this
key are 1D, 2D and 3D. This key has no default so the user must set it to 1D, 2D or 3D. Failure to set
this key will cause CLM to still be run but with unpredictable values causing CLM to eventually crash. 1D
meteorological forcing files are text files with single columns for each variable and each timestep per row,
while 2D forcing files are distributed ParFlow binary files, one for each variable and timestep. File names
are specified in the Solver.CLM.MetFileName variable below. Note that CLM must be compiled and
linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetForcing 2D

String Solver.CLM.MetFileName [no default]
This key specifies defines the file name for 1D, 2D or 3D forcing data. 1D meteorological forcing files

136 CHAPTER 6. PARFLOW FILES

are text files with single columns for each variable and each timestep per row, while 2D and 3D forcing
files are distributed ParFlow binary files, one for each variable and timestep (2D) or one for each variable
and multiple timesteps (3D). Behavior of this key is different for 1D and 2D and 3D cases, as sepcified by
the Solver.CLM.MetForcing key above. For 1D cases, it is the FULL FILE NAME. Note that in this
configuration, this forcing file is not distributed, the user does not provide copies such as narr.1hr.txt.0,
narr.1hr.txt.1 for each processor. ParFlow only needs the single original file (e.g. narr.1hr.txt). For 2D
cases, this key is the BASE FILE NAME for the 2D forcing files, currently set to NLDAS, with individual files
determined as follows NLDAS.<variable>.<time step>.pfb. Where the <variable> is the forcing variable
and <timestep> is the integer file counter corresponding to istep above. Forcing is needed for following
variables:

DSWR: Downward Visible or Short-Wave radiation [W/m2].

DLWR: Downward Infa-Red or Long-Wave radiation [W/m2]

APCP: Precipitation rate [mm/s]

Temp: Air temperature [K]

UGRD: West-to-East or U-component of wind [m/s]

VGRD: South-to-North or V-component of wind [m/s]

Press: Atmospheric Pressure [pa]

SPFH: Water-vapor specific humidity [kg/kg]

Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetFileName narr.1hr.txt

String Solver.CLM.MetFilePath [no default]
This key specifies defines the location of 1D, 2D or 3D forcing data. For 1D cases, this is the path to a

single forcing file (e.g. narr.1hr.txt). For 2D and 3D cases, this is the path to the directory containing all
forcing files. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetFilePath "path/to/met/forcing/data/"

integer Solver.CLM.MetFileNT [no default]
This key specifies the number of timesteps per file for 3D forcing data.

Example Useage:
pfset Solver.CLM.MetFileNT 24

string Solver.WriteSiloCLM [False]
This key specifies whether the CLM writes two dimensional binary output files to a silo binary format.

This data may be read in by VisIT and other visualization packages. Note that CLM and silo must be compiled
and linked at runtime for this option to be active. These files are all written according to the standard format
used for all ParFlow variables, using the runname, and istep. Variables are either two-dimensional or over
the number of CLM layers (default of ten).
Example Useage:

pfset Solver.WriteSiloCLM True

6.1. MAIN INPUT FILE (.TCL) 137

The output variables are:

eflx_lh_tot for latent heat flux total [W/m2] using the silo variable LatentHeat;

eflx_lwrad_out for outgoing long-wave radiation [W/m2] using the silo variable LongWave;

eflx_sh_tot for sensible heat flux total [W/m2] using the silo variable SensibleHeat;

eflx_soil_grnd for ground heat flux [W/m2] using the silo variable GroundHeat;

qflx_evap_tot for total evaporation [mm/s] using the silo variable EvaporationTotal;

qflx_evap_grnd for ground evaporation without sublimation [mm/s] using the silo variable Evapora-
tionGroundNoSublimation;

qflx_evap_soi for soil evaporation [mm/s] using the silo variable EvaporationGround;

qflx_evap_veg for vegetation evaporation [mm/s] using the silo variable EvaporationCanopy;

qflx_tran_veg for vegetation transpiration [mm/s] using the silo variable Transpiration;

qflx_infl for soil infiltration [mm/s] using the silo variable Infiltration;

swe_out for snow water equivalent [mm] using the silo variable SWE;

t_grnd for ground surface temperature [K] using the silo variable TemperatureGround; and

t_soil for soil temperature over all layers [K] using the silo variable TemperatureSoil.

string Solver.PrintCLM [False]
This key specifies whether the CLM writes two dimensional binary output files to a PFB binary format.

Note that CLM must be compiled and linked at runtime for this option to be active. These files are all written
according to the standard format used for all ParFlow variables, using the runname, and istep. Variables
are either two-dimensional or over the number of CLM layers (default of ten).
Example Useage:

pfset Solver.PrintCLM True

The output variables are:

eflx_lh_tot for latent heat flux total [W/m2] using the silo variable LatentHeat;

eflx_lwrad_out for outgoing long-wave radiation [W/m2] using the silo variable LongWave;

eflx_sh_tot for sensible heat flux total [W/m2] using the silo variable SensibleHeat;

eflx_soil_grnd for ground heat flux [W/m2] using the silo variable GroundHeat;

qflx_evap_tot for total evaporation [mm/s] using the silo variable EvaporationTotal;

qflx_evap_grnd for ground evaporation without sublimation [mm/s] using the silo variable Evapora-
tionGroundNoSublimation;

qflx_evap_soi for soil evaporation [mm/s] using the silo variable EvaporationGround;

qflx_evap_veg for vegetation evaporation [mm/s] using the silo variable EvaporationCanopy;

qflx_tran_veg for vegetation transpiration [mm/s] using the silo variable Transpiration;

qflx_infl for soil infiltration [mm/s] using the silo variable Infiltration;

swe_out for snow water equivalent [mm] using the silo variable SWE;

138 CHAPTER 6. PARFLOW FILES

t_grnd for ground surface temperature [K] using the silo variable TemperatureGround; and

t_soil for soil temperature over all layers [K] using the silo variable TemperatureSoil.

string Solver.WriteCLMBinary [True]
This key specifies whether the CLM writes two dimensional binary output files in a generic binary format.

Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.WriteCLMBinary False

string Solver.CLM.BinaryOutDir [True]
This key specifies whether the CLM writes each set of two dimensional binary output files to a correspond-

ing directory. These directories my be created before ParFlow is run (using the tcl script, for example).
Choices for this key include True and False. Note that CLM must be compiled and linked at runtime for
this option to be active.
Example Useage:

pfset Solver.CLM.BinaryOutDir True

These directories are:

/qflx_top_soil for soil flux;

/qflx_infl for infiltration;

/qflx_evap_grnd for ground evaporation;

/eflx_soil_grnd for ground heat flux;

/qflx_evap_veg for vegetation evaporation;

/eflx_sh_tot for sensible heat flux;

/eflx_lh_tot for latent heat flux;

/qflx_evap_tot for total evaporation;

/t_grnd for ground surface temperature;

/qflx_evap_soi for soil evaporation;

/qflx_tran_veg for vegetation transpiration;

/eflx_lwrad_out for outgoing long-wave radiation;

/swe_out for snow water equivalent; and

/diag_out for diagnostics.

string Solver.CLM.CLMFileDir [no default]
This key specifies what directory all output from the CLM is written to. This key may be set to "./" or

"" to write output to the ParFlow run directory. This directory must be created before ParFlow is run.
Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.CLMFileDir "CLM_Output/"

6.1. MAIN INPUT FILE (.TCL) 139

integer Solver.CLM.CLMDumpInterval [1]
This key specifies how often output from the CLM is written. This key is in integer multipliers of the CLM

timestep. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.CLMDumpInterval 2

string Solver.CLM.EvapBeta [Linear]
This key specifies the form of the bare soil evaporation β parameter in CLM. The valid types for this key

are None, Linear, Cosine.

None: No beta formulation, β = 1.

Linear: β = φS−φSres

φ−φSres

Cosine: β = 1
2 (1− cos((φ−φSres)

(φS−φSres)
π)

Note that Sres is specified by the key Solver.CLM.ResSat below, that β is limited between zero and one
and also that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.EvapBeta Linear

double Solver.CLM.ResSat [0.1]
This key specifies the residual saturation for the β function in CLM specified above. Note that CLM must

be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.ResSat 0.15

string Solver.CLM.VegWaterStress [Saturation]
This key specifies the form of the plant water stress function βt parameter in CLM. The valid types for

this key are None, Saturation, Pressure.

None: No transpiration water stress formulation, βt = 1.

Saturation: βt =
φS−φSwp

φSfc−φSwp

Pressure: βt =
P−Pwp

Pfc−Pwp

Note that the wilting point, Swp or pwp, is specified by the key Solver.CLM.WiltingPoint below, that
the field capacity, Sfc or pfc, is specified by the key Solver.CLM.FieldCapacity below, that βt is limited
between zero and one and also that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.VegWaterStress Pressure

double Solver.CLM.WiltingPoint [0.1]
This key specifies the wilting point for the βt function in CLM specified above. Note that the units for

this function are pressure [m] for a Pressure formulation and saturation [−] for a Saturation formulation.
Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.WiltingPoint 0.15

140 CHAPTER 6. PARFLOW FILES

double Solver.CLM.FieldCapacity [1.0]
This key specifies the field capacity for the βt function in CLM specified above. Note that the units for

this function are pressure [m] for a Pressure formulation and saturation [−] for a Saturation formulation.
Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.FieldCapacity 0.95

string Solver.CLM.IrrigationTypes [none]
This key specifies the form of the irrigation in CLM. The valid types for this key are none, Spray, Drip,

Instant.
Example Useage:

pfset Solver.CLM.IrrigationTypes Drip

string Solver.CLM.IrrigationCycle [Constant]
This key specifies the cycle of the irrigation in CLM. The valid types for this key are Constant, Deficit.

Note only Constant is currently implemented. Constant cycle applies irrigation each day from Irrigation-
StartTime to IrrigationStopTime in GMT.
Example Useage:

pfset Solver.CLM.IrrigationCycle Constant

double Solver.CLM.IrrigationRate [no default]
This key specifies the rate of the irrigation in CLM in [mm/s].

Example Useage:
pfset Solver.CLM.IrrigationRate 10.

double Solver.CLM.IrrigationStartTime [no default]
This key specifies the start time of the irrigation in CLM GMT.

Example Useage:
pfset Solver.CLM.IrrigationStartTime 0800

double Solver.CLM.IrrigationStopTime [no default]
This key specifies the stop time of the irrigation in CLM GMT.

Example Useage:
pfset Solver.CLM.IrrigationStopTime 1200

double Solver.CLM.IrrigationThreshold [0.5]
This key specifies the threshold value for the irrigation in CLM [-].

Example Useage:
pfset Solver.CLM.IrrigationThreshold 0.2

integer Solver.CLM.ReuseCount [1]
How many times to reuse a CLM atmospheric forcing file input. For example timestep=1, reuse =1 is

normal behavior but reuse=2 and timestep=0.5 subdivides the time step using the same CLM input for both
halves instead of needing two files. This is particually useful for large, distributed runs when the user wants
to run ParFlow at a smaller timestep than the CLM forcing. Forcing files will be re-used and total fluxes

6.2. PARFLOW BINARY FILES (.PFB) 141

adjusted accordingly without needing duplicate files.
Example Useage:

pfset Solver.CLM.ReuseCount 5

string Solver.CLM.WriteLogs [True]
When False, this disables writing of the CLM output log files for each processor. For example, in the

clm.tcl test case, if this flag is added False, washita.output.txt.p and washita.para.out.dat.p (were p is the
processor #) are not created, assuming washita is the run name.
Example Useage:

pfset Solver.CLM.WriteLogs False

string Solver.CLM.WriteLastRST [False]
Controls whether CLM restart files are sequentially written or whether a single file restart file name.00000.p

is overwritten each time the restart file is output, where p is the processor number. If ”True” only one file
is written/overwritten and if ”False” outputs are written more frequently. Compatible with DailyRST and
ReuseCount; for the latter, outputs are written every n steps where n is the value of ReuseCount.
Example Useage:

pfset Solver.CLM.WriteLastRST True

string Solver.CLM.DailyRST [True]
Controls whether CLM writes daily restart files (default) or at every time step when set to False; outputs

are numbered according to the istep from ParFlow. If ReuseCount=n, with n greater than 1, the output
will be written every n steps (i.e. it still writes hourly restart files if your time step is 0.5 or 0.25, etc...).
Fully compatible with WriteLastRST=False so that each daily output is overwritten to time 00000 in
restart file name.00000.p where p is the processor number.
Example Useage:

pfset Solver.CLM.DailyRST False

string Solver.CLM.SingleFile [False]
Controls whether ParFlow writes all CLM output variables as a single file per time step. When ”True”,

this combines the output of all the CLM output variables into a special multi-layer PFB with the file
extension ”.C.pfb”. The first 13 layers correspond to the 2-D CLM outputs and the remaining layers are the
soil temperatures in each layer. For example, a model with 4 soil layers will create a SingleFile CLM output
with 17 layers at each time step. The file pseudo code is given below in § 6.3 and the variables and units are
as specified in the multiple PFB and SILO formats as above.
Example Useage:

pfset Solver.CLM.SingleFile True

6.2 ParFlow Binary Files (.pfb)

The .pfb file format is a binary file format which is used to store ParFlow grid data. It is written as BIG
ENDIAN binary bit ordering [68]. The format for the file is:

<double : X> <double : Y> <double : Z>

<integer : NX> <integer : NY> <integer : NZ>

<double : DX> <double : DY> <double : DZ>

142 CHAPTER 6. PARFLOW FILES

<integer : num_subgrids>

FOR subgrid = 0 TO <num_subgrids> - 1

BEGIN

<integer : ix> <integer : iy> <integer : iz>

<integer : nx> <integer : ny> <integer : nz>

<integer : rx> <integer : ry> <integer : rz>

FOR k = iz TO iz + <nz> - 1

BEGIN

FOR j = iy TO iy + <ny> - 1

BEGIN

FOR i = ix TO ix + <nx> - 1

BEGIN

<double : data_ijk>

END

END

END

END

6.3 ParFlow CLM Single Output Binary Files (.c.pfb)

The .pfb file format is a binary file format which is used to store CLM output data in a single file. It is
written as BIG ENDIAN binary bit ordering [68]. The format for the file is:

<double : X> <double : Y> <double : Z>

<integer : NX> <integer : NY> <integer : NZ>

<double : DX> <double : DY> <double : DZ>

<integer : num_subgrids>

FOR subgrid = 0 TO <num_subgrids> - 1

BEGIN

<integer : ix> <integer : iy> <integer : iz>

<integer : nx> <integer : ny> <integer : nz>

<integer : rx> <integer : ry> <integer : rz>

FOR j = iy TO iy + <ny> - 1

BEGIN

FOR i = ix TO ix + <nx> - 1

BEGIN

eflx_lh_tot_ij

eflx_lwrad_out_ij

eflx_sh_tot_ij

eflx_soil_grnd_ij

qflx_evap_tot_ij

qflx_evap_grnd_ij

qflx_evap_soi_ij

qflx_evap_veg_ij

qflx_infl_ij

swe_out_ij

6.4. PARFLOW SCATTERED BINARY FILES (.PFSB) 143

t_grnd_ij

IF (clm_irr_type == 1) qflx_qirr_ij

ELSE IF (clm_irr_type == 3) qflx_qirr_inst_ij

ELSE NULL

FOR k = 1 TO clm_nz

tsoil_ijk

END

END

END

END

6.4 ParFlow Scattered Binary Files (.pfsb)

The .pfsb file format is a binary file format which is used to store ParFlow grid data. This format is used
when the grid data is “scattered”, that is, when most of the data is 0. For data of this type, the .pfsb file
format can reduce storage requirements considerably. The format for the file is:

<double : X> <double : Y> <double : Z>

<integer : NX> <integer : NY> <integer : NZ>

<double : DX> <double : DY> <double : DZ>

<integer : num_subgrids>

FOR subgrid = 0 TO <num_subgrids> - 1

BEGIN

<integer : ix> <integer : iy> <integer : iz>

<integer : nx> <integer : ny> <integer : nz>

<integer : rx> <integer : ry> <integer : rz>

<integer : num_nonzero_data>

FOR k = iz TO iz + <nz> - 1

BEGIN

FOR j = iy TO iy + <ny> - 1

BEGIN

FOR i = ix TO ix + <nx> - 1

BEGIN

IF (<data_ijk> > tolerance)

BEGIN

<integer : i> <integer : j> <integer : k>

<double : data_ijk>

END

END

END

END

END

144 CHAPTER 6. PARFLOW FILES

6.5 ParFlow Solid Files (.pfsol)

The .pfsol file format is an ASCII file format which is used to define 3D solids. The solids are represented
by closed triangulated surfaces, and surface “patches” may be associated with each solid.

Note that unlike the user input files, the solid file cannot contain comment lines.
The format for the file is:

<integer : file_version_number>

<integer : num_vertices>

Vertices

FOR vertex = 0 TO <num_vertices> - 1

BEGIN

<real : x> <real : y> <real : z>

END

Solids

<integer : num_solids>

FOR solid = 0 TO <num_solids> - 1

BEGIN

#Triangles

<integer : num_triangles>

FOR triangle = 0 TO <num_triangles> - 1

BEGIN

<integer : v0> <integer : v1> <integer : v2>

END

Patches

<integer : num_patches>

FOR patch = 0 TO <num_patches> - 1

BEGIN

<integer : num_patch_triangles>

FOR patch_triangle = 0 TO <num_patch_triangles> - 1

BEGIN

<integer : t>

END

END

END

The field <file_version_number> is used to make file format changes more manageable. The field <num_vertices>
specifies the number of vertices to follow. The fields <x>, <y>, and <z> define the coordinate of a triangle
vertex. The field <num_solids> specifies the number of solids to follow. The field <num_triangles> specifies
the number of triangles to follow. The fields <v0>, <v1>, and <v2> are vertex indexes that specify the 3
vertices of a triangle. Note that the vertices for each triangle MUST be specified in an order that makes
the normal vector point outward from the domain. The field <num_patches> specifies the number of surface
patches to follow. The field num_patch_triangles specifies the number of triangles indices to follow (these
triangles make up the surface patch). The field <t> is an index of a triangle on the solid solid.

ParFlow .pfsol files can be created from GMS .sol files using the utility gmssol2pfsol located in
the $PARFLOW_DIR/bin directory. This conversion routine takes any number of GMS .sol files, concatenates

6.6. PARFLOW WELL OUTPUT FILE (.WELLS) 145

the vertices of the solids defined in the files, throws away duplicate vertices, then prints out the .pfsol file.
Information relating the solid index in the resulting .pfsol file with the GMS names and material IDs are
printed to stdout.

6.6 ParFlow Well Output File (.wells)

A well output file is produced by ParFlow when wells are defined. The well output file contains information
about the well data being used in the internal computations and accumulated statistics about the functioning
of the wells.
The header section has the following format:

LINE

BEGIN

<real : BackgroundX>

<real : BackgroundY>

<real : BackgroundZ>

<integer : BackgroundNX>

<integer : BackgroundNY>

<integer : BackgroundNZ>

<real : BackgroundDX>

<real : BackgroundDY>

<real : BackgroundDZ>

END

LINE

BEGIN

<integer : number_of_phases>

<integer : number_of_components>

<integer : number_of_wells>

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

<integer : sequence_number>

END

LINE

BEGIN

<string : well_name>

END

LINE

BEGIN

<real : well_x_lower>

<real : well_y_lower>

<real : well_z_lower>

146 CHAPTER 6. PARFLOW FILES

<real : well_x_upper>

<real : well_y_upper>

<real : well_z_upper>

<real : well_diameter>

END

LINE

BEGIN

<integer : well_type>

<integer : well_action>

END

END

The data section has the following format:

FOR time = 1 TO <number_of_time_intervals>

BEGIN

LINE

BEGIN

<real : time>

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

<integer : sequence_number>

END

LINE

BEGIN

<integer : SubgridIX>

<integer : SubgridIY>

<integer : SubgridIZ>

<integer : SubgridNX>

<integer : SubgridNY>

<integer : SubgridNZ>

<integer : SubgridRX>

<integer : SubgridRY>

<integer : SubgridRZ>

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : phase_value>

6.6. PARFLOW WELL OUTPUT FILE (.WELLS) 147

END

END

IF injection well

BEGIN

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : saturation_value>

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_value>

END

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_fraction>

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : phase_statistic>

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

148 CHAPTER 6. PARFLOW FILES

<real : saturation_statistic>

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_statistic>

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : concentration_data>

END

END

END

END

END

END

6.7 ParFlow Simple ASCII and Simple Binary Files (.sa and .sb)

The simple binary,.sa, file format is an ASCII file format which is used by pftools to write out ParFlow
grid data. The simple binary,.sb, file format is exactly the same, just written as BIG ENDIAN binary bit
ordering [68]. The format for the file is:

<integer : NX> <integer : NY> <integer : NZ>

FOR k = 0 TO <nz> - 1

BEGIN

FOR j = 0 TO <ny> - 1

BEGIN

FOR i = 0 TO <nx> - 1

BEGIN

<double : data_ijk>

END

END

END

Chapter 7

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

¡http://fsf.org/¿

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

149

150 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

151

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

152 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

153

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

154 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation. If the Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration”
(or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative
Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Docu-
ment.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first
published under this License somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Bibliography

[1] Ajami, H., McCabe, M.F., Evans, J.P. and Stisen, S. (2014). Assessing the impact of model spin-
up on surface water-groundwater interactions using an integrated hydrologic model. Water Resources
Research 50 26362656, doi:10.1002/2013WR014258.

[2] Ashby, S.F. and Falgout,R. D. (1996). A parallel multigrid preconditioned conjugate gradient algorithm
for groundwater flow simulations. Nuclear Science and Engineering, 124:145–159.

[3] Atchley, A. and Maxwell, R.M. (2011). Influences of subsurface heterogeneity and vegetation cover on
soil moisture, surface temperature, and evapotranspiration at hillslope scales. Hydrogeology Journal
doi:10.1007/s10040-010-0690-1.

[4] Atchley, A.L., Maxwell, R.M. and Navarre-Sitchler, A.K. (2013). Human Health Risk Assessment of
CO 2 Leakage into Overlying Aquifers Using a Stochastic, Geochemical Reactive Transport Approach.
Environmental Science and Technology 47 5954–5962, doi:10.1021/es400316c.

[5] Atchley, A.L., Maxwell, R.M. and Navarre-Sitchler, A.K. (2013). Using streamlines to simulate stochas-
tic reactive transport in heterogeneous aquifers: Kinetic metal release and transport in CO2 impacted
drinking water aquifers. Advances in Water Resources 52 93–106, doi:10.1016/j.advwatres.2012.09.005.

[6] Bürger, C.M., Kollet, S., Schumacher, J. and Bsel, D. (2012). Introduction of a web service for cloud
computing with the integrated hydrologic simulation platform ParFlow. Computers and Geosciences
48 334–336, doi:10.1016/j.cageo.2012.01.007.

[7] Condon, L.E. and Maxwell, R.M. (2013). Implementation of a linear optimization water allocation
algorithm into a fully integrated physical hydrology model. Advances in Water Resources 60 135–147,
doi:10.1016/j.advwatres.2013.07.012.

[8] Condon, L.E., Maxwell, R.M. and Gangopadhyay, S. (2013). The impact of subsur-
face conceptualization on land energy fluxes. Advances in Water Resources 60 188–203,
doi:10.1016/j.advwatres.2013.08.001.

[9] Condon, L.E. and Maxwell, R.M. (2014). Feedbacks between managed irrigation and water availability:
Diagnosing temporal and spatial patterns using an integrated hydrologic model. Water Resources
Research 50 2600–2616, doi:10.1002/2013WR014868.

[10] Condon, L.E. and Maxwell, R.M. (2014). Groundwater-fed irrigation impacts spatially distributed
temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water
management impacts. Environmental Research Letters 9 1–9, doi:10.1088/1748-9326/9/3/034009.

[11] Cui, Z., Welty, C. and Maxwell, R.M. (2014). Modeling nitrogen transport and transfor-
mation in aquifers using a particle-tracking approach. Computers and Geosciences 70 1–14,
doi:10.1016/j.cageo.2014.05.005.

155

156 BIBLIOGRAPHY

[12] Dai, Y., X. Zeng, R.E. Dickinson, I. Baker, G.B. Bonan, M.G. Bosilovich, A.S. Denning, P.A. Dirmeyer,
P.R., G. Niu, K.W. Oleson, C.A. Schlosser and Z.L. Yang (2003). The common land model. The Bulletin
of the American Meteorological Society 84(8):1013–1023.

[13] Daniels, M.H., Maxwell, R.M., Chow, F.K. (2010). An algorithm for flow direction enforce-
ment using subgrid-scale stream location data, Journal of Hydrologic Engineering 16 677–683,
doi:10.1061/(ASCE)HE.1943-5584.0000340.

[14] de Barros, F.P.J., Rubin, Y. and Maxwell, R.M. (2009). The concept of comparative information yield
curves and their application to risk-based site characterization. Water Resources Research 45, W06401,
doi:10.1029/2008WR007324.

[15] de Rooij, R., Graham, W. and Maxwell, R.M. (2013). A particle-tracking scheme for sim-
ulating pathlines in coupled surface-subsurface flows. Advances in Water Resources 52 7–18,
doi:10.1016/j.advwatres.2012.07.022.

[16] Eisenstat, S.C. and Walker, H.F. (1996). Choosing the forcing terms in an inexact newton method.
SIAM J. Sci. Comput., 17(1):16–32.

[17] Ferguson, I.M. and Maxwell, R.M. (2010). Role of groundwater in watershed response and land surface
feedbacks under climate change. Water Resources Research 46, W00F02, doi:10.1029/2009WR008616.

[18] Ferguson, I.M. and Maxwell, R.M. (2011). Hydrologic and landenergy feedbacks of agricultural water
management practices. Environmental Research Letters 6 1–7, doi:10.1088/1748-9326/6/1/014006.

[19] Ferguson, I.M. and Maxwell, R.M. (2012). Human impacts on terrestrial hydrology: climate change ver-
sus pumping and irrigation. Environmental Research Letters 7 1–8, doi:10.1088/1748-9326/7/4/044022.

[20] Forsyth, P.A., Wu, Y.S. and Pruess, K. (1995). Robust Numerical Methods for Saturated-Unsaturated
Flow with Dry Initial Conditions. Advances in Water Resources, 17:25–38.

[21] Frei, S., Fleckenstein, J.H., Kollet, S.J. and Maxwell, R.M. (2009). Patterns and dynamics of river-
aquifer exchange with variably-saturated flow using a fully-coupled model. Journal of Hydrology 375(3-
4), 383–393, doi:10.1016/j.jhydrol.2009.06.038.

[22] Haverkamp, R. and Vauclin, M. (1981). A comparative study of three forms of the Richard equation
used for predicting one-dimensional infiltration in unsaturated soil. Soil Sci. Soc. of Am. J., 45:13–20.

[23] Jones, J.E. and Woodward, C.S. (2001). Newton-krylov-multigrid solvers for large-scale, highly het-
erogeneous, variably saturated flow problems. Advances in Water Resources, 24:763–774.

[24] Keyes, D.E., McInnes, L.C., Woodward, C., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown,
J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Ham-
mond, G., Hansen, G., Hill, J., Isaac, T., et al. (2013). Multiphysics simulations: Challenges
and opportunities. International Journal of High Performance Computing Applications 27 4–83,
doi:10.1177/1094342012468181.

[25] Kollat, J.B., Reed, P.M. and Maxwell, R.M. (2011). Many-objective groundwater monitoring network
design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics.
Water Resources Research,doi:10.1029/2010WR009194.

[26] Kollet, S.J. (2009). Influence of soil heterogeneity on evapotranspiration under shallow water table
conditions: transient, stochastic simulations. Environmental Research Letters 4 1–9, doi:10.1088/1748-
9326/4/3/035007.

BIBLIOGRAPHY 157

[27] Kollet, S.J., Cvijanovic, I., Schüttemeyer, D., Maxwell, R.M., Moene, A.F. and Bayer P (2009).
The influence of rain sensible heat, subsurface heat convection and the lower temperature boundary
condition on the energy balance at the land surface. Vadose Zone Journal, doi:10.2136/vzj2009.0005.

[28] Kollet, S. J. and Maxwell, R. M. (2006). Integrated surface-groundwater flow modeling: A free-surface
overland flow boundary condition in a parallel groundwater flow model. Advances in Water Resources,
29:945–958 .

[29] Kollet, S.J. and Maxwell, R.M. (2008). Capturing the influence of groundwater dynamics on land
surface processes using an integrated, distributed watershed model, Water Resources Research,44:
W02402.

[30] Kollet, S.J. and Maxwell, R.M. (2008). Demonstrating fractal scaling of baseflow residence time distri-
butions using a fully-coupled groundwater and land surface model. Geophysical Research Letters, 35,
L07402.

[31] Kollet, S.J., Maxwell, R.M., Woodward, C.S., Smith, S.G., Vanderborght, J., Vereecken, H., and
Simmer, C. (2010). Proof-of-concept of regional scale hydrologic simulations at hydrologic res-
olution utilizing massively parallel computer resources. Water Resources Research, 46, W04201,
doi:10.1029/2009WR008730.

[32] Major, E., Benson, D.A., Revielle, J., Ibrahim, H., Dean, A., Maxwell, R.M., Poeter, E. and Dogan,
M. (2011). Comparison of Fickian and temporally nonlocal transport theories over many scales in an
exhaustively sampled sandstone slab. Water Resources Research 47 1-14, doi:10.1029/2011WR010857.

[33] Maxwell, R.M. (2010). Infiltration in arid environments: Spatial patterns between subsurface hetero-
geneity and water-energy balances, Vadose Zone Journal 9, 970–983, doi:10.2136/vzj2010.0014.

[34] Maxwell, R.M. (2013). A terrain-following grid transform and preconditioner for paral-
lel, large-scale, integrated hydrologic modeling. Advances in Water Resources 53 109–117,
doi:10.1016/j.advwatres.2012.10.001.

[35] Maxwell, R.M., Carle, S.F and Tompson, A.F.B. (2000). Risk-Based Management of Contaminated
Groundwater: The Role of Geologic Heterogeneity, Exposure and Cancer Risk in Determining the
Performance of Aquifer Remediation, In Proceedings of Computational Methods in Water Resources
XII, Balkema, 533–539.

[36] Maxwell, R.M., Carle, S.F. and Tompson, A.F.B. (2008). Contamination, risk, and heterogeneity: on
the effectiveness of aquifer remediation. Environmental Geology, 54:1771–1786.

[37] Maxwell, R.M., Chow, F.K. and Kollet, S.J. (2007). The groundwater-land-surface-atmosphere con-
nection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Advances
in Water Resources, 30(12):2447–2466 .

[38] Maxwell, R.M. and Kollet, S.J. (2008). Quantifying the effects of three-dimensional subsurface het-
erogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach. Advances in
Water Resources 31(5): 807–817.

[39] Maxwell, R.M. and Kollet, S.J. (2008) Interdependence of groundwater dynamics and land-energy
feedbacks under climate change. Nature Geoscience 1(10): 665–669.

[40] Maxwell, R.M., Lundquist, J.K., Mirocha, J.D., Smith, S.G., Woodward, C.S. and Tompson,
A.F.B. (2011). Development of a coupled groundwater-atmospheric model. Monthly Weather Review
doi:10.1175/2010MWR3392.

158 BIBLIOGRAPHY

[41] Maxwell, R.M. and Miller, N.L. (2005). Development of a coupled land surface and groundwater model.
Journal of Hydrometeorology, 6(3):233–247.

[42] Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I.M., Ivanov, V., Kim, J., Kolditz,
O., Kollet, S.J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M.S., Shen,
C., Sudicky, E. a. and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of
benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research 50

15311549, doi:10.1002/2013WR013725.

[43] Maxwell, R.M., Tompson, A.F.B. and Kollet, S.J. (2009) A serendipitous, long-term infiltration exper-
iment: Water and tritium circulation beneath the CAMBRIC trench at the Nevada Test Site. Journal
of Contaminant Hydrology 108(1-2) 12-28, doi:10.1016/j.jconhyd.2009.05.002.

[44] Maxwell, R.M., Welty, C. and Harvey, R.W. (2007). Revisiting the Cape Cod Bacteria Injection Exper-
iment Using a Stochastic Modeling Approach, Environmental Science and Technology, 41(15):5548–
5558.

[45] Maxwell, R.M., Welty,C. and Tompson, A.F.B. (2003). Streamline-based simulation of virus transport
resulting from long term artificial recharge in a heterogeneous aquifer Advances in Water Resources,
22(3):203–221.

[46] Meyerhoff, S.B. and Maxwell, R.M. (2011). Quantifying the effects of subsurface heterogeneity on
hillslope runoff using a stochastic approach. Hydrogeology Journal 19 15151530, doi:10.1007/s10040-
011-0753-y.

[47] Meyerhoff, S.B., Maxwell, R.M., Graham, W.D. and Williams, J.L. (2014). Improved hydrograph pre-
diction through subsurface characterization: conditional stochastic hillslope simulations. Hydrogeology
Journal doi:10.1007/s10040-014-1112-6.

[48] Meyerhoff, S.B., Maxwell, R.M., Revil, A., Martin, J.B., Karaoulis, M. and Graham, W.D.
(2014). Characterization of groundwater and surface water mixing in a semiconfined karst
aquifer using time-lapse electrical resistivity tomography. Water Resources Research 50 25662585,
doi:10.1002/2013WR013991.

[49] Mikkelson, K.M., Maxwell, R.M., Ferguson, I., Stednick, J.D., McCray, J.E. and Sharp, J.O. (2013).
Mountain pine beetle infestation impacts: modeling water and energy budgets at the hill-slope scale.
Ecohydrology 6 doi:10.1002/eco.278.

[50] Rihani, J., Maxwell, R.M., Chow, F.K. (2010). Coupling groundwater and land-surface processes:
Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy
fluxes. Water Resources Research 46, W12523, doi:10.1029/2010WR009111.

[51] Shrestha, P., Sulis, M., Masbou, M., Kollet, S. and Simmer, C. (2014). A scale-consistent Terres-
trial Systems Modeling Platform based on COSMO, CLM and ParFlow. Monthly Weather Review
doi:10.1175/MWR-D-14-00029.1.

[52] Siirila, E.R., Navarre-Sitchler, A.K., Maxwell, R.M. and McCray, J.E. (2012). A quantitative method-
ology to assess the risks to human health from CO2 leakage into groundwater. Advances in Water
Resources, 36, 146-164, doi:10.1016/j.advwatres.2010.11.005.

[53] Siirila, E.R. and Maxwell, R.M. (2012). A new perspective on human health risk assessment: Devel-
opment of a time dependent methodology and the effect of varying exposure durations. Science of The
Total Environment 431 221-232, doi:10.1016/j.scitotenv.2012.05.030.

BIBLIOGRAPHY 159

[54] Siirila, E.R. and Maxwell, R.M. (2012). Evaluating effective reaction rates of kinetically driven so-
lutes in large-scale, statistically anisotropic media: Human health risk implications. Water Resources
Research 48 1-23, doi:10.1029/2011WR011516.

[55] Sulis, M., Meyerhoff, S., Paniconi, C., Maxwell, R.M., Putti, M. and Kollet, S.J. (2010). A com-
parison of two physics-based numerical models for simulating surface water-groundwater interactions.
Advances in Water Resources, 33(4), 456-467, doi:10.1016/j.advwatres.2010.01.010.

[56] Tompson, A.F.B., Ababou, R. and Gelhar, L.W. (1989). Implementation of of the three-dimensional
turning bands random field generator. Water Resources Research, 25(10):2227–2243.

[57] Tompson, A.F.B., Falgout, R.D., Smith, S.G., Bosl, W.J. and Ashby, S.F. (1998). Analysis of subsur-
face contaminant migration and remediation using high performance computing. Advances in Water
Resources, 22(3):203–221.

[58] Tompson, A. F. B., Bruton, C. J. and Pawloski, G. A. eds. (1999b). Evaluation of the hydrologic source
term from underground nuclear tests in Frenchman Flat at the Nevada Test Site: The CAMBRIC test,
Lawrence Livermore National Laboratory, Livermore, CA (UCRL-ID-132300), 360pp.

[59] Tompson, A.F.B., Carle, S.F., Rosenberg, N.D. and Maxwell, R.M. (1999). Analysis of groundwater
migration from artificial recharge in a large urban aquifer: A simulation perspective, Water Resources
Research, 35(10):2981–2998.

[60] Tompson AFB., Bruton, C.J., Pawloski, G.A., Smith, D.K., Bourcier, W.L., Shumaker, D.E., Kersting,
A.B., Carle, S.F. and Maxwell, R.M. (2002). On the evaluation of groundwater contamination from
underground nuclear tests. Environmental Geology, 42(2-3):235–247.

[61] Tompson, A. F. B., Maxwell, R. M., Carle, S. F., Zavarin, M., Pawloski, G. A. and Shumaker, D. E.
(2005). Evaluation of the Non-Transient Hydrologic Source Term from the CAMBRIC Underground
Nuclear Test in Frenchman Flat, Nevada Test Site, Lawrence Livermore National Laboratory, Liver-
more, CA, UCRL-TR-217191.

[62] van Genuchten, M.Th.(1980). A closed form equation for predicting the hydraulic conductivity of
unsaturated soils. Soil Sci. Soc. Am. J., 44:892–898.

[63] Welch, B. (1995) Practical Programming in TCL and TK. Prentice Hall.

[64] Woodward, C.S. (1998), A Newton-Krylov-Multigrid solver for variably saturated flow problems. In
Proceedings of the XIIth International Conference on Computational Methods in Water Resources,
June.

[65] Woodward, C.S., Grant, K.E., and Maxwell, R.M. (2002). Applications of Sensitivity Analysis to
Uncertainty Quantification for Variably Saturated Flow. In Proceedings of the XIVth International
Conference on Computational Methods in Water Resources, Amsterdam, The Netherlands, June.

[66] Williams, J.L. and Maxwell, R.M. (2011). Propagating Subsurface Uncertainty to the Atmo-
sphere Using Fully Coupled Stochastic Simulations. Journal of Hydrometeorology 12 690-701,
doi:10.1175/2011JHM1363.1.

[67] Williams, J.L., Maxwell, R.M. and Monache, L.D. (2013). Development and verification of a new
wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully
coupled hydrologic and atmospheric model. Journal of Advances in Modeling Earth Systems 5 785-800,
doi:10.1002/jame.20051.

[68] Endianness, Wikipedia Entry: http://en.wikipedia.org/wiki/Endianness

