
D5.3.1 – Europeana OAI-PMH
Infrastructure – Documentation and
final prototype

co-funded by the European Union

The project is co-funded by the European Union, through the eContentplus programme

http://ec.europa.eu/econtentplus

EuropeanaConnect is coordinated by the Austrian National Library

http://ec.europa.eu/econtentplus

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

Appendix – REPOX User Manual

ECP-2008-DILI-528001

EuropeanaConnect

Europeana OAI-PMH Infrastructure – Documentation and final prototype

Deliverable number/name D 5.3.1

Dissemination level PU

Delivery date 11/10/2010

Status Final

Author(s)
Gilberto Pedrosa (IST); Petz Georg
(ONB); Cesare Concordia, Nicola Aloia
(ISTI)

eContentplus

This project is funded under the eContentplus programme,
a multiannual Community programme to make digital content in Europe more accessible, usable and

exploitable.

EuropeanaConnect is coordinated by the Austrian National Library

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

Appendix – REPOX User Manual

3 / 23

Distribution

Version Date of sending Name Role in project

0.1 01.10.2010 Cesare Concordia, Nicola Aloia

0.2 09.10.2010 Petz Georg

0.3 10.10.2010 Gilberto Pedrosa

0.4 15.11.2010 ONB

0.4 15.11.2010 Jan Molendijk, Theo van Veen

1.0 07.02.2011 EC, Liferay, public website

Approval

Version Date of approval Name Role in project

0.4 30.11.2010 Theo van Veen KB-NL

0.4 17.12.2010 Jan Molendijk EF Technical Lead

Revisions

Version Status Author Date Changes

0.1 Draft Gilberto Pedrosa 01.10.2010 Initial version

0.2 Draft
Cesare
Concordia,
Nicola Aloia

09.10.2010

0.3 Draft Petz Georg 10.10.2010 Some additions

0.4 Draft Gilberto Pedrosa 12.10.2010

1.0 Final
VPZ, MK, Georg
Petz

07.02.2011 Some formulation changes

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

4 / 23

Executive Summary

The task 5.3 in EuropeanaConnect aims to provide a solution for Europeana to manage
metadata harvesting of thousands of digital heritage content sources across Europe, which
results in the REPOX service. IST has led the task of developing the REPOX together with
ONB.

The purposes of the REPOX are the management of the aggregator, data providers and their
harvested metadata records.

This document describes the specification, design and implementation of the REPOX. The
remainder of the document continues with the integration of REPOX in the Europeana
ingestion workflow, followed by the refactoring and code review done in REPOX source
code.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

5 / 23

Table of Contents

Executive Summary .. 4

Table of Contents .. 5

1 Introduction... 6

2 Definitions... 7

3 Design of REPOX... 8

3.1 Service Architecture... 8

3.2 Data Structures...10

3.3 Database Model..11

3.3.1 Internal REPOX database ...11

3.3.2 Repox2Sip database...12

3.4 Integrating REPOX in the Europeana ingestion workflow......................................16

4 User Interface..17

4.1.1 URLs for CRUD operations ...18

4.1.2 Limitations of the intended approach...19

4.1.3 Status of the refactoring ..21

5 REPOX source code..22

6 Conclusions and open issues ..23

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

6 / 23

1 Introduction

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
http://www.openarchives.org/ has become a cornerstone of the content integration strategy of
The European Library (TEL) http://search.theeuropeanlibrary.org/portal/en/index.html. Millions of
catalogue records from dozens of providers (primarily national libraries) have been harvested for
the TEL portal. Europeana aims to provide access to the content behind the catalogue data – and
not only from national libraries, but any provider of digital cultural objects in Europe, from
universities to archives to museums. This will lead to a substantial increase in harvesting targets,
from dozens to hundreds and eventually thousands. In order to meet the demands of this leap in
harvesting scale, this task will provide the implementation of a solution for the administration of
available European OAI-PMH data providers and respective data sources. This is an absolutely
essential extension of the Europeana portal that will enable large-scale import and thereby rapid
attainment of a critical mass of digital content.

The two lines of action that this task will take are: the management of a large number of
aggregators and data providers; and the management of the large quantities of metadata records
made available by those data providers. As an infrastructure service, this does not benefit end-
users directly, but rather indirectly by supporting the integration and efficient management of
more content. The direct beneficiaries are the administrators of the Europeana portal, who will be
able to manage and integrate content more efficiently (and hence at a lower per-unit cost).

For the management of the OAI-PMH data providers the solution REPOX provides the following
functionalities:

• The registration of aggregators, data providers, their collection descriptions (one data
provider might make available to Europeana more than one collection), and the
configurations for the harvesting of the relating metadata.

• The automatic and manual harvesting of the collections by OAI-PMH (according to
configurations and options provided by the data providers and the decisions of the
administrators of the central service).

• Monitoring of the quality of service of the OAI-PMH servers, including statistical reporting.

For the management of the harvested metadata records, the following functionalities are
provided:

• Support for multiple metadata formats

• A metadata repository service for making the harvested metadata records available to the
Europeana

• A scalable solution, able to hold a large number of aggregators, OAI-PMH data providers
with a virtually unlimited number of records.

http://www.openarchives.org/
http://search.theeuropeanlibrary.org/portal/en/index.html.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

7 / 23

2 Definitions

This document uses the following definitions (some of the definitions are redundant as
recognition of other usages that also are common to be found in related documents and
bibliography):

• Data Provider: an entity that contributes with Descriptive Metadata Sets for Europeana.

• Data Source: a service or location, under the responsibility of a Data Provider, from
which it is possible to harvest at least one Data Set.

• Data Set: a defined group (usually named of “collection”) of one or more Data Records.

• Data Record: An instance of a structure of data attributes defined according to a Data
Schema

• Data Model (schema): The definition of the data elements and the rules governing the
use of these data elements to describe a resource.

• Harvest: the process to collect Data Sets from a Data Provider.

• Data Provider: an entity that has relevant resources on-line and decides to make
available their respective descriptive metadata to Europeana, directly through the OAI-
PMH protocol, or indirectly by any other mean.

• Aggregator: an entity that aggregates Data Sets (Descriptive Metadata) from Data
Providers, ideally through the OAI-PMH protocol, with the purpose of making it available
to Europeana also through the OAI-PMH protocol.

• Descriptive Metadata: data about information objects relevant for Europeana that Data
Providers make available for Harvesting.

• Metadata Set: by default, the same as a Data Set of Descriptive Metadata.

• Descriptive Metadata Set: by default, the same as a Data Set of Descriptive Metadata.

• Metadata: by default, the same as Descriptive Metadata.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

8 / 23

3 Design of REPOX

This section describes the software architecture and design of REPOX. The design is a
consequence of the requirements, both functional and non-functional, which were identified in the
documents M5.3.2 “The Europeana OAI-PMH Infrastructure – Updated Specification and Design”
and M5.3.3a “The Europeana OAI-PMH Infrastructure – Second Prototype”.

REPOX is an infrastructure to store, preserve and manage metadata sets in XML. It can play the
role of a broker or other specific service in a Service Oriented Architecture. It can manage
transparently data sets independently of their schemas or formats.

3.1 Service Architecture

cmp REPOX Component Mo...

EUROPEANA

REPOX

Repox Manager

Access Points
Manager

Access Point

REPOX DB

Metadata
Transformation

Manager

Data Manager

OAI-PMH server
UI Administration

OAI-PMH client

Task ManagerRepox2Sip

Repox2Sip
storage

FileSystem

HTTP

Z39.50

IRegisterTaskIRepox2Sip IRegisterSchemaIAccessPoints

IHavestSource

Figure 1 – REPOX context and architecture of components.

The main component of the REPOX infrastructure is the REPOX Manager. The REPOX Manager
glues together the other components by managing all the repository processes. It also provides
an administration user interface to view the Service status and perform Service operations and an
interface to manage Data Providers and Data Sources.

The Data Manager harvests the records from the data sources via the data source interfaces,
which may be OAI-PMH, HTTP-get, Z39-50 or a folder in the file Service with files in the format
ISO2709, MarcXML, MarcXchange, ESE, or any XML format. The method of choice for
harvesting will be an XML Folder or OAI-PMH Client interface. For each Record harvested, the

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

9 / 23

Access Point Manager creates and stores the indexes of the access points in a database. The
Data Manager also provides a set in the REPOX OAI-PMH server for external access to the
Records.

The Access Points Manager manages the indexes of the Records. For performance reasons all
record content and indexes are stored in the database. An Access Point is an Index to access
specific fields of the records in the database. Currently REPOX only indexes the identifiers to
access the records content and the timestamp.

The Metadata Transformation Manager is responsible for the registration of transformations
between metadata formats (schemas) and for the application of those transformations between
specific metadata sets.1

The Task Manager is the component that handles tasks with time constraints. There is a
background thread that checks for tasks that need to start and launches them when necessary.

The Repox2Sip is a component that is responsible for the integration between REPOX and the
Europeana Sip-Manager which is the ingestion tool responsible for creating the Submission
Information Packages (SIP). The integration process is described in details in section 3.4.

1 When available, the REPOX Service will be able to use the XSLT transformations provided by the
Europeana Metadata Registry (EuMDR) to perform transformations from each original data format into
the ESE profile.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

10 / 23

3.2 Data Structures

class REPOX Classes

Record Id Policy

Access Point

Data Source

Metadata Format

Record

IdGenerated IdExtracted

Data Prov ider

File Extract
Strategy

Simple File Extract ISO2709 File
Exctract

MarcXchange File
Extract

Data Source
OAI-PMH

Data Source Directory
Importer

Metadata
Transformation

Access Point
Record

Access Point
Timestamp

TaskManager

ScheduledTask

Task

Aggregator

manages

source
10..1

destination

retrieves
Id

**

indexes

uses

1

*

Figure 2 – REPOX domain.

Aggregators are entities that aggregate Data Providers and contain information like name, name
code and the homepage. Data Providers are entities with one or more collections of records
(record sets) each associated to REPOX by a Data Source. They typically represent an institution
(e.g. a Library). Data Sources represent the source of a record set, which is then provided by
OAI-PMH.

Data Sources are either OAI-PMH or Directory Importer, the former meaning that the records will
be harvested from an OAI-PMH server and the latter meaning a folder in the file Service. To
ingest the folders in the file Service, REPOX recognizes three strategies: Simple File Extract,
ISO2709 File Extract and MarcXchange File Extract. Simple File Extract is the default method,
where there is no processing of the XML records. The only associated logic is validation of the
XML. ISO2709 File Extract and MarcXchange specifically target those formats. ISO2709 File
Extract requires the file Character Set and the format variant because even though ISO2709 is a
standard, some institutions do not follow it exactly. Because ISO2709 is not an XML format and
REPOX only handles XML, the format is ingested as MarcXchange because there is no data loss

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

11 / 23

transforming from one to the other. In the three scenarios the files may be zipped in the file
Service and they will be unzipped prior to ingestion.

Data Sources can have associated ScheduledTasks, by scheduling an Ingest of records or an
export of the records to the file Service. Those Scheduled tasks are handled by the task
Manager. A Task is a managed action in REPOX. Scheduled Tasks are tasks that occur at
specific times with a periodicity (unique harvest, daily, weekly and every n months).

Access points (AP) enable the retrieval of the records by more than only their identifiers. For that
purpose, access points are associated to Data Sources, to define how to process the pertinent
information for indexing. These AP are used by the AccessPointsManager (APM) to extract the
relevant data from each record and build the respective indexes. Those indexes are maintained
in a relational database for efficiency, as they are not part of the fundamental model.

A Metadata Transformation is a translation between two metadata formats (ex:
MarcXchange/Marc21 to ESE). Every Data Source can have any number of transformations. The
transformations are stored as XSLT files, even though it is possible to create a visual mapping of
them which is stored in an intermediate XML format internally to allow editing. The records can be
retrieved by OAI-PMH in their original format (ISO2709 can only be accessed in MarcXchange as
specified previously) or any format which has been configured a mapping to. The mapping is
performed by request and not stored, because the performance impact is not noticeable.

The record identifiers used in REPOX can be associated in two ways: generated by REPOX or
extracted from each record using an XPath expression. The advantage of using extracted
identifiers is that it is possible to update just the changes because the records can be recognized
by the identifier. In the diagram there is a third option: provided ids in which all records ingested
must be sent with their identifier.

3.3 Database Model

In REPOX the records are stored in two databases – internal REPOX database and Repox2Sip
database.

3.3.1 Internal REPOX database

There are only two tables in internal REPOX database (Figure 3) for each Data Source: a record
table and a timestamp table. The record table stores an internal id, a unique id used for OAI-
PMH, a deleted flag and the value in a blob (the value is the zipped XML representation of the
record). The timestamp table has the same fields except for the value, which has the date instead
of the record XML representation. There are two tables and duplicated fields for performance
reasons, when the record is not needed only the timestamp table is used. There is another
reason for using two tables: they represent indexes of the record so if it is necessary to have
another index for the record in the future, another table would be added with the value for that
index.

The tables are dynamically created by prefixing the Data Source identifier. This way every Data
Source has its indexes separated, which makes managing (creating, editing and deleting) and
accessing the data faster and easier.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

12 / 23

class REPOX Database

«DB Table»
DataSource_record

- deleted: boolean
- value: blob

«PK»
- id: long

«UNIQUE»
- nc: string

«DB Table»
DataSource_timestamp

- deleted: boolean
- value: date

«PK»
- id: long

«UNIQUE»
- nc: string

Figure 3 – REPOX database.

3.3.2 Repox2Sip database

Tables in the Repox2Sip database contain information needed to create Submission Information
Packages and information needed to synchronize the integration with the Sip Manager.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

13 / 23

class Europeana Database

«Sip»
Europeana::URISource

+ dns_name: String
+ id: long
+ ip_nr: String
+ pid: long

«Repox»
Europeana::Aggregator

+ aggregatorID: long
+ home_page: String
+ id: URl
+ name: String
+ name_code: String

«Sip»
Europeana::Allignment

+ data_blob: Object
+ facet_id: long
+ facet_link: URI
+ facet_type: Enumeration
+ facet_value: String
+ id: long
+ md_record_id: long

«Repox»
Europeana::DataSet

+ description: String
+ home_page: URL
+ id: long
+ id_q_name: String
+ inputOaiSet: String
+ item_type: Enumeration
+ language: Language
+ name: String
+ name_code: String
+ outputOaiSet: String
+ provider_id: String
+ q_name: String
+ strategy: Enumeration

«Sip»
Europeana::Labels

+ id
+ label
+ language
+ term_attribute

«Sip»
Europeana::MDRecordError

+ exit_code
+ id: long
+ md_record
+ message
+ task_name
+ time_stamp

«Shared»
Europeana::MdRecord

+ all the ESE+ fields
+ content_hash: String
+ id: long
+ mdrecordId: String
+ pid: long
+ source_data: String
+ status: Enumeration
+ time_created: Date
+ time_last_changhe: Date
+ uniqueness_hash: String

«Sip»
Europeana::

ProcessMonitoring

+ pid: long
+ role
+ status
+ time_started

«Repox»
Europeana::Prov ider

+ aggregator_id: long
+ country: String
+ description: String
+ home_page: URL
+ id: long
+ item_type: Enumeration
+ name: String
+ name_code: String
+ providerId: String

«Shared»
Europeana::Request

+ data_format
+ data_set_id: String
+ id: long
+ request_name: String
+ status: Request Status
+ time_created: Date

«Shared»
Europeana::

Request_MdRecord

+ id: long
+ md_record_id: long
+ request_id: long

«Sip»
Europeana::Uris

+ date_lastcheck: Date
+ err_msg: String
+ id: long
+ md_rec_id
+ pid
+ status
+ uri_source: URI
+ url: URL
+ xmlelement: String

«Sip»
Europeana::User

+ email: String
+ id: long
+ name: String

«Sip»
Europeana::

UserContribution

+ annotation: String
+ mdrecord_id: long
+ userid: long

«Sip»
Europeana::Vocabulary

record

+ content_hash
+ date_created
+ date_last_modified
+ id: long
+ l ink: URI
+ source_data

1

1

1..*

1

1..*1

0..1

1

0..11

1

0..1

1 1..*

0..*

1

0..*

1

1..*

1
0..*

1

1..* 1 0..* 10..* 1

0..*1

1

0..*

Figure 4 – Repox2Sip data model.

A brief description of tables whose content is managed by REPOX is given below.

• Aggregator table

The field name_code is set by the ingestion operator, currently something like “97”. The field
name is a human readable name of the aggregator.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

14 / 23

• Provider table

The field country contains the code that identifies the country of the provider, this code can be the
two letters ISO code 3166-1-alpha2 (http://www.iso.org/iso/english_country_names_and_code
_elements) or the string “eu” if the provider is an EU organization.

The field name_code is set by the ingestion operator currently something like “004”.

The type values can be:

• Museum

• Archive

• Library

• Audio Visual Archive

• Aggregator

• Research educational

• Cross sector

• Publisher

• Private

• DataSet table

The value of the language field is a code identifying language of the data set, this can be a ISO
639 two letters code (http://www.loc.gov/standards/iso639-2/) or the string “mul” for multiple
languages. Only UTF-8 encoding for harvested files. The value of the field q_name is the
qualified name used by the provider to identify the root element of the metadata record. The field
id_q_name is the xpath expression identifying the record id. If the value is empty this means that
the REPOX will automatically generate the identifier. The name is the name of the data set sent
by provider (may be empty), the name_code is the name created by Europeana (e.g.
03901_Ag_FR_MCC_joconde). The field file_name contains the original request as single file for
traceability

The description is a REPOX mandatory field and describes the data set; this field is used for OAI
server. The strategy field indicates the ingestion strategy adopted by the harvester for a specific
data set. Possible values:

• DataSourceDirectoryImporter

• DataSourceOai

• DataSourceZ3950

About item_type: currently ESE is the only accepted metadata format but in the future we almost
certain extend the harvesting to other formats such as LIDO.

The values of oai_set field are defined here:

http://www.openarchives.org/OAI/openarchivesprotocol.html#Set

http://www.iso.org/iso/english_country_names_and_code
http://www.loc.gov/standards/iso639-2/)
http://www.openarchives.org/OAI/openarchivesprotocol.html#Set

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

15 / 23

• Request table

This table identifies a specific harvesting for a given data set. It also indicates if this request can
be sent to production.

When REPOX is parsing the file the request should be in the state “under construction” and
REPOX may abort the request and set the status accordingly, when this process is done the
“status” value must be changed in “import completed” and after this point REPOX cannot change
the data.

The field status can assume the following values:

• under construction – REPOX is creating a new request

• import completed – REPOX ready, sip can take control when ready

• aborted – something went wrong

• sip processing – SIP has found the request REPOX may not any more delete the request

• pending validation sign off – all records for this request completed

• pending AIP sign off

• creating AIP

• AIP completed

• RequestMDRecord table

This table links all the metadata records belonging to a given request.

REPOX can only insert records in this table whose request status is “under construction”, if the
request is aborted don’t remove links from this table, this task will be done manually.

This table is needed because we want to maintain history of requests for the same data set.

• MDRecord table

This table contains the original record and all its refinements. The value of the field contenthash
will be provided by the Harvester and is used to identify the ESE record.

REPOX may only insert new MDRecord and cannot change or delete existing items.

The two fields that must be actually filled by REPOX are source_data with the delivered content
dump and content_hash, all other fields should have the default values.

The algorithm for generating content_hash is: sha256 hash with all the linefeeds stripped.

The field status can assume the following values:

• created – (default) the record is created but not yet processed in any way

• idle – nobody is touching it, waiting for more checks

• processing – a checker is working on this record

• problematic – something went wrong, human intervention might save the record

• broken – record is invalid, some check showed this ESE is not acceptable

• verified – all checks succeeded, could be sent to production

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

16 / 23

The mdrecord_id is an identifier used by REPOX: when no id XPath is provided it is automatically
generated by REPOX, otherwise it is extracted using the defined in the id_q_name field of the
Data_set table.

3.4 Integrating REPOX in the Europeana ingestion workflow

The SIP Manager is the Europeana software component responsible for managing and
processing harvested data (http://europeanalabs.eu/wiki/SpecificationsRhineRequirements
IngestSipManager).

REPOX and the SIP Manager coordinate their activity by exchanging data via a shared data
store. The next paragraph describes the database schema for data and the synchronization
protocol for operations.

Figure 4 shows a diagram of the Repox2Sip DB schema using the UML static diagram symbols:
class symbols represent tables, class attributes represent fields, and associations represent
relationships and their cardinality. Stereotypes above table names indicate the component
owning the “write” permissions on the table, for instance the table Aggregator can be modified by
the REPOX component while the table URIs can be modified by the SIP Manager. Some tables
are shared and can be modified by both.

http://europeanalabs.eu/wiki/SpecificationsRhineRequirements

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

17 / 23

4 User Interface

During the period of work reported in this Deliverable it was decided to migrate the user
interface from the Stripes Framework to Spring MVC.

Both frameworks are based on the Model-View-Controller (MVC 2) pattern but different
techniques regarding its implementation are used. Hence annotations are used instead of
interfaces, JSP sites are refactored to Spring Tag Libraries and form validation is applied via
JavaBean validation.

In detail this means:

• 17 Stripes Action Beans (Figure 5) have to be replaced by corresponding Spring
Controllers. All of the aforementioned 17 classes implement the interface
ActionBean3. Implementations of this interface respond to user interface events and
receive information about the events (usually a form submission). Whereas Spring's
web framework since Version 3 is using the help of annotations to handle web
requests. The @Controller annotation4 which indicates that the annotated class is a
controller class and can handle web requests is used for this purpose.

• New JavaServer Pages (JSPs) for resolving views have to be created and existing
ones have to be adapted.

• Spring form-backing beans have to be applied to represent the forms in the JSPs. For
the validation JavaBean validation (@Valid) is used.(Spring 3 includes support for
JSR-3035)

2 http://de.wikipedia.org/wiki/Model_View_Controller

3 http://stripes.sourceforge.net/docs/current/javadoc/net/sourceforge/stripes/action/ActionBean.html

4 http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/stereotype
/Controller.html

5 http://jcp.org/en/jsr/summary?id=303

http://de.wikipedia.org/wiki/Model_View_Controller
http://stripes.sourceforge.net/docs/current/javadoc/net/sourceforge/stripes/action/ActionBean.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/stereotype
http://jcp.org/en/jsr/summary?id=303

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

18 / 23

1.

Figure 5 - REPOX Action Beans.

4.1.1 URLs for CRUD6 operations

As Stripes will not be used any longer all the URLs will be changed too, e.g. the http request
/aggregator/CreateEditAggreator.action?preEdit will be changed to /aggregatorForm.html.

NB: To go from the class name to a URL stripes removes ‘ActionBean’ (if it is the last part of the
class name) and converts it to a path and appends ‘.action’.

CRUD operations in REPOX have the following syntaxes (taking aggregator as an example):

creating a new aggregator:

http://localhost:8080/repox/createAggregator.html

6 Create, Read, Update, Delete

http://localhost:8080/repox/createAggregator.html

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

19 / 23

reading an aggregator:

http://localhost:8080/repox/viewAggregator.html?aggregatorId=aggtestr0

updating an aggregator:

http://localhost:8080/repox/editAggreator.html?aggregatorId=aggtestr0

deleting an aggregator:

http://localhost:8080/repox/deleteAggregator.html?aggregatorId=aggtestr0

For each CRUD operation a method annotated with @RequestMapping within the Spring
Controller and a JSP view has to be created.

4.1.2 Limitations of the intended approach

• No flash scope in Spring MVC: Flash Scope7 lets you pass a message from one page to
the next and only to the next page. Alternatively you could add a message as GET
parameter which isn’t very clean! Spring offers flash scope only on the Spring Web Flow
level (Figure 6).

• Separation of user interface and program logic: There is too much programming logic in
the UI-layer. The JSTL tag <c:if> is used too often (Figure 7). This makes the jsp code too
complicated.

• JSF vs. JSP: To simplify the development of web based user interfaces JSF should be
used rather than JSP. But this means to port REPOX from a Request based framework
(Stripes or Spring MVC) to a Component based framework.

Figure 6 – The Spring Web Flow 2 Distribution.

7 A FlashScope is an object that can be used to store objects and make them available as request
parameters during this request cycle and the next one.

(http://stripes.sourceforge.net/docs/current/javadoc/net/sourceforge/stripes/controller/FlashScope.htm)

http://localhost:8080/repox/viewAggregator.html?aggregatorId=aggtestr0
http://localhost:8080/repox/editAggreator.html?aggregatorId=aggtestr0
http://localhost:8080/repox/deleteAggregator.html?aggregatorId=aggtestr0

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

20 / 23

Figure 7 - JSTL tag <c:if>.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

21 / 23

4.1.3 Status of the refactoring

The following classes:

CreateEditAggregatorActionBean,

ViewAggregatorActionBean

DeleteAggregatorActionBean,

CreateEditDataProviderActionBean,

ViewDataProviderActionBean

DeleteDataProviderActionBean

(see Figure 8) haven been successfully ported to the *Controller classes in
pt.utl.ist.repox.web.spring.

As described in 4.1.2 Spring MVC offers no flash scope.

Figure 8 – pt.utl.ist.repox.web.spring.

In package pt.utl.ist.repox.web.spring.session (Figure 9) a Session Bean was created to simulate
flash scope. The bean (SessionService.java) is accessed by the controller classes via the Service
SessionServiceImpl.java.

Figure 9 - pt.utl.ist.repox.web.spring.session.

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

22 / 23

5 REPOX source code

The REPOX source code is available at the https://europeanalabs.eu/svn/contrib/repox. This
application is using MAVEN8 according to the Europeana guidelines.

The project is organized in two packages: “main” and “tests”. Inside the main package there are:
the java package (with the REPOX, OAI and Europeana classes); the resources (that contains all
configuration files and REPOX properties); and the webapps (that includes the documentation
and the JSP’s). The main tests of REPOX and Repox2Sip functionalities are in the test package.
The tree of REPOX is represented at Figure 10.

Figure 10 – The REPOX tree.

8 Apache Maven is a software project management and comprehension tool. http://maven.apache.org/

http://maven.apache.org/

EuropeanaConnect D5.3.1 – Europeana OAI-PMH Infrastructure – Documentation and final prototype

23 / 23

6 Conclusions and open issues

For the final Europeana Danube release, the main addressed issues were:

• The refactoring of the source code (clean and easy to maintain version)

• Evaluation and improvement of the performance

• The migration from the Stripes interfaces to Spring was started.

• Some others improvements were implemented:

o enable authorized users to upload to REPOX a file from a local computer and then
harvest the file content in REPOX

o enable authorized users to download harvested files that exist in REPOX

o improve the "visual feedback" of operations, especially for harvesting (more
relevant and dynamic reporting)

Issues for future consideration:

• For pragmatic reasons the current REPOX version uses two databases (Derby and
PostgreSQL). In the future would be better use only one database – to avoid data
replication and to increase the REPOX performance. In practice, the only implication
would be the creation of a new class (specific for Postgres database) that will extend from
AccessPointsManager class.

• Comparing the performance between REPOX installation at IST (using only Derby
database) and the REPOX installation at Europeana (that uses Repox2Sip and Derby),
we realize that Europeana performance is much slower – the performance of Repox2Sip
should be improved in the near future.

