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IN-CIRCUIT EMULATION OF SINGLE CHIP
MICROCONTROLLERS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the in-circuit emulation of
microprocessors, specifically to an improved method of
emulating COP8® microcontrollers.

2. Related Art

It is generally recognized that real-time in-circuit emula-
tors (ICE) are a desirable, and in many cases, a necessary
tool for engineers involved in designing applications that use
an embedded microprocessor. An ICE allows the engineer to
exercise direct control over the execution of his application
program being run on the microprocessor. This control
enables the engineer to determine if a program is performing
as expected, and in the case where it is not, the ICE makes
it much easier to debug the program.

An ICE typically has some type of probe that replaces the
actual microprocessor on the engineer’s application printed
circuit board. Through an interface, usually hosted on a
standard Personal Computer, an engineer can use the ICE to
view and modify the microprocessor’s internal state, start
his program at specific locations, stop his program at specific
locations or events or view a snapshot of his program’s
execution history.

An ICE is designed around the address and data bus of the
microprocessor. It monitors and controls the flow of
addresses and data on the microprocessor’s busses and
thereby provides the features used by the engineer to control,
test and debug a program. However, a special case arises
with a class of embedded microprocessors called single chip
microcontrollers such as the National Semiconductor COP8
family. There is no address and data bus. These microcon-
trollers execute their program out of an internal non-volatile
code memory such as a ROM, EPROM or Flash.

To provide the advantages of an ICE to their customers,
microcontroller manufacturers generally develop a special
version of the single chip microcontroller, called a Bond Out
chip. A Bond Out chip disables the internal code memory of
the single chip microcontroller and brings out the internal
address and data bus on extra pins. Using extra pins allows
the address and data bus to be available to the ICE while at
the same time preserving the chip’s I/O that the user’s
application is using. These Bond Out chips are made avail-
able to ICE manufacturers so they can develop an ICE for
the chip.

While a Bond Out chip allows an ICE to be built for a
single chip microcontroller, it nonetheless has several dis-
advantages. First, because of the extra pins needed, it is
packaged in a larger package than the standard production
microcontroller. This means that it cannot be used in the site
that the production part will occupy on the target system.
Rather the Bond Out chip is placed on an ICE Probe or
resides in the ICE base unit and the pin signals are connected
to the target system through a cable or an adapter. Not
operating in the actual application board site causes severe
degradation of analog signals and often limits the environ-
mental parameters (e.g., temperature) in which the system
can be emulated and debugged.

A second disadvantage of the Bond Out chip is its higher
cost, which in some cases can be as high as ten times the cost
of the production microcontroller. Several factors contribute
to the cost of a Bond Out chip. One is the relatively low
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volume of the part. While a typical microcontroller in
production can run in the millions of units per year, Bond
Out chip consumption typically numbers in the tens to
hundreds of units per year. Also, cost is added to the Bond
Out chip by its use of larger packaging and special test flow
due to the extra pins and associated functionality. This
results in a more expensive emulator and a higher cost of
repair (the most common failure in an ICE system is the
Bond Out chip).

A third disadvantage is that over the lifetime of the
product, it is not unusual for the Bond Out chip’s operating
parameters and functionality to diverge from the production
part. The production part is always the focus of improve-
ments through bug fixes, yield improvements and die
shrinks. The Bond Out, due to its limited use, often doesn’t
share in these improvements. This most commonly happens
in cases where the Bond Out is physically a separate die,
although it can also happen where the Bond Out is a package
option due to limitations on test development resources.
When this divergence occurs, the ICE becomes less useful as
a real-time emulator.

A fourth disadvantage is that a new Bond Out chip is
required when the semiconductor manufacturer decides to
add new functionality to a microcontroller by designing and
producing new versions of the microcontroller. A new Bond
Out is required for each new functional variation. While a
new Bond Out chip is not needed if the new variation of the
microcontroller is simply less memory or fewer 1O pins, it
is required whenever new on-chip peripherals or new I/O
interfaces are added, or when there are architectural
enhancements. This can get particularly burdensome when
one considers that usually two to four new, functionally
different microcontrollers are introduced every year for
common and popular microcontroller architectures.

These different functional variations also impact the ICE
manufacturer, since a new ICE Probe has to be designed for
each new Bond Out chip. In addition to the development
costs involved, it also delays the availability of the ICE for
many months while the ICE system with the new Probe is
debugged, tested and released to production. This prevents
early users of the microcontroller from being able to develop
their applications with the aid of an ICE. Since many design
engineers will not use a microcontroller unless there is an
ICE available for it, this delay can also slow the acceptance
of a new microcontroller.

SUMMARY OF THE INVENTION

Objects of the Invention

1. An object of one aspect of the invention is to provide
circuitry in a modified COPS to allow real-time in-circuit
emulation without the need of an address/data bus or
Bond Out chip by using the standard production micro-
controller.

2. An object of one aspect of the invention is to allow
emulation of microcontrollers with integrated high per-
formance analog peripherals without degrading the ana-
log performance.

3. An object of one aspect of the invention is to allow
emulation of the COPS8 in the actual environment in which
it is going to be used without having to “ruggedize” the
emulator to handle hostile conditions.

4. An object of one aspect of the invention is to allow the
user’s target system to be easily switched by means of a
standard, simple connector between a development sys-
tem that interfaces to the emulator and a final production
system that can be shipped to a customer.
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5. An object of one aspect of the invention is to provide
circuitry in a modified COPS to allow a range of emula-
tors.

6. An object of one aspect of the invention is to require a
minimal number of modified COPS pins needed to inter-
face to the emulator to allow for small pin count micro-
controllers.

7. An object of one aspect of the invention is not to rely on
an external clock as a timing source and be clocking
scheme independent.

8. An object of one aspect of the invention is to be able to
detect internal Resets so as to allow emulation of COP8
microcontrollers without an external Reset pin.

9. An object of one aspect of the invention is the ability to
recreate the COPS digital pins that interface to the emu-
lator and that these pins can have multiplexed
functionality, not just simple digital I/O.

10. An object of one aspect of the invention is to allow the
use of on-chip flash memory and allow in-system pro-
gramming during emulation.

11. An object of one aspect of the invention is to provide for
communication between the emulator and an on-chip
monitor program to allow full visibility to the state of the
microcontroller.

Briefly, the present invention provides a system and
method of providing real-time in-circuit emulation of a
COPS8 microcontroller using the standard production device
directly soldered or otherwise connected on the application’s
printed circuit board. The system of the present invention, as
shown in FIG. 2, contemplates three major blocks. The first
block is a flash-memory based microcontroller 201 having a
slightly modified COPS8 architecture. The second block is the
emulator logic, the ICE Logic 202, and the third block is the
Control Processor 203 that interfaces between the ICE Logic
and the user interface running on a standard Personal
Computer.

One embodiment of a method of the present invention
uses four digital pins of a flash-memory based COP8 micro-
controller that are reconfigured in emulation mode to output
clock, status and data to the ICE Logic and an input pin to
input commands and data from the ICE Logic. The input
pin’s data communicates with a small ROM-based monitor
in the COP8 and provides a means of inputting and output-
ting the internal state of the machine as well as programming
the flash memory in-circuit. Those skilled in this field and
having the benefit of the present disclosure will understand
that although the term “pin” is used, the present invention is
not limited to use with microcontrollers having pins, but
may be used with any type of mechanism by which electrical
connection is made to a packaged semiconductor device,
including but not limited to solder bumps, solders balls, and
lands.

The system and method allow a user sitting at his Personal
Computer to use the system as a fully functional, real-time
in-circuit emulator. The user will be able to load and patch
his program in the on-chip flash of the COPS; run the
program or single step through it, set breakpoints; view and
change the state of any user-visible memory or register. In
addition, optional functions can be added to provide addi-
tional debugging capabilities such as code trace and hard-
ware attributes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pictorial view of the emulation system,
including the ICE, the COPS8 and an application printed
circuit board.

FIG. 2 is a block diagram of the emulation system,
including the ICE, the COPS and the application.
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FIG. 3 is a block diagram of a microcontroller in accor-
dance with the present invention.

FIG. 4 is a block diagram of the core ICE Logic.
FIG. 5 is a block diagram of the extended features ICE
Logic.
FIG.
FIG.
FIG.
FIG.
FIG.

6 shows the OUTPUT pin field layout.
7 shows a Type 1 waveform.

8 shows a Type 2 waveform.

9 shows a Type 3 waveform.

10 shows a Type 4 waveform.

FIG. 11 shows the POUT pin field layout.
FIG. 12 shows the INPUT pin field layout.

FIG. 13 shows the signal layout on the ICE Logic
connector.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide an understanding of the present inven-
tion. It will be apparent however, to those skilled in the art
and having the benefit of this disclosure, that the present
invention may be practiced with apparatus and processes
that vary from those specified herein.

«

Reference herein to “one embodiment”, or “an
embodiment”, means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment of the present
invention. The appearance of such phrases herein are not
necessarily all referring to the same embodiment.
Furthermore, various particular features, structures, or char-
acteristics may be combined in any suitable manner in one
or more embodiments.

1.0 COPS8 Architecture, Machine Cycle and Timing

The COPS is an 8-bit accumulator based, Harvard archi-
tecture microcontroller with a maximum program memory
space of 32 Kbytes. As a microcontroller, all of its program
memory and data memory resides on-chip. It has no external
bus. The program memory of all COPS8 versions used with
this invention is implemented as flash memory.

In addition to memory, different versions of the COPS8
also have different amounts and types of peripherals on-chip.
Some common examples of these on-chip peripherals
include timers, digital I/O ports, an interrupt controller and
A/D converters.

The COPS8 basic machine cycle consists of ten clock
periods. Each clock period is referred to as a Slot. So a
machine cycle consists of Slot 1 through Slot 10. The
instruction set consists of one-byte, two-byte and three-byte
instructions. The shortest instructions execute in one
machine cycle. The longest instruction executes in seven
machine cycles.

The instruction set is composed of arithmetic, logical,
memory transfer and transfer of control instructions. The
arithmetic and many of the logical instructions use the
accumulator as the destination operand. Several of the
logical instructions either skip or execute the next instruc-
tion depending on the result. There are different transfer of
control instructions with a —31/+=byte range, a 2 Kbyte page
range or a 32 Kbyte range.

For a more detailed description of the COPS8 refer to
National Semiconductor’s COP8 Family User’s Manual.
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2.0 Modified COPS8 Core

In one aspect of the present invention the standard COP§
architecture was modified . First, a small amount of read
only memory (ROM) was added beyond the 32 K program
memory address space. This ROM contains the in-system
programming (ISP) flash memory read/write routines and a
monitor (ICE Monitor) program that interfaces to the ICE
Logic. This ROM is called the Monitor ROM.

Second, two new instructions were added to the COPS
instruction set. The first instruction is a software breakpoint
instruction (assembly code mnemonic: BRK). This instruc-
tion pushes the current program counter (PC) onto the stack
and jumps to the ICE Monitor. The second instruction is a
return to flash instruction (assembly code mnemonic:
RETF). This instruction pops the PC from the stack and
starts executing in the flash memory (standard program
memory address space).

Third, four digital I/O pins were re-configured to interface
to the ICE. One of these four pins outputs a clock. This clock
is of the same frequency as that used by the COP8 CPU. All
information passed on the other three pins is done synchro-
nous to this clock. Two of the remaining three pins are used
to output cycle and instruction synchronization flags, state,
status, internal data and port recreation information. The last
of the four pins is an input pin that is used by the ICE to input
control, recreated port, command and write data informa-
tion.

3.0 Details of the New Instructions
3.1 BRK—Software Breakpoint

The software breakpoint instruction (BRK—opcode
0x62) pushes the return address onto the stack in data
memory and then jumps to a fixed address in the Monitor
ROM. The execution of this instruction also sets the Break
state signal in the modified COPS8. The jump to the Monitor
ROM and the setting of the Break state only occurs if the
modified COP8 is in ICE Hooks mode (see section 6.0,
“Details of Enabling the ICE Hooks mode”).

During the execution of the BRK instruction, the contents
of the PCL (lower 8 bits of the program counter) are
transferred to the data memory location referenced by the SP
(stack pointer). The SP is then decremented, followed by the
contents of PCU (upper 7 bits of the program counter) being
transferred to the new data memory location referenced by
the SP. The return address is now saved on the stack in data
memory RAM. Then the SP is decremented again to set up
the stack reference for the next subroutine.

Next, the program counter is loaded with a fixed address
that is the entry point into the Monitor ROM. The CPU then
starts executing the program in the Monitor ROM at that
address.

3.2 RETF—Return from Subroutine to Flash

The return to flash instruction (RETF—opcode 0x63)
pops the return address from the stack in data memory and
then begins execution at the return address in the flash
memory (standard program memory address space). The
execution of this instruction also clears the Break state
signal in the COPS.

During the execution of the RETF instruction, the SP is
first incremented. The lower seven bits of the byte at the data
memory location referenced by the SP are then transferred to
the PCU, after which the SP is again incremented. Next, the
contents of the data memory location referenced by the SP
are transferred to the PCL. The return address has now been
retrieved from the stack in data memory RAM. The CPU
then starts executing the program in the flash memory at the
return address.
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6

4.0 Details of the Ice Monitor

In one embodiment of the present invention the ICE
Monitor is a program of approximately 512 bytes in length
that is physically implemented as a non-programmable Read
Only Memory (ROM) logically located outside the standard
32 Kbyte COP8 program memory space. The ICE Monitor
program receives and executes commands that are sent to it
by the ICE Logic. The ICE Monitor program may be stored
in a ROM of any suitable design. Furthermore, the present
invention is not limited to the particular type of storage
medium in which the ICE Monitor program is stored.

Execution of the ICE Monitor begins when the modified
COPS detects a breakpoint and jumps to the ICE Monitor
entry point after pushing the current program counter onto
the stack. The first instructions of the ICE Monitor are used
to output the A, PSW, B and X registers to the ICE Logic.
These registers are used by the ICE Monitor in executing its
commands and this initial action preserves their values as
used in the user’s program context. These values are restored
to the registers before the system exits the ICE Monitor and
returns to emulating the user’s program (see sections 4.1.7
EMULATION RESET COMMAND and 4.1.8 EMULA-
TION GO COMMAND).

After outputting the four registers, the ICE Monitor
program, in accordance with one embodiment of the present
invention, then enters a loop (idle loop) waiting for a
command byte from the ICE Logic. Once a command byte
is received, the ICE Monitor decodes the command,
executes it and then returns to the idle loop awaiting the next
command. Commands are available to read and write the
data memory RAM, the special function registers and the
flash program memory. In addition, commands are used to
return the modified COP8 into emulation mode where it
executes the User’s program which is stored in flash
memory.

4.1 Details of the Ice Monitor Commands

4.1.1 Data Memory Read Command

The DATA MEMORY READ command is used to read
byte values from the modified COPS internal data memory
and its special function registers and output the values to the
ICE Logic. This command is three bytes long and is of the
form:

<01>: <Starting Address> <Count>
The first byte, <01>, is the command value that is decoded
by the command decoder.

The <Starting Address> is the address of the first location to
be read.
The <Count> is the number of locations to be read.

In executing this command, the ICE Monitor reads the
value at the starting address and outputs it to the ICE Logic.
It then decrements the Count value. If the decremented
Count value is not zero, it increments the Starting Address
value, reads the value at the new address, outputs it to the
ICE Logic and decrements the Count value again. This
continues until the Count value is equal to zero. When the
Count value is zero, this routine exits through a common end
of command routine and returns to the idle loop to await the
next command.

4.1.2 Data Memory Write Command

The DATA MEMORY WRITE command is used to input
byte values from the ICE Logic and write the values to the
modified COPS8 internal data memory and its special func-
tion registers. This is a variable length command and is of
the form:

<02> <Starting Address> <Count> <Byte 1> <Byte 2> . . .

<Byte n>
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The first byte, <02>, is the command value that is decoded
by the command decoder.

The <Starting Address> is the address of the first location to
be written.

The <Count> is the number of bytes remaining to be sent in
the command as well as the number of locations to be
written.

<Byte 1> <Byte 2> . . . <Byte n> are the values to be written.

In executing this command, the ICE Monitor inputs <Byte
1> from the ICE Logic and writes it to the starting address.
It then decrements the Count value. If the decremented
Count value is not zero, it increments the Starting Address
value, inputs the next byte from the ICE Logic, writes this
value to the new address and decrements the Count value
again. This continues until the Count value is equal to zero.
When the Count value is zero, this routine exits through a
common end of command routine and returns to the idle
loop to await the next command.

4.1.3 Program Memory Read Command

The PROGRAM MEMORY READ command is used to
read byte values from the modified COPS8 flash program
memory and write them to a buffer located in the modified
COPS internal data memory.

This command uses the low-level ISP flash memory read
routine. This low-level ISP routine requires the following
registers to be set up before it is called:

ISPADHI—High byte of the starting address

ISPADLO—Low byte of the starting address

COUNTHI—High byte of the number of bytes to read

COUNTLO—Low byte of the number of bytes to read

X—Starting address in RAM of the read buffer
The low-level ISP routine reads
<COUNTHI><COUNTLO> bytes of the flash memory
starting at address <ISPADHI><ISPADLO> and stores the
bytes in the modified COPS8 internal data memory starting at
address <X>.

Before the PROGRAM MEMORY READ command is
sent to the ICE Monitor, the ICE Logic loads the appropriate
values in the ISPADHI, ISPADLO, COUNTHI and
COUNTLO registers using the DATA MEMORY WRITE
command.

This command is two bytes long and is of the form:

<03> <Buffer Address>
The first byte, <03>, is the command value that is decoded
by the command decoder.

The <Buffer Address> is the starting address of the buffer in
the modified COPS8 internal data memory where the read
flash memory bytes are stored.

In executing this command, the ICE Monitor stores the
<Buffer Address> in the X register. It then calls the low-level
ISP read routine that is part of the Monitor ROM. The ISP
routine reads the number of bytes requested starting at the
flash memory address specified and stores them in the
internal data memory buffer starting at the address contained
in X. When the ISP routine is done reading the flash
memory, it returns to this command routine. This routine
then exits through a common end of command routine and
returns to the idle loop to await the next command.

4.1.4 Program Memory Write Command

The PROGRAM MEMORY WRITE command is used to
write byte values to the modified COP8 flash program
memory from a buffer located in the modified COPS internal
data memory.

This command uses the low-level ISP flash memory write
routine. This low-level ISP routine requires the following
registers to be set up before it is called:
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8
ISPADHI—High byte of the starting address
ISPADLO—Low byte of the starting address
COUNT—Number of bytes to write

X—Starting address in RAM of the write buffer
The low-level ISIP routine reads <COUNT> bytes from the
buffer in the modified COPS internal data memory starting
at address <X> and writes the bytes into the flash memory
starting at address <ISPADHI><ISPADLO>.

Before the PROGRAM MEMORY WRITE command is
sent to the ICE Monitor, the ICE Logic loads the appropriate
values in the ISPADHI, ISPADLO and COUNT registers
using the DATA MEMORY WRITE command.

This command is two bytes long and is of the form:

<04> <Buffer Address>
The first byte, <04>, is the command value that is decoded
by the command decoder.

The <Buffer Address> is the starting address of the buffer in
the modified COPS internal data memory where the bytes to
be written to the flash memory are stored.

In executing this command, the ICE Monitor stores the
<Buffer Address> in the X register. It then calls the low-level
ISP write routine that is part of the Monitor ROM. The ISP
routine reads the number of bytes requested from the inter-
nal data memory buffer starting at the address contained in
X and writes them to the flash memory starting at the address
specified. When the ISP routine is done writing the flash
memory, it returns to this command routine. This routine
then exits through a common end of command routine and
returns to the idle loop to await the next command.

4.1.5 Program Memory Page Erase Command

The PROGRAM MEMORY PAGE ERASE command is
used to erase a page of the flash memory. A page is typically
64 or 128 bytes in size. The flash memory has to be erased
before new values can be written to it.

This command uses the low-level ISP flash memory page
erase routine. This low-level ISP routine requires the fol-
lowing registers to be set up before it is called:

ISPADHI—High byte of the starting address of the page

to be erased

ISPADLO—Low byte of the starting address of the page

to be erased
The low-level ISP erases a page of flash memory starting at
the <ISPADHI><ISPADLO> page boundary.

Before the PROGRAM MEMORY PAGE ERASE com-
mand is sent to the ICE Monitor, the ICE Logic loads the
appropriate values in the ISPADHI and ISPADLO registers
using the DATA MEMORY WRITE command.

This command is one byte long and is of the form:

<05>
The byte <05> is the command value that is decoded by the
command decoder.

In executing this command, the ICE Monitor calls the
low-level ISP page erase routine that is part of the Monitor
ROM. The ISP routine erases a page of flash memory
starting at the specified page boundary. When the ISP routine
is done erasing the flash memory, it returns to this command
routine. This routine then exits through a common end of
command routine and returns to the idle loop to await the
next command.

4.1.6 Program Memory Mass Erase Command

The PROGRAM MEMORY MASS ERASE command is
used to erase the complete flash memory (up to 32 Kbytes)
implemented in the modified COPS. The flash memory has
to be erased before new values can be written to it.
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This command is one byte long and is of the form:

<06>
The byte <06> is the command value that is decoded by the
command decoder.

In executing this command, the ICE Monitor calls the
low-level ISP mass erase routine that is part of the Monitor
ROM. The ISP routine erases the complete flash memory
implemented in the microcontroller. When the ISP routine is
done erasing the flash memory, it returns to this command
routine. This routine then exits through a common end of
command routine and returns to the idle loop to await the
next command.

4.1.7 Emulation Reset Command

The EMULATION RESET command is used to start
execution of the user’s program from a reset.

This command is four bytes long and is of the form:

<07> <X> <B> <A>
The byte <07> is the command value that is decoded by the
command decoder.

The <X> is the value for the X register.
The <B> is the value for the B register.
The <A> is the value for the A register.

In executing this command, the ICE Monitor restores the
X, B and A registers to the values that were previously set
by the user’s program. The PSW register is not restored
since it is initialized by a Reset. After restoring the last
register, this routine stays in a loop waiting for the modified
COPS to be Reset. When the ICE Logic asserts Reset to the
microcontroller’s RESET pin, the Break state signal is
cleared. After Reset is de-asserted, the modified COP8 will
start execution at address 0000 of the flash memory (user’s
program).

This command can be abort before Reset is asserted. If the
ICE Monitor receives a byte from the ICE Logic while it is
looping, it will fall through the loop and exit through a
common end of command routine and return to the idle loop
to wait for a new command.

4.1.8 Emulation Go Command

The EMULATION GO command is used to start execu-
tion of the user’s program at a specific address. The address
where execution will begin is on the top of the software
stack in the modified COPS8 internal data memory.

This command is five bytes long and is of the form:

<08> <X> <B> <PSW> <A>
The byte <08> is the command value that is decoded by the
command decoder.

The <X> is the value for the X register.
The <B> is the value for the B register.
The <PSW> is the value for the PSW register.
The <A> is the value for the A register.

Before the EMULATION GO command is sent to the ICE
Monitor, the ICE Logic loads the address where the user
wants his program to begin executing. This address is placed
on the top of the software stack using the DATA MEMORY
WRITE command.

In executing this command, the ICE Monitor restores the
X, B, PSW and A registers to the values that were previously
set by the user’s program. This routine then executes a RETF
instruction that clears the Break state signal and pops an
address off the software stack and loads it into the program
counter. Execution of the user’s program in flash memory
begins at this new value in the program counter.

4.2 Ice Monitor and Ice Logic Synchronization

The COPS in a user’s application can run at any arbitrary
frequency up to the maximum permitted by the device
specification. The ICE Logic runs at a fixed speed. If the
modified COPS is running at a relatively low frequency, the
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ICE Logic can input data to the ICE Monitor faster than it
can process it. If the modified COPS8 is running at its
maximum frequency, the ICE Monitor can output data faster
than the ICE logic can process it. Because of this wide range
of operating conditions, the ICE Monitor and ICE Logic
must synchronize the data transfers between them.

Whenever the ICE Monitor is waiting for data from the
ICE Logic, it is executing a small loop polling a received
byte status flag. In this loop no instructions are skipped.
When a byte sent from the ICE Logic has been loaded into
the ICE Monitor’s receive register, the ICE Monitor detects
the received byte status flag is asserted and skips an instruc-
tion which causes the modified COPS to output a Skip Flag
on the OUTPUT pin (see Section 5.2). The ICE Logic
detects this Skip Flag and knows that the byte was received.
Once the ICE Monitor has read the byte from its receiver
register, it again skips an instruction. When the ICE Logic
detects a second Skip Flag after sending a byte, it knows that
the ICE Monitor has consumed the byte and it is safe to send
another byte. This Skip Flag synchronization prevents the
ICE Logic from overrunning the ICE Monitor’s receive
register.

Whenever the ICE Monitor is prepared to send data to the
ICE Logic, it waits in a loop until it gets a signal from the
ICE Logic that it is ready to receive the byte. The ICE Logic
signals its readiness by sending a byte to the ICE Monitor.
The value of the byte is superfluous. It is the action of
sending the byte that gates the ICE Monitor. Upon receiving
the byte, the ICE Monitor throws it away, skips an
instruction, outputs the pending data to the ICE Logic and
skips another instruction. If the ICE Monitor has more data
to send, it again loops waiting for the ICE Logic to send the
gating byte. When the ICE Logic detects the first Skip Flag
in this sequence it knows that the ICE Monitor has seen its
signal and is preparing to output its data. Upon detecting the
second Skip Flag, the ICE Logic knows that the ICE
Monitor has output its pending data and is ready to send
another byte. The ICE Logic can then read the transferred
byte from its receiver buffer. This gating byte synchroniza-
tion prevents the ICE Monitor from overrunning the ICE
Logic’s receive buffer.

5.0 Details of the Reconfigured Digital 10

Four of the modified COPS digital I/O pins are reconfig-
ured to interface to the ICE Logic. The four pins are the
lower four bits of the G Port commonly referred to as GO,
G1, G2 and G3. G3 is reconfigured to output the CPU clock.
G2 is reconfigured to output synchronizing, state, status and
internal data information. G1 is reconfigured to output the
program counter update status and the output state of the
four G Port pins used in this interface. GO is reconfigured to
input control, target pin data, command and write data
information.

5.1 G3—CLK

The G3 (CLK) pin outputs a clock of the same frequency
as that used by the modified COP8 CPU. This pin outputs 10
clocks per machine cycle. All information passed on this
interface (except external Reset) is done synchronously to
this clock. This pin is always clocking except when the
modified COPS is in HALT mode, IDLE mode or the CKI
clock has been lost. The signal on this pin is referred to as
CLK in the following descriptions.

5.2 G2—OUTPUT

The G2 (OUTPUT) pin outputs synchronizing, state,
status and internal data information. There is a significant
amount of information that is transferred on this pin to the
ICE Logic. The following list summarizes by group the
transferred information:
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Synchronizing signals:

Machine cycle synchronization (First clock of machine
cycle)

Instruction cycle synchronization (Fetch signal, first byte
of an instruction)

State signals:

COP8 executing in Break mode (running ICE Monitor)

COP8 executing in Emulation mode (running User
program)

Status signals:

Skipped Instruction (current instruction is being skipped)

PL/PU replacement when a program transfer occurs

Internal data signals:

Internal data bus

The OUTPUT pin breaks the 10-slot COP8 machine cycle
into two fields (see FIG. 6): the Status Field and the Data
Field. COPS internal data is always output in the Data Field.
The remaining synchronization, state and status information
is encoded in the two slots of the Status Field.

10

15
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Type 2 waveform—ILOW voltage at negative CLK edge,
HIGH voltage level at positive CLK edge.

Decoded by the ICE Logic as a Sync bit with a ‘1’ logic
value.

FIG. 8. Type 2 Waveform

| Slot |

_/N_/

CLK Pin

OUTPUT Pin XXXX / XXXX

Type 3 waveform—ILOW voltage at negative CLK edge,
LOW voltage at positive CLK edge.

FIG. 6. OUTPUT Pin Field Layout

| B COPS8 Machine Cycle ------------------------------ - |
| Slot 1 Slot 2 Slot 3 Slot 4 Slot 10 |
CLK Pin / \_/ \_/ \_/ \_/ M \_/ \_/
| Status1 | Status2 | Data0 | Datal | | Data7 |
| Status Field | - Data Field ---------------------- - |
35

There are four waveform types that are used to encode the
information in the Status Field. These waveform types are
referred to as Type 1, Type 2, Type 3 and Type 4 waveforms.
Type 1 and Type 2 waveforms are bi-phase signals and are
only found in the Status Field of the OUTPUT signal. A
Type 1 or Type 2 waveform is also called a Sync bit since
they are used to synchronize the ICE Logic and COPS8 on a
machine cycle, instruction cycle and state basis. The four
waveforms are defined as follows:

Type 1 waveform—HIGH voltage at negative CLK edge,
LOW voltage at positive CLK edge.

Decoded by the ICE Logic as a Sync bit with a ‘0’ logic
value.

FIG. 7. Type 1 Waveform

| s |
VARV

XXXX_\_XXXX

CLK Pin

OUTPUT Pin
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Decoded by the ICE Logic as a ‘0’ logic value.

FIG. 9. Type 3 Waveform

| se |
VRNV

XXXX

CILK Pin
OUTPUT Pin

Type 4 waveform—HIGH voltage at negative CLK edge,
HIGH voltage level at positive CLK edge.
Decoded by the ICE Logic as a ‘1’ logic value.

FIG. 10. Type 4 Waveform

| s |
/TN

XXXX

CLK Pin

OUTPUT Pin XXXX

Status1 (Slot 1) Information—Machine and Instruction
synchronization. The OUTPUT signal in Slot 1 is used to
synchronize the ICE Logic to the modified COPS8 on both a
machine cycle and instruction cycle basis. During normal
execution, this slot will always contain either a Type 1 or a
Type 2 waveform. Since there are no Sync bits in the Data
Field of the OUTPUT signal, the first slot with a Sync bit
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following a slot with no Sync bit identifies it as Slot 1
(machine synchronization). The type of Sync bit (Type 1 or
Type 2) identifies whether or not this is the first cycle of an
instruction (instruction synchronization). A Type 2 wave-
form signals the first cycle of an instruction and is defined
as a Fetch flag.

The ICE Logic also uses the absence of Sync bits to
decode internal resets. If there hasn’t been a Sync bit in the
last 10 CLK periods AND external Reset has been
de-asserted, the ICE Logic will decode this as the modified
COPS is resetting internally.

Status2 (Slot 2) Information—State and Status. This slot
is used to pass the current state (Break or Emulation),
instruction status (skipped or not) and PC replacement status
(replace part of the PC or not). The exact meaning of the
Status information in this slot depends on the information
decoded in Slot 1. See Table I for a complete listing of all
Slot 1 and Slot 2 combinations.

The presence or absence of a Sync bit in this slot
determines the State information. If a Sync bit is present the
modified COPS is in Break state. If there is no Sync bit, the
modified COPS is in Emulation state.
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Decoding Slot 2 logic value information depends on the
presence or absence of a Slot 1 Fetch flag. If Slot 1 contains
a Fetch flag, the logic value of this slot is used to specify
whether or not the current instruction is being skipped. A
logic value of ‘1’ (Type 2 or Type 4 waveform) specifies that
the current instruction is being skipped.

If Slot 1 does not contain a Fetch flag, the logic value of
this slot is used to specify whether or not the lower byte (PL)
or the upper 7-bits (PU) of the program counter (PC) had
been replaced in the previous cycle. A logic value of ‘1’
specifies a PU/PL replacement. What part of the PC is
actually replaced is signaled by the POUT pin (see section
5.3).

A special case of PL/PU replacement is an interrupt. The
POUT Pin is also used to signal that an interrupt is being
processed.

Data Field (Slots 3 to 10)—Data. The data is shifted out
from a COPS internal data bus using only Type 3 or Type 4
waveforms.

Summary of the OUTPUT Pin (G2)

TABLE 1

Valid Slot Waveform Combinations

Slot 1 Slot 2 S3 S4 S5 S6

S7

S8 S9  S10 Meaning

Type 1 Type 1 DO D1 D2 D3

Type 1 Type 2 DO D1 D2 D3

Type 1 Type 3 DO D1 D2 D3

Type 1 Type 4 DO D1 D2 D3

Type 2 Type 1 DO D1 D2 D3

Type 2 Type 2 DO D1 D2 D3

Type 2 Type 3 DO D1 D2 D3

Type 2 Type 4 DO D1 D2 D3

Type 3 Type 3

Type 4 Type 3

D4

D4

D4

D4

D4

D4

D4

D4

D5 D6 D7 Not a Fetch, Break State

D[7 ... 0] of previous cycle contains internal
bus data

D5 D6 D7 Not a Fetch, Break State

D[7 ... 0] of previous cycle contains PC data
D5 D6 D7 Not a Fetch, Emulation State

D[7 ... 0] of previous cycle contains internal
bus data

D5 D6 D7 Not a Fetch, Emulation State

D[7 ... 0] of previous cycle contains PC data
D5 D6 D7 Fetch, Break State

D[7 ... 0] of previous cycle contains internal
bus data

D5 D6 D7 Fetch, Break State, Instruction skipped

D[7 ... 0] of previous cycle contains internal
bus data

D5 D6 D7 Fetch, Emulation State

D[7 ... 0] of previous cycle contains internal
bus data

D5 D6 D7 Fetch, Emulation State, Instruction skipped
D[7 ... 0] of previous cycle contains internal
bus data

Reset, Emulation State

D[7 . .. 0] contains no valid data

Reset, Emulation State

D[7 . .. 0] contains no valid data
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5.3 G1—pOUT The interrupt activity and PC activity information is used

The G1 (POUT) pin outputs instruction source, PC update in combination with the Fetch Flag and PC replacement

activity and the data that allows the ICE Logic to recreate the tatus of the OUTPUT pin. F this data. the ICE Logi
output state of the four G Port digital I/O pins used in this Stais ot 11 pin. rom Hus data, the osie

interface. This pin uses only Type 3 and Type 4 waveforms. 5 : >

The POUT pin breaks the 10-slot COP8 machine cycle recreated PC can be stored in a Trace Memory in the ICE
into three fields (see FIG. 11): the PC Status Field, the Logic to provide the User with a snapshot of his program’s
Configuration Register Field and the Data Register Field. execution history.

recreates the PC as it executes the User’s program. This

FIG. 11. POUT Pin Field Layout

| e e e o COP8 Machine Cycle +---===-=-===---------ommommoomoo oo - |
| Slot 1 | Slot 2 | Slot 3 | R | Slot 6 | Slot 7 | « e e | Slot 10

SN SN NS NSNS SN

CLK Pin

| PC Status Field | B RREEEEEEEE Configuration ----------- - | B REEEEEEEETEETE Data -------------- - |
| Register Field | Register Field |
25

The Configuration Register Field and the Data Register
Field are used by the ICE Logic to recreate the output TABLE III
functionality of G0, G1, G2 and G3. For each G Port pin that
is recreated the modified COPS8 outputs one Configuration

Register bit and one Data Register bit. These two bits allow 30 PCAﬂ
the ICE Logic to support the various types of output con-
figurations available on the modified COP8 (see Table II). POUT Pin
When a pin is configured for simple I/O, the modified COP8 OUTPUT Pin Signals Signals PC
simply outputs an image of its internal Configuration and 35
Data Register bits. For pins that are configured to use an FETCH PL/PU Status Field
Alternate Function, the modified COPS8 outputs the appro-
priate Configuration and Data Register bit pattern to reflect FIAG REPLACEMENT SIOT1 SLOT 2 PC ACTION
the output value of the function.
40 0 0 0 0 No Action - PC Frozen
TABLE 1l 0 0 1 0 PC Incremented
COP8 Output Port Driver Configurations 0 1 0 0 PCL Replaced
Configuration Data Output Driver 0 1 0 1 Full 7 bits of PCH
Register Bit Register Bit Configuration 45 Replaced
0 0 Tri-state output 0 1 1 1 Lower 4 bits of PCH
0 1 Wear pull-up Replaced
1 0 Push-pull zero output
1 1 Push-pull one output 1 N.A. X 0 PC Incremented
50 1 N.A. X 1 Interrupt
In Slot 3 through Slot 6, the POUT pin shifts out the ]
Configuration Register bits least significant bit (LSB) first. N-A. - Not Applicable
In Slot 7 through Slot 10, the Data Register bits are shifted X - Don’t care
out LSB first. The ICE Logic shifts in this POUT data and 33
at the end of Slot 10 synchronously outputs the new output
state to its recreated output pins, which are connected to the As shown in Table III, during non-fetch cycles (Fetch
User’s target system. Flag=0) the PC can stay the same, increment or have various

The PC Status field is used to provide the ICE Logic with parts replaced. These actions represent the complete set of
~ ; ~ : ior " all th ible PC acti ilable to the COPS instructi
information on the source of instructions (Flash or Monitor ~ a1 the possible ¥L actions available o the Instruction

ROM), interrupt activity and PC activity. When the Fetch set. This allows the ICE Logic to faithfully recreate the PC
Flag is asserted on the OUTPUT pin, the logic value on the and track the instruction flow accurately. During a fetch

POUT pin during Slot 1 determines the source of the cycle the PC is either incremented or an interrupt is being
instruction. A logic value of ‘0’ specifies that the instruction 45 processed. If the ICE Logic decodes an interrupt, it forces
is being fetched from the Flash Memory. A logic value of ‘1’ the interrupt vector OxOOFF into its recreated PC to mimic

specifies an instruction fetch from the Monitor ROM. the actions of the modified COPS.
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Summary of the POUT Pin (G1)

TABLE IV

18

Valid Slot 1 and Slot 2 Waveform Combinations

S1 s2 S3 S4 S5 S6 Y S8 S9 S10  Meaning
0 0 GCO GC1 GC2 GC3 GDO GD1 GD2 GD3  Fetch — Fetch from Flash
Not Fetch — PC frozen last cycle
0 1 GCo GC1 GC2 GC3 GDO GD1 GD2 GD3  Fetch — Fetch from Flash, Interrupt
Not Fetch — Full PCU replaced last cycle
1 0 GCO GC1 GC2 GC3 GDO GD1 GD2 GD3  Fetch — Fetch from ICE Monitor
Not Fetch — PC incremented last cycle
1 1 GCo GC1 GC2 GC3 GDO GD1 GD2 GD3 Fetch — Fetch from ICE Monitor, Interrupt

Not Fetch — 4 LSBs of PCU replaced last cycle

5.4 GO—INPUT

The GO (INPUT) pin inputs control, command, write data
and the target pin data that allows the modified COPS8 to
recreate the input state of the four G Port digital I/O pins
used in this interface. This pin uses only Type 3 and Type 4
waveforms.

The INPUT pin breaks the 10-slot COP8 machine cycle
into two fields (see FIG. 12): the Command Field and the
Input Data Field.

20

is used by the ICE Logic to input commands and data to the
ICE Monitor. It is asserted when Slot 10 contains a logic ‘0’
and Slot 1 contains a logic ‘1°.

The Hardware Break command is used to force the
execution of a Software Breakpoint instruction (BRK). This
command is asserted when both Slot 10 and Slot 1 contain
a logic ‘0°. When the modified COP8 decodes a Hardware
Break command, it finishes execution of the current instruc-
tion (and skips the next, if it would normally have been

FIG. 12. INPUT Pin Field Layout

| Slot 10 Slot 1 Slot 2

CLK Pin

| Command Field |

The Command Field can contain three different com-
mands and the Input Data Field can contain two different
types of data (see Table V). The Input Data Field can contain
either 8-bits of ICE Monitor data or 4-bits of Target pin data.
ICE Monitor data is used when the ICE Logic is inputting to
the ICE Monitor a command to decode or the data required
by a previously sent ICE Monitor command. As the 66X20
ICE Monitor data is input to the modified COPS, it is shifted
into the ICE Monitor’s receive buffer (ICEDATA register).
After all eight bits are shifted in, a received byte status flag
is asserted that is readable by the ICE Monitor.

The Target pin data is used to allow the modified COP§
to recreate the input functionality of the four G port pins
used in this interface. The ICE Logic samples its recreated
G[0..3] port pins that are connected to the User’s target at the
end of Slot 1. When Input Data Field contains the Target pin
data, the ICE Logic shifts in G0 during Slot 2, G1 during
Slot 3, G2 during Slot 4 and G3 during Slot 5. The modified
COPS uses these shifted in values in place of the pins’
normal input buffer values. Slot 6 through Slot 9 are ‘don’t
cares’ and are ignored by the modified COPS.

The three commands available in the Command Field are
the Hardware Break command, the Monitor Data command
and the Recreated Port Input command. The Recreated Port
Input command is the default command and is asserted when
Slot 10 contains a logic ‘1° and Slot 1 contains a logic ‘0°.
The Monitor Data command is used only in Break state. It
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Slot 3

/N N/ N/ /N N/

Slot 9 |

skipped), pushes the PC on the stack and then vectors to the
ICE Monitor. When the Command Field contains a Hard-
ware Break command, the Input Data Field always contains
Port Input data.

The Hardware Break command is disabled if the modified
COPS is already in the Break state. However, if the modified
COPS is in the Break state and the Hardware Break com-
mand is asserted and remains asserted as the ICE Monitor
executes the Return to Flash instruction (RETF), the modi-
fied COP8 will execute one instruction and then vector back
to the ICE Monitor.

The INPUT pin can also be used to force the execution of
a Software Breakpoint instruction even if the modified
COPS is in either Idle or Halt mode (Power Saving modes).
When the modified COPS is in one of its Power Saving
modes, the CLK pin is not toggling. As a result, the
Hardware Break command cannot be input. In order to force
the modified COPS to exit from the Power Saving mode and
execute a Software Breakpoint instruction, the ICE Logic
drives the INPUT pin to a logic ‘0’, then to a logic ‘1° and
then to a logic ‘0’ again. The ‘0’ to ‘1’ transition followed by
a ‘1’ to ‘0’ transition causes the modified COPS to exit the
Power Saving mode, push the PC on the stack and then
vector to the ICE Monitor.
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Summary of the INPUT Pin (G0)

TABLE V

20

Valid Slot Waveform Combinations

S0 s1 S2 S3 S4 S5 S6 S7 S8 S9 Meaning
0 0 TGO TG1 TG2 TG3 — — — — Hardware Break Request
Recreated Port Input data from Target
0 1 Do D1 D2 D3 D4 D5 D6 D7 Monitor Data Command
D[7 ... 0] load into ICEDATA register
1 0 TGO TG1 TG2 TG3 — — — — Recreated Port Input
Recreated Port Input data from Target
1 1 — — — — — — — — Data Invalid
15
6.0 Details of Enabling the Ice Hooks Mode -contimued
STANDARD
2x7HEADER ~ eeecececaeaas
The ICE Hooks mode described in this patent is enabled NeC o1 T
in the modified COP8 by inputting a specific bit pattern 2 TAGETRESET/ 5
. s . . o TARGET GO __ COP8 FLASH
(key) on the modified COP8’s GO pin during the initial TARGET G103 6 DEVICE
assertion of external Reset. Tarcerez 127 89
-------------- 09 100]
S - o11 120
. . TARGET G3
When external Reset is asserted the modified COP8’s GO 25 | ~=°°~ 166'"_1"]10 314
. . . mil==+ ========="===" | lbeemmemepemmaao
and G2 Port pins are configured with a weak pull-up. With —100 mile
external Reset still asserted, the ICE Logic outputs a clock
on OUTPUT (G2). The ICE Logic then synchronously
outputs the key on INPUT (GO0). The ICE Logic keeps 20

external Reset asserted and continually inputs the key until
it detects transitions on the CLK (G3) pin, which it decodes
as CLK being active and the modified COP8 in ICE Hooks
mode. The ICE Logic then tri-states the clock it is outputting
on OUTPUT, disables the key output on INPUT and
de-asserts external Reset.

In order to minimize the chance of an accidental enabling
of ICE Hooks mode in a non-development environment the
length of the key should be fairly long (>16 bits). An
example of an implementation that uses a 24-bit key would
be the following pattern: 0x47CF09. The modified COPS8
does not start shifting in the key until its internal initializa-
tion is complete.

Once ICE Hooks is enabled, the only way to exit from the
mode is to completely remove power from the modified
COoPs.

7.0 Details of the Mechanical Connection to the
Emulator

The physical connection between the modified COP8 and
the ICE Logic is accomplished with a standard 2x7 header.
To use the emulator with the modified COPS soldered on the
target system PCB, the User would design his PCB with a
2x7-header pattern located next to the G Port of the modified
COPS8. The connections to this pattern are shown below in
FIG. 13:

FIG. 13: Signal layout on ICE Logic connector
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The preferred implementation of the connector uses a 2x7
header with 100 mil (0.1") spacing between all pins. Each
pin is a 25 mil square pin with a 230 mil insertion length.
Standard headers manufactured by 3M (part number: 2380-
5121TN) or Molex (part number: 10-88-1801) are accept-
able.

When the User is using the emulator during development,
a mating connector from the emulator is placed on the
header. The signals from the modified COPS8 are connected
to the ICE Logic through one side of the header. The ICE
Logic’s recreated ports and target reset signal are connected
to the User’s system through the other side of the header.

When the User wants to test his system without the
emulator, he can simply short the pins across the header
using standard shorting blocks. This connects the target
system logic directly to the pins of the modified COPS. For
production, the header need not be inserted and the PCB can
then be assembled with shorting wires connecting adjacent
holes (1 to 2, 3 to 4, etc.) in the header pattern.

An alternative that simplifies production would be to lay
out the PCB with traces connecting adjacent holes. During
development, the engineer would cut the traces before
inserting the 2x7 header. In production, with the adjacent
holes already shorted, no further assembly work on the
header is required.

8.0 Details of the Core Ice Logic

8.1 Output Pin and Clock Pin (Block 401) Logic Equations
and Explanation

8.1.1 COPS8 Interface

401-1
401-2

CLK = G3;
OUTPUT = G2;
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401-3 G2 = CTL_CIK; 401-64 BREAK.ena = RSLOT?2;
401-4  G2.0e = NOT. (STOP_CODE); s 401-65 BREAK.clr = RESET__ACTIVE;
8.1.2 Machine Cycle Synchronization and Timing . .
8.1.4 Output Pin Data Register
401-5  LEVEL_AT NEG_CLK_EDGE.d = OUTPUT; 10
401-6  LEVEL_AT_NEG_CLK_EDGE.clk = .NOT. (CLK); 401-66 OUT_DATA7.d = OUTPUT;
4017 NOT_A_SYNC_BIT.d = .NOT. (LEVEL_AT__ 401-67 OUT_DATA7.clk = CLK;
NEQ CILK EDGE XOR. OUTPUT); 401-68 OUT_DATA7.ena = .NOT(RSLOTl .OR. RSLOTZ);
401-8 NOT_A__SYNC_BIT.clk = CLK; 401-69 OUT__DATA6.d = OUT__DATA7;
4019  RSLOT2.d = NOT_A_SYNC BIT .AND. (LEVEL_AT__ 401-70 OUT_DATAG6.clk = CLK;
NEG_CLK_EDGE .XOR. OUTPUT); 15 401-71 OUT_DATAS6.ena = NOT(RSLOT1 .OR. RSLOT2);
401-10 RSLOT2.clk = CLK; 401-72 OUT_DATAS.d = OUT_DATAS;
401-11 RSLOT2.clr = RESET; 401-73  OUT_DATAS clk = CLK;
401-12  RSLOT3.d = RSLOT2; 401-74 OUT_DATAS5.ena = NOT(RSLOT1 .OR. RSLOT2);
401-13 RSLOT3.clk = CLK; 401-75 OUT_DATA4.d = OUT__DATAS;
401-14 RSLOT3.clr = RESET; 401-76  OUT_DATA4.clk = CLK;
401-15 RSLOT4.d = RSLOT3; 20 401-77 OUT_DATA4.ena = NOT(RSLOT1 .OR. RSLOT2);
401-16 RSLOT4.clk = CLK; 401-78 OUT_DATA3.d = OUT_DATA4;
401-17 RSLOT4.clr = RESET: 401-79 OUT_DATA3.clk = CLK;
401-18 RSLOT5.d = RSLOT4; 401-80 OUT_DATA3.ena = NOT(RSLOT1 .OR. RSLOT2);
401-19 RSLOTS5.clk = CLK; 401-81 OUT__DATA2.d = OUT__DATA3;
401-20 RSLOTS5.clr = RESET: 401-82 OUT_DATA2.clk = CLK;
401-21 RSLOT6.d = RSLOTS; 25 401-83 OUT_DATA2.ena = NOT(RSLOT1 .OR. RSLOT2);
401-22 RSLOT6.clk = CLK; 401-84 OUT__DATA1.d = OUT__DATA2;
401-23 RSLOT6.clr = RESET: 401-85 OUT_DATAl.clk = CLK;
401-24 RSLOT7.d = RSLOTS; 401-86 OUT_DATA1.ena = NOT(RSLOT1 .OR. RSLOT2);
401-25 RSLOT7.clk = CLK; 401-87 OUT_DATAO.d = OUT_DATAT;
401-26  RSLOT7.clr = RESET: 401-88 OUT_DATAO.clk = CLK;
401-27 RSLOTS8.d = RSLOT7; 401-89 OUT_DATAO.ena = NOT(RSLOT1 .OR. RSLOT2);
40128 RSLOTS.clk = CLK; 30
40129 RSLOTY.clr = RESET;
401-30 RSLOT9.d = RSLOTS; . .
40131 RSLOTO.clk = CLK: 8.1.5 Mode Enabling Logic
401-32  RSLOTY.clr = RESET;
401-33 RSLOT10.d = RSLOTY;
401-34 RSLOT10.clk = CLK; 35
401-35 RSLOT10.clr = RESET; 401-90 ENABLE_CLEAR.d = CTL_DATA7;
401-36  RSLOT1.set = RESET; 401-91 ENABLE_CLEAR.clk = N_CTL_WR;
401-37 RSLOT1.d = RSLOT10 # RSLOTY; 401-92 ENABLE_CLEAR.ena = (CTL_ADR([7 . . . 0] == 0x00);
401-38 RSLOTl.clk = CLK; 401-93 CLK_DETECT[2 ... 0].d = CLK_DETECT[2 ... 0] + 1;
401-39  RSLOTl.clr = RSLOT2; 401-94 CLK_DETECT[2 . .. 0]clk = CLK;
40 401-95 CLK_DETECT[2 ... Ol.clr = ENABLE_CLEAR;
. 401-96 STOP_CODE.d = VCC;
8.1.3 Output Pin Flag Decodes 401-97 STOP_CODE.clk = .NOT.(CLK_DETECT2);
401-98 STOP_CODE.clr = ENABLE__CLEAR;
401-40 2%1;(':[’%%= LEVEL_AT_NEG_CLK_EDGE .XOR. s 8.1.6 Control Processor Read Buffer Logic
401-41 FETCH.clk = CLK;
401-42 FETCH.ena = RSLOTY;
401-43 FETCH.clr = RSLOT10;
401-44 SKIP.d = FETCH .AND. OUTPUT; 401-99 FIRST_SKIP.d = VCC;
401-45 SKIP.clk = CLK; 50 401-100 FIRST_SKIP.clk = SKIP;
401-46  SKIP.ena = RSLOT?2; 401-101 FIRST_SKIP.clr = CLR_FLAGS;
401-47  SKIP.clr = RESET__ACTIVE; 401-102 SECOND_ SKIP.d = FIRST__SKIP;
401-48 PC_REPLACE.d = .NOT. (FETCH) .AND. OUTPUT; 401-103 SECOND__SKIP.clk = SKIP;
401-49 PC_REPLACE.clk = CLK; 401-104 SECOND__SKIP.clr = CLR_FLAGS;
401-50 PC_REPLACE.cna = RSLOT2; 401-105 CLR_FLAGS.d = CTL_DATAO;
401-51 PC_REPLACE.clr = RESET_ACTIVE; 55 401-106 CLR_FLAGS.clk = N_CTL_WR;
401-52 RESET_ACTIVE.set = RESET; 401-107 CLR_FLAGS.ena = (CTL_ADR([7 . . . 0] == 0x00);
401-53 RESET_ACTIVE.d = .NOT. (LEVEL_AT_NEG_CLK__ 401-108 READ_BUFFER[7 . .. 0]d = OUT_DATA[7 ... 0];
EDGE .XOR. OUTPUT); 401-109 READ_ BUFFER[7 . .. O].clk = CLK;
401-54 RESET_ACTIVE.clk = CLK; 401-110 READ_BUFFER[7 . .. Ol.ena =
401-55 RESET_ACTIVE.ena = RSLOT1; (READ_CNTR][2 . . . 0] == 0x2) .AND. RSLOTT;
401-56 RESET_ACTIVE.clr = RSLOT?; o 401111 READ_CNTR[2. .. 0]ld = READ_CNTR[2...0] + 1;
401-57 OUT_FLAGS0 = FETCH; 401-112 READ_CNTR[2 . . . 0].clk = CLK;
401-58 OUT_FLAGS1 = SKIP; 401-113 READ_CNTR[2 . . . O].ena = FIRST_SKIP .AND. .NOT.
401-59 OUT_FLAGS2 = PC_REPLACE; (READ__CNTR2) .AND. RSLOT10;
401-60 OUT_FLAGS3 = RESET__ACTIVE; 401-114 READ_CNTR[2 . .. O]clr = .NOT. (FIRST__SKIP);
401-61 OUT_FLAGS4 = STOP_ CODE; 401-115 CTL_DATA[7 ... 0] = READ_BUFFER[7 ... 0];
401-62 BREAK.d = LEVEL_AT_NEG_CLK_EDGE 401-116 CTL_DATA[7 . .. 0]oe = (CTL_ADR([7 ... 0] == 0x05)
XOR. OUTPUT; 65 .AND. .NOT. (N_CTL_RD)
401-63 BREAK.clk = CLK; 401-117 CTL_DATAO = SECOND__SKIP;
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401-118 CTL_DATA.oe = (CTL_ADR][7 . . . 0] == 0x06)
.AAND. NOT. (N_CLT_RD];

8.1.7 Explanation of Logic Equations

There is a tremendous about of decoding that the ICE
Logic must do with the OUTPUT and POUT signals. This
decoding is completely dependent on the ICE Logic running
synchronously with the modified COPS8. Synchronization is
accomplish by the sync bits of the OUTPUT signal that
allows the ICE Logic to identify Slot 1 of the modified
COP8’s machine cycle every machine cycle. The whole
sequence of events starts with the ICE Logic determining if
the current slot contains a sync bit or not. Note: The Slots in
the ICE Logic are referred to as Recreated Slots, or RSLOT.

To decode if the current slot has a sync bit, the logic levels
of the OUTPUT pin on both edges of CLK have to be
examined. If they are different, the slot contains a sync bit.
First, the logic level at the negative clock edge is captured
in a D-flop (lines 401-5 and 401-6). If the logic level at the
positive clock edge is the same, the slot does not contain a
sync bit and this is captured in a D-flop (lines 401-7 and
401-8). The sync bit that defines Slot 1 is decoded at the end
of Slot 1 and is used to start the timing chain beginning with
Slot 2 (RSLOT2, lines 401-9 to 401-11). Once Slot 2 has
been asserted, the timing chain continues through Slot 3 to
Slot 10 and then Slot 1 (RSLOT3 to RSLOT10, RSLOTI,;
lines 401-12 to 401-39). The timing chain will stay in Slot
1 until another sync bit is detected and Slot 2 is asserted.

The FETCH flag (lines 401-40 to 401-43) is decoded
every cycle based on a sync bit in Slot 1. The SKIP flag
(lines 401-44 to 401-47) is decoded every time FETCH is
asserted and there is a ‘1’ logic level on the OUTPUT pin
during Slot 2. The PC_REPLACE flag (lines 401-48 to lines
401-51) is decode every non-FECTH cycle when there is a
‘1’ logic level on the OUTPUT pin during Slot 2. The
RESET__ACTIVE flag (lines 401-52 to 401-56) is asserted
whenever RESET is asserted on the modified COP8’s
N_RESET pin (lines 402-1 to 402-3 and 402-14) or when-
ever the timing chain is in Slot 1 and the modified COPS8
doesn’t output a sync bit. These flags are grouped together
with the STOP__CODE flag (see below) as the bus OUT__
FLAGS[4..0] (lines 401-57 to 401-61) and are available to
the other blocks of the ICE Logic. The BREAK flag (lines
401-62 to 401-65) is decoded every cycle based on a sync bit
in Slot 2.

The data that is available on the OUTPUT pin is captured
every cycle using an eight stage shift register (lines 401-66
to 401-89). The LSB of the data is initially captured in
OUT_DATA?7 during Slot 3. During the next seven Slots,
the next least significant bits are captured in OUT__DATA7
while the previously captured bits are shifted through the
register. At the end of Slot 10 data bit 0 is in OUT__DATAO,
data bit 1 in OUT_DATALI, etc. This data is held in the
OUT _DATA register during Slot 1 and Slot 2 and beginning
in Slot 3 the capture cycle is repeated.

Inputting the Enabling Code into the modified COPS8 to
put it into ICE Hooks mode is under the control of the
Control Processor. The Enabling Code is input to the modi-
fied COP8 whenever the signal STOP__ CODE (lines 401-96
to 401-98) is de-asserted. With STOP__CODE de-asserted,
the G2 signal from the modified COPS8, which is normally an
input, is enabled as an output (lines 401-3 and 401-4) to
allow outputting of the enabling clock. Before starting the
ICE Logic to input the Enabling Code the Control Processor
first writes a ‘1’ to the ENABLE__CLEAR (lines 401-90 to
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401-92) register to clear (de-assert) STOP__CODE and the
ICE Hooks detection logic. The Control Processor then
writes a ‘0’ to the ENABLE__CLEAR register to allow the
detection of the modified COP8 in ICE Hooks mode. The
ICE Logic detects that the modified COPS is in ICE Hooks
mode by the presence of a clock signal on the G3 signal.
This clock signal is detected by using it to clock a 3-bit
counter CLK_DETECT[2..0] (lines 401-93 to 401-95).
When this counter overflows, it causes STOP__CODE to be
asserted which disables the inputting of the Enabling Code
to the modified COPS.

When the Control Processor is waiting to receive a byte
of data from the ICE Monitor, it uses a sequence of two Skip
flags to detect that the data is available in the ICE Logic to
read (see Section 4.2). The sequence of two Skip flags is
detected by the FIRST SKIP (lines 410-99 to 401-1 01) and
the SECOND_SKIP (lines 401-102 to 401-104) flops.
When the Control Processor is expecting a byte, it will first
clear these flops by writing a ‘1’ to the CLR_FLAGS
register (lines 401-105 to 401-107) and then writing a ‘0’ to
it. The Control Processor will then poll the SECOND__SKIP
flop by reading address 0x06, waiting for the status bit to
become asserted. When the SECOND_ SKIP flop is
asserted, the Control Processor knows that the ICE Monitor
has output the data and it has been captured in the READ__
BUFFER (lines 401-108 to 401-114). The Control Processor
then reads the READ_ BUFFER by reading address 0x05
(lines 401-115 and 401-116).

8.2 Reset Pin (Block 402) Logic Equations and Explanation

8.2.1 COPS Interface

402-1  N_RESET = .NOT. ( RESET_ COP8
402-2 .OR. .NOT. (BREAK) .AND. .NOT.
(DISABLE_TAR_RST) .AND.
.NOT. (N_TRESET)
402-3 .OR. START_EM_ TRST .AND. .NOT.(N_TRESET) );
8.2.2 Control Processor Interface
402-4  RESET_COP8.d = CTL_DATA3;
402-5  RESET_COP8.clk = N_CTL_WR;
402-6  RESET_COPS8.ena = (CTL_ADR[7 . . . 0] == 0x00);
402-7  DISABLE_TAR_RST.d = CTL_DATA4;
402-8  DISABLE_TAR_RST.clk = N_CTL_WR;
402-9  DISABLE_TAR_RST.ena = (CTL_ADR[7 . .. 0]== 0x00);
402-10 START _EM_TRST.d = CTL_DATAS;
402-11 START _EM_TRST.clk = N_CTL_WR;
402-12 START_EN_TRST.ena = (CTL_ADR[7 . . . 0] == 0x00);
402-13 START_EM_TRST.clr = .NOT. (BREAK);
8.2.3 Emulator Core Interface

402-14 RESET = .NOT. (N_RESET);

8.2.4 Target Interface (Block 406)

402-15 N_TRESET = N_TAR_RESET;

8.2.5 Explanation of Logig Equations

N__RESET (lines 402-1 to 402-3) can be asserted at any
time by the Control Processor or it can be asserted as a result
of a Reset assertion on the User’s Target system (line
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402-15) under certain conditions. The Control Processor can
assert N__ RESET by writing a ‘1’ to the RESET__COP8
register (lines 402-4 to 402-6). The Control Processor can
allow an assertion of the Target’s N_ TRESET signal to
assert N__ RESET during emulation mode by writing a ‘0’ to
the DISABLE TAR_RST register (lines 402-7 to 402-9).
And finally, the Control Processor can allow an assertion of
the Target’s N_ TRESET signal to assert N_ RESET to start
an emulation by writing a ‘1’ to the START _EM_ TRST
register (lines 402-10 to 402-13). When N_RESET is
asserted, this block asserts RESET (line 402-14) to be used
as part of the RESET__ACTIVE logic (line 401-52).

8.3 Pout Pin (Block 403) Logic Equations and Explanation

8.3.1 COPS8 Interface

403-1 POUT = G1;

8.3.2 Recreated Port Registers

TG__CONFIGO.d = POUT;
TG_CONFIGO.clk = CLK;
TG_CONFIGO.ena = RSLOT3;
TG__CONFIGO.clr = RESET__ACTIVE
TG__CONFIG1.d = POUT;
TG_CONFIG1.clk = CLK;
TG_CONFIG1.ena = RSLOT4;
TG_CONFIG1.clr = RESET_ACTIVE
TG__CONFIG2.d = POUT;
TG_CONFIG2.clk = CLK;
TG_CONFIG2.ena = RSLOTS;
TG_CONFIG2.clr = RESET_ACTIVE
TG__CONFIG3.d = POUT;
TG__CCNFIG3.clk = CLK;
TG_CONFIG3.ena = RSLOTS6;
TG_CONFIG3.clr = RESET_ACTIVE
TG_DATAOQ.d = POUT;
TG_DATAO.clk = CLK;
TG_DATAO.ena = RSLOT7;
TG__DATAC.clr = RESET__ACTIVE;
TG_DATA1.d = POUT;
TG_DATA1.clk = CLK;
TG_DATAl.ena = RSLOTS;
TG__DATAI.clr = RESET__ACTIVE;
TG_DATA2.d = POUT;
TG_DATA2.clk = CLK;
TG_DATA2.ena = RSLOTY;
TG_DATA2.clr = RESET__ACTIVE;
TG_DATA3.d = POUT;
TG_DATA3.clk = CLK;
TG_DATA3.ena = RSLOT10;
TG__DATA3.clr = RESET__ACTIVE;

8.3.3 Pout Pin Flag Capture

403-34
403-35
403-36
403-37
403-38
403-39
403-40
403-41

SLOT1_POUT.d = POUT;
SLOT1_POUT.clk = CLK;
SLOT1_POUT.ena = SLOTI;
SLOT1_POUT.clr = RESET__ACTIVE;
SLOT2_POUT.d = POUT;
SLOT2_POUT.clk = CLK;
SLOT2__POUT.ena = SLOT2;
SLOT2_POUT.clr = RESET__ACTIVE;
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8.3.4 Emulator Core Interface

403-42 RESET__ACTIVE = OUT_FLAGS3;
403-43 POUT_FLAGS0 = SLOT1_POUT;
403-44 POUT_FLAGS1 = SLOT2_POUT;

8.3.5 Explanation of Logic Equations

The data output on the POUT pin is used to recreate the
pins that are used in the interface. Each recreated pin has two
register bits (CONFIG and DATA) that are used to determine
its output structure. The CONFIG register bits are output
first during Slot 3 to Slot 6 and are stored in TG__ CONFIG
[3..0] (lines 403-2 to 403-17). The DATA register bits come
out next, during Slot 7 to Slot 10 and are stored in
TG_DATA[3..0] (lines 403-18 to 403-33). Both
TG__CONFIG[3..0] and TG DATA[3..0] are output to Rec-
reated Ports block (block 405) where the pins output struc-
tures are actually recreated.

The POUT pin also outputs two flags that are used
primarily to recreate the COP8 program counter as it
executes. These flags are captured in two D-flops (lines
403-34 to 403-41) and are output to the Emulator Core as the
POUT flag bus POUT_FLAGS[1..0] (lines 403-43 and
403-44).

8.4 Input Pin (Block 404) Logic Equations and Explanation

8.4.1 COPS Interface

404-1 GO = INPUT;
404-2  INPUT = RSLOT10 .AND. .NOT. (SYNC2_CMD__
WAITING) .AND. .NOT. (INP_HW_BRK_ CMD)

404-3 .OR. RSLOT1 .AND. SYNC2_ CMD_ WAITING

404-4 .OR. RSLOT2 .AND. .NOT. (SYNC2__CMD_ WAITING
.AND. TG_INPO

404-5 .OR. RSLOT2 .AND. SYNC CMD__ WAITING .AND.
CMD__BUFFERO

404-6 .OR. RSLOT3 .AND. .NOT. (SYNC2__CMD_ WAITING
.AND. TG_INP1

404-7 .OR. RSLOT3 .AND. SYNC_CMD_ WAITING .AND.
CMD__ BUFFER1

404-8 .OR. RSLOT4 .AND. .NOT. (SYNC2__CMD_ WAITING
.AND. TG_INP2

404-9 .OR. RSLOT4 .AND. SYNC_CMD_ WAITING .AND.
CMD__BUFFER2

404-10 .OR. RSLOT5 .AND. .NOT. (SYNC2_ CMD_ WAITING
.AND. TG_INP3

404-11 .OR. RSLOTS .AND. SYNC_CMD_ WAITING .AND.
CMD__BUFFER3

404-12 .OR. RSLOT6 .AND. CMD__BUFFER4

404-13 .OR. RSLOT7 .AND. CMD__BUFFERS

404-14 .OR. RSLOTY .AND. CMD__BUFFER6

404-15 .OR. RSLOTY .AND. CMD__BUFFER7

404-16 .OR. .NOT. (STOP__CODE) .AND. ENABLE_ CODE;

404-17 INP_HW_BRK_CMD = SYNC2_HW_BRK_CMD

.OR. HW_BP;

8.4.2 Control Processor Interface and Synchronizing
Logic

404-18
404-19
404-20

CMD_BUFFER[7 . .. 0].d = CTL_DATA[7 . . . O];
CMD_BUFFER[7 . . . Olclk = N_CTL_WR;
CMD_BUFFER[7 . . . O].ena =

(CTL_ADR[7 . . . 0] == 0x01);

CMD_ WAITING.d = CTL_ DATA1;

CMD_ WAITING.clk = N_CTL_WR;

CMD_ WAITING.ena = (CTL_ADR[7 . . . 0] == 0x00);
CMD_ WAITING.clr = SYNC2_CMD_ WAITING;
HW_BRK_CMD.d = CTL_DATA?2;

404-21
404-22
404-23
404-24
404-25
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404-26
404-27
404-28
404-29
404-30
404-31
404-32
404-33
404-34
404-35
404-36
404-37
404-38
404-39
404-40
404-41
404-42
404-43
404-44
404-45
404-46
404-47

HW_BRK_CMD.clk = N_CTL_WR;
HW_BRK_CMD.ena = (CTL_ACR[7 . . . 0] == 0x00);
HW__BRK_ CMD.clr = BREAK;

ENABLE__CLEAR.d = CTL_DATA7,;
ENABLE__CLEAR.clk = N_CTL_WR;

ENABLE_ CLEAR.ena = (CLT_ADR][7 . . . 0] == 0x00);
SYNC1__CMD_ WAITING.d = CMD_ WAITING;
SYNC1_CMD__WAITING.clk = CLK;

SYNC1__CMD_ WAITING.ena = RSLOT3;
SYNC1_CMD__WAITING.clr = ENABLE__CLEAR;
SYNC2__ CMD_ WAITING.d = SYNC1_ CMD_ WAITING;
SYNC2_CMD WAITING.clk = CLK;

SYNC2__CMD_ WAITING.ena = RSLOTS;
SYNC2_CMD__WAITING.clr = ENABLE__CLEAR;
SYNC1_HW_BRK_CMD.d = HW_BRK__CMD;
SYNC1_HW_BRK__CMD.clk = CLK;

SYNC1_HW_ BRK_CMD.ena = RSLOT3;
SYNC1_HW_BRK_CMD.clr = ENABLE_ CLEAR;
SYNC2_HW_BRK_CMD.d = SYNC1_HW_BRK__CMD;
SYNC2_HW_BRK__CMD.clk = CLK;

SYNC2_HW_ BRK__CMD.ena = RSLOTS;
SYNC2__HW_BRK__CMD.clr = ENABLE_ CLEAR;

8.4.3 Enabling Code Logic

404-48
404-49
404-50
404-51
404-52
404-53
404-54
404-55
404-56
404-57
404-58
404-59
404-60
404-61
404-62
404-63
404-64
404-65
404-66
404-67
404-68
404-69
404-70
404-71
404-72
404-73
404-74

404-75

404-76

ENABLE_BYTEO[7 . . . 0] = 0x09;
ENABLE_BYTE1[7 . . . 0] = OxCF;
ENABLE_BYTE2[7 . . . 0] = 0x47;
ENABLE_CNTR[5 . . . 0ld = ENABLE_CNTR[5 .. 0] + 1;
ENABLE_CNTR[5 . . . O]clk = CTL_CLK;
ENABLE_CNTR[5 . . . O]ena = .NOT. (STOP_ CODE);
ENABLE_CNTR[5 . . . Olclr = ENABLE_CLEAR;
STOP__ CODE = OUT_FLAGS4;
ENABLE__CODE = (ENABLE CNTR == 0x08) .AND.
ENABLE_BYTE00
.OR. (ENABLE_CNTR == 0x09) .AND.
ENABLE_BYTEO1

.OR. (ENABLE_CNTR == 0x0A) .AND.

ENABLE__BYTEOQ2

.OR. (ENABLE_CNTR == 0x0B) .AND.

ENABLE__BYTEO3

.OR. (ENABLE_CNTR == 0x0C) .AND.

ENABLE__BYTE04

.OR. (ENABLE_CNTR == 0x0D) .AND.

ENABLE_ BYTEOS

.OR. (ENABLE_CNTR == 0x0E) .AND.

ENABLE__BYTEO6
.OR. (ENABLE_CNTR == 0x0F) .AND.
ENABLE__BYTEQ7
.OR. (ENABLE_CNTR == 0x10) .AND.
ENABLE__BYTE10
.OR. (ENABLE_CNTR == 0x11) .AND.
ENABLE__BYTE11
.OR. (ENABLE_CNTR == 0x12) .AND.
ENABLE_BYTE12
.OR. (ENABLE_CNTR == 0x13) .AND.
ENABLE__BYTE13
.OR. (ENABLE_CNTR == 0x14) .AND.
ENABLE__BYTE14
.OR. (ENABLE_CNTR == 0x15) .AND.
ENABLE_ BYTE15
.OR. (ENABLE_CNTR == 0x16) .AND.
ENABLE__BYTE16
.OR. (ENABLE_ CNTR == 0x17) .AND.
ENABLE__BYTE17
.OR. (ENABLE_CNTR == 0x18) .AND.
ENABLE__BYTE20
.OR. (ENABLE_ CNTR == 0x19) .AND.
ENABLE__BYTE21

.OR. (ENABLE_CNTR == 0x1A) .AND.

ENABLE__BYTE22

.OR. (ENABLE_ CNTR == 0x1B) .AND.

ENABLE__BYTE23

.OR. (ENABLE_CNTR == 0x1C) .AND.

ENABLE__BYTE24
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404-77 .OR. (ENABLE__CNTR == 0x1D) .AND.
ENABLE__BYTE25
.OR. (ENABLE_ CNTR == 0x1E) .AND.
ENABLE__BYTE26
.OR. (ENABLE_ CNTR == 0x1F) .AND.

ENABLE_BYTE27;

404-78

404-79

8.4.4 Explanation of Logic Equations

The INPUT pin is used to input the ICE Hooks enabling
code, commands, command data and the Recreated Port pins
input values. The INPUT multiplexor (lines 404-2 to 404-
16) determines what is shifted out of the ICE Logic onto the
modified COP8 INPUT pin (line 404-1). If STOP_ CODE is
not asserted (line 404-55), the INPUT multiplexor will select
the Enabling code for output. The three byte Enabling code
(lines 404-48 to 404-50) is serialized using a 6-bit
ENABLE__CNTR counter (lines 404-51 to 404-54) that
generates 32 counts. The first eight counts output a ‘0’ in
order to prime the modified COPS detection circuit. The next
24 counts output ENABLE__CODE (lines 404-56 to 404-
79). This cycle continues until STOP__CODE is asserted.
The ENABLE_CNTR is cleared by the Control Processor
by it first setting and then clearing ENABLE CLEAR (lines
404-29 to 404-31) register. This ENABLE__ CLEAR register
is a mirror copy of the ENABLE CLEAR register in Block
401 (lines 401-90 to 401-92).

Monitor data is input to the ICE Monitor in the modified
COPS8 by the Control Processor first loading the data into
CMD__BUFFER[7..0] (lines 404-18 to 404-20). The Con-
trol Processor then sets the CMD_WAITING flag (lines
404-21 to 404-24). This flag is synchronized to the modified
COPS8 using a two stage synchronizer SYNC1_CMD__
WAITING (lines 404-32 to 404-35) and SYNC2_CMD__
WAITING (lines 404-36 to 404-39). When SYNC2__
CMD_ WAITING becomes asserted the INPUT multiplexor
shifts out the Monitor Data Command during Slot 10 and
Slot 1; and shifts out the data in CMD__BUFFER during Slot
2 through Slot 9.

The Hardware Break Request signal, INP. HW__BRK
CMD (line 404-17), is asserted by either the Attribute
Memory Control (Block 504) or the Control Processor. The
Control Processor asserts this signal by setting the
HW_BRK CMD flag (404-25 to 404-28). This flag is
synchronized to the modified COP8 using a two stage
synchronizer SYNC1_HW_ BRK__CMD (lines 404-40 to
404-43) and SYNC2_HW_BRK__CMD (lines 404-44 to
404-47). When SYNC2_HW_BRK_CMD becomes
asserted the INPUT multiplexor shifts out the Hardware
Break Request Command during Slot 10 and Slot 1.

8.5 Recreated Ports (Block 405) Logic Equations and Expla-
nation

8.5.1 Target Interface

405-1 TAR_GO = SYNC_TG_DATAO;

405-2  TAR_GO.oe = SYNC_TG__CONFIGO;

405-3  TAR_GO_WP.oe = VCC;

405-4  TAR_GO_WP.oe = .NOT. (SYNC_TG__CONFIGQ) .AND.
SYNC_TG__DATAO;

405-5 TAR_G1 = SYNC_TG_DATA1;

405-6 TAR_Gl.oe = SYNC_TG_ CONFIGT;

405-7  TAR_G1 _WP = VCG;

405-9  TAR_G1 WP.oe = NOT. (SYNC_TG__CONFIG1) .AND.

SYNC_TG_DATAI;
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-continued

405-9

405-10
405-11
405-12

TAR_G2 = SYNC_TG_DATA2;

TAR_G2.0e = SYNC_TG__CONFIG2;

TAR_G2_ WP = VCC;

TAR_G2_WP.oe = NOT. (SYNC_TG__CONFIG2) .AND.
SYNC_TG__DATA2;

TAR_G3 = TG_DATA3;

TAR_G3.0e = SYNC_TG_ CONFIG3;

TAR_G3_WP = VCC;

TAR_G3_WP.oe = NOT. (SYNC_TG__ CONFIG3) .AND.
TG_DATA3;

405-13
405-14
405-15
405-16

8.5.2 Recreated Port Output Registers

405-17 SYNC_TG_CONFIG[3 . . . 0]d = TG_CONFIG[3 . .. 0];
405-18 SYNC_TG_CONFIG(3 . . . O]clk = CLK;

405-19 SYNC_TG_CONFIG[3 . . . O].ena = RSLOT10;

405-20 SYNC_TG_CONFIG[3 . . . Ol.clr = RESET_ACTIVE;
405-21 SYNC_TG_DATA[2 .. .0ld = TG_DATA[2 . .. 0];
405-22  SYNC_TG_DATA[2 . . . Olclk = CLK;

405-23 SYNC_TG_DATA[2 . . . Olena = RSLOT10;

405-24 SYNC_TG_DATA[2 . . . Ol.clr = RESET_ACTIVE;

8.5.3 Recreated Port Input Register

405-25 TG_INP[3...0]d = TAR_G[3...0];
405-26 TG_INP[3 ... 0lclk = CLK;
405-27 TG_INP[3 ... Ol.ena = RSLOTI;

8.5.4 Emulator Core Interface

405-28 RESET_ACTIVE = OUT_FLAGS3;

8.5.5 Explanation of Logic Equations

The Recreated Ports’ Target Interface (lines 405-1 to
405-16) supports the four configurations of each port pin
independently. Each port pin is recreated using two output
buffers, both of which can be tri-stated. One of the buffers,
the data buffer, is used to output the data value of the port.
The other buffer, the weak pull-up buffer, is used to enable
a weak pull-up resistor. To recreate a port that is outputting
a data value, the output enable of the data buffer is asserted
(lines 405-2, 405-6, 405-10 and 405-14) with the data value
on the buffer’s input (lines 405-1, 405-5, 405-9 and 405-13).
When a data value is being output, the weak pull-up buffer
is tri-stated. To recreate a weak pull-up port, the output
enable of the data buffer is de-asserted and the output enable
of the weak pull-up buffer is asserted (lines 405-4, 405-8,
405-12 and 405-16). The weak pull-up buffer’s input (lines
405-3, 405-7, 405-11 and 405-15) is tied to Vec to enable it
to source current through a 330 Kohm resistor to simulate
the COP8’s weak pull-up port structure. To recreate an input
port, the output enables of both buffers are de-asserted.

The Recreated Port data that is shifted out by the modified
COPS8 on the POUT pin and captured in the POUT Interface
(Block 403) are clocked into the Recreated Configuration
and Data registers (lines 405-17 to 405-24). These registers
are used to control the data and weak pull-up output buffers.
These Recreated Port registers are asynchronously cleared
whenever Reset is asserted (line 405-28).

The data values on the Recreated Port target pins are
clocked into an Input register (lines 405-25 to 405-27) and
are fed to the INPUT Pin Interface (Block 404) which inputs
the data to the modified COPS.
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8.6 Control Processor Interface (Block 407) Logic Equa-
tions and Explanation
8.6.1 Emulator Core Interface

407-1  CTL_DATA[7 ... 0] = CP_DATA[7 ... 0];
4072 CTL_DATA[7 . . . Oloe = .NOT. (N_CTL_WR);
407-3  CP_DATA[7 . .. 0] = CTL_DATA[7 ... 0];
407-4  CP_DATA[7 . .. Ol.oe = .NOT. (N_CTL_RD);
407-5  CTL_ADR[7 ...0]d = CP_DATA[7 ... 0L
407-6  CTL_ADR[7 . .. 0]clk = NOT. (CP_ALE);
407-7  N_CTL_RD = N_CPRD;

407-8 N_CTL_WR = N_CPWR;

407-9  CTL_CIK = CP_CIK;

407-10 CP_BREAK = BREAK;

8.6.2 Explanation of Logic Equations

The Control Processor interface uses a conventional
microprocessor interface with an 8-bit multiplexed address
and data bus. The Read (N_CTL_RD) and Write
(N_CTL_WR) control lines control bi-directional data
flow. When N__CTL__WR is asserted, the Control Processor
is writing data to the ICE Logic (lines 407-1 and 407-2).
Conversely, when N__CTL_RD is asserted the Control
Processor is reading data from the ICE Logic (lines 407-3
and 407-4).

The address is captured off the bus using the Address
Latch Enable (CP_ALE) control line (lines 407-5 and
407-6). The Read and Write control lines, as well as a free
running clock, are buffered and output to the ICE Logic core.
The Break state is output from the ICE Logic to the Control
Processor as a status signal (line 407-10).

Those skilled in the field of the present invention and
having the benefit of this disclosure will recognize that the
terms pin and pins, as used herein, may refer to a connection
terminal and the circuitry associated with that connection
terminal. Such terminology is common and well understood
in this field. Furthermore, those skilled in this field and
having the benefit of this disclosure will recognize that the
terms pin and pins, are often used to refer to the connection
terminals of a packaged integrated circuit. Other types of
connection terminals, including but not limited to, lands,
solder balls, and solder bumps, may also be used to provide
signal pathways between an integrated circuit and one or
more external circuit elements.

The present invention may be implemented with various
changes and substitutions to the illustrated embodiments.
Such changes may include, but are not limited to, imple-
menting the present invention with different codes for the
instruction set changes, effecting breakpoints using on-chip
hardware comparators instead of a break instruction, storing
the Monitor program in different types of memory, and
changing the number of I/O pins that communicate with the
ICE logic. Importantly, the present invention is not limited
to use with the COP8 microcontroller, but may be used
generally with a microcontroller which does not provide
access to internal address and data busses.

It will be readily understood by those skilled in the art that
various other changes in the details, materials, and arrange-
ments of the parts and operations which have been described
and illustrated in order to explain the nature of this invention
may be made without departing from the principles and
scope of the invention as set forth in the claims.

What is claimed is:

1. An in-circuit emulation system, comprising

a) a target system,;

b) an external circuit;

¢) a microcontroller contained in said target system com-

prising:
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(1) a processing unit, can
(2) a plurality of I/O ports that interface to circuits on
said target system;

d) a memory from which said microcontroller executes a

program

¢) means for one or more of said I/O ports to be recon-

figured to interface with said external circuit;

f) means for coupling the reconfigured I/O ports to said

external circuit;

2) means for said external circuit to recreate port func-

tionality of said reconfigured 1/O ports;

h) means for coupling the recreated port functionality to

said target system;

i) means for said external circuit to load said program into

said memory;

j) means for said microcontroller to execute said program

under the control of said external circuit;
whereby said microcontroller excludes dedicated ports to
interface to said external circuit and said microcontroller
will be emulated in said target system while maintaining all
the functionality of its said I/O ports.

2. The in-circuit emulation system of claim 1, wherein
said memory is integrated on-chip with said microcontroller.

3. The in-circuit emulation system of claim 2, wherein
said memory is a non-volatile memory.

4. The in-circuit emulation system of claim 1, wherein
said external circuit comprises an FPGA.

5. The in-circuit emulation system of claim 1, further
comprising means for said external circuit to recreate the
program counter of said microcontroller as said program
executes.

6. The in-circuit emulation system of claim 5, further
comprising a first trace memory coupled to said external
circuit to capture the recreated program counter.

7. The in-circuit emulation system of claim 5, further
comprising a first control circuit coupled to said external
circuit providing breakpoints, triggers and other actions
based on said recreated program counter.

8. The in-circuit emulation system of claim 1, wherein
said microcontroller further comprising:

(1) a data memory,

(2) a plurality of registers.

9. The in-circuit emulation system of claim 8, further
comprising means for said external circuit to recreate a first
data contained in said data memory as said program
executes.

10. The in-circuit emulation system of claim 8, further
comprising means for said external circuit to recreate a
second data of one or more of said registers as said program
executes.

11. The in-circuit emulation system of claim 8, further
comprising a second trace memory to capture said first data
and said second data.

12. The in circuit emulation system of claim 8, further
comprising a second control circuit coupled to said external
circuit providing breakpoints, triggers and other actions
based on said first data and said second data.

13. The in-circuit emulation system of claim 1, wherein
said microcontroller further comprising a monitor memory
containing means for executing commands from said exter-
nal circuit.

14. The in-circuit emulation system of claim 1 wherein
means for coupling between said microcontroller and said
external circuit comprising:

(1) a pattern on said target system with two parallel rows

of connections;
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(2) a first row of said connections connecting to said
reconfigured I/O ports of said microcontroller;

(3) a second row of said connections connecting to said
recreated port functionality of said external circuit;

(4) the connections of said first row and said second row
are aligned in such a manner so as the connection of the
recreated port is directly opposite the connection of the
reconfigured I/O port that it recreates;

whereby shorting opposing connections of said parallel rows
of connections reconfigures said in-circuit emulation system
into a production system.

15. The in-circuit emulation system of claim 1, wherein
said means for coupling between said microcontroller and
said external circuit comprises a wireless interface.

16. An in-circuit emulation system, comprising

a) a target system,;

b) an external circuit;

¢) a microcontroller contained in said target system com-
prising:

(1) a processing unit,
(2) a plurality of I/O ports that interface to circuits on
said target system;

d) a memory from which said microcontroller executes a
program

e) a first connector on said target system for coupling one
or more of said I/O ports to said external circuit;

f) said external circuit outputs a predetermined pattern to
said I/O ports causing said microcontroller to recon-
figure one or more of said I/O ports to interface with
said external circuit;

) said microcontroller outputs a first data on the recon-
figured I/O ports to enable said external circuit to
recreate port functionality of said reconfigured 1/O
ports;

h) a second connector on said target system for coupling
the recreated port functionality to said target system;

i) said external circuit outputs a second data to said
reconfigured I/O ports causing said microcontroller to
write said second data into said memory;

j) said external circuit outputs a third data to said recon-
figured I/O ports causing said microcontroller to
execute instructions from said memory;

whereby said microcontroller contained in said target system
will be emulated while maintaining all the functionality of
its said I/O ports and excluding dedicated ports to interface
to said external circuit.

17. The in-circuit emulation system of claim 16, wherein
said memory is integrated on-chip with said microcontroller.

18. The in-circuit emulation system of claim 16, wherein
said memory is a non-volatile memory.

19. The in-circuit emulation system of claim 16, wherein
said external circuit comprises an FPGA.

20. The in-circuit emulation system of claim 16, further
comprising said microcontroller outputting a third data on
said reconfigured I/O ports to enable said external circuit to
recreate the program counter of said microcontroller as said
program executes.

21. The in-circuit emulation system of claim 20, further
comprising a first trace memory whereby said external
circuit writes the recreated program counter into said first
trace memory.

22. The in-circuit emulation system of claim 20, further
comprising a first control circuit coupled to said external
circuit wherein said first control circuit compares said rec-
reated program counter to supplied values providing
breakpoints, triggers and other actions.
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23. The in-circuit emulation system of claim 16, wherein
said microcontroller further comprising:

(1) a data memory

(2) a plurality of registers.

24. The in-circuit emulation system of claim 23, further
comprising said microcontroller outputting a fourth data on
said reconfigured I/O ports to enable said external circuit to
recreate said data memory as said program executes.

25. The in-circuit emulation system of claim 23, further
comprising said microcontroller outputting a fifth data on
said reconfigured I/O ports to enable said external circuit to
recreate one or more of said registers as said program
executes.

26. The in-circuit emulation system of claim 23, further
comprising a second trace memory whereby said external
circuit writes the recreated data memory and one or more of
the recreated registers into said second trace memory.

27. The in-circuit emulation system of claims 23, further
comprising a second control circuit coupled to said external
circuit wherein said second control circuit compares one or
more locations of said recreated data memory and one or
more said recreated registers to supplied values providing
breakpoints, triggers and other actions.

28. The in-circuit emulation system of claim 23, wherein
said microcontroller further comprising a monitor memory
executing control routines based on a sixth data input on said
reconfigured I/O ports from said external circuit.

29. The in-circuit emulation system of claim 16, wherein
said first connector and said second connector on said target
system comprising:

(1) said first connector is patterned on said target system

as a first row of connections;

(2) said second connector is patterned on said target
system as a second row of connections;

(3) said first row of connections and said second row of
connections are placed parallel to each other a prede-
termined distance apart;

(4) the connections of said first row and said second row
are aligned in such a manner so as the connection of a
recreated port is directly opposite the connection of the
reconfigured I/O port that it recreates;

whereby shorting opposing connections of the parallel rows
of connections reconfigures said in-circuit emulation system
into a production system.

30. The in-circuit emulation system of claim 16, wherein

said connector on said target system comprises a wireless
interface.
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31. A method of emulating a microcontroller in a target
system, comprising

a) providing means of communication between said

microcontroller and an external circuit;

b) providing means of reconfiguring I/O ports of said

microcontroller to interface with said external circuit;
¢) providing a memory from which said microcontroller
will execute a program;

d) providing means for said external circuit to load said

program in said memory;

¢) providing means for said external circuit to control

where said microcontroller will start and stop executing
said program;

f) providing means for the reconfigured I/O ports of said

microcontroller to be recreated by said external circuit;

) providing means for the recreated I/O ports to replace

said reconfigured I/O ports on said target system;
whereby said microcontroller will be emulated in said target
system while maintaining all functionality of its said I/O
ports and excluding dedicated ports to interface to said
external circuit.

32. The method of claim 31, further providing means for
said external circuit to recreate the program counter of said
microcontroller.

33. The method of claim 32, further providing means for
capturing said program counter in a first trace memory.

34. The method of claim 32, further providing means for
performing breakpoints, triggers and other actions based on
said program counter.

35. The method of claim 31, further providing means for
said external circuit to recreate one or more locations of a
data memory of said microcontroller creating a first data.

36. The method of claim 31, further providing means for
said external circuit to recreate one or more registers of said
microcontroller creating a second data.

37. The method of claim 31, further providing means for
storing said first data and said second data in a second trace
memory.

38. The method of claim 31, further providing means for
performing breakpoints, triggers and other actions based on
said first data and said second data.

39. The method of claim 31, further providing means for
said target system to be used either as an in-circuit emulation
system or a production system.



