
Chapter 1

Atomic Sentences

In the Introduction, we talked about fol as though it were a single language.

Actually, it is more like a family of languages, all having a similar grammar

and sharing certain important vocabulary items, known as the connectives

and quantifiers. Languages in this family can differ, however, in the specific

vocabulary used to form their most basic sentences, the so-called atomic sen-

tences.

Atomic sentences correspond to the most simple sentences of English, sen- atomic sentences

tences consisting of some names connected by a predicate. Examples are Max

ran, Max saw Claire, and Claire gave Scruffy to Max. Similarly, in fol atomic

sentences are formed by combining names (or individual constants, as they

are often called) and predicates, though the way they are combined is a bit

different from English, as you will see.

Different versions of fol have available different names and predicates. We names and predicates

will frequently use a first-order language designed to describe blocks arranged

on a chessboard, arrangements that you will be able to create in the program

Tarski’s World. This language has names like b, e, and n2, and predicates

like Cube, Larger, and Between. Some examples of atomic sentences in this

language are Cube(b), Larger(c, f), and Between(b, c, d). These sentences say,

respectively, that b is a cube, that c is larger than f , and that b is between c

and d.

Later in this chapter, we will look at the atomic sentences used in two

other versions of fol, the first-order languages of set theory and arithmetic.

In the next chapter, we begin our discussion of the connectives and quantifiers

common to all first-order languages.

Section 1.1

Individual constants

Individual constants are simply symbols that are used to refer to some fixed

individual object. They are the fol analogue of names, though in fol we

generally don’t capitalize them. For example, we might use max as an individ-

ual constant to denote a particular person, named Max, or 1 as an individual

constant to denote a particular number, the number one. In either case, they

would basically work exactly the way names work in English. Our blocks

19

20 / Atomic Sentences

language takes the letters a through f plus n1, n2, . . . as its names.

The main difference between names in English and the individual constants

of fol is that we require the latter to refer to exactly one object. Obviously,names in fol

the name Max in English can be used to refer to many different people, and

might even be used twice in a single sentence to refer to two different people.

Such wayward behavior is frowned upon in fol.

There are also names in English that do not refer to any actually existing

object. For example Pegasus, Zeus, and Santa Claus are perfectly fine names

in English; they just fail to refer to anything or anybody. We don’t allow such

names in fol.1 What we do allow, though, is for one object to have more than

one name; thus the individual constants matthew and max might both refer

to the same individual. We also allow for nameless objects, objects that have

no name at all.

Remember

In fol,

◦ Every individual constant must name an (actually existing) object.

◦ No individual constant can name more than one object.

◦ An object can have more than one name, or no name at all.

Section 1.2

Predicate symbols

Predicate symbols are symbols used to express some property of objects or

some relation between objects. Because of this, they are also sometimes calledpredicate or relation

symbols relation symbols. As in English, predicates are expressions that, when com-

bined with names, form atomic sentences. But they don’t correspond exactly

to the predicates of English grammar.

Consider the English sentence Max likes Claire. In English grammar, this

is analyzed as a subject-predicate sentence. It consists of the subject Max

followed by the predicate likes Claire. In fol, by contrast, we usually view

this as a claim involving two “logical subjects,” the names Max and Claire, andlogical subjects

1There is, however, a variant of first-order logic called free logic in which this assumption

is relaxed. In free logic, there can be individual constants without referents. This yields a

language more appropriate for mythology and fiction.

Chapter 1

Predicate symbols / 21

a predicate, likes, that expresses a relation between the referents of the names.

Thus, atomic sentences of fol often have two or more logical subjects, and the

predicate is, so to speak, whatever is left. The logical subjects are called the

“arguments” of the predicate. In this case, the predicate is said to be binary, arguments of a

predicatesince it takes two arguments.

In English, some predicates have optional arguments. Thus you can say

Claire gave, Claire gave Scruffy, or Claire gave Scruffy to Max. Here the

predicate gave is taking one, two, and three arguments, respectively. But in

fol, each predicate has a fixed number of arguments, a fixed arity as it is arity of a predicate

called. This is a number that tells you how many individual constants the

predicate symbol needs in order to form a sentence. The term “arity” comes

from the fact that predicates taking one argument are called unary, those

taking two are binary, those taking three are ternary, and so forth.

If the arity of a predicate symbol Pred is 1, then Pred will be used to

express some property of objects, and so will require exactly one argument (a

name) to make a claim. For example, we might use the unary predicate symbol

Home to express the property of being at home. We could then combine this

with the name max to get the expression Home(max), which expresses the

claim that Max is at home.

If the arity of Pred is 2, then Pred will be used to represent a relation

between two objects. Thus, we might use the expression Taller(claire,max) to

express a claim about Max and Claire, the claim that Claire is taller than

Max. In fol, we can have predicate symbols of any arity. However, in the

blocks language used in Tarski’s World we restrict ourselves to predicates

with arities 1, 2, and 3. Here we list the predicates of that language, this time

with their arity.

Arity 1: Cube, Tet, Dodec, Small, Medium, Large

Arity 2: Smaller, Larger, LeftOf, RightOf, BackOf, FrontOf, SameSize, Same-

Shape, SameRow, SameCol, Adjoins, =

Arity 3: Between

Tarski’s World assigns each of these predicates a fixed interpretation, one

reasonably consistent with the corresponding English verb phrase. For exam-

ple, Cube corresponds to is a cube, BackOf corresponds to is in back of, and

so forth. You can get the hang of them by working through the first set of

exercises given below. To help you learn exactly what the predicates mean,

Table 1.1 lists atomic sentences that use these predicates, together with their

interpretations.

In English, predicates are sometimes vague. It is often unclear whether vagueness

Section 1.2

22 / Atomic Sentences

Table 1.1: Blocks language predicates.

Atomic

Sentence Interpretation

Tet(a) a is a tetrahedron

Cube(a) a is a cube

Dodec(a) a is a dodecahedron

Small(a) a is small

Medium(a) a is medium

Large(a) a is large

SameSize(a, b) a is the same size as b

SameShape(a, b) a is the same shape as b

Larger(a, b) a is larger than b

Smaller(a, b) a is smaller than b

SameCol(a, b) a is in the same column as b

SameRow(a, b) a is in the same row as b

Adjoins(a, b)
a and b are located on adjacent (but

not diagonally) squares

LeftOf(a, b)
a is located nearer to the left edge of

the grid than b

RightOf(a, b)
a is located nearer to the right edge

of the grid than b

FrontOf(a, b)
a is located nearer to the front of the

grid than b

BackOf(a, b)
a is located nearer to the back of the

grid than b

Between(a, b, c)

a, b and c are in the same row, col-

umn, or diagonal, and a is between b

and c

an individual has the property in question or not. For example, Claire, who

is sixteen, is young. She will not be young when she is 96. But there is no

determinate age at which a person stops being young: it is a gradual sort of

thing. Fol, however, assumes that every predicate is interpreted by a deter-

minate property or relation. By a determinate property, we mean a propertydeterminate property

for which, given any object, there is a definite fact of the matter whether or

not the object has the property.

This is one of the reasons we say that the blocks language predicates are

Chapter 1

Atomic sentences / 23

somewhat consistent with the corresponding English predicates. Unlike the

English predicates, they are given very precise interpretations, interpretations

that are suggested by, but not necessarily identical with, the meanings of the

corresponding English phrases. The case where the discrepancy is probably

the greatest is between Between and is between.

Remember

In fol,

◦ Every predicate symbol comes with a single, fixed “arity,” a number

that tells you how many names it needs to form an atomic sentence.

◦ Every predicate is interpreted by a determinate property or relation

of the same arity as the predicate.

Section 1.3

Atomic sentences

In fol, the simplest kinds of claims are those made with a single predicate

and the appropriate number of individual constants. A sentence formed by a

predicate followed by the right number of names is called an atomic sentence. atomic sentence

For example Taller(claire,max) and Cube(a) are atomic sentences, provided

the names and predicate symbols in question are part of the vocabulary of

our language. In the case of the identity symbol, we put the two required

names on either side of the predicate, as in a = b. This is called “infix” no- infix vs. prefix notation

tation, since the predicate symbol = appears in between its two arguments.

With the other predicates we use “prefix” notation: the predicate precedes

the arguments.

The order of the names in an atomic sentence is quite important. Just

as Claire is taller than Max means something different from Max is taller

than Claire, so too Taller(claire,max) means something completely different

than Taller(max, claire). We have set things up in our blocks language so that

the order of the arguments of the predicates is like that in English. Thus

LeftOf(b, c) means more or less the same thing as the English sentence b is

left of c, and Between(b, c, d) means roughly the same as the English b is

between c and d.

Predicates and names designate properties and objects, respectively. What

Section 1.3

24 / Atomic Sentences

makes sentences special is that they make claims (or express propositions).claims

A claim is something that is either true or false; which of these it is we call

its truth value. Thus Taller(claire,max) expresses a claim whose truth value istruth value

true, while Taller(max, claire) expresses a claim whose truth value is false.

(You probably didn’t know that, but now you do.) Given our assumption

that predicates express determinate properties and that names denote definite

individuals, it follows that each atomic sentence of fol must express a claim

that is either true or false.

You try it. .

▶ 1. It is time to try your hand using Tarski’s World. In this exercise, you

will use Tarski’s World to become familiar with the interpretations of the

atomic sentences of the blocks language. Before starting, though, you need

to learn how to launch Tarski’s World and perform some basic operations.

Read the appropriate sections of the user’s manual describing Tarski’s

World before going on.

▶ 2. Launch Tarski’s World and open the files called Wittgenstein’s World and

Wittgenstein’s Sentences. You will find these in the folder TW Exercises. In

these files, you will see a blocks world and a list of atomic sentences. (We

have added comments to some of the sentences. Comments are prefaced

by a semicolon (“;”), which tells Tarski’s World to ignore the rest of the

line.)

▶ 3. Move through the sentences using the arrow keys on your keyboard, men-

tally assessing the truth value of each sentence in the given world. Use the

Verify Sentence button to check your assessments. This button is on the

left of the group of three colored buttons on the toolbar (the one which

has T/F written on it). (Since the sentences are all atomic sentences the

Game button, on the right of the same group, will not be helpful.) If

you are surprised by any of the evaluations, try to figure out how your

interpretation of the predicate differs from the correct interpretation.

▶ 4. Next change Wittgenstein’s World in many different ways, seeing what hap-

pens to the truth of the various sentences. The main point of this is to

help you figure out how Tarski’s World interprets the various predicates.

For example, what does BackOf(d, c) mean? Do two things have to be in

the same column for one to be in back of the other?

▶ 5. Play around as much as you need until you are sure you understand the

meanings of the atomic sentences in this file. For example, in the original

Chapter 1

Atomic sentences / 25

world none of the sentences using Adjoins comes out true. You should try

to modify the world to make some of them true. As you do this, you will

notice that large blocks cannot adjoin other blocks.

◀6. In doing this exercise, you will no doubt notice that Between does not mean

exactly what the English between means. This is due to the necessity of

interpreting Between as a determinate predicate. For simplicity, we insist

that in order for b to be between c and d, all three must be in the same

row, column, or diagonal.

◀7. When you are finished, close the files, but do not save the changes you

have made to them.
. .Congratulations

Remember

In fol,

◦ Atomic sentences are formed by putting a predicate of arity n in front

of n names (enclosed in parentheses and separated by commas).

◦ Atomic sentences are built from the identity predicate, =, using infix

notation: the arguments are placed on either side of the predicate.

◦ The order of the names is crucial in forming atomic sentences.

Exercises

You will eventually want to read the entire chapter of the user’s manual on how to use Tarski’s World. To

do the following problems, you will need to read at least the first four sections. Also, if you don’t remember

how to name and submit your solution files, you should review the section on essential instructions in

the Introduction, starting on page 5.

1.1 If you skipped the You try it section, go back and do it now. This is an easy but crucial

exercise that will familiarize you with the atomic sentences of the blocks language. There is

nothing you need to turn in or submit, but don’t skip the exercise!

1.2
ö

(Copying some atomic sentences) This exercise will give you some practice with the Tarski’s

World keyboard window, as well as with the syntax of atomic sentences. The following are all

atomic sentences of our language. Start a new sentence file and copy them into it. Have Tarski’s

World check each formula after you write it to see that it is a sentence. If you make a mistake,

edit it before going on. Make sure you use the Add Sentence command between sentences,

Section 1.3

26 / Atomic Sentences

not the return key. If you’ve done this correctly, the sentences in your list will be numbered

and separated by horizontal lines.

1. Tet(a)

2. Medium(a)

3. Dodec(b)

4. Cube(c)

5. FrontOf(a, b)

6. Between(a, b, c)

7. a = d

8. Larger(a, b)

9. Smaller(a, c)

10. LeftOf(b, c)

Remember, you should save these sentences in a file named Sentences 1.2. When you’ve finished

your first assignment, submit all of your solution files using the Submit program.

1.3
ö

(Building a world) Build a world in which all the sentences in Exercise 1.2 are simultaneously

true. Remember to name and submit your world file as World 1.3.

1.4
ö

(Translating atomic sentences) Here are some simple sentences of English. Start a new sentence

file and translate them into fol.

1. a is a cube.

2. b is smaller than a.

3. c is between a and d.

4. d is large.

5. e is larger than a.

6. b is a tetrahedron.

7. e is a dodecahedron.

8. e is right of b.

9. a is smaller than e.

10. d is in back of a.

11. b is in the same row as d.

12. b is the same size as c.

After you’ve translated the sentences, build a world in which all of your translations are true.

Submit your sentence and world files as Sentences 1.4 and World 1.4.

1.5
ö

(Naming objects) Open Lestrade’s Sentences and Lestrade’s World. You will notice that none of

the objects in this world has a name. Your task is to assign the objects names in such a way

that all the sentences in the list come out true. Remember to save your solution in a file named

World 1.5. Be sure to use Save World As. . . , not Save World.

Chapter 1

Atomic sentences / 27

1.6
ö⋆

(Naming objects, continued) Not all of the choices in Exercise 1.5 were forced on you. That

is, you could have assigned the names differently and still had the sentences come out true.

Change the assignment of as many names as possible while still making all the sentences true,

and submit the changed world as World 1.6. In order for us to compare your files, you must

submit both World 1.5 and World 1.6 at the same time.

1.7
ö|.

(Context sensitivity of predicates) We have stressed the fact that fol assumes that every

predicate is interpreted by a determinate relation, whereas this is not the case in natural

languages like English. Indeed, even when things seem quite determinate, there is often some

form of context sensitivity. In fact, we have built some of this into Tarski’s World. Consider,

for example, the difference between the predicates Larger and BackOf. Whether or not cube a is

larger than cube b is a determinate matter, and also one that does not vary depending on your

perspective on the world. Whether or not a is back of b is also determinate, but in this case it

does depend on your perspective. If you rotate the world by 90◦, the answer might change.

Open Austin’s Sentences and Wittgenstein’s World. Evaluate the sentences in this file and

tabulate the resulting truth values in a table like the one below. We’ve already filled in the first

column, showing the values in the original world. Rotate the world 90◦ clockwise and evaluate

the sentences again, adding the results to the table. Repeat until the world has come full circle.

Original Rotated 90◦ Rotated 180◦ Rotated 270◦

1. false

2. false

3. true

4. false

5. true

6. false

You should be able to think of an atomic sentence in the blocks language that would produce

a row across the table with the following pattern:

true false true false

Add a seventh sentence to Austin’s Sentences that would display the above pattern.

Are there any atomic sentences in the language that would produce a row with this pattern?

false true false false

If so, add such a sentence as sentence eight in Austin’s Sentences. If not, leave sentence eight

blank.

Are there any atomic sentences that would produce a row in the table containing exactly

three true’s? If so, add such a sentence as number nine. If not, leave sentence nine blank.

Submit your modified sentence file as Sentences 1.7. Turn in your completed table to your

instructor.

Section 1.3

28 / Atomic Sentences

Section 1.4

General first-order languages

First-order languages differ in the names and predicates they contain, and so in

the atomic sentences that can be formed. What they share are the connectives

and quantifiers that enable us to build more complex sentences from these

simpler parts. We will get to those common elements in later chapters.

When you translate a sentence of English into fol, you will sometimestranslation

have a “predefined” first-order language that you want to use, like the blocks

language of Tarski’s World, or the language of set theory or arithmetic de-

scribed later in this chapter. If so, your goal is to come up with a translation

that captures the meaning of the original English sentence as nearly as pos-

sible, given the names and predicates available in your predefined first-order

language.

Other times, though, you will not have a predefined language to use for

your translation. If not, the first thing you have to do is decide what names and

predicates you need for your translation. In effect, you are designing, on the fly,designing languages

a new first-order language capable of expressing the English sentence you want

to translate. We’ve been doing this all along, for example when we introduced

Home(max) as the translation of Max is at home and Taller(claire,max) as the

translation of Claire is taller than Max.

When you make these decisions, there are often alternative ways to go.

For example, suppose you were asked to translate the sentence Claire gave

Scruffy to Max. You might introduce a binary predicate GaveScruffy(x, y),

meaning x gave Scruffy to y, and then translate the original sentence as

GaveScruffy(claire,max). Alternatively, you might introduce a three-place pred-

icate Gave(x, y, z), meaning x gave y to z, and then translate the sentence as

Gave(claire, scruffy,max).

There is nothing wrong with either of these predicates, or their resulting

translations, so long as you have clearly specified what the predicates mean.

Of course, they may not be equally useful when you go on to translate other

sentences. The first predicate will allow you to translate sentences like Maxchoosing predicates

gave Scruffy to Evan and Evan gave Scruffy to Miles. But if you then run into

the sentence Max gave Carl to Claire, you would be stuck, and would have

to introduce an entirely new predicate, say, GaveCarl(x, y). The three-place

predicate is thus more flexible. A first-order language that contained it (plus

the relevant names) would be able to translate any of these sentences.

In general, when designing a first-order language we try to economize on

the predicates by introducing more flexible ones, like Gave(x, y, z), rather than

Chapter 1

General first-order languages / 29

less flexible ones, like GaveScruffy(x, y) and GaveCarl(x, y). This produces a

more expressive language, and one that makes the logical relations between

various claims more perspicuous.

Names can be introduced into a first-order language to refer to anything

that can be considered an object. But we construe the notion of an “object” objects

pretty flexibly—to cover anything that we can make claims about. We’ve al-

ready seen languages with names for people and the blocks of Tarski’s World.

Later in the chapter, we’ll introduce languages with names for sets and num-

bers. Sometimes we will want to have names for still other kinds of “objects,”

like days or times. Suppose, for example, that we want to translate the sen-

tences:

Claire gave Scruffy to Max on Saturday.

Sunday, Max gave Scruffy to Evan.

Here, we might introduce a four-place predicate Gave(w, x, y, z), meaning w

gave x to y on day z, plus names for particular days, like last Saturday and

last Sunday. The resulting translations would look something like this:

Gave(claire, scruffy,max, saturday)

Gave(max, scruffy, evan, sunday)

Designing a first-order language with just the right names and predicates

requires some skill. Usually, the overall goal is to come up with a language

that can say everything you want, but that uses the smallest “vocabulary”

possible. Picking the right names and predicates is the key to doing this.

Exercises

1.8
.

Suppose we have two first-order languages: the first contains the binary predicates

GaveScruffy(x, y) and GaveCarl(x, y), and the names max and claire; the second contains the

ternary predicate Gave(x, y, z) and the names max, claire, scruffy, and carl.

1. List all of the atomic sentences that can be expressed in the first language. (Some of

these may say weird things like GaveScruffy(claire, claire), but don’t worry about that.)

2. How many atomic sentences can be expressed in the second language? (Count all of

them, including odd ones like Gave(scruffy, scruffy, scruffy).)

3. How many names and binary predicates would a language like the first need in order

to say everything you can say in the second?

Section 1.4

30 / Atomic Sentences

Table 1.2: Names and predicates for a language.

English fol Comment

Names:

Max max

Claire claire

Folly folly The name of a certain dog.

Carl carl The name of another dog.

Scruffy scruffy The name of a certain cat.

Pris pris The name of another cat.

2 pm, Jan 2, 2011 2:00 The name of a time.

2:01 pm, Jan 2, 2011 2:01 One minute later.
...

... Similarly for other times.

Predicates:

x is a pet Pet(x)

x is a person Person(x)

x is a student Student(x)

x is at home Home(x)

x is happy Happy(x)

t is earlier than t′ t < t′ Earlier-than for times.

x was hungry at time t Hungry(x, t)

x was angry at time t Angry(x, t)

x owned y at time t Owned(x, y, t)

x gave y to z at t Gave(x, y, z, t)

x fed y at time t Fed(x, y, t)

1.9
ö

We will be giving a number of problems that use the symbols explained in Table 1.2. Start a

new sentence file in Tarski’s World and translate the following into fol, using the names and

predicates listed in the table. (You can switch to the Pets language in the Sentence toolbar.

When you type, make sure they appear exactly as in the table; for example, use 2:00, not 2:00

pm or 2 pm.) All references to times are assumed to be to times on January 2, 2011.

1. Claire owned Folly at 2 pm.

2. Claire gave Pris to Max at 2:05 pm.

3. Max is a student.

4. Claire fed Carl at 2 pm.

5. Folly belonged to Max at 3:05 pm.

6. 2:00 pm is earlier than 2:05 pm.

Name and submit your file in the usual way.

Chapter 1

Function symbols / 31

1.10
.

Translate the following into natural sounding, colloquial English, consulting Table 1.2.

1. Owned(max, scruffy, 2:00)

2. Fed(max, scruffy, 2:30)

3. Gave(max, scruffy, claire, 3:00)

4. 2:00 < 2:00

1.11
.⋆

For each sentence in the following list, suggest a translation into an atomic sentence of fol. In

addition to giving the translation, explain what kinds of objects your names refer to and the

intended meaning of the predicate you use.

1. Max shook hands with Claire.

2. Max shook hands with Claire yesterday.

3. AIDS is less contagious than influenza.

4. Spain is between France and Portugal in size.

5. Misery loves company.

Section 1.5

Function symbols

Some first-order languages have, in addition to names and predicates, other

expressions that can appear in atomic sentences. These expressions are called

function symbols. Function symbols allow us to form name-like terms from function symbols

names and other name-like terms. They allow us to express, using atomic

sentences, complex claims that could not be perspicuously expressed using

just names and predicates. Some English examples will help clarify this.

English has many sorts of noun phrases, expressions that can be combined

with a verb phrase to get a sentence. Besides names like Max and Claire,

other noun phrases include expressions like Max’s father, Claire’s mother,

Every girl who knows Max, No boy who knows Claire, Someone and so forth.

Each of these combines with a singular verb phrase such as likes unbuttered

popcorn to make a sentence. But notice that the sentences that result have

very different logical properties. For example,

Claire’s mother likes unbuttered popcorn

implies that someone likes unbuttered popcorn, while

No boy who knows Claire likes unbuttered popcorn

does not.

Since these noun phrases have such different logical properties, they are terms

treated differently in fol. Those that intuitively refer to an individual are

Section 1.5

32 / Atomic Sentences

called “terms,” and behave like the individual constants we have already dis-

cussed. In fact, individual constants are the simplest terms, and more complex

terms are built from them using function symbols. Noun phrases like No boy

who knows Claire are handled with very different devices, known as quanti-

fiers, which we will discuss later.

The fol analog of the noun phrase Max’s father is the term father(max).

It is formed by putting a function symbol, father, in front of the individual

constant max. The result is a complex term that we use to refer to the fathercomplex terms

of the person referred to by the name max. Similarly, we can put the function

symbol mother together with the name claire and get the term mother(claire),

which functions pretty much like the English term Claire’s mother.

We can repeat this construction as many times as we like, forming more

and more complex terms:

father(father(max))

mother(father(claire))

mother(mother(mother(claire)))

The first of these refers to Max’s paternal grandfather, the second to Claire’s

paternal grandmother, and so forth.

These function symbols are called unary function symbols, because, like

unary predicates, they take one argument. The resulting terms function just

like names, and can be used in forming atomic sentences. For instance, the

fol sentence

Taller(father(max),max)

says that Max’s father is taller than Max. Thus, in a language containing

function symbols, the definition of atomic sentence needs to be modified to

allow complex terms to appear in the argument positions in addition to names.

Students often confuse function symbols with predicates, because bothfunction symbols vs.

predicates take terms as arguments. But there is a big difference. When you combine a

unary function symbol with a term you do not get a sentence, but another

term: something that refers (or should refer) to an object of some sort. This is

why function symbols can be reapplied over and over again. As we have seen,

the following makes perfectly good sense:

father(father(max))

This, on the other hand, is total nonsense:

Dodec(Dodec(a))

To help prevent this confusion, we will always capitalize predicates of fol and

leave function symbols and names in lower case.

Chapter 1

Function symbols / 33

Besides unary function symbols, fol allows function symbols of any ar-

ity. Thus, for example, we can have binary function symbols. Simple English arity of function

symbolscounterparts of binary function symbols are hard to come up with, but they

are quite common in mathematics. For instance, we might have a function

symbol sum that combines with two terms, t1 and t2, to give a new term,

sum(t1, t2), which refers to the sum of the numbers referred to by t1 and t2.

Then the complex term sum(3, 5) would give us another way of referring to

8. In a later section, we will introduce a function symbol to denote addition,

but we will use infix notation, rather than prefix notation. Thus 3 + 5 will be

used instead of sum(3, 5).

In fol, just as we assume that every name refers to an actual object,

we also assume that every complex term refers to exactly one object. This

is a somewhat artificial assumption, since many function-like expressions in

English don’t always work this way. Though we may assume that

mother(father(father(max)))

refers to an actual (deceased) individual—one of Max’s great-grandmothers—

there may be other uses of these function symbols that don’t seem to give

us genuinely referring expressions. For example, perhaps the complex terms

mother(adam) and mother(eve) fail to refer to any individuals, if Adam and Eve

were in fact the first people. And certainly the complex term mother(3) doesn’t

refer to anything, since the number three has no mother. When designing a

first-order language with function symbols, you should try to ensure that your

complex terms always refer to unique, existing individuals.

The blocks world language as it is implemented in Tarski’s World does not functions symbols for

blocks languagecontain function symbols, but we could easily extend the language to include

some. Suppose for example we introduced the function expressions fm, bm, lm

and rm, that allowed us to form complex terms like:

fm(a)

lm(bm(c))

rm(rm(fm(d)))

We could interpret these function symbols so that, for example, fm(a) refers

to the frontmost block in the same column as a. Thus, if there are several

blocks in the column with a, then fm(a) refers to whichever one is nearest the

front. (Notice that fm(a) may not itself have a name; fm(a) may be our only

way to refer to it.) If a is the only block in the column, or is the frontmost in

its column, then fm(a) would refer to a. Analogously, bm, lm and rm could be

interpreted to mean backmost, leftmost and rightmost, respectively.

With this interpretation, the term lm(bm(c)) would refer to the leftmost

block in the same row as the backmost block in the same column as c. The

Section 1.5

34 / Atomic Sentences

atomic sentence Larger(lm(bm(c)), c) would then be true if and only if this

block is larger than c.

Notice that in this expanded language, the sentence lm(bm(c)) = bm(lm(c))

is not always true. (Can you think of an example where it is false?) On the

other hand, fm(fm(a)) = fm(a) is always true. Can you think of any other

atomic sentences using these function symbols that are always true? How

about sentences that are always false?

Remember

In a language with function symbols,

◦ Complex terms are typically formed by putting a function symbol of

arity n in front of n terms (simple or complex).

◦ Complex terms are used just like names (simple terms) in forming

atomic sentences.

◦ In fol, complex terms are assumed to refer to one and only one object.

Exercises

1.12
.

Express in English the claims made by the following sentences of fol as clearly as you can.

You should try to make your English sentences as natural as possible. All the sentences are,

by the way, true.

1. Taller(father(claire), father(max))

2. john = father(max)

3. Taller(claire,mother(mother(claire)))

4. Taller(mother(mother(max)),mother(father(max)))

5. mother(melanie) = mother(claire)

1.13
.

Assume that we have expanded the blocks language to include the function symbols fm, bm, lm

and rm described earlier. Then the following formulas would all be sentences of the language:

1. Tet(lm(e))

2. fm(c) = c

3. bm(b) = bm(e)

4. FrontOf(fm(e), e)

5. LeftOf(fm(b), b)

Chapter 1

Function symbols / 35

6. SameRow(rm(c), c)

7. bm(lm(c)) = lm(bm(c))

8. SameShape(lm(b), bm(rm(e)))

9. d = lm(fm(rm(bm(d))))

10. Between(b, lm(b), rm(b))

Fill in the following table with true’s and false’s according to whether the indicated sentence

is true or false in the indicated world. Since Tarski’s World does not understand the function

symbols, you will not be able to check your answers. We have filled in a few of the entries for

you. Turn in the completed table to your instructor.

Leibniz’s Bolzano’s Boole’s Wittgenstein’s

1. true

2.

3.

4.

5. false

6. true

7.

8. false

9.

10.

1.14
ö

As you probably noticed in doing Exercise 1.13, three of the sentences came out true in all

four worlds. It turns out that one of these three cannot be falsified in any world, because of

the meanings of the predicates and function symbols it contains. Your goal in this problem is

to build a world in which all of the other sentences in Exercise 1.13 come out false. When you

have found such a world, submit it as World 1.14.

1.15
.

Suppose we have two first-order languages for talking about fathers. The first, which we’ll

call the functional language, contains the names claire, melanie, and jon, the function symbol

father, and the predicates = and Taller. The second language, which we will call the relational

language, has the same names, no function symbols, and the binary predicates =, Taller, and

FatherOf, where FatherOf(c, b) means that c is the father of b. Translate the following atomic

sentences from the relational language into the functional language. Be careful. Some atomic

sentences, such as claire = claire, are in both languages! Such a sentence counts as a translation

of itself.

1. FatherOf(jon, claire)

2. FatherOf(jon,melanie)

Section 1.5

36 / Atomic Sentences

3. Taller(claire,melanie)

Which of the following atomic sentences of the functional language can be translated into atomic

sentences of the relational language? Translate those that can be and explain the problem with

those that can’t.

4. father(melanie) = jon

5. father(melanie) = father(claire)

6. Taller(father(claire), father(jon))

When we add connectives and quantifiers to the language, we will be able to translate freely

back and forth between the functional and relational languages.

1.16
.

Let’s suppose that everyone has a favorite movie star. Given this assumption, make up a first-

order language for talking about people and their favorite movie stars. Use a function symbol

that allows you to refer to an individual’s favorite actor, plus a relation symbol that allows

you to say that one person is a better actor than another. Explain the interpretation of your

function and relation symbols, and then use your language to express the following claims:

1. Harrison is Nancy’s favorite actor.

2. Nancy’s favorite actor is better than Sean.

3. Nancy’s favorite actor is better than Max’s.

4. Claire’s favorite actor’s favorite actor is Brad.

5. Sean is his own favorite actor.

1.17
.⋆

Make up a first-order language for talking about people and their relative heights. Instead of

using relation symbols like Taller, however, use a function symbol that allows you to refer to

people’s heights, plus the relation symbols = and <. Explain the interpretation of your function

symbol, and then use your language to express the following two claims:

1. George is taller than Sam.

2. Sam and Mary are the same height.

Do you see any problem with this function symbol? If so, explain the problem. [Hint: What

happens if you apply the function symbol twice?]

1.18
.⋆

For each sentence in the following list, suggest a translation into an atomic sentence of fol. In

addition to giving the translation, explain what kinds of objects your names refer to and the

intended meaning of the predicates and function symbols you use.

1. Indiana’s capital is larger than California’s.

2. Hitler’s mistress died in 1945.

3. Max shook Claire’s father’s hand.

4. Max is his father’s son.

5. John and Nancy’s eldest child is younger than Jon and Mary Ellen’s.

Chapter 1

The first-order language of set theory / 37

Section 1.6

The first-order language of set theory

Fol was initially developed for use in mathematics, and consequently the

most familiar first-order languages are those associated with various branches

of mathematics. One of the most common of these is the language of set

theory. This language has only two predicates, both binary. The first is the predicates of set theory

identity symbol, =, which we have already encountered, and the second is the

symbol ∈, for set membership.

It is standard to use infix notation for both of these predicates. Thus, in

set theory, atomic sentences are always formed by placing individual constants

on either side of one of the two predicates. This allows us to make identity

claims, of the form a = b, and membership claims, of the form a ∈ b (where

a and b are individual constants).

A sentence of the form a ∈ b is true if and only if the thing named by b is membership (∈)
a set, and the thing named by a is a member of that set. For example, suppose

a names the number 2 and b names the set {2, 4, 6}. Then the following table

tells us which membership claims made up using these names are true and

which are false.2

a ∈ a false

a ∈ b true

b ∈ a false

b ∈ b false

Notice that there is one striking difference between the atomic sentences

of set theory and the atomic sentences of the blocks language. In the blocks

language, you can have a sentence, like LeftOf(a, b), that is true in a world,

but which can be made false simply by moving one of the objects. Moving

an object does not change the way the name works, but it can turn a true

sentence into a false one, just as the sentence Claire is sitting down can go

from true to false in virtue of Claire’s standing up.

In set theory, we won’t find this sort of thing happening. Here, the analog

of a world is just a domain of objects and sets. For example, our domain

might consist of all natural numbers, sets of natural numbers, sets of sets of

natural numbers, and so forth. The difference between these “worlds” and

those of Tarski’s World is that the truth or falsity of the atomic sentences is

determined entirely once the reference of the names is fixed. There is nothing

that corresponds to moving the blocks around. Thus if the universe contains

2For the purposes of this discussion we are assuming that numbers are not sets, and that

sets can contain either numbers or other sets as members.

Section 1.6

38 / Atomic Sentences

the objects 2 and {2, 4, 6}, and if the names a and b are assigned to them,

then the atomic sentences must get the values indicated in the previous table.

The only way those values can change is if the names name different things.

Identity claims also work this way, both in set theory and in Tarski’s World.

Exercises

1.19
ö

Which of the following atomic sentences in the first-order language of set theory are true

and which are false? We use, in addition to a and b as above, the name c for 6 and d for

{2, 7, {2, 4, 6}}.
1. a ∈ c

2. a ∈ d

3. b ∈ c

4. b ∈ d

5. c ∈ d

6. c ∈ b

To answer this exercise, submit a Tarski’s World sentence file with an uppercase T or F in each

sentence slot to indicate your assessment.

Section 1.7

The first-order language of arithmetic

While neither the blocks language as implemented in Tarski’s World nor the

language of set theory has function symbols, there are languages that use

them extensively. One such first-order language is the language of arithmetic.

This language allows us to express statements about the natural numbers

0, 1, 2, 3, . . . , and the usual operations of addition and multiplication.

There are several more or less equivalent ways of setting up this language.

The one we will use has two names, 0 and 1, two binary relation symbols, =predicates (=, <) and

functions (+,×) of

arithmetic
and <, and two binary function symbols, + and ×. The atomic sentences are

those that can be built up out of these symbols. We will use infix notation

both for the relation symbols and the function symbols.

Notice that there are infinitely many different terms in this language (for

example, 0, 1, (1 + 1), ((1 + 1) + 1), (((1 + 1) + 1) + 1), . . .), and so an infinite

number of atomic sentences. Our list also shows that every natural number is

named by some term of the language. This raises the question of how we can

specify the set of terms in a precise way. We can’t list them all explicitly, since

Chapter 1

The first-order language of arithmetic / 39

there are too many. The way we get around this is by using what is known as

an inductive definition.

Definition The terms of first-order arithmetic are formed in the following terms of arithmetic

way:

1. The names 0, 1 are terms.

2. If t1, t2 are terms, then the expressions (t1 + t2) and (t1 × t2) are also

terms.

3. Nothing is a term unless it can be obtained by repeated application of

(1) and (2).

We should point out that this definition does indeed allow the function

symbols to be applied over and over. Thus, (1 + 1) is a term by clause 2 and

the fact that 1 is a term. In which case ((1 + 1)× (1 + 1)) is also a term, again

by clause 2. And so forth.

The third clause in the above definition is not as straightforward as one

might want, since the phrase “can be obtained by repeated application of” is

a bit vague. In Chapter 16, we will see how to give definitions like the above

in a more satisfactory way, one that avoids this vague clause.

The atomic sentences in the language of first-order arithmetic are those atomic sentences of

arithmeticthat can be formed from the terms and the two binary predicate symbols, =

and <. So, for example, the fol version of 1 times 1 is less than 1 plus 1 is

the following:

(1× 1) < (1 + 1)

Exercises

1.20
.

Show that the following expressions are terms in the first-order language of arithmetic. Do this

by explaining which clauses of the definition are applied and in what order. What numbers do

they refer to?

1. (0 + 0)

2. (0 + (1× 0))

3. ((1 + 1) + ((1 + 1)× (1 + 1)))

4. (((1× 1)× 1)× 1)

1.21
.

Find a way to express the fact that three

is less than four using the first-order lan-

guage of arithmetic.

1.22
.⋆

Show that there are infinitely many

terms in the first-order language of

arithmetic referring to the number one.

Section 1.7

40 / Atomic Sentences

Section 1.8

Alternative notation

As we said before, fol is like a family of languages. But, as if that were not

enough diversity, even the very same first-order language comes in a variety

of dialects. Indeed, almost no two logic books use exactly the same notational

conventions in writing first-order sentences. For this reason, it is important

to have some familiarity with the different dialects—the different notational

conventions—and to be able to translate smoothly between them. At the end

of most chapters, we discuss common notational differences that you are likely

to encounter.

Some notational differences, though not many, occur even at the level of

atomic sentences. For example, some authors insist on putting parentheses

around atomic sentences whose binary predicates are in infix position. So

(a = b) is used rather than a = b. By contrast, some authors omit parentheses

surrounding the argument positions (and the commas between them) when

the predicate is in prefix position. These authors use Rab instead of R(a, b).

We have opted for the latter simply because we use predicates made up of

several letters, and the parentheses make it clear where the predicate ends

and the arguments begin: Cubed is not nearly as perspicuous as Cube(d).

What is important in these choices is that sentences should be unambigu-

ous and easy to read. Typically, the first aim requires parentheses to be used in

one way or another, while the second suggests using no more than is necessary.

Chapter 1

