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Section 1.  Introduction 
This paper describes the design of a sensorless vector control drive of the 3-phase permanent 
magnet synchronous motor (PMSM). The application runs on the Kinetis K60 ARM® Cortex™-
M4 microcontroller. The document is more focused on the application implementation on the 
Kinetis K60 microcontroller, and only briefly describes the theory of the PMSM vector control, as 
it is well described in the referenced literature. Although the paper describes implementation on 
the Kinetis K60, the application can successfully run on any of the microcontrollers from the 
Kinetis family. 

Application features 

• Sensorless vector control of a permanent magnet synchronous motor 
• Back-EMF observer used as a sensorless position estimator algorithm 
• Open loop start-up until 10% of nominal speed 
• Targeted at the Tower rapid prototyping system (K60 tower board, Tower 3-phase low 

voltage power stage) 
• Vector control with a speed closed-loop 
• Rotation in both directions 
• Application speed ranges from 0% to 100% of nominal speed (no field weakening) 
• Operation via user’s buttons on the Kinetis K60 tower board or via FreeMASTER software  

Benefits of our solution 

Kinetis is a mixed-signal MCU family based on the new ARM Cortex-M4 core and the most 
scalable portfolio of mixed-signal ARM Cortex-M4 MCUs in the industry. Five performance 
options are available from 50 to 150 MHz, with flash memory ranging from 32 KB to 1 MB, and 
high RAM-to-flash ratios throughout. Common peripherals, memory maps and packages both 
within and across the MCU families allow for easy migration to greater/less memory and 
functionality. A vector control algorithm, demonstrated in this application, enables vector control 
of the PMSM with no need of position feedback sensor (encoder or resolver), while keeping high 
dynamic performance above 10% of nominal speed. 
 

References 

[1] K60P144M150SF3RM - K60 Sub-Family Reference Manual, Freescale Semiconductor, 2011 
[2]   DRM110 - Sensorless PMSM Control for an H-axis Washing Machine Drive, Designer 

Reference Manual, Freescale Semiconductor, 2010 
[3]   DRM105 - PM Sinusoidal Motor Vector Control with Quadrature Encoder, Designer 

Reference Manual, Freescale Semiconductor, 2008 
[4]   Set of General Math and Motor Control Functions for Cortex M4 Core, User Reference 

Manual, Freescale Semiconductor, 2011 
[5]   ACLCM4UG - Advanced Control Library for Cortex-M4 Core, User Reference Manual, 

Freescale Semiconductor, 2012 
[6]   AN3729 - Using FlexTimer in ACIM/PMSM Motor Control Applications, Freescale 

Semiconductor, 2008 
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[7]   MC33937, Three Phase Field Effect Transistor Pre-driver, Freescale Semiconductor 2009 
[8]   ARM®v7-M Architecture Reference Manual, ARM Limited 2010 
[9]  K60P144M100SF2V2 – K60 Sub-Family Data Sheet, Freescale Semiconductor 2012 
[10]  AN1948 - Real Time Development of MC Applications using the PC Master Software 

Visualization Tool , Freescale Semiconductor 2005 
[11]  TWR‐MC‐LV3PH User’s Manual, Freescale Semiconductor 2011 
[12]  PMSM Vector Control with Encoder on Kinetis, Demo Set-up Guide, Freescale 

Semiconductor 2011 
 

Acronyms and abbreviations 

Table 1-1 summarizes the acronyms used in the documents. 
Table 1-1 Acronyms and abbreviated terms 

TERM MEANING 
AC Alternating current 
ADC Analog-to-digital converter 
Back-EMF Back electromotive force: a voltage generated by a spinning motor 
BDM Background debug mode 
BLDC motor Brushless DC motor 
DC Direct current 
DMA Direct Memory Access Controller: an MCU module capable of performing 

complex data transfers with minimal intervention from a host processor. 
DSC Digital signal controller 
DT Dead time: a short time that must be inserted between the turning off of one 

transistor in the inverter half bridge and the turning on of the complementary 
transistor due to limited switching speed of the transistors 

FOC Field oriented control 
FTM FlexTimer module: a timer module on the Kinetis K60 MCU which generates the 

6-channel PWM 
GPIO General purpose input/output 
IAR The name of the company producing compilers for different platforms and MCU 

manufacturers, including ARM 
IDE Integrated Development Environment 
I/O Input/output interfaces between a computer system and the external world (A 

CPU reads an input to sense the level of an external signal and writes to an 
output to change the level of an external signal) 

ISR Interrupt Service Routine: a fragment of code (a function) that is executed when 
interrupts from the core or from the peripheral modules are generated. 

LED Light emitting diode 
K60 Freescale Kinetis K60 ARM Cortex-M4 32-bit microcontroller 
MCAT Motor Control Application Tuning Tool. The PC application based on 

FreeMASTER allowing setting and tuning of the application parameters while 
observing the drive feedback signals 

MTPA Maximum Torque per Amp Algorithm: A special algorithm used in vector control 
of AC motors. This algorithm increases the efficiency and the power of the motor 
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by utilizing the reluctance torque of the motor. 
MSB Most Significant Bit 
NVIC Nested Vector Interrupt Controller: an integral part of the ARMv7 core 

responsible for the interrupts processing 
PDB Programmable Delay Block 
PI controller Proportional-integral controller 
PIT Periodic Interrupt Timer 
PMSM PM Synchronous Motor, permanent magnet synchronous motor 
PWM Pulse width modulation 
RPM Revolutions per minute 
SCI Serial communication interface, see also UART 
SPI Serial peripheral interface 
UART Universal Asynchronous Receiver/Transmitter: an MCU peripheral module 

allowing asynchronous serial communication between the MCU and other 
systems 

Section 2.  System specification 
The system solution is designed to drive a 3-phase PM synchronous motor. The application 
meets the following performance specification: 

• Application is targeted at the MK60D100N  Kinetis ARM Cortex-M4 microcontroller 
• Freescale’s Tower rapid prototyping system is used as the hardware platform  
• The control technique incorporates: 

o Vector control of a 3-phase PM synchronous motor  
o Rotor position estimation using Back-EMF observer and tracking observer 

algorithms 
o Closed-loop speed control 
o Bi-directional rotation 
o Closed-loop current control 
o Flux and torque independent control 
o Starting up with alignment 
o Open-loop start-up until the motor speed reaches 10% of nominal speed 
o Field weakening is not implemented 
o Reconstruction of 3-phase motor currents from two measured values 
o 63 μs sampling period on the MK60 with the FreeMASTER recorder 

• Works with the FreeMASTER software interface for application control and monitoring: 
o Required speed setting, start/stop status,  motor current, system status, faults 

acknowledgment 
o Includes FreeMASTER software speed scope (observes actual and desired 

speeds) 
o Includes FreeMASTER software high-speed recorder (reconstructed motor 

currents, voltages) 
o Application includes overcurrent protection, different faults latched by the MOSFET 

driver, and motor phase disconnection. 
• User’s buttons for manual control 
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Section 3.  System design 

3.1 Control theory 

3.1.1 3-Phase permanent magnet synchronous motor 

The construction of the PM synchronous motor and its mathematical description using space 
model can be found in DRM105 [3]. 
 

3.1.2 Introduction to vector control 

The features of the permanent magnet synchronous motor (high efficiency, high torque 
capability, high power density and durability) are attractive for using the PMSM in motion-control 
applications.  
The invention of the vector control algorithm of the AC motors came from the attempt to achieve 
an AC motor torque/speed characteristic similar to that characteristic of the separately excited 
DC motor.  
In the DC motor, the maximum torque is generated automatically because of the mechanical 
switch called the commutator that feeds current only to that coil, whose position is orthogonal to 
the direction of the magnetic flux generated by the stator permanent magnets or excitation coils.  
The PMSM has the inverse construction, the excitation is on the rotor, and the motor has no 
commutator. Due to the decomposition of the stator current into a magnetic field-generating part 
and a torque-generating part, it is possible to control these two components independently and 
to reach the required performance.  
In order to keep the constant desired torque, the magnetic field generated by the stator coils has 
to follow the rotor at the same “synchronous” speed. Therefore, to successfully perform the 
vector control, the rotor shaft position must be known and is one of the key variables in the 
vector control algorithm.  
For this purpose, either the mechanical position sensors are used (encoders, resolvers,..) or the 
position of the shaft is calculated (estimated) from the motor phase currents and voltage. This is 
is called “sensorless control”.  
Using the mechanical position sensors brings several benefits. The position is known over the 
entire speed range with the same precision and there is no need to compute highly 
mathematically intensive algorithms that estimate the rotor shaft position. Vector control with a 
position sensor can be implemented on less powerful microcontrollers, or the performance of the 
MCU can be used for other tasks. On the other hand, the cost of the mechanical sensor is a 
significant portion of the cost of the whole drive. 
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Figure 3-1 Synchronous machine and the main principle of the vector control 

 

 
As already mentioned, the required torque is proportional to the q-portion of the orthogonal d,q- 
currents system. The d-portion reflects the generation of the rotor magnetic flux. Because there 
are permanent magnets mounted on the PMSM rotor, this current is usually kept at a zero level, 
unless the field weakening is performed in order to accelerate the motor above the nominal 
speed or while performing the MTPA algorithm. In such cases, the required d-current possesses 
a negative value. 
Therefore, the control process (regulation) is focused on maintaining the desired values of the d 
and q currents. 
 
Since the d,q system is referenced to the rotor, the measured stator currents have to be 
transformed from the 3-phase a,b,c stationary frame into the 2-phase d,q rotary frame before 
they enter the regulator block. At first, the Clarke transformation is calculated, which transforms 
the quantities from the 3-phase to 2-phase systems. Because the space vector is defined in the 
plane (2D), it is sufficient to describe it in the 2-axis (alpha, beta) coordinate system. 
Consequently, the result of the transformation into the 2-phase synchronous frame (Park 
transformation) is two DC values – the d,q currents. It is much easier to regulate two DC 
variables than two variables changing in time. The following picture shows the transformation 
sequencing. 
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Figure 3-2 Transformation sequencing 

 
 

3.1.3 Sensorless vector control implementation 

Figure 3-3 shows a block diagram of the vector control algorithm with sensorless position 
estimation. The aim of this control is to regulate the motor speed at a predefined level. The 
speed command value is set by a high level control. The algorithm is executed in two control 
loops. The fast inner control loop is executed within a hundred µsec period. The slow outer 
control loop is executed within a period of an msec. 
The fast control loop executes two independent current control loops. They are the direct and 
quadrature-axis current (isd , isq) PI controllers. The direct-axis current is used to control the rotor 
magnetizing flux. The quadrature-axis current corresponds to the motor torque. The current PI 
controllers’ outputs are summed with the corresponding d and q axis components of the 
decoupling stator voltage. Thus, the desired space vector for the stator voltage is obtained and 
then applied to the motor.  
The fast control loop executes all the necessary tasks to be able to achieve an independent 
control of the stator current components. These include: 

• Three-phase current reconstruction 
• Forward Clarke transformation 
• Forward and backward Park transformations 
• Rotor magnetizing flux position evaluation 
• DC-bus voltage ripple elimination 
• Space vector modulation (SVM) 

Furthermore, algorithims for rotor position estimation are also executed in the fast control loop: 
• Forward Park transformation for currents and voltages  
• Back-EMF observer 
• Tracking observer 
• Moving average filter 
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• Merging algorithm for smooth transition from open loop start-up to speed-close loop 
operation 

The slow control loop executes the speed controller, field weakening control (if employed in the 
application) and lower priority control tasks. The PI speed controller output sets a reference for 
the torque producing quadrature axis component of the stator current iq_req. The flux producing 
current id_req is maintained at zero, because the magnetizing flux is generated by permanent 
magnets on the rotor. In the case when the field weakening is implemented in the application in 
order to reach higher than the nominal speed, then the value of the id_req current acquires 
negative values. Thus it is acting against the flux of the rotor permanent magnets. 
 
To achieve the goal of PM synchronous motor control, the algorithm uses feedback signals. The 
essential feedback signals are 3-phase stator current and stator voltage. For correct operation, 
the presented control structure estimates the rotor shaft position from the phase currents and 
voltages employing advanced position estimation algorithms, Back-EMF observer, and the 
Tracking observer.  
 
The back-EMF observer is based on the mathematical model of the synchronous motor with an 
extended electro-motive force function, which is realized in the estimated quasi synchronous 
reference frame. The back-EMF observer detects the generated motor voltages induced by the 
permanent magnets. A tracking observer uses the back-EMF signals to calculate the position 
and speed of the rotor. Since the back-EMF force is depending on the value of the angular 
speed of the motor, at the low-speed drive operation the output of the algorithm does not provide 
accurate position information. Therefore, in this application, the motor runs in the open-loop 
mode with forced rotor position values until the motor reaches 10% of its nominal speed. 
The merging algorithm then allows smooth transition from open-loop mode to speed closed-loop 
control without any torque ripples. 
 
During the open loop start-up the motor operates with limited output torque. When the drive 
application requires full torque at the motor start-up, you must use an additional method for 
position estimation that can detect the rotor position at stand still and low-speed operation. 
 
The description of the advanced position estimation algorithms can be found in the User’s guide 
[5] and in the DRM110 [2]. The merging algorithm will be described in the following text. 
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Figure 3-3 Block diagram of sensorless PMSM vector control 

 
As seen from the block diagram shown in Figure 3-3, the algorithm of PMSM vector control is 
represented as a chain of functions; outputs of one function serve as inputs to the other 
functions. Each body of the functions contains mathematical equations, not involving the 
peripherals. In order to speed up the development of any motor control applications, these motor 
control functions, together with some commonly used mathematic algorithms, such as 
trigonometric functions, controllers, or limitations and digital filters, were put into one set and 
they create the Motor Control Library. The motor control libraries are available for some 
Freescale MCU platforms, optimized for each platform in order to maximize the utilization of 
available core features. The functions were tested and are well documented. Therefore, building 
the motor control application is, for the developer, simplified. The description of the libraries’ 
functions can be found in [4]. 
 

3.1.3.1 Open-loop start up and merging 
 
As mentioned, the output of the back-EMF observer does not provide reliable values at low 
speed motor operation. It is obvious from one of the motor operation fundamentals: at the zero 
speed there is no back-EMF generated. For this reason, the motor spins in the open-loop mode. 
The output of the speed regulator is disconnected and required startup current iq_req_startup is kept 
on constant level. The value of the startup current has to be carefully tuned. It has to be high 
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enough in order to put the rotor into the motion, but not too high when there could be observed 
speed oscillations during the transition to speed closed-loop operation. After a non-zero value of 
required speed is entered, the speed ramp block provides prescribed acceleration dynamic of 
the motor by smoothly increasing its output value.  
The required speed value  then enters the integrator block, which gives the generated open-loop 
position of the rotor. This is essential to the performance of the vector control algorithm. This 
strategy moves the motor up to the speed threshold, when the output of the back-EMF observer 
algorithm is giving confident results of the rotor position and the speed. Because the open loop 
values of speed and position are not equal to estimated ones, direct switching the feedback from 
open loop to estimated values causes torque and speed ripple. A merging process assures 
smooth, torque and speed ripple-free transition from the open-loop startup to full sensorless 
speed closed loop control. 
 
The crossover merge function with weight coefficient aM is used to determine the position 
feedback signals.  During the merging process the aM coefficient is changing its value from 0 to 
1.  
 

 
 

Figure 3-4 Crossover function with weight coefficient aM 
 

The lower speed limit of crossover function (ωM1) is found through experimentation by evaluating  
the accuracy limits of the estimated values. The upper speed limit (ωM2) is set in such a way that 
the merging process of the position will be performed during less than one electrical revolution. 
The equation 3-1 shows the mathematical expression of the merging process for the position.  
 

  
𝝑𝑭𝑩𝑪𝑲 = (𝟏 − 𝒂𝑴)𝝑𝑶𝑷𝑬𝑵_𝑳𝑶𝑶𝑷 + 𝒂𝑴 × 𝝑𝑬𝑺𝑻𝑰𝑴    Equation 3-1 

 
After the merging process is finished (aM = 0), the equations above are no longer computed, and 
estimated values of position and speed feedback are directly fed into the control process.  

3.2 Hardware 

 
The hardware solution of the PMSM Sensorless Vector Control on Kinetis is built on Freescale’s 
Tower rapid prototyping system. It consists of the following modules: 

• Tower Elevator Modules (TWR-ELEV) 
• Kinetis K60 Tower System Module (TWR-K60D100N) 
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• Low-voltage 3-phase Motor Control Tower System Module (TWR-MC-LV3PH) with 
included motor 

• Tower Serial Module (TWR-SER) 
 
All modules of the Tower system are available for order via the Freescale web page or from 
distributors, so the user can easily build the hardware platform for which the application is 
targeted. 
 
 

3.2.1 Hardware set up and configuration 

Building the system using the modules of the Tower system is not difficult. The peripheral 
modules and the MCU module are plugged into the elevator connectors, while the white stripe 
on the side of the module boards determines the orientation to the Functional elevator (the 
elevator with the mini USB connector, power supplies and the switch); see the following Figure 
3-4.

 
 

Figure 3-4 Hardware built on the modules of the Tower system 

 
The MCU board should be placed on the top of the Tower system, so the user’s buttons are 
easily accessible. 
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It is necessary to configure the Tower 3-phase low-voltage power stage. The jumper settings are 
listed in the following table, and the jumper positions are highlighted in Figure 3-5. See also the 
user’s manual [11] for more details (e.g. hardware overcurrent threshold setting) of the Tower 
low-voltage power stage. 
Table 3-1 Jumper settings of TWR-MC-LV3PH board 

 
Jumper # Setting Note 
J2 VDDA Source Select 1-2 Internal analog power supply 
J3 VSSA Source Select 1-2 Internal analog power supply 
J10 AN6 Signal Select 1-2 Phase C current signal 
J11 AN5 Signal Select 1-2 Phase B current signal 
J12 AN2 Signal Select 1-2 Phase A current signal 

 
 

 
 

Figure 3-5 Jumpers and connectors positions on the TWR-MC-LV3PH 

Table 3-2 shows the signal assignment of the motor connector of the TWR-MC-LV3PH.  
 
Table 3-2 Motor and encoder connectors on the TWR-MC-LV3PH 

Connector Pin# Description 
Motor connector 1 Motor phase A 
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J5 2 Motor phase B 
3 Motor phase C 

 
 
 

Warning for Revision “B” of the TWR-MC-LV3PH 
 

Do not plug any other cables into the Tower system except for the power supply cable 
and serial communication cable. Do not connect any USB cable to the Tower system 
while the power is applied to the power stage module TWR-MC-LV3PH. 
The demo system can be powered only via the Tower Low Voltage Power Stage. 
Connecting a USB cable to the Tower Elevator Module could cause damage to the Kinetis 
K60. 
See Errata for the revision “B” of the TWR-MC-LV3PH on how to correctly operate the 
board. 
 
 
The motor used in the reference design is part of the TWR-MC-LV3PH kit. It is a BLDC motor 
with trapezoidal shape of the back-EMF voltage, with salient poles on the stator. This  difference 
from the PM synchronous motor has distributed winding on the stator, forming the sinusoidal 
shape of the magnetic field. The construction of a rotor is the same for both types of motors 
(salient poles on the shaft). Even though the vector control algorithm was originally developed 
for PM synchronous motor assuming sinusoidal shape of the magnetic field, it is possible to 
employ the same control strategy for the BLDC motor. The performance will not be optimal, but 
the drive will possess less audible noise compared to a traditional six-step commutation control. 
The main benefit is that the customer can learn and adopt sensorless vector control on a cost 
effective hardware solution. 
 
 The motor has the following specification: 
 
Table 3-3 Specification of the motor  

 

Motor specification 

Manufacturer name Linix 
Type  45ZWN24-40 
Nominal voltage (line-to-line) 24 V DC 
Nominal speed 4000 rpm 
Rated power 40 W 

Motor model parameters 

Stator winding resistance 
(line-to-line) 1 Ohm 

Stator winding inductance 
d axis 775.8 μH 

Stator winding inductance  
q axis 775.8 μH 

Number of pole-pairs 2 
 

NOTE: 
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The application parameters (speed PI controller and value of the startup current) are set for the 
motor that has a plastic circle (part of the kit) mounted on the shaft, otherwise speed oscillation 
might occur.  

Section 4.  Software design 
The application software was designed using the compiler IAR Embedded Workbench for ARM 
v. 6.40.2 

4.1 Fractional numbers representation 

As mentioned in a previous paragraph, in the development of the vector control algorithm 
software libraries were used (a Set of the General Maths and Motor Control Functions for the 
Cortex M4 Core). Most of the mathematical calculations were performed with the numbers 
represented in Q1.15 or Q1.31 signed fractional format, so all physical quantities were scaled to 
the <-1,1)  interval. For more on the fractional format and variables scaling, see DRM105 [3].  

4.2 Application overview 

The application is real-time interrupt-driven with the background infinite loop handling the 
application states (Initialization, Run, Fault…) and FreeMASTER communication polling.  
There are two periodic interrupt service routines where the control process is executed. Their 
timing is given by the requirements of the vector control algorithm. 
 
The control process is composed of two control loops. The execution of the fast (current) control 
loop is performed in the ADC1 interrupt service routine, which is executed after the values of the 
sampled DC bus voltage and motor phase currents are put into the ADC result registers. The 
sampling instance is precisely defined by the hardware trigger of FlexTimer0 that is configured to 
generate six PWM signals of frequency 16 kHz. 
 
The PIT0 interrupt service routine is triggered every one millisecond. In this ISR, the speed is 
calculated as a position derivation and the speed controller (slow speed control loop) is 
calculated. 
 
The individual processes of the control routines are described in the following sections. 
 

4.3 Kinetis K60 peripheral modules configuration 

In this section, the configuration procedures of the peripherals used are described or referenced. 
On all devices of the Kinetis family, it is necessary to enable the system clock for the module 
before any access to the peripheral registers is performed. The modules are enabled by writing 
“1” to the particular bit in the System Clock Gate Control Register. Any write or read attempt to 
the peripheral register before enabling the clock for the particular peripheral module will yield a 
hard fault. Refer to [1] for a detailed description of each peripheral module. 
Table 4-1 shows an overview of the Kinetis K60 peripheral modules used by the application. The 
number of modules and module channels reflect a 144-pin package. 
Table 4-1 Kinetis K60 peripherals overview 
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Kinetis K60 peripherals Used in the 

application Purpose Group Module Number of modules 
or channels 

Analog ADC0 23 channels single 
ended + 3 
differential pairs 

3 channels  
 

DC-bus voltage and 
motor phase currents 
sensing 

ADC1 21 channels single 
ended + 3 
differential pairs 

2 channels 

Comparators  3 -  
DAC  2 -  
PGA 2 -  

Commu-
nications 

SPI 3 1 MOSFET driver 
configuration 

UART 6 1 FreeMASTER 
communication 

CAN 2 -  
USB 1 -  
I2C 2 -  
SDHC 1 -  
USB OTG 1 -  
Ethernet 1 -  
I2S 1 -  

Timers FlexTimer 8 channels 6 channels Generation 6-
channels PWM for 
motor control 

2 channels -  
2 channels -  

PIT 4 -  
PDB 2 channels for ADC 

triggering 
2 DC-bus voltage and 

phase current 
sampling initiation 

2 channels for DAC 
triggering 

-  

LPT 1 -  
CMT 1 -  
RTC 1 -  

Other DMA 16 channels -  
TSI 16 channels -  

 

4.3.1 FlexTimer0 configuration for generating a 6-channel PWM 

The FlexTimer Module (FTM) is a two- to eight-channel timer which supports input capture, 
output compare, and the generation of PWM signals to control an electric motor and power 
management applications. The FTM time reference is a 16-bit counter that can be used as an 
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unsigned or signed counter. On the Kinetis K60 there are three instances of FTM. One FTM has 
8 channels, the other two FTMs have 2 channels. 
 
The procedure to configure the FlexTimer for generating a center-aligned PWM with dead time 
insertion is described in the application note AN3729 [6].  
Because the referenced application note supports an earlier version (1.0) of the FlexTimer 
implemented on the ColdFire V1, and with respect to the hardware used (TWR-MC-LV3PH), 
there are a few differences in the configuration, as described below: 
 

• Initially, it is necessary to enable the system clock for the FlexTimer module in the Clock 
Gating Control Register: 
SIM_SCGC6 |= SIM_SCGC6_FTM0_MASK; 

• It is necessary to disable the write protection of some registers before they can be 
updated: 
FTM0_MODE |= FTM_MODE_WPDIS_MASK; 

• It is advisable to enable the internal FlexTimer counter to run in debug mode: 
FTM0_CONF |= FTM_CONF_BDMMODE(3); 
While the HW debugging interface (jLink, Multilink…) is connected to the microcontroller, 
the MCU is in debug mode. This does not depend on whether the running code 
containing breakpoints or not.   

• The PWM signals generated by the FlexTimer0 are directly connected to the MOSFET 
driver. Due to safety reasons, the input signals for the top transistors on the MOSFET 
driver used on the Tower low-voltage power stage have inversed polarity. Therefore, it is 
also necessary to set the right polarity of the PWM signals: 
FTM0_POL = FTM_POL_POL0_MASK |  

 FTM_POL_POL2_MASK |  
           FTM_POL_POL4_MASK; 

• The duty cycle is changed by changing the value of the FlexTimer Value registers. These 
registers are double-buffered, meaning that their values are updated not only by writing 
the number, but it is necessary to confirm the change by setting the Load Enable (LDOK) 
bit. This ensures that all values are updated at the same instance: 
FTM0_PWMLOAD = FTM_PWMLOAD_LDOK_MASK; 
It is necessary to write the LDOK bit every time the value registers are changed, not only 
at the initial stage of loading them with values, but with every update after the duty cycle 
value is computed in the vector control algorithm. 

• As mentioned in section 4.3.4

FTM0_EXTTRIG |= FTM_EXTTRIG_INITTRIGEN_MASK; 

, in the application, hardware triggering of the A/D converter 
is employed. The Initialization Trigger signal from the FlexTimer is used as the primary 
triggering signal, which is fed into the Programmable Delay Block that services the timing 
of the AD conversion initiation.  

• Finally, the output pins of the MCU have to be configured in order to send the signals out 
of the chip. The assignment of signals to output pins is set in the Pin Control Register, 
while the available signals are listed in the Signal Multiplexing chapter of [1] and are 
package dependent. 
PORTC_PCR1 = PORT_PCR_MUX(4); // FTM0 CH0 
PORTC_PCR2 = PORT_PCR_MUX(4); // FTM0 CH1 
PORTC_PCR3 = PORT_PCR_MUX(4); // FTM0 CH2 
PORTA_PCR6 = PORT_PCR_MUX(3); // FTM0 CH3 
PORTA_PCR7 = PORT_PCR_MUX(3); // FTM0 CH4 
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PORTD_PCR5 = PORT_PCR_MUX(4); // FTM0 CH5 
The port settings implemented in the application code reflect the hardware solution built 
on the Tower system modules. 
 

4.3.2 ADC and PDB modules configuration 

 
The on-chip ADC module is used to sample feedback signals (motor phase currents and DC bus 
voltage) that are necessary to successfully perform the vector control algorithm. The 
Programmable Delay Block closely cooperates with the ADC and serves as the hardware trigger 
for the sampling.  
In order to obtain a specified accuracy, it is necessary to perform a self-calibrating procedure of 
the ADC module before it is used in the application. The calibration process also requires a 
programmer’s intervention to generate the plus-side and minus-side gain calibration results and 
store them in the ADC plus-side gain and minus-side gain registers after the calibration function 
completes. The calibration has to be performed for both the ADC modules.  
After calibration, the ADC modules are configured to a 12-bit accuracy. The input clock of the 
ADC module is limited to 18 MHz according to the Kinetis K60 datasheet [9]. The CPU 
frequency is set to 100 MHz, so by using available prescaler value, the input clock to the ADC 
module is set to 12.5 MHz. That setting yields a conversion time of 2.2 µs. Finally, the hardware 
trigger has to be enabled in the Status and Control Register 2. 
 
The Programmable Delay Block (PDB) provides controllable delays from either an internal or an 
external trigger, or a programmable interval tick, to the hardware trigger inputs of the ADCs, so 
that a precise timing between ADC conversions is achieved. The PDB module has an internal 
counter that overflows on a modulo value. Because the input trigger comes periodically from the 
FTM0, the input clock source and the modulo value is set identically as for the FTM0 module. 
The values in the channel delay registers are set to generate triggers to start sampling the DC-
bus voltage and the motor phase AD conversions. The PDB module on the K60 MCU allows 15 
different input trigger sources. They are listed in the chapter “Chip configuration” in the section 
"PDB Configuration” in device reference manual [1]. Similarly, as for the FTM0, the LDOK bit 
has to be set in order to acknowledge the changes in the modulo and the delay registers. 

4.3.3 ADC conversion timing, currents and voltage sampling 

The FlexTimer0 is configured to trigger an internal hardware signal when its counter is reset 
after overflow to the initialization value. This signal is fed into the Programmable Delay Block 
(PDB) that consequently triggers the AD conversion of the voltage and currents with a 
predefined delay. On the Kinetis K60 100 MHz MCU, two ADC modules are implemented. Each 
ADC module associates to one channel of the PDB module. Each ADC module has two result 
registers (two channels), and they correspond to two programmable pre-trigger delays of the 
PDB channels. It is possible to perform four AD conversions without requesting an interrupt 
(provided that the DMA is not used for data transfer). In this application, only 3 conversions need 
to be triggered without CPU intervention (two motor phase currents and the DC-Bus voltage). 
The following time diagram shows the modules interconnection and the ADC interrupt 
generation.   
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Figure 4-1 ADC conversion timing 

  

4.3.4 Current measurement 

 
Closely related to the ADC conversion trigger timing is the assignment of the ADC channels to 
the measured analog signals. For computation of the fast (current) control loop of the FOC, it is 
necessary to know the values of all three motor phase currents. Since there are only two ADC 
modules, it is possible to sample only two analog quantities in one instance.  Assuming the 
motor represents a symmetrical 3-phase system, the sum of all three instantaneous phase 
currents is zero.  

0 = iA + iB + iC         Equation 4-1 

Since the phase currents are measured in the instance when the bottom transistors are 
conducting, in cases of high duty cycle ratios (current value is in the area of the maximum of the 
sine curve), the time when the current can be measured is too short. The bottom transistor must 
be switched on at least for a critical pulse width to get a stabilized current shunt resistor voltage 
drop. The selection of the channels is done based on the section where the space vector of the 
stator current is generated. This assignment is performed at the end of the ADC1 interrupt 
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service routine. Therefore, it is enough to sample only two phase currents while the third is 
easily calculated according to Equation 4.2 

  Sector 1,6:     iA = - iB - iC 

Sector 2,3:     iB = - iA - iC                        Equation 4-2 

  Sector 4,5:     iC = - iB - iA 
 

The following figure explains then, in two cases (case I at 60°, case II at 30°) why the calculation 
of the third current is necessary. 

 
Figure 4-2 Current sensing 

At 60° the user can sample all three currents, because as mentioned above, the currents are 
sampled when the bottom transistors are turned on. The pulse width is sufficient to stabilize the 
current and to perform signal value acquisition by the AD converter. At 30°, the pulse is too 
short, so the current of Phase A cannot be sampled. 
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4.3.5 SPI configuration 

The SPI interface is used in the application for communication between the intelligent MOSFET 
gate driver MC33937 and the K60 MCU. The MC33937 gate driver is placed on the Tower low-
voltage power module and serves to drive the high-side and low-side MOSFET transistors of the 
3-phase inverter. In the application, the initialization of the MC33937 has to be performed to set 
the dead time. During the motor run there is also periodic checking of the status register of the 
driver, in order to provide information on the latched faults. The MC33937 driver requires precise 
timing of the SPI signals. It is not possible to use the default setting of the SPI module on the 
MCU. The exact timing of the SPI signals is listed in [7].  
 

4.3.6 SCI (UART) configuration 

The SCI is used in the application for the communication between the master system and the 
embedded application. A master system is the notebook or the PC where the FreeMASTER 
software is installed in order to control the application and visualization of its state. On the 
Kinetis K60, there are six UART modules implemented. The UART3 is used because the 
hardware solution is based on the Tower modules. The communication speed is set to 19200 
Bd, and in fact, it is limited by the USB-to-Serial cable used. The use of direct RS232 connection 
between the PC and the embedded side allows users to increase the communication speed to 
115200 Bd. The module configuration is performed in the FreeMASTER software driver included 
in the project. 

4.4 Enabling the interrupts on the core level 

 
The interrupt request enabled on the peripheral module must also be enabled on the core level, 
otherwise the interrupt request will not be generated. The process is not straightforward and the 
necessary information is spread over several documents. In order to help the user to enable any 
interrupt while enhancing the application to other features, the process of setting up the PIT 
interrupt is described in this section as an example. 
 
The interrupt request on the module level is enabled by writing “1” to the TIE bit of the Timer 
Control Register: 
PIT_TCTRL0 |= PIT_TCTRL_TIE_MASK; 
Now, it is necessary to find out the number of the interrupt and the IRQ vector. Both values can 
be found in the K60 Sub-Family Reference Manual [1] in the section 3.2.2.3 “Interrupt channel 
assignments”. For the PIT channel 1 interrupt, the interrupt vector is 84 and the interrupt number 
is 68. This is always 16 less than the vector number, because the first 16 interrupt vectors are 
ARM core system handler exception vectors. 
The next step is to redefine the vector pointer in the “vectors.h” file from the default ISR to the 
function that contains the code to be executed after an interrupt is generated.  
 
Replace 

#define VECTOR_084      default_isr 
with 

#define VECTOR_084      PIT_CH0_ISR_Handler 
and add at the end of the file: 
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extern void PIT_CH0_ISR_Handler(void); 
because the ISR is defined in the other file (e.g. in “main.c”). 
 
Next, set-up the ARM core NVIC register. Each interrupt vector must be independently enabled 
or disabled by setting the corresponding bit in the complementary pair of registers, the Interrupt 
Set-Enable Register (NVIC_ISERx) or the Interrupt Clear-Enable Register (NVIC_ICERx). 
NVIC_ISER0 contains the enable bits for IRQ numbers 0 through 31, NVIC_ISER1 contains the 
enable bits for IRQ 32 through 63, and so on. To enable the PIT channel 0 interrupt (interrupt 
number 68), it is necessary to write 0x00000010 (b10000) to the NVIC_ISER2 register.  
 
It is an advisable approach to clear any pending interrupt before it is enabled. This is usually not 
necessary right after the reset when the MCU initialization is performed, but during the program 
execution when certain a interrupt is disabled and later re-enabled. Sometimes if an interrupt 
flag has been set before the interrupt was enabled, the interrupt controller might generate an 
unhandled exception fault if the interrupt flag has not been cleared before: 
  NVICICPR2 = 0x00000010; // clear pending interrupts first 
  NVICISER2 = 0x00000010; // enable the PIT CH0 interrupt 
 

NOTE: 
The ARM document [8] indicates that the registers have an underscore between NVIC and ISER 
(NVIC_ISER1). However, in the current header files used in the application, the NVIC register 
names do not have the underscore (NVICISER1 or NVICICPR1).  
 
NVIC interrupts are prioritized by updating an 8-bit field within the 32-bit NVIC_IPRx registers. 
Macros contained in the Kinetis K60 header file used in the project make  setting the priority of 
the interrupt simpler. The number of the interrupt is used as one of the parameters of the 
NVIC_IP macro. The assigned value then determines the priority (the higher the number, the 
higher the priority of the interrupt). If the interrupt priority is not specified explicitly, the lower the 
number of the interrupt vector, the higher priority the interrupt has by default. On the Kinetis K 
family there are 16 levels of interrupt priority implemented. However, the priority is set in the four 
MSBs of the 8-bit field: 
NVIC_IP(68) = 0xF0; //set the highest priority for PIT ch. 0 interrupt. 
 
The next step is to enable the interrupts globally by clearing a 1-bit special-purpose mask 
register PRIMASK. The PRIMASK is cleared to 0 by the execution of the instruction CPSIE i : 
In the application this is defined as the macro: 
#define EnableInterrupts asm(" CPSIE i "); 
 
Finally, the interrupt service routine has to be defined “PIT_CH0_ISR_Handler” and inside the 
body of the function, the source of the interrupt must be cleared in order to leave the interrupt 
service routine. For the PIT channel 0 interrupt, it means that the interrupt flag is cleared by 
writing “1” to the TIF bit of the Timer Flag Register: 
PIT_TFLG0 = PIT_TFLG_TIF_MASK; 
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4.5 FreeMASTER software 

4.5.1 Introduction 

The FreeMASTER software was designed to provide a debugging, diagnostic, and 
demonstrational tool for the development of algorithms and applications. Moreover, it is very 
useful for tuning the application for different power stages and motors, because almost all of the 
application parameters can be changed via the FreeMASTER interface. The FreeMASTER 
consists of a component running on a PC and another part running on the target controller. 
Different communication interfaces are supported (RS-232, USB, Ethernet, OSBDM…) and the 
work on improvements and support for new families of microcontrollers is still in progress. 
In the application, the RS232 interface is used because it represents minimal communication 
overhead that has to be handled by the MCU, and requires no interrupts (working in polling 
mode), which is important for motor control applications. A detailed users’ guide of 
FreeMASTER software, with useful hints for using it to develop a motor control application can 
be found in AN1948 [10]. 

4.5.2 FreeMASTER communication driver 

On the MCU side, the FreeMASTER software driver is included in the project file structure. It is a 
set of files supporting real-time data capture (Scope, Recorder) and handling the communication 
protocol. There are some functions that are unique for each MCU family, therefore 
FreeMASTER is issued for each MCU family separately. In the “freemaster_cfg.h” file, the user 
can perform settings related to the communication and to the data buffer. In the file are defined 
macros for conditional and parameter compilation. The FreeMASTER driver does not perform 
any initialization or configuration of the SCI module it uses to communicate. 
The communication between the MCU and the PC side can be performed with the help of the 
interrupt, or via periodic calling of the polling function. For a motor control application, it is 
preferred to use the polling mode. Both the communication and protocol decoding are handled in 
the application background loop. The polling mode requires a periodic call of the FMSTR_Poll() 
function in the application main.  

4.5.3 FreeMASTER recorder and scope 

The recorder is a part of the FreeMASTER software that is able to sample the application 
variables at a specified sample rate. The samples are stored in a buffer and read by the PC via 
an RS-232 serial port. The sampled data can be displayed in a graph, or the data can be stored. 
The recorder behaves as a simple on-chip oscilloscope with trigger/pre-trigger capabilities. The 
size of the recorder buffer and the FreeMASTER recorder time base can be defined in the 
“freemaster_cfg.h” configuration file. The recorder routine must be called periodically from the 
loop in which you want to take the samples. The following line must be added to the loop code: 

/* Freemaster recorder */ 
FMSTR_Recorder(); 

In this application, the FreeMASTER recorder is called from the ADC1 interrupt, which creates a 
63 μs time base for the recorder function. Buffered data is transferred to the PC side after the 
trigger condition is met. 
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The FreeMASTER scope is a similar visualization tool to the recorder, but the data from the 
embedded side is downloaded in real-time. The sampling rate is limited by the speed of the 
communication protocol and also influenced by the number of displayed variables. It is usually 
used for waveforms visualization of slow transient phenomena, such as the speed profile during 
motor acceleration. 

4.6 Program flow 

4.6.1 Application structure 

Figure 4-3 shows the application software structure. 
 

 
Figure 4-3 Application structure 

 
The software structure consists of the application main routine entered after the CPU reset, 
where the CPU and peripherals initialization is performed, and the interrupts generated 
periodically, where the motor control algorithms are executed.  

4.6.2 Application background loop 

The endless application background loop contains only the call to the FreeMASTER 
communication polling function FMSTR_Poll(). 
 
The main application-control task is executed in the interrupt service routine that interrupts the 
background loop. 
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4.6.3 Application state machine 

A simple application state machine handles the switching between the application states and 
application state transitions. This is executed at the beginning of the ADC1 interrupt service 
routine. The following figure gives an overview of the program flow through the application states 
and transitions. 

 
Figure 4-4 Application state machine diagram 

 
The application states represent a steady state. Usually, that means the application is waiting for 
some trigger or condition to be met to change the state. The particular function is called each 
time the program makes one pass of the infinite background loop. The application state 
transitions contain instructions that are executed only once when the application state is 
changed. Typically, the settings in the peripheral registers are performed only once, and it is not 
necessary to repeat them.  
 

4.6.3.1 States definition 
 
The state machine structure consists of four main states: 
 

• Fault – system faced a fault condition 
• Init – variables initialization 
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• Stop – system is initialized and waiting for the Run command 
• Run – system is running; can be stopped by the Stop command 

There are transition functions between these state functions: 
 

• Init -> Stop – initialization has been done, the system is entering the Stop state 
• Stop -> Run – the Run command has been applied, the system is entering the Run state 

if the Run command has been acknowledged 
• Run -> Stop – the Stop command has been applied, the system is entering the Stop state 

if the Stop command has been acknowledged 
• Fault -> Init – fault flag has been cleared, the system is entering the Init state 
• Init, Stop, Run -> Fault – a fault condition has occurred, the system is entering the Fault 

state. 

The state machine structure uses the following flags to switch between the states: 
• SM_CTRL_INIT_DONE   when this flag is set the system goes from the Init to the Stop 

state. 
• SM_CTRL_FAULT – when this flag is set the system goes from any state to the Fault 

state.   
• SM_CTRL_FAULT_CLEAR – when this flag is set the system goes from the Fault state to 

the Init state. 
• SM_CTRL_START – this flag informs the system that there is a command to go from the 

Stop state to the Run state. The transition function is called, but the action must be 
acknowledged due to the amount of time it may take before the system is ready to be 
turned on. 

• SM_CTRL_RUN_ACK – this flag acknowledges that the system can proceed from the 
Stop state to the Run state. 

• SM_CTRL_STOP – this flag informs the system that there is a command to go from the 
Run state to the Stop state. The transition function is called, but the action must be 
acknowledged because it may take time to properly turn off the system. 

• SM_CTRL_STOP_ACK – this flag acknowledges that the system can proceed from the 
Run state to the Stop state. 

 
This structure is implemented in the state_machine.c .h files. The state machine structure is as 
follows: 
 
/* State machine control structure */ 
typedef struct 
{ 
    SM_APP_STATE_FCN_T const* psState; /* State functions */ 
    SM_APP_TRANS_FCN_T const*  psTrans; /* Transition functions */ 
    SM_APP_CTRL    uiCtrl;  /* Control flags */ 
    SM_APP_STATE_T    eState;  /* State */ 
} SM_APP_CTRL_T;  
 
There are four components: 
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• psState – pointer to the user state machine functions. The particular state machine 
function from this table is called when the state machine is in that state. 

• psTrans – pointer to the user transient functions. The particular transient function is called 
when the system goes from one state to another. 

• uiCtrl – this variable is used to control the state machine behavior using the above 
mentioned flags. 

• eState – this variable determines the actual state of the state machine 

 
The user state machine functions are defined in the following structure: 
 
/* User state machine functions structure */ 
typedef struct 
{ 
 PFCN_VOID_VOID Fault; 
 PFCN_VOID_VOID Init; 
 PFCN_VOID_VOID Stop; 
 PFCN_VOID_VOID Run; 
} SM_APP_STATE_FCN_T; 
 
The user transient state machine functions are defined in the following structure: 
 
/* User state-transition functions structure*/ 
typedef struct 
{ 
 PFCN_VOID_VOID FaultInit; 
 PFCN_VOID_VOID InitFault; 
 PFCN_VOID_VOID InitStop; 
 PFCN_VOID_VOID StopFault; 
 PFCN_VOID_VOID StopInit; 
 PFCN_VOID_VOID StopRun; 
 PFCN_VOID_VOID RunFault; 
 PFCN_VOID_VOID RunStop; 
} SM_APP_TRANS_FCN_T; 
 
The control flag’s variable has the following definitions: 
 
typedef unsigned short SM_APP_CTRL; 
 
/* State machine control command flags */ 
#define SM_CTRL_NONE  0x0 
#define SM_CTRL_FAULT  0x1 
#define SM_CTRL_FAULT_CLEAR 0x2 
#define SM_CTRL_INIT_DONE 0x4 
#define SM_CTRL_STOP  0x8 
#define SM_CTRL_START  0x10 
#define SM_CTRL_STOP_ACK 0x20 
#define SM_CTRL_RUN_ACK  0x40 
 
The state identification variable has the following definitions: 
 
/* Application state identification enum */ 
typedef enum { 
    FAULT  = 0, 



June, 2013  Page 32 of 55 
 

    INIT  = 1, 
    STOP  = 2, 
    RUN  = 3, 
} SM_APP_STATE_T;          
 
The state machine must be periodically called from the code using the following inline function. 
This function input is the pointer to the above-described state machine structure, which is 
declared and initialized in the code where the state machine is called: 
 
/* State machine function */ 
extern inline void SM_StateMachine(SM_APP_CTRL_T *sAppCtrl) 
{ 
 gSM_STATE_TABLE[sAppCtrl -> eState](sAppCtrl); 
} 
 

4.6.3.2 Motor state machine  
 
The motor state machine is based on the main state machine structure. The Run state sub-
states have been added on top of the main structure to control the motor properly.  
These are the descriptions of the main states’ user functions: 

• Fault – system faced a fault condition, and waits until the fault flags are cleared. The dc 
bus voltage is measured. 

• Init – variables initialization 
• Stop – system is initialized and waiting for the Run command. The PWM output is 

disabled. The dc bus voltage is measured. 
• Run – system is running and can be stopped by the Stop command. The Run sub-state 

functions are called from here. 

There are transition functions between these state functions: 
• Init -> Stop – blue LED is lit on the K60 tower board 
• Stop -> Run – duty cycle is initialized to 50 %; the PWM output is enabled. The current 

ADC channels are initialized. The Calib sub-state is set as the initial Run sub-state. 
• Run -> Stop – the Stop command has been applied, the system is entering the Stop state 

if the Stop command has been acknowledged. The system does not go directly to Stop if 
the system is in certain Run sub-states. 

• Fault -> Init – nothing is processed in this function 
• Init, Stop -> Fault – the PWM output is disabled. 
• Run -> Fault – certain current and voltage variables are zeroed. The PWM output is 

disabled.  

The Run sub-states are called when the state machine is in the Run state. The Run sub-state 
functions are as follows: 
 

• Calib – the current channels ADC offset calibration is performed. The dc bus voltage is 
measured. The PWM is set to 50 % and its output is enabled. 

• Ready – the PWM is set to 50 % and its output is enabled. The current is measured and 
the ADC channels, set up. Certain variables are initialized. 
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• Align – The current is measured and the ADC channels, set up. The rotor alignment 
algorithm is called. The PWM is updated. After the alignment time expiration, the system 
is switched to Startup. The dc bus voltage is measured.  

• Startup – The current is measured and the ADC channels, set up. The BEMF observer 
algorithm is called to estimate the speed and position. The FOC algorithm is called. The 
PWM is updated. The dc bus voltage is measured and filtered. The open-loop start-up 
algorithm is called. The estimated speed is filtered.  

• Spin – The current is measured and the ADC channels, set up. The BEMF observer 
algorithm is called to estimate the speed and position. The FOC algorithm is called. The 
PWM is updated. The motor spins. The dc bus voltage is measured. The estimated speed 
is filtered. The speed ramp and the speed PI controller algorithm is called. The speed 
command is evaluated. 

• Freewheel – the PWM output is disabled and the module is set to 50 %. The current is 
measured and the ADC channels, set up. The dc bus voltage is measured. The system 
waits in this sub-state for certain time which is given due to rotor inertia, it means to wait 
until the rotor stops itself. Then the system evaluates the conditions and proceeds into 
one of these sub-states: Align or Ready.  
 

The Run sub-states have also the transition functions that are called in between the sub-states’ 
transition. The sub-state transition functions are as follows: 

• Calib -> Ready – calibration done, entering the Ready state. 
• Ready -> Align – non-zero speed command; entering the Align state. Certain variables 

are initialized (voltage, speed, position). The alignment time is set up. 
• Align -> Ready – zero speed command; entering the Ready state. Certain voltage and 

current variables are zeroed. The PWM is set to 50 %. 
• Align -> Startup – alignment done; entering the Startup state. The filters and control 

variables are initialized. The PWM is set to 50 %. 
• Startup -> Spin – start-up successful; entering the Spin state. 
• Startup -> Freewheel – no action is done. Can be used to handle the start-up fail 

condition for more robust application 
• Spin -> Freewheel – zero speed command; entering the Freewheel state. Certain 

variables are initialized (voltage, speed, position). The freewheel time is set up. 
• Freewheel -> Ready – zero-speed command; entering the Ready state. The PWM output 

is enabled. 
• Freewheel -> Align – non-zero speed command; entering the Align state. The PWM 

output is enabled. Certain variables are initialized (voltage, speed, position). The 
alignment time is set up. 
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Figure 4-5 Motor Run sub-state diagram 

  

The implementation of this structure of motor state machine is made in the M1_statemachine.c 
.h.  The main motor state-machine structure is as follows: 
 
The main states’ user function prototypes: 
static void M1_StateFault(void); 
static void M1_StateInit(void); 
static void M1_StateStop(void); 
static void M1_StateRun(void); 
 
The main states’ user transient function prototypes: 
static void M1_TransFaultInit(void); 
static void M1_TransInitFault(void); 
static void M1_TransInitStop(void); 
static void M1_TransStopFault(void); 
static void M1_TransStopInit(void); 
static void M1_TransStopRun(void); 
static void M1_TransRunFault(void); 
static void M1_TransRunStop(void); 
 
The main states functions table initialization: 
/* State machine functions field */ 
static const SM_APP_STATE_FCN_T msSTATE = {M1_StateFault, M1_StateInit, M1_StateStop, 
M1_StateRun}; 
 
The main state transient functions table initialization: 
/* State-transition functions field */ 
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static const SM_APP_TRANS_FCN_T msTRANS = {M1_TransFaultInit, M1_TransInitFault, 
M1_TransInitStop, M1_TransStopFault, M1_TransStopInit, M1_TransStopRun, 
M1_TransRunFault, M1_TransRunStop}; 
 
Finally, the main state machine structure initialization: 
/* State machine structure declaration and initialization */ 
SM_APP_CTRL_T gsM1_Ctrl =  
{ 
 /* gsM1_Ctrl.psState, User state functions  */ 
 &msSTATE, 
   
  /* gsM1_Ctrl.psTrans, User state-transition functions */ 
  &msTRANS, 
  
   /* gsM1_Ctrl.uiCtrl, Deafult no control command */ 
   SM_CTRL_NONE, 
    
   /* gsM1_Ctrl.eState, Default state after reset */ 
   INIT   
}; 
 
 
Similarly, the Run sub-state machine is declared. The Run sub-state identification variable has 
the following definitions: 
typedef enum { 
    CALIB  = 0, 
    READY  = 1, 
    ALIGN  = 2, 
    STARTUP = 3, 
    SPIN    = 4, 
    FREEWHEEL = 5, 
} M1_RUN_SUBSTATE_T;         /* Run sub-states */ 
 
For the Run sub-states, the following set of user functions is defined: 
 
static void M1_StateRunCalib(void); 
static void M1_StateRunReady(void); 
static void M1_StateRunAlign(void); 
static void M1_StateRunStartup(void); 
static void M1_StateRunSpin(void); 
static void M1_StateRunFreewheel(void); 
 
static void M1_StateRunCalibSlow(void); 
static void M1_StateRunReadySlow(void); 
static void M1_StateRunAlignSlow(void); 
static void M1_StateRunStartupSlow(void); 
static void M1_StateRunSpinSlow(void); 
static void M1_StateRunFreewheelSlow(void); 
 
The Run sub-states’ user transient function prototypes: 
 
static void M1_TransRunCalibReady(void); 
static void M1_TransRunReadyAlign(void); 
static void M1_TransRunAlignStartup(void); 
static void M1_TransRunAlignReady(void); 
static void M1_TransRunStartupSpin(void); 
static void M1_TransRunStartupFreewheel(void); 
static void M1_TransRunSpinFreewheel(void); 
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static void M1_TransRunFreewheelAlign(void); 
static void M1_TransRunFreewheelReady(void); 
 
The Run sub-states functions table initialization: 
/* Sub-state machine functions field (in pmem) */ 
static const PFCN_VOID_VOID mM1_STATE_RUN_TABLE[6] =  

{M1_StateRunCalib,  
 M1_StateRunReady,  
 M1_StateRunAlign,  
 M1_StateRunStartup,  
 M1_StateRunSpin,  
 M1_StateRunFreewheel}; 
 

The state machine is called from the interrupt service routine, as mentioned in a previous 
chapter. The method to call the state machine is: 
 
/* StateMachine call */ 
SM_StateMachine(&gsM1_Ctrl); 
 
Inside the user Run state function, the sub-state functions are called as follows: 
 
/* Run sub-state function */ 
mM1_STATE_RUN_TABLE[meM1_StateRun](); 
 
where the parameter meM1_StateRun identifies the Run sub-state. 
 

4.6.4 Sensorless PMS motor control 

The application controls one motor in sensorless mode. It is designed so  that enhancing the 
application to drive a second motor (if CPU performance is adequate and the device possesses 
two motor-control PWM timers) does not require substantial  modification. For the second motor, 
an additional application state machine is required (which can be the same as for the first 
motor), while the control process uses the same routine. The inputs to this routine are the 
particular motors’ structures. This approach saves the necessary program ROM in the 
application. 
 
The following sections are dedicated to the motor control algorithm pieces. 

 

4.6.4.1 Field oriented control 
The field oriented control (FOC alias vector control) theory is described in the chapter 3.1.2 
(Introduction to Vector Control) and in referenced literature. A description of the FOC code 
implementation follows.  
The FOC has been optimized into one function which has one input/output pointer to a structure. 
The prototype of the function is as follows: 
void MCSTRUC_FocPMSMCurrentCtrl(MCSTRUC_FOC_PMSM_T *psFocPMSM) 
 
The structure referred to by the input/output structure pointer is defined as follows: 
 typedef struct 
{ 
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  GFLIB_CONTROLLER_PIAW_P_T  sIdPiParams;  /* Id PI controller parameters */ 
  GFLIB_CONTROLLER_PIAW_P_T  sIqPiParams;  /* Iq PI controller parameters */ 
  MCLIB_3_COOR_SYST_T      sIABC;    /* Measured 3-phase current */ 
  MCLIB_2_COOR_SYST_ALPHA_BETA_T sIAlBe;  /* Alpha/Beta current */ 
  MCLIB_2_COOR_SYST_D_Q_T  sIDQ;      /* DQ current */ 
  MCLIB_2_COOR_SYST_D_Q_T  sIDQReq;   /* DQ required current */ 
  MCLIB_2_COOR_SYST_D_Q_T  sIDQError; /* DQ current error */ 
  MCLIB_3_COOR_SYST_T      sDutyABC;  /* Applied duty cycles ABC */ 
  MCLIB_2_COOR_SYST_ALPHA_BETA_T sUAlBeReq; /* Required Alpha/Beta voltage */ 
  MCLIB_2_COOR_SYST_ALPHA_BETA_T sUAlBeDCBComp; /* Compensated to DC bus Alpha/Beta 
                                                 voltage */ 
  MCLIB_2_COOR_SYST_D_Q_T sUDQReq;  /* Required DQ voltage */ 
  GMCLIB_ELIM_DC_BUS_RIP_T sElimDCBRip;  /* DCB ripple elimination parameters 
                                              structure */   
  MCLIB_ANGLE_T    sAnglePosEl; /* Electrical position sin/cos */ 
  MCSTRUC_ALIGNMENT_T   sAlignment;  /* Alignment structure params */ 
  MCSTRUC_CASCADE_CNTR_T sCascadeControl; /* Required DQ voltage and current 

entered from MCAT */ 
  Frac32      f32UAmplitudeMax; /* Max available DC bus voltage*/ 
  Frac32      f32UDcBusFOC; /* DC bus voltage scaled to phase voltage 
  UWord16       uw16SectorSVM; /* SVM sector */ 
  bool     bOpenLoop; /* Current control loop is open */ 
} MCSTRUC_FOC_PMSM_T; 
 
This structure contains all the necessary variables or sub-structures for the field oriented control 
algorithm implementation. The types used in this structure are defined in Freescale’s Embedded 
Software Libraries (FSLESL). The following describes the items used in this application: 

• D and Q current PI controllers – serves to control the D and Q current 
• A, B, C currents – measured 3-phase current; input to the algorithm 
• Alpha, beta currents – currents transformed into the alpha/beta frame 
• D, Q currents – currents transformed into the D/Q frame 
• Required D, Q currents – required currents in the D/Q frame; input to the algorithm 
• D, Q current error – error (difference) between the required and measured D/Q currents 
• A, B, C duty cycles – 3-phase duty cycles; output from the algorithm 
• Required alpha, beta voltages – required voltages in the alpha/beta frame 
• Compensated required alpha, beta voltages – the previous item recalculated on the 

actual level of the dc bus voltage 
• Required D, Q voltage – required voltages in the alpha/beta frame; outputs from the PI 

controllers 
• DC bus ripple elimination  a sub structure containing parameters for calculation of the DC 

bus ripple elimination algorithm 
• Angle – electrical rotor angle (sine, cosine)  
• Alignment – this sub-structure contains items used at the alignment; its detail description 

is in the chapter dedicated to the alignment. 
• Required DQ current and voltage structure entered from Motor Control Application Tuning 

tool 
• Maximum available DC bus voltage 
• DC bus voltage – measured dc bus voltage 
• SVM sector – sector information; output from the SVM algorithm 

 
This routine calculates the field oriented control. At its input are the 3-phase current, the dc bus 
voltage, the electrical position, the required D and Q currents, and the logical switch (open-loop 
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control). The output of this routine is the 3-phase duty cycle, SVM sector. The PI controllers 
have structures which must be initialized prior to this routine use. 
 
The function uses the algorithms from Freescale’s Embedded Software Libraries (FSLESL). 
 

4.6.4.2 Position and speed estimation 
 
This application uses the BEMF observer in the D/Q reference frame. Similar to the FOC 
algorithm, the position and speed estimation has been optimized into one function which has 
one input/output pointer to a structure. The prototype of the function is as follows: 
 
void MCSTRUC_PMSMPositionObsDQ(MCSTRUC_FOC_PMSM_T *psFocPMSM, MCSTRUC_BEMF_OBS_DQ_T 
*psObserverDQ, MCSTRUC_POS_SPEED_EST_T *psPositionEstDQ) 
 
The function uses the FOC structure described in the previous chapter. There are two additional 
structures referred  to by the input/output structure pointers. Their definitions are as follows: 
 
typedef struct 
{ 
  ACLIB_BEMF_OBSRV_DQ_T  sBemfObsrvDQ; /* BEMF observer in DQ */ 
  ACLIB_TRACK_OBSRV_T  sTo;   /* Tracking observer */ 
} MCSTRUC_BEMF_OBS_DQ_T; 
 
typedef struct 
{ 
  MCLIB_ANGLE_T  sAnglePosElEstim;  /* Electrical position sin/cos */ 
  GDFLIB_FILTER_IIR1_T sBEMFfilterDQerror; /* Estimated error filter */ 
  GDFLIB_FILTER_MA_T    sSpeedEstFilter; /* Estimated speed filter */  
  MCSTRUC_EST_STARTUP_T sStartUp;   /* Start-up structure */ 
  Frac32    f32FilteredError /* Filtered output from Bemf obsrv*/ 
  Frac32    f32PositionEstim; /* Fractional electrical position*/ 
  Frac32    f32SpeedEstimated; /* Speed by BEMF and TO */ 
  Frac32     f32SpeedEstimatedFilt /* Speed by BEMF and TO filtered*/ 
  bool    bStartUp;   /* Start-up mode */ 
  bool    bOpenLoop;  /* Speed control loop is open */ 
} MCSTRUC_POS_SPEED_EST_DQ_T; 
 
The first structure contains the necessary structures to calculate the BEMF observer in the D/Q 
frame and the tracking observer. The second structure holds the speed and position variables 
and structures. Their descriptions follow: 

• Angle electrical rotor angle (sine, cosine)  
• 1st order IIR filter – filters the output from the Back-EMF observer (error)  
• Estimated speed moving average filter – serves to filter the estimated speed 
• Start-up structure – contains the parameters to control the open-loop start-up; it will be 

described in the chapter dedicated to the open-loop start-up. 
• Filtered error – displays the output from the Back-EMF observer 
• Estimated position – displays the estimated position output from the tracking observer 
• Estimated speed – displays the estimated speed output from the tracking observer 
• Filtered estimated speed – displays the filtered estimated speed 
• Observer switch – habilitates the use of the observer output 
• Start-up flag – identifies if the system is in the open-loop start-up 
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• Open loop flag – identifies that the application is in open loop speed control 
 
This routine calculates the BEMF observer in the D/Q frame and the tracking observer. The 
necessary input parameters for the calculation are: 

• the 3-phase current, 
• required D/Q voltages, and 
• the speed from the previous step.  

 
There are conditional switches and flags that manage the behavior of the function. They  
determine whether the function is working at the open-loop start-up and/or at the normal running. 
The output of this routine is the electrical position, the sine/cosine angle of the estimated 
position, and the estimated speed. Prior to using this routine, the observers and filters have 
structures which must be initialized. 
 
This routine is called in the state machine prior to the FOC routine. The function uses the 
algorithms from Freescale’s Embedded Software Libraries (FSLESL). 
 

4.6.4.3 Rotor alignment 
This application uses the rotor alignment before the motor is started, which means the rotor is 
forced to a known position. 
As in the previous algorithms, the alignment has been optimized into one function which has one 
input/output pointer to a structure. The prototype of the function is the following: 
 
void MCSTRUC_AlignmentPMSM(MCSTRUC_FOC_PMSM_T *psFocPMSM) 
 
The function uses the FOC structure which is described in the previous chapter. In this structure 
there is a sub-structure that is dedicated to the alignment. Its definition follows: 
typedef struct 
{ 
  Frac32  f32IMax;   /* Max D current at alignment */ 
  UWord32  uw32TimeAlignment; /* Alignment time duration */ 
} MCSTRUC_ALIGNMENT_T; 
 
The structure contains the necessary variable to perform the simple rotor alignment.  
The structure description follows: 

• Maximum current – limit of the required D current at the alignment 
• Duration – defines the duration of the alignment in the number of tick of the fast loop 

 
The routine rotates the rotor with the defined level of d-axis current (a fraction of the nominal 
motor current). The q-axis current is kept at zero, and the rotor moves to the position where the 
stator and rotor poles are aligned in one axis. The speed control loop is not calculated. At the 
end of the routine, the application continues to the start-up. When the application is in the scalar 
or in voltage FOC control mode, voltage alignment is applied by defining the d-axis voltage.  The 
value of this voltage equals the value of the boost voltage used for scalar control. 
 

4.6.4.4 Motor open-loop start-up 
Because the BEMF observer does not give reliable feedback at very low speeds, the motor 
needs to be started at certain speed in the open-loop mode. The start-up method assumes 
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similar conditions for each start-up. The method consists of a generated rotating field with the Q 
current profile that will spin the rotor according to the generated speed. 
Similarly to the previous algorithms, the open-loop start-up has been optimized into one function 
which has one input/output pointer to a structure. The prototype of the function is the following: 
 
void MCSTRUC_PMSMOpenLoopStartUp(MCSTRUC_FOC_PMSM_T *psFocPMSM, 
MCSTRUC_POS_SPEED_EST_T *psPosition, MCSTRUC_SPEED_T *psSpeed) 
 
The function uses the FOC and position/speed estimation structures, which are described in the 
previous chapter. There is an additional structure referred to by the input/output structure 
pointers. Its definition follows: 
typedef struct 
{ 
  GFLIB_CONTROLLER_PI_P_PARAMS_T sSpeedPiParams; /* Speed PI controller 
                                                        parameters */ 
  GFLIB_RAMP_T sSpeedRampParams; /* Speed ramp parameters */ 
  Frac32  f32Speed;   /* Speed */ 
  Frac32  f32SpeedError;  /* Speed error */ 
  Frac32  f32SpeedRamp;  /* Required speed (ramp output) */ 
  Frac32  f32SpeedReq;  /* Required speed (ramp input) */ 
  Frac32  f32RampUpMCAT;  /* ramp increment entered from motor control  

            application tuning tool */ 
  Frac32  f32RampDownMCAT; /* ramp decrement entered from motor control  

   application tuning tool */ 
} MCSTRUC_SPEED_T; 
 
The structure contains the necessary variables to perform a speed control loop. It is used in the 
open-loop start-up because certain variables must be initialized to avoid speed drop-outs when 
the system is switched from the speed open-loop mode to the speed closed-loop mode. The 
structure description follows: 

• Speed PI controller structure – serves to control the speed 
• Speed ramp structure – serves to generate the speed ramp 
• Speed – displays the speed of the motor 
• Speed error – error between the required and measured speed 
• Ramped speed – speed ramp algorithm output 
• Required speed – speed input to the ramp algorithm 
• Ramp up and down increment entered from Motor Control Application Tuning tool 

 
 
Another structure that is described below is within the position/speed estimation structure. This 
structure serves for the open-loop start-up: 
 
typedef struct 
{ 
    GFLIB_INTEGRATOR_TR_T sSpeedIntegrator; /* Speed integrator structure */ 
    Frac32  f32PositionMergeCounter;/* incremented merging coefficient 
             for position merging */ 
    Frac32  f32PositionOpenLoop; /* generated open loop position from 
                                          the speed ramp integration */ 
    Frac32  f32MergedPosition;  /* merged position */ 
    Frac32  f32MergingStep;  /* merging increment step */ 
    Frac32  f32MergedSpeedThrs;  /* merging speed threshold */     
    Frac32 f32StartupCurrent;  /* required Iq current during open loop  

   start-up */ 
    Frac32  f32OLRampIncrement;  /* speed ramp limitation during startup */ 
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    UWord32  uw32TimeStartUpFreeWheel; /* Free-wheel duration */ 
} MCSTRUC_EST_STARTUP_T; 
 
The structure contains the necessary variables to perform the open-loop start-up. The start-up 
procedure is depicted in Figure 4-6. The structure description follows: 

• Speed integration structure – serves to integrate the speed resulting the position in the 
correct position scale 

• Position merging counter – a variable representing the change of the weighing coefficient 
aM  from the Equation 3.2 

• Open loop position – generated position during open loop start-up – a result of the speed 
integration 

• Merged position – the position that is result of the merging algorithm, represents a result 
of the Equation 3.2 

• Merging step – an increment of which the merging counter aM is increased 
• Speed threshold – when the position merging starts 
• Iq – current limitation during the open loop start-up 
• Speed ramp increment – during open loop  
• Free wheel duration – duration of the free wheel sub state when during the start-up 

process the required speed is changed to zero 
 

 
 

Figure 4-6  Start-up process 

More information on the startup process can be found in section 3.1.3.1 Open Loop Start-up and 
Merging. 
 

4.6.4.5 Slow (speed) control loop 
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The slow (speed) control loop is executed with a period of one millisecond, and is performed in 
the Startup, Spin, and Freewheel sub states of the Run state. It is calculated immediately after 
the fast (current) control loop, and the exact instance of its execution is determined by the count-
down software timer gsM1_Drive.uw16CounterSlowLoop, which is updated after each pass 
of the fast (current) control loop. The calculation comprises the ramp limitation of the required 
speed (which determines the acceleration of the drive) and the PI speed controller, whose output 
gives the required iq current which enters the vector control algorithm, and is directly proportional 
to output torque of the motor.   
 

4.6.5 Scalar control 

In order to evaluate the proper setting of the Back-EMF observer and tracking observer 
parameters, and the values and shapes of the sensed currents, there is scalar control (Volt-per-
Hertz) of the PMS motor incorporated into the control structure. It is recommended to run the 
application in this mode only while the application is mastered by the MCAT tool, because this 
tool automatically calculates the Voltage/Frequency ratio based on the motor parameters. The 
block diagram of the scalar control is shown on Figure 4-7. 
 
The structure listed below serves for the scalar control: 
 
typedef struct 
{ 
  GFLIB_RAMP_T  sFrequencyRampParams; /* Parameters of frequency ramp */ 
  MCLIB_2_COOR_SYST_D_Q_T sUDQReq;  /* Required voltage vector in d,q coordinates  
    MCLIB_2_COOR_SYST_ALPHA_BETA_T  sUAlBeReq;/* Required Alpha/Beta voltage */    
  MCLIB_ANGLE_T sAnglePosEl; /* Sine and Cosine values of the rotor angle for 

  Park transformation */ 
  GMCLIB_ELIM_DC_BUS_RIP_T sElimDCBRip; /* DCB ripple elimination parameters  

structure */ 
  MCLIB_2_COOR_SYST_ALPHA_BETA_T sUAlBeDCBComp;  /* Compensated to DC bus  

Alpha/Beta voltage */ 
  MCLIB_3_COOR_SYST_T sDutyABC; /* Applied duty cycles ABC */ 
  GFLIB_INTEGRATOR_TR_T  sSpeedIntegrator; /* structure contains the integrator  

parameters (integrates the angular speed 
in order to get the position */ 

  Frac32 f32VoltHertzRatio;  /* constant defining the applied voltage level based on  
actual frequency */ 

  Frac32 f32BoostVoltage; /* boost start-up voltage */ 
  Frac32 f32SpeedCmd;  /* required electrical frequency from master system  
  Frac32 f32FrequencyRamp; /* Required frequency limited by ramp - the ramp output  
  Frac32  f32Angle;     /* Electrical angle of the rotor */ 
  Frac32 f32UDcBusFOC;  /* DC bus voltage, scaled to phase voltage */ 
  UWord16 uw16SectorSVM; /* SVM sector */   
}MCSTRUCT_SCALAR_CTRL_PMSM_T;  
 
The description of the variables contained in the structure follows: 

• Frequency ramp structure – serves to generate the frequency ramp 
• Required D, Q voltage – the D voltage is kept to zero level (motor has permanent 

magnets), the Q voltage is output from the Volt-per-Hertz equation 
• Required alpha, beta voltage – the required voltage vector in alpha-beta coordinates 
• Angle – electrical rotor angle (sine, cosine)  
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• DC bus ripple elimination –  a sub structure containing parameters for calculation of the 
DC bus ripple elimination algorithm 

• Compensated required alpha, beta voltages  
• A, B, C duty cycles – 3-phase duty cycles; output from the algorithm 
• Speed integration structure – serves to integrate the speed resulting the position in the 

correct position scale 
• The Volt-Hertz ratio – the constant given by ratio of nominal voltage to nominal speed  
• Boost voltage – the value of the voltage that is applied at zero frequency 
• Required frequency – proportional to required speed 
• Ramped frequency – frequency ramp algorithm output 
• Angle – required angle of the rotor – result of the speed integration 
• Actual value of DC bus voltage  
• SVM sector – sector information; output from the SVM algorithm 

 

 
Figure 4-7 Block diagram of the scalar control 

The Scalar Control function is also used for Voltage FOC, when the motor can be controlled by 
direct change of the d and q portion of the required stator voltage. 
 

4.6.6 Control mode selector 

The control mode selector was added to the embedded software to enable the cooperation with 
Motor Control Application Tuning Tool. By choosing different control topologies of the cascade 
structure, the developer is able to tune the control parameters of the application in several steps. 
In each step, a few parameters have to be set or fine tuned. Thus, the developer can easily 
identify the physical quantity or application variable that causes the instability of the whole 
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system. The tool uses the FreeMASTER application as the platform for visualization of the 
measured quantities, so the developer can directly observe the response of the tuned system 
when the application parameters are changed. 
The control mode selector is defined as enumeration data type, with the following  definition: 
typedef enum  
{ 
  CONTROL_MODE_SCALAR                 = 0, 
  CONTROL_MODE_VOLTAGE_FOC            = 1, 
  CONTROL_MODE_CURRENT_FOC            = 2, 
  CONTROL_MODE_SPEED_FOC              = 3, 
} MCSTRUC_CONTROL_MODE_T;               
 
The procedures to set and fine tune the application parameters aredescribed in the application 
notes related to MCAT tool. 

4.6.7 Faults handling 

The application checks the following faults: 
• Phase over current 
• Over DC bus voltage 
• Under DC bus voltage 
• MOSFET gate driver fault 

 
The faults are automatically cleared after the fault condition is removed. Because the duration of 
some faults might by very short, a three-second time lag is added after the fault flag is removed 
and the application is switched from FAULT to STOP state. This allows the user to see the 
actual fault flag. 
The intelligent MOSFET gate drive MC33879 that is placed on the Tower MC power module 
latches different faults. They are described in the datasheet [7]. Faults are cleared via SPI 
communication protocol by software. In some situations the automatic software clearing of the 
MOSFT pre-driver faults does not perform well. For example, after hard over current faults, when 
the over current protection of the power supply acts and decreases the supply voltage level 
under the value of the MOSFET gate driver reliable operation. In such a case, the application 
has to be reset by disconnecting the supply voltage. 
 

4.6.8 Main application motor control structure 

The structures described above, together with some other application state variables and fault 
structures, create the uppermost layer of data structure. Its definition follows: 
 
typedef struct 
{         
  MCSTRUC_FAULT_THRESHOLDS_T  sFaultThresholds; /* threshold values of  
             faults detected by software */ 
  MCSTRUC_ADC_CURRENT_CH_OFFSET_T sADCOffset; /* Offset values for AD currents  

   sensing */ 
  MCSTRUC_FOC_PMSM_T   sFocPMSM; 
  MCSTRUCT_SCALAR_CTRL_PMSM_T sScalarPMSM;        
  MCSTRUC_POS_SPEED_EST_DQ_T  sPositionEstDQ; 
  MCSTRUC_BEMF_OBS_DQ_T   sObserverDQ; 
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  MCSTRUC_SPEED_T    sSpeed;    
  MCSTRUC_CONTROL_MODE_T  eControl; 
  Frac32  f32UDcBus;  /* holds value of DCBus voltage scaled for DCB  

   faults evaluation */ 
  UWord32  uw32FaultId;   /* the number of fault that was latched. This flag  

   remains high also the next three seconds after    
  the fault condition was removed*/ 

  UWord32  uw32FaultIdPending;/* currently active fault */ 
  UWord32  uw32CounterState;  /* the counter variable used for different 

   application timing purposes */ 
  UWord32  uw32TimeFullSpeedFreeWheel; 
  UWord32  uw32TimeFaultRelease; 
  UWord16  uw16CounterSlowLoop; 
  UWord16  uw16DividerSlowLoop; 
}MCSTRUC_FOC_PMSM_OBS_DQ_T; 
 
 
There is only one variable gsM1_Drive within the application that has the declaration of this data 
type and stores all the application variables of PMSM FOC of one motor. 

4.7 Interface function 

The interface functions are used for the communication between the state machine and the 
master system. These functions are called to control and monitor the motor. 

4.7.1 Switch control functions 

These functions control the switch of the motor.  The parameter is the boolean value determining 
the state of the switch: ON (true) or OFF (false). 
 
void M1_SetAppSwitch(bool bValue) 
 
To read the status of the switch, use the following function. The state of the switch is returned as 
the boolean value. 
 
bool M1_GetAppSwitch(void) 

4.7.2 Command functions 

This function commands the speed of the motor.  The parameter is the Frac32 value. 
 
void M1_SetSpeed(Frac32 f32SpeedCmd) 
 
It is called from the application state machine and PORTC interrupt service.  
The inverse function is used to monitor the speed. It returns the Frac32 value. 
 
Frac32 M1_GetSpeed(void) 
 



June, 2013  Page 46 of 55 
 

4.8 Application parameters 

The application parameters to control the motors and application are written as macro definitions 
(#define). The following list represents the parameters: 
 
#define I_MAX   (8.0) /* maximum measurable current */ 
#define  U_DCB_MAX   (36.0) /* maximum measurable voltage */ 
#define     U_MAX   (20.8) /* Maximum phase voltage */ 
#define N_MAX   (4400.0)  /* max. possible speed that the application can  

   handle (incl. safety margin) */ 
#define  E_MAX              (20.0) /* max. value of Back-EMF voltage */ 
#define U_DCB_UNDERVOLTAGE FRAC32(0.4) /* undervoltage detection */ 
#define U_DCB_OVERVOLTAGE FRAC32(0.8) /* overvoltage detection limit*/ 
#define N_REQ_MAX   FRAC32(0.909090909091) /* motor nominal speed */ 
#define I_PH_NOM   FRAC32(0.5)  /* motor phase nominal current */ 
#define  OVERCURRENT_LIMIT (3.0) /* motor overcurrent limit */ 
#define  MOD_INDEX   FRAC32(0.5) 
 
/* Mechanical Alignment */  
#define ALIGN_CURRENT  FRAC32(0.25)  /* current applied during alignment */ 
#define ALIGN_DURATION  (2000) /* 1000x 1ms = two seconds */ 
 
/* D current PI controller */ 
#define D_KP_GAIN   FRAC32(0.647937284946) /* controller proportional gain  
#define D_KP_SHIFT  (-1)   /* controller proportional gain shift 
#define D_KI_GAIN   FRAC32(0.808548360551) /* controller integral gain */ 
#define D_KI_SHIFT  (-5)   /* controller integral gain shift */ 
 
/* Q current PI controller */ 
#define Q_KP_GAIN   FRAC32(0.70593591855) /* controller proportional gain  
#define Q_KP_SHIFT  (-1)   /* controller proportional gain shift  
#define Q_KI_GAIN   FRAC32(0.854100380864) /* controller integral gain */ 
#define Q_KI_SHIFT  (-5)   /* controller integral gain shift */ 
 
/* Speed PI controller */ 
#define SPEED_KP_GAIN  FRAC32(0.1)  /* controller proportional gain */ 
#define SPEED_KP_SHIFT  (2)   /* controller proportional gain shift 
#define SPEED_KI_GAIN  FRAC32(0.1)  /* controller integral gain */ 
#define SPEED_KI_SHIFT  (-7)   /* controller integral gain shift */ 
#define  SPEED_LOOP_HIGH_LIMIT FRAC32(0.275) /* max. required iq (output from the  
             speed controller */ 
#define  SPEED_LOOP_LOW_LIMIT FRAC32(-0.275) 
 
/* Speed ramp */ 
#define SPEED_RAMP_UP   FRAC32(0.000227272727) 
#define SPEED_RAMP_DOWN   FRAC32(0.000227272727) 
 
#define SPEED_LOOP_CNTR  (16)   /* speed control loop divisor */ 
#define SPEED_FILTER_MA  (4)   /* size of speed filter buffer: 2^4 */ 
 
/* BEMF observer */ 
#define BEMF_DQ_KP_GAIN  FRAC16(0.673854776343) 
#define BEMF_DQ_KP_SHIFT  (-1) 
#define BEMF_DQ_KI_GAIN  FRAC16(0.840890294973) 
#define BEMF_DQ_KI_SHIFT  (-5) 
#define I_SCALE    FRAC16(0.93216630197) 
#define U_SCALE    FRAC16(0.355579868709) 
#define E_SCALE    FRAC16(0.341903719913) 
#define WI_SCALE    FRAC16(0.056713652937) 
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#define N_OBS_VALID   FRAC32(0.1) /* threshold speed value when the  

output from the Back-EMF observer is  
considered*/  

/* Tracking observer */ 
#define TO_KP_GAIN   FRAC16(0.654545454545) 
#define TO_KP_SHIFT   (-2) 
#define TO_KI_GAIN   FRAC16(0.789625033513) 
#define TO_KI_SHIFT   (-11) 
#define TO_THETA_GAIN   FRAC16(0.586666666667) 
#define TO_THETA_SHIFT   (-5) 
 
/* Open Loop Start-up */ 
#define OL_START_RAMP_INC  FRAC32(0.000568181818) /* ramp increment */ 
#define OL_START_I   FRAC32(0.075000000000) /* max startup up current  

   during open loop  */ 
#define MERG_SPEED_TRH   FRAC32(0.102272727273) /* merging speed */ 
#define MERG_COEFF   FRAC32(0.008138020833) /* merging step */ 
 
/* Low pass filter for BEMF observer output */ 
/* filter coefficients set for cutoff frequency 70Hz */ 
 
#define ERROR_B1    FRAC32(0.0017082) 
#define ERROR_B2    FRAC32(0.0017082) 
#define ERROR_A2    FRAC32(-0.12352) 
 
/* Cascade Control Structure Module  */     
 
#define SCALAR_INTEG_GAIN  FRAC32(0.018333333333) /* speed integration for  
            position generation, used  

also for open loop startup  
#define SCALAR_VHZ_CONST  FRAC32(0.687500000000) 
#define SCALAR_VHZ_U_BOOST  FRAC32(0.187500000000) 
#define SCALAR_RAMP_INC   FRAC32(0.000014204545)   
 
The application constants are dependent on the parameters of the controlled motor, and are 
provided in this design for motor LINIX 45ZWN24-40, which  is part of the TWR-MC-LV3PH kit. 
Most of these definitions are generated by the Motor Control Tuning Tool and are placed in the 
generated file “PMSMFOC_APPconfig.h”. 

 
NOTE: 

The application parameters (speed PI controller and value of the start-up current) are set for the 
motor which has a plastic circle (part of the kit) mounted on the shaft, otherwise speed oscillation 
might occur.  

NOTE: 
Because the motor inertia [J] and torque constant [kt] are not known for a given motor, the speed 
PI controller has been tuned experimentally. Motor Control Application Tuning tool was used 
only for current PI controllers and sensorless algorithms tuning. The constants of the speed PI 
controller are defined in the “PMSM_HWconfig.h” file. 
  

4.9 Application parameters modification 

When using a different motor, the application constants have to be changed. The designer can 
use the “Motor Control Application Tuning Tool” that is part of the source code provided with this 
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Reference design. The Tool is based on the FreeMASTER application, and allows calculation of 
the application constants based on the motor parameters. Calculated values are updated directly 
to the running application, so there is no need to build the whole application when the developer 
wants to observe the response of the drive on a change of the application parameter. 
The Figure 4-8 shows the snapshot of the Tool environment for tuning the sensorless 
algorithms. 
 
It is recommended to use the MCAT tool and follow the methods of application parameters 
tuning described in the application notes related to the tool. The developer can optimize the time 
needed for application tuning and achieve solid drive performance.  
 
Before opening the tuning tool, the FreeMASTER PC application has to be installed on the 
computer. To start the tuning tool, open the “Kinetis_FOC_MCAT.pmp” from the \gui\MCAT 
directory. 
 
Further information on tuning application constants  and the tool itself can be found in the 
application notes related to the Motor Control Application Tuning Tool.  

 
Figure 4-8 Motor Control Application Tuning Tool 
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4.10 Interrupts 

The application requires the minimum number of interrupts due to the MCU hardware triggering 
the AD conversion.. 

4.10.1 ADC1 Interrupt 

This interrupt request is triggered when the conversion of channel A of the ADC1 module is 
completed and has the highest priority. As the interrupt is generated, there are sampled values 
of physical quantities ready: in the Result Registers A of the ADC0 (DC bus voltage), Result 
Register B of the ADC0 (motor phase current 1) and Result Register A of the ADC1 module 
(motor phase current 2). The interrupt is always enabled only for one module, to avoid 
generating two interrupt requests at the same time, because the triggers for motor phase 
currents are generated in the same instance. In the beginning of the ADC1 ISR execution the 
Application State Machine function is called. If the application is in the Run state, the fast 
(current) control loop of the PMSM vector control algorithm is executed, including the position 
and speed estimation. As mentioned in previous chapter, the slow (speed) control loop is also 
calculated based on the value of the software counter that is decremented each time the fast 
control loop is passed. The interrupt flag is cleared by reading the result register of the ADC 
channel that triggered the interrupt. Therefore, the results of AD conversion are read at the 
beginning of each particular State Machine Function, even though the values are not used later 
in the program execution. 
The flow chart depicted in  Figure 4-9 gives an overview of the program flow during the 
execution of the ADC interrupt service routine when the application is in Run state and Spin sub-
state. 
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Figure 4-9 ADC ISR flow chart 

4.10.2 PORTC interrupt 

 
Button handling  on the K60 tower board is performed in the ISR associated with the PORTC 
interrupt, which is generated whenever one of the buttons is pressed. At the beginning of the 
ISR, simple logic is executed to evaluate which button was pressed, and the interrupt flag is 
cleared. Because there are only two user’s buttons, control is limited. In the application, the 
assigned functions are RUN and STOP, and they control rotation only in one direction. Pressing 
the RUN button causes the speed to increase in 10% increments. Pressing the STOP button 
causes the speed to decrease in 10% increments. 
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For more information about the application control via the user’s buttons, see the chapter 
“Application control”. Using the FreeMASTER control interface allows for enhanced control and 
diagnostic.  
 

4.10.3 PDB error interrupt 

The PDB error ISR serves to clear the sequence error fault generated when PDB initiates the 
sampling of the AD converter, but the COCO flag in the particular ADCx_SC1n register of the 
ADC module was not cleared because the values from result registers were not read. In these 
cases, the PDB counter stops working and an interrupt is asserted. The PDB module is then 
reinitiated in the ISR. The PDB generates trigger signals with the same period as the ADC 
conversion complete interrupt, which is also  the same as the PWM period. If the user places an 
interrupt in the code, this will stop the execution. The PDB will generate triggers for the next 
conversion, even when the program execution stops. The COCO flags are not cleared and the 
PDB generates a sequence error. Another reason for the unread register is that the execution of 
the ADC conversion complete interrupt (where  the fast control loop is calculated) would extend 
over one period of PWM. This might happen if the user puts additional tasks into the ADC 
conversion complete interrupt. In addition to the generation of PDB sequence error, the more 
serious impact is on the quality of the control process, as one of the key assumptions is not met: 
the execution of control algorithms extends the sampling period.  The real-time control 
application has to be designed in such a way that this situation never occurs. 
 
4.10.4 Project file structure 
 
The total number of source (*.c) and header files (*.h) in the project exceeds one hundred.  
Therefore, only the key project files will be described in more detail, and the rest will be 
described in groups. 
The main project folder is divided into three directories: 

• build – contains configuration files for the IAR compiler as well as the compiler’s output 
executable and object files. If the IAR Embedded Workbench for ARM is installed on your 
computer, double clicking the workspace file “TWRK60D100N_PMSM_SNSLESS.eww” 
located in the directory \build\iar\ launches the IAR IDE. 

• gui – contains the FreeMASTER configuration file (“Kinetis_FOC.pmp”) and supporting 
files (control page in HTML format and the binary file with addresses of the variables). 
It also contains FreeMASTER project for Motor Control Application Tuning Tool 
“Kinetis_FOC_MCAT.pmp” located in the MCAT sub directory. 

• src –  contains the project source and header files. Its contents will be described in the 
following section. 

 
Files in the root of the src folder: 

 
main.c , main.h contain basic application initialization (enabling interrupts), subroutines 
accessing the MCU peripherals and interrupt service routines. In the background infinite loop, 
the FreeMASTER communication is performed. 

 
state_machine.c and state_machine.h  contain the application state machine structure 
definition and handle switching between the application states and application states 
transitions. 
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motor_structure.c and motor_structure.h contain the structures, definitions, and 
subroutines dedicated to performing the motor control algorithm (vector control algorithm, 
position and speed estimation algorithm, speed control loop). 
 
M1_statemachine.c and M1_statemachine.h contain the software routines that are 
executed when the application is in the particular state or state transition. 

 
freemaster_cfg.h is the configuration file for the FreeMASTER interface.  
 
PMSMFOC_appconfig.h contains the definitions of constants  in the application control 
processes (parameters of the motor and regulators, and the constants for other vector control 
related algorithms). The content of the file is listed in  chapter 4.8 Application parameters. 
When the application is tailored for another motor using the Motor Control Application Tuning 
Tool, this file is generated by the Tool at the end of the tuning process. 
 
PMSM_HWconfig.h contains definitions of the application constants that are not generated 
by the MCAT tool. 
  

 
 Files and subdirectories in the src\mcu_Init\ folder: 

 
\common\ and \cpu\ folders contain CPU initialization routines. 
 
\cpu\vectors.h is an important file that contains the definition of the peripherals interrupt 
service routines assigned to the interrupt vectors. In this file, the user can add the definition 
of an ISR for an additional peripheral interrupt. 
 
\drivers\  subdirectories contain generic source and header files for UART and watchdog 
configuration, as well as the CPU clock settings routines. 
 
\peripherals\ contains important files for static configuration of the peripherals used in the 
application (FlexTimers, ADC, PDB, SPI, PIT). 
 
\platforms\tower.h contains the Kinetis Tower card definitions (CPU speed and UART 
parameters). 

  
Files in the src\twrk60d100\ folder: 

 
MK60N512VMD100.h is the header file containing macro definitions of all the MCU registers 
and registers’ bits. 
 
 

Files in the src\MC_Lib\ folder: 
 
Cortex_M4.a is a software library containing motor control, general math, and filter 
algorithms. Other files in the folder and subfolders are associated header files, each one for 
a particular function of the library. 
 



June, 2013  Page 53 of 55 
 

Cortex_M4_ACLIB.a contains the advanced control algorithms for rotor position and speed 
estimation (Back-EMF observer and Tracking observer). 
 

Other subdirectories in the src\ folder:s 
 

\src\FreeMASTER contains all source files of the FreeMASTER application. It is not 
necessary to access it or change anything inside. The interface to the programmer is only 
via freemaster_cfg.h file. 
 
\src\MC_Lib\Common contains specific header files associated with the software libraries. 
 
\src\app_init contains the routines for MOSFET gate driver initialization, GPIO ports, and 
FreeMASTER initialization 

 
 

4.10.5 Memory usage 
 
The following table summarizes the chip memory usage: 
 
Table 4-2 Memory Usage, Values in Bytes 

Memory  Total Available on the Kinetis 
MK60N512VMD100 

Used by the 
Application 

Program Flash (application code) 512 KB 23 854 B 
Data Flash (application constants) 2 046 B 
Data RAM (application variables) 128 KB 2 845 B 
 
 

Section 5.  Application set-up and operation  
 
The application can be operated via the user’s buttons on the K60 tower module, or via the 
FreeMASTER interface. The set-up procedure of the FreeMASTER software on the PC, as well 
as the application operation, is described in the User’s Manual [12]. 

Section 6.  Results of the measurement 
 

6.1 CPU load and the execution time 

The CPU load is influenced mainly by the execution of the ADC1 ISR, in which the execution of 
the application state machine and calculation of the fast (current) control loop of the PMSM 
vector control is performed.  
 
The complete ADC1 ISR requires 2656 (state machine and fast control loop) to 2962 (with the 
slow control loop calculation) machine cycles. The ADC1 interrupt is generated periodically with 
the same frequency as the PWM reload event, when the values of the duty cycles are updated.  
 



June, 2013  Page 54 of 55 
 

In this application, the ADC ISR is generated once per 63 µs, which corresponds to 16 kHz of 
the PWM frequency. At 100 MHz on the Kinetis K60 device, it consumes 42 – 47% of CPU 
performance. 

6.2 Measured results using FreeMASTER  

6.2.1 Motor startup 

The motor startup is presented in Figure 6.1.. The required speed was changed from 0 to 2000 
rpm. The values are captured using the FreeMASTER scope. 
 
 

 
 

Figure 6-1 Motor startup from zero speed to 2000 rpm 

The “Position Merge Counter” variable identifies the time section where the generated open-loop 
and the estimated positions are merged. When the Merge Counter reaches “1”, the application is 
running in the speed closed control loop. The time gap between the step change of the 
“Required Speed” and the instance when the “Speed Ramp” becomes non-zero represents the 
rotor alignment. 
 

6.2.2 Position merging 

The position merging process is shown in  Figure 6.2. The chart was captured using the 
FreeMASTER recorder feature. For reference, an encoder position is also depicted. 
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Figure 6-2 Position Merging Process 

The start of the position merging process is when the motor speed reaches 10% of the nominal 
speed. During the merging process, the merged position (blue) is approaching the estimated 
position (red). At the end of the merging process, the application enters the “Spin” sub state of 
the “Run” state, and the open loop and merged positions are no longer calculated. As the speed 
of the motor increases, the difference between the encoder position (which is used here as the 
reference, and provides the real physical rotor position) and the estimated position decreases. 

Start of the 
merging process 

End of the merging 
process 

Difference is 
decreasing 
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