Professional Series
Portability Guide

Version 9.1.3

Printed: March 2008

The information contained in this document is subject to change without notice and should not be construed
as a commitment by Synergex. Synergex assumes no responsibility for any errors that may appear in this
document.

The software described in this document is the proprietary property of Synergex and is protected by
copyright and trade secret. It is furnished only under license. This manual and the described software may be
used only in accordance with the terms and conditions of said license. Use of the described software without
proper licensing is illegal and subject to prosecution.

© Copyright 1997-2008 by Synergex

Synergex, Synergy, Synergy Development Environment, Synergy/DE, and all Synergy/DE product names
are trademarks of Synergex.

Windows, Windows Vista, and Windows Server are registered trademarks of Microsoft Corporation.

All other product and company names mentioned in this document are trademarks of their respective
holders.

DCN PG-01-9105

Synergex
2330 Gold Meadow Way
Gold River, CA 95670 USA

http://www.synergex.com
phone 916.635.7300
fax 916.635.6549

http://www.synergex.com

Contents

Preface

About this manual vii

Manual conventions vii

Other useful publications viii

Product support information viii
Synergex Professional Services Group ix
Comments and suggestions ix

Part 1: Developing for Windows

1 Synergy/DE on Windows: The Basics
Windows Terminology 1-2
Synergy/DE on Windows Components 1-3
Windows Characteristics 1-4
Filenames 1-4

What your application will look like 1-4
Big-endian and little-endian 1-5

Requirements 1-6

Requirements for developing Synergy programs 1-6
Requirements for running Synergy programs 1-6
C interface requirements 1-7

Using Initialization Settings 1-9

2 Statements, Functions, and Subroutines on Windows

Synergy Language on Windows 2-2
Synergy Language statements 2-2
Synergy Language functions 2-3
Synergy Language subroutines 2-4

Portability Guide 9.1.3 (3/08) iii

Contents

Record locking 2-6
Windowing subroutines 2-6

Ul Toolkit on Windows 2-10
Script commands 2-10
Ul Toolkit subroutines 2-11

Printing 2-17
Synergy Windows printing APl 2-17
Color 2-18

Part 2: Developing for UNIX
3 Synergy/DE on UNIX: The Basics

System Requirements 3-2

UNIX Characteristics 3-3
Case sensitivity 3-3
Big-endian and little-endian 3-3
Machine-specific characteristics 3-5

4 Statements and Subroutines on UNIX

Synergy Language Statements 4-2
Synergy Language Routines 4-4
Record Locking 4-5

5 Terminal Characteristics on UNIX

Terminal Numbers Used by Synergy Language 5-2
Terminal Settings Used by Synergy Language 5-3

Synergy Language and the UNIX Terminal Database 5-4
Determining which database you should use 5-5
Terminal database file syntax 5-5
The terminal capabilities status program 5-7
Terminal codes used by Synergy Language 5-13
Screen attributes 5-13
Screen graphics 5-14

iv Portability Guide 9.1.3 (3/08)

6 Other UNIX-Specific Information
Printing 6-2
DBLDIR:dblpg 6-2
The LPNUM option 6-2

Serial Ports 6-4
Windowing System 6-5
Enabling color 6-5
Enabling hardware scrolling 6-5

System Options 6-6
Message Facilities 6-7

Part 3: Developing for OpenVMS

7 Synergy/DE on OpenVMS: The Basics

OpenVMS Characteristics 7-2
Shared images 7-2
File structures supported by Synergy Language 7-2
Installing Multiple Versions of Synergy Language 7-4
Using the alternative version 7-4
Limitations on OpenVMS 7-5

8 Statements, Subroutines, and Functions on OpenVMS

Synergy Language Statements 8-2

Synergy Language Subroutines and Functions 8-6
OpenVMS-specific subroutines 8-6
Routines that work differently on OpenVMS 8-7
Subroutines that have no meaning on OpenVMS 8-12
AST support in Synergy Language 8-12
DBLSTARLET directory 8-13
Floating-point arguments 8-13

Record Locking 8-14

Portability Guide 9.1.3 (3/08)

Contents

Contents

9 Other OpenVMS-Specific Information
ISAM Utilities 9-2
Terminal Numbers 9-3

Peripheral Devices 9-4
Printer setup 9-4
Synergy Language and LTA devices 9-4

System Options 9-6

Message Facilities 9-7
Starting the message manager 9-7

Error Handling 9-8
Interface with Other Languages 9-9

10 Porting Between OpenVMS and Windows or UNIX Systems

Porting OpenVMS Code to Windows and UNIX 10-2
Porting Windows and UNIX Code to OpenVMS 10-4

Index

vi Portability Guide 9.1.3 (3/08)

Preface

About this manual

Synergy/DE™ (Synergy Development Environment™) is designed to be portable, but there are
cases where functions, requirements, and processes differ on the various supported platforms.
There are also differences and compatibility issues between the major versions of Synergy/DE. The
goal of this guide is to document the functions, requirements, and processes that are unique to each
of the platforms on which Synergy/DE runs.

The Professional Series Portability Guide is written for users who are already familiar with
programming concepts and terminology (but not necessarily with Synergy Language) and are
familiar with the platforms discussed in this guide.

Manual conventions

Throughout this manual, we use the following conventions:

»

In code syntax, text that you type is in Courier typeface. Variables that either represent or
should be replaced with specific data are in italic type.

Optional arguments are enclosed in [italic square brackets/. If an argument is omitted and the
comma is outside the brackets, a comma must be used as a placeholder, unless the omitted
argument is the last argument in a subroutine. If an argument is omitted and the comma is
inside the brackets, the comma may also be omitted.

Arguments that can be repeated one or more times are followed by an ellipsis...
A vertical bar (1) in syntax means to choose between the arguments on either side of the bar.

Data types are boldface. The data type in parentheses at the end of an argument description
(for example, (n)) documents how the argument will be treated within the routine. An a
represents alpha, a d represents decimal or implied-decimal, an i represents integer, and an n
represents numeric (which means the type can be d or i).

To “enter” data means to type it (or highlight it, in the case of a selection window entry) and
then press ENTER. (“ENTER” refers to either the ENTER key or the RETURN key, depending on
your keyboard.)

Portability Guide 9.1.3 (3/08) vii

Preface

WIN

Items or discussions that pertain only to a specific operating system or environment are called out
with the name of the operating system.

Other useful publications

v Vv VvV VvV VvV VvV VvV Vv v

Getting Started with Synergy/DE

UI Toolkit Reference Manual

Synergy Language Reference Manual

Synergy Language Tools

Environment Variables and System Options

Repository User’s Guide

ReportWriter User’s Guide

Synergy/DE Release Notes

Migrating Your Application to Windows (available on the Online Manuals CD)

Product support information

viii

If you cannot find the information you need in this manual or in the publications listed above, you
can call the Synergy/DE HelpDesk Support department at (800) 366-3472 (in North America) or
(916) 635-7300. To purchase a HelpDesk Support agreement, contact your Synergy/DE account
manager at the above phone numbers.

Before you contact us, make sure you have the following information:

v Vv Vv Vv VvV Vv Vv v Vv

The version of Synergy/DE product(s) you are running

The name and version of the operating system you are running

The hardware platform you are using

The error mnemonic and any associated error text (if you need help with a Synergy/DE error)
The statement at which the error occurred

The exact steps that preceded the problem

What changed (for example, code, data, hardware) before this problem occurred

Whether the problem happens every time and whether it is reproducible in a small test program

Whether your program terminates with a traceback, or whether you are trapping and
interpreting the error

Portability Guide 9.1.3 (3/08)

Preface

Synergex Professional Services Group

If you would like assistance implementing new technology or would like to bring in additional
experienced resources to complete a project or customize a solution, Synergex™ Professional
Services Group (PSG) can help. PSG provides comprehensive technical training and consulting
services to help you take advantage of Synergex’s current and emerging technologies. For
information and pricing, contact your Synergy/DE account manager at (800) 366-3472 (in North
America) or (916) 635-7300.

Comments and suggestions

We welcome your comments and suggestions for improving this manual. Send your comments,
suggestions, and queries, as well as any errors or omissions you’ve discovered, to
doc@synergex.com.

Portability Guide 9.1.3 (3/08) ix

mailto:doc@synergex.com

Part 1: Developing for Windows

This section of the Professional Series Portability Guide contains information on Synergy
Language and UI Toolkit that is specific to Windows environments.

1

Synergy/DE on Windows: The Basics

Windows Terminology 1-2
Explains Windows terminology you should be familiar with.

Synergy/DE on Windows Components 1-3

Introduces two primary components in Synergy/DE on Windows: Synergy Language and
UI Toolkit.

Windows Characteristics 1-4

Discusses filenames, what your application will look like on Windows, and the differences between
big-endian and little-endian integer storage and their effect on Synergy/DE development in a
Windows environment.

Requirements 1-6

Discusses requirements for developing and running Synergy™ applications in Windows
environments.

Using Initialization Settings 1-9
Discusses using synergy.ini and synuser.ini to define your Windows environment.

1-1

Synergy/DE on Windows: The Basics
Windows Terminology

Windows Terminology

API

DLL

1-2

We use the following terminology in our Windows documentation. You should be familiar with
these terms before you read the rest of this and the other chapters in “Developing for Windows.”

This list is meant to build on (not repeat) the explanations of Windows terminology found in
Microsoft Windows manuals. If you are not already familiar with standard Windows terms (such as
icon, scroll bar, minimize/maximize buttons, and so forth), refer to your Microsoft Windows
documentation.

API, or Application Programming Interface, is a set of subroutines and functions used to
communicate between different parts of a system. This is the level of the system that the
application programmer uses. For example, UI Toolkit provides an API that can be called by a
Synergy Language program; this API is the interface between the Synergy Language program and
the UT Toolkit.

A DLL, or Dynamic Link Library, is a library file containing API routines. You can access these
libraries at runtime without explicitly linking them to an application. Most (third-party) Windows
applications provide and use their own DLLs.

Portability Guide 9.1.3 (3/08)

Synergy/DE on Windows: The Basics
Synergy/DE on Windows Components

Synergy/DE on Windows Components

The two primary components of Synergy/DE on Windows are
» Synergy Language
» Ul Toolkit

Synergy Language
Synergy Language on Windows supports the same statements and subroutines that other Synergy

Language products support, with some slight variations. For more information, see chapter 2,
“Statements, Functions, and Subroutines on Windows.”

The Windows version of the runtime is designed for use with UI Toolkit.

Ul Toolkit

The UI Toolkit routines enable you to use native Microsoft Windows features such as menus,
message boxes, combination (or combo) boxes, edit controls, status windows, scroll bars, buttons,
and list boxes. Because Toolkit gives your application the ability to use most standard Windows
features, we recommend that you take full advantage of these Toolkit subroutines.

For more details on how Toolkit works in a Windows environment, see chapter 2, “Statements,
Functions, and Subroutines on Windows.”

Portability Guide 9.1.3 (3/08) 1-3

Synergy/DE on Windows: The Basics
Windows Characteristics

Windows Characteristics

Synergy/DE on Windows provides you with a graphical environment for developing applications.
This graphical environment offers greater control of your applications than that offered by
traditional UNIX and OpenVMS environments. You can run multiple applications simultaneously,
allowing background applications to run while you use the foreground application. The number of
multiple applications that can run simultaneously is limited only by your system’s available
memory.

Filenames

Synergy/DE does not fully support the long filenames of Windows in regard to spaces. The
Synergy Language OPEN statement and the UI Toolkit U_OPEN subroutine support spaces in
filenames; however, other Synergy/DE tools may truncate filenames at the first space.

What your application will look like

1-4

When a Synergy application starts in Windows, a native application window appears. A separate
window is created when the Synergy debugger or the Toolkit window debugger is invoked. For
more information, see “Using the debugger on Windows” in the “Debugging Your Synergy
Programs” chapter of Synergy Language Tools.

Depending upon the screen resolution being used, the number of rows and columns being

A displayed, the font used for the application window, and the setting of the
MINIMIZE_LEADING environment variable, when an application starts up it may require
more space than the screen affords.

If so, it will be limited to the available space, and a vertical or horizontal scroll bar will be
displayed to allow the user to scroll to the unseen area of the application window. Rather
than enlarging the application window to add the scroll bar, the scroll bar occupies part of
the initial size of the application window, in order to avoid unpleasant resizing of the
application window upon startup or whenever the scroll bars are removed.

Because of this, however, it is likely that the addition of one scroll bar (for instance, the
vertical one) will result in the addition of the other (for instance, horizontal) scroll bar, so
that the user may view the portion of the application which was just occluded by the first
scroll bar. To eliminate the second scroll bar, the user may stretch the application window
along that scroll bar’s axis until it disappears.

Portability Guide 9.1.3 (3/08)

Synergy/DE on Windows: The Basics
Windows Characteristics

Big-endian and little-endian

Computer systems store integers in either big-endian or little-endian format. For big-endian
systems, the low-order byte has the highest address. For little-endian systems, the low-order byte
has the lowest address. Computers with Motorola 68xxx series chips and non-Compaq RISC chips
are big-endian. Computers with Intel and Compagq chips are little-endian. See the table on page 3-4
for a list of the endian types of various systems.

Microsoft Windows environments are little-endian systems. Synergy applications developed on
Windows environments are therefore portable across little-endian machines (such as SCO UNIX).
The reverse is also true: you can run a Synergy application developed on an SCO UNIX machine in
a Windows environment without re-creating the executables. To make your applications more
Windows-like, however, there are changes that you need to make. For more information, see
chapter 2, “Statements, Functions, and Subroutines on Windows.”

Portability Guide 9.1.3 (3/08) 1-5

Synergy/DE on Windows: The Basics
Requirements

Requirements

The following sections discuss the specific requirements for developing and running Synergy
applications in a Windows environment.

Requirements for developing Synergy programs

You need to have installed Synergy/DE Professional Series to develop a Synergy program on
Windows.

You may also choose to develop on other little-endian systems, such as SCO UNIX, instead of
developing in a Windows environment, and then move to a Windows environment to run and test
your application.

Development tools

You can run the Synergy/DE development tools from a command prompt window. This is
important if you usually create batch files to build your executables.

Requirements for running Synergy programs

If you are using UI Toolkit subroutines, you need to have installed Synergy/DE Professional Series
to run a Synergy program under Windows.

Running existing applications

Most existing Synergy applications will run without any additional work beyond installing and
using the Windows runtime. Note the following:

» First check for any conditionally compiled code. If any exists, evaluate it for possible changes
when running on Windows.

If changes are necessary, you can use the compiler built-in identifier D_GUI to conditionalize
your code. If you make any changes, you must recompile and relink your application.

We recommend conditionalizing the code at runtime by comparing the machine argument
returned from the ENVRN subroutine to the 101 system code. With this method, you can take
advantage of little-endian system compatibility, which requires no recompiling or relinking.

» If your application has been compiled and linked using an older version of dbl and dblink
(older than the versions running on Windows) or has been built on a big-endian system, you
must recompile and relink your application.

1-6 Portability Guide 9.1.3 (3/08)

Synergy/DE on Windows: The Basics
Requirements

Running existing Ul Toolkit applications

If your application is a UI Toolkit application that runs on non-Windows little-endian systems and
was compiled and linked with the same versions running on Windows, it will work with
Synergy/DE on Windows. You will just need to do the following:

1. Copy any Toolkit window libraries from your other little-endian system to your Windows system.

2. Relink with the Toolkit’s executable library (tklib.elb) if your application is currently linked with
tklib.olb. If your application is already linked with the .elb, you do not need to relink on the
Windows system.

If your application is a Toolkit application that runs on non-Windows big-endian systems and was
compiled and linked with the same versions running on Windows, it will work with Synergy/DE on
Windows. You will need to do the following:

1. Recompile and relink your application with the Toolkit’s executable library (tklib.elb).
2. Rescript your window libraries on Windows.

For more information on recompiling and relinking, see chapter 2, “Statements, Functions, and
Subroutines on Windows,” in this manual and the “Building and Running Synergy Language
Programs” chapter of Synergy Language Tools.

C interface requirements

The C interface enables you to call C routines from within your Synergy application. There are two
methods for doing this:

» Rebuild the runtime (dbr.exe) to include the C routines, and then call them from your
application.

» Create a DLL containing the C routines, and then use the DLL functions to access them.
Before you can use either of these methods, some requirements must be met. The following

sections describe these requirements.

Rebuilding the runtime

To rebuild the Synergy runtime on Windows, you must have installed and configured a suitable
software development environment; refer to the comments in the makedbr.bat file for specific
products and versions.

Portability Guide 9.1.3 (3/08) 1-7

Synergy/DE on Windows: The Basics
Requirements

Using a DLL
To use a DLL with Synergy/DE on Windows, you must

1-8

»
4
4

create a 32-bit DLL. Refer to your Microsoft Windows documentation for more information.
explicitly “export” the routines that your Synergy program will call.

use the Synergy Language %DLL_xxx functions to access the routines in the DLL. Refer to the
“Synergy DLL API” chapter of the Synergy Language Reference Manual for syntax
specifications.

Portability Guide 9.1.3 (3/08)

Synergy/DE on Windows: The Basics
Using Initialization Settings

Using Initialization Settings

Initialization files define your Windows environment. Windows applications modify their
operation according to users’ requirements set in initialization files. Refer to your Microsoft
documentation for more information on Windows initialization files.

Synergy.ini and synuser.ini are the initialization files that contain environment variables affecting
the Synergy runtime and Synergy/DE development tools and executables on Windows. The
synergy.ini file contains system- or application-specific settings, for multiple users. The
synuser.ini file contains user-specific settings (for example, personal preferences such as colors,
fonts, the state of the application window, the position and size of the print preview window, and
any overrides to system-specific settings).

Refer to the “Environment Variables” chapter of Environment Variables and System Options for
more information on Synergy initialization files and initialization settings syntax.

Portability Guide 9.1.3 (3/08) 1-9

2

Statements, Functions, and
Subroutines on Windows

This chapter discusses the differences between Windows and UNIX or OpenVMS environments
when using Synergy Language and UI Toolkit.

Synergy Language on Windows 2-2

Contains Windows-specific information about Synergy Language statements, functions, and
subroutines, including the windowing subroutines.

Ul Toolkit on Windows 2-10

Contains Windows-specific information about UI Toolkit script commands and routines.

Printing 2-17
Contains Windows-specific information about print options and a brief description of the Synergy
Windows printing APIL.

Color 2-18

Contains Windows-specific information about using color.

2-1

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

Synergy Language on Windows

Though all versions of Synergy Language are portable, each operating system offers different
features, imposes a few unique constraints, or requires some system-specific procedures.

This section identifies such specific features, constraints, and procedures for Windows
environments. For more information, refer to the Synergy Language Reference Manual.

Synergy Language statements

2-2

ACCEPT, DISPLAY, and READS

The ACCEPT, DISPLAY, and READS statements should not be mixed with the W_xxx routines
because the characters are displayed in a “console” window.

DETACH
The DETACH statement is not available.

F10 key

In Windows, the F10 key is a reserved key that activates the system menu. It will not be returned to
your application when using ACCEPT or READS, but will be returned in a UI Toolkit application.

LPQUE

The FORM and ALIGN qualifiers do not affect printing on Windows unless system option #22 is
set. The LPNUM value must be an alpha variable specifying the printer device in the form “name,
[device]”, unless system option #22 is set.

OPEN

The following OPEN statement qualifiers are ignored (these are only meaningful on OpenVMS):
BKTSIZ

BLKSIZ

BUFNUM

BUFSIZ

CONTIG

DEQ

RECTYPE

v Vv Vv Vv Vv Vv Vv

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

OPTIONS qualifier
The following options for the OPTIONS qualifier are ignored (these are only meaningful on

OpenVMS):
» /bufnum
» /bufsiz

» /deq

» /rectype
» /stream
READS

A difference of behavior exists between Windows and other platforms when performing a READS
from the terminal. On UNIX and OpenVMS, any text that was previously displayed at the location
of the READS remains displayed until the user types over it. On Windows, this text is erased for
the width of the buffer passed to READS. The reason for this difference is that on Windows, the
input is performed using an edit control to give the user thebenefit of editing features (arrow keys,
home/end, cut/copy/paste, and so forth.). In order for text to be displayed within the edit control, it
would also have to be returned to the program if the user merely pressed ENTER. This would not be
operationally equivalent to the behavior on UNIX and OpenVMS systems, where the text, although
displayed, is not returned in the READS buffer unless the user types it in. We therefore opted for
keystroke compatibility, as opposed to visual compatibility, with other systems. The behavior on
UNIX and OpenVMS is actually the less consistent of the two, but because it has historical
precedent, we cannot change it without breaking existing code.

If you want to be able to prefill an area for input, use a different input method. Possibilities include
various UI Toolkit routines (I_INPUT, I_INPFLD, U_FLD) or the low-level windowing routine
W_DISP with the WD_READS subfunction.

Synergy Language functions

%DLL_xxx functions

The %DLL_xxx functions allow you to call subroutines in Windows 32-bit Dynamic Link Libraries
(DLLs) and UNIX shared libraries (.so files). See the “Synergy DLL API” chapter of the Synergy
Language Reference Manual for details and function syntax.

Portability Guide 9.1.3 (3/08) 2-3

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

$SCR_ATT

The $SCR_ATT function sets screen attributes. The attributes BOLD, UNDERLINE, REVERSE,
and NORMAL are supported. The BLINK attribute (to produce blinking text) is not supported in
Windows. If set, BLINK will produce italicized text.

Italicized text extends beyond the bounds of a character cell; therefore, part of the last
A italicized character (in the window or preceding nonitalicized text) will not be visible.

Synergy Language subroutines

Using the following subroutines may make your programs nonportable. Synergy/DE on Windows
ignores any system-supplied subroutines that are not appropriate for the Windows environment.

Subroutines that work differently on Windows

2-4

ENVRN

The ENVRN subroutine supports the following Windows operating system codes:
» For Windows 2000, system is 15 and machine is 101.

» For Windows XP, system is 18 and machine is 101 or 104.

» For Windows Server 2003, system is 19 and machine is 101 or 104.

» For Windows Vista, system is 20 and machine is 101 or 104.

JBNO

The JBNO routine returns the current process ID of the application as “ID.” JBNO returns the
desktop’s window handle as the “parent ID.” JBNO returns the network adaptor card ID number as
the “group ID.” For more information, see the JBNO routine in the “System-Supplied Subroutines
and Functions” chapter of the Synergy Language Reference Manual.

KILL

The KILL subroutine terminates the current process but doesn’t log out as on multi-user systems.

RENAM

Because of physical limitations, the RENAM subroutine cannot rename files across logical drives.
For example, the following statement is not allowed:

xcall renam("c:\target.ddf", "d:\source.ddf")

In this situation, a copy must be done, which is beyond the scope of RENAM.

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

RUNJB

The RUNIJB subroutine supports only two arguments: PROGRAM and PID. The definitions remain
the same as on UNIX, but the following arguments to RUNJB will be ignored when running on
Windows:

» TERMINAL
» SUBPROCESS
» IO_FLAG

The maximum number of processes is limited only by system resources.

SETLOG

The SETLOG subroutine affects only the current environment and child processes. When a
program terminates, the specified environment variable is the same as when the program began.

SHELL

The SHELL subroutine has a third argument specifically for Windows. For more information see
SHELL in the “System-Supplied Subroutines and Functions” chapter of the Synergy Language
Reference Manual.

SPAWN

The SPAWN subroutine’s second argument has specific options for Windows. See SPAWN in the
“System-Supplied Subroutines and Functions” chapter of the Synergy Language Reference
Manual.

TNMBR

The TNMBR subroutine uses the TNMBR environment variable setting for the system terminal
number.

Synergy Language subroutines included for compatibility

The GTPPN subroutine returns 0 in Windows environments and is provided for compatibility.
The PAINT subroutine is ignored on Windows.
The following UNIX subroutines are ignored on Windows:

» EXEC
» TFLSH

Portability Guide 9.1.3 (3/08) 2-5

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

Record locking

If you’re migrating from UNIX, be aware that record locks on Windows are channel-based. If the
same program opens the same file on two different channels in update mode, both channels will be
affected by each other’s locks, which may cause unexpected $ERR_LOCKED errors.

Windowing subroutines

This section describes the Synergy Language windowing subroutines and functions that work
differently in Windows. If you are using the Synergy Language windowing routines, you should
review this section for highlights on the subroutines and functions that either work differently or
are not supported.

Windows-specific subroutines

The W_CAPTION subroutine allows you to retrieve or load the window caption. This subroutine is
specific to Windows environments and will be ignored on UNIX and OpenVMS. For more
information see W_CAPTION in the “Synergy Windowing API” chapter of the Synergy Language
Reference Manual.

Routines that work differently on Windows

W_AREA
When using the WA_ATTR function, ATTR_BLINK will display italic typeface.

Italicized text extends beyond the bounds of a character cell; therefore, part of the last
A italicized character (in the window or preceding nonitalicized text) will not be visible.

W_BRDR

On Windows, Synergy/DE supports three border options: no border, dialog frame, and caption
frame. Specifying no border on Windows is the same as specifying no border on UNIX or
OpenVMS. The dialog frame border contains only a solid frame around the window. The caption
frame border contains the system menu box and the drag bar (with space for the title, or caption).
Users can drag windows with a caption frame border. Caption frame is the default border type (see
WB_DRAGON below), and only caption frame windows can be moved.

Keep in mind that window borders do not take up an entire “cell” as they do on UNIX and
OpenVMS; if you are depending on one window’s border to fully occlude a certain area of another
window, this will not be the case. Because the border does not take up an entire cell, you may want
to enable borders for Windows (but not for UNIX and OpenVMS) using the WB_NOCELL
function.

2-6 Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

Note the following W_BRDR functions:

14
14
4

WB_OFF changes a window border to the no border style.
WB_ON restores the window border back to its previous type (caption or dialog frame).

WB_NOCELL behaves like WB_ON, but if the window is displayed on UNIX or OpenVMS,
it will not have a border.

WB_TITLE only works with caption frame borders, and the title is always positioned at
WBT_TOP and WBT_CENTER.

WB_DRAGOFF changes a caption frame border to a dialog frame border. If the border is off
as a result of WB_OFF, you won’t see the border style change until you do WB_ON or
WB_NOCELL.

WB_DRAGON changes a dialog frame border to a caption frame border. This is the default
window frame state, except for one-line windows, which default to WB_DRAGOFF.

The following W_BRDR functions are ignored in the Windows environment:

» WB_ATTR

» WB_CHAR

» WB_COLOR

» WB_PARTIAL

» WB_TATTR

» WB_TCOLOR

» WB_TPOS

W_DISP

Note the following W_DISP functions:

» WD_ACCEPT uses the caret to designate where text is to be entered.

» When using the WA_ATTR function, ATTR_BLINK will display italic typeface. See the note
on page 2-6.

» WD_GETS is implemented exactly like WD_READS (see WD_READS below).

» WD_READS uses a native Windows edit control sized according to the size of the field being

read into. When the cursor is moved over the edit control, it changes to an I-beam and, when
you click the mouse, places the caret within the field. Double-clicking the mouse highlights the
field contents. You can also click and drag to highlight a portion of the field. When any or all
of the field is highlighted, typing a character will replace the highlighted text. WD_READS

Portability Guide 9.1.3 (3/08) 2-7

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

will terminate on ENTER, EOF, or any extended key press (function key or up and down arrow
keys). Left and right arrow keys are processed by the edit control to move within the field,
rather than being returned to the caller. Three routines elicit the terminate character:

%RDTRM
RDTRM
%RTERM

W_FLDS
Note the following W_FLDS functions:

» Input done through WF_INPUT will override the WF_ATTR and WF_COLOR subroutines
since WF_INPUT uses a native edit control.

» Input done through WF_INPUT will not return extended keys in the normal manner. Extended
keys will be accelerated if there is an entry in the Windows accelerator table, and a value other
than the scan code will be returned.

» WF_INPUT is supported only through UI Toolkit. We do not recommend direct use of
WE_INPUT.

W_INFO

The following W_INFO functions are ignored in the Windows environment:

» WI_BCHR
» WI_XFR (WIX_SAGET)
» WI_XFR (WIX_SDGET)

The WI_WINDOW function always returns a value of O for the occlude flag.

%W_INFO

The following %W_INFO function is ignored in the Windows environment:

» WIF_OCLFLG

W_INIT

The #rows and #cols arguments specify the initial size of the window only. If they are not passed,
the APP_WIDTH and APP_HEIGHT initialization file settings will determine the initial size of the
window. If these settings are not specified, the screen size will be 80 x 25.

2-8 Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Synergy Language on Windows

W_PROC
Note the following W_PROC functions:
» WP_CURSOR will affect only the cursor used with WD_ACCEPT.

» The foreground and background numbers for WP_PALET can be between 0 and 511 on
Windows but only between 0 and 255 on UNIX and OpenVMS; the significance of the values
is system specific. (On Windows, these values are Synergy Language colors, which can be
defaults set by the Synergy runtime or overrides set by the COLOR# environment variables or
previous calls to W_PROC.)

» Using WP_RESIZE to switch to 132 columns also requires setting ALTERNATE_FONT in
synergy.ini or synuser.ini to resize the characters.

The following W_PROC function is ignored in the Windows environment:

» WP_OPTION

Portability Guide 9.1.3 (3/08) 2-9

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

Ul Toolkit on Windows

This section provides general information only. Specific syntax and usage rules can be found in the
UI Toolkit Reference Manual.

Script commands

2-10

The following window script commands and qualifiers function differently on Windows than they
do on other operating systems. Those that are only applicable to Windows are marked as “Windows
only.” The “Windows only” commands are ignored on other operating systems but are retained in
the window library, so that the same window library can be used in both Windows and UNIX or
OpenVMS (little-endian) environments.

.BORDER

Renditions specified in conjunction with .BORDER have no meaning in a Windows environment
and are ignored. Use the Windows Control Panel to change border renditions.

.BORDER DRAGBAR

(Windows only) The DRAGBAR qualifier to the . BORDER command creates a window that has a
border and a dragbar. The dragbar is the portion of a window’s border in which the caption is
displayed. If the user clicks on the dragbar and drags the mouse, the window moves with it. For
windows created at runtime, use the WB_DRAGON or WB_DRAGOFF options to the W_BRDR
subroutine to create or remove dragbars.

é By default, one-line input windows do not have a dragbar.

.BORDER NOCELL

(Windows only) The NOCELL qualifier to the . BORDER command designates that a window
should only have a border if the border does not require a full character cell for display. In other
words, the window has a border on Windows but not on UNIX and OpenVMS. For windows
created at runtime, you can pass the WB_NOCELL option to the W_BRDR subroutine.

.COLUMN RIGHT and CENTERED
The justification argument for COLUMN is ignored on Windows

.ENTRY NORESET
The NORESET qualifier to the .ENTRY script command is ignored.

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

.ENTRY RIGHT and CENTERED

The RIGHT and CENTERED qualifiers to the .ENTRY script command do not generate expected
results. Menu entry text should always be left-justified (the default).

.FIELD NOTERM
The NOTERM qualifier to the .FIELD script command is ignored.

.FIELD PAINT
Paint characters specified by the PAINT qualifier to the .FIELD script command are ignored.

ITEM RIGHT and CENTERED

The RIGHT and CENTERED qualifiers to the .ITEM script command do not generate expected
results. Selection items should always be left-justified (the default).

ITEM SELECT

Quick-select characters specified by the .ITEM script command are ignored. The first non-blank
character of the entry is always used as the quick-select character. See also S_SELBLD on
page 2-13.

.PAINT

Paint characters specified by the .PAINT script command are ignored.

.TITLE

Window titles are always in the top border, and they are always left-justified (indicated as
BEGINNING) regardless of their settings in the script file. As a result, you can maintain them
differently on UNIX and OpenVMS.

The options for the rendition argument have no meaning in a Windows environment and are
ignored. Use the Windows Control Panel to change title renditions.

Ul Toolkit subroutines

The following routines function differently on Windows than they do on other operating systems.
Those that are only available on Windows are marked as “Windows only” and are ignored on other
systems.

E_SECT (D_HEADER and D_CAPTION options)

If the size of your application header is set to 1 or O or is not specified, the header text (caption)
passed to E_SECT appears in the title bar. You can use D_HEADER or D_CAPTION to set or
modify the header text. For compatibility between all environments, we recommend that you
always use D_HEADER.

Portability Guide 9.1.3 (3/08) 2-11

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

2-12

If the size of your application header is greater than 1, an area below the title bar is used for
displaying the header. Use D_HEADER to access this area. Use D_CAPTION to set and modify an
additional line of text in the application’s title bar.

The maximum visible length of header text (caption) is 78 characters.

Specifying D_CENTER or D_RIGHT for the header text (caption) is ignored. Captions on
Windows are always left-justified.

EFKEY_METHOD
The user-overloadable EFKEY_METHOD is not supported on Windows.

L_INPUT

The no_termination argument is ignored on Windows. It is always treated as D_NOTERM.

L_SECT (D_TITLE)

Specifying D_CENTER or D_RIGHT for the title text is ignored. Titles on Windows lists are
always left-justified.

L_SECTDRAW

On Windows, L_SECTDRAW either adds unexpected characters to the header or footer or is
ignored. For standard (non-ActiveX) lists, L_ SECTDRAW may add unexpected characters if it is
followed by an L_SECT call that doesn’t erase existing text. L SECTDRAW is ignored for
ActiveX Toolkit lists.

LLOAD_METHOD

The use of a list load method is required when doing list processing on Windows.

M_PROCESS

Typically, Windows applications do not pull menu columns down automatically. Instead, menus
are explicitly invoked by the user using the mouse or the ALT key. Rather than change the default
M_PROCESS behavior (which could require a redesign of your program flow), you may suppress
the automatic menu pull-down feature of M_PROCESS by setting the environment variable
DTK_MENU_UP or by calling M_DEFCOL/(0).

For compatibility with other platforms, the input_string argument to M_PROCESS must match the
keystrokes for a UNIX or OpenVMS environment, even though it requires fewer arrow movements
to be pressed after the ALT key on Windows.

Additionally, input_string can only specify a submenu entry if it follows a valid menu entry. For
example, the following is allowed:

xcall m_process (" [menu_entry]<E>[submenu_entry]")

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

The following is not allowed:

xcall m_process ("<R><D><D><E>[submenu_entry]")

S_SELBLD

Quick-select characters specified by S_SELBLD are ignored. The first nonblank character of the
entry is always used as the quick-select character. See also ITEM SELECT on page 2-11.

T_EDIT/T_VIEW

General windows that have been converted to text windows using T_SETUP display a scroll bar
when necessary in T_EDIT but not in T_VIEW.

%TB_BUTTON
(Windows only) The %TB_BUTTON function enables you to load and manipulate toolbar buttons.

%TB_TOOLBAR

(Windows only) The %TB_TOOLBAR function enables you to create and manipulate an
application toolbar.

U_ABORT

If g_throwabort is set to zero (the default), U_ABORT uses a Windows message box with a stop
sign icon and an OK button.

U_ABOUT

U_ABOUT uses a Windows message box to display the “About” information. Text is left-justified,
and the window contains an OK button and the application’s icon (the icon specified through
U_ICON).

U_BAR

You cannot use U_BAR to remove the menu bar without first removing all menus.

U_CHARSB

The U_CHARSB subroutine does nothing in a Windows environment.

U_CREATESB
The U_CREATESB subroutine does nothing in a Windows environment.

Portability Guide 9.1.3 (3/08) 2-13

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

2-14

U_DEBUG

The U_DEBUG subroutine brings up the Toolkit window debugger in a separate application
window. The initial size and placement of this window is user-definable using the DBG_X,
DBG_Y, DBG_WIDTH, and DBG_HEIGHT initialization settings in synergy.ini. The font is
user-definable using the FONT_DEBUG setting.

U_EDITREND

Windows overrides many of the renditions set with U_EDITREND (as well as Proto and
U_REND).

%U_ICON

(Windows only) The %U_ICON function defines the icon for a window, which is used when the
window is minimized and represents the system menu.

U_MESSAGE

U_MESSAGE uses a Windows message box with an icon and an OK button. If you pass
D_ERROR, the icon is an exclamation point (!). If you pass D_ALERT, the icon is an information
icon (i).

%U_MSGBOX

%U_MSGBOX uses a Windows message box with an icon and one to three buttons, depending on
the arguments passed. The icon can be a STOP sign, an exclamation point (!), a question mark (?),
or the information (i) icon. Button choices are Yes, No, OK, Cancel, Abort, Retry, and Ignore.

U_POPUP
U_POPUP uses a Windows message box with an OK button.

%U_PRINTQUERY

(Windows only) The %U_PRINTQUERY function retrieves information about the currently
selected printer or a specified printer from your Windows Print Manager. It can also retrieve the
names of all configured printers.

%U_PRINTSETUP

(Windows only) The %U_PRINTSETUP function enables a user to change the default printer or
printer properties.

U_REND

Windows overrides many of the renditions set with U_REND (as well as Proto and
U_EDITREND).

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

U_START

Regardless of the number of lines specified for footer_lines, the maximum size of the footer is one
line. If the screen_rows and screen_columns arguments are not passed, Toolkit uses the
APP_WIDTH and APP_HEIGHT initialization settings in synergy.ini to determine the initial
window size. If these are not set, the size will be 80 x 25.

U_UPDATESB
The U_UPDATESB subroutine does nothing in a Windows environment.

U_WAIT
U_WAIT uses a Windows message box with an OK button.

%U_WINHELP

(Windows only) The %U_WINHELP function invokes WinHelp Help. The API is nearly identical
to the Windows SDK “WinHelp” function and enables the contents of the specified file to be
displayed in the Help window.

%U_WNDEVENTS

(Windows only) The %U_WNDEVENTS function enables your application to respond to window
mouse events. These events include mouse clicks, double-clicks, and moving, sizing, and closing a
window.

%U_WNDFONT

(Windows only) The %U_WNDFONT function enables you to set or retreive font information.
This function can set a specific font, or it can display a standard font dialog from which the user can
select a font.

%U_WNDSTYLE

(Windows only) The %U_WNDSTYLE function enables you to change the vertical spacing on a
window-by-window or list-by-list basis.

Other differences

The Toolkit debugger is displayed in a separate window. The debugger is invoked with XCALL
U_DEBUG or by pressing CTRL+ R when the DTKDBG environment variable is set to 1.

Fill patterns do not extend into the area added to an input window for buttons; however, fill

colors do.

Menu processing

Menu shortcut keys do not work when a menu is pulled down. We recommend that you set the
environment variable DTK_MENU_UP or call M_DEFCOL(0).

Portability Guide 9.1.3 (3/08) 2-15

Statements, Functions, and Subroutines on Windows
Ul Toolkit on Windows

2-16

Blank, line, and text menu entries can be highlighted but not selected.
Disabled menu entries can be highlighted but not selected.
Quick-select characters are always designated by an underscore.

The mouse or ALT and arrow keys can be used to process the menu. ALT+P, CTRL+P, or any other
“process-menu” keys you may have defined do not always activate the menu.

Shortcut keys are mapped to a native Windows accelerator table to enable their use. The key
mapping function available through Proto or U_EDITKEYS has an effect only on the shortcut text
displayed in the menus. The actual keystrokes required for each function code are fixed. (For
example, you cannot change the designated key from F4 to F2, but you can change “F4” to be
represented as “PF4” when displayed in the menu.) The keystrokes required for each function code
are reflected in the key map MSWINDOWS, which is the default key map for this environment.

Input processing

Input time-outs behave differently on Windows. On UNIX and OpenVMS, the time-out is reset
after the user presses the first keystroke in an input field. On Windows, the time-out is not reset
after the first or any other keystroke. Additionally, no time-out occurs while a menu is pulled down
or when the application is otherwise suspended. When the application continues, the time-out
occurs as soon as the application can process the message from the system.

List processing

When using UI Toolkit lists on Windows, the following limitations exist:

Only single-line list entries are supported.

Field-to-field mouse movement when performing input into a list is not supported.

Disabled list entries are not supported.

v v v v

There is no visual difference between an enabled and disabled list; both use the same Windows
Control Panel setting (Display > Item > Windows) for background and foreground colors.

Selection processing

Quick-select characters are supported but never highlighted, and invalid quick-select characters do
not beep when pressed.

Text, line, and blank items have no meaning in a Windows environment. Selection list items should
always be left-justified. Any other option does not operate as expected.

The following shortcut keys are captured by the selection window and are not returned to the
calling application: the ARROW keys, the HOME key, and the END key. For this reason, and to reduce
menu-bar flicker, the optional select menu passed to S_SELECT is not placed unless the global
variable g_plc_col_args is true. See the Migrating Your Application to Windows document,
available on the Online Manuals CD, for more information about g_plc_col_args.

Portability Guide 9.1.3 (3/08)

Statements, Functions, and Subroutines on Windows
Printing

Printing

As on other operating systems, the LPQUE statement is used to queue a file for printing by the
system. This statement relies closely on the spooling facilities offered by the operating system.

You can set the PRINT_METHOD environment variable to send data from files printed with the
LPQUE statement directly to the printer, without Print Manager affecting the escape codes.

System option #22 determines how the runtime handles the print job. If this option is set, the
runtime sends LPQUE arguments to the file DBLDIR:dblpq.bat, which can contain customized
print commands. If you do not set this option, the runtime sends the print job directly to the
Microsoft Windows print manager.

Synergy Windows printing API

The Synergy Windows printing API enables you to use extended printer features in a true Windows
environment to print documents and reports through Synergy Language functions. With these
printing functions, you can embed graphics, preserve complex formatting, and perform print
previews. See the Migrating Your Application to Windows document, available on the Online
Manuals CD, for information and examples on how to implement this API in your applications.

Portability Guide 9.1.3 (3/08) 2-17

Statements, Functions, and Subroutines on Windows
Color

Color

The WNDC environment variable is not used on Windows. Instead, a default color palette (with 16
default color palette entries) and a default set of Synergy color definitions (color O through color
511) are loaded into memory when the Synergy runtime starts. See “Colors and the color palette on
Windows” in the “Synergy Windowing API” chapter of the Synergy Language Reference Manual
for more information.

2-18 Portability Guide 9.1.3 (3/08)

Part 2: Developing for UNIX

This section of the Professional Series Portability Guide contains information on Synergy
Language that is specific to the UNIX operating system. When used in this document, the
term “UNIX system” includes all machines on which UNIX, UNIX-derivative, or UNIX-
compatible operating systems run.

3

Synergy/DE on UNIX: The Basics

System Requirements 3-2
Describes the requirements for running Synergy Language on your UNIX system.

UNIX Characteristics 3-3

Discusses the characteristics of UNIX that affect Synergy Language on UNIX: case sensitivity,
big-endian and little-endian systems, and machine-specific limitations.

3-1

Synergy/DE on UNIX: The Basics
System Requirements

System Requirements

Synergy Language will not run on UNIX unless you have Interprocess Communication (IPC) on
your system. Most UNIX machines come with IPC, but check your system to make sure you have
it. (IPC is a layered product on some machines.)

3-2 Portability Guide 9.1.3 (3/08)

Synergy/DE on UNIX: The Basics
UNIX Characteristics

UNIX Characteristics

Case sensitivity

The UNIX file system is case sensitive, which means that it distinguishes lowercase letters from
uppercase letters. As a result, Synergy Language on UNIX command lines are also case sensitive.
If you enter a filename in uppercase letters and do not specify an extension, Synergy Language on
UNIX will look for an uppercase extension. If you enter a filename in lowercase letters, Synergy
Language on UNIX will look for a lowercase extension.

For example, if you enter

dbl DEMO

Synergy Language on UNIX will look for

DEMO . DBL

However, if you enter

dbl demo
Synergy Language on UNIX will look for
demo .dbl

Note that the OPEN statement on UNIX is also case sensitive; be careful to use the correct case for
filenames in the OPEN statement.

Refer to DBLCASE in the “Environment Variables” chapter of Environment Variables and System
Options for a way to override this behavior and externally enforce filename case from your
program.

Big-endian and little-endian

Integers on UNIX systems are represented in either big-endian or little-endian format. For big
endian, the low-order byte has the highest address. For little endian, the low-order byte has the
lowest address. Computers with Motorola 68xxx series chips and non-Compaq RISC chips are
big-endian systems. Computers with Intel and Compaq chips are little-endian systems.

Synergy Language executable programs and libraries can run on any system with the same endian
format as the system on which they were built, with the following exceptions:

» HP Tru64 UNIX is little-endian, but HP Tru64 UNIX objects, libraries, and executables are
not compatible with any other little-endian machines.

» Version 8.1.5d or higher is required in order for object libraries to be portable between
little-endian UNIX and Windows systems.

Portability Guide 9.1.3 (3/08) 3-3

Synergy/DE on UNIX: The Basics
UNIX Characteristics

3-4

If your development system and the system you’re porting to have the same endian type, you can
use the same executables on both. If one is big endian and the other is little endian, you must
re-create your executables on the system you’re porting to.

Database files that contain integer data (including ISAM files) are not portable between big-endian
and little-endian machines. You can use the %CNV_IP and %CNV_PI intrinsic functions to
convert the integers in your database files to and from a portable format. Refer to the “System-
Supplied Subroutines and Functions” chapter of the Synergy Language Reference Manual for
details.

ISAM files that do not contain integer data (and may contain integer keys) are portable between
big-endian and little-endian machines. Also, starting with version 7, integer data can be made
portable with ISAM files. You can define where nonkey integer data resides within a record and
have the conversion done automatically from portable to native form on read and write operations.

The following table lists the endian types of various systems.

Configuration Endian type

HP OpenVMS Alpha Alpha Native Little
HP OpenVMS 164 [tanium Native Little
HP Tru64 UNIX 64-bit Little
HP-UX 32-bit Big

HP-UX 64-bit (PA-RISC) 64-bit Big

HP-UX 64-bit (Itanium) 64-bit Big

IBM AIX 5L 32-bit Big

IBM AIX 5L 64-bit 64-bit Big

Linux 32-bit (Red Hat or SUSE) Little

Linux 64-bit (x64) 64-bit Little

SCO OpenServer Little

SCO UnixWare Little

Sun Solaris 32-bit Big

Sun Solaris 64-bit (x64/x86) 64-bit Little

Portability Guide 9.1.3 (3/08)

Synergy/DE on UNIX: The Basics
UNIX Characteristics

Configuration Endian type
Sun Solaris 64-bit (SPARC) 64-bit Big
Windows 32-bit Little
Windows 64-bit (x86) 64-bit Little

Machine-specific characteristics

Linux

If you execute a script from the EXEC, SPAWN or RUNJB subroutines or the STOP or OPEN (“I”)
statements, Linux requires the first line to begin with “#! interpreter”’; otherwise, the script will not
execute. For example:

#! /bin/bash

If you are using option #22 for LPQUE, make sure the first line of dblpq includes this line.

SCO UNIX

There is a limitation with the terminfo entry for ANSI terminals on SCO UNIX systems. When
“attributes-off” is set, graphics are turned off as well. This causes problems in Synergy Language
windowing subroutine output on ANSI terminals when a graphics character with an attribute set is
immediately followed by a graphics character with no attributes set. In this case, the nonattribute
characters use the standard character set instead of the graphics set. To work around this problem,
change the ANSI definition of characteristic “sgr0” to “\E[0Om”. Note that the Synergy runtime uses
the terminfo database by default. You can also rebuild the runtime to use the termcap database.

Portability Guide 9.1.3 (3/08) 3-5

4

Statements and Subroutines on UNIX

Synergy Language Statements 4-2

Discusses Synergy Language statements that are either unique to UNIX or function differently in
UNIX environments.

Synergy Language Routines 4-4

Discusses subroutines and functions that are either unique to UNIX or function differently in UNIX
environments.

Record Locking 4-5
Discusses Synergy Language and record locking on UNIX.

4-1

Statements and Subroutines on UNIX
Synergy Language Statements

Synergy Language Statements

ACCEPT

The ACCEPT statement and the WD_ACCEPT subfunction of the W_DISP subroutine map LF to
CR LF when input is redirected. Most input files on UNIX are composed of lines containing
characters followed by an LF. To properly handle this lack of a CR, one is added when ACCEPT or
WD_ACCEPT encounters an LF.

DETACH

The DETACH statement is only available on UNIX.

LPQUE

OPEN

4-2

The LPQUE statement, which causes a disk file to be queued for transfer to a spooled device, relies
closely on the spooling facilities offered by each operating system. As a result, it works slightly
differently and uses different options on different systems. On UNIX, LPQUE ignores the FORM
and ALIGN options if system option #22 is not set. LPQUE uses the following UNIX commands,
which don’t have these options:

System V 1p
BSD lpr

By setting system option #22, you can customize the dblpq.bat file to recognize all options. For
more information, see “Printing” on page 6-2 of this manual and system option #22 in the “System
Options” chapter of Environment Variables and System Options.

On UNIX and OpenVMS systems, you can optionally execute a keyboard command through an
opened pipe using a special syntax of the OPEN statement. Although the options below are not
available on Windows and UNIX, they can be used on Windows or UNIX to access files remotely
on an OpenVMS platform.

The following OPEN statement qualifiers are only available on OpenVMS:
BKTSIZ

BLKSIZ

BUFNUM

BUFSIZ

CONTIG

DEQ

RECTYPE

v Vv Vv VvV VvV Vv v

Portability Guide 9.1.3 (3/08)

Statements and Subroutines on UNIX
Synergy Language Statements

The following options for the OPTIONS qualifier are only meaningful on OpenVMS:
/bufnum

/bufsiz

/deq

[rectype

v Vv Vv Vv V9

/stream
Refer to the documentation for the OPEN statement in the “Synergy Language Statements” chapter
of the Synergy Language Reference Manual for more information.

SEND
On UNIX, the SEND statement has a maximum message length of 4080 bytes.

SLEEP

If system option #12 and the TBUF environment variable are set, the I/O buffer will be flushed
before the SLEEP statement is executed.

Portability Guide 9.1.3 (3/08) 4-3

Statements and Subroutines on UNIX
Synergy Language Routines

Synergy Language Routines

The following routines are only available on UNIX:

14
4
14

BREAK - Issue a break to the channel
FORK - Split the current process
STTY - Control terminal settings

The following routines function differently on UNIX than they do on other operating systems:

»

»

For the GTPPN subroutine on UNIX, project is the group ID and programmer is the user ID.
Privilege is 1 if you have root privileges.

The JBNO subroutine handles the process group identification number differently on UNIX.

The KILL subroutine on UNIX only kills those processes in the same process group ID as the
processes that are executing the KILL. (The process group ID includes all jobs spawned by the
same original log-in.)

The SETLOG subroutine only affects the current environment and any child processes; when

your program terminates, the specified environment variable is the same as when your program
began. If you don’t pass a translation value, the SETLOG subroutine will unset (or delete) the
specified environment variable.

The SHELL subroutine works differently on each operating system.

The mode argument of the SPAWN subroutine has specific options on UNIX. On UNIX, the
runtime resets terminal (tty) settings by default when SPAWN is executed.

The TNMBR subroutine determines the terminal number differently on UNIX than it does on
other operating systems. See page 5-2 for more information about terminal numbering.

The status argument of the TTSTS subroutine can be returned with the number of pending
characters on OpenVMS and some UNIX systems.

The %DLL_xxx functions allow you to call subroutines in UNIX shared libraries (.so files).

Most of the subroutines mentioned above are described in the “System-Supplied Subroutines and
Functions” chapter of the Synergy Language Reference Manual. The %DLL_xxx functions are
described in the “Synergy DLL API” chapter of the Synergy Language Reference Manual.

4-4

Portability Guide 9.1.3 (3/08)

Statements and Subroutines on UNIX
Record Locking

Record Locking

Locks on UNIX are process-based; if the same program opens the same file on two different
channels in update mode, one channel won’t be affected by the other’s locks. Also, if the same
record is read by both channels, the record will be unlocked by one channel without the other
channel being aware of it.

Setting the LOCK:Q_NO_LOCK qualifier will override an exclusively locked file that has been
opened using the SHARE:Q_EXCL_RW qualifier, unless you enforce mandatory locking with
protection at the operating system level (with chmod).

If a user opens a file on more than one channel, Synergy Language defers the actual system closing
of the file until it has been closed on all channels opened by that user. This feature is necessary to
maintain locks set by the other open channels. When the file is closed on one of the channels but
remains open on other channels, Synergy Language “holds” the channel until the file has been
closed on all of the channels.

If you’re migrating from Windows or OpenVMS, be aware that record locks are no longer channel-
based as they are on these systems.

Portability Guide 9.1.3 (3/08) 4-5

5

Terminal Characteristics on UNIX

Terminal Numbers Used by Synergy Language 5-2

Discusses terminal numbers used by Synergy Language on UNIX and explains how Synergy
Language determines a terminal number.

Terminal Settings Used by Synergy Language 5-3

Discusses terminal settings used by Synergy Language on UNIX and explains how to change
default key functions by changing certain STTY settings.

Synergy Language and the UNIX Terminal Database 5-4
Discusses the terminal database files used by Synergy Language on UNIX.

5-1

Terminal Characteristics on UNIX
Terminal Numbers Used by Synergy Language

Terminal Numbers Used by Synergy Language

5-2

Synergy Language uses terminal numbers in the TNMBR subroutine and in one form of the SEND
statement. Synergy Language determines the terminal number in one of three ways:

Synergy Language looks in the environment of the current process for the environment variable
TNMBR = number and uses the specified number as the current terminal number. This method has
one disadvantage: you can easily give the same terminal number to more than one terminal. For
example, if two people define TNMBR as equal to 1 in their log-in file and both are logged in at the
same time, both of their terminals will have the number 1.

Synergy Language looks in the file /etc/ttys for the terminal name of the current process and uses
the line number (beginning with line number 0) in the file as the terminal number. For example, if
your terminal is called /dev/junk, and your /etc/ttys file contains the lines

console
tty0l
tty02
junk

your terminal number will be 3 (because junk is on the fourth line, and the first line is 0). The
advantage of this terminal numbering system is that it automatically assigns terminal numbers for
the entire system, and it works for non-numeric terminal names.

On systems where the /etcl/ttys file exists, you can edit the file and rearrange the lines to

alter the terminal numbers; don’t change the format of the lines. Other characters may
appear on each line, but these characters are ignored; do not delete them. If the /etc/ttys
file doesn’t exist (which means your operating system doesn'’t use it), you can create your
own ttys file. On systems with network devices, this file can be extremely large.

If you haven’t set TNMBR and /etc/ttys doesn’t exist, Synergy Language will assign a number
based on the name of your terminal. This method works if all of your terminal names end in a
unique number. However, if some of the numbers are duplicates or if the name is non-numeric, the
results are unpredictable.

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Terminal Settings Used by Synergy Language

Terminal Settings Used by Synergy Language

By changing certain STTY settings, you can change default key functions like interrupt and
backspace. For example, UNIX commonly uses the delete key as interrupt and the backspace key
as erase by default, but you might want to change these default settings to the Compagq style,
making the delete key erase and CTRL+C interrupt. To do so, follow these steps:

1. View all of your terminal settings, as follows:
System V stty -a
BSD stty everything
2. Change your settings from the command line:

stty intr CTRL+C
stty erase DELETE

You must actually press the DELETE and CTRL+C keys (and then press ENTER) to change the
settings.

3. To add these settings to your .profile or .login file, type the following lines in your file:

stty intr "“c"
stty erase ""?"

At runtime, Synergy Language makes the following changes to the terminal settings:

» Turns ECHO off

» Turns ICANON off
» Turns ICRNL off

» Sets VMIN to 1

All other settings are left alone.
See your UNIX command manual for more information about changing terminal settings.

You can also control terminal settings using the STTY subroutine. See STTY in the
“System-Supplied Subroutines and Functions” chapter of the Synergy Language Reference Manual
for information.

Portability Guide 9.1.3 (3/08) 5-3

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Synergy Language and the UNIX Terminal Database

5-4

The escape sequences used by VT100-class ANSI terminals are known by the Synergy runtime on
UNIX. If you are using a VT100 terminal and have set the TERM environment variable to vt100,
you don’t need to read the rest of this section; everything used by the Synergy runtime is already
available.

System option #30 sets VT102 escape sequences. See system option #30 in the “System
A Options” chapter of Environment Variables and System Options for more information.

Synergy Language on UNIX uses one of the following terminal database files for non-VT100
screen displays: /etc/termcap or /usr/lib/terminfo/*. If you have a non-VT100 terminal, you may
need to modify the entry for your terminal.

The difference between termcap and terminfo is that termcap is a general purpose database that
allows direct access to specific terminal capabilities, while terminfo is a compiled database that
requires specific routines to access terminal entries. Because terminfo has a defined structure of
terminal capabilities that it recognizes, there’s no way to add new unsupported capabilities.

If your operating system normally has terminfo, the Synergy runtime will be built with the
terminfo database. You can verify that your runtime is built with terminfo by entering the what
system command:

what $DBLDIR/bin/dbr
(This command may be a layered product on your system and may not be available.)

Among other things, the what utility reports which terminal database is being used. A runtime file,
dbr.tc, is commonly distributed that includes the termcap library support.

If you want to rebuild the runtime to include some C interface routines, you’ll need to reconfigure
your runtime by changing the terminal library in the $DBLDIR/csrc/makedbr file. For instance, to
use termcap instead of terminfo, do the following:

Edit the makedbr file to assign the termcap library to the variable TLIB. For example:

TLIB="S$DBLDIR/lib/tclib.a"

Run makedbr to create the new runtime. For example:

makedbr

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Determining which database you should use

To determine which terminal database you should use, first find out if your terminal emulates a
VT100-class ANSI terminal. If it does, set your terminal up as a VT100-class ANSI terminal and
set TERM to vt100.

If you’re using a terminal that cannot emulate a VT100-class ANSI terminal, and your application
requires some capability that your terminal isn’t performing properly, you’ll need to modify the
terminal database. If the runtime is built with terminfo, modify the terminfo data file for your
terminal by doing the following:

1. Look for the terminfo source file for your terminal. This file should have the extension .sre. If your
system distributes this source file, you may find it in /ust/lib/terminfo or one of its subdirectories.

2. If you can’t find a distributed terminfo source file, you may need to create one. You can either
create the source file using infocmp, which is available with System V Release 3 (but not with any
previous release), or you can create it from scratch.

3. If the terminfo file isn’t available for your terminal, you will need to create one.

4. After making any of the above changes, compile the terminfo source file using the tic compiler (if
it’s available on your system).

5. Check your changes by running the tstat.ti utility. See “The terminal capabilities status program”
on page 5-7 for more information.

If you need to add a capability that isn’t available with terminfo, or if you can’t complete any one
of the steps listed above, you’ll have to use termcap instead.

If you're familiar with terminfo, go ahead and use it; but we recommend that you use
A termcap for the following reasons:

» Termcap is not compiled, which makes it easier to change.
» Not all Synergy Language features are supported by terminfo.

Terminal database file syntax
The syntax of a termcap entry is as follows:
names : code=esc_seq: [code=esc_seq: ...]
The syntax of a terminfo entry is as follows:

names, code=esc_seq, [code=esc_seq:...],

Portability Guide 9.1.3 (3/08) 5-5

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Arguments

names

Lists the three names that are known for the terminal. The names are separated by the vertical
bar character (1). The first name is always two characters long for compatibility with older
systems. The second name is the most common abbreviation for the terminal and the name
used in the TERM environment variable setting. The third name should be a long name that
fully identifies the terminal. Only the third name can contain blanks for readability.

code

The terminal capability code. All of the terminal capability codes used by Synergy Language
are listed in “Terminal codes used by Synergy Language” on page 5-13.

esc_seq

The escape sequence (or substitute character, in the case of a graphics character) for the
terminal capability code. Look for the escape sequences in your system or terminal
documentation.

Discussion

5-6

A few special codes that are significant to Synergy Language do not use the code=esc_seq syntax:

» bs
> ms

» sg#l

You can list as many code=esc_seq groups as you want, as long as termcap groups are separated
by colons (:) and terminfo groups are separated by commas (,).

Termcap entries must be one continuous logical line. The continuation character for a termcap
entry is a backslash (\). Terminfo entries, on the other hand, don’t require a single line, so no
continuation character is necessary.

The following is the standard ANSI CRT termcap entry (\E represents an escape character):

1li|ansi|Ansi standard crt:\
:al=\E[L:ms:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:cm=\E[%$1%d; $dH:co#80:\
:de=\E[P:d1=\E[M:do=\E[B:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:1i#25:\
:nd=\E[C:pt:so0=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
:kb="h:ku=\E[A:kd=\E[B:kl1=\E[D:kr=\E[C:e0:\
:sf=\E[S:sr=\E[T:\
:cc=\E[2K:cb=\E[1K:CT=\E[1J:\
:md=\E[Im:mb=\E[5Sm:mr=\E[7m:me=\E[m:\
:ac=x\263u\264k\277m\300v\301w\302t\303g\304n\305j\3311\332:\
:CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
:WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
:HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:\

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

:fD=\E[30m: £B=\E[34m: fG=\E[32m: f£C=\E[36m: \
:fR=\E[31m: fM=\E[35m: fY=\E[33m: fW=\E[37m: \
:bD=\E[40m:bB=\E[44m:bG=\E[42m:bC=\E[46m: \
:bR=\E[41m:bM=\E[45m:bY=\E[43m:bW=\E[47m:

The following is the standard ANSI CRT terminfo entry:

ansi|generic ansi standard terminal,
am, xon, ms,
cols#80, lines#24,
bel="G, blink=\E[5m, bold=\E[1lm, cbt=\E[Z,
clear=\E[H\E[J, cr=\r, cub=\E[%pl%dD, cubl=\Db,
cud=\E[%pl1l%dB, cudl=\n, cuf=\E[%$pl%dC, cufl=\E[C,
cup=\E[%1%pl1%d; %p2%dH, cuu=\E[%pl%dA, cuul=\E[A,
dchl=\E[P, dl1=\E[%pl%dM, dl1=\E[M, ed=\E[J, el=\EIK,
home=\E[H, ht=\t, hts=\EH,
ind=\n, invis=\E[8m, kbs=\b, kcubl=\E[D, kcudl=\E[B,
kcufl=\E[C, kcuul=\E[A, khome=\E[H,
rev=\E[7m, rmso=\E[m,
rmul=\E[m,
sgr0=\E[Om, smso=\E[7m, smul=\E[4m, tbc=\E[2g,

When the Synergy runtime processes a screen function, it searches the database for the appropriate
terminal capability entry. If the entry isn’t found and there is no alternative capability, the runtime
ignores the function and doesn’t flag an error. If a capability doesn’t work as you expect, you can
either remove the entry from the database (if it isn’t a crucial feature) or correct the entry. If your
terminal has a capability that’s not listed in the database, you can add the entry.

The terminal capabilities status program

We provide a utility called tstat (tstat.tc for termcap and tstat.ti for terminfo) that tests the
terminal entry for your terminal type and identifies entries you may need to change.

Tstat has two test sections. The first section scans your terminal database file and lists terminal
capabilities that are used by Synergy Language but that aren’t defined in the database file. The
second section is a series of tests for each Synergy Language screen function. As you run the tests,
compare the results on the screen with the expected results. If the results are different, you may
need to modify your terminal database file. Check your terminal documentation to verify that your
terminal (defined by the TERM environment variable) can physically perform the screen function
you need.

Portability Guide 9.1.3 (3/08) 5-7

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Tstat — first section

5-8

Set the environment variable TERM to specify your terminal type, and run the appropriate tstat
program for your database (tstat.tc or tstat.ti). The first section of the program lists information for
the following Synergy Language areas:

TERM
$SCR_POS
$SCR_CLR
$SCR_MOV
$SCR_ATT

Windows

v Vv Vv VvV VvV Vv v

Cursor motion with attributes set

We’ll use tstat.tc as an example. If tstat.tc finds the terminal entry in /etc/termcap, it lists the
terminal type. If all of the required terminal capabilities exist in termcap for each of the above
functions, tstat displays the word “Passed” next to the function. If tstat lists a capability as
missing, the termcap entry for your terminal type doesn’t define it. (However, your terminal may
still be able to perform that function.)

The Windows section of the test checks for “line wrap off” (RA) and “line wrap on” (SA). In some
cases, a window that is placed on the right edge or bottom of the screen can cause the screen to
scroll upward. If you can’t change screen wrap through escape sequences in termcap, disable
screen wrap at the hardware level if possible. If you can’t disable screen wrap at all, position your
windows away from the edges of the screen.

Your output from the first section of tstat.tc might look like this:

TERM=ansi
$SSCR_POS: Passed
SSCR_CLR: Passed
$SSCR_MOV: Passed
$SSCR_ATT:

SAVE: cannot save attribute [sc]
RESTORE: cannot restore attribute [rc]
Windows: Passed

-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

If you want to add any of the missing attributes to your termcap entry, type “n” to exit the
program; otherwise, press ENTER to go on to the second section of tstat.

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Tstat — second section

The second section of tstat performs six tests. For each test, press ENTER to run the test or type “n”
to skip the test and go on to the next one. Only tests with existing terminal capabilities in the
termcap file are run. The following prompts appear for each test.

Test 1: Press return to clear screen [n to skip]:

When you press ENTER, test 1 clears the screen and moves the cursor to the upper left corner. If
anything else occurs, check the “clear screen” (cl) and “screen cursor positioning” (cm) entries in
the termcap file.

Test 2: Press return to test screen positioning [n to skip, or #]:

Test 2 has an optional argument for the number of lines on your terminal. (The default is 23.)
When you press ENTER, test 2 places a set of boxes on the screen. Each box is made of two square
brackets. The right half of a box is in the upper left corner of the screen. The test also places an X in
each box.

The box and X placement are designed to test the most critical (x,y) coordinates. If the Xs are not
placed inside the boxes, either your screen doesn’t have 23 lines (in which case you should rerun
test 2 and specify the correct number of lines for your terminal at the prompt), or termcap has the
wrong entry for “screen cursor positioning” (cm).

Test 3: Press return to test relative movement [n to skip]:

When you press ENTER, this test places a set of boxes on the screen and puts asterisks (*) inside
them using relative screen movement. If the asterisks aren’t inside the boxes, verify that “cursor
up” (up), “cursor down” (do), “cursor right” (nd), and “cursor left” (bc) were found in the first
section of the tstat utility; otherwise modify the termcap file to use the correct sequences.

Test 4: Press return to test line clearing [n to skip]:

When you press ENTER, this test places four rows of Xs on the screen. It then tests the following
clearing functions: EOL, EOS, BOL, BOS, and LINE. The four rows of Xs are redrawn after each
clear function. If any of the functions don’t clear the correct part of the screen, check the following
termcap entries: “clear to end of line” (ce), “clear to end of screen” (cd), “clear to beginning of
line” (cb), “clear to top of screen” (CT), and “clear line” (cc).

Test 5: Press return to test attributes [n to skip]:

When you press ENTER, this test lists the name of each screen attribute and several groups of
attributes on separate lines, then sets the appropriate attribute for each line. Note that when several
attributes are set in one statement, Synergy Language doesn’t combine them but sets them one at a
time. For more information on screen attributes, See “Screen attributes” on page 5-13.

Test 6: Press return to graphics [n to skip]:

When you press ENTER, test 6 displays a graphics character list, which is required by the
windowing subroutines.

Portability Guide 9.1.3 (3/08) 5-9

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

This test displays the graphics character after each description in square brackets. If any of the
characters don’t match their description, check the appropriate termcap entry. Turn a graphics
character set on and off with the termcap entries “graphics start” (GS) and “graphics end” (GE).
See “Screen graphics” on page 5-14 for more information.

Sample tstat.tc session

The following example leads you through a sample tstat.tc test and revision session for an ANSI
terminal. We’ll assume the original /etc/termcap file contains this entry:

1li|ansi|Ansi standard crt:\
:al=\E[L:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:\
:cm=\E[%$1%d; $dH:co#80:dc=\E[P:d1=\E[M:do=\E[B:\
:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:11i#25:\
:nd=\E[C:ms:pt:so=\E[7m:se=\E[m:us=\E[4dm:ue=\E[m:up=\E[A:\
:kb="h:ku=\E[A:kd=\E[B:kl1=\E[D:kr=\E[C:e0:\
:sf=\E[S:sr=\E[T:\
:GS=\E[12m:GE=\E[10m:GV=\63:GH=D: \
:GC=b:GL=v:GR=t:\

:Gl=?:G2=Z2:G3=@:G4=Y:\

:GU=A:GD=B:RT="J:\
:CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
:HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:

With the above termcap entry, tstat.tc gives the following information in its first section:

TERM = ansi
$SSCR_POS: Passed
SSCR_CLR:
LINE: missing clear line capability [cc]
BOL: missing clear to beginning of line capability [cb]
BOS: missing clear to top of screen capability [CT]
$SSCR_MOV: Passed
SSCR_ATT:
SAVE: cannot save attribute [sc]
RESTORE: cannot restore attribute [rc]
Windows :
Missing cursor off capability [CF]
Missing wrap off capability [RA]

-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

Tstat.tc shows that termcap needs the following entries: cc, cb, CT, sc, rc, CF, and RA. We’ll type
n to stop the program and edit the termcap file. Let’s assume our example program doesn’t save or
restore attributes and doesn’t need the missing window capabilities.

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

We’ll add the following line to the termcap file:

:cc=\E[2K:cb=\E[1K:CT=\E[1J:\

Now we’ll run tstat.tc again. The results should look like this:

TERM = ansi
$SSCR_POS: Passed
SSCR_CLR: Passed
$SSCR_MOV: Passed
SSCR_ATT:
SAVE: cannot save attribute [sc]
RESTORE: cannot restore attribute [rc]
Windows :
Missing cursor off capability [CF]
Missing wrap off capability [RA]
-- Cursor motion is ok with attributes set [ms present]
Press return to perform tests: [n to quit]

These results work with our imaginary Synergy Language application. We’ll press ENTER and
begin the next section of tstat.tc. Our first prompt looks like this:

Test 1: Press return to clear screen [n to skip]:

When we press ENTER, the screen clears and the cursor moves to the top left corner, which means
that the “clear screen” (cl) entry is correct. The second prompt is as follows:

Test 2: Press return to test screen positioning [n to skip, or #]:

We’ll press ENTER to use the default number of screen lines (23). The screen clears, and seven and
one-half boxes appear on the screen. An X is placed above each box, which means that our terminal
has more than 23 screen lines. We’ll press the interrupt character and rerun test 2, this time
specifying the correct screen length instead of just pressing ENTER. Now the Xs are correctly placed
inside each box, and we know “screen cursor positioning” (cm) is correct. The third prompt is as
follows:

Test 3: Press return to test relative movement [n to skip]:

When we press ENTER, the screen clears and then four boxes appear. An asterisk fills each square,
indicating that the “cursor up” (up), “cursor down” (do), “cursor right” (nd), and “cursor left” (bc)
entries work. The fourth prompt is as follows:

Test 4: Press return to test line clearing [n to skip]:

When we press ENTER, the test displays four rows of Xs with the screen attribute EOL in the center.
The test clears to the end of the line, redraws the four rows of Xs, and tests the EOS, BOL, BOS,
and LINE attributes. Each works correctly. The fifth prompt is as follows:

Test 5: Press return to test attributes [n to skip]:

Portability Guide 9.1.3 (3/08) 5-11

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

5-12

After we press ENTER, the following words are listed in one column on the left side of the screen:
BLINK, BOLD, UNDERLINE, REVERSE, BOLD + UNDERLINE, and BLINK + BOLD +
REVERSE + UNDERLINE. Each word (or group of words) should be displayed in its screen
attribute, but BLINK, BOLD, and REVERSE appear in reverse video.

The following attributes aren’t tested because they aren’t defined in termcap: SAVE GRAPHICS,
RESTORE GRAPHICS, and CURSOR OFF. (If your terminal supports these attributes and you
define them in termcap, they will also be tested.) The final prompt is as follows:

Test 6: Press return to graphics [n to skip]:

We’ll press ENTER to continue testing. The list of graphics characters is displayed, but the last three
characters are wrong. Therefore, we’ll need to redefine the termcap entries “left tee” (GL), “right
tee” (GR) and “center crossing” (GC).

One complete tstat.tc round is now completed. Now we’ll add the “blink,” “bold,” and “reverse”
entries and fix the graphics characters in the termcap file. We’ll look in our terminal manual for
the correct entries and make the following changes to /etc/termcap:

We’ll change

:GC=b:GL=v:GR=t:\

to

:GC=E:GL=C:GR=\64:\

and add
:md=\E[Im:mb=\E[5m:mr=\E[7m: \

Now we’ll rerun tstat.tc to check how our changes affect tests 5 and 6. If each test works, testing is
finished. The final /etc/termcap entry should look like this (changed lines are marked with an
asterisk):

li|ansi|Ansi standard crt:\
:al=\E[L:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:\
:em=\E[%$1%d; $dH:co#80:dc=\E[P:d1=\E[M:do=\E[B:\
:bt=\E[Z:ei=:ho=\E[H:ic=\E[@:im=:1i#25:\
:nd=\E[C:ms:pt:so=\E[7m:se=\E[m:us=\E[4dm:ue=\E[m:up=\E[A:\
:kb="h:ku=\E[A:kd=\E[B:kl1=\E[D:kr=\E[C:e0:\
:sf=\E[S:sr=\E[T:\

*
:cc=\E[2K:cb=\E[1K:CT=\E[1J:\
:GS=\E[12m:GE=\E[10m:GV=\63 :GH=D: \

*
:GC=E:GL=C:GR=\64:\
:Gl=?:G2=Z2:G3=@:G4=Y:\
:GU=A:GD=B:RT="J:\

*

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

:md=\E[1lm:mb=\E[5m:mr=\E[7m:\
:CW=\E[M:NU=\E[N:RF=\E[O:RC=\E[P:\
:WL=\E[S:WR=\E[T:CL=\E[U:CR=\E[V:\
:HM=\E[H:EN=\E[F:PU=\E[I:PD=\E[G:

Terminal codes used by Synergy Language

Below is a list of functions used by Synergy Language and the termcap and terminfo codes that
affect them. Some codes used in termcap have alternates. Some alternates have the same
functionality as their main termcap requirement but different names. Other alternates produce
slightly different results and may not work as expected. The alternate for “cursor up” (ku), for
example, may function differently than its main requirement. Some keyboards generate the same
escape sequence for the keyboard up arrow key as the terminal requires for the cursor up function,
others do not.

We have identified a problem with the terminfo entry for ANSI terminals on SCO UNIX

systems. When “Clear attributes” (sgr0) is set, graphics are turned off as well. This situation
causes problems in Synergy Language windowing subroutine output on ANSI terminals
when a graphics character with an attribute set is immediately followed by a graphics
character with no attributes set. In this case, the nonattribute characters use the standard
character set instead of the graphics set. To work around this problem, you can change the
ANSI definition of characteristic sgrO to \E[Om. Another alternative is to rebuild the runtime
to use the termcap database.

Screen attributes

Termcap traditionally defines only “standout” (so) and “underline” (us) capabilities for screen
attributes. We’ve added entries for “bold” (md), “blink” (mb), and “reverse” (mr) to increase screen
attribute portability. These codes came from UNIX System V terminfo definitions.

If you terminal supports these attributes, you can add the md, mb, and mr entries to your termcap
file. If the runtime doesn’t find these entries, it will use “standout” (so), which is usually reverse
video.

The same situation exists for clear attributes. “Standout end” (se) and “underline end” (ue) are
normally the only attribute clearing entries in termcap, so we added the entry “clear attributes”
(me) to clear all attributes. If your terminal supports a single escape sequence to clear attributes, we
recommend defining me to that sequence; otherwise, define me as all of the clearing sequences in
one string.

For example, if your terminal has the clear sequences ESC[1n (clear bold), ESC[2n (clear
underline), ESC[3n (clear reverse), and ESC[4n (clear blink), the following termcap definition
clears all attributes at once in a Synergy program:

me=\E[1In\E[2n\E[3n\E[4n

Portability Guide 9.1.3 (3/08) 5-13

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

If the screen attributes extend to the end of each line, delete the “move in standout” mode (ms)
entry from your termcap file. The Synergy Language windowing subroutines won’t work correctly
on terminals that don’t support “move in standout” mode if the ms code is specified. If the
attributes appear to be normal, be sure that ms is present, because it increases screen performance.

Be sure the lines begin at the far left side of the screen. If they start one column to the right, your
terminal uses embedded attributes. (In other words, setting or clearing an attribute uses a character
position on the screen.) Unfortunately, this means that Synergy Language cannot support attributes
on your terminal. To make Synergy Language ignore attribute calls, be sure to add the following
special termcap entry for embedded attributes:

sgi#l

Screen graphics

5-14

Character description Character Termcap entry “ac” index
Upper-right corner 1 G1 k
Upper-left corner r G2 |
Lower-left corner L G3 m
Lower-right corner . G4 j
Horizontal line - GH q
Vertical line GV X
Bottom tee 1 GU v
Top tee T GD w
Left tee F GL t
Right tee 4 GR u
Center crossing + GC n

If your terminal supports 8-bit graphics, you can use octal values for the graphics characters instead
of ASCII characters. For example, if the upper-right corner character is octal 263, use the following
termcap entry:

G1=\263

The character set definition is the only place 8-bit characters are recognized in the
A termcap file; other termcap functions strip off the eighth bit.

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

When changing a termcap entry, set the TERMCAP environment variable to a test file

where you can modify the entry. (See TERMCAP in the “Environment Variables” chapter of
Environment Variables and System Options for more information.) This will prevent you
from accidentally disturbing other users’ settings if you make an error.

Another, sometimes easier, method for setting graphics is the “ac” termcap entry. Here is a sample
“ac” termcap entry:

:ac=x\263u\264k\277m\300v\301w\302t\303g\304n\3057\3311\332:\
The letters x, u, k, m, v, w, t, g, n, j, and 1 represent an index for |,4,7, L1, F—+ -, and
respectively. The \nnn character that follows these letters is the value that represents the graphic for

your terminal (see the table of termcap entries above). The \nnn character can be specified in one
of the following forms:

» Asan octal three-digit ASCII representation preceded by a “\” as shown in the above example

» Asasingle character (for example, xAuBkC for A= |, B=, and C=+)

To use this single-character form of the \nnn specification, enter the single character that
corresponds to the three-digit ASCII representation of the graphic for your terminal.

The order of the index letters (X, u, k, v, w, and so on) in the “ac” termcap entry is not important,
but each letter must immediately precede its \nnn character.

Termcap code Terminfo code Function

[ac] [acsc] Graphics character list
[bs][bc](le] [cub1] Cursor left

[bx] [box1] Enable line drawing characters on the IBM RS-6000
[cb] [el1] Clear to beginning of line
<ce> Clear current line

[cd] [ed] Clear to end of screen
[ce] [el] Clear to end of line
[CF]Ivi] [civis] Cursor off

[eN [clear] Clear screen

[cm] [cup] Screen cursor positioning
[COJlve] [cwvis] Cursor on

Portability Guide 9.1.3 (3/08) 5-15

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

5-16

Termcap code

Terminfo code

Function

<CT>

Clear to top of screen

[do] [cud1] Cursor down

[eA] [enacs] Enable graphics character set
[ec] [ech] Erase character (high-speed clearing)
[G1] Upper-right corner

[G2] Upper-left corner

[G3] Lower-left corner

[G4] Lower-right corner

[GC] Cross

[GD] Top tee

[GE][ae] [rmacs] (or [font0] on AIX) | Exit alternate character set
[GH] Horizontal bar

[GL] Left tee

[GR] Right tee

[GS][as] [smacs] (or [font1] on AIX) | Enter alternate character set
[GU] Bottom tee

[GV] Vertical bar

[mb][so] [blink][sms0] Blink

[md][so] [bold][smso] Bold start

[me] [sgr0] Clear attributes

[mr][s0] [rev][smso] Reverse start

[ms] [msgr] Move in standout

[nd] [cuft] Cursor right

[RA] [rmam] Turn off line wrap

[rc] [rc] Restore cursor position and attributes

Portability Guide 9.1.3 (3/08)

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

Termcap code Terminfo code Function

[SA] [smam] Turn on line wrap

[sc] [sc] Save cursor position and attributes
[sq] [xmc] Embedded attributes

[up] [cuut] Cursor up

[us] [smut] Underline start

The Synergy runtime internally defines the entries in angle brackets (< >). They are not standard
termcap codes. Use the internal codes in your termcap file the same way you use the standard

codes.

$SCR_ function Windows function Termcap Termcap Terminfo code
code alternates

$SCR_POS(row,col) WD_POS,row,col [cm] [cup]
$SCR_CLR(screen) [clcm] [clear][cup]
$SCR_CLR(eol) [ce] [el]
$SCR_CLR(eos) [cd] [ed]
$SCR_CLR(line) <ce>
$SCR_CLR(bol) [cb] [el]
$SCR_CLR(bos) <CT>
$SCR_MOV(row,col) [up] [ku] [cuut]

[do] [kd] [cud1]

[nd] [kr] [cuft]

[be] [klbs][le] [cub1]
$SCR_ATT(clear) ATTR_CLR [me] [ue][se] [sgr0]
$SCR_ATT(bold) ATTR_BOLD [md] [so] [bold][smso]
$SCR_ATT(under) ATTR_UNDR [us] [smul]
$SCR_ATT(blink) ATTR_BLNK or [mb] [so] [blink][sms0]

ATTR_ITAL
$SCR_ATT(reverse) ATTR_RVRS [mr] [s0] [rev][sms0]

Portability Guide 9.1.3 (3/08)

5-17

Terminal Characteristics on UNIX
Synergy Language and the UNIX Terminal Database

5-18

$SCR_ function Windows function Ig;r:cap :ﬁLTn(:zs Terminfo code
$SCR_ATT(save) [sc]

$SCR_ATT(restore) [rc]

$SCR_ATT(gon) [GS] [as]

$SCR_ATT(qgoff) [GE] [ae]

Portability Guide 9.1.3 (3/08)

6

Other UNIX-Specific Information

Printing 6-2
Discusses printing and Synergy/DE on UNIX.

Serial Ports 6-4

Discusses how to access serial ports on UNIX systems.

Windowing System 6-5
Explains how to enable color and hardware scrolling on UNIX.

System Options 6-6
Lists the system options that are specific to or work differently on Synergy/DE on UNIX.

Message Facilities 6-7
Describes what you need to do to use the Synergy message manager on UNIX.

6-1

Other UNIX-Specific Information

Printing

Printing

You have two options when printing on UNIX:
» For nonspooled printers, you can open the device directly and write to it. For example:

open(l, o, "/dev/tty02")

However, if more than one person is printing at the same time, the print jobs will be
intermixed.

» For spooled printers, use the LPQUE statement. For example:

open(l, o, "printfile")

close 1
lpque ("printfile", lpnum:1, copies:2, delete)

DBLDIR:dblpq

DBLDIR:dblpq is a shell script file. You can customize printing by modifying this file to your
own specifications. The runtime sends LPQUE arguments to this file if system option #22 is set.
The LPQUE statement then executes the arguments in dblpq instead of those in the default printing
program (which is Ip on UNIX and Ipr on 4.2BSD).

If you don’t have a printer connected but you want to test your programs, you can set the
environment variable PCMD as follows to cause LPQUE to send your output to your terminal:

pcmd=cat

If you do not specify an extension on a filename in your LPQUE statement, Synergy
A Language appends the default extension .ddf.

The LPNUM option

6-2

LPNUM is the LPQUE statement option that indicates to which spooled unit the file is to be
directed. You can either specify the printer number or the printer name as the argument to LPNUM,
although an alpha printer name specification is not portable to all operating systems. On a UNIX
System V, specifying the number n sends output to a printer named “lpn.” If you use a number on
this system, you must run the UNIX Ipadmin program and name your printers “Ip1,” “Ip2,” and so
forth; Ipadmin requires printers to be named, not numbered.

Portability Guide 9.1.3 (3/08)

Other UNIX-Specific Information
Printing

For example, the following statement sends a listing to a printer named “Ip3™:
lpque("test.lis", lpnum:3)

while the statement below sends a listing to a printer named “laser”:
lpque("test.lis", lpnum:"laser")

On other systems, such as 4.2BSD, specifying the number n sends output to the printer numbered .
You can’t use alpha printer names on 4.2BSD because the printers are numbered.

Portability Guide 9.1.3 (3/08) 6-3

Other UNIX-Specific Information
Serial Ports

Serial Ports

6-4

There are two ways to access a serial port on UNIX systems: uppercase letters (for example,
/dev/tty1A) and lowercase letters (for example, /dev/ttyla). The uppercase form indicates use of
CCITT modem control signal checking and timeouts.

To open a port using the uppercase form, use the /NODELAY qualifier for the OPTIONS qualifier
for OPEN. If you do not specify this qualifier, the OPEN will fail after a time-out period. With
Synergy Language 5.7.2 (or higher), if you specify the /NODELAY qualifier, you must reset the
UNIX O_NDELAY system flag (which we set to allow the open) on the channel with the TTSTS
subroutine. Doing so will enable subsequent ACCEPT/READS/GETS functions to operate
normally. You must also use the INITPORT subroutine to set the optional modem argument to 1
(modem control, which is the default) so that the “hupcl” and “clocal” STTY settings are correctly
set.

For correct operation of a serial line, including acceptance of all possible character codes, you must
use INITPORT to set up the terminal characteristics. When using INITPORT, make sure it follows
the OPEN statement as soon as possible in case data arrives on the serial port before INITPORT
sets up the port speed in the UART. After a CLOSE, you must once again use INITPORT. (See
INITPORT in the “System-Supplied Subroutines and Functions” chapter of the Synergy Language
Reference Manual for more information.)

When using the lowercase form to access a serial port, set the INITPORT modem argument to 2 (no
modem control). This setting requires “hupcl clocal” STTY settings to operate correctly.

Avoid using single-character GETS/ACCEPT sequences with TTSTS: this combination will

slow down the system. A computer may be noticeably slowed by trying to accept
characters at 9600 baud. Always use GETS with the WAIT and MASK qualifiers for timed
I/0 to a serial port. This allows several devices at 9600 baud to be handled simultaneously.

a carrier), you must turn off clocal to issue modem commands. You can do this as follows:
» Set the mode argument of the INITPORT subroutine to 2.
» Issue the dial command.

.ﬂ On some versions of UNIX, before the modem connection has been made (before there is

» Set the modem control back to 1.

Portability Guide 9.1.3 (3/08)

Other UNIX-Specific Information
Windowing System

Windowing System

Enabling color

Enabling color on UNIX may involve an extra step that is not required by other operating systems.
If TERM is not set to xterm, ansi, or vtxxx (for example, vt100 or any VT-series terminal setting),
you must also add a set of codes to the termcap file entry for the terminal you intend to use. See
WNDC in the “Environment Variables” chapter of Environment Variables and System Options for
more information about these termcap codes.

Synergy does not support color from the terminfo database. If you would like to enable
A color in your application, you can do one of two things:

» If TERMis not set to xterm, ansi, or vixxx but your terminal supports ANSI color, set
the ANSICOLOR environment variable to use the built-in ANSI color sequences in the
Synergy runtime to generate color. (See ANSICOLOR in the “Environment Variables”
chapter of Environment Variables and System Options.)

» Use the termcap runtime, as described above.

(Note that if TERM is set to xterm, ansi, or vtxxx, the runtime defaults to ANSI color
escape sequences.)

Enabling hardware scrolling

The termcap/terminfo databases are accessed for the sequences that set scroll up, scroll down, and
the scrolling region. If these sequences are not present, hardware scrolling will not be enabled. See
“Synergy Language and the UNIX Terminal Database” on page 5-4 for more information.

Portability Guide 9.1.3 (3/08) 6-5

Other UNIX-Specific Information
System Options

System Options

6-6

The following options are either unique to UNIX or function differently in UNIX environments.
Refer to the “System Options” chapter of Environment Variables and System Options for more
information about each system option.

»

System option #12, which determines whether or not you’ll be able to customize the size of the
terminal buffer, is only available on UNIX.

System option #16, which maps the quit character to the interrupt character, is only available
on UNIX and OpenVMS.

If you set option #22, the runtime will send LPQUE arguments to the script file
DBLDIR:dblpq, which you can change to your own printing specifications. The LPQUE
statement will then execute the arguments in dblpq instead of those in the default printing
program. See “Printing” on page 6-2 for more information on option #22 and LPQUE.

System option #33 is only available on UNIX.

A potential problem with setting system option #36, which enables the flushing feature of the
runtime, is that some older UNIX operating systems may not support an fsync() routine. See
system option #36 in the “System Options” chapter of Environment Variables and System
Options for more information.

Portability Guide 9.1.3 (3/08)

Other UNIX-Specific Information
Message Facilities

Message Facilities

To use the Synergy message manager on UNIX, you must set system option #7 with the DBLOPT
environment variable. If you don’t set option #7, Synergy Language will use the local message
facility instead of the Synergy message manager for SEND and RECV statements.

Portability Guide 9.1.3 (3/08) 6-7

Part 3: Developing for OpenVMS

This section of the Professional Series Portability Guide contains information about Synergy
Language that is specific to the OpenVMS operating system. In this manual, the term
“OpenVMS system” refers to any Alpha or 164 machine running the OpenVMS operating

system.

7

Synergy/DE on OpenVMS: The Basics

OpenVMS Characteristics 7-2
Discusses shared executable images, RMS file organization, and Synergy Language stream files.

Installing Multiple Versions of Synergy Language 7-4

Describes how you can install and invoke multiple versions of Synergy Language on the same
machine.

Limitations on OpenVMS 7-5

Discusses known problems and implementation issues on OpenVMS: CTRL+C and CTRL+Y
trapping, patches from HP, and more.

7-1

Synergy/DE on OpenVMS: The Basics
OpenVMS Characteristics

OpenVMS Characteristics

Shared images

Synergy Language for OpenVMS uses a shared executable image for the runtime. Throughout this
manual, when we refer to the runtime, we are referring to this shared executable image.

Some OpenVMS shared images on the Alpha are still translated images (EDTSHR, for example).
Synergy Language applications cannot directly call these images unless XCALL linkage routines
are compiled with the /tie option, which slows down every XCALL. To counteract this, we have
implemented DBLSEXECUTE_IMAGE_ROUTINE, which activates the image “on the fly” in
JACKET mode so that you can call these images without general performance degradation. If you
use DBLSEXECUTE_IMAGE_ROUTINE and your call to a translated image fails, try linking the
image with the /nonative linker option.

See “Building Shared Images” in the “Building and Running Synergy Language Programs” chapter
of Synergy Language Tools for information about building shared images on Synergy Language for
OpenVMS.

File structures supported by Synergy Language

Within the OpenVMS environment, file and record processing is controlled by the Record
Management Services (RMS). Synergy Language for OpenVMS supports both RMS file
organization and Synergy Language stream files.

RMS file organization

7-2

The RMS system is a set of services that provides an interface between OpenVMS users and their
data. RMS manages the placement and retrieval of records within files, where a record is a logical
collection of data treated as a single unit. How records are collected within a given file is
determined by the file’s organization. There are three basic types of file organization for RMS files:
» Sequential files

» Relative files

» Indexed Sequential Access Method (ISAM) files

In sequential RMS files, each record in the file is placed after the record that precedes it. Records
can generally only be retrieved from a sequential file in the order that they were written to the file.

In relative files, records are stored and retrieved by referencing their relative record numbers within
the file. The primary purpose of relative files within RMS is to provide efficient random accessing
of records with locking.

Portability Guide 9.1.3 (3/08)

Synergy/DE on OpenVMS: The Basics
OpenVMS Characteristics

Indexed RMS files, or ISAM files, have records stored and retrieved according to one or more keys
within the record. Records with duplicate keys are always inserted at the end of the sequence of
duplicated keys.

See your OpenVMS Record Management Services Reference Manual for information on how to use
RMS files.

Synergy DBMS stream files

Synergy Language stream files are RMS stream files with carriage control set to CR/LF and for
which Synergy Language provides random-access and locking mechanisms. The advantage of
stream files is that they enable you to randomly access records using a record number.

Synergy Language stream files have an internal buffer composed of 512-byte blocks. The default
buffer size is 8192 bytes. You can modify this size with the BUFSIZ qualifier on the OPEN
statement. As the program performs various I/O requests, file blocks containing the requested data
are shuffled to and from mass storage as required. The buffer size is also the area locked.

RMS provides locking on a record-by-record basis for relative and indexed files. When a Synergy
Language program opens a relative or indexed file in update mode on OpenVMS, RMS record
locking is used. Synergy Language locks stream files independently of RMS using the OpenVMS-
supported Lock Manager. When a record is read from a stream file that has been opened in update
mode, all blocks spanned by that record are locked. If that record is modified, the blocks spanned
by that record are flushed to disk to ensure that the modifications are available to other users.

If stream files are used, you must have the SYSLCK privilege in order for the locks obtained
through the Lock Manager to be “seen” by other users. Using the SYSLCK privilege does not mean
you can lock system-level processes; it merely means that locks can be seen on a system-wide
basis.

Portability Guide 9.1.3 (3/08) 7-3

Synergy/DE on OpenVMS: The Basics
Installing Multiple Versions of Synergy Language

Installing Multiple Versions of Synergy Language

You can install multiple versions of Synergy Language on the same machine by installing Synergy
Language into directories other than [SYNERGYDE.DBL]. The primary version of Synergy
Language, enabled on a system-wide basis at startup time, will still be in [SYNERGYDE.DBL].

To install Synergy Language to coexist with a previous version of Synergy Language,

» Use the alternative installation method described in the installation instructions.

» Define SYSSMESSAGE as a search list to include the directory containing DBLMF.EXE as
well as SYS$COMMON:[SYSMSG].

» Make sure that SYSSMESSAGE:DBLMF.EXE is not installed.
Failure to perform these steps (which ensure that the new message file is used) will cause access

violations. If required, the new DBLMF message file can replace the earlier version in
SYS$COMMON:[SYSMSG]. DBLMF is backwards compatible.

The alternative installation procedure also enables the system manager to associate the version of
Synergy Language being installed with other, perhaps alternative, installations of UI Toolkit,
Repository, and ReportWriter. During an alternative installation, the procedure will prompt for the
locations of each of these. These will default to the standard locations. ACTIVATE_SDE.COM
will set up appropriate logicals to enable the use of UI Toolkit, Repository, and ReportWriter.

The installation program asks you for a command. Whatever the installation type, the procedure
edits DIBOL.CLD to insert the requested command as the verb to invoke the compiler.

Please read your installation instructions thoroughly.

Using the alternative version

You can use the alternative version of Synergy Language on a process-wide basis by invoking
ACTIVATE_SDE.COM from the appropriate Synergy Language directory. This command file,
generated at installation time, sets up appropriate logicals in the process table, installs the command
definition file generated at installation time into the process command table, and directs the process
to use the new error message file. To activate Synergy Language version nnn, use the following:

@ [dbldirectory_nnn] ACTIVATE_DBL

To deactivate the alternative version, and revert to the system-wide installation, invoke
ACTIVATE_SDE with a nonblank parameter. For example:

@ [dbldirectory_nnn] ACTIVATE_DBL 1

7-4 Portability Guide 9.1.3 (3/08)

Synergy/DE on OpenVMS: The Basics
Limitations on OpenVMS

Limitations on OpenVMS

The following sections describe known problems and implementation issues on OpenVMS.

CTRL+C and CTRL+Y trapping

If CTRL+C and CTRL+Y trapping is not enabled using the FLAGS subroutine, typing CTRL+C or
CTRL+Y causes an immediate program exit, even from an I/O statement. This OpenVMS limitation
is caused by the way AST routines handle CTRL+C and CTRL+Y.

Shareable DECC runtime components

For performance reasons, the Synergy Language install and start-up procedures ensure that the
CMASTIS_SHR.EXE DECC runtime component is installed as shareable. SHRIMGMSG in
SYS$MESSAGE is also accessed.

Portability Guide 9.1.3 (3/08) 7-5

8

Statements, Subroutines, and
Functions on OpenVMS

Synergy Language Statements 8-2

Describes features that are specific to Synergy Language statements on OpenVMS and discusses
I/O qualifiers that are available on the OPEN statement for OpenVMS.

Synergy Language Subroutines and Functions 8-6

Describes the subroutines and functions that are only available on OpenVMS or that work
differently on OpenVMS than on other systems. Also discusses the DBLSTARLET directory.

Record Locking 8-14
Discusses record locking on OpenVMS.

8-1

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Statements

Synergy Language Statements

The following sections describe features that are specific to Synergy Language statements on
OpenVMS. These statements are described in further detail in the “Synergy Language Statements”
and “Defining Data” chapters of the Synergy Language Reference Manual.

Creating and opening relative files

If you’re creating a relative file, the RECSIZ I/O qualifier is required. If you’re opening a relative
file for input, the RECSIZ qualifier is not required, but is checked if present, and an “Invalid record
size” error (SERR_IRCSIZ) occurs if the value does not match the maximum record size defined
for the file. Record_size is the record size for the file being opened. The values 0 and -1 are not
valid.

DISPLAY

The DISPLAY statement is valid only on channels opened to a terminal, Synergy stream or
sequential files opened in output or append mode, and print files opened in output or append mode.

AEOF
OpenVMS does not support the "EOF qualifier on WRITE statements.

GET, GETS, PUT, PUTS

The GET, GETS, PUT, and PUTS binary I/O statements are only available on channels opened to
Synergy stream files or character-oriented devices such as terminals. They are not available on
channels opened to any other file type.

KEYNUM and key_spec

If you specify both the RFA and KEYNUM qualifiers on the FIND or READ statement, KEYNUM
must specify the primary key as the key of reference (Q_PRIMARY or 0).

If you want to FIND a segmented key that is specified by key_spec, you must first construct that
key by concatenating each segment together. You can use the %KEY VAL intrinsic function to
return the extracted key value from the specified record.

ALAST

OpenVMS supports the "LAST qualifier on indexed (ISAM) and relative files. "LAST is not
allowed on the WRITE statement.

8-2 Portability Guide 9.1.3 (3/08)

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Statements

LPQUE

If your program is interactive and you set system option #22, the LPQUE statement will spawn a
PRINT statement to print a specified file, which enables you to add print options after the filename.
If, however, your program is not running from an interactive session or option #22 is not set, the
LPQUE statement uses the $SNDJBC system service to print a specified file. Any switches that
follow the filename are ignored. You cannot use wildcard characters in the file specification.

If the ALIGN option of LPQUE is specified, OpenVMS generates a /hold qualifier on the PRINT
command, which causes the current job to be put in a hold queue. If the LPNUM option of LPQUE
is specified, the resulting queue name must be defined within the running system. If LPNUM is not
specified, the default queue is SYSSPRINT. If LPNUM is specified as an alpha expression, that
expression is used as the queue name. If LPNUM is specified as a numeric expression, the queue
name is DBL$LPn, where n is the specified number. See LPQUE in the “Synergy Language
Statements” chapter of your Synergy Language Reference Manual for the statement syntax and
additional information.

O:P mode

If you need to edit files created in O:P mode, set system option #38 before running the program that
creates the files. If system option #38 is not set, the files will not look “correct” when you edit
them. Additionally, stream files (files opened in O:S mode with RECTYPE of 4, 5, or 6) will not
look correct when PRINTed or TYPEd. Use O:P mode for files to be PRINTed or TYPEd. Also, if
you use the FLAGS subroutine (with flag 6 set) to disable carriage control, do not try to PRINT or
TYPE the file unless you use O:P mode and set system option #38.

OPEN

OPEN mode O (output) defaults to sequential file type. Use the /stream compiler option to change
the default to stream. This is the default for UI Toolkit applications using U_OPEN.

Because Synergy Language defaults to sequential submode, the GET, GETS, PUT, and PUTS
statements are not supported on files opened in output mode unless you do one of the following:

» Specify the /stream compiler option when compiling your program.
» Use the /stream qualifier in the OPEN OPTIONS string.
» Specify RECTYPE:4 (or /rectype=4) OPEN qualifier.

The runtime now treats an OPEN of “NL:” the same as “NLAO:”

OPEN statement qualifiers
The following OPEN statement qualifiers are available only on OpenVMS:

» BKTSIZ
» BLKSIZ
» BUFNUM

Portability Guide 9.1.3 (3/08) 8-3

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Statements

BUFSIZ
CONTIG
DEQ
RECTYPE

v Vv v Vv

The following options on the OPTIONS qualifier are meaningful only on OpenVMS:

» Jalloc

» /bufnum

» /bufsiz

» /deq

» /rectype
PURGE

If you purge a channel open to a mailbox, the runtime will no longer write an EOF to the mailbox.
If you CLOSE a mailbox, it will still write EOF to the mailbox (for compatibility with DIBOL).

Q _EOF and Q_LAST

The qualifier POSITION:Q_EOF is the same as “EOF. The qualifier POSITION:Q_LAST is the
same as “"LAST. See “*EOF’and “*LAST” on page 8-2.

READ

If you try to READ a record that does not exist in a relative file, the runtime resets the current
context to 0 (or “No context”). The context after such an error is undefined and could differ across
platforms. Reading a record by RFA on an explicit key of reference other than 0 is not allowed.

REVERSE

The DIRECTION:Q_REVERSE qualifier and the REVERSE keyword are supported on both
indexed (ISAM) and relative file types.

SEND
The maximum message length of the SEND statement is 16383 bytes.

STOP

To use the STOP statement to chain to a DCL command, precede the command with a dollar sign
as follows:

stop "$command [argl] [arg2] ..."

8-4 Portability Guide 9.1.3 (3/08)

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Statements

System option #35
If system option #35 is set, the FORMS(chn, #) statement on a channel opened to a file with
carriage return control will output an extra line feed (for compatibility with VAX DIBOL). If
system option #35 is not set, the FORMS statement will only write the number of line feeds to the
file necessary to advance the paper the correct number of spaces specified in the FORMS statement.

TEMPFILE

The temp_spec argument on the TEMPFILE qualifier is ignored because a new version is used for
a new temporary file of the same name. Be careful of directory version limits when using the
TEMPFILE qualifier.

TT:

If you open TT:, and TT: is redirected to a disk file, each DISPLAY statement creates a separate
record in the file.

When option #39 (or #35) is not set, defining TI or KB as “TT:” is not functionally equivalent to
using TT:. Specifying TT: uses SYS$INPUT and SYS$SOUTPUT. Defining TI or KB as “TT:”
causes the translation of TT: to be used, which usually is defined as the physical terminal device.
This is the same as opening TT: when option #39 is set. (Remember that option #35 also sets
option #39.)

Portability Guide 9.1.3 (3/08) 8-5

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

Synergy Language Subroutines and Functions

OpenVMS-specific subroutines

8-6

The following Synergy Language subroutines are available only on OpenVMS. Refer to the
“System-Supplied Subroutines and Functions” chapter of the Synergy Language Reference Manual
for descriptions of these subroutines.

ASTRST — Restore the contents of work areas used as the result of an AST
ASTSAV - Save the contents of work areas used as the result of an AST
CREMBX - Create a mailbox

DBL$DEVCLT - Get the class and type of a device
DBLS$SEXECUTE_IMAGE_ROUTINE - Execute a routine contained in a shareable image
DBL$SETKREF - Set the key of reference for the next operation on an ISAM file
DBL$SNDOPR - Send a message to the system operator

DELMBX — Mark a permanent mailbox for deletion

EMPBUF — Write out modified I/O buffers

ENDFL - Position the file pointer after the last record of a file

%FSTAT — Return the value of the last floating point call

FXSUBR - Dispatch to a floating-point function

GETCM - Get data from the process message area

PURGE - Delete previous versions of a file

PUTCM - Store data in the process message area

SETCTL — Modify the operation of control characters

SORT - Provide a callable interface to DBLSORT

%SUCCESS — Determine if low-order bit is on or off

TT_NAME_TO_NUMBER - Convert an OpenVMS terminal name to its equivalent terminal
number

TT_NUMBER_TO_NAME - Convert a terminal number to its equivalent OpenVMS terminal
name

TTBRDCST — Enable a program to trap broadcast messages
TTCHAR - Return type, lines, and width of a file

Portability Guide 9.1.3 (3/08)

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

TTFLGS - Set OpenVMS-specific terminal processing options (some available on Windows and
UNIX)

TTMBX — Associate a mailbox with a channel opened to a terminal device
VMCMD - Execute a DCL command

VMMSG - Get the text of an OpenVMS system message

AXTRNL — Return the value of a global symbol

In addition, flags 8, 9, and 10 of the DFLAG subroutine are available only on OpenVMS, as are
several of the keywords for the GETFA subroutine.

Routines that work differently on OpenVMS

This section describes Synergy Language routines that function differently on OpenVMS than on
other operating systems. Refer to the “System-Supplied Subroutines and Functions” chapter of the
Synergy Language Reference Manual for a full description of these routines.

BTOD and DTOB

In addition to integer data and decimal data, the BTOD and DTOB subroutines also convert
quadwords (64 bits) on OpenVMS systems.

CMDLN

The CMDLN subroutine returns the command line in uppercase characters and does not include the
full path name of the Synergy runtime or the program name. To use this subroutine on OpenVMS,
start the program with a foreign symbol. Refer to your OpenVMS User’s Manual for information
about how to define a symbol as a foreign command.

For example, if we set up a foreign symbol as follows for a program called MAIN (where $PATH
was previously set as an environment variable pointing to the directory that contains MAIN.EXE):

prog:==$PATH:MAIN

we could use the CMDLN subroutine in this program as follows:

main MAIN
.define TTCHN , 1
record

buffer ,a80
proc

open (TTCHN, o, "tt:")

xcall cmdln(buffer)

writes (TTCHN, "Buffer = "+buffer)
endmain

Portability Guide 9.1.3 (3/08) 8-7

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

If we then ran this program with the following command line arguments:
prog argl arg2 arg3
the output would be as follows:

Buffer = argl arg2 arg3

However, if we ran the program MAIN without arguments, or if we ran this program without a
foreign symbol command, the output would be the following:

Buffer =

DELET

Not only can you use wildcard characters in the filename specification on the DELET subroutine,
but a given file can have more than one version. If the filename specification in DELET does not
explicitly specify the version number, all versions of the file will be deleted.

ERROR and %ERROR

Both the ERROR subroutine and the %ERROR function have an optional fourth argument that
returns the RMS STV value associated with the last RMS system call if it exists. This argument
will not cause an error on UNIX and Windows; it will simply return a O.

EXEC

The EXEC subroutine uses the DECC execvp function call. You must set the logical
VAXCS$PATH to a search list where the program image will be found. EXEC is only available on
OpenVMS and UNIX.

FATAL

The FATAL subroutine uses the translation of the DBL$FATAL_IMAGE logical instead of
filename when system option #3 is specified and as the default program to chain to.

FLAGS

Flag 3 of the FLAGS subroutine works differently with the OPEN statement and RENAM
subroutine on OpenVMS than it does on other systems. Normally, flag 3 protects the runtime from
accidentally overwriting a file by generating a “Cannot supersede existing file” error
($ERR_REPLAC). To generate this error on OpenVMS, you must also specify the output
filename’s version number in RENAM or OPEN. System option #35 will cause this error to be
generated in RENAM if any version of the target file exists.

The default value for flag 4 is the current terminal setting.

Flag 6 changes a file that is open for output to have no record attributes. It also disables carriage
control on O mode files (except stream files).

8-8 Portability Guide 9.1.3 (3/08)

GLINE

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

The GLINE subroutine uses the OpenVMS LIB$GET_INPUT subroutine to get an input line from
the device assigned to the logical name SYS$INPUT.

ISAMC

ISSTS

JBNO

KILL

You can use the ISAMC subroutine to create RMS ISAM files. The PAGE, ALLOC, MULTIPLE,
and STATIC_RFA options in the filename specification are ignored on OpenVMS. Also, records
that contain duplicate keys are always inserted at the end of the list of duplicates, which means that
the NOATEND option in the key specification will generate “Illegal key specified” error
($ERR_BADKEY).

You can specify the following COMPRESS options for RMS ISAM:
[NOJINDEX Compresses the index. The default is INDEX.
[NOJKEY Compresses the key within the data. The default is KEY.
[NO/RECORD Compresses the record within the data. The default is RECORD.
ALL All of the above.

See the ISAMC subroutine in the “System-Supplied Subroutines and Functions” chapter of the
Synergy Language Reference Manual for more information.

For better performance, you should not create files with ISAMC; you should use the FDL editor
and open files in O:I mode with the FDL qualifier.

Positions 22 through 29 of the status argument in the ISSTS subroutine will be filled with
“09999999”.

The JBNO subroutine optionally returns the process identification number, the owner PID, and the
group identification number. Any specified ID number should be at least 10 digits wide to prevent
overflow.

The KILL subroutine terminates the calling process by making a call to the $DELPRC system
service. KILL is equivalent to executing a STOP statement followed by the LOGOUT command. If
the calling Synergy program is running as a subprocess (created by the RUNJB or VMCMD
subroutine), that subprocess will be terminated and control will return to the parent process.

Portability Guide 9.1.3 (3/08) 8-9

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

OPENELB

Synergy Language on OpenVMS uses shared executable images to implement ELBs. The
OPENELB subroutine adds the referenced shared images to the active list of shared images for
subsequent access through calls to the XSUBR subroutine. OPENELB performs no other action in
the OpenVMS environment.

PARSE

Several of the arguments to the PARSE subroutine are specific to OpenVMS: node, device, and
version. On OpenVMS, PARSE uses the RMS $PARSE facility.

POSRFA

The POSRFA subroutine does not support a non-0 key-of-reference specification.

RENAM

If the new filename specification doesn’t contain an explicit version number on a call to the
RENAM subroutine, and a file already exists with the same name, the file is renamed with the next
higher version number. If the new filename specification does contain an explicit, non-0 version
number, and a file of the same name and version number already exists, RENAM will replace the
existing file (unless flag 3 is set on the FLAGS subroutine). Using system option #35 with RENAM
causes all target files to be deleted before the rename is performed, unless flag 3 is set. Then, if any
target files exist, a “Cannot supersede existing file” error (SERR_REPLAC) will be generated.

RUNJB

The RUNIJB subroutine works differently on different operating systems. For details, see the
RUNIJB subroutine in the “System-Supplied Subroutines and Functions” chapter of the Synergy
Language Reference Manual.

SETDFN

The initial default file specifications used by the runtime are different on OpenVMS. For details,
see the SETDFN subroutine in the “System-Supplied Subroutines and Functions” chapter of the
Synergy Language Reference Manual.

SETLOG

8-10

If you don’t pass a translation value, SETLOG will delete the specified logical. You can define a
search list logical by separating the elements of the list with commas. To preserve commas in the
translation value, use quotation marks. To preserve quotation marks, use two consecutive quotation
marks.

Portability Guide 9.1.3 (3/08)

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

SHELL

The SHELL subroutine works differently on each operating system. For details, see the SHELL
subroutine in the “System-Supplied Subroutines and Functions” chapter of the Synergy Language
Reference Manual.

SPAWN

The SPAWN subroutine executes a DCL command string and sends the command string to the
Command Language Interpreter (CLI) as input. SPAWN should be used sparingly on OpenVMS
due to its high CPU overhead.

TFLSH

The TFLSH subroutine is only available on OpenVMS and UNIX. On OpenVMS, it ensures that
the previous asynchronous terminal I/O to the controlling terminal has finished.

TNMBR

The TNMBR subroutine will use the physical device to determine the terminal number for a virtual
terminal if system option #17 is set. If this option is not set, TNMBR will use the VT device
specification to determine the terminal number. See the TNMBR subroutine in the
“System-Supplied Subroutines and Functions” chapter of the Synergy Language Reference Manual
for more information about how terminal numbers are assigned by TNMBR. Also see “Terminal
Numbers” on page 9-3 of this manual for more information.

TTNAME

On OpenVMS, if the program is running as a batch job, the TTNAME subroutine returns the null
device specification: “_NLAO:”.

WAIT and TTSTS

If you are running a detached job and you specify position 2 or 3 in the parameters argument of the
WAIT subroutine, Synergy Language will return position 2 in the event argument (which indicates
that input is pending). TTSTS will return a value of 1 in its status argument (which also indicates
that input is pending).

These same values are returned from subroutines WAIT and TTSTS if you redirect SYSSINPUT
from a command file and system option #39 is set. (Option #39 sets this behavior; option #35 only
sets #39.)

XSUBR

The XSUBR subroutine does not have direct access to any shared images linked to the program.
You must call OPENELB to access routines in a shared image. If the target routine is not found in
the main program image, LIBSFIND_IMAGE_SYMBOL is used to search the shared image list
created by calls to OPENELB. Only Synergy Language routines can be invoked by XSUBR.

Portability Guide 9.1.3 (3/08) 8-11

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

Subroutines that have no meaning on OpenVMS

The following subroutines perform no function on OpenVMS and will generate an error if called:

BREAK
FORK
INITPORT
LM_KCR
LM_LOGIN
LM_LOGOUT
SERIAL
STTY
W_CAPTION

v Vv Vv Vv VvV VvV Vv Vv v

AST support in Synergy Language

8-12

Synergy Language fully supports AST routines written in any of the re-entrant HP OpenVMS
languages. These AST routines must comply with the limitations of the language in which they are
written and with the limitations of OpenVMS in regard to asynchronous processing.

A number of obstacles prevent unhindered use of Synergy Language at the AST level. Although the
Synergy Language implementation allows for external asynchronous processing at the language
statement level, the non-re-entrancy of some statement processors prevent it from being allowed at
the system level. What this means is that the Synergy programmer is allowed to do an implied
XCALL or function reference “underneath” a Synergy program between Synergy Language
statements, but not during some of those statements. Since OpenVMS generates ASTs

asynchronously at the system level, some Synergy Language statements cannot be supported at the
AST level.

The reason for this is that the Synergy runtime makes extensive use (from the C standpoint) of
“static” data. A Synergy Language routine running at the AST level could corrupt the static data
areas used by the currently active Synergy Language statement that’s being processed at the
non-AST level.

Another problem is that the Synergy runtime is implemented in C, and certain C runtime functions
are not re-entrant for similar reasons.

The following operations should not be performed in Synergy Language AST routines:

» I/O on any channels that may be in use at the non-AST level
» Message sending and receiving
» SLEEP statements

Portability Guide 9.1.3 (3/08)

Statements, Subroutines, and Functions on OpenVMS
Synergy Language Subroutines and Functions

By noting the above limitations and using the ASTSAV and ASTRST subroutines, AST service
subroutines can be implemented in Synergy Language.

DBLSTARLET directory

A subset of the STARLET library, called DBLSTARLET, is available in Synergy Language for
OpenVMS. We also provide a program called CONVERTER in the DBLSTARLET directory.
CONVERTER enables you to extract any additional modules from STARLET that your
applications requires.

If you use STARLET offset values as array indices, you must add one to these values; the
A offsets are 0-based and Synergy Language subscripts are one-based.

Floating-point arguments

Any routine that passes floating-point arguments by value will not work on either the Alpha or the
164. This type of routine requires a C wrapper routine.

Portability Guide 9.1.3 (3/08) 8-13

Statements, Subroutines, and Functions on OpenVMS
Record Locking

Record Locking

If you’re migrating from UNIX, be aware that record locks on OpenVMS are channel-based. If the
same program opens the same file on two different channels in update mode, both channels will be
affected by each other’s locks, which may cause unexpected $ERR_LOCKED errors.

8-14 Portability Guide 9.1.3 (3/08)

9

Other OpenVMS-Specific Information

ISAM Utilities 9-2
Discusses the differences and availability of ISAM utilities on OpenVMS.

Terminal Numbers 9-3

Explains how Synergy Language determines terminal numbers on OpenVMS.

Peripheral Devices 9-4
Lists the options for printing on OpenVMS and discusses how to perform I/O to an LTA device.

System Options 9-6

Lists the system options that are specific to or function differently on Synergy Language on
OpenVMS.

Message Facilities 9-7
Describes how to use the Synergy message manager on OpenVMS.

Error Handling 9-8

Discusses error, exit, and exception handling features unique to Synergy Language on OpenVMS.

Interface with Other Languages 9-9

Discusses linking with modules from other languages and calling Synergy Language subroutines
from non—Synergy Language main routines.

9-1

Other OpenVMS-Specific Information
ISAM Utilities

ISAM Utilities

The following ISAM utilities either work differently or are not available on OpenVMS:

» The status utility always returns 90000000 as the number of records in an RMS ISAM file.
There is no way to find the number of records in an RMS ISAM file unless you read
sequentially through the file.

» The ipar utility, which generates parameter file descriptions of existing ISAM files, is not
available on OpenVMS. Use the ANALYZE/RMS utility to extract file descriptions and check
file integrity. Refer to your Record Management Utilities Reference Manual for more
information.

» The irecovr utility, which converts ISAM files from their previous Synergy Language version,
is not available on OpenVMS.

» The ismvfy utility, which verifies several aspects of a ISAM file’s structure, is not available on
OpenVMS.

9-2 Portability Guide 9.1.3 (3/08)

Other OpenVMS-Specific Information
Terminal Numbers

Terminal Numbers

Synergy Language uses terminal numbers in the TNMBR subroutine and in one form of the SEND
statement. Terminal numbers are determined in one of the following ways:

»

Synergy Language uses the environment variable TNMBR in the current process if it is set.
With this method, you can easily give the same terminal number to more than one terminal.
For example, if two people define TNMBR equal to 1 in their login file and both are logged in
at the same time, both of their terminals will have the number 1.

The TNMBR subroutine returns one of the following values and assigns the corresponding
number:

0 OPAQ:

-1 The job is running detached, regardless of the terminal device
specification.

-2 The process is a network process.

-3 The process is a batch process.

number All other instances

On OpenVMS, Synergy Language calculates a unique number for the device name in the form
TTcn, where c is a controller letter and # is a unit number. The device type (for example, TT)
may vary, depending on the type of terminal controller used. Terminal numbers are not
necessarily compatible with other platforms or with DIBOL terminal numbers, and they may
vary from release to release. We recommend that you make no assumptions as to the
correspondence between terminal numbers and terminal names, other than the uniqueness of a
terminal number for a local system.

For a virtual terminal, the TNMBR subroutine will use the physical device to determine the
terminal number if system option #17 is set. If this option is not set, TNMBR will use the
terminal device name of the virtual terminal to determine the terminal number.

.E If you want to know the terminal number for a particular device, you can use the

TT_NAME_TO_NUMBER subroutine to convert an OpenVMS terminal name to its
equivalent terminal number. A terminal number can be up to eight digits long.

Portability Guide 9.1.3 (3/08) 9-3

Other OpenVMS-Specific Information
Peripheral Devices

Peripheral Devices

Printer setup

You have the following options when printing on OpenVMS:

» For spooled printers, you can open the device directly. OpenVMS directs the output through
the spooling system so the printer is not locked by one process.

» You can use the LPQUE statement to add a job to the print-batch services queues. If you use
LPQUE, the default condition is to use the $SNDJIBC system service, which speeds up
spooling. The drawback to this is that you can’t use wildcard characters in the file
specification, and print switches on filename specifications are ignored.

LPQUE can also be used to submit batch jobs if its queue is a batch queue.
However, if you specify system option #22, Synergy Language constructs a DCL PRINT
command line and spawns a subprocess to execute the PRINT command line. With this option,

you can use wildcard characters, and valid print switches on a filename will be sent through to
subprocesses as part of the PRINT command line.

If system option #22 is set, printing errors may not be reported to your program.

» For nonspooled printers, you can open the device directly. It is the program’s responsibility to
handle device sharing between processes.

» If you set DFLAG flag 8, the additional parameter SJC$_NOPAGINATE is used, which is
equivalent to using a PRINT/NOFEED DCL command.

Synergy Language and LTA devices

9-4

Synergy Language does not automatically connect to an outbound LTA device, such as a modem or
printer connected to a terminal server (neither do other OpenVMS languages including DIBOL).
This is due to the varied and specific nature of such requests, which are dependent on the version of
LAT in OpenVMS and the firmware in the terminal server.

If you need to perform I/O to an LTA device, you must perform an “LAT connect QIO” to the
device after the OPEN statement and an “LAT disconnect QIO” before the CLOSE. We have
included an example routine, LAT, in the file LAT.DBL in the DBLSTARLET directory. The
LAT subroutine shows the code required to negotiate different connections and the types of timing
required depending on which device is connected to the terminal server at the other end. For more
information on the code used in LAT.DBL, we suggest you read the OpenVMS I/O User’s
Reference Manual in the OpenVMS documentation set, or call HP for an explanation of
LAT-specific QIO mechanisms.

Portability Guide 9.1.3 (3/08)

Other OpenVMS-Specific Information
Peripheral Devices

When using modems we suggest that you only use the latest firmware on all Compaq terminal
servers. For DS300, DS700, and DS90TL, we recommend a minimum of BL45C-14; for DS200,
we recommend version 3.3. Using the latest firmware will solve many potential timing and flow
control problems. If you are using an OpenVMS version lower than 6.1, we suggest you contact
your HP support center for up-to-date LAT patches to fix problems in the LTA and LATACP
drivers that could affect your ability to debug. On Alpha 6.1, these patches also fix random protocol
disconnect errors for logged-in users. (The LAT.DBL program assumes that these patches are
installed.)

To help test LAT connections, we provide a LATT.DBL program which is an example of how to
use the LAT subroutine. You can run this program to test the results for an outbound LTA device
on your system.

We also include a LATMSGDEFE.DBL file in DBLSTARLET, which was provided by Compaq as
an aid in documenting possible LTA device error codes besides the 19 documented in LATT.DBL.

There are potential problems with using a LAT disconnect with a channel whose output has

not yet been flushed. In some cases, the program will hang in an LEF state forever. You
can alleviate this potential problem by calling the %TTSTS function or the TFLSH
subroutine on the channel to ensure that the runtime’s asynchronous QIO has completed
before issuing the disconnect.

Portability Guide 9.1.3 (3/08) 9-5

Other OpenVMS-Specific Information
System Options

System Options

9-6

The following system options are specific to or function differently on OpenVMS. Refer to the
“System Options” chapter of Environment Variables and System Options for more information
about each system option.

»

When you define multiple system options with DBLOPT on OpenVMS, make sure you
enclose the options in quotation marks. For example:

define DBLOPT "1,7,16,35"

If you don’t use quotation marks, the runtime will only process the first option specified.

System option #7, which determines whether the runtime will use the Synergy message
manager or the local message facilities, is on by default. Use system option #47 to disable use
of the Synergy message manager.

System option #16, which maps the quit character to the interrupt character, is only available
on OpenVMS and UNIX. On OpenVMS, you can restart the program at the point of
interruption by issuing a DCL CONTINUE command if option #16 is not set.

If you set option #17 on OpenVMS, the TNMBR subroutine will use the physical device to
determine the terminal number for a virtual terminal.

System option #18, which controls how the in-place MERGE handles the logical end-of-file, is
not available on OpenVMS.

If you set option #22 and the program is running from an interactive session, the LPQUE
statement will spawn a PRINT statement to print a specified file, which enables you to add
PRINT options after the filename.

System option #23, which determines where the in-place MERGE places duplicate records, is
not available on OpenVMS.

Some of the VAX DIBOL-compatible functionality provided by system option #35 is only
available on OpenVMS.

Portability Guide 9.1.3 (3/08)

Other OpenVMS-Specific Information
Message Facilities

Message Facilities

System option #7, which enables you to use the Synergy message manager, is set by default on
OpenVMS. If you set option #47, Synergy Language will use the local message facility instead of
the Synergy message manager for SEND and RECV statements.

The maximum message ID length on OpenVMS systems is 39 characters.

Starting the message manager
You can start (or restart or kill) the message manager with the command
$@DBLDIR:dblmsgctlstartup [option]

option

(optional) One of the following options:

START (default) Start the message manager.
RESTART Restart the message manager.
KILL Kill the message manager.

The message manager is started automatically in the SYNERGY_STARTUP.COM file.

Portability Guide 9.1.3 (3/08) 9-7

Other OpenVMS-Specific Information
Error Handling

Error Handling

9-8

»

Synergy Language provides an exit handler on OpenVMS: LIB§SIGNAL and LIB§STOP
issue program tracebacks when called from Synergy programs.

You are responsible for setting a flag to make sure your exit handler is not re-entrant. If

A you don’t, an endless loop may occur if you get a Synergy Language error in your
handler. The Synergy debugger does not debug exit handlers, and a Synergy
Language exit handler may be invalid if the runtime exits abnormally. C and MACRO
are the best languages for exit handlers.

When using LIB$SIGNAL, if you specify an error with a severity of success, warning, or
informational, the exception handler will issue the error message and continue processing after
the LIB$SIGNAL call. If you specify an error with a severity of fatal or error, or if you’re
using LIB$STOP, the exception handler will issue a fatal “Unexpected VMS system error”
(VMSERROR), followed by the signalled error and the Synergy Language traceback.

.5 LIB$STOP will cause a fatal exit regardless of the severity of the error you specify.

If the compiler encounters a fatal system error when trying to open or access a file, it will
report the associated system error text.

If an internal, untrapped, unexpected OpenVMS/RMS error occurs in a Synergy Language
program, it will be loaded into the DCL $status symbol on exit from the program. The actual
system error (not the VMSERROR number) will be loaded into $status. If any other Synergy
Language error occurs, it will be loaded into $status on exit.

The Synergy runtime uses asynchronous terminal output for better terminal performance.
Therefore, Synergy Language will report any I/O error, such as SERR_DEVOFFLINE, on the
next terminal input or output statement when the wait for previous I/O completion occurs.

Synergy programs may generate a “Failure during I/O operation” error (SERR_IOFAIL) with
the SS$_DATAOVERUN system error code if the type-ahead buffer is filled and the terminal
is set “nohostsync.” (This is a normal OpenVMS error condition.) You can avoid this error by
either trapping errors on your ACCEPT statements or ensuring that the terminal is set
“hostsync.” If the terminal cannot be set “hostsync,” you can set the terminal “altype” to
reduce the occurrence of this error.

Portability Guide 9.1.3 (3/08)

Other OpenVMS-Specific Information
Interface with Other Languages

Interface with Other Languages

You can link any object module with a Synergy program and call it directly from your Synergy
Language code. You can also call Synergy Language routines from non—-Synergy Language main
routines, and you can call any OpenVMS library or system function from your Synergy Language
code.

Synergy Language’s C interface supports various C string and data conversion functions for
interfacing with C language modules. Refer to the file xcallv.h for descriptions of the supported
functions.

Portability Guide 9.1.3 (3/08) 9-9

10

Porting Between OpenVMS and
Windows or UNIX Systems

Porting OpenVMS Code to Windows and UNIX 10-2

Discusses features and limitations for porting OpenVMS code to Windows and UNIX.

Porting Windows and UNIX Code to OpenVMS 10-4

Discusses features and limitations for porting Windows and UNIX code to OpenVMS.

10-1

Porting Between OpenVMS and Windows or UNIX Systems
Porting OpenVMS Code to Windows and UNIX

Porting OpenVMS Code to Windows and UNIX

Keep the following in mind as you port OpenVMS code to Windows and UNIX:

10-2

v Vv v v

The TTFLGS subroutine only supports flag 4.
The PURGE subroutine is ignored.
You must specify the RECSIZ qualifier when you open a relative file containing integer data.

On OpenVMS, if you don’t specify a record size when you open a relative file, the runtime
determines the record size by looking at the file being opened. If you specify the record size on
the OPEN and it is different from the actual record size in the file, an error is generated.

On Windows and UNIX, if you don’t specify the record size on the OPEN, the runtime opens
the file with no error. The record size is determined by the first READ from the file. If you
pass a record buffer of a different size than that of the record in the file, an error is generated on
the READ.

The DBL$PARSE subroutine does not add default extensions; it just parses an existing file
specification as passed.

The TTSTS subroutine only returns 1 or 0, not the number of characters in the type-ahead
buffer on some UNIX systems. On UNIX, to return the number of characters, TTSTS requires
the POSIX FIONREAD ioctl modifier support in the operating system.

SEND/RECYV names are limited to six characters (instead of 39), and SEND/RECV works
differently when ported to Windows and UNIX. The default maximum message size is 4096,
which can be configured by using the -b option on the synd program. On OpenVMS, the
maximum message size is 16383. See “Messaging” in the “Welcome to Synergy Language”
chapter of the Synergy Language Reference Manual for more information on operating system
differences when sending and receiving messages.

Most of system option #35’s functionality does not apply on Windows and UNIX.

The following OpenVMS-specific subroutines and functions are unavailable when porting to
Windows and UNIX:

ASTRST

ASTSAV

CREMBX

DBLSDEVCLT
DBL$EXECUTE_IMAGE_ROUTINE
DBL$TTCHAR

DELMBX

TTBRDCST

Portability Guide 9.1.3 (3/08)

Porting Between OpenVMS and Windows or UNIX Systems
Porting OpenVMS Code to Windows and UNIX

VMCMD
VMMSG
AXTRNL

» You cannot use dollar signs ($) in filenames on UNIX systems.

» Some UNIX systems restrict filenames to eight characters and file extensions to three
characters.

» Because there are no file version numbers, “;nnn’ extensions are not allowed.
» OpenVMS system services cannot be used.

» Any C subroutines must be changed to access arguments as described in the “Synergy
Language C Interface” chapter of the Synergy Language Reference Manual.

» Shared images become ELBs. You cannot limit common definitions within an ELB to be
nonvisible externally. This means that common variables must be unique across all ELBs.
Nonunique common variables will cause various and unpredictable runtime results. The linker
does not check for uniqueness.

» You cannot overlay unnamed global/external commons with records on Windows and UNIX.

» Synergy Language on Windows and UNIX supports alphanumeric (a), decimal (d), and
integer (i) keys on ISAM files.

» The SORT statement does not allow integer keys.

» Flag 4 in the TTFLGS subroutine does not affect the WD_ACCEPT, WD_GETS, and
WD_READS options of the W_DISP subroutine. You must program your own interpretation
of the escape sequences.

Portability Guide 9.1.3 (3/08) 10-3

Porting Between OpenVMS and Windows or UNIX Systems
Porting Windows and UNIX Code to OpenVMS

Porting Windows and UNIX Code to OpenVMS

Keep the following in mind as you port Windows and UNIX code to OpenVMS:

10-4

»

On OpenVMS, the DCL command parser parses command lines. It does not support the
following batch file syntax:

$dbl

/refresh/object=objfile srcfile

/refresh/object=objfile srcfile

/refresh/object=objfile srcfile

You will need to modify your batch files to include “$dbl” at the beginning of each line, as
follows:

Sdbl/refresh/object=objfile srcfile
Sdbl/refresh/object=objfile srcfile
Sdbl/refresh/object=objfile srcfile

The SHELL subroutine commands are different on OpenVMS than on Windows and UNIX.

Do not use the SPAWN subroutine unless it is absolutely necessarys; it is very slow on
OpenVMS systems.

Environment symbols become logical names.

Filenames can have up to 40 characters for each component (filename, device, and directory
element), up to a maximum of 254 characters.

Don’t use isload to load files or the ISAMC subroutine to create them. Load files with the
CONVERT/FAST/NOSORT command, and create them from an FDL file created with the
EDIT/FDL command or the OPEN O:I statement.

To reclaim space occupied by deleted records, you must reorganize files from time to time.

The overhead of doing single character ACCEPT or DISPLAY statements for I/O is
significantly higher.

Write disk I/0 (STORE/DELETE/OPEN/WRITE/WRITES/FORMY) is not cached on
OpenVMS systems, and excessive use can cause an application to appear much slower than on
UNIX. This performance would be apparent in a multiuser situation on UNIX systems.

Application start-up time is slower on OpenVMS than UNIX, as OpenVMS pages in the
application and its shared images. To counteract this, either use bound programs, or keep your
applications in shared images activated with the XSUBR and OPENELB subroutines.

Files have versions on OpenVMS. Opening a file for output will create a new version of the
file and will not overwrite the original unless you always append a version number to the file
specification. TEMP files are implemented as new versions of a file.

Portability Guide 9.1.3 (3/08)

Porting Between OpenVMS and Windows or UNIX Systems
Porting Windows and UNIX Code to OpenVMS

» When trapping errors on I/O statements, you should also report the number returned from
%SYSERR. Doing so will help you understand which OpenVMS system error occurred. The
number of errors returned on OpenVMS is much greater than on UNIX systems.

» OpenVMS systems only have global message queues.

» The C interface does not exist as such on OpenVMS systems; the interface from Synergy
Language to other languages is defined in OpenVMS’s architecture reference manual,
available from HP.

OpenVMS ISAM files use RMS. READ REVERSE only works on ISAM files.
You must use the RECSIZ OPEN statement qualifier when you open a relative file for output.
The DETACH statement is not implemented.

v v v v

The FORK subroutine is not implemented.

Portability Guide 9.1.3 (3/08) 10-5

Index

Symbols
$ character, in filenames on UNIX 10-3

A
about box 2-13
ACCEPT statement
OpenVMS 10-4
TTSTS, using with 6-4
UNIX 4-2
Windows 2-2
ACTIVATE_DBL.COM command file 7-4
/alloc option 8-4
API, defined 1-2
APP_HEIGHT initialization setting 2-8
See also Environment Variables and System Options
APP_WIDTH initialization setting 2-8
See also Environment Variables and System Options
application, running on Windows 1-6 to 1-7
AST routines 8-12 to 8-13
ASTRST subroutine 8-6, 8-13
OpenVMS 10-2
ASTSAV subroutine 8-6, 8-13
OpenVMS 10-2

B

big-endian 3-3 to 3-4

BKTSIZ qualifier 2-2,4-2, 8-3
BLKSIZ qualifier 2-2,4-2, 8-3
.BORDER script command 2-10
border, window 2-10

BREAK subroutine 4-4, 8-12
BTOD subroutine 8-7

/bufnum option 2-3, 4-3, 8-4
BUFNUM qualifier 2-2,4-2, 8-3
/bufsiz option 2-3, 4-3, 8-4
BUFSIZ qualifier 2-2,4-2, 8-4

Portability Guide 9.1.3 (3/08)

C
C interface

OpenVMS 10-5

Windows 1-7 to 1-8
C subroutines, porting to UNIX and Windows 10-3
caption 2-11
case sensitivity on UNIX 3-3
CENTERED qualifier 2-11
cma$tis_shr.exe file 7-5
CMDLN subroutine 8-7
%CNV_IP function 3-4
%CNV_PI function 3-4
color

UNIX 6-5

Windows 2-9, 2-18
.COLUMN script command 2-10
CONTIG qualifier 2-2, 4-2, 8-4
CONVERTER program 8-13
CREMBX subroutine 8-6, 10-2
CTRLAC trapping 7-5
CTRL+Y trapping 7-5

D

D_ALERT option 2-14

D_CAPTION option 2-11

D_CENTER option 2-12

D_ERROR option 2-14

D_GUI identifier 1-6

D_HEADER option 2-11

D_RIGHT option 2-12

D_TITLE option 2-12

DBG_HEIGHT initialization setting 2-14

DBG_WIDTH initialization setting 2-14

DBG_X initialization setting 2-14

DBG_Y initialization setting 2-14

DBLS$DEVCLT subroutine 8-6, 10-2

DBL$EXECUTE_IMAGE_ROUTINE subroutine 8-6,
10-2

Index-1

dblmf 7-4
DBLOPT environment variable 9-6

See also system option
DBLS$PARSE subroutine 10-2
dblpg.bat file

UNIX 4-2,6-2, 6-6

Windows 2-17
DBLS$SETKREF subroutine 8-6
DBL$SNDOPR subroutine 8-6
DBLSTARLET directory 8-13
DBL$TTCHAR subroutine 10-2
dbr.tc 5-4
DCL command

chaining to 8-4

parser 10-4
debugger, Toolkit 2-14, 2-15
DECC runtime components 7-5
DELET subroutine 8-8
DELMBX subroutine 8-6, 10-2
/deq option 2-3,4-3, 8-4
DEQ qualifier 2-2,4-2, 8-4
DETACH statement 2-2,4-2, 10-5
detached job, WAIT and TTSTS subroutines 8-11
developing on Windows, requirements 1-6
DFLAG subroutine 8-7, 9-4
DIBOL.CLD 7-4
DIBOL-compatible functionality 9-6
DIRECTION:Q_REVERSE qualifier 8-4
DISPLAY statement

behavior with TT: 8-5

OpenVMS 8-2, 10-4

Windows 2-2
DLL

C interface and 1-8

definition 1-2
%DLL_xxx functions 2-3, 4-4
dragbar 2-10
DRAGBAR qualifier 2-10
DTK_MENU_UP environment variable 2-12, 2-15
DTKDBG environment variable 2-15
DTOB subroutine 8-7

E

E_SECT subroutine 2-11

ECHO terminal setting 5-3
EFKEY_METHOD subroutine 2-12
EMPBUF subroutine 8-6

Index-2

$ENDFL subroutine 8-6
endian type 1-5,3-3 to 3-4
.ENTRY script command 2-10, 2-11
environment symbol 10-4
ENVRN subroutine 2-4
AEOF qualifier 8-2
error
handling on OpenVMS 9-8
trapping on OpenVMS 10-5
%ERROR function 8-8
ERROR subroutine 8-8
escape sequence, UNIX 5-4
exception handling 9-8
EXEC subroutine 2-5, 8-8
exit handler on OpenVMS 9-8

F
F10 key 2-2
FATAL subroutine 8-8
.FIELD script command 2-11
file
RMS 7-2
stream 7-3
structures supported on OpenVMS 7-2
versions on OpenVMS 10-4
versions on UNIX and Windows 10-3
filename
containing spaces 1-4
extensions 3-3
maximums on OpenVMS 10-4
UNIX restrictions 10-3
fill patterns and colors 2-15
FIND statement
RFA and KEYNUM qualifiers §8-2
segmented key 8-2
FLAGS subroutine 8-8
floating-point argument 8-13
font, setting or retrieving information 2-15
FONT_DEBUG initialization setting 2-14

See also Environment Variables and System Options

FORK subroutine 4-4, 8-12, 10-5
FORMS statement 8-5

%FSTAT function 8-6

FXSUBR subroutine 8-6

Portability Guide 9.1.3 (3/08)

G
GET statement 8-2, 8-3
GETCM subroutine 8-6
GETFA subroutine 8-7
GETS statement 8-2, 8-3
TTSTS, using with 6-4
GLINE subroutine 8-9
global message queue 10-5
global/external common, unnamed 10-3
GTPPN subroutine 2-5, 4-4

H

hardware scrolling, UNIX 6-5
header, window 2-11

Help, invoking 2-15

|
ICANON terminal setting 5-3
icon, defining 2-14
ICRNL terminal setting 5-3
indexed files, RMS 7-3
initialization setting 1-9
INITPORT subroutine
OpenVMS 8-12
UNIX 4-4, 6-4
input processing 2-16
installing multiple versions of Synergy Language 7-4
integer data file 3-4
interface, other languages 9-9
Interprocess Communication 3-2
ipar utility 9-2
irecovr utility 9-2
ISAM file
OpenVMS 7-3,9-2
portability 3-4
RMS 7-3, 8-9
ISAMC subroutine 8-9
isload utility 10-4
ismvfy utility 9-2
ISSTS subroutine 8-9
ITEM script command 2-11

J
JBNO subroutine 2-4, 4-4, 8-9

Portability Guide 9.1.3 (3/08)

K

KB, defining as TT 8-5

key mapping 2-16

key_spec on OpenVMS 8-2
KEYNUM qualifier 8-2
KILL subroutine 2-4, 4-4, 8-9

L
L_INPUT subroutine 2-12
L_SECT subroutine 2-12
L_SECTDRAW subroutine 2-12
ALAST qualifier 8-2
LAT disconnect, potential problems with 9-5
LAT.DBL file 9-4
LATMSGDEFE.DBL file 9-5
LATT.DBL file 9-5
LIB$SIGNAL 9-8
LIB$STOP 9-8
Linux characteristics 3-5
list

entries 2-16

load method 2-12

processing 2-16

title 2-12
little-endian 1-5, 3-3 to 3-4
LLOAD_METHOD subroutine 2-12
LM_KCR subroutine 8-12
LM_LOGIN subroutine 8-12
LM_LOGOUT subroutine 8-12
load method 2-12
locking. See record locking
Ipadmin program 6-2
LPQUE statement 2-17

and system option #22 6-6, 9-6

LPNUM option 6-2

OpenVMS 8-3,9-4

UNIX 4-2, 6-2
LTA device, performing I/O to 9-4

M
M_DEFCOL subroutine 2-12, 2-15
M_PROCESS subroutine 2-12
manual, conventions in vii
menu

invoking 2-12

processing 2-15 to 2-16
menu bar, removing 2-13

Index-3

menu entry, disabled 2-16 PRINT command 8-3, 9-4
message, icon 2-14 PRINT statement, spawning 9-6
method, load 2-12 PRINT_METHOD environment variable 2-17
mouse, responding to 2-15 printer 2-14
printing 2-17
N OpenVMS 9-4
NOCELL qualifier 2-10 system option #22 2-17
nonspooled printer on OpenVMS 9-4 UNIX 6-2
NORESET qualifier 2-10 PURGE subroutine 8-4, 8-6, 10-2
NOTERM qualifier 2-11 PUT statement 8-2, 8-3
PUTCM subroutine 8-6
o PUTS statement 8-2, 8-3
O:P mode 8-3
O:S mode 8-3 Q
OPEN statement Q_EOF identifier 8-4
NL: and 8-3 Q_LAST identifier 8-4
O mode 8-3 quick-select character 2-11, 2-16
OpenVMS 4-2, 8-3
porting to UNIX and Windows 10-2 R
OPTIONS qualifier 2-3, 4-3 READ statement
RECSIZ qualifier 10-5 OpenVMS 8-4
UNIX 3-3,4-2 porting to UNIX and Windows 10-2
Windows 2-2 relative file constraints 8-4
working with FLAGS subroutine 8-8 REVERSE 10-5
OPENELB subroutine 8-10 RFA and KEYNUM qualifiers §8-2
OpenVMS READS statement 2-3
characteristics 7-2 DIRECTION qualifier and REVERSE keyword 8-4
limitations 7-5 record locking
shared images 7-2 OpenVMS 8-14
system services 10-3 RMS files 7-3
OPTIONS qualifier stream files 7-3
OpenVMS 4-3 SYSLCK privilege 7-3
Windows 2-3 UNIX 4-5
Windows 2-6
P RECSIZ qualifier 8-2, 10-2, 10-5
paint character 2-11 /rectype option 2-3, 4-3, 8-4
PAINT qualifier 2-11 RECTYPE qualifier 2-3,4-2, 8-4
PAINT script command 2-11 RECYV statement, system option #7 6-7
PAINT subroutine on Windows 2-5 relative file
PARSE subroutine 8-10 creating on OpenVMS 8-2
PCMD environment variable 6-2 opening on OpenVMS 8-2
peripheral device on OpenVMS 9-4 RMS 7-2,8-2
porting RENAM subroutine 8-10
OpenVMS to Windows and UNIX 10-2 to 10-3 renaming across logical drives 2-4
Windows and UNIX to OpenVMS 10-4 to 10-5 Windows 2-4
POSITION qualifier 8-4 working with FLAGS subroutine 8-8
POSRFA subroutine 8-10 rendition 2-14

Index-4 Portability Guide 9.1.3 (3/08)

requirements
for Synergy Language on UNIX 3-2
for Synergy programs on Windows 1-6
REVERSE keyword 8-4
RFA qualifier 8-2
RIGHT qualifier 2-11
RMS file 7-2 to 7-3
relative 7-2
sequential 7-2
RUNIJB subroutine 2-5, 8-10
running applications on Windows 1-6 to 1-7
runtime, shared executable image, on OpenVMS 7-2

S
S_SELBLD subroutine 2-13
SCO UNIX characteristics 3-5
SCR 5-17,5-18
$SCR_ display functions termcap/terminfo codes 5-17 to
5-18
$SCR_ATT 2-4
screen
attributes 5-13
graphics 5-14
scroll bar, application window 1-4
selection processing 2-16
SEND name 10-2
SEND statement
OpenVMS §8-4
system option #7 6-7
UNIX 4-3
sequential file, RMS 7-2
serial port on UNIX 6-4
SERIAL subroutine 8-12
SETCTL subroutine 8-6
SETDEFN subroutine 8-10
SETLOG subroutine 2-5
OpenVMS 8-10
UNIX 4-4
shared image 7-2, 8-10, 10-3
SHELL subroutine 4-4, 8-11, 10-4
shortcut key 2-16
SHRIMGMSG 7-5
SLEEP statement 4-3
SORT statement 10-3
SORT subroutine 8-6
spacing, changing 2-15

Portability Guide 9.1.3 (3/08)

SPAWN subroutine
ignored second argument 2-5
OpenVMS 8-11, 10-4
UNIX 4-4
spooled printer on OpenVMS 9-4
status utility 9-2
STOP statement, chaining to a DCL command 8-4
stream file 7-3, 8-3
/stream option 2-3, 4-3, 8-3
STTY setting 5-3, 6-4
STTY subroutine 8-12
UNIX 4-4
%SUCCESS function 8-6
support, product viii
Synergy Language
C interface. See C interface
interfacing with other languages 9-9
Synergy message manager 9-7
UNIX 6-7
vs. local message facility 9-6, 9-7
Synergy/DE on Windows
application characteristics 1-4
components of 1-3
requirements 1-6 to 1-7
SYNERGY_STARTUP.COM file 9-7
SYSLCK privilege 7-3
system option
#7 6-7,9-6
#12 4-3,6-6
#16 6-6,9-6
#17 9-3,9-6
TNMBR and 8-11
#18 9-6
#22 2-17,4-2
OpenVMS 8-3, 9-6
UNIX 6-6
#23 9-6
#30 5-4
#33 6-6
#35
defining TI or KB as TT: 8-5
FORMS statement 8-5
UNIX and Windows 10-2
VAX DIBOL-compatibility 9-6
#36 6-6
#38 8-3

Index-5

#47 9-6
OpenVMS 9-6
UNIX 6-6

T
T_EDIT subroutine 2-13
T_VIEW subroutine 2-13
%TB_BUTTON function 2-13
%TB_TOOLBAR function 2-13
TBUF environment variable 4-3
TEMPFILE qualifier 8-5
termcap

codes 5-13

entry syntax 5-5

UNIX 3-5,5-4
terminal

codes 5-13

database files 5-4

number, determining 5-2, 8-11, 9-3

settings on UNIX 5-3
terminfo

codes 5-13

entry syntax 5-5

UNIX 3-5,5-4
TFLSH subroutine

UNIX and OpenVMS 8-11

Windows 2-5

with LAT disconnect 9-5
TI:, defining as TT: 8-5
title

list 2-12

window 2-11
.TITLE script command 2-11
tklib.olb file 1-7

TNMBR environment variable 9-3

TNMBR subroutine

converting OpenVMS terminal names to numbers 9-3

OpenVMS 8-11, 9-3
system option #17 9-6
terminal numbers in 5-2, 9-3
UNIX 4-4,5-2
Windows 2-5
toolbar
buttons 2-13
creating 2-13
Toolkit. See Ul Toolkit

Index-6

tstat utility 5-7 to 5-10

sample tstat.tc session 5-10 to 5-13
TT: on OpenVMS 8-5
TT_NAME_TO_NUMBER subroutine 8-6, 9-3
TT_NUMBER_TO_NAME subroutine 8-6
TTBRDCST subroutine 8-6, 10-2
TTCHAR subroutine 8-6
TTFLGS subroutine 8-7, 10-3

OpenVMS 10-2
TTMBX subroutine 8-7
TTNAME subroutine 8-11
%TTSTS function, and LAT disconnect 9-5
TTSTS subroutine 6-4

OpenVMS 8-11, 10-2

UNIX 4-4

V)
U_ABORT subroutine 2-13
U_ABOUT subroutine 2-13
U_BAR subroutine 2-13
U_CHARSB subroutine 2-13
U_CREATESB subroutine 2-13
U_DEBUG subroutine 2-14, 2-15
U_EDITREND subroutine 2-14
%U_ICON function 2-14
U_MESSAGE subroutine 2-14
%U_MSGBOX function 2-14
U_POPUP subroutine 2-14
%U_PRINTQUERY function 2-14
%U_PRINTSETUP function 2-14
U_REND subroutine 2-14
U_START subroutine 2-15
U_UPDATESB subroutine 2-15
U_WAIT subroutine 2-15
%U_WINHELP function 2-15
%U_WNDEVENTS function 2-15
%U_WNDFONT function 2-15
%U_WNDSTYLE function 2-15
Ul Toolkit

applications on Windows 1-3

running existing 1-7

debugger 2-14, 2-15
UNIX

characteristics 3-3 to 3-5

machine-specific characteristics 3-3

system requirements 3-2

Portability Guide 9.1.3 (3/08)

Vv

vertical spacing, changing 2-15
VMCMD subroutine 8-7, 10-3
VMIN terminal setting 5-3
VMMSG subroutine 8-7, 10-3

w
W_AREA subroutine 2-6
W_BRDR subroutine 2-6 to 2-7
W_CAPTION subroutine 2-6, 8-12
‘W_DISP subroutine 2-7, 4-2, 10-3
W_FLDS subroutine 2-8
%W _INFO function 2-8
W_INFO subroutine 2-8
W_INIT subroutine 2-8
W_PROC subroutine 2-9
WAIT subroutine 8-11
what utility 5-4
window border 2-6
Windows

Help, invoking 2-15

printing 2-17

terminology 1-2
WinHelp, invoking 2-15
WNDC environment variable 2-18
WRITE statement

AEOF qualifier 8-2

ALAST qualifier 8-2

X

xcallv.h file 9-9

XSUBR subroutine 8-11

AXTRNL data reference operation 8-7, 10-3

Portability Guide 9.1.3 (3/08) Index-7

	Professional Series Portability Guide
	Contents
	Preface
	Part 1: Developing for Windows
	1 Synergy/DE on Windows: The Basics
	Windows Terminology
	Synergy/DE on Windows Components
	Windows Characteristics
	Filenames
	What your application will look like
	Big-endian and little-endian

	Requirements
	Requirements for developing Synergy programs
	Requirements for running Synergy programs
	C interface requirements

	Using Initialization Settings

	2 Statements, Functions, and Subroutines on Windows
	Synergy Language on Windows
	Synergy Language statements
	Synergy Language functions
	Synergy Language subroutines
	Record locking
	Windowing subroutines

	UI Toolkit on Windows
	Script commands
	UI Toolkit subroutines

	Printing
	Synergy Windows printing API

	Color

	Part 2: Developing for UNIX
	3 Synergy/DE on UNIX: The Basics
	System Requirements
	UNIX Characteristics
	Case sensitivity
	Big-endian and little-endian
	Machine-specific characteristics

	4 Statements and Subroutines on UNIX
	Synergy Language Statements
	Synergy Language Routines
	Record Locking

	5 Terminal Characteristics on UNIX
	Terminal Numbers Used by Synergy Language
	Terminal Settings Used by Synergy Language
	Synergy Language and the UNIX Terminal Database
	Determining which database you should use
	Terminal database file syntax
	The terminal capabilities status program
	Terminal codes used by Synergy Language
	Screen attributes
	Screen graphics

	6 Other UNIX-Specific Information
	Printing
	DBLDIR:dblpq
	The LPNUM option

	Serial Ports
	Windowing System
	Enabling color
	Enabling hardware scrolling

	System Options
	Message Facilities

	Part 3: Developing for OpenVMS
	7 Synergy/DE on OpenVMS: The Basics
	OpenVMS Characteristics
	Shared images
	File structures supported by Synergy Language

	Installing Multiple Versions of Synergy Language
	Using the alternative version

	Limitations on OpenVMS

	8 Statements, Subroutines, and Functions on OpenVMS
	Synergy Language Statements
	Synergy Language Subroutines and Functions
	OpenVMS-specific subroutines
	Routines that work differently on OpenVMS
	Subroutines that have no meaning on OpenVMS
	AST support in Synergy Language
	DBLSTARLET directory
	Floating-point arguments

	Record Locking

	9 Other OpenVMS-Specific Information
	ISAM Utilities
	Terminal Numbers
	Peripheral Devices
	Printer setup
	Synergy Language and LTA devices

	System Options
	Message Facilities
	Starting the message manager

	Error Handling
	Interface with Other Languages

	10 Porting Between OpenVMS and Windows or UNIX Systems
	Porting OpenVMS Code to Windows and UNIX
	Porting Windows and UNIX Code to OpenVMS

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Send us your comments
	Return to Online Manuals links page

