Sepam DNP3 communication

For Sepam series 20/40/60/80

User's manual 03/2011

Safety symbols and messages

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

Risk of electric shock

The addition of either symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

Safety alert

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Safety messages

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, **can result in** death or serious injury.

CAUTION indicates a potentially hazardous situation which, if not avoided, can result in minor or moderate injury.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, **can result in** equipment damages.

Important notes

Restricted liability

Electrical equipment should be serviced and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this manual. This document is not intended as an instruction manual for untrained persons.

Device operation

The user is responsible for checking that the rated characteristics of the device are suitable for its application. The user is responsible for reading and following the device's operating and installation instructions before attempting to commission or maintain it. Failure to follow these instructions can affect device operation and constitute a hazard for people and property.

Protective grounding

The user is responsible for compliance with all the existing international and national electrical codes concerning protective grounding of any device.

Contents

-
2
3
3
4
6
8
0
2
2
3
9
20
21
24
25
26
32
34
36
4
4
8
51

Presentation

ACE969TP-2 communication interface.

General

DNP3 communication enables Sepam units to be connected to a supervisor or other device featuring a DNP3 communication channel.

Communication is based on the master/slave principle:

- Sepam is always a slave station.
- The master is the supervisor or another device.

DNP3 communication is available via the ACE969-2 communication interface.

ACE969-2 is a multiprotocol communication interface with two independent communication ports:

■ The S-LAN (Supervisory-Local Area Network) port is used to connect Sepam to a communication network dedicated to supervision.

■ The E-LAN (Engineering-Local Area Network) port is reserved for specific Sepam setup, operating and adjustment functions. This port is connected to the SFT2841 software tool.

The ACE969-2 interface is available in two versions, linked to the physical interface of the S-LAN supervision port:

- ACE969TP-2 (Twisted Pair) for a 2-wire RS 485 serial link S-LAN
- ACE969FO-2 (Fiber Optic) for a fiber-optic star or ring S-LAN

The E-LAN engineering port is always a 2-wire RS 485 type port.

Two independent networks:

S-LAN: DNP3 supervision E-LAN: For SFT2841 operating functions.

Accessible data

DNP3 communication via the S-LAN port provides access to a great deal of information, in particular:

- Reading of status conditions, metering information and counters
- Reading of time-tagged events
- Transfer of files including disturbance records and tripping contexts
- Time-setting and synchronization
- Transmission of remote controls
- Control of analog outputs

The actual list depends on the application, the type of Sepam, the enabled functions, and the ACE969-2 interface parameter settings.

Connecting the SFT2841 tool to the E-LAN port also provides access to all Sepam function parameters and operating data:

- Hardware configuration parameters
- Remote settings for protection functions
- Switching on/off of protection functions
- Retrieval of disturbance records
- Display of metering and diagnosis information
- Display of logic states
- Display of alarms

ACE969FO-2 communication interface.

DNP3 protocol Presentation

Definition

The DNP3 protocol specifies the coding of data and the rules for exchanging this data between a slave device and a master control and supervision device (supervisor or RTU).

DNP3 is an open (non-proprietary) protocol, which can be implemented by any communicating device (IED – Intelligent Electronic Device) without any restrictions.

History

Originally designed for electricity distribution companies, DNP3 is nowadays also used in other applications such as those found in water distribution companies, wastewater treatment companies and transport, as well as the oil and gas industries.

The DNP3 protocol was developed from the basic standards prepared by IEC technical committee 57 (Power system control and associated communications).

DNP3 was chosen by IEEE Task Force C.2 as the IEEE Recommendation for communication between RTUs and IEDs.

Initially developed by Harris Distributed Automation Products, the DNP3 specifications became public in 1993. They are now the property of the DNP3 User Group and under its control. The DNP3 User Group is a group of manufacturers and utilities from around the world. A Technical Committee is responsible for the maintenance and future development of the protocol.

Reference documents

The DNP3 specifications are organized into four main parts, which make up the Basic 4 Document Set:

- Data Link Layer Protocol Description
- Transport Functions
- Application Layer Protocol Description
- Data Object Library

An additional set of specifications, DNP3 Subset Definitions, has been written by the DNP3 User Group to help equipment designers identify the protocol elements and options to use for each type of equipment concerned.

A series of Technical Bulletins is also available. These Technical Bulletins give setup details on particular points of the protocol.

The DNP3 documentation includes the definition of Certification Procedures. These procedures specify the tests to be performed on a communicating device in order to check and declare its compliance with the DNP3 protocol.

The complete DNP3 protocol documentation can be obtained from the DNP3 User Group (<u>http://www.dnp.org/</u>).

DNP3 protocol Protocol principle

DNP3 communication profile.

DNP3 and OSI model

DNP3 is a multipoint communication protocol via which information can be exchanged between a control system (supervisor or RTU) and one or more intelligent electronic devices (IED). The control system is the master and the IEDs are the slaves. Each device is identified by a unique address between 0 and 65519. Frames can be broadcast.

DNP3 is constructed on the EPA (Enhanced Performance Architecture) profile, which is a simplified version of the OSI (Open System Interconnection) model. EPA has only 3 layers:

- Physical
- Data Link
- Application

However, for transmission of large messages (2 kilobytes or more), data segmentation and reassembly functions have been added. All these functions constitute a Transport pseudo-layer.

Transmission modes

The DNP3 data link layer manages communication in balanced mode, which means that both the master device and the slave device can initialize the transmission of messages.

In the conventional architecture of a supervision system, the master device is responsible for cyclical polling of the slave devices. In this case, transmission is always initialized by the master device, which sends a Request message to the slave device. The slave executes the requested action and sends back a Response message.

The slave device can, depending on its capacity and configuration, spontaneously send messages. Thus, without being solicited by the master, the slave can send messages to inform the master of the change of state of a binary data item, or the crossing of a metering or counter threshold. This information, sent spontaneously by the slave device, is called Unsolicited Responses.

The sending of Unsolicited Responses can be inhibited by the configuration of the slave and by a special command sent by the master.

To resolve conflicts of access to the communication medium, which may occur between the master and the slaves during spontaneous transmissions, the DNP3 protocol includes a collision management mechanism.

DNP3 protocol Protocol principle

DNP3 functions and objects

DNP3 functions

DNP3 defines a large number of application and system functions.

Application functions

Generic access to the data of the slave device (Read, Write)

- Transmission of commands, with or without
- preselection (Select, Operate, Direct Operate)
- Transmission of time-tagged events
- File transfer (Open, Read, Close, etc.)
- Counter management (Immediate Freeze, Freeze and Clear, etc.)
- Program management (Initialize, Start/stop Application, Save configuration)

System functions

- Time Synchronization
- Cold/Warm Restart
- Enable/Disable Spontaneous Message, etc.

The DNP3 functions are defined in the Application Layer Protocol Description part of the DNP3 specifications.

DNP3 objects

DNP3 defines a wide variety of objects to characterize the various types of data of a device:

- Binary type objects: Binary Input, Binary Input
- Change, Binary Output, Control Relay Output Block
- Analog type objects: Analog Input, Analog Input
- Change Event, Analog Output

Counter type objects: Binary Counter, Frozen Counter

In each type of object, the data is identified by an Index, from index 0.

The data can be coded in various formats. The format is identified by a characteristic called the Variation. For example:

- Object 2: Binary Input Change
- □ Variation 1: Binary Input Change without Time
- □ Variation 2: Binary Input Change with Time
- Object 30: Analog Input
- □ Variation 1: 32-Bit Analog Input
- □ Variation 2: 16-Bit Analog Input

All the types of object and their associated variations are defined in the Data Object Library part of the DNP3 specifications.

DNP3 subsets

Definition

Depending on its type, DNP3 equipment does not use all the functions, or all the types of object defined by the protocol. The DNP3 Subset Definitions part of the DNP3 specifications defines 3 function subsets:

DNP-L1: This is the minimum subset. It applies to small devices such as a metering device or a simple protection relay.

DNP-L2: This intermediate level is used to handle more sophisticated data. It concerns intelligent protection relays, other IED and small RTUs.

■ DNP-L3:This is the highest level, generally used by complex equipment such as computers, data concentrators or large RTUs.

Interoperability

In order to determine the compatibility of DNP3 devices, all manufacturers of DNP3 devices MUST provide a set of documents describing the DNP3 options implemented in the device and the objects and functions handled by the device.

The following documents must be provided:

Device Profile: This document identifies the DNP3 Application and Data Link layer options used by the device.

■ Implementation Table: This table describes all the types of DNP3 object handled by the device, specifying the functions used to access them.

■ **Point List:** This table provides the list of data handled by the device for each type of DNP3 object, indicating their access index, their default variation, and specifying whether the data is static or dynamic (generation of events).

DNP3 protocol Access to Sepam data

Sepam uses the level 2 DNP3 functional subset (DNP-L2).

The data that can be accessed via the DNP3 interface depends on the type of Sepam.

They correspond to the DNP3 objects described opposite.

Remote indications: Binary Inputs

This category includes all the Sepam remote indications:

- Alarms from all the protection functions
- Alarms from the supervision functions: CT or VT fault, control fault

 Sepam status information (Sepam not reset, remote setting prohibited, remotecontrol orders prohibited)

- Status information specific to the Recloser and Disturbance recording functions
- Logic input states

Metering and diagnosis: Analog Inputs and Counters

Both categories of DNP3 objects are used by Sepam to encode information produced by the metering and diagnosis functions:

- Phase and earth currents, peak demand current
- Simple and residual phase-to-phase voltages, frequency
- Active and reactive power, peak demand power
- Energy meters
- Temperatures

■ Switchgear diagnosis information: Cumulative breaking current, times and numbers of operations, circuit breaker reset time, etc.

 Machine operation help information: motor starting time, operating time before overload tripping, waiting time after tripping, etc.

Events

Types of event

Sepam generates three types of event:

- Events relating to binary information: Binary Input Change with Time
- Events relating to metering information: Analog Change Event
- Events relating to counters: Counter Change Event

Event groups

The information types that generate events are divided into several groups. For binary information:

- Protection equipment tripping information
- Alarms from the supervision functions
- Internal and logic input states

For analog and counter information:

- Phase currents, residual currents
- Voltages
- Power
- Energy meters
- Temperatures

Event class

Each group can be characterized by allocation of a Class from 0 to 3, making it possible to define particular criteria for displaying events on the supervisor. Events can be obtained by reading the Sepam event stack, either globally or by class. By configuration, it is also possible to request Sepam to transmit events to the supervisor spontaneously.

Allocating class 0 to a group inhibits generation of events for all information items in this group.

Generating events

Events relating to binary information are generated on detection of a change in state associated with remote indications. These events are always time-tagged to the millisecond. The Sepam internal clock is synchronized via the DNP3 interface or via an external pulse on a logic input.

Events relating to metering information and counters are generated when crossing of a deadband is detected. The format (16 or 32 bits, with or without date) is selected by configuration.

DNP3 protocol Access to Sepam data

Remote Controls: Binary Outputs/Control Relay Output Block

The remote controls are assigned to metering, protection or control functions by default and depend on the type of Sepam. They are used in particular to:

- Control the opening and closing of the breaking device
- Reset Sepam and initialize the peak demands
- Reset depart and initialize the peak demands
 Select the active setting group by activating group A or B

Activate or deactivate functions (recloser, thermal overload protection, disturbance recording).

The remote controls can be performed either in direct mode, or in confirmed SBO (Select Before Operate) mode.

Control of analog outputs: Analog Outputs/Analog Output Blocks

Sepam has an analog output module (MSA).

The analog output of the MSA module can be controlled in direct mode, or in confirmed SBO (Select Before Operate) mode.

File transfer: Sequential File Transfer

Sepam uses the Sequential File Transfer DNP3 object, and the associated transfer functions specified in Technical Bulletin 2000-001, to make the following files available to the supervisor:

- Disturbance records
- Tripping contexts

Sepam identification: Octet String

Sepam uses the Octet String DNP3 object defined in Technical Bulletin 9701-004 to encode its identification in the form of an ASCII string.

Sepam communication profile (Sepam device profile)

Definition

The Sepam communication profile defines the options of the DNP3 protocol, connected with the Application and Data Link layers, used by Sepam. The presentation used here is that recommended by the DNP3 Device Profile Document in the DNP3 specifications. ☑ Indicates that the DNP3 option is used by Sepam □ Indicates that Sepam does not support the option

Sepam device profile

DNP3.00				
DEVICE PROFILE DOCUMENT	la la suís e de sife lla súa e l	le e e ell'er eve e		
This document must be accompanied by a tab	ble having the following	neadings:		
Object Group	Request Function Co	odes	Response Function	Codes
Object Variation	Request Qualifiers		Response Qualifiers	
Object Name (optional)				
Vendor Name: Merlin Gerin ou Schneider Elec	ctric			
Device Name: Sepam series 20 / Sepam serie	es 40 / Sepam series 60	/ Sepam series 80		
Highest DNP Level Supported:		Device Function:		
For Boquests Level 2		□ Master ☑	Slave	
For Responses Level 2			Slave	
Notable objects, functions, and/or qualifiers su	pported in addition to th	he Highest DNP Levels		
Supported (the complete list is described in the	e attached table):			
Functions 20 and 21 are supported				
Sequential File Transfer is supported				
Maximum Data Link Frame Size (octets):		Maximum Application	Fragent Size (octets):	
Transmitted 292		Transmitted 2048		
Received 292		Receveid 249		
Maximum Data Link Re-tries:		Maximum Application Layer Re-tries:		
□ None		⊠ None		
□ Fixed at:		□ Configurable, rangeto		
☑ Configurable, range 0 to 255 (def 2)			-	
Requires Data Link Layer Confirmation:				
□ Sometimes				
⊠Configurable with SET2841 software				
Requires Application Layer Confirmation:				
☐ Always ✓ When reporting Event Data				
✓ When sending multi-fragment responses				
□ Sometimes				
Timeouts while waiting for:				
Data Link Confirm	□ None	□ Fixed at	□ Variable	☑ Configurable
Complete Appl.Fragment	☑ None	□ Fixed at	□ Variable	□ Configurable
Application Confirm	□ None	□ Fixed at	🗆 Variable	Configurable
Complete Appl.Response	☑ None	□ Fixed at	🗆 Variable	□ Configurable
Configurable with SFT2841 software.				

Sepam communication profile (Sepam device profile)

Sanda/Evagutas Control Operational				
Sends/Executes Control Operations.				
	Mover		Comptimps	
		□ Aiways ⊠ Δlwave		
		M Always Ø Always		
DIRECT/OF LITATE THO AGIN		⊠ Always ⊠ Always	□ Sometimes	
		E Always		
Maximum number of CROB (object 12 varia	ation 1) objects supporte	d in a single message.		1
Maximum number of analog output (object 4	1 any variation) objects	s supported in a single n	nessaue.	1
Pattern Control Block and Pattern Mask	(object 12. variations 2	and 3. respectively) sup	norted.	I
□ CROB (object 12) and analog output (ob	iet 41) permitted togeth	er in a single message.	P - · · · - · ·	
()	,,			
Count > 1	☑ Never	□ Alwavs	Sometimes	Configurable
Pulse On	□ Never	☑ Always	□ Sometimes	□ Configurable
Pulse Off	☑ Never	□ Always	Sometimes	Configurable
Latch On	Never	⊠ Always	Sometimes	Configurable
Latch Off	☑ Never	□ Always	Sometimes	Configurable
				č
Queue	☑ Never	Always	Sometime	Configurable
Clear Queue	☑ Never	Always	Sometimes	Configurable
ITEMS FOR SLAVE DEVICES ONLY:				
Reports Binary Input Change Events when no	specific variation	Reports Time-tagged	Binary Input Change Ev	rents when no specific
requested:		variation requested:		
☑ Only time-tagged		Binary Input Cha	nge With Time	
□ Only non-time-tagged		Binary Input Cha	nge With Relative Time	
Configurable to send both, one or the oth	ier			
Sends Unsolicited Responses:		Sends Static Data in U	Insolicited Responses:	
Never Configurable with SET2941 coffware		M Never	otorto	
			Sidiis	
			ys Change	
☑ ENABLE/DISABLE LINSOLICITED				
Function codes supported				
Default Counter Object/Variation:		Counters Boll Over at		
			•	
No Counters Reported		□ No Counters Rep	orted	
□ Configurable		□ Configurable		
☑ Default Object 20		□ 16 Bits		
Default Variation 05		32 Bits		
Point-by-point list attached		Other Value		
		Point-by-point list	t attached	
Send Multi-Fragment Responses: 🗹 Yes	🗆 No			

Sepam implementation table

Definition

The implementation table identifies the types of DNP3 objects handled by Sepam and the functions used to access them (Function Codes and Qualifier Codes). Sepam uses the level 2 DNP3 functional subset (DNP-L2). Sepam also manages additional DNP3 object types and functions.

The presentation of the implementation table used here is that given in the DNP3
Subset Definitions document:
The function codes in bold correspond to

the DNP3 functions required for level 2 devices.

• The function codes in italic correspond to the additional DNP3 functions provided by Sepam.

Objec	t		Request		Response		
Object	Variation	Description	Function Codes (dec)	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)	
1	0	Binary Input - All Variations	1	06, <i>00, 01, 07, 08, 17, 28</i>			
1	1	Binary Input	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
1	2	Binary Input with Status	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
2	0	Binary Input Change - All Variations	1	06, 07, 08			
2	1	Binary Input Change without Time					
2	2	Binary Input Change with Time	1	06, 07, 08	129, 130	17, 28	
2	3	Binary Input Change with Relative Time					
					1	1	
10	0	Binary Output - All Variations	1	06, <i>00, 01, 07, 08, 17, 28</i>			
10	1	Binary Output	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
10	2	Binary Output Status	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
12	0	Control Block - All Variations					
12	1	Control Relay Output Block	3, 4, 5, 6	17, 28	129	Echo of request	
12	2	Pattern Control Block					
12	3	Pattern Mask					
20	0	Binary Counter - All Variations	1	06, <i>00, 01, 07, 08, 17, 28</i>			
20	1	32-Bit Binary Counter	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
20	2	16-Bit Binary Counter	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
20	3	32-Bit Delta Counter					
20	4	16-Bit Delta Counter					
20	5	32-Bit Binary Counter without Flag	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
20	6	16-Bit Binary Counter without Flag	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>	
20	7	32-Bit Delta Counter without Flag					
20	8	16-Bit Delta Counter without Flag					
21	Any	Frozen Counter					
22	0	Counter Change Event - All Variations	1	06 07 08			
22	1	32-Bit Counter Change Event without Time	1	06,07,08	120 130	17.28	
22	2	16-Bit Counter Change Event without Time	1	06,07,08	129, 130	17,20	
22	3	32-Bit Delta Counter Change Event without Time	•	,,	120, 100	, 20	
22	4	16-Bit Delta Counter Change Event without Time					
22	5	32-Bit Counter Change Event with Time	1	06.07.08	129 130	17.28	
22	6	16-Bit Counter Change Event with Time	1	06.07.08	129 130	17.28	
22	7	32-Bit Delta Counter Change Event with Time		,,	0, 100	, 20	
22	8	16-Bit Delta Counter Change Event with Time					
23	Anv	Frozen Counter Event					
-	, ,					I	

Sepam implementation table

Ohioo	•		Poquest		Paananaa	
Objec	l	Description	Request	Over liff on Overlage	Response	Our lift on O a data
Object	Variation	Description	Function Codes (dec)	Qualifier Codes (hex)	Function Codes (dec)	Qualifier Codes (hex)
30	0	Analog Input - All Variations	1	06, <i>00, 01, 07, 08, 17, 28</i>		
30	1	32-Bit Analog Input	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>
30	2	16-Bit Analog Input	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>
30	3	32-Bit Analog Input without Flag	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>
30	4	16-Bit Analog Input without Flag	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>
31	Any	Frozen Analog Input				
32	0	Analog Change Event - All Variations	1	06, 07, 08		
32	1	32-Bit Analog Change Event without Time	1	06, 07, 08	129, 130	17, 28
32	2	16-Bit Analog Change Event without Time	1	06, 07, 08	129, 130	17, 28
32	3	32-Bit Analog Change Event with Time	1	06, 07, 08	129, 130	17, 28
32	4	16-Bit Analog Change Event with Time	1	06, 07, 08	129, 130	17, 28
33	Any	Frozen Analog Event				
40	0	Analog Output Status - All Variations	1	06.	1	
	•		•	00, 01, 07, 08, 17, 28		
40	1	32-Bit Analog Output Status				
40	2	16-Bit Analog Output Status	1	00, 01, 06, 07, 08, 17, 28	129	00, 01, <i>17, 28</i>
41	0	Analog Output Block - All Variations				
41	1	32-Bit Analog Output Block				
41	2	16-Bit Analog Output Block	3, 4, 5, 6	17, 28	129	Echo of request
50	0	Time and Date All Variations	1	1	1	1
50	1	Time and Date	2	07 where quantity=1	129	07 where quantity=1
			1	••••••••••••••••••••••••••••••••••••••		
50	2	Time and Date with Interval				
51	1	Time and Date CTO - All Variations				
51	0	Line and Date CTO				
51	2	Time Delay All Variations				
52	1	Time Delay Coarso				
52	2	Time Delay Fine			129	07 where quantity=1
00	0					
60	0		4	06		
60	1			06		
60	2	Class 1 Data	1	06, 07, 08		
60	3	Class 2 Data	1	06, 07, 08		
60	4	Class 3 Data	_	06, 07, 08	l	
70	1	File Identifier				
70	2	Authentication Object				
70	3	File Command Object	25	5B		
70	4	File Command Status Object	26, 30	5B	129, 130	5B
70	5	File Transport Object	1	5B	129, 130	5B
70	6	File Transport Status Object			129, 130	5B
70	7	File Descriptor Object				
80	1	Internal Indications	2	00 index=7		
81	1	Storage Object				
82	1	Device Profile				
83	1	Private Registration Object				
83	2	Private Registration Object Descriptor				
90	1	Application Identifier				
100	Any	Floating Point				
101	Any	Packed Binary-Coded Decimal				
110	0	Octet String	1	06	129	00
No Obje	ct	Cold Restart	13			
No Objec	ct	Warm Restart	14			
No Objec	ot	Delay Measurement	23			
-	-		-		-	

Sepam Point List Presentation

Point List: This table gives the list of all the Sepam data (data points) that can be accessed via the DNP3 interface.

- The Sepam data that can be accessed via DNP3 is grouped together into DNP3 type objects:
- Binary Input
- Binary Output/Control Relay Output Block
- Counter
- Analog Input
- Analog Output/Analog Output Block
- Octet String
- Sequential File Transfer

The following is indicated for each type of object:

■ The number of the static object and the number of any associated dynamic object used for generating events

- The variation used by default
- The DNP3 functions applicable to the object

The list of Sepam data belonging to this type of object

The data is identified by an index (starting at 0). The Sepam series 20, Sepam series 40, Sepam series 60 and Sepam series 80 columns indicate for which Sepam family the data is available.

For Sepam 20, Sepam B2X (dedicated to voltage applications) are distinct from Sepam S20, T20 and M20 (dedicated to current applications).

The effective availability of a Sepam data item also depends on the Sepam type and function parameter settings.

12

Sepam Point List Binary Input

Binary Input	
Static Object	
Object Number	1 = Binary Input
Default Variation	1 = Binary Input without Status
Request Function Codes supported	1 = Read
Change Event	
Object Number	2 = Binary Input Change
Default Variation	2 = Binary Input Change with Time
Request Function Codes supported	1 = Read
Class	Configurable from 0 to 3 According to one of 2 modes: predefined or customized

The class is assigned by data group as defined in the table below:

		Assignment mode			
Data group		Predefined	Customized		
Fault indications	Class_FI	1	0, 1, 2 or 3	default = 1	
Alarms	Class_AL	2	0, 1, 2 or 3	default = 1	
Status	Class_ST	3	0, 1, 2 or 3	default = 1	

Index	DNP3				Description	Class
Sepam s B2X	series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80		
		-		•	Sepam	l.
0	0	0	0	0	Sepam not reset after fault	Class_AL
1	1	1	1	1	Sepam partial fault	Class_AL
2	2	2	2	2	Sepam major fault	Class_FI
	3	3	3	3	Setting group A in service	Class_ST
	4	4	4	4	Setting group B in service	Class_ST
		5	5	5	Phase CT fault	Class_FI
		6	6	6	Phase VT fault	Class_FI
		7	7	7	Residual VT fault	Class_FI
			8	8	Additional phase CT fault	Class_FI
			9	9	Additional phase VT fault	Class_FI
			10	10	Additional residual VT fault	Class_FI
3	5	8	11	11	Remote setting inhibited	Class_ST
4	6	9			Remote-control inhibited	Class_ST
			12	12	Remote-control enabled	Class_ST
			13	13	Min.V_aux	Class_FI
			14	14	Max.V_aux	Class_FI
			15	15	Battery low or absent	Class_AL
					Breaking device	
5	7	10	16	16	Control fault	Class_FI
6	8	11	17	17	Matching fault or Trip Circuit Supervision	Class_FI
7	9	12	18	18	TC / position discrepancy	Class_AL
			19	19	Closed position	Class_ST
			20	20	Device racked out	Class_ST
		13	21	21	SF6 alarm	Class_AL
			22	22	Earthing switch closed	Class_ST
	1	1	1	1	Network	1
		14	23	23	Main-phase reverse rotation	Class_AL
			24	24	Additional-phase reverse rotation	Class_AL
		15	25	25	Cos phi inductive	Class_ST
		16	26	26	Cos phi capacitive	Class_ST
			27	27	Load shedding	Class_AL
			28	28	Restart	Class_AL

DNP3 in	ndex				Description	Class
		0	0	0	Description	01033
Sepam se B2X	Other	Sepam series 40	Sepam series 60	Sepam series 80		
					Overcurrent protections	
	10	17	29	29	Protection 50/51 unit 1	Class_FI
-	11	18	30	30	Protection 50/51 unit 2	Class_FI
	12	19	31	31	Protection 50/51 unit 3	Class_FI
	13	20	32	32	Protection 50/51 unit 4	Class_FI
				33	Protection 50/51 unit 5	Class_FI
				34	Protection 50/51 unit 6	Class_FI
				35	Protection 50/51 unit 7	Class FI
				36	Protection 50/51 unit 8	Class FI
	14	21	37	37	Protection 50N/51N unit 1	Class FI
	15	22	38	38	Protection 50N/51N unit 2	Class El
	16	23	39	39	Protection 50N/51N unit 3	Class El
	17	24	40	40	Protection 50N/51N unit 4	
	17	24	40	40	Protection 50N/51N unit 5	
				40	Protection 50N/51N unit 6	
				42	Protection 50N/51N unit 6	
				43	Protection 50N/51N unit 7	
		05	45	44	Protection 501/511 unit 8	
		25	45	45	Protection 51V unit 1	Class_FI
				46	Protection 51V unit 2	Class_FI
					Directional current protections	1
		26	47	47	Protection 67 unit 1	Class_FI
		27	48	48	Protection 67 unit 2	Class_FI
		28	49	49	Protection 67N unit 1	Class_FI
-		29	50	50	Protection 67N unit 2	Class_FI
	•				Voltage protections	
8		30	51	51	Protection 27/27S unit 1	Class_FI
9		31	52	52	Protection 27/27S unit 2	Class_FI
				53	Protection 27/27S unit 3	Class_FI
				54	Protection 27/27S unit 4	Class FI
10		32	55	55	Protection 27D unit 1	Class FI
11		33	56	56	Protection 27D unit 2	Class Fl
12		34	57	57	Protection 27B unit 1	Class El
		0.	58	58	Protection 27B unit 2	Class FI
13		35	59	59	Protection 59 unit 1	Class FI
14		36	60	60	Protection 59 unit 2	
14		50	00	61	Protection 59 unit 3	
				60	Protection 50 unit 5	
15		07	<u></u>	02	Protection 59 drill 4	
15		37	63	63	Protection 59N unit 1	
10		30	64	04	Protection 59N unit 2	
17					Protection 27S phase 1	
18					Protection 27S phase 2	Class_FI
19					Protection 2/S phase 3	Class_FI
	1		- 1		Frequency protections	1
20		39	65	65	Protection 81H unit 1	Class_FI
		40	66	66	Protection 81H unit 2	Class_FI
21		41	67	67	Protection 81L unit 1	Class_FI
22		42	68	68	Protection 81L unit 2	Class_FI
		43	69	69	Protection 81L unit 3	Class_FI
		44	70	70	Protection 81L unit 4	Class_FI
23			71	71	Protection 81R unit 1	Class_FI
			72	72	Protection 81R unit 2	Class_FI
	1	1			Power protections	
		45	73	73	Protection 32P unit 1	Class_FI
	1		74	74	Protection 32P unit 2	Class_FI
		46	75	75	Protection 32Q	Class FI
		-	76	76	Protection 37P unit 1	Class FI
			77	77	Protection 37P unit 2	Class Fl
	1	1	1	1		

DNP3 index				Description	Class
Sepam series 20 B2X Other	Sepam series 40	Sepam series 60	Sepam series 80		
				Motor/generator protections	
18	47	78	78	Protection 48/51LR (locked rotor)	Class_FI
19	48	79	79	Protection 48/51LR (locked rotor on startup)	Class_FI
20	49	80	80	Protection 48/51LR (excessive starting time)	Class_FI
21	50	81	81	Protection 66	Class_AL
			82	Protection 21G	Class_Fl
			83	Protection 50/27	Class_FI
			84	Protection 64G2/27TN unit 1	Class_FI
			85	Protection 64G2/27TN unit 2	Class_FI
			86	Protection 78PS	Class_FI
			87	Protection 24 unit 1	Class_FI
			88	Protection 24 unit 2	Class_FI
		89	89	Protection 40	Class_FI
	1	00	00	Differential protections	Class El
		90	90	Protection 64REF unit 1	Class_FI
		91	91	Protection 97T9	
			92	Protection 971/2	
			93	Miscollapoous protections	OIdSS_FI
22	51	94	94	Protection 46 unit 1	Class El
	52	95	95	Protection 46 unit 2	
	53	96	95	Protection 47 unit 1	Class_FI
	55	97	97	Protection 47 unit 2	Class Fl
23	54	98	98	Protection 37	Class Fl
60	55	99	99	Protection 50BF	Class Fl
			100	Protection 51C unit 1 (capacitor step 1)	Class Fl
			101	Protection 51C unit 2 (capacitor step 1)	Class Fl
			102	Protection 51C unit 3 (capacitor step 2)	Class Fl
			103	Protection 51C unit 4 (capacitor step 2)	Class Fl
			104	Protection 51C unit 5 (capacitor step 3)	Class FI
			105	Protection 51C unit 6 (capacitor step 3)	Class FI
			106	Protection 51C unit 7 (capacitor step 4)	Class FI
			107	Protection 51C unit 8 (capacitor step 4)	Class_Fl
24	56	108	108	Send blocking signal 1	Class_ST
	57	109	109	Send blocking signal 2	Class_ST
	58	110	110	External tripping 1	Class_FI
	59	111	111	External tripping 2	Class_FI
	60	112	112	External tripping 3	Class_FI
	61	113	113	Thermistor alarm	Class_AL
	62	114	114	Thermistor tripping	Class_FI
	63	115	115	Buchholz alarm	Class_AL
	64	116	116	Buchholz tripping	Class_FI
	65	117	117	Thermostat alarm	Class_AL
	66	118	118	Thermostat tripping	Class_FI
	67	119	119	Pressure alarm	Class_AL
	68	120	120	Pressure tripping	Class_FI
		121	121	Closing coil monitoring	Class_FI
		122	122	Request for synchro-checked closing	Class_ST
		123	123	Synchronization stop	Class_ST
		124	124	Synchronization tailure	Class_ST
		125	125	Synchronization successful	Class_S1
			126	Ivianual capacitor step control	Class_S1
			12/	Automatic capacitor step control	Class_SI
			128	Capacitor step 1 matching fault	Class_FI
			129	Capacitor step 2 matching fault	
			130	Capacitor step 3 matching fault	Class_FI
		100	131		
		102	102	Coupling synchronization foilure	
		100	100		
		135	134	Cumulative breaking current monitoring	Class_AL
		155	100	Cumulative bleaking current monitoring	UIASS_AL

DNP3	index				Description	Class
Sepam	series 20	Sepam	Sepam	Sepam		
B5X	Other	Series 40	Series 60	Series ou		
	05	0	100	100	Recloser	Olara OT
	25	69	136	136	Recloser: on	Class_ST
	00	70	137	137	Recloser, feal trip	Class_ST
	20	71	130	130	Recloser: Infal trip Recloser: realesting successful	Class_AL
	27	72	139	139	Recloser: in progress	Class_AL
	20	75	140	140	Pocloser: un progress	Class_ST
			140	140	Becloser: cycle 2 in progress	Class_ST
			142	142	Becloser: cycle 3 in progress	Class ST
			143	143	Becloser: cycle 4 in progress	Class_ST
			144	144	Becloser: closing by recloser	Class ST
		1	1	1	Speed protections	oldoo_ol
			145	145	Protection 12 unit 1	Class El
			146	146	Protection 12 unit 2	Class Fl
			147	147	Protection 14 unit 1	Class Fl
			148	148	Protection 14 unit 2	Class Fl
		1	1	1	Thermal protections	1
	29	74	149	149	Protection 49 RMS alarm set point	Class AL
	30	75	150	150	Protection 49 RMS tripping set point	Class FI
	31	76	151	151	Thermal protection tripping inhibited	Class_ST
	32	77	152	152	MET 148-1 module sensor fault	Class FI
		78	153	153	MET 148-2 module sensor fault	Class FI
	33	79	154	154	Protection 38/49T tripping sensor 1 module 1	Class_FI
	34	80	155	155	Protection 38/49T tripping sensor 2 module 1	Class_FI
	35	81	156	156	Protection 38/49T tripping sensor 3 module 1	Class_FI
	36	82	157	157	Protection 38/49T tripping sensor 4 module 1	Class_FI
	37	83	158	158	Protection 38/49T tripping sensor 5 module 1	Class_FI
	38	84	159	159	Protection 38/49T tripping sensor 6 module 1	Class_FI
	39	85	160	160	Protection 38/49T tripping sensor 7 module 1	Class_FI
	40	86	161	161	Protection 38/49T tripping sensor 8 module 1	Class_FI
		87	162	162	Protection 38/49T tripping sensor 1 module 2	Class_FI
		88	163	163	Protection 38/49T tripping sensor 2 module 2	Class_FI
		89	164	164	Protection 38/49T tripping sensor 3 module 2	Class_FI
		90	165	165	Protection 38/49T tripping sensor 4 module 2	Class_FI
		91	166	166	Protection 38/49T tripping sensor 5 module 2	Class_FI
		92	167	167	Protection 38/49T tripping sensor 6 module 2	Class_FI
		93	168	168	Protection 38/49T tripping sensor 7 module 2	Class_FI
-		94	169	169	Protection 38/49T tripping sensor 8 module 2	Class_FI
	41	95	170	170	Protection 38/49T alarm sensor 1 module 1	Class_AL
	42	96	171	171	Protection 38/49T alarm sensor 2 module 1	Class_AL
	43	97	172	172	Protection 38/49T alarm sensor 3 module 1	Class_AL
	44	98	173	173	Protection 38/491 alarm sensor 4 module 1	Class_AL
	45	99	174	174	Protection 38/49T alarm sensor 5 module 1	Class_AL
-	46	100	175	175	Protection 38/49T alarm sensor 6 module 1	Class_AL
	47	101	1/6	176	Protection 38/491 alarm sensor / module 1	Class_AL
	48	102	1//	1//	Protection 38/491 alarm sensor 8 module 1	Class_AL
		103	1/8	178	Protection 38/491 alarm sensor 1 module 2	Class_AL
		104	1/9	1/9	Protection 38/491 alarm sensor 2 module 2	Class_AL
		105	180	180	Protection 38/491 alarm sensor 3 module 2	Class_AL
		105	101	101	Protection 38/491 alarm sensor 4 module 2	Class_AL
		107	102	102	Protection 30/491 alarm sensor 5 module 2	
		100	103	103	Protection 20/491 alarm concor 7 module 2	Class_AL
		110	104	104	Protection 38/49T alarm sensor 8 module 2	Class_AL
		110	100	100		JIA33_AL

DNP3	index				Description	Class
Sepam	series 20	Sepam	Sepam	Sepam		
B2Y	Other	series 40	series 60	series 80		
DLA	ouner		1			
24 (111)	49 (111)	111 (111)	186 (1101)	186 (1101)		Class ST
25 (112)	50 (112)	112 (112)	187 (1102)	187 (1102)		Class_ST
26 (112)	51 (113)	113 (113)	188 (1103)	188 (1103)		Class_ST
27 (114)	52 (114)	114 (114)	189 (1104)	189 (1104)		Class ST
28 (121)	53 (l21)	115 (121)	190 (1105)	190 (1105)		Class ST
29 (122)	54 (122)	116 (122)	191 (1106)	191 (1106)	Logic input	Class ST
30 (123)	55 (123)	117 (123)	192 (1107)	192 (1107)	Logic input	Class ST
31 (124)	56 (124)	118 (124)	193 (1108)	193 (1108)	Logic input	Class ST
32 (125)	57 (125)	119 (125)	194 (1109)	194 (l109)	Logic input	Class_ST
33 (126)	58 (I26)	120 (126)	195 (l110)	195 (l110)	Logic input	Class_ST
			196 (l111)	196 (l111)	Logic input	Class_ST
			197 (l112)	197 (l112)	Logic input	Class_ST
			198 (l113)	198 (l113)	Logic input	Class_ST
			199 (l114)	199 (l114)	Logic input	Class_ST
			200 to 213	200 to 213	Logic inputs I201 to I214	Class_ST
				214 to 227	Logic inputs I301 to I314	Class_ST
					Logic equations	
		121	228	228	V1	Class_ST
		122	229	229	V2	Class_ST
		123	230	230	V3	Class_ST
		124	231	231	V4	Class_ST
		125	232	232	V5	Class_ST
		126	233	233	V6	Class_ST
		127	234	234	V7	Class_ST
		128	235	235	V8	Class_ST
		129	236	236	V9	Class_ST
		130	237	237	V10	Class_S1
			238	238	V11	Class_ST
			239	239	V12	Class_ST
			240	240	V13	Class_ST
			241	241	V14 V15	Class_ST
			242	242	V16	Class_ST
			243	243	V17	Class_ST
			244	244	V18	Class_ST
			246	246	V19	Class_ST
			247	247	V20	Class ST
		131	248	248	V FLAGREC	Class ST
		132	249	249	V TRIPCB	Class ST
		133	250	250	 V_CLOSECB	Class_ST
		134	251	251	V_INHIBCLOSE	 Class_ST
	1		252	252	V_RESET	Class_ST
			253	253	V_CLEAR	Class_ST
			254	254	V_INHIBIT_RESET_LOCAL	Class_ST
			255	255	V_SHUTDOWN	Class_ST
			256	256	V_DE-EXCITATION	Class_ST
			257	257	V_CLOSE_NOCTRL	Class_ST
			258	258	V_TRIP_STP1	Class_ST
			259	259	V_TRIP_STP2	Class_ST
			260	260	V_TRIP_STP3	Class_ST
			261	261	V_TRIP_STP4	Class_ST
			262	262	V_CLOSE_STP1	Class_ST
			263	263	V_CLOSE_STP2	Class_ST
			264	264	V_CLOSE_STP3	Class_ST
			265	265	V_CLOSE_STP4	Class_ST
			266	266	V_IKANS_ON_FLI	Class_ST
			267	267		Class_ST
		1	268 to 283	268 to 283	V_MIMIC_IN_1 to V_MIMIC_IN_16	Class_ST

DNP3	index				Description	Class
Sepam B2X	series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80		
					Remote-indication bits (TS) available for Logipam	
				284 to 299	TS16 to TS31	Class_ST
				300 to 315	TS33 to TS48	Class_ST
				316 to 328	TS52 to TS64	Class_ST
			,		Additional information	
			329	329	dU synchronization failure	Class_AL
			330	330	dPhi synchronization failure	Class_AL
			331	331	dF synchronization failure	Class_AL
			332	332	Test mode	Class_ST
34	59	135	333	333	Disturbance recording inhibited	Class_ST
	60	55	99	99	Protection 50BF	Class_FI
35	61	136	334	334	General trip	Class_FI
			335	335	Ethernet communication fault	Class_AL
36	62	137			S-LAN communication monitoring active	Class_ST
		138			Protection 46BC	Class_FI

Sepam Point List Binary Output Control Relay Output Block

				B	inary Output	
				0	piect Number	10 = Binary Output
				De	efault Variation	2 = Binary Output Status
				B	equest Function Codes supported	1 = Read
						Nota : the point values are always read as 0
				C	ontrol Block	
				0	oject Number	12 = Control Relay Output Block
				Va	ariation	1 = Control Relay Output Block
				R	equest Function Codes supported	3 = Select 4 = Operate 5 = Direct Operate 6 = Direct Operate - No ACK
DNP3	lindex				Description	
Sonam	sorios 20	Senam	Sonam	Sonam		
B2X	Other	series 40	series 60	series 80		
BLA	Outer				Remote-control orders	
0	0	0	0	0		
1	1	1	1	1	Closing	
2	2	2	2	2	Sepam reset	
3	3	3	3	3	Inhibit disturbance-recording triggering	1
4	4	4	4	4	Confirm disturbance-recording triggering	na
5	5	5	5	5	Manual disturbance-recording triggeri	າດ
	6	6	6	6	Enable recloser	.9
-	7	7	7	7	Disable recloser	
	8	8	8	8	Switching to setting group A	
-	9	9	9	9	Switching to setting group R	
	10	10	10	10	Inhibit thermal protection	
	11	11	11	11	Confirm thermal protection	
	12		12	12	Peak demand reset	
		12			Peak demand current reset	
-		13	13	13	Reset protection 37	
			14	14	Peak demand power reset	
-			15	15	Priority group shutdown	
			16	16	Cancel priority group shutdown	
			17	17	Enable synchro-check	
			18	18	Disable synchro-check	
			19	19	Enable voltage check	
			20	20	Disable voltage check	
				21	Open capacitor step 1	
-				22	Open capacitor step 2	
				23	Open capacitor step 3	
				24	Open capacitor step 4	
				25	Close capacitor step 1	
				26	Close capacitor step 2	
				27	Close capacitor step 3	
-				28	Close capacitor step 4	
	1				Remote-control orders (TC) availab	le for Logipam
				29	TC6	
				30	TC7	
				31 to 38	TC10 to TC17	
				39 to 47	TC21 to TC29	
				48 to 63	TC49 to TC64	
	1				Additional remote-control orders	
6	13	14			S-LAN communication monitoring acti	vation
7	14	15			S-LAN communication monitoring inhi	bition
		16			Inductive/capacitive phi indication inhi	bition
		17			Inductive/capacitive phi indication valid	dation

Application to Sepam

All Binary Outputs accessed via the DNP3 interface are Single-Output type. For Control Relay Output Blocks, Sepam accepts and processes the following control codes in the same way:

■ 01: trip/close = NULL; Q = CI = normal; Pulse On

■ 03: trip/close = NULL; Q = CI = normal; Latch On

Other codes are rejected by Sepam.

After executing the command, the Binary Output object is automatically reset to zero by Sepam. The current value of a Binary Output object is always read as zero. In remote-control orders inhibited mode, Sepam rejects commands (Status code = local mode).

Sepam Point List Counter

Counter	
Static Object	
Object Number	20 = Binary Counter
Default Variation	5 = 32 bits Counter without Flag
Request Function Codes supported	1 = Read
Change Event	
Object Number	22
Default Variation	 1 = 32 bits Counter without time 2 = 16 bits Counter without flag 5 = 32 bits Counter with time 6 = 16 bits Counter with time (configurable)
Request Function Codes supported	1 = Read
Class	Configurable from 0 to 3 according to one of 2 modes: predefined or customized

The class is assigned by data group as defined in the table below:

		Assignment mode				
Data group		Predefined	Customized			
Energy	Class_E	0	0, 1, 2 or 3	default = 3		

DNP3 index					Description	Format	Unit	Counter Event	Change
Sepam	series 20	Sepam	Sepam	Sepam				Class	DeadBand
B2X	Other	series 40	series 60	series 80					
	0	0	0	0	Number of operations	32 bits	1	0	
		1	1	1	Positive active energy Ea+	32 bits	100 kWh	Class_E	DB_E
		2	2	2	Negative active energy Ea-	32 bits	100 kWh	Class_E	DB_E
		3	3	3	Positive reactive energy Er+	32 bits	100 kvarh	Class_E	DB_E
		4	4	4	Negative reactive energy Er-	32 bits	100 kvarh	Class_E	DB_E
		5	5	5	Ext. positive active energy Ea+	32 bits	100 kWh	Class_E	DB_E
		6	6	6	Ext. negative active energy Ea-	32 bits	100 kWh	Class_E	DB_E
		7	7	7	Ext. positive reactive energy Er+	32 bits	100 kvarh	Class_E	DB_E
		8	8	8	Ext. negative reactive energy Er-	32 bits	100 kvarh	Class_E	DB_E
			9	9	Number of trips on phase current	16 bits	1	0	
			10	10	Number of trips on earth-fault current	16 bits	1	0	
			11	11	Number of racking put operations	16 bits	1	0	
				12 to 35	Logipam counters C1 to C24	16 bits	1	0	

Sepam Point List Analog Input

Analog Input	
Static Object	
Object Number	30 = Analog Input
Default Variation	3 = 32 bits Analog Input without Flag
Request Function Codes supported	1 = Read
Change Event	
Object Number	32
Default Variation	1 = 32 bits Analog Change Event without time 2 = 16 bits Analog Change Event without flag 5 = 32 bits Analog Change Event with time 6 = 16 bits Analog Change Event with time (configurable)
Request Function Codes supported	1 = Read
Class	Configurable from 0 to 3 according to one of 2 modes: predefined or customized

The class is assigned by data group as defined in the table below:

		Assignment	mode	
Data group		Predefined	Customized	
Currents	Class_I	0	0, 1, 2 or 3	default = 2
Residual currents	Class_I0	0	0, 1, 2 or 3	default = 2
Voltages	Class_V	0	0, 1, 2 or 3	default = 2
Power	Class_P	0	0, 1, 2 or 3	default = 2
Frequency	Class_F	0	0, 1, 2 or 3	default = 2
Temperatures	Class_T	0	0, 1, 2 or 3	default = 2

DNP3 index					Description	Unit	Analog Inpu Event	t Change
Sepam s B2X	series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80			Class	DeadBand
	0	0	0	0	Phase current I1	0.1A	Class_I	DB_I
	1	1	1	1	Phase current I2	0.1A	Class_I	DB_I
	2	2	2	2	Phase current I3	0.1A	Class_I	DB_I
0		3	3	3	Phase-to-neutral voltage V1	1V	Class_V	DB_V
1		4	4	4	Phase-to-neutral voltage V2	1V	Class_V	DB_V
2		5	5	5	Phase-to-neutral voltage V3	1V	Class_V	DB_V
		6	6	6	Active power P	0.1KW	Class_P	DB_P
		7	7	7	Reactive power Q	0.1kVar	Class_P	DB_P
3		8	8	8	Frequency f	0.01Hz	Class_F	DB_F
	3	9	9	9	Residual current I0 Σ	0.1A	Class_I0	DB_10
		10	10	10	Residual current I0	0.1A	Class_I0	DB_10
	4	11	11	11	Unbalance ratio T	1%	0	
4		12	12	12	Phase-to-phase voltage U21	1V	Class_V	DB_V
5		13	13	13	Phase-to-phase voltage U32	1V	Class_V	DB_V
6		14	14	14	Phase-to-phase voltage U13	1V	Class_V	DB_V
7		15	15	15	Residual voltage V0	1V	Class_V	DB_V
8		16	16	16	Positive-sequence voltage Vd	1V	Class_V	DB_V
		17	17	17	Negative-sequence voltage Vi	1V	Class_V	DB_V
		18	18	18	Power factor Cos Phi	0.01	Class_F	DB_F
			19	19	Neutral-point voltage Vnt	1V	Class_V	DB_V
			20	20	Total harmonic distortion Uthd	0.1%	0	
			21	21	Total harmonic distortion Ithd	0.1%	0	
	5	19	22	22	Demand current Im1	0.1A	Class_I	DB_I
	6	20	23	23	Demand current Im2	0.1A	Class_I	DB_I
	7	21	24	24	Demand current Im3	0.1A	Class_I	DB_I
	8	22	25	25	Peak demand current IM1	0.1A	Class_I	DB_I
	9	23	26	26	Peak demand current IM2	0.1A	Class_I	DB_I
	10	24	27	27	Peak demand current IM3	0.1A	Class_I	DB_I
		25	28	28	Apparent power S	0.1kVA	Class_P	DB_P
		26	29	29	Peak demand active power PM	0.1kW	Class_P	DB_P
		27	30	30	Peak demand reactive power QM	0.1kvar	Class_P	DB_P

Sepam Point List Analog Input

Index DNP3					Description	Unit	Analog Input Change Event		
Separ B2X	n series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80			Class	DeadBand	
	••		31	31	Active power P phase 1	0.1kW	Class P	DB P	
			32	32	Active power P phase 2	0.1kW	Class_P	 DB_P	
			33	33	Active power P phase 3	0.1kW	Class_P	 DB_P	
			34	34	Reactive power Q phase 1	0.1kvar	Class_P	 DB_P	
			35	35	Reactive power Q phase 2	0.1kvar	Class_P	 DB_P	
			36	36	Reactive power Q phase 3	0.1kvar	Class_P	DB_P	
			37	37	Apparent power S phase 1	0.1kVA	Class_P	DB_P	
			38	38	Apparent power S phase 2	0.1kVA	Class_P	DB_P	
			39	39	Apparent power S phase 3	0.1kVA	Class_P	DB_P	
	11	28	40	40	Temperature sensor 1 MET148 No. 1	1°C	Class_T	DB_T	
	12	29	41	41	Temperature sensor 2 MET148 No. 1	1°C	Class_T	DB_T	
	13	30	42	42	Temperature sensor 3 MET148 No. 1	1°C	Class_T	DB_T	
	14	31	43	43	Temperature sensor 4 MET148 No. 1	1°C	Class T	DB T	
	15	32	44	44	Temperature sensor 5 MET148 No. 1	1°C	Class_T	 DB_T	
	16	33	45	45	Temperature sensor 6 MET148 No. 1	1°C	Class T	DB T	
	17	34	46	46	Temperature sensor 7 MET148 No. 1	1°C	Class T	DB T	
-	18	35	47	47	Temperature sensor 8 MET148 No. 1	1°C	Class T	DB T	
		36	48	48	Temperature sensor 1 MET148 No. 2	1°C	Class T	DB T	
		37	10	40	Temperature sensor 2 MET148 No. 2	1°C	Class_T	DB T	
		29	50	4 5	Temperature sensor 2 MET149 No. 2	1°C			
		20	50	50	Temperature sensor 3 MET149 No. 2	100	Class_T		
		39	51	51		10	Class_T		
		40	52	52	Temperature sensor 5 ME 1148 No. 2	1°C	Class_I	DB_I	
		41	53	53	Temperature sensor 6 ME 1148 No. 2	1°C	Class_I	DB_I	
		42	54	54	Temperature sensor 7 MET148 No. 2	1°C	Class_I	DB_I	
		43	55	55	Temperature sensor 8 MET148 No. 2	1°C	Class_T	DB_T	
		44	56	56	Angle Phi0 Σ	1°	0		
		45	57	57	Angle Phi0	1 °	0		
			58	58	Angle Phi'0	1 °	0		
		46	59	59	Angle Phi1	1 °	0		
		47	60	60	Angle Phi2	1 °	0		
		48	61	61	Angle Phi3	1 °	0		
	19	49	62	62	Last tripping current phase Itrip1	1A : series 20 and series 40 0.1A : series 80	Class_I	0	
	20	50	63	63	Last tripping current phase Itrip2	1A : series 20 and series 40	Class_I	0	
						0.1A : series 80			
	21	51	64	64	Last tripping current phase Itrip3	1A : series 20 and	Class_I	0	
						Series 40			
	22	52	65	65	Last tripping current phase Itrip0	1A : series 20 and series 40	Class_I0	0	
						0.1A : series 80			
	23	53	66	66	Thermal capacity used	%	0		
	24	54	67	67	Running hours counter	1 hr	0		
	25	55	68	68	Time before tripping	1 min	0		
	26	56	69	69	Time before closing	1 min	0		
	27	57	70	70	Starting time/overload	0.1s : series 20 and series 40 0.01s : series 80	0		
	28	58	71	71	Start inhibit time	1 min	0	<u> </u>	
	29	59	72	72	Number of starts allowed	1	0		
	30	60	72	72	Total cumulative breaking current	1 1/kΔ)2	0		
		61	74	74		1(kΔ) ²	0		
		01	74	74		1 (KA)-	0		
		62	76	76	Cumulative breaking current (2015/5011)	1/kA)2	0		
		00	70	70		1 (KA)2	0	<u> </u>	
		04	70	70		1 (KA)*	0		
		65	/8 70	/8 70	Cumulative breaking current (I>40In)	1 (KA)²	0		
	<u>.</u>	66	79	79	Initial value of cumulative breaking current	1(KA) ²	U		
	31	67	80	80	Starting/overload current	1A	0		
	32 33	68 69	81 82	81 82	Operating time Charging time	1ms 1ms: series 20 0.1s: series 40 1s: series 80	0		
		70	83	83	Learnt cooling time constant T2 (49 RMS) thermal rate 1	1 min	0		
		71	84	84	Learnt cooling time constant T2 (49 RMS) thermal rate 2	1 min	0		

Sepam Point List Analog Input

DNP3	index				Description	Unit	Analog In Event	out Change
Sepam s	series 20	Sepam	Sepam	Sepam			Class	DeadBand
B2X	Other	series 40	series 60	series 80				
		72			Peak demand li/ld	1%	0	
		73			Faulty phase	bit 0: phase 1 bit 1: phase 2 bit 2: phase 3	0	
		74			Fault location	1m	0	
		75			Fault resistance	1mOhm	0	
			85	85	Machine rotation speed	rpm	0	
				86	Phase current I'1	0.1A	Class_I	DB_I
				87	Phase current I'2	0.1A	Class_I	DB_I
				88	Phase current I'3	0.1A	Class_I	DB_I
				89	Residual current l'0 Σ	0.1A	Class_I0	DB_10
				90	Residual current I'0	0.1A	Class_10	DB_10
				91	Phase-to-phase voltage U'21	1V	Class_V	DB_V
				92	Phase-to-phase voltage U'32	1V	Class_V	DB_V
				93	Phase-to-phase voltage U'13	1V	Class_V	DB_V
				94	Phase-to-neutral voltage V'1	1V	Class_V	DB_V
				95	Phase-to-neutral voltage V'2	1V	Class_V	DB_V
				96	Phase-to-neutral voltage V'3	1V	Class_V	DB_V
				97	Residual voltage V'0	1V	Class_V	DB_V
				98	Positive sequence voltage V'd	1V	Class_V	DB_V
				99	Negative sequence voltage V'i	1V	Class_V	DB_V
-				100	Frequency f'	0.01Hz	Class_F	DB_F
-				101	Unbalance ratio T'	%	0	
-				102	H3 neutral point voltage V3nt	1V	0	
				103	H3 residual voltage V3r	10	0	
-				104	Differential current Id1	0.1A	0	
-				105	Differential current Id2	0.1A	0	
				106	Differential current Id3	0.1A	0	
-				107	Through current It1	0.1A	0	
				108	Through current It2	0.1A	0	
				109	Through current It3	0.1A	0	
			110	110	Impedance Zd	1mΩ	0	
			111	111	Impedance Z21	1mΩ	U	
			112	112	Impedance Z32	1mΩ	0	
			113	113	Impedance 213	1ms2	0	
			114	114	Auxiliary Voltage	U.1V	0	
				115		1*	0	
				116	Angle 12/12	1*	0	
			110	117	Angle 13/13	1*	0	
			110	110	de (synchro chock)		0	
			120	120		0.010	0	
			120	120		0.1	0	+
				100	Capacitor capacitance C1 01 021	0.1µF	0	
				103	Capacitor capacitance C2 of C32	0.1µF	0	
				123	Operating time capacitor step 1	1hr	0	+
				125	Operating time capacitor step 2	1hr	0	+
				126	Operating time capacitor step 2	1hr	0	+
				127	Operating time capacitor step 3	1hr	0	+
	1				oporating time supasitor step 4		v	

Sepam Point List Analog Output Status Analog Output Block

Analog Output Status	
Object Number	40 = Analog Output Status
Default Variation	2 = 16 bits Analog Output Status
Request Function Codes supported	1 = Read
	Note: the returned values are meaningless
Analog Output Block	
Object Number	41 = Analog Output Block
Variation	2 = 16 bits Analog Output Block
Request Function Codes supported	3 = Select
	4 = Operate
	5 = Direct Operate
	6 = Direct Operate - No ACK

DNP3 index					Description
Sepam s B2X	series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80	
0	0	0	0	0	Remote control of the MSA141 analog output
1	1	1	-	-	S-LAN communication monitoring time delay

Application to Sepam

Each Analog Output Block control order must apply to only one channel at a time. Reading of Analog Output Status is only supported for compatibility: returned values are meaningless.

Sepam Point List Octet String Sequential File Transfer

Octet String	
Static Object	
Object Number	110 = Octet String
Default Variation	xx = Size of Octet String
Request Function Codes supported	1 = Read
Change Event	
Dbject Number	None
Default Variation	None

DNP3 index					Description
Sepam s B2X	series 20 Other	Sepam series 40	Sepam series 60	Sepam series 80	
0	0	0	0	0	Sepam identification

Sequential File Transfer

-		
Object Number	70 = Sequential File Transfer	
Variation	 3 = File Command Object 4 = File Command Status Object 5 = File Transport Object 6 = File Transport Status Object 7 = File Descriptor Object 	
Request Function Codes supported	1 = Read 25 = Open 26 = Close 30 = Abort	

					Description
Sepam s B2X	eries 20 Other	Sepam series 40	Sepam series 60	Sepam series 80	
					Disturbance recording
				-	Tripping context

Configuring the communication interfaces

Presentation

The Sepam communication interfaces must be configured using SFT2841 software.

The DNP3 protocol is available with the ACE969TP-2 or ACE969FO-2 communication interfaces.

Several parameter categories have to be configured once the interface has been selected:

- The configuration parameters for the physical layer of the E-LAN port
- The configuration parameters for the physical layer of the S-LAN port

The configuration parameters for the functions specific to the DNP3 protocol (advanced S-LAN port parameters)

Access to configuration parameters

These parameters can be accessed from the Communication configuration window in the SFT2841 software.

To access this window:

Open the Sepam configuration window in SFT2841. This screen will vary according to the type of Sepam used.

- Select the **Communication** option.
- Click : the Communication configuration window appears.
- Select the type of interface used (ACE969TP-2 or ACE969FO-2).
- Select the DNP3.0 communication protocol (S-LAN port).

SFT2841: Sepam series 80 hardware configuration.

ļ	Communication configuration	×
		Apply Cancel
	Communication interface S-LAN port Communication protocol Sepam address Speed Parity	ACE 969TP
	E-LAN port- Sepam address Speed Parity	1 38400 v Bds Odd v

Configuration of the physical layer of the E-LAN port on an ACE969TP-2

Configuration of the E-LAN port

Configuration of the physical layer

The E-LAN port on the ACE969TP-2 and ACE969FO-2 communication interfaces is a 2-wire RS 485 port.

- The configuration parameters for the physical layer of the E-LAN port are:
- Sepam address
- Transmission speed
- Parity check type

Parameters	Authorized values	Default value
Sepam address	1 to 247	1
Speed	4800, 9600, 19200 or 38400 bps	38400 bps
Parity	No parity, even or odd	Odd

Configuration tips

The Sepam address MUST be assigned before Sepam is connected to the E-LAN communication network

■ You are also strongly advised to set the other physical layer configuration parameters before making the connection to the communication network.

Modifying the configuration parameters during normal operation will not disturb Sepam but will reset the E-LAN communication port. If SFT2841 is connected to Sepam via the E-LAN network, then communication between Sepam and SFT2841 will be interrupted.

Configuring the communication interfaces

Communication configuration	
	Apply Cancel
Communication interface	ACE 969TP
S-LAN port	DNP 3.0
Sepam address	1
Speed	38400 💌 Bds
Parity	None
	Advanced parameters >>>
E-LAN port	
Sepam address	1
Speed	38400 💌 Bds
Parity	Odd 🗨

Configuration of the S-LAN port: Physical layer

The configuration parameters will vary depending on the communication interface selected: ACE969TP or ACE969FO.

ACE969TP: 2-wire RS 485 S-LAN port

The configuration parameters for the physical layer of the S-LAN port on the ACE969TP are:

- Sepam address
- Transmission speed
- Parity check type

Parameters	Authorized values	Default value
Sepam address	0 to 65519	1
Speed	4800, 9600, 19200 or 38400 bps	38400 bps
Parity	No parity, even or odd	No parity

Configuration of the physical layer of the S-LAN port on an ACE969TP.

	Communication configuration
FEBUUZ	Apply Cancel
	Communication interface ACE 963F0
	Communication protocol DNP 3.0
	Sepam address
	Speed 38400 💌 Bds
	Parity None 💌
	Advanced parameters >>>
	Link idle state
	C Light On C Light Off C Yes C No
	E-LAN port-
	Sepam address 1
	Speed 38400 💌 Bds
	Parity Odd 💌

Configuration of the physical layer of the S-LAN port on an ACE969FO.

ACE969FO: Fiber-optic S-LAN port

The configuration parameters for the physical layer of the S-LAN port on the ACE969FO are:

- Sepam address
- Transmission speed
- Parity check type
- Link idle state: Light On or Light Off

Echo mode: Yes or No

Echo mode must be activated when the Sepam is connected to a fiber-optic ring communication network.

Parameters	Authorized values	Default value
Sepam address	0 to 65519	1
Speed	4800, 9600, 19200 or 38400 bps	38400 bps
Parity	No parity, even or odd	No parity
Link idle state	Light Off or Light On	Light Off
Echo mode	Yes (fiber-optic ring) No (fiber-optic star)	No

Configuration tips

■ The Sepam address MUST be assigned before Sepam is connected to the S-LAN communication network.

 You are also strongly advised to set the other physical layer configuration parameters before making the connection to the communication network.
 Modifying the configuration parameters during normal operation will not disturb Sepam but will reset the S-LAN communication port.

Configuring the communication interfaces

Configuration of the S-LAN port: DNP3 protocol

Configuration of the DNP3 protocol functions

The configuration of the DNP3 protocol functions is identical whether the ACE969TP-2 interface or the ACE969FO-2 communication interface is used.

Click the Advanced parameters button in the ACE969-2 configuration screens to open the **DNP3.0 Protocol parameters** window, in which the following can be configured:

- Data link layer
- Application layer
- Unsolicited responses
- Collision avoidance
- Events notification

Data Link layer parameters

In some cases where communication integrity is essential, it is possible to manage confirmations at Data Link layer level. In particular, when the transmission of unsolicited responses is authorized, Sepam may be asked to check its integrity. This option is configured using the following parameters:

- Confirmation required
- Confirm timeout
- Max. retries

Confirmation required

This parameter indicates to Sepam whether it must request a Data Link layer confirmation for the frames it sends to the master station:

■ Never: Sepam never requests Data Link layer confirmation. The communication integrity check is only carried out at Application layer level.

Always: Sepam requests a Data Link layer confirmation for all the frames it sends.
 Multiframe: in the case of an Application message that is broken up into several

Data Link segments, Sepam requests a confirmation for each of the segments sent at Data Link layer level.

If a confirmation is requested by Sepam (Always, Multiframe), two additional parameters are defined.

Confirm timeout

This parameter indicates the time at the end of which Sepam will resend the frame if it does not receive a confirmation.

Max. retries

This parameter sets the maximum number of retries authorized.

Parameters	Authorized values	Default value
Confirmation required	Never, always, multiframe	Never
Confirm timeout	50 to 60000 milliseconds	200 milliseconds
Max. retries	0 to 5	2

DNP 3.0 Protocol parameters	
	Apply Cancel
Link Layer	
Confirmation required	Never
Confirm timeout	200 ms Max. retries 2
Application Layer	
Confirm timeout	10 ms
Times sync. required delay	0 mn
Select-to-Operate timeout	10000 ms
Unsolicited Responses	
Enable unsolicited responses	No Master station address
Unsolicited max. retries	unlimited 🔽
Collision Avoidance (CA)	
CA - Fixed Delay	1000 ms CA - Max. random delay 1000 ms
CA - Retries	5 unlimited
Events notification	
Class 1 Events notification	Number 10 Delay 5000 \$
Class 2 Events notification	Number 10 Delay 5000 \$
Class 3 Events notification	Number 10 Delay 5000 s

Configuration of the DNP3 protocol.

PE80021

Configuring the communication interfaces

DNP 3.0 Protocol parameters	
	Cancel
Link Layer	
Confirmation required	Never
Confirm timeout	200 ms Max. retries 2
Application Layer	
Confirm timeout	10 ms
Times sync. required delay	0 mn
Select-to-Operate timeout	10000 ms
- Unsolicited Responses	
Enable unsolicited responses	No Master station address 100
Unsolicited max. retries	0 unlimited 🔽
Collision Avoidance (CA)	
CA - Fixed Delay	1000 ms CA - Max. random delay 1000 ms
CA - Retries	5 unlimited
Events notification	
Class 1 Events notification	Number 10 Delay 5000 \$
Class 2 Events notification	Number 10 Delay 5000 s
Class 3 Events notification	Number 10 Delay 5000 s

Configuration of the DNP3 protocol.

Application layer parameters

Three parameters are defined for the Application layer:

- Confirm timeout
- Times sync. required delay
- Select-to-Operate timeout

Confirm timeout

This parameter applies to transmitting events (responses to a polling request from the master and unsolicited responses).

The events are stored by Sepam in an event stack.

When Sepam sends an Application message which includes events, it awaits confirmation from the master to establish that the message has been received correctly. If Sepam receives this confirmation before the end of the timeout, the transmitted events are deleted from the event stack. Otherwise, the events are kept by Sepam. They are then transmitted at the next polling request from the master. If the Unsolicited Responses option is activated on Sepam, the message is automatically resent by Sepam (see Unsolicited responses).

An application message can comprise several events. If it is too large to be transmitted in a single Data Link frame, the message is broken up into a number of Data Link segments.

The Application layer confirm timeout must then be defined to be consistent with the value chosen at Data Link layer level.

If a Data Link timeout has been defined (T-Link), it is advisable to define the Application timeout (T-Application) in accordance with the following:

- Application Message Size < 249 bytes</p>
- T-Application ≥ (Max. retries + 1) x T-Link
- Application Message Size ≥ 249 bytes
- T-Application ≥ (Max. retries + 1) x T-Link x AppliMsgSize/249

Times sync. required delay

The time is synchronized by the master with transmission of a request to write the time. The transmission is performed periodically or at the request of a slave, which sets an internal Time Synchronization Required indicator. This indicator is present in all the messages transmitted by the slave.

Sepam monitors receipt of the time synchronization request.

The Times sync. required delay parameter defines the time at the end of which Sepam will set its internal Time Synchronization Required indicator if it does not receive a synchronization request.

If this parameter is set to zero, then the Time Synchronization Required indicator is not used and is always left at zero by Sepam. The synchronization request is then sent by the master without consulting Sepam.

Select-to-Operate timeout

This parameter defines the maximum time authorized by Sepam between receipt of the request to select a command (Select) and the request to execute this command (Operate). At the end of this timeout, the execution command is rejected by Sepam and another selection is necessary.

Parameters	Authorized values	Default value
Confirm timeout	1 to 60000 seconds	10 seconds
Times sync. required delay	0 to 60000 minutes	0: function deactivated
Select-to-Operate timeout	100 to 60000 milliseconds	10000 milliseconds

Configuring the communication interfaces

Configuration of the DNP3 protocol.

Unsolicited responses

Unsolicited responses correspond to events that Sepam can send spontaneously. The transmission of unsolicited responses can be enabled or disabled by configuration.

When transmission is authorized by Sepam configuration, the master can suspend or validate this authorization at any time using a special request. When transmission is disabled by Sepam configuration, any request to enable/ disable unsolicited messages received by Sepam is rejected by a message containing the Function Code Not Implemented error indication.

The configuration parameters of unsolicited responses are as follows:

- Enable unsolicited responses
- Unsolicited max. retries
- Master station address

Enable unsolicited responses

This parameter enables or disables the transmission of unsolicited responses by Sepam.

If the value is No, transmission is disabled.

Events are stored in a stack and can only be obtained by reading the event stack, either globally or by class.

■ If the value is Yes, transmission is enabled.

In accordance with the DNP3 specifications, this enabling is not sufficient and must be confirmed by the master. To do this, Sepam informs the master of its ability to send events spontaneously by sending an empty event. Spontaneous transmission will only be validated if Sepam receives an effective request for validation from the master.

■ The Forced value enables acceptance of an interconnection with the master, in respect of which the old implementation does not fully comply with the DNP3 specifications. In this case, Sepam immediately sends the unsolicited responses without having to request the agreement of the master.

Unsolicited max. retries

The messages sent spontaneously by Sepam in order to transmit events must be acknowledged by an Application layer confirmation. The waiting time for the confirmation is that defined by the Confirm timeout parameter of the Application layer. If Sepam does not receive this confirmation, it tries to send the message again. The parameter Unsolicited max. retries defines the maximum number of retries authorized.

Once this number has been reached, the event transmission is suspended. Sepam then periodically tries to re-establish transmission to the master by sending a new message. The time taken for these attempts is at least 15 minutes. It is the same as the Confirm timeout parameter if the value of this parameter is greater than 15 minutes.

Note: If there is a Sepam event stack overflow, the oldest events are lost.

Master station address

This parameter gives the address of the station to which the events must be transmitted.

Parameters	Authorized values	Default value
Enable unsolicited responses	No, yes, forced	No
Unsolicited max. retries	0 to 1000, or unlimited	Unlimited
Master station address	0 to 65519	100

Configuring the communication interfaces

Configuration of the DNP3 protocol.

Collision Avoidance - CA

The spontaneous transmission of events on a multipoint communication bus requires the collision management device described in DNP V3.00 Technical Bulletin 9804-007 to be set up. Sepam manages this device.

The device uses the following 3 parameters:

- CA-Fixed Delay
- CA-Max. random delay
- CA-Retries

OA Helles

Before sending, Sepam listens to see whether the communication bus is free. If the bus is busy, Sepam waits until it is free, then waits for a time, called the Backoff time, before sending.

Backoff_time = CA-Fixed Delay + Random delay

The random delay is between 0 and the value of parameter CA-Max. random delay. If the bus is free after this waiting time, Sepam starts transmission. If the bus is busy, Sepam waits again, up to the number of times defined in CA-Retries (1 to 10 or unlimited).

Parameters	Authorized values	Default value
CA-Fixed Delay	0 to 60000 ms	1000 ms
CA-Max. random delay	0 to 60000 ms	1000 ms
CA-Retries	0 to 10, or unlimited	5

Events notification

Spontaneous events are grouped together by class (1, 2 or 3) and are transmitted in packets. The transmission of a packet is initiated by 2 factors:

When the number of events constituting a packet (defined by the Number parameter) is reached

When the maximum waiting time for a new event (defined by the Delay parameter) is reached

Parameters	Authorized values	Default value
Number	1 to 10	10
Delay	100 to 60000 ms	5000 ms

Event management

Event management Prodefined Finally Change Events Events Event group Fault indications Alarms Status Analog Change Events Analog Change Event variation Event group	Customized	Y	
Binary Drange Events Event group Fault indications Alarms Status Analog Change Events Analog Change Event variation Event group	Class 1 Y 2 Y 3 Y 32 bits without time		
Event group Fault indications Alams Status - Analog Change Events Analog Change Event variation Event group	Class 1 Y 2 Y 3 Y 32 bits without time		
Fault indications Alarms Status -Analog Change Events -Analog Change Event variation Event group	1 Y 2 Y 3 Y		
Alarms Status —Analog Change Events —Analog Change Event variation Event group	2 Y 3 Y 32 bits without time	<u> </u>	
Status —Analog Change Events Analog Change Event variation Event group	3 Y	Y	
Analog Change Events Analog Change Event variation Event group	32 bits without time	¥	
Analog Change Event variation	32 bits without time	¥	
Event group			
	Class	Deadband	
Phase currents	0 🔻	50	0.1 A
Residual currents	0 🔻	20	0.1 A
Voltages	0 🔻	10	10 V
Power (P, Q, S)	0 🔻	100	1 kax
Frequency	0 🔽	10	0.01 Hz
Temperatures	0 💌	10	1 °C
- Counter Change Events-			
Counter Change Event variation	32 bits without time	v	
Event group	Class	Deadband	
Energy	0 🔽	10	0.1 MWh (Mvarh)

Predefined event management

Introduction

- There are two event management modes:
- Predefined management
- Customized management

Predefined management

Generating events

In this mode, only binary information (Binary Inputs) generates events.

An event is generated when a binary data item changes state.

Analog Input and Counter type information does not generate events. Their class is always 0.

The class associated with events cannot be modified. It is predefined in Sepam according to the nature of the information: Indication of fault, Alarm or Status with the following values:

Data group	Predefined class
Fault indications	1
Alarms	2
Status	3

Compatibility

The predefined management mode corresponds to operation of the ACE969-2 interface for versions of the software prior to V2.0. It is automatically selected by SFT2841 when an ACE969-2 configuration file version < V2.0 is opened, or when an on-line configuration is created with a Sepam unit equipped with an ACE969-2 interface < V2.0.

When this mode is selected, all the other configuration options are disabled and are grayed out.

Communication Event management			
C Predefined	Customized		
Binary Change Events			
Event group	Class		
Fault indications	1 💌		
Alarms	1 •		
Status	1		
-Analog Change Events			
Analog Change Event variation	32 bits without time	•	
Event group	Class	Deadband	
Phase currents	2 💌	50	0.1 A
Residual currents	2	20	0.1 A
Voltages	2	10	10 V
Power (P, Q, S)	2	100	1 kas
Frequency	2	10	0.01 Hz
Temperatures	2 💌	10	1 °C
- Counter Change Events			
Counter Change Event variation	32 bits without time	•	
Event group	Class	Deadband	
Energy	3 💌	10	0.1 MWh (Mvarh)

Customized event management

Customized management

In this mode, in addition to the binary information, Analog Input and Counter type information generates events.

Events relating to binary information

Binary data is split into 3 groups.

Unlike the previous mode, the default classes associated with the predefined groups can be changed freely by the user using the SFT2841 software. Allocating the value class 0 to a group results in inhibiting event generation for all data in this group. The data groups and associated classes are as follows:

Data group	Authorized class	Default class
Fault indications	0 to 3	1
Alarms	0 to 3	1
Status	0 to 3	1

Event management

Events relating to Analog Input and Counter type information

Similarly to binary information, Analog Input and Counter type information belong to predefined groups associated with Classes.

In addition to the Class, Analog Input and Counter type information has two additional attributes:

- Variation
- Deadband

Variation

This attribute specifies the format in which events are generated by Sepam. It is defined separately for all analog inputs and all counters.

Deadband

This attribute defines a range for monitoring changes of an analog or counter value. When the value strays outside this range, an event is generated. This attribute is defined at the level of each group of Analog Input and Counter type information.

The table below indicates the authorized and default values for the Class and Variation attributes:

Parameter	Authorized values	Default value
Class	0 to 3	2
Variation	32 bits without time 16 bits without time 32 bits with time 16 bits with time	32 bits without time
Deadband	0 to 65535; unit specific to each data group	According to the data group (see table below)

The table below indicates the default values and units of the Deadband parameter by data group:

Deadband parameter			
Data group	Unit	Default value	
Phase currents	0.1 A	50 (5 A)	
Residual currents	0.1 A	20 (2 A)	
Voltages	10 V	10 (100 V)	
Power (P, Q, S)	1 kxx	100 (100 kxx)	
Frequency	0.01 Hz	10 (0.1 Hz)	
Temperatures	1°C	10 (10°C)	
Energy	0.1 MWh (Mvarh)	10 (1 MWh) (1 Mvarh)	

Compatibility

The ACE969-2 interface version number is accessed via the Sepam Diagnosis screen when the SFT2841 tool is connected to Sepam.

The Customized event management option is not compatible with an ACE969-2 interface version earlier than V2.0.

If a configuration file incorporating this option has been loaded onto Sepam, the ACE969-2 interface will indicate a configuration error and the DNP3 interface will not be operational.

This error status can be diagnosed:

- on the front panel of the ACE969-2 interface (the red "key" LED flashes)
- on the Sepam Diagnosis screen of the SFT2841 tool connected to Sepam

It is then necessary to reconfigure the Sepam unit to replace the Customized option with the Predefined option compatible with all ACE969-2 versions.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipement. Such work should be performed only after reading this entire set of instrucions and checking the technical characteristics of the device.

NEVER work alone.

- Turn off all power supplying this equipement before working on or inside it. Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.

Screw tight all terminals, even those not in use. Failure to follow these instructions will result in death or serious injury.

ACE969TP-2 communication interface.

SFT2841: Sepam series 80 diagnosis screen.

Installation and operating instructions for Sepam

The communication interfaces must be installed and connected in accordance with the instructions in each Sepam user's and operation manual:

- Sepam series 20 user's manual, reference PCRED301005EN
- Sepam series 40 user's manual, reference PCRED301006EN
- Sepam series 60 user's manual, reference SEPED310017EN
- Sepam series 80 operation manual, reference SEPED303003EN

Preliminary checks

The following preliminary checks must be made:

■ Check the CCA612 cord connection between the ACE969-2 interface and the Sepam base unit.

- Check the auxiliary power supply connection to the ACE969-2.
- Check the S-LAN communication port connection on the ACE969-2.
- Check the complete configuration of the ACE969-2.

Checking the operation of the ACE969-2 interface

You can use the following to check that the ACE969-2 interface is operating correctly:

- The indicator LEDs on the front panel of the ACE969-2
- The information provided by the SFT2841 software connected to Sepam:
- □ On the Diagnosis screen
- □ On the Communication configuration screens

Indicator LEDs on the ACE969-2

- Green "on" LED: ACE969-2 energized
- Red "key" LED: ACE969-2 interface status
- LED off: ACE969-2 configured and communication operational
- □ LED flashing: ACE969-2 configuration error or ACE969-2 not configured
- LED on: ACE969-2 error
- S-LAN and E-LAN Tx / Rx LEDs:
- □ S-LAN Tx LED flashing: Sepam transmitting
- □ S-LAN Rx LED flashing: Sepam receiving
- □ Tx and Rx off: RS 485 communication is idle

□ Tx or Rx LED is "on" while the RS 485 communication network is idle: the idle voltage state of the RS 485 network is incorrect

Diagnosis using SFT2841 software

Sepam diagnosis screen

When connected to Sepam, the SFT2841 software informs the operator of the general Sepam status and of the Sepam communication status in particular. All Sepam status information appears on the Sepam diagnosis screen.

Sepam communication diagnosis

The operator is provided with the following information to assist with identifying and resolving communication problems:

- Name of the protocol configured
- DNP3 interface version number
- Number of valid frames received
- Number of invalid (mistaken) frames received
- These two counters are reset to zero if:
- The maximum value (65535) is reached
- The Sepam auxiliary power supply is lost
- The communication parameters are modified

Commissioning and diagnosis

Troubleshooting assistance

The LEDs and the following information on the Sepam diagnosis screen indicate whether Sepam and a supervisor are communicating correctly using the DNP3 protocol:

- Indicator LEDs on the front panel of the ACE969-2:
- □ Green "on" LED on
- □ Red "key" LED off
- □ S-LAN Rx and Tx LEDs flashing
- Sepam diagnosis screen:
- □ Name of the protocol configured: DNP3
- □ DNP3 interface version number displayed
- □ Number of valid frames received increasing at regular intervals
- Number of invalid frames received not increasing

Deviations from the above indicate that communication between Sepam and the supervisor has failed. The table below lists the possible causes of communication failures, along with the associated corrective action to be taken in each case.

Symptoms		Possible cause	Action/remedy
ACE969-2 LEDs	SFT2841 diagnosis		
"On" LED off	Protocol = ???? and/or Version = ????	No power supply to ACE969-2	Check the auxiliary power supply to the ACE969-2.
"Key" LED on	Protocol = ???? and/or Version = ????	ACE969-2 failed	Replace the ACE969-2.
"Key" LED flashing	Protocol = ????	ACE969-2 not configured	Configure the ACE969-2 using SFT2841.
	and/or Version = ????	ACE969-2 is not connected to Sepam	Check the ACE969-2 connection to Sepam.
		The ACE969-2 configuration is incorrect.	 Use SFT2841 to check the interface selected: ACE969TP-2 or ACE969FO-2. Check that the DNP3 event management mode is compatible with the ACE969-2 software version.
S-LAN Rx LED flashing	Increase in invalid frame counter value	The ACE969-2 physical layer configuration is incorrect.	Use SFT2841 to check the following parameters: transmission speed parity
		Incorrect choice of communication protocol	Check the communication protocol selected.
		The S-LAN network is incorrectly connected.	Check the connection of the S-LAN network and the RS 485 remote power supply.
S-LAN Rx LED flashing	The frame counter values are not increasing.	The supervisor is not sending frames to Sepam.	Use SFT2841 to check the Sepam address parameter and check that the supervisor is sending frames to Sepam.
		Incorrect choice of communication protocol	Check the communication protocol selected.
S-LAN Rx LED off		The supervisor is not sending frames on the network.	Check that the supervisor is operating correctly.
		The S-LAN network is incorrectly connected.	Check the connection of the S-LAN network and the RS 485 remote power supply.
Tx or Rx LED is "on" while the RS 485 communication network is idle.		The idle voltage state of the RS 485 network is incorrect.	 Check that the pull-up and pull-down bias resistors are correctly installed on the RS 485 network. Check that the 2 load resistors are correctly installed at each end of the RS 485 network.

Appendix 1: Structure of Application layer messages

Presentation

Application layer requests and responses exchanged between a supervisor and Sepam are encoded in data structures called ADPUs: Application Protocol Data Units.

An APDU consists of the following fields:

■ APCI Request/Response header:

This field identifies the role of the message and conveys flow control information. This field is also called APCI: Application Protocol Control Information.

 ASDU: Application Service Data Unit. This field contains Application layer user data.

Request and response headers

Request header

Field	Size (bytes)	Description
AC	1	AC: Application Control
FC	1	FC: Function Code

Response header

Field	Size (bytes)	Description
AC	1	AC: Application Control
FC	1	FC: Function Code
IIN - 1	2	IIN: Internal Indication
IIN - 2		

Application Control (AC) field

At Application layer level, DNP3 authorizes and manages the fragmentation of user data into several ASDUs.

The AC byte contains information that is needed to manage the fragmentation (for transmission) and re-assembly (for reception):

- FIR: First Bit
- □ FIR = 1: the first fragment of a new Application message
- □ FIR = 0: any fragment
- FIN: Final Bit
- □ FIN = 1: the last fragment of a new Application
- \Box FIN = 0: there are still fragments to follow
- CON: Confirmation request

The station receiving a message with this bit at 1 must return a confirmation message (Function code 0).

SEQUENCE: Sequence number

This number allows you to check that the fragments are sent and received in the correct order, without loss or duplication.

□ Numbers 0 to 15: Reserved for "Request" and "Response" messages.

After reaching 15, the counter restarts at 0.

Numbers 16 to 31: Reserved for "Unsolicited response" messages.

After reaching 31, the counter restarts at 16.

1	7	6	5	4	3	2	1	0
	FIR	FIN	CON		SE	QUEN	CE	

Appendix 1: Structure of Application layer messages

Function Code (FC) field

The FC byte contains the Application layer function code. Sepam supports the function codes listed in the table below:

FC	Function	Description		
Data transf	er functions			
0	Confirm	Confirmation message		
1	Read	Read requests; the response supplies the data requested (if available)		
2	Write	Write request; the response gives the result of the operation		
Control fur	nctions			
3	Select	Request to select an output; the response gives the state of the selected output		
4	Operate	Request to activate a preselected output; the response gives the state of the activated output		
5	Direct operate	Request to activate an output that has not been preselected; the response gives the state of the activated output		
6	Direct operate No Ack	Request to activate an output that has not been preselected; no associated response		
Application	n Control functions			
13	Cold Restart	Triggers the cold restart sequence; the response indicates the time when the station will become available again		
14	Warm Restart	Triggers the warm restart sequence; the response indicates the time when the station will become available again		
Configurati	ion functions			
20	Enable Unsolicited Messages	Enables spontaneous reporting of information; the response gives the result of the operation		
21	Disable Unsolicited Messages	Disables the spontaneous reporting of information; the response gives the result of the operation		
Synchroniz	zation functions			
23	Delay Measurement	Used to determine the transmission time with a slave station; the value calculated is then used to correct the time of day when setting the time for the slave station		
File manag	ement functions			
25	Open	Request to open a file		
26	Close	Request to close a file		
30	Abort	Request to abort the transfer of a file		
Response	function codes			
129	Response	Response message to a request		
130	Unsolicited Response	Spontaneous message (not solicited by a request)		

Appendix 1: Structure of Application layer messages

Internal Indication (IIN) field

The 2 IIN (Internal Indication) bytes from the Response header provide indications about negative responses (in the case of an error or refusal on the slave's part).

IIN1	Description
Bit 0	Set to 1 to indicate the receipt of a broadcast frame; reset to 0 after the next response is sent
Bit 1	Class 1 data available; the master must poll the slave for this type of data
Bit 2	Class 2 data available; the master must poll the slave for this type of data
Bit 3	Class 3 data available; the master must poll the slave for this type of data
Bit 4	Synchronization request: the master must send a request to write the "Time and Date" object. Reset is possible if the master writes the bit to 0
Bit 5	Indicates that the slave outputs are in local mode (therefore not controllable by DNP3)
Bit 6	Faulty station
Bit 7	Indicates a station restart Reset if the master writes the bit to 0
IIN2	Description
Bit 0	Function code not available
Bit 1	Data unknown
Bit 2	Invalid value
Bit 3	Buffer overflow (event buffer or other application buffer)
Bit 4	Request already being processed
Bit 5	Current configuration error (reconfiguration is necessary)
Bit 6	Reserved; always at 0
Bit 7	Reserved; always at 0

Appendix 1: Structure of Application layer messages

Structure of an ADSU

An ADSU consists of a set of information objects, with each object having a header field and a data field.

A single ASDU can group several DNP3 objects of different types.

An ADSU consists of the following fields:

■ Object header: This field identifies the type of DNP3 object.

Object data: This field contains the user data associated with the object.

Object Header

Field	Size (bytes)	Description
Object Identifier	2	Object identifier
Qualifier	1	Qualifier: Specifies the data addressing method
Range	0 to 8	This field is dependent on the value of the Qualifier field

Object Identifier

The object identifier consist of 2 bytes:

■ Byte 1: Object Group

This byte identifies the type of object to which the user data belongs.

For example, 30 = Analog Input.

Byte 2: Variation

This byte identifies the object subtype.

For example, for the Analog Input object:

□ Subtype 1 = 32 Analog Input bits

□ Subtype 2 = 16 Analog Input bits

In a request, Variation 0 designates all objects of the group, regardless of their subtype. A master can therefore ask to read the analog inputs of a slave without knowing the subtype of 16 or 32 bits. The subtype is shown to him in the response.

Qualifier

The Qualifier byte consists of 2 data items:

Qualifier Code, coded on 4 bits

Index size, coded on 3 bits.

The combinations of the Qualifier Code and Index Size values specify the object addressing method.

Index size	Qualifier code	Object addressing
0	0	Addressing index range objects [start; end]. The start and end index values are coded on 8 bits in the Range field.
0	1	Addressing index range objects [start; end]. The start and end index values are coded on 16 bits in the Range field.
0	6	Addressing all objects of a given type. In this case, there is no Range field.
0	7	Addressing N index objects 0 to (N-1). The quantity N is coded on 8 bits in the Range field.
0	8	Addressing N index objects 0 to (N-1). The quantity N is coded on 16 bits in the Range field.
1	7	Addressing N objects, each of which is identified by its index coded on 8 bits. The quantity N is coded on 8 bits in the Range field.
2	8	Addressing N objects, each of which is identified by its index coded on 16 bits. The quantity N is coded on 16 bits in the Range field.
5	В	Special addressing, for variable sized objects. Used for the Sequential File Transfer object: The Range field gives the quantity of objects (= 1) on 8 bits and each object has a 16-bit prefix, which indicates its size in bytes.

Range

This field is dependent on the value of the Qualifier field (see above).

I	7	6	5	4	3	2	1	0	ĺ
	0	lr	ndex siz	ze		Qualifie	er code)	

Appendix 1: Structure of Application layer messages

Object Data

- To encode Sepam information, the following data objects are used:
- Binary Input
- Binary Output
- Counters
- Analog Input
- Analog Output

Binary Input object coding

Object number	Variation	Description
01	01	Single-bit Binary Input
01	02	Binary Input with Status
02	02	Binary Input Change with Time

Bytes								
1	7	6	5	4	3	2	1	0
2	15	14	13	12	11	10	9	8
								:
					n-1	n-2	n-3	n-4

Single-bit Binary Input

Series of bytes, where each bit represents an internal state or a discrete input. Each state or input has the value 0 or 1.

The figure here shows a series of n single-bit binary inputs.

R١	∕t¢	25

Bytes

1

6

7 8 9

100								
1	7	6	5	4	3	2	1	0

7 6 5 4 3 2 1 0

Binary Input with Status

7 indicator bits + 1 status value bit (0 or 1)

Bit 0: On-line	0 = on-line	1 = off-line
Bit 1: Restart	0 = normal	1 = restart
Bit 2: Communication lost	0 = normal	1 = lost
Bit 3: Remote forced data	0 = normal	1 = forced
Bit 4: Local forced data	0 = normal	1 = forced
Bit 5: Chatter filter	0 = normal	1 = filter on
Bit 6: Reserved	0	
Bit 7: State	0	1

Binary Input Change with Time

B	3yte 1: 7 indicator bits + 1 status value bit (0 or 1)				
	Bit 0: On-line	0 = on-line	1 = off-line		
	Bit 1: Restart	0 = normal	1 = restart		
	Bit 2: Communication lost	0 = normal	1 = lost		
	Bit 3: Remote forced data	0 = normal	1 = forced		
	Bit 4: Local forced data	0 = normal	1 = forced		
	Bit 5: Chatter filter	0 = normal	1 = filter on		
	Bit 6: Reserved	0			
	Bit 7: State	0	1		

Time-tagged label (8 bytes)

48-bit unsigned integer

Number of milliseconds since 1st January 1970

Appendix 1: Structure of Application layer messages

Binary Output object coding

Object number	Variation	Description
10	01	Single-bit Binary Output
10	02	Binary Output Status
12	01	Control Relay Output block

Bytes									
1	7	6	5	4	3	2	1	0	
2	15	14	13	12	11	10	9	8	
					n-1	n-2	n-3	n-4	
Bytes									
1	7	6	5	4	3	2	1	0	

Single-bit Binary Output

Series of bytes, where each bit represents an internal state or a discrete output. Each state or output has the value 0 or 1.

The figure here shows a series of n single-bit binary outputs.

Binary Output Status

7 indicator bits + 1 status va	lue bit (0 or 1)	
bit 0: On-line	0 = on-line	1 = off-line
bit 1: Restart	0 = normal	1 = restart
bit 2: Communication lost	0 = normal	1 = lost
bit 3: Remote forced data	0 = normal	1 = forced
bit 4: Local forced data	0 = normal	1 = forced
bit 5: Reserved	0	
bit 6: Reserved	0	
bit 7: State	0	1

Control Relay Output block

Bytes									Con
	7	6	5	4	3	2	1	0	Cor
1	Trip/0	Close	CI	Q		Co	ode		(
2				Co	ount				
3									
				On-	Time				
6								C	
7		Off-Time						C	
								Т	
10									
11	0				Status				Coι
									0

ntrol code: 1 byte Code: 0 = Null operation 1 = Pulse On 2 = Pulse Off 3 = 1 atch On 4 = Latch Off 5 to 15: undefined 0 = normalbit: Queue 1 = requeuedI bit: Clear 0 = normal1 = clear rip/Close 00 = NULL01 = CLOSE 10 = TRIPint: 1 byte 0 to 255 = Number of times the command is executed On-Time: 4 bytes Millisecond counter on 32 bits Off-Time: 4 bytes Millisecond counter on 32 bits Status: 1 byte 0 = Request accepted 1 = Req. refused on SBO timeout 2 = Req. refused: no SBO 3 = Req. refused: coding error 4 = Req. refused: command not supported 5 = Req. refused: output already set

- 6 = Req. refused: internal error
- 7 = Req. refused: local mode

Application to Sepam

All Binary Outputs accessed via the DNP3 interface are Single-Output type. For Control Relay Output Blocks, Sepam accepts and processes the following control codes in the same way:

01: trip/close = NULL; Q = Cl = normal; Pulse On
 03: trip/close = NULL; Q = Cl = normal; Latch On

Other codes are rejected by Sepam.

After executing the command, the Binary Output object is automatically reset to zero by Sepam. The current value of a Binary Output object is always read as zero.

In remote-control orders inhibited mode, Sepam rejects commands (Status code = local mode).

Sepam only accepts the values Count = 0 and Count = 1. If Count = 0, the request is accepted but the command is not executed. If Count = 1, the request is accepted and the command is executed by Sepam.

The On-Time and Off-Time fields are ignored by Sepam and can have any value.

Appendix 1: Structure of Application layer messages

42

Appendix 1: Structure of Application layer messages

Analog Output object coding Object number Variation Description 40 02 16-bit Analog Output Status

6 = Req. refused: internal error

Appendix 2: File transfer General

Presentation

Sepam saves the information from the functions in file format:

- Disturbance records (for Sepam series 20, Sepam series 40 and Sepam series 80)
- Tripping contexts (for Sepam series 80 only)

These files can be retrieved using the transfer procedure specified in *DNP Technical Bulletin 2000-2001, Sequential File Transfer Objects.*

Types of file to be transferred

Definitions

The files that can be transferred from Sepam to the supervisor are:

■ 1 DR (Disturbance Records) directory file, which contains the information required for transferring disturbance record files saved in Sepam

■ 1 TR (Tripping Records) directory file, which contains the information required for transferring Tripping context files saved in Sepam

■ Disturbance record files, which contain data saved in Sepam on events via the Disturbance recording function

Tripping context files, which contain data saved by Sepam on tripping

File names

Each file is identified by a name coded in ASCII-character.

File	File name	Size of file name (in bytes)
DR directory	DR	2
Disturbance records	yyyy-mm-dd-hh-mn-sssss	22
TR directory	TR	2
Tripping contexts	yyyy-mm-dd-hh-mn-sssss	22

The name of Disturbance record and Tripping context files is encoded with the date the file is saved by Sepam:

■ yyyy: year coded on 4 ASCII characters

- mm: month coded on 2 ASCII characters, from 01 to 12
- dd: day coded on 2 ASCII characters, from 01 to 31
- hh: hour coded on 2 ASCII characters, from 00 to 23
- mn: minutes coded on 2 ASCII characters, from 00 to 59
- sssss: milliseconds coded on 5 ASCII characters, from 00000 to 59999

Transfer principle

- A Disturbance record file is transferred from Sepam to the supervisor in three stages:
- 1. The DR directory file is read by the supervisor
- 2. The contents of the DR file is interpreted by the supervisor, to identify the
- Disturbance record file to be transferred

3. The selected Disturbance record file is read

A Tripping context file is transferred from Sepam to the supervisor in the same way, using the TR directory file.

Appendix 2: File transfer General

Reading a file

Procedure

The same procedure applies for reading all files (directory files and data files). This consists of an exchange of requests/responses between the supervisor and Sepam.

The requests from the supervisor are addressed on object 70.

A file is read in three stages:

1. The file to be transferred is opened via an Open request/response

2. Data is transferred from the file through a succession of Read Block requests/ responses

3. The file is closed via a Close request/response

Notes

• Only one file can be open at any one time: The directory must therefore be closed after reading, in order to be able to read one of the files in this directory.

■ For an open file, only one transfer is permitted at any one time.

■ The number of Read Block requests that are needed to transfer the file depends on the size of the file and the size of a block. The maximum size of a block is defined by the master in the Open request.

Checking and processing errors

Sepam performs a series of checks to ensure that a file is read correctly. Any error that occurs whilst a file is being read causes the file to be closed automatically by Sepam.

Block number sequence check

Data blocks are numbered starting at 0. Blocks must be read in ascending order. It is possible to reread the same block i several times, as long as no request has been made for the next block i+1 to be read.

A sequence error in the block number requested in a Read Block request generates a negative Read Block response (status = incorrect block number).

Data integrity check

A Disturbance record file or Tripping context file in Sepam can be overwritten at any time by a new record if a new event occurs. If a file is in the process of being read, then data obtained by the supervisor will be corrupt. Sepam signals this error in the Close response (status = corrupt file).

Inactivity check: aborting a read operation

Sepam manages an inactivity time delay when a file read operation has been initialized, and throughout the entire course of the read operation. If there is more than 60 seconds between two Read Block requests or between the last Read Block request and the Close request, Sepam automatically closes the file. A spontaneous Close response is generated by Sepam (status = file closed on detection of inactivity).

Appendix 2: File transfer General

File transfer functions

A file read operation uses the following DNP3 functions:				
Function code	Function	Description		
1	Read	Read a data block		
25	Open	Open a file		
26	Close	Close a file		
30	Abort	Abort the file transfer		
129	Response	Read, open or close response		
130	Unsolicited response	Unsolicited read or close responses		

Sequential File Transfer object

The file read operation uses object 70, with the following variations:						
Object	Variation	Description	Request function	Response function		
70	3	File Command Object	25			
70	4	File Command Status Object	26, 30	129		
70	5	File Transport Object	1	129, 130		
70	6	File Transport Status Object		129, 130		
70	7	File Descriptor Object	-	-		

Execution reports

The Sepam responses contain a coded execution report in the objects associated with the responses:

- File Command Status Object
- File Transport Status Object

The possible Status field values are listed in the table below:

Status	Description
0	ОК
3	Open error response: File does not exist
5	Open error response: File already open
6	Read or Close error response: Incorrect file identifier
16	Read or Close error response: File not open
17	Close error response: File closed on detection of inactivity
19	Close error response: Corrupt file
20	Read error response: Incorrect block number

Appendix 2: File transfer General

			Operations required to read a file
Operation	Function	Object Number - Variation	Description of the operation
Open	Fct 25	File Command Object 70-3	Open request Opening must be requested in "Read" mode The DNP3 master indicates: The ASCII name of the file to be opened The maximum size of the blocks to be used for the read operation
Open response	Fct 129	File Command Status Object 70-4	Open response The object, sent back in response to Open, gives the following information: File Handle: identifier of the open file (32-bit) Status (OK, or no: file does not exist, already open, etc.) File Size Max Block Size (less than or equal to that requested in the Open request)
Read	Fct 1	File Transport Object 70-5	Read response Reading is performed block by block The DNP3 master indicates: File handle Block no. (starting at 0)
Read response	Fct 129	File Transport Object 70-5	Block read response If the data is available immediately, Sepam sends back the "File Transport" object in response to the Read operation. Otherwise, Sepam sends back a NULL response and the object will be sent back later in response to a polling (or as an unsolicited response) as a class 3 event. The "File Transport" object gives: File handle The block number (that requested) with bit indicating if it is the last block The data (max. size = that agreed at the Open operation)
Read Error response	Fct 129	File Transport Status Object 70-6	If necessary, Sepam can indicate a read error: File Handle error, Block no. out of sequence, file closed on inactivity, etc.
Close request	Fct 26	File Command Status Object 70-4	After receiving the last block, the DNP3 master closes the file and supplies the Handle of the file to be closed.
Close response	Fct 129	File Command Status Object 70-4	The same "File Command Status" object is used for the Close response.

Special cases:			
Operation	Function	Object	Description
Spontaneous close session	Fct 129	File Transport Status Object 70-6	In the event of inactivity, Sepam closes the read session (timeout expired).
Abort Request	Fct 30	File Command Status Object 70-4	The master can interrupt the file transfer by Abort.
Abort Response	Fct 129	File Command Status Object 70-4	The same "File Command Status" object is used for the Abort response.
-			

Appendix 2: File transfer Object coding Sequential File Transfer

File Command Object

Object header	Size (bytes)
Object = 70	1
Variation = 3	1
Qualifier = 5Bh	1
Range = 1	1
Number of Octets in object	2

Object data	Size (bytes)	Description
File Name Offset	2	
File Name Size	2	
Time of creation	6	Not used by Sepam; value 0
Permissions	2	Access in read mode (0124h)
Authentication Key	4	Not used by Sepam; value 0
File Size	4	Not used by Sepam; value 0
Operational Mode	2	Read mode = 1
Maximum Block Size	2	Maximum size of a data block
Request ID	2	Request number
File Name	n	File name

File Command Status Object

Object header	Size (bytes)
Object = 70	1
Variation = 4	1
Qualifier = 5Bh	1
Range = 1	1
Number of Octets in object	2

Object data

Object data	Size (bytes)
File Handle	4
File Size	4
Maximum Block Size	2
Request ID	2
Status	1

Description

File identifier (32-bit numeric value) Size of file in bytes (32-bit value) Maximum size of a data block Request number Execution report

File Transport Object

Object header	S (L
Object = 70	1
Variation = 5	1

Variation = 5	1
Qualifier = 5Bh	1
Range = 1	1
Number of Octets in object	2

Object data

File Handle
Block Number
Block Data

Description

Size (bytes)

Size

4

п

(bytes) 4

File identifier (32-bit numeric value)

Block number The last block is characterized by the most significant bit at 1

Data contained in the block

48

Appendix 2: File transfer Object coding Sequential File Transfer

File Transport Status Object

Object header

Object header	Size (bytes)
Object = 70	1
Variation = 6	1
Qualifier = 5Bh	1
Range = 1	1
Number of Octets in object	2
Number of Octets in object	2

Object data

)bject data	Size (bytes)
File Handle	4
Block Number	4
Status	1

Description

File identifier (32-bit numeric value)

Block number The last block is characterized by the most significant bit at 1 Execution report

File Descriptor Object

Object header	Size (bytes)
Object = 70	1
Variation = 7	1
Qualifier = 5Bh	1
Range = 1	1
Number of Octets in object	2

Object data

	(bytes)
File Name Offset	2
File Name Size	2
File Type	2
File Size	4
Time of creation	6
Permissions	2
Request ID	2
File Name	n

Description

Size

Offset of file name string in the data object

0 = directory file 1 = simple file Size of file in bytes (32-bit value) Number of milliseconds since 1st January 1970

Access in read mode (0124h) Request number ASCII string (n characters)

Appendix 2: File transfer Object coding Sequential File Transfer

Example of DNP3 frames exchanged in order to read a file

Operation	Fct	Obj	Var	Sequence Application Layer Octets
Open	25	70	3	0xC0 25 70 03 0x5B(object data)
Open response	129	70	4	0xE0 129 IINs 70 04 0x5B(object data)
Confirm				0xC0 00
Read (Block 0)	1	70	5	0xC1 70 05 0x5B(object data)
Null Response				0xC1 129 IINs
N Poll				0xC3 01 Class poll
N+1 Poll				0xC3 01 Class poll
Poll response	129	70	5	0xE3 129 70 05 0x5B(object data)
(File Data returned as even	t)			
Confirm				0xC3 00
Read (Block 1)	1	70	5	0xC4 01 70 05 0x5B(object data)
Null Response				0xC1 129 IINs
N Poll				0xC5 01 Class poll
N+1 Poll				0xC6 01 Class poll
Poll response	129	70	5	0xE3 129 70 05 0x5B(object data)
(File Data returned as even	t)			
Confirm				0xC6 00
Read (Block 2, last Block)	1	70	5	0xC7 01 70 05 0x5B(object data)
Null Response				0xC7 129 IINs
N Poll				0xC8 01 Class poll
N+1 Poll				0xC9 01 Class poll
Poll response	129	70	5	0xE9 129 70 05 0x5B(object data)
(File Data returned as even	t)			
Confirm				0xC9 00
Close	26	70	4	0xCA 26 70 04 0x5B(object data)
Returns Status In Status Object	129	70	4	0xEA 129 IINs 70 04 0x5B(object data)
Confirm				0xCA 00

Appendix 2: File transfer Use of files by the supervisor

Disturbance record file DR\yyyy-mm-dd-hh-mn-sssss

Disturbance records produced by Sepam are coded in COMTRADE format.

A COMTRADE disturbance record consists of two standard files:
 A .CFG file, which includes the record configuration parameters (definition of analog and digital channels recorded, definition of sampling characteristics)
 A .DAT file, which includes the sampled values recorded for each channel

The disturbance record files are stored in Sepam in the directory DR. The name of each file gives the date and time of its production. It is coded yyyy-mm-dd-hh-mn-sssss

A disturbance record file produced by Sepam is structured in such a way that the COMTRADE .CFG and .DAT files can be easily obtained.

Structure of a Sepam disturbance record file

	Size (bytes)	Description
Low byte	2	Size in bytes (n) of the .CFG configuration data zone
High byte		(16-bit value)
.CFG zone	n	Configuration parameters (.CFG file, ASCII format)
.DAT zone	x	Samples values (.DAT file, binary format)

SEPED305001EN - 03/2011

Appendix 2: File transfer Use of files by the supervisor

Tripping context files TR\yyyy-mm-dd-hh-mn-sssss

The tripping context files are stored in Sepam in the directory TR. The name of each file gives the date and time of its production. It is coded: yyyy-mm-dd-hh-mn-ssss.

A tripping context file contains a set of measurements recorded by Sepam when a protection function trips.

Description Context date

- It consists of two parts:
- Date of the context, coded on 8 bytes
- List of measurements, with each measurement coded on 32 bits (4 bytes)

Structure of a Sepam tripping context file

	Size (bytes
Date	8
Measurement 1	4
Measurement 44	4
	1

List of 44 measurements Each measurement is a 32-bit numeric value coded on 4 bytes, from the most significant to the least significant.

The tripping context date is coded on 8 bytes

	7	6	5	4	3	2	1	0
1		Reserved						
2		Year						
З	0	0	0	0 Month				
4	0	0	0	Day				
5	0	0	0	Hours				
6	0	0	Minutes					
7	Milliseconds (most significant)							
8	Milliseconds (least significant)							

Reserved value, always 0 Year from 0 to 99 Month from 1 to 12 Day from 1 to 31 Hours from 0 to 24 Minutes from 0 to 59 Milliseconds from 0 to 59999

52

Appendix 2: File transfer Use of files by the supervisor

The tripping context comprises the 44 measurements listed in the table below.

No.	Information	Format	Unit
1	Tripping current phase 1 Itrip1	32NS	0.1 A
2	Tripping current phase 2 Itrip2	32NS	0.1 A
3	Tripping current phase 3 Itrip3	32NS	0.1 A
4	Residual current IO S	32NS	0.1 A
5	Residual current I0	32NS	0.1 A
6	Negative-sequence current li	32NS	0.1 A
7	Phase-to-phase voltage U21	32NS	1 V
8	Phase-to-phase voltage U32	32NS	1 V
9	Phase-to-phase voltage U13	32NS	1 V
10	Phase-to-neutral voltage V1	32NS	1 V
11	Phase-to-neutral voltage V2	32NS	1 V
12	Phase-to-neutral voltage V3	32NS	1 V
13	Residual voltage V0	32NS	1 V
14	Positive-sequence voltage Vd	32NS	1 V
15	Negative-sequence voltage Vi	32NS	1 V
16	Frequency f	32NS	0.01 Hz
17	Active power P	32S	1 kW
18	Reactive power Q	32S	1 kvar
19	Apparent power S	32S	1 kVA
20	Additional tripping current l'trip1	32NS	0.1 A
21	Additional tripping current l'trip2	32NS	0.1 A
22	Additional tripping current l'trip3	32NS	0.1 A
23	Additional residual current l'02	32NS	0.1 A
24	Additional residual current I'0	32NS	0.1 A
25	Additional negative-sequence current l'i	32NS	0.1 A
26	Phase-to-phase voltage U'21	32NS	1 V
27	Phase-to-phase voltage U'32	32NS	1 V
28	Phase-to-phase voltage U'13	32NS	1 V
29	Phase-to-neutral voltage V'1	32NS	1 V
30	Phase-to-neutral voltage V'2	32NS	1 V
31	Phase-to-neutral voltage V'3	32NS	1 V
32	Residual voltage V'0	32NS	1 V
33	Positive-sequence voltage V'd	32NS	1 V
34	Negative-sequence voltage V'i	32NS	1 V
35	Frequency f	32NS	0.01 Hz
36	Neutral-point voltage Vnt	32NS	1 V
37	H3 neutral-point voltage V3nt	32NS	0.1 %
38	H3 residual voltage V3r	32NS	0.1 %
39	Differential current Id1	32NS	0.1 A
40	Differential current Id2	32NS	0.1 A
41	Differential current Id3	32NS	0.1 A
42	Through current It1	32NS	0.1 A
43	Through current It2	32NS	0.1 A
44	Through current It3	32NS	0.1 A

The tripping context measurements are 32-bit numeric values coded on 4 bytes, from the most significant to the least significant.

The following formats are used:

■ 32 NS: 32-bit unsigned value

■ 32 S: 32-bit signed value

Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 F - 92506 Rueil-Malmaison Cedex RCS Nanterre 954 503 439 Share capital 896 313 776 € www.schneider-electric.com As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

Production: Assystem France Publication: Schneider Electric Printed: