
HP OpenVMS
Migrating an Application from
OpenVMSVAX toOpenVMSI64

May 2006

This manual describes how to create an HP OpenVMS Industry
Standard 64 for Integrity Servers (I64) version of an OpenVMS VAX
application.

Revision/Update Information: This is a new manual.

Software Version: OpenVMS I64 Version 8.2 and higher
OpenVMS VAX Version 6.1 and higher

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

UNIX is a registered trademark of The Open Group.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . ix

1 Overview of the Migration Process

1.1 Compatibility of VAX and I64 Systems . 1–1
1.2 User-Written Device Drivers . 1–3
1.3 Migration Process . 1–4
1.4 Migration Paths . 1–4
1.5 Migration Support from HP . 1–5
1.5.1 Migration Assessment Service . 1–6
1.5.2 Application Migration Detailed Analysis and Design Service 1–6
1.5.3 System Migration Detailed Analysis and Design Service 1–6
1.5.4 Application Migration Service . 1–6
1.5.5 System Migration Service . 1–6

2 Selecting a Migration Method

2.1 Taking Inventory . 2–1
2.2 How to Select a Migration Method . 2–2
2.3 Which Migration Methods are Possible? . 2–3
2.4 Deciding Whether to Recompile or Translate . 2–5
2.4.1 Translating Your Application . 2–8
2.4.2 Combining Native and Translated Images . 2–8
2.5 Coding Practices That Affect Recompilation . 2–9
2.5.1 VAX MACRO Assembly Language . 2–10
2.5.2 Privileged Code . 2–10
2.5.3 Features Specific to the VAX Architecture . 2–11
2.6 Identifying Dependencies on the VAX Architecture in Your Application . . . 2–11
2.6.1 Data Alignment . 2–11
2.6.2 Floating-Point Arithmetic . 2–12
2.6.3 Data Types . 2–13
2.6.4 Shared Access to Data . 2–14
2.6.5 Page Size Considerations . 2–15
2.6.6 Order of Read/Write Operations on Multiprocessor Systems 2–16
2.6.7 Explicit Reliance on the VAX Procedure Calling Standard 2–16
2.6.8 Explicit Reliance on VAX Exception-Handling Mechanisms 2–17
2.6.8.1 Establishing a Dynamic Condition Handler 2–17
2.6.8.2 Accessing Data in the Signal and Mechanism Arrays 2–18
2.6.9 Modification of the VAX AST Parameter List . 2–18
2.6.10 Explicit Dependency on the Form and Behavior of VAX

Instructions . 2–18
2.6.11 Generation of VAX Instructions at Run Time . 2–19
2.7 Identifying Incompatibilities Between VAX and I64 Systems 2–19

iii

3 Migrating Your Application

3.1 Setting Up the Migration Environment . 3–1
3.1.1 Hardware . 3–1
3.1.2 Software . 3–2
3.2 Converting Your Application . 3–3
3.2.1 Recompiling and Relinking . 3–3
3.2.1.1 Native I64 Compilers . 3–3
3.2.1.2 VAX MACRO–32 Compiler for OpenVMS I64 3–4
3.2.1.3 I64 Development Tools . 3–5
3.2.2 Translating . 3–6
3.3 Analyzing System Crashes . 3–6
3.3.1 System Dump Analyzer . 3–6
3.3.2 Crash Log Utility Extractor . 3–7
3.4 Testing Applications on VAX for Baseline Information 3–7
3.5 Testing the Migrated Application . 3–8
3.5.1 VAX Tests Ported to I64 . 3–8
3.5.2 New I64 Tests . 3–8
3.5.3 Uncovering Latent Bugs . 3–8
3.6 Integrating the Migrated Application into a Software System 3–9
3.7 Modifying Certain Types of Code . 3–9
3.7.1 Conditionalized Code . 3–9
3.7.1.1 MACRO Sources . 3–9
3.7.1.2 BLISS Sources . 3–10
3.7.1.3 C Sources . 3–10
3.7.1.4 Existing Conditionalized Code . 3–11
3.7.2 System Services with VAX Architecture Dependencies 3–11
3.7.2.1 SYS$GOTO_UNWIND . 3–12
3.7.2.2 SYS$LKWSET and SYS$LKWSET_64 . 3–12
3.7.3 Code with Other Dependencies on the VAX Architecture 3–12
3.7.3.1 Initialized Overlaid Program Sections . 3–12
3.7.3.2 Condition Handler Use of SS$_HPARITH 3–12
3.7.3.3 Mechanism Array Data Structure . 3–12
3.7.3.4 Reliance on VAX Object File Format . 3–12
3.7.4 Code That Uses Floating-Point Data Types . 3–13
3.7.4.1 LIB$WAIT Problem and Solution . 3–14
3.7.5 Incorrect Command Table Declaration . 3–15
3.7.6 Code That Uses Threads . 3–15
3.7.6.1 Thread Routines cma_delay and cma_time_get_expiration 3–16
3.7.7 Code with Unaligned Data . 3–17
3.7.8 Code That Relies on the OpenVMS VAX Calling Standard 3–18
3.7.9 Privileged Code . 3–18
3.7.9.1 Use of SYS$LKWSET and SYS$LKWSET_64 3–18
3.7.9.2 Use of SYS$LCKPAG and SYS$LCKPAG_64 3–19
3.7.9.3 Terminal Drivers . 3–19
3.7.9.4 Protected Image Sections . 3–19

4 Overview of Recompiling and Relinking

4.1 Compiling Applications on VAX With Current Compiler Version 4–1
4.2 Recompiling Your Application with Native I64 Compilers 4–2
4.3 Relinking Your Application on an I64 System . 4–2
4.4 Compatibility Between the Mathematics Libraries Available on VAX and

I64 Systems . 4–6
4.5 Determining the Host Architecture . 4–6

iv

5 Adapting Applications to a Larger Page Size

5.1 Overview . 5–1
5.1.1 Compatibility Features . 5–1
5.1.2 Summary of Memory Management Routines with Potential Page-Size

Dependencies . 5–2
5.2 Examining Memory Allocation Routines . 5–6
5.2.1 Allocating Memory in Expanded Virtual Address Space 5–6
5.2.2 Allocating Memory in Existing Virtual Address Space 5–8
5.2.3 Deleting Virtual Memory . 5–9
5.3 Examining Memory Mapping Routines . 5–10
5.3.1 Mapping into Expanded Virtual Address Space 5–10
5.3.2 Mapping a Single Page to a Specific Location 5–12
5.3.3 Mapping into a Defined Address Range . 5–13
5.3.4 Mapping from an Offset into a Section File . 5–19
5.4 Obtaining the Page Size at Run Time . 5–20
5.5 Locking Memory in the Working Set . 5–21

6 Preserving the Integrity of Shared Data

6.1 Overview . 6–1
6.1.1 VAX Architectural Features That Guarantee Atomicity 6–1
6.1.2 Intel Itanium Compatibility Features . 6–2
6.2 Uncovering Atomicity Assumptions in Your Application 6–3
6.2.1 Protecting Explicitly Shared Data . 6–4
6.2.2 Protecting Unintentionally Shared Data . 6–8
6.3 Synchronizing Read/Write Operations . 6–9
6.4 Ensuring Atomicity in Translated Images . 6–10

7 Checking the Portability of Application Data Declarations

7.1 Overview . 7–1
7.2 Checking for Dependence on a VAX Data Type . 7–1
7.3 Examining Assumptions about Data-Type Selection 7–3
7.3.1 Effect of Data-Type Selection on Code Size . 7–3
7.3.2 Effect of Data-Type Selection on Performance 7–3

8 Examining the Condition-Handling Code in Your Application

8.1 Overview . 8–1
8.2 Establishing Dynamic Condition Handlers . 8–1
8.3 Examining Condition-Handling Routines for Dependencies 8–2
8.4 Identifying Exception Conditions . 8–8
8.4.1 Testing for Arithmetic Exceptions on I64 Systems 8–10
8.4.2 Testing for Data-Alignment Traps . 8–11
8.5 Performing Other Tasks Associated with Condition Handling 8–12

9 OpenVMS I64 Compilers

9.1 Compatibility of Ada between I64 Systems and VAX Systems 9–1
9.1.1 Tasking Differences . 9–2
9.1.2 Translating Images Using Ada . 9–2
9.2 Compatibility of VAX BASIC and HP BASIC . 9–3
9.2.1 VAX BASIC Features Not Available for HP BASIC 9–3
9.2.2 HP BASIC Features Not Available in VAX BASIC 9–3

v

9.2.3 VAX BASIC and HP BASIC Behavior Differences 9–4
9.2.3.1 Operations with Floating-point Data Types 9–4
9.2.3.1.1 Use of (DOUBLE) D-float Data Type in HP BASIC 9–4
9.2.3.1.2 Use of VAX Floating-Point Data Types in HP BASIC 9–4
9.2.3.1.3 Implicit Use of the HFLOAT Data Type 9–4
9.2.3.1.4 HFLOAT Data Items in CDD Records 9–5
9.2.3.2 Default Floating-Point Data-Type Size . 9–5
9.2.3.3 Passing Parameters by Value . 9–5
9.2.3.4 Array Parameters . 9–5
9.2.3.5 DEF* Routines . 9–6
9.2.3.6 The /LINES Qualifier . 9–7
9.2.3.7 Appending Files at the DCL Command Line 9–7
9.2.3.8 Unreachable Code Errors . 9–7
9.2.3.9 Line Numbers . 9–7
9.2.3.10 Error-Handling Semantics . 9–7
9.2.3.11 Generation of Object Modules . 9–8
9.2.3.12 RESUME and DEF . 9–8
9.2.3.13 Exceptions . 9–8
9.2.3.14 Compiler Message Differences . 9–8
9.2.3.15 Error Status Returned to DCL . 9–8
9.2.3.16 SYS$INPUT . 9–8
9.2.3.17 FSS$ Function . 9–9
9.2.3.18 BAS$K_FAC_NO Constant . 9–9
9.2.3.19 Math Functions with Different Results . 9–9
9.2.3.20 Floating-Point Errors . 9–9
9.2.3.21 Error Detection on Illegal MAT Operations 9–10
9.2.3.22 Debugging Differences . 9–10
9.2.3.23 Listing File Differences . 9–11
9.2.4 Common Language Environment Differences 9–12
9.2.4.1 Creating PSECTs with COMMON and MAP Statements 9–12
9.2.4.2 64-Bit Floating-Point Data . 9–12
9.3 Compatibility of HP C with VAX C . 9–12
9.4 VAX COBOL and HP COBOL Compatibility and Migration 9–13
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64

Systems . 9–13
9.5.1 Language Features . 9–13
9.5.1.1 Language Features Specific to HP Fortran 9–14
9.5.1.2 Language Features Specific to HP Fortran 77 9–15
9.5.1.3 Interpretation Differences . 9–16
9.5.2 Command-Line Qualifiers . 9–17
9.5.2.1 Qualifiers Specific to HP Fortran for OpenVMS I64 9–17
9.5.2.2 Qualifiers Specific to HP Fortran 77 . 9–18
9.5.3 Interoperability with Translated Shared Images 9–19
9.5.4 Porting HP Fortran 77 Data . 9–19
9.6 Compatibility of HP Pascal for I64 Systems with HP Pascal for VAX

Systems . 9–20
9.6.1 Unused External Symbols . 9–20
9.6.2 Sharing Environment Files Across Platforms 9–20
9.6.3 Default Size for Enumerated Types and Booleans 9–20
9.6.4 Default Data Layout for Unpacked Arrays and Records 9–21
9.6.5 Default Floating Format . 9–21
9.6.6 IADDRESS and VOLATILE . 9–21
9.6.7 INT on Large Unsigned Numbers Now Overflows 9–21
9.6.8 Bound Procedure Values . 9–22

vi

9.6.9 Different Descriptor Classes for Conformant Array Parameters 9–22
9.6.10 Pascal Features Not Available on OpenVMS I64 9–22
9.6.11 Pascal Record Layout Guide . 9–23

A Application Evaluation Checklist

Glossary

Index

Examples

4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type . . . 4–7
5–1 Allocating Memory by Expanding Your Virtual Address Space 5–8
5–2 Allocating Memory in Existing Address Space 5–9
5–3 Mapping a Section into Expanded Virtual Address Space 5–11
5–4 Mapping a Section into a Defined Area of Virtual Address Space 5–15
5–5 Source Code Changes Required to Run Example 5–4 on an I64

System . 5–17
5–6 Using the $GETSYI System Service to Obtain the CPU-Specific Page

Size . 5–20
6–1 Atomicity Assumptions in a Program with an AST Thread 6–4
6–2 Version of Example 6–1 with Synchronization Assumptions 6–7
8–1 Condition-Handling Routine in C . 8–8
8–2 Sample Condition-Handling Program . 8–13

Figures

1–1 Methods for Moving VAX Applications to an I64 System 1–5
2–1 Migrating a Program . 2–4
5–1 Virtual Address Layout . 5–7
5–2 Effect of Address Range on Mapping from an Offset 5–20
6–1 Synchronization Decision Tree . 6–4
6–2 Atomicity Assumptions in Example 6–1 . 6–6
6–3 Order of Read and Write Operations on an I64 System 6–9
7–1 Alignment of mystruct Using VAX C . 7–5
7–2 Alignment of mystruct Using C for OpenVMS I64 Systems 7–5
8–1 32-Bit Signal Array on VAX and I64 Systems 8–2
8–2 Mechanism Array on VAX Systems . 8–4
8–3 Mechanism Array on I64 Systems . 8–5
8–4 SS$_ALIGN Exception Signal Array . 8–11

vii

Tables

2–1 Migration Path Comparison . 2–6
2–2 Choice of Migration Method: Dealing with Architectural

Dependencies . 2–7
2–3 Floating-Point Data Type Support . 2–13
3–1 OpenVMS Development Tools . 3–5
3–2 CLUE Differences Between OpenVMS VAX and OpenVMS I64 3–7
3–3 Compiler Switches for Reporting Compile-Time Reference 3–17
4–1 Linker Qualifiers and Options Specific to OpenVMS I64 Systems 4–4
4–2 OpenVMS VAX Linker Qualifiers and Options Not Supported on I64

Systems . 4–5
4–3 OpenVMS VAX Linker Qualifiers and Options Ignored on I64

Systems . 4–6
4–4 $GETSYI Item Codes That Specify Host Architecture 4–7
5–1 Potential Page-Size Dependencies in Memory Management

Routines . 5–2
5–2 Potential Page-Size Dependencies in Run-Time Library Routines 5–6
7–1 Comparison of VAX and I64 Native Data Types 7–2
8–1 Architecture-Specific Hardware Exceptions . 8–9
8–2 Run-Time Library Condition-Handling Support Routines 8–12
9–1 Ada Language Support for OpenVMS . 9–2
9–2 Correspondence of Floating-Point Data Types 9–4
9–3 HP Fortran Qualifiers Not in HP Fortran 77 . 9–17
9–4 HP Fortran 77 Qualifiers Not Available in HP Fortran 9–18
9–5 Floating-Point Data on VAX and I64 Systems 9–20

viii

Preface

This manual is designed to assist developers in moving OpenVMS VAX
applications to an OpenVMS I64 system or a mixed-architecture cluster.

Intended Audience
This manual is intended for experienced software engineers responsible for
migrating application code written in high- or mid-level programming languages.

Document Structure
The manual consists of the following chapters:

• Chapter 1 provides an overview of the relationship of OpenVMS and the VAX
and Itanium architectures, and of the process of migrating an application
from a VAX to an I64 system. It includes information about the following:

Areas in which OpenVMS I64 is highly compatible with OpenVMS VAX

Comparison of the Intel® Itanium® architecture with the VAX
architecture

Overview of the stages in the migration process

The two main migration paths—recompiling source code and translating
VAX images

Migration support available from HP

• Chapter 2 considers the differences between the two main migration paths
and the issues involved in choosing which path to take in migrating your
application. It also describes how to analyze the individual parts of your
application to identify architectural differences that affect migration and how
to assess what is involved in resolving those differences.

• Chapter 3 describes the steps in the actual migration, from setting up your
migration environment to integrating the migrated application into a new
environment.

• Chapter 4 provides an overview of converting your application by recompiling
and relinking.

• Chapter 5 describes how to handle dependencies your application has on the
VAX page size.

• Chapter 6 describes how to handle dependencies your application has on the
synchronization provided by the VAX architecture with regard to data access
by multiple processes.

• Chapter 7 describes the implications of data declarations on an I64 system,
including alignment concerns.

ix

• Chapter 8 describes how to handle dependencies your application has on the
VAX condition-handling facility.

• Chapter 9 contains brief summaries of the new and changed features
supported by the Ada, C, COBOL, Fortran, and Pascal programming
languages on OpenVMS I64 systems.

• Appendix A contains a checklist that you can use to evaluate your application
for migration from OpenVMS VAX to OpenVMS I64.

Related Documents
A number of archived OpenVMS manuals describe various aspects of the porting
process. These manuals are available from "Porting Documentation" navigation
bar on the following Web location:

http://h71000.www7.hp.com/doc/

These manuals includes the following:

• OpenVMS Migration Software for VAX to Alpha Systems: Translating
Images describes the VAX Environment Software Translator (VEST) utility.
This manual is distributed with the optional layered product, DECmigrate
for OpenVMS Alpha, which supports the migration of OpenVMS VAX
applications to OpenVMS Alpha systems. The manual describes how to use
VEST to convert most user-mode VAX images to translated images that
can run on Alpha systems; how to improve the run-time performance of
translated images; how to use VEST to trace Alpha incompatibilities in a
VAX image back to the original source files; and how to use VEST to support
compatibility among native and translated run-time libraries. The manual
also includes complete VEST command reference information.

• HP OpenVMS Migration Software for Alpha to Integrity Servers: Guide
to Translating Images describes how to use the HP OpenVMS Migration
Software for Alpha to Integrity Servers (OSMAI) to migrate OpenVMS Alpha
applications to OpenVMS I64.

• Creating an OpenVMS AXP Step 2 Device Driver From an OpenVMS VAX
Device Driver describes how to convert an OpenVMS VAX device driver to
run on an OpenVMS Alpha system. The book identifies the specific changes
required to prepare an OpenVMS VAX device driver to be compiled, linked,
loaded, and run as an OpenVMS Alpha device driver. It also contains
reference material about the entry points, system routines, data structures,
and macros used in OpenVMS I64 Alpha drivers.

The ‘‘OpenVMS Floating-Point Arithmetic on the Intel® Itanium® Architecture’’
white paper describes how floating-point data types on OpenVMS I64 differ from
other platforms. You can obtain the white paper from the following location:

http://h71000.www7.hp.com/openvms/integrity/resources.html

The HP OpenVMS Migration Software for Alpha to Integrity Servers comprises
a set of tools for translating and porting OpenVMS Alpha applications to
OpenVMS I64 systems. For more information, including a link to the product
documentation, see the following location:

http://71000.www7.hp.com/openvms/products/omsva/osmais.html

x

In addition, the following general programming manuals contain current
information on issues discussed here:

• VAX Architecture Reference Manual

• HP OpenVMS Guide to Upgrading Privileged-Code Applications

• VAX/VMS Internals and Data Structures

• HP OpenVMS Programming Concepts Manual

• OpenVMS Programming Interfaces: Calling a System Routine

• Guide to the POSIX Threads Library

• HP OpenVMS Calling Standard

• HP OpenVMS Debugger Manual

• HP OpenVMS Linker Utility Manual

• HP OpenVMS System Analysis Tools Manual

Documentation for individual compilers may also be useful in the porting process.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

xi

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xii

1
Overview of the Migration Process

For many applications, migrating from OpenVMS VAX to OpenVMS I64 is
straightforward. If your application runs only in user mode and is written in
a standard high-level language, you most likely can recompile it with a native
OpenVMS I64 compiler and relink it to produce a version that runs successfully
on an OpenVMS I64 system. This book is intended to help you evaluate your
application and to handle the relatively few cases that are more complicated.

1.1 Compatibility of VAX and I64 Systems
The OpenVMS I64 operating system is designed to preserve as much
compatibility with the OpenVMS VAX user, system management, and
programming environments as possible. For general users and system managers,
OpenVMS I64 has the same interfaces as OpenVMS VAX. For programmers, the
goal is to come as close as possible to a ‘‘recompile, relink, and run’’ model for
migration.

Many aspects of an application running on an OpenVMS VAX system remain
unchanged on an I64 system.

User Interface

• DIGITAL Command Language (DCL)

The DIGITAL Command Language (DCL), the standard user interface
to OpenVMS, remains essentially unchanged with OpenVMS I64. All
commands, qualifiers, and lexical functions available on OpenVMS VAX
also work on OpenVMS I64.

• Command Procedures

Command procedures written for earlier versions of OpenVMS VAX continue
to work on an OpenVMS I64 system without change. However, certain
command procedures, such as build procedures, must be changed to
accommodate new compiler qualifiers and linker switches. Linker options
files also require modification, especially for shareable images.

• DECwindows

The window interface, DECwindows Motif, is unchanged.

• DECforms

The DECforms interface is unchanged.

• Editors

The two standard OpenVMS editors, EVE and EDT, are unchanged.

Overview of the Migration Process 1–1

Overview of the Migration Process
1.1 Compatibility of VAX and I64 Systems

System Management Interface

The system management utilities are mostly unchanged. One major exception
is that device configuration functions, which appear in the System Generation
utility (SYSGEN) on VAX systems, are provided in the System Management
utility (SYSMAN) for OpenVMS I64.

Programming Interface

In general, the system service and run-time library (RTL) calling interfaces
remain unchanged. You do not need to change the definitions of arguments.
The few differences fall into two categories:

• Some system services and RTL routines (such as the memory
management system and exception-handling services) operate somewhat
differently on VAX and OpenVMS I64 systems. See the HP OpenVMS
System Services Reference Manual and the HP OpenVMS RTL Library
(LIB$) Manual for further information.

• A few RTL routines are so closely tied to the VAX architecture that their
presence on an OpenVMS I64 system is not meaningful:

Routine Name Restriction

LIB$DECODE_FAULT Decodes VAX instructions.

LIB$DEC_OVER Applies to VAX Processor Status Longword
(PSL) only.

LIB$ESTABLISH Similar functionality supported by compilers
on OpenVMS I64 systems.

LIB$FIXUP_FLT Applies to VAX PSL only.

LIB$FLT_UNDER Applies to VAX PSL only.

LIB$INT_OVER Applies to VAX PSL only.

LIB$REVERT Supported by compilers on OpenVMS I64
systems.

LIB$SIM_TRAP Applies to VAX code.

LIB$TPARSE Requires action routine interface changes.
Replaced by LIB$TABLE_PARSE.

Most VAX images that call these services and routines work when translated
and run under the Translated Image Environment (TIE) on OpenVMS I64.
For more information about TIE, see OpenVMS Migration Software for VAX
to Alpha Systems: Translating Images.

Data

• The on-disk format for ODS-2 data files is the same on VAX and Integrity
server systems. However, ODS-1 files are not supported on OpenVMS I64.

• Record Management Services (RMS) and file management interfaces are
unchanged.

• The IEEE little-endian data types S_floating and T_floating have been added.

• Most VAX data types are supported by compilers on OpenVMS I64. For more
information, see Section 2.6.2.

1–2 Overview of the Migration Process

Overview of the Migration Process
1.1 Compatibility of VAX and I64 Systems

Databases

Standard HP databases function the same on VAX and OpenVMS I64
systems.

Network Interfaces

VAX and OpenVMS I64 systems both support the following networking
interfaces:

• Interconnects

– Ethernet

– X.25

• Protocols

– DECnet (Phase IV in Version 8.2; Phase V in the optional DECnet-
Plus kit)

– TCP/IP

– OSI

– LAD/LAST

– LAT (Local Area Transport)

• Peripheral connections

– SCSI

– Ethernet

– PCI

1.2 User-Written Device Drivers
There is no method for porting an OpenVMS VAX device driver directly to
OpenVMS I64. HP recommends that you first port your OpenVMS VAX device
driver to OpenVMS Alpha. After that, the port to OpenVMS I64 should be
straightforward.

Porting a driver from VAX to Alpha is covered in the archived manual Creating
an OpenVMS AXP Step 2 Device Driver From an OpenVMS VAX Device Driver.
See the "Related Documents" section in the Preface of this manual for the Web
location of that document. After following the procedures described in that
device driver manual, you might need to make further modifications to your
device drivers that are relevant changes in the OpenVMS kernel when 64-bit
support was introduced in OpenVMS Alpha V7.0. For more information, see HP
OpenVMS Guide to Upgrading Privileged-Code Applications.

Be sure to observe the following recommendations when porting device drivers
from OpenVMS VAX to OpenVMS Alpha:

• Refrain from explicit use of any register numbered higher than the AP (R12).
This will improve the likelihood of a simple recompile for Alpha Macro-32
code.

• Be careful if your device driver has any assumption that a PFN is only
32-bits wide, which is the limit on VAX and Alpha. OpenVMS I64 supports
the 50-bit physical addresses that are supported by HP Integrity servers.
As a result, the PFN field requires more than 32 bits of the 64-bit PTE.

Overview of the Migration Process 1–3

Overview of the Migration Process
1.2 User-Written Device Drivers

For more information about PFNs, see HP OpenVMS Guide to Upgrading
Privileged-Code Applications.

• An OpenVMS VAX driver for some VAX option cards might have specific
references to bus support. For example, if you have a VAX Q-bus adapter, you
need to find an equivalent PCI adapter and then rewrite your driver.

• If you have a "class driver" or other similar driver, usually loaded with the
/NOADAPTER switch, it is not tied to a particular bus option card. This is a
better candidate for porting to I64.

• If your driver will run on both Version 7.x and Version 8.x versions of
OpenVMS, the driver must be compiled and linked for both versions because
of internal data structure changes made for Version 8.2. For example, a
driver linked on Version 8.2 will not run on Version 7.3-2 and visa versa.

Many OpenVMS VAX device drivers are written in VAX Macro-32. As such, if the
driver is not overly large, it might be worth considering rewriting it, in whole or
in part, in C.

For more information about writing new OpenVMS Alpha device drivers, refer to
Writing OpenVMS Alpha Device Drivers in C.

1.3 Migration Process
The process for converting your VAX programs to run on an I64 system includes
the following stages:

1. Evaluate the code to be migrated:

• Take inventory of the elements of your application and its environment.
Identify any dependencies on other programs.

• Review code in each element to find potential obstacles to migration.

• Decide on the best method for moving each part of the application to the
I64 system.

2. Write a migration plan.

3. Set up the migration environment.

4. Migrate your application.

5. Debug and test the migrated application.

6. Integrate the migrated software into a software system.

A number of tools and HP services are available to help you migrate your
applications to OpenVMS I64. These tools are described in the context of the
process described in this manual. The migration services are summarized in
Section 1.5.

1.4 Migration Paths
There are two ways to convert a program to run on an I64 system:

• Recompiling and relinking, which creates native I64 images

• Translating, which creates native I64 images with some routines emulated
under TIE

1–4 Overview of the Migration Process

Overview of the Migration Process
1.4 Migration Paths

Figure 1–1 Methods for Moving VAX Applications to an I64 System

VM-1191A-AI

Translate
VAX image
to an Alpha
image

Modify
sources if
necessary

Recompile
sources

Analyze the
application;
list components,
check for source
availability,
translatability,
and so forth.

Translate Alpha
image to an
I64 image

Move the
Alpha image
to I64

Relink
objects
and
images

Test the
application

Debug the
application

These two methods are shown in Figure 1–1. Section 2.2 discusses factors to
consider when choosing a migration method.

Recompiling and Relinking
The most effective way to convert a program from OpenVMS VAX to OpenVMS
I64 is to recompile the source code using a native I64 compiler (such as C or
Fortran), and then use the OpenVMS Linker to relink the resulting object files
and any required shareable images. This method produces a native I64 image
that takes full advantage of the speed of the Integrity system.

Translating
In order to translate an image from VAX to I64, you must first translate it to
Alpha using the VEST utility, then translate the Alpha image to I64.

The translation process provides a higher degree of VAX compatibility, but
because the translated image does not provide the same high performance as a
recompiled image, translation is used primarily as a safety net when recompiling
is impossible or impractical. For example, translation is appropriate in the
following situations:

• When an appropriate compiler is not available for the target system

• When source files are not available

For additional information, see Section 2.4.

1.5 Migration Support from HP
HP offers a variety of services to help you migrate your applications to OpenVMS
I64.

HP customizes the level of service to meet your needs. The VAX-to-Integrity
migration services available include the following:

• Migration Assessment

• Application Migration Detailed Analysis and Design

Overview of the Migration Process 1–5

Overview of the Migration Process
1.5 Migration Support from HP

• System Migration Detailed Analysis and Design

• Application Migration

• System Migration

To determine which services are appropriate for you, contact an HP support
representative or authorized reseller.

1.5.1 Migration Assessment Service
The Migration Assessment service assesses the VAX system and application
environment to be migrated to the Integrity platform. The objectives of the
migration are reviewed and a complete current state configuration is completed.
The desired end state is determined and risks and constraints are identified.
Finally, several migration scenarios are developed.

1.5.2 Application Migration Detailed Analysis and Design Service
The Application Migration Detailed Analysis and Design service provides a
detailed analysis of an in-house developed application, creates a report of all
VAX dependencies within all modules, and makes recommendations as to what
modifications are required to migrate the application to I64. Acceptance criteria
is specified for performance and functionality.

1.5.3 System Migration Detailed Analysis and Design Service
The System Migration Detailed Analysis and Design service performs a detailed
analysis of the current system environment, which includes hardware, software
(proprietary and nonproprietary, excluding in-house developed applications), and
network components. The best tools and migration methods are determined,
and a project plan that maps the steps from the current to the future state is
created.

1.5.4 Application Migration Service
The Application Migration service migrates an in-house developed application
from a VAX platform to an Integrity platform. Each code module is either
recompiled or translated, depending on source code availability. First, VAX
dependencies are removed. Then, the entire application is relinked and tested on
the Integrity platform. The application is then deployed on the target systems.

1.5.5 System Migration Service
The System Migration service migrates an OpenVMS system (single node or
cluster) from the VAX platform to the Integrity platform. The customer’s system
availability and performance requirements are reviewed, and acceptance testing
methodology and criteria are determined.

1–6 Overview of the Migration Process

2
Selecting a Migration Method

Evaluating your application identifies the work to be done and allows you to plan
the rest of the migration.

The evaluation process has three main stages:

• General inventory, including identifying dependencies on other software

• Source analysis to identify coding practices that affect migration

• Selection of a migration method: rebuilding from source code or translating

When you have completed these steps, you will have the information necessary to
write an effective migration plan.

2.1 Taking Inventory
The first step in evaluating an application for migration is to determine exactly
what has to be migrated. This includes not only the application itself, but
everything that the application requires in order to run properly. To begin
evaluating your application, identify and locate the following items:

• Parts of the application

– Source modules for the main program

– Shareable images

– Object modules

– Libraries (object module, shareable image, text, or macro)

– Data files and databases

– Message files

– CLD files

– UIL and UID files for DECwindows support

• Other software on which your application depends, for example:

– Run-time libraries

– HP layered products

– Third-party products
To help identify dependencies on other code, use VEST with the qualifier
/DEPENDENCY. The VEST/DEPENDENCY command identifies executable
and shareable images on which your application depends, such as run-time
libraries, system services, and other applications. For information about
using VEST/DEPENDENCY, see OpenVMS Migration Software for VAX to
Alpha Systems: Translating Images.

Selecting a Migration Method 2–1

Selecting a Migration Method
2.1 Taking Inventory

• Required operating environment

– System characteristics

What sort of system is required to run and maintain your application; for
example, how much memory is required, how much disk space, and so on?

– Build procedures

Includes HP tools such as Code Management System (CMS) and Module
Management System (MMS).

– Testing suite

Your tests help confirm that the migrated application runs correctly and
help evaluate its performance.

Many items, such as the following, have already been migrated to OpenVMS I64:

• HP software bundled with OpenVMS

– RTLs

– Other shareable libraries, such as those supplying callable utility routines
and application library routines

• HP layered products

– Compilers and compiler RTLs

– Database managers

– Networking environment

• Third-party products

Many third-party applications now run on OpenVMS I64. To determine
whether a particular application has been migrated, contact the application
vendor.

You are responsible for migrating your application and your development
environment, including build procedures and testing suites.

2.2 How to Select a Migration Method
After you complete the inventory for your application, you must decide how to
migrate each part of it: by recompiling and relinking or by translating. The
majority of applications can be migrated by recompiling and relinking them.
If your application runs only in user mode and is written in a standard high-
level language, it is probably in this category. For the major exceptions, see
Section 2.5.

The remainder of this chapter discusses how to choose a migration method for
the relatively few applications that require more work to migrate. To make
this decision, you need to know which methods are possible for each part of the
application, and how much work is required for each method.

Note

The following process assumes that you will recompile your application if
possible, and that you will use translation only for parts that cannot be
recompiled or as a temporary measure in the course of the migration.

2–2 Selecting a Migration Method

Selecting a Migration Method
2.2 How to Select a Migration Method

Follow these steps to choose a migration method for your application:

1. Determine which of the two migration methods is possible.

Under most conditions, you can either recompile and relink your program
or translate the VAX image. Section 2.3 describes cases where only one
migration method is available.

2. Identify architectural dependencies that affect recompilation.

Even if your application is generally suitable for recompiling, it might contain
code that depends on features of the VAX architecture that are incompatible
with the Intel Itanium architecture.

Section 2.5 discusses these dependencies and provides information that helps
you to identify them and to begin estimating the type and amount of work
required to accommodate any dependencies you find.

Section 2.7 describes tools and methods you can use to help answer the
questions that come up in evaluating your application.

3. Decide whether to recompile or translate.

After you have evaluated your application, you must decide which migration
method to use. Section 2.4 describes how to make the decision by balancing
the advantages and disadvantages of each method.

If you cannot recompile and relink your program, or if the VAX image
uses features specific to the VAX architecture, you may wish to translate
that image. Section 2.4.1 describes ways to increase the compatibility and
performance of translated images.

As shown in Figure 2–1, the evaluation process consists of a series of questions
and some tasks you can perform to help answer those questions. HP provides a
number of tools that you can use to help answer the questions; these tools are
described at the relevant points in the process.

2.3 Which Migration Methods are Possible?
In most cases, you can either recompile and relink, or translate your application.
However, depending on the design of your application, only one of the two
migration paths may be available to you:

• Programs that cannot be recompiled

The following types of images must be translated:

– Software that is written in a programming language for which no I64
compiler is yet available

– Executable and shareable images for which the source code is not
available

– Programs that require H_floating or 56-bit D_floating data

• Images that cannot be translated

The source code must be recompiled and relinked (and possibly revised) for
the following types of images:

– Images produced before OpenVMS VAX Version 4.0

Selecting a Migration Method 2–3

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

Figure 2–1 Migrating a Program

ZK-4990A-AI

Source
code

available?

Identify
source

modules

Correcting
errors

practical?

Revise
code

Recompile/
relink/run
program

Errors?

Rewrite
program

Errors?

no

no

no

no

no no

yes

yes

yes

yes

yes

yes

yes

no

Identify
sources of

errors

Test program
with rest of
application

Can program
image be

translated?

Compilers
available?

Can program
image be

translated?

You are done

Translate
program

image

Translate
program

image

2–4 Selecting a Migration Method

Selecting a Migration Method
2.3 Which Migration Methods are Possible?

– Images produced using OpenVMS VAX Version 5.5 or later, because the
translated RTLs and system services have not been updated since then

– Images written in Ada

– Images that call or are called by images written in Ada

– Images that use PDP-11 compatibility mode

– Based images

– Images that contain coding practices intended for the VAX architecture.
These images include code that:

– Runs in inner access modes or elevated IPL (for example, VAX device
drivers)

– Refers directly to addresses in system space

– Refers directly to undocumented system services

– Uses threaded code; for example, code that switches stacks

– Uses VAX vector instructions

– Uses privileged VAX instructions

– Inspects or modifies return addresses or makes other decisions based
on a program counter (PC)

– Depends on exact access-violation behavior due to 512-byte size
memory page dependencies

– Aligns global sections on boundaries other than the native machine
page boundary (for example, depends on a 512-byte memory page size)

– Uses most of the VAX P0 or P1 space or is otherwise sensitive to the
space taken up by the translated-image run-time support routines

Although the translated image’s run-time performance will be degraded
because of the amount of VAX code that TIE is required to interpret, VEST
can probably translate the following kinds of images:

– Images that include self-modifying or created VAX code, except for the
code generated at run time by TIE

– Images with code that inspects the instruction stream, except when TIE
interprets such code at run time

For more information about which images can be translated, see OpenVMS
Migration Software for VAX to Alpha Systems: Translating Images.

2.4 Deciding Whether to Recompile or Translate
If both methods are possible for a given image, you must balance the projected
performance of native and translated versions of the image on an I64 system
against the effort required to translate the image or to convert it to a native I64
image.

In general, different images that make up an application can be run in different
modes. For example, a native I64 image can call translated shareable images
and vice versa. For more information about mixed-architecture applications, see
Section 2.4.2.

Selecting a Migration Method 2–5

Selecting a Migration Method
2.4 Deciding Whether to Recompile or Translate

Table 2–1 compares the two migration paths.

Table 2–1 Migration Path Comparison

Factor Recompile/Relink Translate

Performance Full I64 capability Typically 25-40% of native
I64 potential; equivalent to
performance on VAX.

Effort required Varies: easy to difficult. Easy.

Schedule constraints Based on availability of
native compilers.

None: available immediately.

Programs supported:

–Age Source for VAX/VMS
Version 4.0 or earlier
accepted.

Only VAX/VMS Version 4.0 or later
supported.

–Limitations Privileged code
supported.

Only user-mode code supported.

VAX compatibility High: most code
recompiles and relinks
without difficulty.

Complete by emulation.

Ongoing support and
maintenance.

Normal source code
maintenance

Maintain source code on VAX;
recompile and retranslate for each
new version.

To determine how to proceed with the migration of your application, answer the
following questions:

• Do you build your application entirely from source code, or do you rely on
binary images for some functions?

If you rely on binary images, you must translate them.

• Do you have access to the source code for all images that are part of your
application?

If not, you must translate images that are missing source code.

• Which images are critical to the performance of your application?

You should recompile these images to take full advantage of the speed of I64
systems.

– Use the PCA to identify critical images.

– Only images that are produced by native I64 compilers use I64 processing
capabilities efficiently and achieve optimal performance. A translated
VAX image runs at one-third the speed of native I64 code or slower,
depending on the translation options used.

• How much work is required to convert each image under the two methods?

– Translating VAX images to I64 images is a two-step process:

1. Translate the VAX images to Alpha images using the VEST utility.

2. Translate the Alpha images to I64 images using the HP OpenVMS
Migration for Alpha to Integrity Servers (OSMAI) utility.

2–6 Selecting a Migration Method

Selecting a Migration Method
2.4 Deciding Whether to Recompile or Translate

– Code that depends on details of the VAX architecture and the VAX
calling standard cannot be recompiled directly. It must either run under
translation, or it must be rewritten, recompiled, and relinked.

You can remove architectural dependencies in several ways:

• Replace an architecture-dependent code sequence with high-level language
lexical elements that support the same operation in a platform-independent
manner.

• Use a call to an OpenVMS system service to perform the task in a way that is
appropriate for the processor architecture.

• Use a high-level language compiler switch to help guarantee correct program
behavior with minimal changes to the source code.

Table 2–2 summarizes how the architectural dependencies of a given program can
affect which method you use to migrate the program to an I64 system. For more
detailed information, see the following chapters.

Table 2–2 Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Data alignment 1

By default, most compilers align data
naturally. For information about
qualifiers to retain VAX alignment,
see Chapter 9.

Unaligned data supported, but the qualifier
/OPTIMIZE=ALIGNMENT can improve
overall execution speed by assuming that
data is longword aligned.

Data types

Replace H_floating with X_floating.

For D_floating, if the 15 decimal digits
of precision provided by the D53 format
are sufficient, replace D_floating with
G_floating. If the application requires
16-bit decimal precision (D56 format),
translate it.

COBOL packed decimal is automatically
converted to binary format for operations.

For more information about data types,
see Chapter 7.

To retain 16-bit decimal precision for
D_floating, use the /FLOAT=D56_FLOAT
qualifier. Performance using this qualifier
will be slower than when using the default,
/FLOAT=D53_FLOAT.

Atomicity of read-modify-write
operations

Support depends on options provided
by the individual compiler. (for more
information, see Chapter 6)

Use the /PRESERVE=INSTRUCTION_
ATOMICITY qualifier. Execution speed may
drop by a factor of 2.

1Unaligned data is primarily a performance issue. Whereas references to unaligned data are only
somewhat detrimental to VAX performance, loading unaligned data from memory and storing
unaligned data to memory in an I64 system can be up to 1000 times slower than the corresponding
aligned operations.

(continued on next page)

Selecting a Migration Method 2–7

Selecting a Migration Method
2.4 Deciding Whether to Recompile or Translate

Table 2–2 (Cont.) Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Page size

The OpenVMS Linker produces large,
I64-style pages by default.

Most 512-byte page images are supported.
However, because of the permissive protection
assigned by VEST, images that rely on
restrictive protection to generate access
violations cannot execute properly on an
I64 system when translated.

Read/write ordering

Supported by adding appropriate
synchronization instructions (MF) to
source code, but with a performance
penalty. (for more information, see
Chapter 6)

Use the /PRESERVE=READ_WRITE_
ORDERING qualifier.

Explicit reliance on details of the VAX
architecture and calling standard 2

Unsupported; dependencies must be
removed.

Supported.

2Dependencies on details of the VAX architecture and calling standard include explicit reliance on the
VAX calling standard, VAX exception handling, the VAX AST parameter list, the format and behavior
of VAX instructions, and the generation of VAX instructions at run time.

2.4.1 Translating Your Application
If you are unable to recompile your application, or if it uses features specific to
the VAX architecture, you might decide to translate the application. You can
translate only some parts of the application, or you can translate parts of it
temporarily as a means of staging the overall migration.

Many of the differences that affect recompilation discussed in Section 2.5 can
also affect the performance of a translated VAX image. For more information,
see OpenVMS Migration Software for VAX to Alpha Systems: Translating Images
and HP OpenVMS Migration Software for Alpha to Integrity Servers: Guide to
Translating Images.

Table 2–2 includes a summary of ways you can allow for various architectural
dependencies in a translated image.

2.4.2 Combining Native and Translated Images
In general, you can combine native I64 images with translated images on an I64
system. For example, a native I64 image can call translated shareable images,
and vice versa.

In order to run together, calls between native and translated images must be able
to account for the calling standard differences between the VAX and Integrity
platforms.

• Routine interface semantics and data alignment conventions for the native
I64 images are identical to those for VAX images.

2–8 Selecting a Migration Method

Selecting a Migration Method
2.4 Deciding Whether to Recompile or Translate

• All the entry points are CALLx; there are no external JSB entry points. This
is probably true of any code written in a high-level language.

• The inbound and outbound calls in the native image are not written in Ada.

When a translated image makes a call to a routine in a native image, or vice-
versa, it does so indirectly through a jacket routine. The jacket routine
interprets the procedure’s call frame and argument list and builds the equivalent
destination call frame and argument list, then transfers control to the destination
procedure. When the destination procedure returns, it does so through the
jacket routine. The jacket routine propagates the destination routine’s returned
register values into the source routine’s registers and returns control to the source
procedure.

The OpenVMS I64 operating system creates jacket routines automatically for
most calls. To make use of automatic jacketing, use the compiler qualifier /TIE
and the linker option /NONATIVE_ONLY to create the native I64 parts of your
application.

In certain cases, the application program must use a specially written jacket
routine. For example, you may have to write jacket routines for nonstandard
calls to libraries such as the following:

• A VAX shareable library that includes external JSB entry points

• A library that includes read/write data in the transfer vector

• A library that contains VAX specific functions

• A library that uses resources that would need to be shared between a native
and a translated version of the library

• A native I64 library that does not provide or export all the symbols that the
VAX image did

(The term exported means that a routine is included in the Global Symbol
Table [GST] for the image.)

For information about how to create a jacket image for one of these situations,
see OpenVMS Migration Software for VAX to Alpha Systems: Translating Images.

Translated shareable images (such as run-time libraries for languages without
native I64 compilers) that are shipped with the OpenVMS I64 operating system
are accompanied by jacket routines that allow them to be called by native I64
images.

2.5 Coding Practices That Affect Recompilation
Many applications, especially those that use only standard coding practices or are
written with portability in mind, can migrate from OpenVMS VAX to OpenVMS
I64 with little or no trouble. However, recompiling an application that depends on
VAX-specific features that are incompatible with the Intel Itanium architecture
require you to modify your source code. Typical incompatibilities include use of
the following:

• VAX MACRO assembly language to obtain high performance on a VAX system
or to make use of features specific to the VAX architecture

• Privileged code

• Features specific to the VAX architecture

Selecting a Migration Method 2–9

Selecting a Migration Method
2.5 Coding Practices That Affect Recompilation

If none of these incompatibilities is present in your application, the rest of this
chapter does not apply to you.

2.5.1 VAX MACRO Assembly Language
On I64 systems, VAX MACRO is not the assembly language, but just another
compiled language. However, unlike the high-level language I64 compilers, the
VAX MACRO–32 Compiler for OpenVMS I64 does not produce highly optimized
code in all cases. HP strongly recommends that you use the VAX MACRO–32
Compiler for OpenVMS I64 only as a migration aid, not for writing new code.

Many of the reasons for using assembly language on a VAX system are no longer
relevant on I64 systems, for example:

• There is no inherent performance advantage in using assembly language
on a EPIC processor. EPIC compilers, such as those in the I64 compiler
set, can generate optimized code that takes advantage of architecture-
and implementation-specific features more easily and efficiently than a
programmer can.

• New system services can perform some functions that previously required
assembly language.

For more information about migrating MACRO code, see HP OpenVMS MACRO
Compiler Porting and User’s Guide.

2.5.2 Privileged Code
VAX code that executes in inner access mode (kernel, executive, or supervisor
mode) or that references system space is more likely to use coding practices that
is VAX architecture specific or that refer to VAX data cells that do not exist on
OpenVMS I64. Such code will not migrate to an I64 system without change.
These programs require recoding, recompiling, and relinking.

Code in this category includes:

• User-written system services and other privileged shareable images

For more information, see the HP OpenVMS Programming Concepts Manual
and the HP OpenVMS Linker Utility Manual.

• Device drivers and performance monitors not supplied by HP

• Code that uses special privileges; for example, code that uses $CMEXEC or
$CMKRNL system services, or code that uses the $CRMPSC system service
with the PFNMAP option

For more information about memory mapping, see Chapter 5.

• Code that uses internal OpenVMS routines or data, such as:

– Code that links against the system symbol table, SYS.STB, to access
locations in system address space

– Code that compiles against SYS$LIBRARY:LIB

For assistance in migrating inner-mode code that refers to the OpenVMS
executive, contact an HP support representative.

2–10 Selecting a Migration Method

Selecting a Migration Method
2.5 Coding Practices That Affect Recompilation

2.5.3 Features Specific to the VAX Architecture
To achieve its high performance, the Intel Itanium architecture differs
significantly from the VAX architecture. Software developers who are accustomed
to writing code that relies on certain aspects of the VAX architecture must
be aware of architectural dependencies in their code in order to transport it
successfully to an I64 system.

Common architectural dependencies, along with ways to identify them and
actions you can take to eliminate them, are described briefly in the following
sections. For a detailed discussion of ways to identify and eliminate these
dependencies, see Chapters 4 through 8.

2.6 Identifying Dependencies on the VAX Architecture in Your
Application

Even if your application recompiles successfully with a compiler that generates
native I64 code, it might still contain subtle dependencies on the VAX
architecture. The OpenVMS I64 operating system has been designed to provide
a high degree of compatibility with OpenVMS VAX; however, the fundamental
differences between the VAX and Intel Itanium architectures can create problems
for applications that depend on certain VAX architectural features. The following
sections highlight areas of your application you should examine.

2.6.1 Data Alignment
Data is naturally aligned when its address is an integral multiple of the size of
the data in bytes. For example, a longword is naturally aligned at any address
that is a multiple of 4, and a quadword is naturally aligned at any address that
is a multiple of 8. A structure is naturally aligned when all its members are
naturally aligned.

Accessing data that is not naturally aligned in memory incurs a significant
performance penalty on both VAX and I64 systems. On VAX systems, most
languages align data on the next available byte boundary by default, because
the VAX architecture provides hardware support that minimizes the performance
penalty in referencing unaligned data. On I64 systems, however, the default is to
align each data item naturally for better performance. As a result, references to
naturally aligned data on Intel Itanium systems are 10 to 1000 times faster than
references to unaligned data.

I64 compilers automatically correct most potential alignment problems and flag
others.

Finding the Problem
To find instances of unaligned data, you can use the following methods:

• Use a qualifier provided by most I64 compilers that allows the compiler
to report compile-time references to unaligned data. For example, for HP
Fortran programs, compile with the /WARNING=ALIGNMENT qualifier.

• To detect unaligned data at run time, use the OpenVMS Debugger (SET
BREAK/UNALIGNED command) or DEC PCA (Performance and Coverage
Analyzer).

Selecting a Migration Method 2–11

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

Eliminating the Problem
To eliminate unaligned data, you can use one or more of the following methods:

• Compile with natural alignment or, when language semantics do not provide
for this, move data to be naturally aligned. Where filler is inserted to ensure
that data remains aligned, there is a penalty in increased memory size.
A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment
within data structures. For example, in HP C, natural alignment is the
default option. To define data structures that must match the VAX C
default alignment—such as on-disk data structures—use the construct
#PRAGMA NO_MEMBER_ALIGNMENT. With HP Fortran, local variables
are naturally aligned by default. To control alignment of record structures
and common blocks, use the /ALIGN qualifier.

• Use compiler qualifiers that generate VAX compatible unaligned data-
structure mappings. Use of these qualifiers results in I64 programs that
are functionally correct but potentially slow.

Note

Software that is converted to natural alignment might be incompatible
with other software that is running translated on a VAX system in the
same OpenVMS Cluster environment or over a network. For example:

• An existing file format might specify records with unaligned data.

• A translated image might pass unaligned data to, or expect it from, a
native image.

In such cases, you must adapt all parts of the application to expect the
same type of data, either aligned or unaligned.

For more information about data alignment, see Chapter 7 and Section 8.4.2.

2.6.2 Floating-Point Arithmetic
This section discusses the differences in floating-point arithmetic on OpenVMS
VAX and OpenVMS I64 systems.

The VAX architecture supports VAX floating-point formats in hardware. The Intel
Itanium architecture implements floating-point ,arithmetic in hardware using the
IEEE floating-point formats, including IEEE single and IEEE double.

If an application was originally written for OpenVMS VAX or OpenVMS Alpha
using the default floating-point formats, it can be ported to OpenVMS I64 in one
of two ways: continue to use VAX floating-point formats utilizing the conversion
features of the HP compilers, or convert the application to use IEEE floating-
point formats. VAX floating-point formats can be used in situations where access
to previously generated binary floating-point data is required. HP compilers
generate the code necessary to convert the data between VAX and IEEE formats.

For details about the conversion process, see the ‘‘OpenVMS Floating-Point
Arithmetic on the Intel® Itanium® Architecture’’ white paper. See the Related
Documents section in the Preface of this manual for the Web location of this
white paper.

2–12 Selecting a Migration Method

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

IEEE floating-point format should be used in situations where VAX floating-point
formats are not required. The use of IEEE floating-point format results in more
efficient code.

2.6.3 Data Types
The Intel Itanium architecture supports many of the VAX native data types;
however, certain VAX data types, such as the H_floating data type, are not
supported at all, while other data types such as F-floating, are supported by
converting to IEEE format to perform the desired operation (see Table 2–3).
Check to see if your application depends on the size or bit representation of an
underlying native data type.

Table 2–3 Floating-Point Data Type Support

Data Type On VAX On I64

G_floating Supported. Supported by converting to IEEE T-floating
automatically if /FLOAT=G_FLOAT is specified
on compile command. Using D53_floating
instead of D56_floating drops 3 bits of precision
and yields slightly different results.

D_floating Supported. Supported by converting to IEEE T-floating
automatically if /FLOAT=D_FLOAT is specified
on compile command.

F_floating Supported. Supported by converting to IEEE S-floating
automatically if /FLOAT=D_FLOAT or
/FLOAT=G_FLOAT is specified on compile
command.

H_floating (128-bit
floating-point)

Supported. Not supported. You can obtain full H_floating
support with DECmigrate. You can use it
to translate the code module that contains
H_floating structures, or you can recode your
application, using a supported data type.

S_floating (IEEE) Not supported. Supported.

T_floating (IEEE) Not supported. Supported.

X_floating (128-bit
floating-point
(Itanium; IEEE-
like))

Not supported. Supported. The X_floating data format is not
identical to H_floating, but both cover a similar
range of values. For Fortran applications,
automatic conversion between X_floating
memory format and H_floating on-disk is
possible by use of the FOR$CONVERTnnn
logical name, the OPTIONS statement,
the /CONVERT compiler qualifier, or the
CONVERT=keyword on OPEN statements.

To improve their performance, Intel Itanium processors implement the numeric
string and packed decimal string, H_floating, G_floating, D_floating and F_
floating data types by using software, as follows:

• Decimal

Eighteen-digit decimal data is converted to 64-bit binary integers internally,
which provides very fast COBOL performance.

• H_floating

I64 compilers do not support H_floating data; however, the Translated
Image Environment (TIE) provides emulated support for H_floating data in
translated images.

Selecting a Migration Method 2–13

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

• D_floating, G_floating, F_floating

Each VAX floating data type is converted to an equivalent IEEE value before
performing the requested operation. Because of slight differences in range
and accuracy, the exact answer might differ slightly from VAX.

Eliminating the Problem
To eliminate data type problems, you can use one or more of the following
methods:

• Instead of D_floating, F_floating, G_floating or H_floating, use IEEE
S_floating or IEEE T_floating whenever possible.

• Instead of decimal data types, use integer data types whenever possible.

For more information about I64 data types, see Chapter 7. Specifically,
Section 7.2 discusses how to check for dependence on a VAX data type.

For more information about floating-point data types, see the white paper
‘‘OpenVMS Floating-Point Arithmetic on the Intel® Itanium® Architecture’’.
The Preface of this manual provides the Web location of this white paper.

2.6.4 Shared Access to Data
An atomic operation is one in which:

• Intermediate or partial results cannot be seen by other processors or devices.

• The operation cannot be interrupted (that is, once started, the operation
continues until completion).

On OpenVMS I64, any operation that reads, modifies, and stores data in memory
is broken into several instructions and can be interrupted between any of those
instructions. As a result, if your application modifies data in shared memory
atomically, you must take steps to guarantee the atomicity of the operation.

An application can depend on the atomicity of operations under any of the
following conditions:

• An AST routine within the process shares data with the mainline code.

• The process shares data in a writable global section with another process
that executes on the same CPU (that is, in a uniprocessor system).

• The process shares data in a writable global section with another process
that might execute concurrently on another CPU (that is, in a multiprocessor
system).

Finding the Problem
To find dependencies on atomicity, reexamine use of shared variables (writable
items accessed by multiple threads of execution) for hidden or explicit
assumptions of atomicity.

Eliminating the Problem
To eliminate general problems of instruction atomicity, you can use one or more of
the following methods:

• Use language constructs, where available, that guarantee atomicity to protect
shared variables, for example, in C, use the VOLATILE declaration.

• Use explicit synchronization rather than relying on assumptions of
atomicity.

• Use OpenVMS locking services (such as $ENQ and $DEQ) or LIB$ routines.

2–14 Selecting a Migration Method

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

• To synchronize with an AST thread, use the $SETAST system service in
the mainline code to block the AST, and then reenable delivery after the
instruction has completed.

For more information about synchronization, see Chapter 6.

2.6.5 Page Size Considerations
Page size governs the amount of virtual memory allocated by memory
management routines and system services. For example, in mixed-architecture
OpenVMS Cluster systems, your application might determine the size of certain
data buffers based on the VAX page size. Page size is also the basis on which
protection is assigned to code and data in memory.

The OpenVMS VAX operating system allocates memory in multiples of 512 bytes.
The page sizes on I64 depend upon SYSGEN parameter settings, not hardware
platform characteristics. Note that this is a run-time setting and that the value
can change from one boot to the next.

Page size is a factor in the management of system resources, such as working
set quotas. In addition, memory protection on VAX systems can vary for each
512-byte region of memory; on I64 systems, the granularity of memory protection
is much larger, depending on the system’s page-size implementation.

Note

The change to a larger page size affects only applications that explicitly
rely on a 512-byte page size. Examples of such applications are those
that:

• Use "512" to:

– Compute memory usage.

– Calculate page table requirements.

• Change protection on a 512-byte granularity.

• Use the system service Create and Map Section ($CRMPSC) to map a
file into a specific location in the process address space (for example,
to reuse memory when available memory is limited).

Finding the Problem
To find uses of the VAX page size, identify code that manipulates virtual memory
in 512-byte chunks or relies on 512-byte memory protection granularity. Search
your code for occurrences of numbers such as the decimal values 511, 512, or 513;
the hexadecimal values 1FF, 200, or 201; and so forth.

Eliminating the Problem
To eliminate conflicts between the VAX and I64 page sizes, you can use one or
more of the following methods:

• Change hardcoded page size references to symbolic values (assigned at run
time using a call to $GETSYI).

• Reevaluate code that assumes that page size and disk (file) block size are
equal. On I64 systems, this assumption is not correct.

Selecting a Migration Method 2–15

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

• Do not depend on being able to use memory-management-related system
services (for example, $CRMPSC, $MGBLSC) to map a file into a fixed, page-
size-dependent range of addresses (global section). Instead consider using the
SEC$M_EXPREG flag.

For more information about page size, see Chapter 5.

2.6.6 Order of Read/Write Operations on Multiprocessor Systems
The VAX architecture specifies that if a processor in a multiprocessing system
writes multiple data items to memory, these items are written to memory in the
order specified. This ordering ensures that the writes become visible to other
CPUs in the order in which they were specified by the program and I/O devices.

This guarantee limits the performance optimization that the system can
make. It also makes caches more complex and limits the optimization of cache
performance.

To benefit overall system performance, Integrity server systems, as well as other
EPIC systems, can reorder reads and writes to memory. Therefore, writes to
memory can become visible to other CPUs in the system in an order different
from that in which they were issued.

Note

This section is relevant only to multiprocessor systems. On a uniprocessor
system, all memory accesses are completed in the order in which the
program requested them.

Finding the Problem
To find instances of reliance on read/write ordering for applications that may
execute on multiprocessor systems, identify algorithms that depend upon the
order in which data is written; for example, use of flag-passing protocols for
synchronization.

Eliminating the Problem
To eliminate problems with the ordering of read and write operations, you can
use one or more of the following methods:

• Instead of flag-passing protocols, use system-supplied routines for
synchronization, such as the OpenVMS locking system services ($ENQ,
$DEQ).

• The Intel Itanium architecture specifies a memory fence instruction, which
causes the hardware to complete all previous memory reads and writes
before performing reads and writes following the barrier. Some I64 languages
provide a way of inserting this instruction, but its use degrades performance.

For more information about synchronization, see Chapter 6.

2.6.7 Explicit Reliance on the VAX Procedure Calling Standard
The OpenVMS Calling Standard specifies significantly different calling
conventions for I64 programs than for VAX programs. Application programs
that depend explicitly on certain details of the VAX procedure calling conventions
must be modified to run as native code on an I64 system. Such dependencies
include:

2–16 Selecting a Migration Method

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

• Code that locates the placement of arguments relative to the argument
pointer (AP)

In many cases, however, the VAX MACRO–32 Compiler for OpenVMS I64
compensates for this.

• Code that modifies its return address on the stack

• Code that interprets the contents of a call frame

Both VAX and I64 compilers provide techniques for accessing procedure
arguments. If your code uses these standard mechanisms, you can simply
recompile it to run correctly on an I64 system. If your code does not use these
mechanisms, you must rewrite it so that it does. For a description of these
standard mechanisms, see the HP OpenVMS Calling Standard.

Translated code mimics the behavior of VAX procedure calling. Images that
contain the dependencies listed here execute properly under translation on an I64
system.

2.6.8 Explicit Reliance on VAX Exception-Handling Mechanisms
The mechanics of exception handling differ between VAX and Integrity server
systems. Chapter 8 discusses the differences in how arithmetic exceptions
are dispatched on VAX and Integrity systems. This section focuses on the
mechanisms by which code dynamically establishes a condition handler and by
which a condition handler accesses the exception state.

2.6.8.1 Establishing a Dynamic Condition Handler
VAX systems provide a number of ways in which an application can establish
a condition handler dynamically at run time. The OpenVMS Calling Standard
facilitates this operation for VAX programs by providing a space at the top of a
call frame in which executing code can place the address of a condition handler
that is to service exceptions that occur in the context of that frame. However, the
OpenVMS Calling Standard provides no such writable area for I64 procedures.

For instance, a VAX MACRO program might use the following instruction
sequence to move the address of a condition handler into a call frame:

MOVAB HANDLER,(FP)

The MACRO–32 Compiler for OpenVMS I64 parses this statement and generates
appropriate I64 assembly language code that results in the establishment of the
condition handler. For more information, see the HP OpenVMS MACRO Compiler
Porting and User’s Guide.

Note

On VAX systems, the run-time library routine LIB$ESTABLISH and
its counterpart LIB$REVERT allow an application to establish and
disestablish a condition handler for the current frame. These routines
do not exist on I64 systems; however, compilers might handle these calls
properly (such as with Fortran intrinsic functions). For more precise
information, see Chapter 9 and the documentation for the compilers
relevant to your application.

Translated code mimics the VAX mechanism for dynamically establishing a
condition handler.

Selecting a Migration Method 2–17

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

Certain I64 compilers provide a language-specific mechanism to establish a
dynamic condition handler.

For more information about condition handlers, see Chapter 8.

2.6.8.2 Accessing Data in the Signal and Mechanism Arrays
During exception processing, both VAX and I64 systems push the exception
processor status, an exception PC, a signal array, and a mechanism array onto
the stack.

Both the signal array and mechanism array have different contents on VAX
and I64 systems; the mechanism array also has different formats on the two
platforms. To work properly in either system, a condition handler that accesses
data in either the signal array or the mechanism array must use the appropriate
CHF$ symbols rather than hardcoded offsets. For descriptions of the appropriate
CHF$ symbols, see the HP OpenVMS Programming Concepts Manual.

Note

The condition handler cannot successfully locate information in the
mechanism array by using hardcoded offsets from AP.

2.6.9 Modification of the VAX AST Parameter List
OpenVMS VAX passes five longword arguments to an AST service routine. AST
service routines written in VAX MACRO access this information by using offsets
from the argument pointer (AP). OpenVMS VAX allows an AST service routine
to modify any of these arguments, including the saved registers and the return
PC. These modifications can then affect the interrupted program once the AST
routine returns.

Although the AST parameter list on I64 systems also consists of five parameters,
the only argument directly intended for the AST procedure is the AST parameter.
Although the other arguments are present, they are not used after the AST
procedure exits. Because modifying them has no effect on the thread of operation
to be resumed at AST exit, a program that relies on such an effect must be
changed to use more conventional argument-passing mechanisms to run on an
I64 system.

2.6.10 Explicit Dependency on the Form and Behavior of VAX Instructions
Programs that rely specifically on the execution behavior of VAX MACRO
instructions or on binary encoding of VAX instructions must be modified before
being recompiled or relinked to run as native code on an I64 system.

For example, the following coding practices do not work on I64 systems:

• In VAX MACRO, embedding a block of VAX instructions in a program data
area, and modifying a PC to transfer control to this code block

• Examining condition codes or other information in the processor status
longword (PSL)

For more information about migrating VAX MACRO code, see the HP OpenVMS
MACRO Compiler Porting and User’s Guide.

2–18 Selecting a Migration Method

Selecting a Migration Method
2.6 Identifying Dependencies on the VAX Architecture in Your Application

2.6.11 Generation of VAX Instructions at Run Time
Creating and executing conventional VAX instructions do not work in native I64
mode. VAX instructions created at run time execute by emulation in a translated
image.

For more information about code that generates specific VAX instructions at run
time, see the HP OpenVMS MACRO Compiler Porting and User’s Guide.

2.7 Identifying Incompatibilities Between VAX and I64 Systems
To identify architectural incompatibilities in a module of your application, start
by doing a test compile of the module using the I64 compiler. For information
about diagnostic compiler switches, see your language processor documentation.

Many modules compile and run with no errors. If errors occur, you might have to
revise the module.

The HP compilers can produce messages that are useful for identifying porting
problems. For example, the MACRO–32 compiler provides the /FLAG qualifier
with several options. Depending on which options you include, the compiler
reports all unaligned stack and memory references, any run-time code generation
(such as self-modifying code), branches between routines, and several other
conditions.

The HP Fortran compiler qualifier, /CHECK, produces messages about any of the
various options you specify.

Note

Even if a module runs without error in isolation, latent synchronization
problems might be present that will be detected only when the module is
run together with other parts of the application.

If a module does not run without error after being recompiled and relinked,
you can use the following methods to assess what must be revised to make the
program run well on an I64 system:

• Examining the source code

A code review at this point can avoid many difficulties in the migration
process and save a great deal of time and effort in the later stages of
migration. To examine your code, use the checklist in Appendix A, and
the guidelines in Chapter 4. These migration issues are summarized in
Section 2.5.

If a direct code review of your entire application is not practical, an automated
search can still be useful, for example, you can use a combination of the DCL
SEARCH command and an editor to locate and tabulate instances of
architectural dependencies.

• Using messages generated by the compiler in your initial test run

Compilers give you information about the following:

– Differences between VAX and I64 compilers

– Data alignment
Specific compilers might also identify other differences between the VAX and
Intel Itanium architectures.

Selecting a Migration Method 2–19

Selecting a Migration Method
2.7 Identifying Incompatibilities Between VAX and I64 Systems

• Analyzing the image using VEST

Even if you intend to recompile and relink a program, you can use VEST
as an analysis tool. It can provide a great deal of useful information about
changes that can make your program run most efficiently on an I64 system.
For example, VEST can help identify the following problems:

– Static unaligned data (data declarations, including unaligned fields in
data structures) and unaligned stack operations

– Floating-point references (H_floating and D_floating)

– Packed decimal references

– Privileged code

– Nonstandard coding practice

– References to OpenVMS data or code other than by using system
services

– Uninitialized variables

– Certain synchronization issues, such as multiprocess use of interlocked
instructions

VEST cannot identify some problems, including:

– Unaligned variables (in data structures created dynamically)

– Most synchronization issues

• Running the image using the PCA (Performance and Coverage Analyzer)

The PCA can point out the following issues:

– Run-time alignment faults

– Which sections of the application are executed most frequently and,
hence, are critical to performance

Once all the images of the application run without errors on the I64 system, you
must combine the rebuilt images to test for problems of synchronization between
images. For more information about testing, see Section 3.5.

2–20 Selecting a Migration Method

3
Migrating Your Application

Actually migrating your application to an OpenVMS I64 system involves several
steps:

1. Setting up the migration environment

2. Testing the application on a VAX system to establish baselines for evaluating
the migration

3. Converting the application to run on an I64 system

4. Debugging and testing the migrated application

5. Integrating the migrated application into a software system

6. Modifying certain types of code

3.1 Setting Up the Migration Environment
The native I64 environment is a complete development environment equivalent
to that on VAX systems. You must compile, link, debug and test a migrated
application on the Integrity server system.

An important element of the I64 migration environment is support from HP,
which can provide help in modifying, debugging, and testing your application.

3.1.1 Hardware
You should consider several issues when you plan what hardware you need for
your migration. To begin, consider what resources are required in your normal
VAX development environment:

• CPUs

• Disks

• Memory

To estimate the resources needed for an I64 migration environment, consider the
following issues:

• Greater image size on I64 systems

Compare VAX and I64 compiled and translated images.

• Greater page size and physical memory size on I64 systems

• CPU requirements

Translating a VAX image to run on an Integrity server tends to use a lot of
CPU time. (It is difficult to predict how much; it depends more on application
complexity than on size.) The image translators also need a great deal of disk
space for log files, for an Alpha image if you request one, for flowgraphs, and so
on. The new image includes the original VAX instructions, the translated Alpha

Migrating Your Application 3–1

Migrating Your Application
3.1 Setting Up the Migration Environment

instructions, and the new Itanium instructions, so it is always larger than the
VAX image.

A suggested configuration consists of:

• 6 VUP multiprocessing system with 256 MB of memory

• 1 GB system disk

• 1 GB disk per application

In a multiprocessing system, each processor should be able to support the image
analysis of a separate application.

If computer resources are scarce, HP suggests that you do one or more of the
following:

• Run compilers or VEST as a batch job at off-peak hours.

• Lease additional equipment for the migration effort.

3.1.2 Software
To create an efficient migration environment, check the following elements:

• Migration tools

You need a compatible set of migration tools, including the following:

– Compilers

– Translation tools

– VEST for translating a VAX image to Alpha

– HP OpenVMS Migration Software for Alpha to Integrity Servers
(OSMAIS)

– RTLs

– System libraries

– Include files for C programs

• Compile and link procedures

These procedures may need to be adjusted for new tools and the new
environment.

• Test tools

You need to port the OpenVMS VAX test tools to OpenVMS I64, unless they
are already ported. You also need test tools that are designed to test your
application for behaviors that are unique to the OpenVMS I64 platform. Test
tools for Alpha might also be necessary, because if you translate first from
VAX to Alpha and then to I64, you might need to verify that the first step was
successful.

• Tools for maintaining sources and building images, such as:

– CMS (Code Management System)

– MMS (Module Management System)

3–2 Migrating Your Application

Migrating Your Application
3.1 Setting Up the Migration Environment

Translation
The software translator OSMAIS runs on both Alpha and I64 systems. TIE,
which is required to run a translated image, is part of OpenVMS I64, so final
testing of a translated image must either be done either on an I64 system or at
an I64 Migration Center.

3.2 Converting Your Application
If you have thoroughly analyzed your code and planned the migration process,
this final stage should be straightforward. You might be able to recompile or
translate many programs with no change. Programs that do not recompile or
translate directly usually need only straightforward changes in order to run on
an I64 system.

For more detailed information about the actual conversion of your code, see the
following OpenVMS I64 migration documentation:

• OpenVMS Migration Software for VAX to Alpha Systems: Translating Images

• HP OpenVMS MACRO Compiler Porting and User’s Guide

• HP OpenVMS Migration Software for Alpha to Integrity Servers: Guide to
Translating Images

For descriptions of these books, see the Preface of this manual.

3.2.1 Recompiling and Relinking
In general, migrating your application involves repeated cycles of revising,
compiling, linking, and debugging your code. During the process, you resolve all
syntax and logic errors noted by the development tools. Syntax errors are usually
simple to fix; logic errors typically require significant modifications to your code.

Over time, changes occur in both language standards and compiler quality.
Depending upon the portability of your code, you might encounter compiler
messages that indicate stricter adherence to standards or other quality
improvements. The more portable your code is, the fewer messages you are
likely to encounter.

Your compile and link commands require some changes, such as new compiler
and linker switches. For example, to allow portability among different versions of
OpenVMS I64, the linker default page size is 64 KB, which allows OpenVMS I64
images to run on systems with a default page size of up to 64 KB.

Several native compilers and other tools are available for software development
and migration on I64 systems.

3.2.1.1 Native I64 Compilers
Recompiling and relinking an existing VAX source produces a native I64 image
that executes within the I64 environment with all the performance advantages
of the Intel Itanium architecture. For I64 code, HP is using a series of highly
optimizing compilers.

For OpenVMS I64, native I64 compilers are available for the following languages:

• GNAT Pro Ada1

• BASIC

1 GNAT Pro, available from Ada Core Technologies, is the recommended Ada 95 compiler
for OpenVMS I64. See Chapter 9 for more information.

Migrating Your Application 3–3

Migrating Your Application
3.2 Converting Your Application

• BLISS (available on the Freeware CD)

• C

• C++

• COBOL

• Fortran

• MACRO–32

• Pascal

Most VAX user-mode programs that are written in any other language1 can be
run on an I64 system by translating them with VEST and OSMAI. Compilers for
other languages might be available through third-party vendors.

In general, the I64 compilers provide command-line qualifiers and language
semantics to allow code with dependencies on the VAX architecture to run on an
I64 system with little modification. For a list of such dependencies, see Table 2–2.

Some compilers on OpenVMS I64 systems support new features not supported
by their counterparts on OpenVMS VAX systems. To provide compatibility, some
compilers support compatibility modes. For example, the HP C compiler for
OpenVMS I64 systems supports a VAX C compatibility mode that is invoked by
specifying the /STANDARD=VAXC qualifier.

In some cases, the compatibility is limited. For example, VAX C implements
built-in functions that allow access to special VAX hardware features. Since the
hardware architecture of VAX computers differs from that of Integrity servers,
these built-ins are not available in HP C for OpenVMS I64 systems, even when
the /STANDARD=VAXC qualifier is used.

The compilers can also compensate for some architectural dependencies that exist
in your code. For example, the MACRO–32 compiler provides the /PRESERVE
qualifier that can preserve granularity or atomicity, or both.

The HP C compiler provides a header file that defines typedefs for each data type.
These typedefs map a generic datatype name, such as int64, to the machine-
specific datatype, such as _ _int64. For example, if you must have a datatype that
is 64 bits long, use the int64 typedef.

Review the documentation for your compiler to become familiar with all its
features that support portability.

Chapter 9 describes in greater detail the process of using I64 compilers to migrate
OpenVMS VAX programs to an OpenVMS I64 system.

3.2.1.2 VAX MACRO–32 Compiler for OpenVMS I64
The VAX MACRO–32 Compiler for OpenVMS I64 is used to convert existing
VAX MACRO code into machine code that runs on OpenVMS I64 systems. It is
included with OpenVMS I64 for that purpose.

While some VAX MACRO code can be compiled without any changes, most code
modules require the addition of entry point directives. Many code modules
require other changes as well.

1 PL/I programs cannot be translated.

3–4 Migrating Your Application

Migrating Your Application
3.2 Converting Your Application

Note

The MACRO–32 compiler attempts to call LIB$ESTABLISH if it is
contained in the source code.

If MACRO–32 programs establish dynamic handlers by storing a routine
address at 0(FP), they work correctly when compiled on an OpenVMS
I64 system. However, you cannot set the condition handler address from
within a JSB (Jump to Subroutine) routine; you can do so only from
within a CALL_ENTRY routine.

The compiler generates code that is optimized for OpenVMS I64 systems, but
many features of the VAX MACRO language that provide the programmer with a
high level of control make it more difficult to generate optimal code for OpenVMS
I64 systems. For new program development for OpenVMS I64, HP recommends
the use of mid-level and high-level languages. For more information on the
MACRO–32 compiler, see HP OpenVMS MACRO Compiler Porting and User’s
Guide.

3.2.1.3 I64 Development Tools
Several tools in addition to the compilers are available to develop, debug, and
deploy native I64 applications. Table 3–1 summarizes these tools.

Table 3–1 OpenVMS Development Tools

Tool Description

OpenVMS Linker The OpenVMS Linker accepts I64 object files to
produce an I64 image. For more information about
the OpenVMS Linker, see Chapter 4.

OpenVMS DEBUG OpenVMS DEBUG on OpenVMS I64 is a symbolic,
source-level debugger with several graphical interfaces.
It is designed for debugging user-mode applications and
has the same commands and interfaces as on OpenVMS
VAX. For more information about OpenVMS DEBUG,
see the HP OpenVMS Debugger Manual.

DELTA Debugger The DELTA debugger on OpenVMS I64 is a
nonsymbolic, instruction-level debugger for debugging
process-based applications that run in an elevated mode
(supervisor, executive, or kernel). For more information,
see the HP OpenVMS Delta/XDelta Debugger Manual.

System Code Debugger (SCD) SCD is a graphical, symbolic, source-level debugger for
debugging operating system and device driver code.
For more information, see the HP OpenVMS System
Analysis Tools Manual.

XDelta Debugger The XDelta debugger is a nonsymbolic debugger that is
used for debugging operating system and device driver
code. For more information on XDELTA on OpenVMS
I64, see the HP OpenVMS Delta/XDelta Debugger
Manual.

OpenVMS Librarian utility The OpenVMS Librarian utility creates I64 libraries.

(continued on next page)

Migrating Your Application 3–5

Migrating Your Application
3.2 Converting Your Application

Table 3–1 (Cont.) OpenVMS Development Tools

Tool Description

OpenVMS Message utility The OpenVMS Message utility allows you to supplement
the OpenVMS system messages with your own
messages.

IAS (Itanium Assembler) The IAS assembler for OpenVMS I64 systems is the
native assembler for Intel Itanium processors. This
assembler is not bundled with the operating system but
is included on the Open Source CDs that are shipped
with the OpenVMS I64 distribution.

ANALYZE/IMAGE The Analyze/Image utility can analyze I64 images.

ANALYZE/OBJECT The Analyze/Object utility can analyze I64 objects.

DECset DECset, a comprehensive set of development tools,
includes the Language Sensitive Editor (LSE), the
Digital Test Manager (DTM), Code Management System
(CMS), and Module Management System (MMS).

Command Definition utility The Command Definition utility (CDU) enables
application developers to create DCL commands.

System Dump Analyzer (SDA) SDA has been extended to display information specific
to OpenVMS I64 systems.

Crash Log Utility Extractor
(CLUE)

CLUE is a tool for recording a history of crash dumps
and key parameters for each crash dump, and for
extracting and summarizing key information.

3.2.2 Translating
The process of translating a VAX image to run on an I64 system is described in
detail in OpenVMS Migration Software for VAX to Alpha Systems: Translating
Images and HP OpenVMS Migration Software for Alpha to Integrity Servers:
Guide to Translating Images.

3.3 Analyzing System Crashes
OpenVMS provides two tools for analyzing system crashes: the System Dump
Analyzer and the Crash Log Utility Extractor.

3.3.1 System Dump Analyzer
The System Dump Analyzer (SDA) utility on OpenVMS I64 systems is almost
identical to the utility provided on OpenVMS VAX systems. Many commands,
qualifiers, and displays are identical, and some additional commands and
qualifiers are available, including several for accessing functions of the Crash Log
Utility Extractor (CLUE) utility. Some displays are adapted to show information
specific to OpenVMS I64 systems, such as processor registers and data structures.

While the SDA interface has changed only slightly, the contents of VAX and
I64 dump files and the entire process of analyzing a system crash from a dump
differ significantly between the two systems. The I64 execution paths leave more
complex structures and patterns on the stack than VAX execution paths do.

To use SDA on a VAX computer, you must first familiarize yourself with the
OpenVMS Calling Standard for VAX systems. Similarly, to use SDA on an I64
system, you must familiarize yourself with the OpenVMS Calling Standard for
I64 systems before you can decipher the pattern of a crash on the stack.

3–6 Migrating Your Application

Migrating Your Application
3.3 Analyzing System Crashes

The changes to SDA include the following:

The displays of the SHOW CRASH and SHOW STACK commands contain
additional information that simplify debugging of fatal system exception
bugchecks.

The SHOW EXEC command display includes additional information about
executive images if they were loaded using image slicing. Slicing is a
function performed by the executive image loader for executive images and by
the OpenVMS Install utility for user-mode images. Slicing an executive image
(or a user-mode image) greatly improves performance by reducing contention
for the limited number of translation buffer entries.

The MAP command, a new SDA command, enables you to map an address in
memory to an image offset in a map file.

A new symbol, FPCR, has been added to the symbol table. This symbol
represents a floating-point register.

3.3.2 Crash Log Utility Extractor
The Crash Log Utility Extractor (CLUE) is a tool for recording a history of
crash dumps and key parameters for each crash dump and for extracting and
summarizing key information. Unlike crash dumps, which are overwritten
with each system crash and are available only for the most recent crash, the
crash history file (on OpenVMS VAX) and the summary crash history file with a
separate listing file for each crash (on OpenVMS I64) are permanent records of
system crashes.

Table 3–2 shows the implementation differences between OpenVMS VAX and
OpenVMS I64.

Table 3–2 CLUE Differences Between OpenVMS VAX and OpenVMS I64

Attribute OpenVMS VAX OpenVMS I64

Access method Invoked as a separate utility. Accessed through SDA.

History file A cumulative file that contains a
one-line summary and detailed
information from the crash dump
file for each crash.

A cumulative file that contains only
a one-line summary for each crash
dump. The detailed information
for each crash is put in a separate
listing file.

Uses in addition
to debugging
crash dumps

None. CLUE commands can be used
interactively to examine a running
system.

3.4 Testing Applications on VAX for Baseline Information
The first step in testing is to establish baseline values for your application by
running your test suite on the VAX application. You can do this before or after
you port your application to I64. You can then compare the results of these tests
with the results of similar tests on an I64 system.

Migrating Your Application 3–7

Migrating Your Application
3.5 Testing the Migrated Application

3.5 Testing the Migrated Application
You must test your application to compare the functionality of the migrated
version with that of the VAX version.

The first step in testing is to establish baseline values for your application by
running your test suite on the VAX application, as described in Section 3.5.

Once your application is running on an I64 system, you should apply two types of
tests:

• Standard tests used for the VAX version of the application

• New tests to check specifically for problems resulting from the change in
architecture

3.5.1 VAX Tests Ported to I64
Because the changes in your application are combined with use of a new
architecture, testing your application after it is migrated to OpenVMS I64 is
particularly important. Not only can the changes introduce errors into the
application, but the new environment can bring out latent problems in the VAX
version.

Testing your migrated application involves the following steps:

1. Get a complete set of standard data for the application prior to the migration.

2. Migrate your VAX test suite along with the application (if the tests are not
already available on I64).

3. Validate the test suite on an I64 system.

4. Run the migrated tests on the migrated application.

Both regression tests and stress tests are useful here. Stress tests are important
to test for platform differences in synchronization, particularly for applications
that use multiple threads of execution.

3.5.2 New I64 Tests
Although your standard tests are extremely helpful in verifying the function of
the migrated application, you should add some tests that look at issues specific to
the migration. Points to focus on include the following:

• Compiler differences

• Architectural differences

• Integration, such as modules written in different languages

3.5.3 Uncovering Latent Bugs
Despite your best efforts, you might encounter bugs that were in your program
all along but that never caused a problem on an OpenVMS VAX system.

For example, failure to initialize some variable in your program might have
been benign on a VAX system but can produce an arithmetic exception on an I64
system. The same can be true of moving between any other two architectures,
because the available instructions and the way compilers optimize them is bound
to change. There is no magic answer for "hidden" bugs, but you should test your
programs after porting them and before making them available to other users.

3–8 Migrating Your Application

Migrating Your Application
3.6 Integrating the Migrated Application into a Software System

3.6 Integrating the Migrated Application into a Software System
After you migrate your application by recompiling or translating it, check for
problems that are caused by interactions with other software and that might
have been introduced during the migration.

Sources of problems in interoperability can include the following:

• I64 and VAX systems within an OpenVMS Cluster environment must use
separate system disks. You must make sure that your application refers to
the appropriate system disk.

• In a mixed-architecture environment, be sure that your application refers to
the correct version of image names.

– Native VAX and native I64 versions of an image must have the same
name.

– Translated versions of VAX images must have the suffix "_TV_AV" added
to their names. Translated versions of Alpha images must have the suffix
"_AV" added to their names.

• Recompiled images expect naturally aligned data, while translated images
have VAX aligned data, which might not be I64 aligned data.

3.7 Modifying Certain Types of Code
The following coding practices and types of code require changes to be run on I64
systems:

• Code that has been conditionalized to run on Alpha or VAX systems

• Code that uses OpenVMS system services that have dependencies on the VAX
architecture.

• Code with other dependencies on the VAX architecture

• Code that uses floating-point data types

• Code that uses a command definition file

• Code that uses threads, especially custom-written tasking or stack switching

• Privileged code

3.7.1 Conditionalized Code
This section describes how to conditionalize OpenVMS code for migration to I64.
This code will be compiled for both VAX and I64, or for VAX, Alpha, and I64.
The symbol ALPHA is new, although the symbol EVAX has not been eliminated.
You do not need to replace EVAX with ALPHA but you can if you want. The
architecture symbols available for MACRO and BLISS are VAX, EVAX, ALPHA,
and I64.

3.7.1.1 MACRO Sources
For MACRO-32 source files, the architecture symbols are in ARCH_DEFS.MAR,
which is a prefix file specified on the command line. On VAX systems, VAX equals
1 while Alpha, EVAX and I64 are undefined. On I64 systems, I64 equals 1 and
VAX, EVAX, and ALPHA are undefined.

The following example show how to conditionalize MACRO-32 source code so that
it can run on both VAX and I64 systems.

Migrating Your Application 3–9

Migrating Your Application
3.7 Modifying Certain Types of Code

For Alpha-specific code:

.IF DF VAX
.
.
.

.ENDC

For I64-specific code:

.IF DF I64
.
.
.

.ENDC

3.7.1.2 BLISS Sources
For BLISS source files, either BLISS-32 or BLISS-64, the macros VAX, EVAX,
ALPHA and I64 are defined in ARCH_DEFS.REQ. On VAX, VAX equals 1 while
Alpha, EVAX and I64 are undefined. On I64, I64 equals 1 while VAX, EVAX, and
ALPHA equal 0. You must require ARCH_DEFS.REQ to use these symbols in
BLISS conditionals.

Note

The constructs %BLISS(xxx), %TARGET(xxx), and %HOST(xxx) are not
recommended. You do not need to replace them, but you can if you want.

Include the following statement in your source file:

REQUIRE ’SYS$LIBRARY:ARCH_DEFS’;

Use the following statements in your source file to conditionalize code so that it
can run on both VAX and I64 systems.

For VAX-specific code:

%if VAX %then
.
.
.

%fi

For I64-specific code:

%if I64 %then
.
.
.

%fi

3.7.1.3 C Sources
For C source files, the symbols _ _vax, _ _VAX, _ _ia64, and _ _ia64_ _ are provided
by the compilers on the appropriate platforms. Note that symbols could be defined
on the compile command line but that is not the recommended method, nor is
using arch_defs.h. Using #ifdef is considered the standard C programming
practice.

3–10 Migrating Your Application

Migrating Your Application
3.7 Modifying Certain Types of Code

For VAX-specific code, use the following:

#ifdef __vax
.
.
.

#endif

For I64-specific code, use the following:

#ifdef __ia64
.
.
.

#endif

3.7.1.4 Existing Conditionalized Code
You must examine existing conditionalized code to determine whether changes
are required. Here is an example of BLISS code to consider:

%IF VAX %THEN
vvv
vvv

%FI

%IF EVAX %THEN
aaa
aaa

%FI

If the code is truly architecture specific and you are adding I64 code, then you
would add the following case:

%IF I64 %THEN
iii
iii

%FI

However, if the existing VAX/EVAX conditionals reflect 32 bits and not 64
bits or an ‘‘old’’ versus ‘‘new’’ OpenVMS convention (for example, a promoted
data structure or different routine to call), then the following method for
conditionalizing code might be more appropriate. The reason is because Alpha
and I64 code are the same and 64-bit code need to be distinguished from the VAX
code.

%IF VAX %THEN
vvv
vvv

%ELSE
aaa
aaa

%FI

3.7.2 System Services with VAX Architecture Dependencies
Certain system services that work well in applications on OpenVMS VAX do not
port successfully to I64. The following sections describe these system services and
their replacement services.

Migrating Your Application 3–11

Migrating Your Application
3.7 Modifying Certain Types of Code

3.7.2.1 SYS$GOTO_UNWIND
For OpenVMS VAX, the SYS$GOTO_UNWIND system service accepts a 32-
bit invocation context handle by reference. You must change instances of this
system service to SYS$GOTO_UNWIND_64, which accepts a 64-bit invocation
context. Make sure to alter source code to allocate space for the 64-bit value.
Also, different library routines return invocation context handles for OpenVMS
I64. For more information, refer to the HP OpenVMS Calling Standard.

The SYS$GOTO_UNWIND service is used most frequently to support
programming language features, so changes are mostly in compilers or run-time
libraries. However, any direct use of SYS$GOTO_UNWIND requires change.

3.7.2.2 SYS$LKWSET and SYS$LKWSET_64
The SYS$LKWSET and SYS$LKWSET_64 system services have been modified.
For more information, see Section 3.7.9.

3.7.3 Code with Other Dependencies on the VAX Architecture
This section describes coding practices on VAX that produce different results on
I64 and might require changes to your application.

3.7.3.1 Initialized Overlaid Program Sections
Initialized overlaid program sections are handled differently on I64 systems. On
OpenVMS VAX systems, different portions of an overlaid program section might
be initialized by multiple modules. This practice is not allowed on OpenVMS I64
systems.

3.7.3.2 Condition Handler Use of SS$_HPARITH
On OpenVMS VAX, the SS$_HPARITH system services or "error code" is signaled
for a number of arithmetic error conditions. On OpenVMS I64, SS$_HPARITH
is never signaled for arithmetic error conditions; instead, the more specialized
SS$_FLTINV and SS$_FLTDIV error codes are signaled on OpenVMS I64.

Update condition handlers to detect these more specialized error codes. In
order to keep code common for both architectures, wherever the code refers to
SS$_HPARITH, extend it for OpenVMS I64 to also consider SS$_FLTINV and
SS$_FLTDIV.

3.7.3.3 Mechanism Array Data Structure
The mechanism array data structure on OpenVMS I64 is very different from the
one on OpenVMS VAX. The return status code RETVAL has been extended to
represent the return status register on both Alpha and I64 platforms. For more
information, refer to the HP OpenVMS Calling Standard.

3.7.3.4 Reliance on VAX Object File Format
If your code relies on the layout of VAX object files, you must modify it, because
the object file format produced on OpenVMS I64 systems is different.

The object file format conforms to the 64-bit version of the executable and linkable
format (ELF), as described in the System V Application Binary Interface draft of
24 April 2001. This document, published by Caldera, is available on their Web
site at:

http://www.caldera.com/developers/gabi

3–12 Migrating Your Application

Migrating Your Application
3.7 Modifying Certain Types of Code

The object file format also conforms to the I64 specific extensions described in
the Intel® Itanium® Processor-specific Application Binary Interface (ABI), May
2001 edition (document number 245270-003). Extensions and restrictions that
are necessary to support object file and image file features that are specific to the
OpenVMS operating system will be published in a future release.

The portion of an image which is used by the debugger conforms to the DWARF
Version 3 industry standard, which is available at:

http://www.eagercon.com/dwarf/dwarf3std.htm

The debug symbol table representation on OpenVMS I64 is the industry-standard
DWARF debug symbol table format described at this location. HP extensions to
the DWARF Version 3 format will be published in a future release.

3.7.4 Code That Uses Floating-Point Data Types
OpenVMS VAX supports VAX floating-point data types in hardware. OpenVMS
I64 supports IEEE floating-point in hardware and VAX floating-point data types
in software.

Most of the OpenVMS I64 compilers provide the /FLOAT=D_FLOAT and
/FLOAT=G_FLOAT qualifiers to enable you to produce VAX floating-point data
types. If you do not specify one of these qualifiers, IEEE floating-point data types
are used.

To specify a default floating-point data types using the I64 BASIC compiler, use
the /REAL_SIZE qualifer. The possible values that can be specified are SINGLE
(Ffloat), DOUBLE (Dfloat), GFLOAT, SFLOAT, TFLOAT, and XFLOAT.

When you compile an OpenVMS application that specifies an option to use
VAX floating-point on I64, the compiler automatically generates code for
converting floating-point formats. Whenever the application performs a sequence
of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats, as appropriate for the length.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by
stores), conversions do not occur. The code handles such situations as moves.

In a few cases, arithmetic calculations might have different results because of the
following differences between VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for certain applications.

For more information about the differences between floating-point data types on
OpenVMS VAX and OpenVMS I64 and how these differences might affect ported
applications, see Chapter 9 and refer to the ‘‘OpenVMS Floating-Point Arithmetic
on the Intel® Itanium® Architecture’’ white paper. See the Related Documents
section in the Preface for the Web location of this white paper.

Migrating Your Application 3–13

Migrating Your Application
3.7 Modifying Certain Types of Code

Note

Since the floating-point white paper was written, the default /IEEE_
MODE has changed from FAST to DENORM_RESULTS. This means
that, by default, floating-point operations might silently generate values
that print as Infinity or Nan (the industry-standard behavior) instead
of issuing a fatal run-time error as they would using VAX format float
or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in
this mode is much smaller because results are permitted to enter the
denormal range instead of being flushed to zero as soon as the value is too
small to represent with normalization. This default is the same default
established by I64 at process startup.

3.7.4.1 LIB$WAIT Problem and Solution
The use of LIB$WAIT system service in code ported to OpenVMS I64 can cause
unexpected results, as shown in the following C example:

float wait_time = 2.0;
lib$wait(&wait_time);

On OpenVMS I64 systems, this code sends an S_FLOATING into LIB$WAIT.
LIB$WAIT expects an F_FLOATING, and gives a FLTINV exception.

LIB$WAIT can accept three arguments. The previous code sequence can be
rewritten with LIB$WAIT using three arguments to run correctly on both I64
and Alpha systems. The following revised code works correctly when compiled
without the /FLOAT qualifier:

#ifdef __ia64
int float_type = 4; /* use S_FLOAT for I64 */
#else
int float_type = 0; /* use F_FLOAT for Alpha */
#endif
float wait_time = 2.0;
lib$wait(&wait_time,0,&float_type);

A better coding method is to include the LIBWAITDEF call (from SYS$STARLET_
C.TLB) in your application and then specify the floating point data types by name.
This code can be maintained more easily.

LIBWAITDEF includes the following symbols:

• LIB$K_VAX_F

• LIB$K_VAX_D

• LIB$K_VAX_G

• LIB$K_VAX_H

• LIB$K_IEEE_S

• LIB$K_IEEE_T

The following example shows how to include libwaitdef.h in the code and how
to specify the floating-point data type names. This example also assumes that the
program is not compiled with the /FLOAT qualifier.

3–14 Migrating Your Application

Migrating Your Application
3.7 Modifying Certain Types of Code

#include <libwaitdef.h>
.
.
.
#ifdef __ia64
int float_type = LIB$K_IEEE_S; /* use S_FLOAT for IPF */
#else
int float_type = LIB$K_VAX_F; /* use F_FLOAT for Alpha */
#endif
float wait_time = 2.0;
lib$wait(&wait_time,0,&float_type);

3.7.5 Incorrect Command Table Declaration
Incorrect declaration of a command table in code that is ported to OpenVMS I64
can cause unexpected results. For example, for an application, CDU is used to
create an object module from a CLD file. The application then calls CLI$DCL_
PARSE to parse command lines. CLI$DCL_PARSE might fail with the following
error message:

%CLI-E-INVTAB, command tables have invalid format - see documentation

The code must be modified so that the command table is defined as an external
data object.

For example, if in an application, on VAX and Alpha, the command table
(DFSCP_CLD) is incorrectly declared in a BLISS module as:

EXTERNAL ROUTINE DFSCP_CLD

This should be changed to the following:

EXTERNAL DFSCP_CLD

The command table is incorrectly declared in a FORTRAN module as:

EXTERNAL DFSCP_CLD

then it should be changed to

INTEGER DFSCP_CLD
CDEC$ ATTRIBUTES EXTERN :: DFSCP_CLD

Similarly, in an application written in C, if the command tables previously were
defined as follows:

int jams_master_cmd();

The code should be changed to be an external reference:

extern void* jams_master_cmd;

The changed, correct declaration works on all platforms (VAX, Alpha, and I64).

3.7.6 Code That Uses Threads
OpenVMS I64 supports all the thread interfaces that have been supported on
OpenVMS since thread support was first introduced. Most OpenVMS VAX code
that uses threads can be ported to OpenVMS I64 without change. This section
describes the exceptions. The major porting issue for code that uses threads is the
usage of stack space. I64 code uses much more stack space than does equivalent
VAX code. Therefore, a threaded program that works on VAX might get stack
overflow failures on I64.

Migrating Your Application 3–15

Migrating Your Application
3.7 Modifying Certain Types of Code

The default stack size is larger on OpenVMS I64 to help alleviate overflow
problems. If the application requests a specific stack size, then the change to the
default is irrelevant, and the application source code might need to be changed
to request more stack. HP recommends starting with an increase of three 8-Kb
pages (24576 bytes).

Another side effect of the increased stack size requirement is increased demand
on the P0 address region. Thread stacks are allocated from the P0 heap. Larger
stacks might cause the process to exceed its memory quotas. In extreme cases,
the P0 region could fill completely, in which case the process might need to reduce
the number of threads in use concurrently (or make other changes to lessen the
demand for P0 memory).

HP recommends that you familiarize yourself with the most recent improvements
to thread support in OpenVMS, as documented in the HP OpenVMS Version
8.2 Release Notes. One change to the POSIX Threads C language header file
PTHREAD_EXCEPTION.H caused problems when porting an application that
relied on its former behavior.

The DCL command THREADCP is not supported on OpenVMS I64. For
OpenVMS I64, the DCL commands SET IMAGE and SHOW IMAGE can be
used to check and modify the state of threads-related image header flags, similar
to the THREADCP command on OpenVMS VAX. For more information, refer to
the HP OpenVMS DCL Dictionary. The THREADCP command is documented in
the Guide to the POSIX Threads Library.

If you want to change the setting of threads-related image flags, you need to use
the new command SET IMAGE. For example:

$ SET IMAGE/FLAGS=(MKTHREADS,UPCALLS) FIRST.EXE

3.7.6.1 Thread Routines cma_delay and cma_time_get_expiration
Two legacy threads API library routines, cma_delay and
cma_time_get_expiration, accept a floating-point format parameter using
the VAX F_FLOAT format. Any application modules that call either of these
routines must be compiled with either the /FLOAT=D_FLOAT or the /FLOAT=G_
FLOAT qualifier to get VAX F FLOAT support. (However, if your application
also uses double precision binary data, then you must use the /FLOAT=G_
FLOAT qualifier.) For more information about floating-point support, consult
your compiler’s documentation.

If a C language module (which uses either cma_delay or cma_time_get_expiration)
is compiled by mistake in an IEEE floating-point mode, a compiler warning
similar to the following is displayed:

cma_delay (
^

%CC-W-LONGEXTERN, The external identifier name exceeds 31
characters; truncated to "CMA_DELAY_NEEDS_VAX_FLOAT______".

If an object file that triggered such a warning is linked, the linker displays
an undefined-symbol message for this symbol. (If a linker-produced image is
subsequently executed, the calls to these routines fail with an ACCVIO.) These
compiler and linker diagnostics are intended to alert you to the fact that these
CMA routines require the use of VAX format floating-point values, and that the
compilation was done in a manner that does not satisfy this requirement.

3–16 Migrating Your Application

Migrating Your Application
3.7 Modifying Certain Types of Code

Note

These routines are no longer documented in user documentation but are
still supported for use in legacy applications.

3.7.7 Code with Unaligned Data
HP recommends that you align your data naturally to achieve optimal
performance for data referencing. Unaligned data can seriously degrade
performance on OpenVMS I64.

Data is naturally aligned when its address is an integral multiple of the size of
the data in bytes. For example, a longword is naturally aligned at any address
that is a multiple of 4, and a quadword is naturally aligned at any address that
is a multiple of 8. A structure is naturally aligned when all its members are
naturally aligned.

Because natural alignment is not always possible, OpenVMS I64 systems
provide help to manage the impact of unaligned data references. I64 compilers
automatically correct most potential alignment problems and flag others.

In addition to performance degradation, unaligned shared data can cause a
program to execute incorrectly. Therefore, you must align shared data naturally.
Shared data might occur between threads of a single process, between a process
and ASTs, or between several processes in a global section.

Finding the Problem
To find instances of unaligned data, you can use a qualifier provided by most I64
compilers that allows the compiler to report compile-time references to unaligned
data. Table 3–3 lists these qualifiers.

Table 3–3 Compiler Switches for Reporting Compile-Time Reference

Compiler Qualifier

BLISS /CHECK=ALIGNMENT

C /WARN=ENABLE=ALIGNMENT

Fortran /WARNING=ALIGNMENT

HP Pascal /USAGE=PERFORMANCE

Additional assistance, such as an OpenVMS Debugger qualifier to reveal
unaligned data at run time, is planned for a future release.

Eliminating the Problem
To eliminate unaligned data, you can use one or more of the following methods:

• Compile with natural alignment or, when language semantics do not provide
for this, move data to be naturally aligned. Where filler is inserted to ensure
that data remains aligned, there is a penalty in increased memory size.
A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment within data
structures.

Migrating Your Application 3–17

Migrating Your Application
3.7 Modifying Certain Types of Code

• Align data items on quadword boundaries.

Note

Software that is converted to natural alignment might be incompatible
with other software that is running translated in the same OpenVMS
Cluster environment or over a network. For example:

• An existing file format might specify records with unaligned data.

• A translated image might pass unaligned data to, or expect it from, a
native image.

In such cases, you must adapt all parts of the application to expect the
same type of data, either aligned or unaligned.

3.7.8 Code That Relies on the OpenVMS VAX Calling Standard
If your application relies explicitly on characteristics of the OpenVMS VAX
Calling Standard, you likely have to change it. The OpenVMS I64 Calling
Standard is based on the Intel calling standard with some OpenVMS
modifications. Significant differences introduced in the OpenVMS I64 Calling
Standard include the following:

• No frame pointer (FP)

• Multiple stacks

• Only four registers preserved across calls

• Changes to familiar register numbers

For more information, see the HP OpenVMS Calling Standard.

3.7.9 Privileged Code
This section describes categories of privileged code that require examination and
that might require modification.

3.7.9.1 Use of SYS$LKWSET and SYS$LKWSET_64
If your application uses the SYS$LKWSET or SYS$LKWSET_64 system service
to lock itself into memory, and your application does not run on VAX systems,
consider replacing these calls with calls to the new (as of OpenVMS Version
8.2) LIB$LOCK_IMAGE RTL routine. Similarly, replace the SYS$ULWSET
and SYS$ULWSET_64 calls with calls to the new LIB$UNLOCK_IMAGE RTL
routine.

Programs that enter kernel mode and increase IPL to greater than 2 must lock
program code and data in the working set. Locking code and data is necessary to
avoid crashing the system with a PGFIPLHI bugcheck.

On VAX systems, typically only the code and data explicitly referenced by the
program need to be locked. On Alpha systems, the code, data, and linkage data
referenced by the program need to be locked. On I64 systems, code, data, short
data, and linker-generated code need to be locked. To make porting easier and
because the addresses of short data and linker generated data cannot be easily
found within an image, changes have been made to the SYS$LKWSET and
SYS$LKWSET_64 system services on Alpha and I64.

3–18 Migrating Your Application

Migrating Your Application
3.7 Modifying Certain Types of Code

As of OpenVMS Version 8.2, the SYS$LKWSET and SYS$LKWSET_64 system
services test the first address passed in. If this address is within an image, these
services attempt to lock the entire image in the working set. If a successful
status code is returned, the program can increase IPL to greater than 2 and
without crashing the system with a PGFIPLHI bugcheck.

A counter is maintained within the internal OpenVMS image structures that
counts the number of times the image has been successfully locked in the working
set. The counter is incremented when locked and decremented when unlocked.
When the counter becomes zero, the entire image is unlocked from the working
set.

If your privileged program runs on Alpha and I64 and not on VAX, you can
remove all the code that finds the code, data and linkage data and locks these
areas in the working set. You can replace this code with calls to the LIB$LOCK_
IMAGE and LIB$UNLOCK_IMAGE routines (available in OpenVMS Version 8.2).
These routines are simpler to program correctly and make your code easier to
understand and maintain.

If the program’s image is too large to be locked in the working set, the status
SS$_LKWSETFUL is returned. If you encounter this status, you can increase the
user’s working set quota. Otherwise, you can split the image into two parts, one
that contains the user mode code and another shareable image that contains the
kernel mode code. At the entry to a kernel mode routine, the routine should call
LIB$LOCK_IMAGE to lock the entire image in the working set. Before exiting
the kernel mode routine, the routine should call the LIB$UNLOCK_IMAGE
routine.

3.7.9.2 Use of SYS$LCKPAG and SYS$LCKPAG_64
If your application uses the SYS$LCKPAG or SYS$LCKAPG_64 system service to
lock code in memory, examine your use of this service. On I64, this service does
not lock the entire image in the working set.

It is likely that you intend to lock the image in the working set so your code can
elevate IPL and execute without incurring a page fault (refer to Section 3.7.9.1).
See also the HP OpenVMS RTL Library (LIB$) Manual for information about the
LIB$LOCK_IMAGE and LIB$UNLOCK_IMAGE routines.

3.7.9.3 Terminal Drivers
The interface for terminal class drivers on OpenVMS I64 is a call-based interface.
This is a significant difference from the JSB-based interface on OpenVMS VAX
that uses registers to pass arguments.

The interface for OpenVMS I64 terminal class drivers is documented in the
OpenVMS Terminal Driver Port Class Interface for Itanium. This document is
available at the following location:

http://www.hp.com/products1/evolution/alpha_retaintrust/openvms/resources

3.7.9.4 Protected Image Sections
Protected image sections usually occur in shareable images that implement
user written system services. These image sections are protected by software
and hardware mechanisms to assure that an unprivileged application cannot
compromise the integrity of these sections. Changes in hardware pages protection
from VAX and Alpha to I64 have added some subtle restrictions that might
require changes in the protected images.

Migrating Your Application 3–19

Migrating Your Application
3.7 Modifying Certain Types of Code

As on VAX and Alpha, data sections that are writable in privileged modes (kernel
or exec) can be read by unprivileged (user) mode. The hardware protection
for such pages does not allow execute access from any mode. Protected image
sections that are linked as both writable and executable are protected to allow
inner-mode read, write, and execute; user mode access is not allowed. Because
neither user-mode access to inner-mode writable data, nor code being in writable
sections, is a common practice, few applications are likely to require both in a
single section.

While there were exceptions on VAX and Alpha, all writable protected image
sections on I64 are protected against user-mode write. Protected images
that intend to allow user write to protected image sections must use the
$SETPRT/$SETPRT_64 system services to alter the page protection.

3–20 Migrating Your Application

4
Overview of Recompiling and Relinking

This chapter introduces the general process of moving an application that runs
on a VAX system to an I64 system by recompiling and relinking the source files
that make up the application.

In general, if your application is written in a high-level programming language,
you should be able to run it on an I64 system with a minimum of effort.
High-level languages insulate applications from dependence on the underlying
machine architecture. In addition, the programming environment on I64 systems
duplicates most of the programming environment on VAX systems. Using native
I64 versions of the language compilers and the OpenVMS Linker utility (linker),
you can recompile and relink the source files that make up your application to
produce a native I64 image.

If your application is written in VAX MACRO, you might be able to run it on
an I64 system with minimum effort, although it is more likely to contain some
dependencies on the underlying VAX architecture that require intervention.

Privileged applications, which run in inner modes or at elevated interrupt
priority levels (IPLs), might require significant changes because of assumptions
incorporated in the code about the internal operation of the operating system.
Typically, such applications require significant changes after a major release of
the OpenVMS VAX operating system.

Note

Remember that it is possible to introduce architectural dependencies
even in applications written in high-level languages. In addition, hidden
bugs in your application might come to light during the move to a new
platform.

4.1 Compiling Applications on VAX With Current Compiler Version
Before recompiling your code with a native I64 compiler, HP recommends that
you first compile the code to run on VAX with the latest version of the compiler.
This action might uncover problems that are attributable to the change in the
compiler version only. For example, newer versions of compilers might enforce
programming language standards that were previously ignored, exposing latent
problems in your application code. Newer versions might also enforce changes
to the standard that were not in effect when the earlier versions were created.
Fixing such problems on OpenVMS VAX simplifies porting the application to I64.

Overview of Recompiling and Relinking 4–1

Overview of Recompiling and Relinking
4.2 Recompiling Your Application with Native I64 Compilers

4.2 Recompiling Your Application with Native I64 Compilers
Many of the languages supported on VAX systems, such as Fortran and C, are
also supported on I64 systems. For information about the compilers for some
common programming languages on I64 systems, see Chapter 9.

The compilers available on I64 systems are intended to be compatible with their
counterparts on VAX systems. The compilers conform to language standards and
include support for most VAX language extensions. The compilers produce output
files with the same default file types as they do on VAX systems, such as .OBJ for
an object module.

See Section 3.2.1.1 for a list of the OpenVMS I64 compilers.

Note, however, that some features supported by the compilers on VAX systems
might not be available in the same compiler on I64 systems. In addition,
some compilers on I64 systems support new features not supported by their
counterparts on VAX systems. To provide compatibility, some compilers support
compatibility modes. For example, the HP C compiler for OpenVMS I64
systems supports a VAX C compatibility mode that is invoked by specifying the
/STANDARD=VAXC qualifier.

If the VAX application was built some time ago, especially with old compilers,
rebuilding it with the latest compiler versions is a good preparation for the
migration. It is more likely that I64 compilers are feature compatible with the
latest VAX compilers than with old compilers.

4.3 Relinking Your Application on an I64 System
Once you successfully recompile your source files, you must relink your
application to create a native I64 image. The linker produces output files
with the same file types as on current VAX systems. For example, by default, the
linker uses the file type .EXE to identify image files.

Because the way in which you perform certain linking tasks is different on I64
systems, you probably need to modify the LINK command used to build your
application. The following list describes some linker changes that might affect
your application’s build procedure. See the HP OpenVMS Linker Utility Manual
for more information.

• Declaring universal symbols in shareable images—If your application
creates shareable images, your application build procedure probably includes
a transfer vector file, written in VAX MACRO, in which you declare the
universal symbols in the shareable image. On I64 systems, instead of
creating a transfer vector file, you must declare universal symbols in a linker
options file by specifying the option SYMBOL_VECTOR=option.

• Linking against the OpenVMS executive—On VAX systems, you link
against the OpenVMS executive by including the system symbol table file
(SYS.STB) in your build procedure. On I64 systems, you link against the
OpenVMS executive by specifying the /SYSEXE qualifier.

• Processing shareable images implicitly— On I64 systems, you must
specify any shareable images that your image has direct calls to in your build
procedure.

4–2 Overview of Recompiling and Relinking

Overview of Recompiling and Relinking
4.3 Relinking Your Application on an I64 System

On VAX systems, the linker puts the list of images that the shareable
image was linked against into the image’s dependency list. For example,
if you link a main image against LIBRTL.EXE, and LIBRTL.EXE was
linked against LIBOTS.EXE, both LIBRTL and LIBOTS will be in the main
image’s dependency list (also called the shareable image list) even though the
main image has no direct calls to LIBOTS.EXE. If LIBOTS changes in an
incompatible way, you must relink the main image.

On I64 systems, the linker only puts the images you linked directly against
into an image’s dependency list. If on I64 an image is linked against
LIBRTL.EXE, and if LIBRTL.EXE was linked against LIBOTS.EXE, only
LIBRTL will be in the main image’s dependency list. If LIBOTS.EXE changes
in an incompatible way, LIBRTL.EXE must be relinked, but the main image
is fine.

• No based clusters— Specifying a base address in a CLUSTER option is
permitted on VAX. But on I64, specifying a base address in a CLUSTER
option is illegal. See the description of the CLUSTER= option in Table 4–2.

• Handling of initialized overlaid program sections is different on
OpenVMS I64— On VAX systems, initializations can be performed on
different portions of an overlaid program section. Subsequent initializations
to the same portions overwrite initializations from previous modules. The last
initialization performed on any byte is used as the final one of that byte for
the image being linked. When an initialization is made on I64 systems, the
entire section is initialized by the compiler. Subsequent initializations of this
section can be performed only if the new initialization matches the existing
one.

The linker supports several qualifiers and options that that are specific to I64
systems. These qualifiers are listed in Table 4–1. Table 4–2 lists linker qualifiers
and options supported on VAX systems but not supported on I64 systems.
Table 4–3 lists linker qualifiers and options supported on VAX systems but
ignored by I64 systems.

Overview of Recompiling and Relinking 4–3

Overview of Recompiling and Relinking
4.3 Relinking Your Application on an I64 System

Table 4–1 Linker Qualifiers and Options Specific to OpenVMS I64 Systems

Qualifiers Description

/DEMAND_ZERO[=PER_PAGE] Enables demand-zero image sections (referred to
as segments on OpenVMS I64) for both executable
and shareable images. The keyword PER_PAGE
directs the linker to compress trailing zeros for each
segment (that is, demand-zero compression of zeros
on trailing pages.)

/DSF Directs the linker to create a file called a debug
symbol file (DSF) for use by the OpenVMS I64
Debugger.

/FP_MODE=keyword The OpenVMS I64 Linker determines the program’s
initial floating-point mode using the floating point
mode provided by the module that provides the main
transfer address. Use the /FP_MODE qualifier to set
an initial floating point mode only if the module that
provides the main transfer address does not provide
an initial floating-point mode. The /FP_MODE
qualifier does not override an initial floating-point
mode provided by the main transfer module.

/FULL[=(keyword [,...])] The keyword GROUP_SECTIONS prints all of the
groups that were used in the map. (Groups are a
new concept in the object language for OpenVMS
I64. For more details, see the HP OpenVMS Linker
Utility Manual.) The keyword NOSECTION_
DETAILS is specified when the OpenVMS I64 linker
suppresses zero length contributions in the Program
Section Synopsis of the map. The default for is
/FULL=SECTION_DETAILS.

/GST Directs the linker to create a global symbol
table (GST) for a shareable image (the default).
Typically specified as /NOGST when used to ship an
application with a shareable image that cannot be
linked against.

/INFORMATIONALS Directs the linker to output informational messages
during a link operation (the default). More typically
specified as /NOINFORMATIONALS to suppress
these messages.

/NATIVE_ONLY Directs the linker to not pass along the procedure
signature block (PSB) information (created by the
compilers) in the image it is creating (the default).

If you specify /NONATIVE_ONLY during linking, the
image activator uses the PSB information, if any,
provided in the object modules that are specified as
input files to the link operation that invoke jacket
routines. Jacket routines are necessary to allow
native I64 images to work with translated images.

/SEGMENT_
ATTRIBUTE=(segment_attribute
[, ...])

Instructs the OpenVMS I64 linker to set certain
attributes for segments. The OpenVMS I64
Linker accepts DYNAMIC=address_region,
SHORT=WRITE, CODE=address_region, and
SYMBOL_VECTOR=[NO]SHORT as segment
attributes, where an address region can be specified
with keywords P0 and P2.

(continued on next page)

4–4 Overview of Recompiling and Relinking

Overview of Recompiling and Relinking
4.3 Relinking Your Application on an I64 System

Table 4–1 (Cont.) Linker Qualifiers and Options Specific to OpenVMS I64
Systems

Qualifiers Description

/SYSEXE Directs the linker to process the OpenVMS executive
image (SYS$BASE_IMAGE.EXE) to resolve symbols
left unresolved in a link operation.

Options Description

SYMBOL_TABLE=option Directs the linker to include global symbols as
well as universal symbols in the symbol table file
associated with a shareable image. By default, the
linker includes only universal symbols.

SYMBOL_VECTOR=option Used to declare universal symbols in I64 shareable
images.

Table 4–2 OpenVMS VAX Linker Qualifiers and Options Not Supported on I64
Systems

Qualifier Description

/DEBUG=file_spec Specifying an object file with the /DEBUG qualifier
to get the user-written debugger module activated at
runtime is no longer allowed.

/SYSTEM[=base_address] Directs the linker to create a system image and
optionally allows you to secify the address at which
the image should be loaded into memory. A system
image cannot be activated with the RUN command;
it must be bootstrapped or otherwise loaded into
memory.

Options Description

BASE=option Specifies the base address (starting address) that you
want the linker to assign to the image.

CLUSTER=cluster_name, base_
address

The base address keyword must be null in the
CLUSTER option. Based images, or images with
based image sections, are not supported by I64.

UNIVERSAL=option Declares a symbol in a shareable image as universal,
causing the linker to include it in the GST of a
shareable image.

Overview of Recompiling and Relinking 4–5

Overview of Recompiling and Relinking
4.3 Relinking Your Application on an I64 System

Table 4–3 OpenVMS VAX Linker Qualifiers and Options Ignored on I64 Systems

Qualifier Description

/ALPHA Directs the linker to produce an OpenVMS Alpha
image.

/HEADER When specified with the /SYSTEM qualifier, directs
the linker to include an image header in a system
image. The I64 linker ignores the /HEADER
qualifier if it is specified for an image. The VAX
and Alpha linkers ignore it whenever it is specified
for an executable or shareable image.

/VAX Directs the linker to produce an OpenVMS VAX
image.

Qualifier Description

DZRO_MIN=option Specifies the minimum number of contiguous,
uninitialized pages that the linker must find in
an image section before it can extract the pages
from the image section and place them in a newly
created demand-zero image section. By creating
demand-zero image sections (image sections that do
not contain initialized data), the linker can reduce
the size of images.

ISD_MAX=option Specifies the maximum number of image sections
allowed in the image.

4.4 Compatibility Between the Mathematics Libraries Available on
VAX and I64 Systems

Mathematical applications using the standard OpenVMS call interface to the
OpenVMS Mathematics (MTH$) Run-Time Library need not change their calls to
MTH$ routines when migrating to an OpenVMS I64 system. Jacket routines are
provided that map MTH$ routines to their math$ counterparts in the HP Portable
Mathematics Library (DPML) for OpenVMS I64 systems. However, there is no
support in the DPML for calls made to JSB entry points and vector routines.
Note that DPML routines are different from those in the OpenVMS MTH$ RTL;
expect to see small differences in the precision of the mathematical results.

To maintain compatibility with future libraries and to create portable
mathematical applications, HP recommends using the DPML routines available
through the high-level language of your choice (for example, HP C or HP Fortran)
rather than using the call interface. DPML routines afford significantly higher
performance and accuracy.

See the Compaq Portable Mathematics Library manual for more information
about DPML routines.

4.5 Determining the Host Architecture
Your application might need to determine whether it is running on an OpenVMS
VAX system or an I64 system. From within your program, you can obtain this
information by calling the $GETSYI system service (or the LIB$GETSYI RTL
routine), and specifying the ARCH_TYPE item code. When your application is
running on a VAX system, the $GETSYI system service returns the value 1.

4–6 Overview of Recompiling and Relinking

Overview of Recompiling and Relinking
4.5 Determining the Host Architecture

When your application is running on an I64 system, the $GETSYI system service
returns the value 3.

Example 4–1 shows how to determine the host architecture in a DCL command
procedure by calling the F$GETSYI DCL command and specifying the ARCH_
TYPE item code. (For an example of calling the $GETSYI system service to
obtain the page size of an I64 system, see Section 5.4.)

Example 4–1 Using the ARCH_TYPE Keyword to Determine Architecture Type

$! Determine architecture type
$ type_symbol = f$getsyi("arch_type")
$ if type_symbol .eq. 1 then goto ON_VAX
$ if type_symbol .eq. 2 then goto ON_ALPHA
$ if type_symbol .eq. 3 then goto ON_I64
$!
$! Unknown architecture
$!
$ exit
$ ON_VAX:
$!
$! Do VAX-specific processing
$!
$ exit
$ ON_ALPHA:
$!
$! Do Alpha-specific processing
$!
$ exit
$ ON_I64:
$!
$! Do I64-specific processing
$!
$ exit

Note that the ARCH_TYPE item code is available only on VAX systems running
OpenVMS Version 5.5 or later. If your application needs to determine the host
architecture for earlier versions of the operating system, use one of the other
$GETSYI system service item codes listed in Table 4–4.

Table 4–4 $GETSYI Item Codes That Specify Host Architecture

Keyword Usage

ARCH_TYPE Returns 1 on VAX systems; returns 2 on Alpha systems; returns 3
on a I64 systems. Supported on I64 systems, and on VAX systems
running OpenVMS Version 5.5 or later.

ARCH_NAME Returns text string ‘‘VAX’’ on VAX systems, text string ‘‘Alpha’’ on
Alpha systems, text string ‘‘IA64’’ on I64 systems. Supported on
I64 systems, and on VAX systems running OpenVMS Version 5.5 or
later.

HW_MODEL Returns an integer that identifies a particular hardware model. A
value equal to 4096 identifies I64 systems.

CPU Returns an integer that identifies a particular CPU. The value 128
identifies a system as ‘‘not a VAX.’’ This code is supported on much
earlier versions of OpenVMS than the ARCH_TYPE and ARCH_
NAME codes.

Overview of Recompiling and Relinking 4–7

5
Adapting Applications to a Larger Page Size

This chapter describes how to identify dependencies your application might
have on the VAX page size and makes recommendations for correcting those
dependencies.

5.1 Overview
In general, page size, the basic unit of memory manipulated by the operating
system, is below the level of applications, especially for applications written in
high-level or mid-level programming languages. However, your application might
contain page-size dependencies if it calls system services or run-time library
routines to perform memory management functions such as the following:

• Allocating virtual memory

• Mapping sections into the virtual address space of your process

• Locking memory into your working set

• Protecting segments of your virtual address space

The system services and run-time library routines that perform these functions
manipulate memory in pages. The values you specified as arguments to these
routines are based on an assumption of a 512-byte page, the page size defined
by the VAX architecture. OpenVMS I64 supports an 8-KB default page size, and
will support 16-KB, 32-KB, or 64-KB page size in future OpenVMS releases. The
following sections provide more information about examining the routines.

Note that this difference in page sizes does not affect memory allocation using
higher level routines, for example, the run-time library routines that manipulate
virtual memory zones or language-specific memory allocation routines, such as
the malloc and free routines in C.

5.1.1 Compatibility Features
Wherever possible, system services or run-time library routines attempt to
present the same interface and return values on I64 systems as they do on
VAX systems. For example, on I64 systems, the routines that accept page-count
values as arguments still interpret these arguments in 512-byte quantities, called
pagelets to distinguish them from the CPU-specific page size. The routines
convert pagelet values into CPU-specific pages. The routines that return page-
count values convert from CPU-specific pages to pagelets so that the return
values are still measured in 512-byte units.

Note

On I64 systems, when creating page frame sections you cannot use
the $CRMPSC routine with the flag SEC$M_PFNMAP. You must call
SYS$CREATE_GPFN, SYS$CRMPSC_GPFN_64, or SYS$CRMPSC_
PFN_64 system services. You must also use the flag SEC$M_ARGS64 to

Adapting Applications to a Larger Page Size 5–1

Adapting Applications to a Larger Page Size
5.1 Overview

indicate that you have provided a 64-bit start_pfn argument. Note that
64-bit system services can be called with sign-extended 32-bit addresses.

5.1.2 Summary of Memory Management Routines with Potential Page-Size
Dependencies

Despite the compatibility, some routines behave differently on I64 systems than
they do on VAX systems and might require you to modify your source code. For
example, on I64 systems, the system services that map section files ($CRMPSC
and $MGBLSC) require you to specify address value arguments that are aligned
on CPU-specific page boundaries. On VAX systems, these routines round the
address values specified in arguments to VAX page boundaries. On I64 systems,
the routines do not round these addresses to CPU-specific page boundaries.

Table 5–1 lists the memory management routines with the arguments they
support that may contain page-size dependencies. The table lists the arguments
with their intended function and describes how these arguments are interpreted
on I64 systems. Note that the table does not attempt to list all the arguments
accepted by each routine. For more information about the routines and their
argument lists, see the HP OpenVMS System Services Reference Manual.

Table 5–1 Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on I64 Systems

Adjust Working Set Limit
($ADJWSL)

pagcnt specifies the number of
pages to add to (or subtract from)
the current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

wsetlm specifies the value of the
current working set limit.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Process
($CREPRC)

quota accepts several quota
descriptors that specify page counts,
such as the default working set size,
paging file quota, and working set
expansion quota.

Interpreted in pagelets, adjusted
up or down to represent CPU-
specific-sized pages.

Create Virtual Address
($CRETVA)

inadr specifies the start- and end-
addresses of the memory to be
allocated. If the end-address is the
same as the start-address, a single
page is allocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

(continued on next page)

5–2 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on I64 Systems

Create and Map Section
($CRMPSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned
on CPU-specific pages (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 5.3 for more information
about mapping.)

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns the start- and end-
addresses of the usable range
of addresses, which might be
different than the total amount
mapped. This argument is
required when the relpag
argument is specified.

flags specifies the type and
characteristics of the section to
be created or mapped.

The flag bit SEC$M_NO_
OVERMAP indicates that
existing address space should
not be overmapped.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file; measured in
pagelets.

pagcnt specifies the number of
pages (blocks) in the file to be
mapped.

Interpreted in pagelets; no
rounding is done.

pfc specifies the number of pages
that should be mapped when a page
fault occurs.

Interpreted in CPU-specific-
sized pages. When specifying
a value for this argument,
remember that, because I64
systems support 8-K, 16-K,
32-K, and 64-K byte physical
page sizes, at least 16 pagelets
are mapped for each physical
page. The system cannot map
less than a physical page.

Delete Virtual Address
($DELTVA)

inadr specifies the start- and end-
addresses of the memory to be
deallocated.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was deleted.

Unchanged.

Expand Program/Control Region
($EXPREG)

pagcnt specifies the amount of
memory to allocate, in 512-byte
units.

Interpreted in pagelets.

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Unchanged.

(continued on next page)

Adapting Applications to a Larger Page Size 5–3

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on I64 Systems

Get Job/Process Information
($GETJPI)

itmlst specifies which information
about the process is to be returned.

Many items, such as JPI$_
WSEXTENT, interpreted as
pagelet values. See the HP
OpenVMS System Services
Reference Manual for more
information.

Get Queue Information
($GETQUI)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted as
pagelet values. See the HP
OpenVMS System Services
Reference Manual for more
information.

Get Systemwide Information
($GETSYI)

itmlst specifies which information
is to be returned about the node or
nodes.

Several items interpreted as
pagelet values. One additional
item, SYI$_PAGE_SIZE,
specifies the page size supported
by the node. See the HP
OpenVMS System Services
Reference Manual for more
information.

Get User Authorization
Information ($GETUAI)

itmlst specifies which information
from the user’s user authorization
file is to be returned.

Several items return pagelet
values. See the HP OpenVMS
System Services Reference
Manual for more information.

Lock Page
($LCKPAG)

inadr specifies the start- and end-
addresses of the memory to be
locked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was locked.

Unchanged.

Lock Image in
Process Working Set
($LOCK_IMAGE)

address specifies the address of a
byte within the image to be locked
in the working set.

Available on VAX and I64 only.

Map Global Section
($MGBLSC)

inadr specifies the start- and end-
addresses that define the region to
be remapped. If the end-address
is the same as the start-address,
a single page is mapped, unless
the SEC$M_EXPREG flag is set,
in which case the start-address is
interpreted as determining whether
the allocation should be in P0 or P1
space.

Addresses must be aligned on
a CPU-specific page (unless
the SEC$M_EXPREG flag is
set); no rounding is done. (See
Section 5.3 for more information
about mapping.)

retadr specifies the actual start-
and end-addresses of the memory
affected by the call.

Returns start- and end-
addresses of usable portion
of memory mapped.

relpag specifies the page offset at
which mapping of the section file
should begin.

Interpreted as an index into
the section file, measured in
pagelets.

Purge Working Set
($PURGWS)

inadr specifies the start- and end-
addresses of the memory to be
purged.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

(continued on next page)

5–4 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.1 Overview

Table 5–1 (Cont.) Potential Page-Size Dependencies in Memory Management Routines

Routine Argument Behavior on I64 Systems

Set Protection
($SETPRT)

inadr specifies the start- and end-
addresses of the memory to be
protected.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was protected.

Unchanged.

Set User Authorization File
($SETUAI)

itmlst specifies which information
from the user authorization file is to
be set.

Several items interpreted in
pagelet values. See the HP
OpenVMS System Services
Reference Manual for more
information.

Send to Job Controller
($SNDJBC)

itmlst specifies information to be
used in performing the function
specified by the func argument.

Several items interpreted in
pagelet values. See the HP
OpenVMS System Services
Reference Manual for more
information.

Unlock Page
($ULKPAG)

inadr specifies the start- and end-
addresses of the memory to be
unlocked.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Unlock Image from Process
Working Set
($UNLOCK_IMAGE)

address specifies the address
of a byte within the image to be
unlocked in the working set.

Available on VAX and I64 only.

retadr specifies the actual start-
and end-addresses of the memory
that was unlocked.

Unchanged.

Update Section
($UPDSEC)

inadr specifies the start- and end-
address of the section to write to
disk.

Rounds requests to CPU-
specific pages. Note that only
the address range actually
represented by on-disk storage
is written to disk.

retadr specifies the actual start-
and end-addresses of the memory
that was written to disk.

Addresses are adjusted up or
down to fall on CPU-specific
page boundaries.

Adapting Applications to a Larger Page Size 5–5

Adapting Applications to a Larger Page Size
5.1 Overview

The run-time library routines listed in Table 5–2 allocate (or free) pages
of memory. For compatibility, these routines also interpret the page-count
information you specify in pagelets.

Table 5–2 Potential Page-Size Dependencies in Run-Time Library Routines

Routine Argument Behavior on I64 Systems

LIB$GET_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to allocate.

Interpreted in pagelets, rounded
to CPU-specific pages.

LIB$FREE_VM_PAGE number-of-pages argument
specifies the number of contiguous
pages to free.

Interpreted in pagelets, rounded
to CPU-specific pages.

5.2 Examining Memory Allocation Routines
To determine whether the memory allocation performed by your application
requires modification, check to see where the memory is allocated. The system
service routines that perform memory allocation ($EXPREG and $CRETVA) allow
you to allocate memory in two ways:

• By expanding the size of the P0 or P1 regions of your application’s virtual
address space

• By reclaiming a region of your application’s existing virtual address space,
starting at a location you specify

The Intel Itanium architecture defines the same virtual address space layout as
the VAX architecture and allows for growth of the P0 and P1 regions in the same
direction as on VAX systems. Figure 5–1 shows this layout.

5.2.1 Allocating Memory in Expanded Virtual Address Space
If your application allocates memory by expanding virtual address space using
the $EXPREG system service, source code changes might be unnecessary because
the values you specified as arguments are valid on I64 systems and VAX systems.
The reasons for this are as follows:

• On I64 systems, the $EXPREG system service interprets the amount of
memory requested (specified as a page count in the pagcnt argument) in 512-
byte units, the same as on an VAX system. Thus, the value your application
specified still requests the same amount of memory. Note, however, that
because the system service rounds the value up to CPU-specific pages,
the actual amount of memory allocated by the system for your application
might be larger on an I64 system than it is on a VAX system. The entire
amount of memory allocated is available for use by your application. Because
applications typically allocate memory to satisfy buffer requirements (which
do not change with different platforms) the value you specified should still
satisfy the requirements of your application.

• Because the allocation occurs in an expanded area of virtual address space,
the discrepancy between the amount requested and the amount actually
allocated by the system should have no effect on the function of your
application.

5–6 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

Figure 5–1 Virtual Address Layout

7FFFFFFF

ZK−0861−GE

40000000
3FFFFFFF

Program Region

Growth
Direction of

(P1)
Control Region

Length

Length

Growth
Direction of

00000000
Address
Virtual

(P0)

Recommendation
Your application might not need to be modified. However, HP suggests that you
obtain the exact boundaries of the memory allocated by the system, because the
amount of memory returned by the $EXPREG system service can vary among
implementations of the Intel Itanium architecture. To do this, specify the optional
retadr argument to the $EXPREG system service, if your application does not
already include it. The retadr argument contains the start-address and the
end-address of the memory allocated by the system service.

For example, the program in Example 5–1 calls the $EXPREG system service to
request 10 additional pages of memory. If you run this program on a VAX system,
the $EXPREG system service allocates 5120 bytes of additional memory. If you
run this program on an I64 system, the $EXPREG system service allocates at
least 8192 bytes and possibly more, depending on the page size of the particular
implementation of the Intel Itanium architecture.

Adapting Applications to a Larger Page Size 5–7

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

Example 5–1 Allocating Memory by Expanding Your Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

#define PAGE_COUNT 10 !
#define P0_SPACE 0
#define P1_SPACE 1

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long bytes_allocated, addr_returned[2];

" status = SYS$EXPREG(PAGE_COUNT, &addr_returned, 0, P0_SPACE);

bytes_allocated = addr_returned[1] - addr_returned[0];

if(status == SS$_NORMAL)
printf("bytes allocated = %d\n", bytes_allocated);

else
return (status);

}

The following items correspond to Example 5–1:

! The program defines a symbol, PAGE_COUNT, to stand for the number of
pages requested.

" The program requests 10 additional pages to be added at the end of the P0
region of its virtual address space.

5.2.2 Allocating Memory in Existing Virtual Address Space
If your application reallocates memory that is already in its virtual address space
by using the $CRETVA system service, you might need to modify the values of
the following arguments to $CRETVA:

• If your application explicitly rounds the address specified in the inadr
argument to be a multiple of 512 in order to align on a VAX page boundary,
you need to modify the address. On I64 systems, the $CRETVA system
service rounds the start-address down to a CPU-specific page boundary, which
vary with different implementations.

• The size of the reallocation, specified by the address range in the inadr
argument, might be larger on an I64 system than it is on a VAX system
because the request is rounded up to CPU-specific pages. This can cause the
unintended destruction of neighboring data, which also occurs with single-
page allocations. (When the start-address and the end-address specified in
the inadr argument match, a single page is allocated.)

Recommendations
To determine whether your application needs to be modified, HP suggests doing
the following:

• For all potential page sizes, make sure the area of virtual address space
affected by the call does not destroy important data.

5–8 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.2 Examining Memory Allocation Routines

• For all potential page sizes, make sure the start-address at which the
allocation begins always falls on a page boundary.

• Specify the optional retadr argument, if not already included by your
application, to determine the exact boundaries of the memory allocated by
the call to the $CRETVA system service.

Example 5–2 shows how memory allocated to a buffer can be reallocated by using
the $CRETVA system service.

Example 5–2 Allocating Memory in Existing Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>

char _align(page) buffer[1024];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long inadr[2];
long retadr[2];

inadr[0] = &buffer[0];
inadr[1] = &buffer[1023];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRETVA(inadr, &retadr, 0);

if(status & STS$M_SUCCESS)
{

printf("success\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("failure\n");
exit(status);

}
}

5.2.3 Deleting Virtual Memory
Calls to the $DELTVA system service to free memory allocated by the $EXPREG
and $CRETVA system services should require no modification if your application
uses the address range returned in the retadr argument (returned by the
routine used to allocate the memory) as the inadr argument to the $DELTVA
system service. Because the actual amount of the allocation varies with the
implementation, your application should not make any assumptions regarding
the extent of the allocation.

Adapting Applications to a Larger Page Size 5–9

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

5.3 Examining Memory Mapping Routines
To determine whether the memory mapping performed by your application
requires modification, check to see where in virtual memory your application
performs the mapping. The memory mapping system services ($CRMPSC and
$MGBLSC) allow you to map memory in the following ways:

• Map memory into an expanded area of your application’s virtual address
space.

• Map a single page of memory into your application’s virtual address space,
starting at a location you specify (the location might be in existing virtual
address space).

• Map memory into an existing area of your virtual address space, defined by
the start-address and end-address you specify.

How your application maps a section is determined primarily by the following
arguments to the $CRMPSC and $MGBLSC system services:

• inadr argument—Specifies the size and location of the section by its start-
address and end-address, interpreted by the $CRMPSC system service in the
following ways:

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG bit is set in the flags argument, the system service
allocates the memory in whichever program region the addresses fall, but
it does not use the specified location.

If both addresses specified in the inadr argument are the same and the
SEC$M_EXPREG flag is not set, a single page is mapped, starting at
the specified location. (This mode of operation of the $CRMPSC system
service is not supported on I64 systems. If your application uses this
mode, see Section 5.3.2 for recommendations about modifying your source
code.)

If both addresses are different, the system service maps the section into
memory using the boundaries specified.

• pagcnt (page count) argument—Specifies the number of blocks you want to
map from the section file.

• relpag (relative page number) argument—Specifies the location in the section
file at which you want mapping to begin.

The $CRMPSC and $MGBLSC system services map a minimum of one CPU-
specific page. If the section file does not fill a single page, the remainder of the
page is filled with zeros. The extra space on the page should not be used by your
application because only the data that fits into the section file will be written
back to the disk.

5.3.1 Mapping into Expanded Virtual Address Space
If your application maps a section file into an expanded area of your application’s
virtual address space, you might not need to modify the source code. Because
the mapping occurs in expanded virtual address space, there is no danger of
overmapping existing data, even if the amount of memory allocated is larger on
an I64 system than on a VAX system. Thus, the values you specify as arguments
to the $CRMPSC system service on a VAX system should still work on an I64
system.

5–10 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Recommendation
While applications that map sections into expanded areas of virtual memory may
work correctly without modification, HP suggests that you specify the retadr
argument, if not already specified by your application, to determine the exact
boundaries of the memory that was mapped by the call.

Note

If your application specifies the relpag argument, you must specify the
retadr argument; it is not an optional argument. For more information
about using the relpag argument, see Section 5.3.4.

Example 5–3 shows a call to the $CRMPSC system service that maps a section
file into expanded address space. The example maps a section file named
MAPTEST.DAT that was created using the DCL command CREATE. For
example:

$ CREATE maptest.dat
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data
test data test data test data test data test data

Ctrl/Z

Example 5–3 Mapping a Section into Expanded Virtual Address Space

#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char _align(page) buffer[1024];
char *filename = "maptest.dat";

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;

(continued on next page)

Adapting Applications to a Larger Page Size 5–11

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–3 (Cont.) Mapping a Section into Expanded Virtual Address Space

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[0];

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
flags, /* flags, with SEC$M_EXPREG bit set */

0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("map failed\n");
exit(status);

}

}

5.3.2 Mapping a Single Page to a Specific Location
If your application maps a section file into a single page of memory, you need to
modify your source code because this mode of operation is not supported on I64
systems. Because the page size on I64 systems differs from that on VAX systems
and varies with different implementations of the Intel Itanium architecture, you
must specify the exact boundaries of the memory into which you intend to map
a section file. The $CRMPSC system service returns an invalid arguments error
(SS$_INVARG) for this usage.

To see whether your application uses this mode, check the start-address and
end-address specified in the inadr argument. If both addresses are the same and
the SEC$M_EXPREG bit in the flags argument is not set, your application is
using this mode.

5–12 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Recommendations
HP suggests the following guidelines for modifying calls to the $CRMPSC system
service in this mode:

• If the location into which the mapping occurs is unimportant, set the SEC$M_
EXPREG bit in the flags argument and let the system service map the section
into an expanded area of your application’s virtual address space. For more
information about this mode of operation, see Section 5.3.1.

• If the location into which the mapping occurs is important, define both the
start-address and end-address in the inadr argument and map the section
into a defined area. For more information about this mode, see Section 5.3.3.

5.3.3 Mapping into a Defined Address Range
If your application maps a section into a defined area of its virtual address space,
you might need to modify your source code because the $CRMPSC and $MGBLSC
system services interpret some of the arguments differently on I64 systems than
on VAX systems. The differences are as follows:

• The start-address specified in the inadr argument must be aligned on a
CPU-specific page boundary and the end-address specified must be aligned
with the end of a CPU-specific page. On VAX systems, the $CRMPSC and
the $MGBLSC system services round these addresses to page boundaries.
On I64 systems, which have larger page sizes, automatic rounding is not
done because rounding to CPU-specific page boundaries affects a much larger
portion of memory. Thus, on I64 systems, you must explicitly state where
you want the virtual memory space mapped. If the addresses you specify are
not aligned on CPU-specific page boundaries, the $CRMPSC system service
returns an invalid arguments error (SS$_INVARG).

• The addresses returned in the retadr argument reflect only the usable
portion of the actual memory mapped by the call, not the entire amount
mapped. The usable amount is either the value specified in the pagcnt
argument (measured in pagelets) or the size of the section file, whichever
is smaller. The actual amount mapped depends on how many CPU-specific
pages are required to map the section file. If the section file does not fill a
CPU-specific page, the remainder of the page is filled with zeros. The excess
space on this page should not be used by your application. The end-address
specified in the retadr argument specifies the upper limit available to your
application. Note also that, when the relpag argument is specified, you must
also include the retadr argument; it is not an optional argument on I64
systems as it is on VAX systems. See Section 5.3.4 for more information.

Recommendations
HP suggests that you change your application so that it maps data into expanded
virtual address space, if possible. If you cannot change the way your application
maps data, HP recommends the following guidelines:

• Because the operating system maps a minimum of one physical page, and
physical pages on I64 systems are larger than pages on VAX systems, you
must make sure that, when the system maps the section into the buffer
you define in your application, it does not overwrite neighboring data. Most
applications on VAX systems define the buffer into which the section is to
be mapped in multiples of 512 bytes because that is the page size on VAX
systems, even if the section file to be mapped is less than 512 bytes in size.
To follow this strategy on I64 systems, you would need to declare a buffer in

Adapting Applications to a Larger Page Size 5–13

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

your application as large as the largest possible I64 page (64-K bytes) which
would waste memory.

A better way to make sure your section does not overwrite neighboring data
when it is mapped is to force the linker to isolate the buffer into a separate
image section. (The linker creates an image out of image sections. Each
image section defines the memory requirements of part of the image.) By
isolating the buffer into its own image section, you ensure that the mapping
operation does not overwrite neighboring data because the linker allocates
image sections on page boundaries; neighboring data starts on the next page
boundary. Thus, you can map a page of memory into your section without
disturbing neighboring data and without having to change the size of the
buffer.

To ensure that the linker puts your section into its own image section,
you must set the SOLITARY attribute of the program section in which
your section resides, using the linker’s PSECT_ATTR= option. (For more
information, see the HP OpenVMS Linker Utility Manual.) Note that
you might need to use the capabilities of whatever high-level or mid-
level programming language you are using to ensure that the compiler
puts the buffer you define into a separate program section. See compiler
documentation for more information.

• Make sure that the start-address and end-address of the section that you
specify as arguments to the $CRMPSC and $MGBLSC system services are
aligned with the start-address and end-address of a CPU-specific page. On
VAX systems, the system services round the addresses to page boundaries
for you. On I64 systems, the system services do not round the addresses you
specify to page boundaries.

If you isolate the section into its own image section, using the SOLITARY
program section attribute, the start-address is guaranteed to be on a page
boundary because the linker aligns image sections on page boundaries by
default, no matter what the page size of the host machine is at run time.

To make sure the end-address of the section is aligned on a CPU-specific page
boundary, you must know the page size supported by the machine on which
your application is being run. You can obtain the CPU-specific page size at
run time by calling the $GETSYI system service or the LIB$GETSYI run-time
library routine, and use this value to calculate an aligned end-address value
to pass in the inadr argument to the system services.

Note that you should specify the retadr argument to determine the amount of
usable memory the system mapped. The operating system maps a minimum
of one page; however, your application may use only part of the page. The
end-address specified in the retadr argument marks the upper limit of usable
memory. (On I64 systems, if your application specifies the relpag argument
to the $CRMPSC system service, the retadr argument is required.)

The example VAX program in Example 5–4 maps the section file created in
Section 5.3.1 into its existing virtual address space. The application defines a
buffer, named buffer, that is 512 bytes in size, reflecting the VAX page size. The
program defines the exact bounds of the section by passing the address of the
first byte of the buffer as the start-address and the address of the last byte of the
buffer as the end-address in the inadr argument.

5–14 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–4 Mapping a Section into a Defined Area of Virtual Address Space

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>

struct FAB fab;

char *filename = "maptest.dat";

char _align(page) buffer[512];

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;
long flags = 0;
long inadr[2];
long retadr[2];
int fileChannel;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("Opened mapfile %s\n",filename);

else
{

printf("Cannot open mapfile %s\n",filename);
exit(status);

}

fileChannel = fab.fab$l_stv;

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[511];

printf("inadr[0]=%u,inadr[1]=%u\n",inadr[0],inadr[1]);

status = SYS$CRMPSC(inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* flags */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

(continued on next page)

Adapting Applications to a Larger Page Size 5–15

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–4 (Cont.) Mapping a Section into a Defined Area of Virtual Address
Space

if(status & STS$M_SUCCESS)
{

printf("Map succeeded\n");
printf("retadr[0]=%u,retadr[1]=%u\n",retadr[0],retadr[1]);

}
else
{

printf("Map failed\n");
exit(status);

}

}

For the program in Example 5–4 to run correctly on an I64 system, you must
make the following modifications:

• You must ensure that the start-address of the section specified in the inadr
argument is aligned on an I64 page boundary and the end-address specified is
aligned with the end of an I64 page.

• You must ensure that when a larger page on an I64 system is mapped,
neighboring data is not overwritten.

One way to accomplish these goals is to isolate the program section that contains
the section data in its own image section by using the SOLITARY program section
attribute.

In the example, the section, named buffer, appears in the program section
named buffer. (Program section creation differs among programming languages
on each platform. Check the compiler documentation to ensure that the section is
placed in its own program section.), The following link operation illustrates how
to set the solitary attribute of this program section:

$ LINK MAPTEST, SYS$INPUT/OPT
PSECT_ATTR=BUFFER,SOLITARY

Ctrl/Z

To specify an end-address for the section buffer that is aligned with the end of
a CPU-specific page boundary, obtain the CPU-specific page size at run time,
subtract 1 from the returned value, and use the resulting value to take the
address of the last element of the array. Pass this value as the second longword
in the inadr argument. (To find out how to obtain the page size at run time, see
Section 5.4.) Note that you do not need to change the allocation of the buffer into
which the section is mapped.

To ensure that your application runs on an I64 system with any page size, specify
the /BPAGE=16 qualifier to force the linker to align image sections on 64KB
boundaries. Note that the total amount of memory mapped might be much
larger than the total amount of usable memory. The amount of usable memory is
determined by the value of the page count argument (pagcnt) or the size of the
section file, whichever is smaller. To avoid using memory that is not within the
bounds of the section, use the values returned in the retadr argument.

5–16 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–5 shows the source changes required for Example 5–4 in in order for
it to run on an I64 system.

Example 5–5 Source Code Changes Required to Run Example 5–4 on an I64
System

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <string.h>
#include <stdlib.h>
#include <descrip.h>
#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> !

char buffer[512]; "
char *filename = "maptest.dat";
struct FAB fab;

long cpu_pagesize; #

struct itm { /* item list */
short int buflen; /* length of buffer in bytes */
short int item_code; /* symbolic item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value buffer length */

} itmlst[2]; $

main(argc, argv)
int argc;
char *argv[];
{

int i;
int status = 0;
long flags = SEC$M_EXPREG;
long inadr[2];
long retadr[2];
int fileChannel;
char *mapped_section;

/******** create disk file to be mapped *************/

fab = cc$rms_fab;
fab.fab$l_fna = filename;
fab.fab$b_fns = strlen(filename);
fab.fab$l_fop = FAB$M_CIF | FAB$M_UFO; /* must be UFO */

status = sys$create(&fab);

if(status & STS$M_SUCCESS)
printf("%s opened\n",filename);

else
{

exit(status);
}

fileChannel = fab.fab$l_stv;

(continued on next page)

Adapting Applications to a Larger Page Size 5–17

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

Example 5–5 (Cont.) Source Code Changes Required to Run Example 5–4 on
an I64 System

/********** obtain the page size at run time ****************/

itmlst[0].buflen = 4;
itmlst[0].item_code = SYI$_PAGE_SIZE;
itmlst[0].bufadr = &cpu_pagesize;
itmlst[0].retlenadr = &cpu_pagesize_len;
itmlst[1].buflen = 0;
itmlst[1].item_code = 0;

% status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
}
else
{

printf("getsyi fails\n");
exit(status);

}

/********** create and map the section ****************/

inadr[0] = &buffer[0];
inadr[1] = &buffer[cpu_pagesize - 1]; &

printf("address of buffer = %u\n", inadr[0]);

status = SYS$CRMPSC(&inadr, /* inadr=address target for map */
&retadr, /* retadr= what was actually mapped */

0, /* acmode */
0, /* no flags to set */
0, /* gsdnam, only for global sections */
0, /* ident, only for global sections */
0, /* relpag, only for global sections */

fileChannel, /* returned by SYS$CREATE */
0, /* pagcnt = size of sect. file used */
0, /* vbn = first block of file used */
0, /* prot = default okay */
0); /* page fault cluster size */

if(status & STS$M_SUCCESS)
{

printf("section mapped\n");
printf("start address returned =%u\n",retadr[0]);

}
else
{

printf("map failed\n");
exit(status);

}
}

The following items correspond to Example 5–5:

! The header file SYIDEF.H contains definitions of OpenVMS item codes for the
$GETSYI system service.

5–18 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

" The buffer is defined without using the _align(page) storage descriptor.
Because the page size cannot be determined until run time on OpenVMS I64
systems, the HP C for OpenVMS I64 compiler aligns the data on the largest
I64 page size (64 KB) when _align(page) is specified.

This structure defines the item list used to obtain the page size at run time.

$ This variable holds the page-size value returned.

% This call to the $GETSYI system service obtains the page size at run time.

& The end-address of the buffer is specified by subtracting 1 from the page-size
value returned.

5.3.4 Mapping from an Offset into a Section File
Your application might map a portion of a section file by specifying the address at
which to start the mapping as an offset from the beginning of the section file. You
specify this offset by supplying a value to the relpag argument of the $CRMPSC
system service. The value of the relpag argument specifies the page number
relative to the beginning of the file at which the mapping should begin.

To preserve compatibility, the $CRMPSC system service interprets the value of
the relpag argument in 512-byte units on both VAX systems and I64 systems.
However, because the CPU-specific page size on I64 systems is larger than 512
bytes, the address specified by the offset in the relpag argument probably does
not fall on a CPU-specific page boundary. The $CRMPSC system service can map
virtual memory in CPU-specific page increments only. Thus, on I64 systems, the
mapping of the section file starts at the beginning of the CPU-specific page that
contains the offset address, not at the address specified by the offset.

Note

Even though the routine starts mapping at the beginning of the CPU-
specific page that contains the address specified by the offset, the start-
address returned in the retadr argument is the address specified by the
offset, not the address at which mapping actually starts.

If your application maps from an offset into a section file, you might need
to enlarge the size of the address range specified in the inadr argument to
accommodate the extra virtual memory space that gets mapped on I64 systems.
If the address range specified is too small, your application might not map the
entire portion of the section file you want, because the mapping begins at an
earlier start-address in the section file.

For example, to map 16 blocks in a section file starting at block number 15 on a
VAX system, you could specify an address range 16*512 bytes in size in the inadr
argument and specify a value of 15 for the relpag argument. To accomplish this
same mapping on an I64 system, you must allow for the difference in page sizes.
For example, on an I64 system with an 8-KB page size, the address specified
by the relpag offset might fall 15 pagelets into a CPU-specific page, as shown
in Figure 5–2. Because the $CRMPSC system service on an I64 system begins
mapping of the section file at a CPU-specific page boundary, it would fail to
map blocks 16 through 30. For the mapping to succeed, you must increase the
size of the address range to accommodate the additional 15 pagelets mapped
by the $CRMPSC system service (or the $MGBLSC system service) on an I64

Adapting Applications to a Larger Page Size 5–19

Adapting Applications to a Larger Page Size
5.3 Examining Memory Mapping Routines

system. Otherwise, only one block of the portion of the section file you specified is
mapped.

Figure 5–2 Effect of Address Range on Mapping from an Offset

0 3115

ZK−2499A−GE

$MGBLSC: =512*16

On OpenVMS Alpha system:

=15

$MGBLSC: =512*16
=15

(pagelets 0 through 15 mapped)

inadr
relpag

On OpenVMS VAX system:

(pagelets 15 through 30 mapped)

inadr
relpag

When trying to calculate how much to enlarge the size of the address range
specified in the relpag argument, the following formula can be helpful. The
formula calculates the maximum number of CPU-specific pages needed to map a
given number of pagelets.

������� �� �	
����
 �� �	�� �� � �	
����
 ��� �	
��� ��

�	
����
 ��� �	
�

For example, this formula can be used to calculate how much to enlarge the
address range specified in the previous scenario. In the following equation, the
page size is assumed to be 8K, so pagelets_per_page equals 16:

16+((2x16)-2)/16=2.87...

Rounding the result down to the nearest whole number, the formula indicates
that the address range specified in the inadr argument must encompass two
CPU-specific pages.

5.4 Obtaining the Page Size at Run Time
To obtain the page size supported by an I64 system, use the $GETSYI system
service. Example 5–6 shows how to use this system service to obtain the page
size at run time.

Example 5–6 Using the $GETSYI System Service to Obtain the CPU-Specific
Page Size

#include <ssdef.h>
#include <stdio.h>
#include <stsdef.h>
#include <descrip.h>

(continued on next page)

5–20 Adapting Applications to a Larger Page Size

Adapting Applications to a Larger Page Size
5.4 Obtaining the Page Size at Run Time

Example 5–6 (Cont.) Using the $GETSYI System Service to Obtain the
CPU-Specific Page Size

#include <dvidef.h>
#include <rms.h>
#include <secdef.h>
#include <syidef.h> /* defines page size item code symbol */

struct itm { /* define item list */
short int buflen; /* length in bytes of return value buffer */
short int item_code; /* item code */
long bufadr; /* address of return value buffer */
long retlenadr; /* address of return value length buffer */

} itmlst[2];

long cpu_pagesize;
long cpu_pagesize_len;

main(argc, argv)
int argc;
char *argv[];
{

int status = 0;

itmlst[0].buflen = 4; /* page size requires 4 bytes */
itmlst[0].item_code = SYI$_PAGE_SIZE; /* page size item code */
itmlst[0].bufadr = &cpu_pagesize; /* address of ret_val buffer */
itmlst[0].retlenadr = &cpu_pagesize_len; /* addr of length of ret_val */
itmlst[1].buflen = 0;
itmlst[1].item_code = 0; /* Terminate item list with longword of 0 */

status = sys$getsyiw(0, 0, 0, &itmlst, 0, 0, 0);

if(status & STS$M_SUCCESS)
{

printf("getsyi succeeds, page size = %d\n",cpu_pagesize);
exit(status);

}
else
{

printf("getsyi fails\n");
exit(status);

}
}

5.5 Locking Memory in the Working Set
The $LKWSET system service locks into the working set the range of pages
identified in the inadr argument as an address range on VAX systems. The
system service rounds the addresses to CPU-specific page boundaries if necessary.

A newer LIBRTL routine called LIB$LOCK_IMAGE provides similar
functionality on OpenVMS Alpha and I64. LIB$LOCK_IMAGE and the related
routine LIB$UNLOCK_IMAGE are preferable for locking code and related data in
the working set. For more information about locking images in the working set,
see the descriptions of these routines in the HP OpenVMS RTL Library (LIB$)
Manual.

Adapting Applications to a Larger Page Size 5–21

6
Preserving the Integrity of Shared Data

This chapter describes synchronization mechanisms that ensure the integrity of
shared data, such as the atomicity guaranteed by certain VAX instructions.

6.1 Overview
If your application uses multiple threads of execution and the threads share
access to data, you might need to add explicit synchronization mechanisms
to your application to protect the integrity of the shared data on I64 systems.
Without synchronization, an access to the data initiated by one application thread
can interfere with an access initiated simultaneously by a competing thread,
leaving the data in an unpredictable state.

On VAX systems, the degree of synchronization required depends on the
relationship of the different threads of execution, which can include the following:

• Multiple threads executing within a single process, such as a main thread
interrupted by an asynchronous system trap (AST) thread.

Note that the AST thread can be initiated either by the application or by
the operating system. For example, the operating system uses an AST to
write status to an I/O status block. The operating system also uses an AST to
complete a buffered I/O read operation to a specified user buffer.

• Multiple threads separated into multiple processes executing on a single
processor that access a global section.

• Multiple threads separated into multiple processes executing concurrently on
multiple processors that access a global section.

On VAX systems, applications that take advantage of the parallel processing
potential of a multiprocessor system have always had to provide explicit
synchronization mechanisms, such as locks, semaphores, and interlocked
instructions, to protect shared data. However, applications that use multiple
threads on uniprocessor systems might not explicitly protect the shared data.
Instead, these applications might depend on the implicit protection provided
by features of the VAX architecture that guarantee synchronization between
application threads executing on a VAX uniprocessor system (described in
Section 6.1.1).

6.1.1 VAX Architectural Features That Guarantee Atomicity
The following features of the VAX architecture provide synchronization among
multiple threads of execution running on a uniprocessor system. (The VAX
architecture does not extend this guarantee of atomicity to multiprocessor
systems.)

• Instruction atomicity—Many of the instructions defined by the VAX
architecture are capable of performing a read-modify-write operation in a
single, noninterruptible sequence (called an atomic operation) from the

Preserving the Integrity of Shared Data 6–1

Preserving the Integrity of Shared Data
6.1 Overview

viewpoint of multiple application threads executing on a single processor. The
Intel Itanium architecture supports such instructions.

To provide compatibility with VAX systems, the Intel Itanium architecture
defines several instructions that you can use to ensure that a read/write
operation is done atomically. Section 6.1.2 describes these instructions and
how compilers on I64 systems make this capability available to programs
written in high-level languages.

However, even on VAX systems, implicit dependence on the atomicity of VAX
instructions is not recommended. Because of the optimizations they perform,
compilers on VAX systems do not guarantee that they use a VAX atomic
instruction to implement certain program statements, such as an increment
operation (x = x+ 1), even if such an instruction is available.

• Memory access granularity—The VAX architecture supports instructions
that can manipulate byte-sized and word-sized data in a single,
noninterruptable operation. (The VAX architecture supports instructions
to manipulate data of other sizes as well.) The Intel Itanium architecture also
supports instructions that manipulate byte-sized and word-sized data.

• Read/write ordering—On VAX uniprocessor and multiprocessor systems,
sequential write operations and read operations appear to occur in the same
order in which you specify them from the viewpoint of all types of external
threads of execution. I64 uniprocessor systems also guarantee that the order
of read and write operations appears synchronized for multiple threads
of execution running within a single process or within multiple processes
running on a uniprocessor. However, write operations that are visible to
threads executing concurrently on an I64 multiprocessor system require
explicit synchronization.

To provide compatibility with VAX systems, the Intel Itanium architecture
supports an instruction that ensures that read/write operations occur in
the order specified, from the viewpoint of all the processors in the system.
Section 6.1.2 provides more information about this instruction and about
how high-level languages make this instruction available. Section 6.3
describes the feature of the Intel Itanium architecture that provides this
synchronization and how the compilers make it available to high-level
language programs on I64 systems.

6.1.2 Intel Itanium Compatibility Features
The Intel Itanium architecture has several mechanisms to provide compatibility
with the atomicity capabilities of the VAX architecture:

• Compare and Exchange instructions—The Intel Itanium instruction
set defines four instructions, named Compare and Exchange (cmpxchg1,
cmpxchg2, cmpxchg4, cmpxchg8) that provide for atomic compare and
memory exchange operations.

• Exchange instructions—The Intel Itanium instruction set defines four
instructions, named Exchange (xchg1, xchg2, xchg4, xchg8) that provide for
atomic memory exchange operations.

• Fetchadd instructions—The Intel Itanium instruction set defines two
instructions, named Fetch and Add Immediate (fetchadd4, fetchadd8) that
provide for atomic increment or decrement of a memory location.

6–2 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.1 Overview

• Memory fence—The I64 instruction set includes an instruction that can
ensure that read/write operations, issued by multiple threads executing on
separate processors in a multiprocessor system, appear to occur in the order
specified. This instruction, named Memory Fence (MF), guarantees that
all subsequent load or store instructions do not access memory until after
all previous load and store instructions have accessed memory from the
viewpoint of multiple threads of execution.

In addition to the MF instruction, all of the previously listed instructions
have forms that ensure that the memory read/write is made visible either
before all subsequent data memory accesses or after all previous data memory
accesses.

6.2 Uncovering Atomicity Assumptions in Your Application
One way to uncover synchronization assumptions in your application is to identify
data that is shared among multiple threads of execution and then examine each
access to the data from each thread. When looking for shared data, remember
to include unintentionally shared data as well as intentionally shared data.
Shared data can be shared unintentionally because of its proximity to data that
is accessed by multiple threads of execution, such as data written to by ASTs
generated by the operating system as a result of system services such as $QIO,
$ENQ, or $GETJPI.

Because compilers on I64 systems use quadword instructions by default in
certain circumstances, all data items within a quadword of a shared data item
might become shared unintentionally. (For example, compilers use quadword
instructions to access a data item that is not aligned on natural boundaries.
Data is naturally aligned when its address is divisible by its size. For more
information, see Chapter 7. Compilers align explicitly declared data on natural
boundaries by default.)

When examining data access, determine whether another thread can view
the data in an intermediate state and, if so, whether it is important to the
application. In some cases, the exact value of the shared data might not be
important; the application depends only on the relative value of the variable. In
general, ask the following questions:

• Is the operation performed on the shared data atomic from the viewpoint of
other threads of execution?

• Is it possible to perform an atomic operation to the data type involved?

Figure 6–1 shows this decision process.

Preserving the Integrity of Shared Data 6–3

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Figure 6–1 Synchronization Decision Tree

No

Yes

ZK−5204A−GE

Does your application
share data between
multiple threads of
execution?

No synchronization
required.

Is operation performed
on the data atomic?

Requires explicit
synchronization.

No synchronization required.

Requires explicit
synchronization.

No

No

Yes

Yes

Can data be accessed
atomically?

6.2.1 Protecting Explicitly Shared Data
Example 6–1 is a simplified example of some possible atomicity assumptions
in a VAX application. The program uses a variable, called flag, through which
an AST thread communicates with a main processing thread of execution. The
main processing loop continues working until the counter variable reaches a
predetermined value. The program queues an AST interruption that sets the flag
to the maximum value, terminating the processing loop.

Example 6–1 Atomicity Assumptions in a Program with an AST Thread

#include <ssdef.h>
#include <descrip.h>

#define MAX_FLAG_VAL 1500

int ast_rout();
long time_val[2];
short int flag; /* accessed by main and AST threads */

(continued on next page)

6–4 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Example 6–1 (Cont.) Atomicity Assumptions in a Program with an AST Thread
main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

flag = 0; /* loop until flag = MAX_FLAG_VAL */
while(flag < MAX_FLAG_VAL)
{

printf("main thread processing (flag = %d)\n",flag);
flag++;

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

In Example 6–1, the flag variable is explicitly shared between the main thread
of execution and an AST thread. The program does not use any synchronization
mechanism to protect the integrity of this variable; it implicitly depends on the
atomicity of the increment operation.

On I64 systems, this program might not always work as expected because the
mainline thread of execution can be interrupted in the middle of the increment
operation by the AST thread before the new value is stored back into memory, as
shown in Figure 6–2. (This is more likely to fail in a real application with dozens
of AST threads.) In this scenario, the AST thread interrupts the increment
operation before it completes, setting the value of the variable to the maximum
value. But once control returns to the main thread, the increment operation
completes, overwriting the value of the AST thread. When the loop test is
performed, the value is not at its maximum, and the processing loop continues.

Preserving the Integrity of Shared Data 6–5

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

Figure 6–2 Atomicity Assumptions in Example 6–1

Time

ZK−5203A−GE

Main Thread

1500

126

:flag

AST ThreadShared Data

125

Read value
of flag.

Begin
increment operation.

Main
thread
resumes. Write incremented

value to flag.

Main thread overwrites value written by
AST thread.

AST thread

AST thread writes

reads value of

MAX_FLAG_VAL

AST interrupts

to flag variable.

flag (125).

increment operation.

125

:flag

:flag

:flag

Recommendations
To correct these atomicity dependencies, HP recommends doing the following:

• Disable AST delivery using the $SETAST system service, while the data is
being accessed, and enable it after access is completed.

• Explicitly protect the data by using a compiler mechanism. For example,
C for OpenVMS I64 systems supports atomicity built-ins. In addition, you
can use other mechanisms to synchronize access to this data, such as the
$ENQ system service (for data accessed by multiple threads running on a
multiprocessor system) or run-time library routines, such as LIB$BBCCI or
LIB$BBSSI, and the interlocked queue routines.

For example, in Example 6–1, replace the increment operation,
which is performed by the C increment operator (flag++), with
the atomicity built-in supported by C for OpenVMS I64 systems
(_ _ADD_ATOMIC_LONG(&flag,1,0)). See Example 6–2 for the complete
example.

Note that the shared variable must be an aligned longword or aligned
quadword to be protected by the atomicity built-ins.

6–6 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

• If you cannot change byte-sized or word-sized data to a longword or quadword,
then change the granularity the compiler uses when accessing the data item.
Many compilers on I64 systems allow you to specify the granularity they use
when accessing a particular data item or when processing an entire module.
However, specifying byte and word granularity can have an adverse effect on
the performance of your application.

Example 6–2 shows how these changes are implemented in the program
presented in Example 6–1.

Example 6–2 Version of Example 6–1 with Synchronization Assumptions

#include <ssdef.h>
#include <descrip.h>
#include <builtins.h> !

#define MAX_FLAG_VAL 1500
int ast_rout();
long time_val[2];
int " flag; /* accessed by mainline and AST threads */

main()
{

int status = 0;
static $DESCRIPTOR(time_desc, "0 ::1");

/* changes ASCII time value to binary value */

status = SYS$BINTIM(&time_desc, &time_val);

if (status != SS$_NORMAL)
{

printf("bintim failure\n");
exit(status);

}

/* Set timer, queue ast */

status = SYS$SETIMR(0, &time_val, ast_rout, 0, 0);

if (status != SS$_NORMAL)
{

printf("setimr failure\n");
exit(status);

}

flag = 0;
while(flag < MAX_FLAG_VAL) /* perform work until flag set to zero */
{

printf("mainline thread processing (flag = %d)\n",flag);
__ADD_ATOMIC_LONG(&flag,1,0); #

}
printf("Done\n");

}

ast_rout() /* sets flag to maximum value to stop processing */
{

flag = MAX_FLAG_VAL;
}

The following items correspond to Example 6–2:

! To use the C for OpenVMS I64 systems atomicity built-ins, you must include
the builtins.h header file.

" In this version, the variable flag is declared as a longword to allow atomic
access (the atomicity built-ins require it).

Preserving the Integrity of Shared Data 6–7

Preserving the Integrity of Shared Data
6.2 Uncovering Atomicity Assumptions in Your Application

The increment operation is performed with an atomicity built-in function.

6.2.2 Protecting Unintentionally Shared Data
In Example 6–1, both threads clearly access the same variable. However, on
I64 systems, an application can have atomicity concerns for variables that are
inadvertently shared. In this scenario, two variables are physically adjacent to
each other within the boundaries of a longword or quadword. On VAX systems,
each variable can be manipulated individually. On an I64 system, which supports
atomic read and write operations of longword and quadword data only, the entire
longword must be fetched before the target bytes can be modified. (For more
information about this change in data-access granularity, see Chapter 7.)

To illustrate this problem, consider a modified version of the program in
Example 6–1 in which the main thread and the AST thread each increment
separate counter variables that are declared in a data structure, as in the
following code:

struct {
short int flag;
short int ast_flag;
};

If both the main thread and the AST thread attempt to modify their individual
target words simultaneously, the results are unpredictable, depending on the
timing of the two operations.

Recommendations
To remedy this synchronization problem, HP suggests doing the following:

• Change the size of the shared variables to longwords or quadwords. However,
because compilers on I64 systems use quadword instructions in certain
circumstances, you should use quadwords to ensure the integrity of the data.
For example, if the data is not aligned on a natural boundary, the compilers
use a quadword instruction to access the data.

In data structures, you can also insert extra bytes between data items to force
the elements of the structure onto natural quadword boundaries. On I64
systems, the compilers align data on natural boundaries by default.

For example, to ensure that each flag variable in the data structure can be
modified without interference from other threads of execution, change the
declarations of the variables so that they are 64-bit quantities. Using C, you
could use the double data type, as in the following code:

struct {
double flag;
double ast_flag;
};

• Explicitly protect the data by using a compiler mechanism, such as the
atomicity built-ins or the volatile attribute. In addition, you can synchronize
access to data by multiple threads of execution running on a multiprocessor
system by using the $ENQ system service or a run-time library routine, such
as LIB$BBCCI or LIB$BBSSI, or by using interlocked queue operations.

6–8 Preserving the Integrity of Shared Data

Preserving the Integrity of Shared Data
6.3 Synchronizing Read/Write Operations

6.3 Synchronizing Read/Write Operations
VAX multiprocessing systems have traditionally been designed so that if one
processor in a multiprocessing system writes multiple pieces of data, these
pieces become visible to all other processors in the same order in which they
were written. For example, if CPU A writes a data buffer (represented by X in
Figure 6–3) and then writes a flag (represented by Y in Figure 6–3), CPU B can
determine that the data buffer has changed by examining the value of the flag.

On I64 systems, read and write operations to memory can be reordered to benefit
overall memory subsystem performance. Processes that execute on a single
processor can rely on write operations from that processor becoming readable in
the order in which they are issued. However, multiprocessor applications cannot
rely on the order in which write operations to memory become visible throughout
the system. In other words, write operations performed by CPU A might become
visible to CPU B in an order different from that in which they were written.

Figure 6–3 depicts this problem. CPU A requests a write operation to X, followed
by a write operation to Y. CPU B requests a read operation from Y and, seeing the
new value of Y, initiates a read operation of X. If the new value of X has not yet
reached memory, CPU B receives the old value. As a result, any token-passing
protocol relied on by procedures running on CPUs A and B is broken. CPU A
could write data and set a flag bit, but CPU B might see the flag bit set before
the data is actually written and might erroneously use stale memory contents.

Figure 6–3 Order of Read and Write Operations on an I64 System

Time
Writable global section

write #123,X

write #1,Y

0

0

0 or 123

1

:X

ZK−5202A−GE

read Y
if Y = 1 then read X
(even if Y = 1, X can be either
0 or 123; if y = 0, X can also
be either 0 or 123)

:Y

:X

:Y

Code on
CPU A

Code on
CPU B

Preserving the Integrity of Shared Data 6–9

Preserving the Integrity of Shared Data
6.3 Synchronizing Read/Write Operations

Recommendations
Programs that run in parallel and that rely on read/write ordering require some
redesigning to run correctly on an I64 system. One or more of the following
techniques might be appropriate, depending on the application:

• Use the I64 Memory Fence (MF) instruction before and after all read and
write instructions for which the completion order is crucial. For example, the
C for OpenVMS I64 systems compiler supports the MF instruction with the
_ _MB() built-in.

• Redesign the application to use either built-in memory interlock operations
provided by the compiler or the VAX interlocked instruction routines available
in the LIB$ run-time library.

• Redesign the application to use the $ENQ and $DEQ system services to
protect the data with a lock.

6.4 Ensuring Atomicity in Translated Images
The VEST command /PRESERVE qualifier accepts keywords that allow
translated VAX images to run on Alpha systems with the same guarantees
of atomicity that are provided on VAX systems. Several /PRESERVE qualifier
keywords provide different types of atomicity protection. Note that specifying
these /PRESERVE qualifier keywords can adversely affect the performance of
your application. (For complete information about specifying the /PRESERVE
qualifier, see OpenVMS Migration Software for VAX to Alpha Systems:
Translating Images.)

To ensure that an operation that can be performed atomically on a VAX system
by a VAX instruction is performed atomically in a translated image, specify the
INSTRUCTION_ATOMICITY keyword to the /PRESERVE qualifier.

To ensure that simultaneous updates to adjacent bytes within a longword or
quadword can be accomplished without interfering with each other, specify the
MEMORY_ATOMICITY keyword to the /PRESERVE qualifier.

To ensure that read/write operations appear to occur in the order you specify
them, specify the READ_WRITE_ORDERING keyword to the /PRESERVE
qualifier.

6–10 Preserving the Integrity of Shared Data

7
Checking the Portability of Application Data

Declarations

This chapter describes how to check the data your application uses for
dependencies on the VAX architecture. The chapter also describes the effect your
choice of data type can have on the size and performance of your application on
an I64 system.

7.1 Overview
The data types supported by high-level programming languages, such as int in C
or INTEGER*4 in Fortran, provide applications with a degree of data portability
because they hide the machine-specific details of the underlying native data
types. The languages map their data types to the native data types supported by
the target platform. For this reason, you might be able to successfully recompile
and run an application that runs on VAX systems on an I64 system without
modifying the data declarations it contains.

However, if your application contains any of the following assumptions about data
types, you might need to modify your source code:

• Assumptions about data-type mappings—Your application might depend
on the underlying VAX data type to which a high-level language maps. The
Intel Itanium architecture supports most of the VAX data types; however,
some are not supported. Your application might make assumptions about
the size or bit format of a data type that might no longer be valid on an I64
system. Section 7.2 provides more information about this topic.

• Assumptions about data-type selection—Your choice of data type might
have different implications on an I64 system. For example, on VAX systems,
you might have chosen the smallest data type available to represent data
items to conserve memory usage. On an I64 system, this strategy may
actually increase memory usage. Section 7.3 provides more information about
this topic.

7.2 Checking for Dependence on a VAX Data Type
To provide data compatibility, the Intel Itanium architecture has been designed to
support many of the same native data types as the VAX architecture. Table 7–1
lists the native data types supported by both architectures. (See Appendix B of
the HP OpenVMS Programming Concepts Manual for more information about the
formats of the data types.)

Checking the Portability of Application Data Declarations 7–1

Checking the Portability of Application Data Declarations
7.2 Checking for Dependence on a VAX Data Type

Table 7–1 Comparison of VAX and I64 Native Data Types

VAX Data Types I64 Data Types

byte byte

word word

longword longword

quadword quadword

octaword –

F_floating F_floating 1

D_floating (56-bit precision) D_floating (56-bit precision)1

G_floating G_floating 1

H_floating –

– S_floating (IEEE)

– T_floating (IEEE)

– X_floating (IEEE)

Variable-length bit field –

Absolute queue Absolute longword queue

– Absolute quadword queue

Self-relative queue Self-relative longword queue

– Self-relative quadword queue

Character string –

Trailing numeric string –

Leading separate numeric string –

Packed decimal string –

1Data types not supported by hardware. Support is provided by the compiler.

Recommendations
Unless your application depends on the format or size of the underlying native
VAX data types, you might not have to modify your application because of changes
to the data-type mappings. Wherever possible, the compilers on I64 systems map
their data types to the same native data types as they do on VAX systems. For
VAX data types that are not supported by the Intel Itanium architecture, the
compilers map their data types to the closest equivalent native I64 data type.
(For more information about how the I64 compilers systems map supported data
types to native I64 data types, see Chapter 9 and compiler documentation.)

The following list provides guidelines that can be helpful for certain types of data
declarations:

• VAX floating-point data types—See the ‘‘OpenVMS Floating-Point
Arithmetic on the Intel® Itanium® Architecture’’ white paper for information
about support for VAX floating-point data types on Integrity servers. See the
Preface of this manual for the Web location of this white paper.)

• Pointer data—Check for assumptions that an address (pointer) data type is
equivalent in size to an integer data type. On I64 systems, it is possible to
use 64-bit addresses. For information about converting your applications to
use 64-bit pointers, see to the HP OpenVMS Programming Concepts Manual.

7–2 Checking the Portability of Application Data Declarations

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions about Data-Type Selection

7.3 Examining Assumptions about Data-Type Selection
Even though your application might recompile and run successfully on an I64
system, your data-type selection might not take full advantage of the benefits of
the Intel Itanium architecture. In particular, data-type selection can impact the
ultimate size of your application and its performance on I64 systems.

7.3.1 Effect of Data-Type Selection on Code Size
On VAX systems, applications typically use the smallest-size data type adequate
for the data. For example, to represent a value between 32,768 and -32,767
in an application written in C, you might declare a variable of type short. On
VAX systems, this practice conserves storage and, because the VAX architecture
supports instructions that operate on all sizes of data types, does not affect
efficiency.

You do not need to promote byte and word fields to longword or quadword fields
because I64 also supports byte and word instructions. One reason requiring field
promotion is to be able to fit larger values, but it is not necessary to promote all
byte and word fields.

7.3.2 Effect of Data-Type Selection on Performance
Another aspect of data-type selection is data alignment. Alignment is an attribute
of a data item that refers to its placement in memory. The mixture of byte-sized,
word-sized, and larger data types, typically found in data-structure definitions
and static data areas in applications on VAX systems, can lead to data that is not
aligned on natural boundaries. (A data item is naturally aligned when its address
is a multiple of its size in bytes.)

On both VAX and I64 systems, accessing unaligned data incurs more overhead
than accessing aligned data . However, VAX systems use microcode to handle
and fixup unaligned data. On I64 systems, hardware assistance is not available.
References to unaligned data trigger a fault, which must be handled by the
operating system. Thus, the cost of an unaligned reference in performance is
dramatically higher on I64 systems.

The compilers on I64 systems attempt to minimize the performance impact by
generating a special unaligned reference instruction sequence when an unaligned
reference is known at compile time. This prevents the occurrence of a run-time
unaligned fault. Unaligned references that appear at run time must be handled
as unaligned reference faults.

Recommendations
Given the potential impact of data-type selection on code size and performance,
you might think you should change all byte-sized and word-sized data
declarations to longwords to eliminate the extra instructions required for byte
and word accesses and improve alignment. However, before making sweeping
changes to your data declarations, consider the following factors:

• Frequency of access/number of replications—If a byte-sized or word-
sized data item is referenced frequently, changing it to a longword eliminates
the requirement for extra instructions at each reference and can reduce
application size significantly. However, if the byte or word is not referenced
frequently and is replicated a large number of times (for example, in a data
structure that is instantiated many times), the change to a longword can
add up to more than the cost of the additional instructions at each reference.
The three bytes added when changing to a longword can significantly increase
virtual memory usage if the data item is replicated thousands of times. Before

Checking the Portability of Application Data Declarations 7–3

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions about Data-Type Selection

changing a data declaration, consider how it is used and how much virtual
memory (and thus physical memory) you want to spend for this performance
improvement. Such trade-offs between size and performance are a frequent
consideration during design.

• Interoperability requirements—If the data object is shared with a
translated component or a native VAX component, you might be unable to
make changes that would improve its layout because the other components
depend on the binary layout of the data. Compilers (and the VEST utility)
attempt to minimize the performance impact in this case by including the
unaligned reference instruction sequence in the code they generate.

Taking these factors into consideration, use the following guidelines when
examining data-type selections:

• For data that is frequently referenced but not frequently replicated, change
byte-sized and word-sized fields to longwords, especially for performance-
critical fields.

• For data that is not frequently referenced but that is frequently replicated, no
change is recommended.

• For data that is both frequently referenced and frequently replicated,
the decision must be made after carefully examining the code size versus
performance impact of the change.

• Use the capabilities of the compilers on I64 systems to uncover data that
is not aligned on natural boundaries. Many compilers on I64 systems (for
example, HP Fortran) support the /WARNING=ALIGNMENT qualifier, which
checks for data that is not aligned on natural boundaries).

• Use the capabilities of the run-time analysis tools, Program Coverage and
Analyzer (PCA) and the OpenVMS Debugger, to uncover at run time data
that is not aligned on natural boundaries. For more information, see the
Guide to Performance and Coverage Analyzer for VMS Systems and the HP
OpenVMS Debugger Manual.

• Take advantage of the natural alignment provided by the compilers on I64
systems, wherever interoperability concerns allow. On I64 systems, compilers
align data on natural boundaries by default, wherever possible. On VAX
systems, compilers use byte alignment.

Compilers on I64 systems support qualifiers and language pragmas that
allow you to request they use the same byte alignment they use on VAX
systems. For example, the C compiler for OpenVMS I64 systems supports
the /NOMEMBER_ALIGNMENT qualifier and a corresponding pragma that
allow you to control data alignment. For more information, see the C compiler
documentation.

The following example data structure, called mystruct, is made up of byte-sized,
word-sized, and longword-sized data:

struct{
char small;
short medium;
long large;
} mystruct ;

7–4 Checking the Portability of Application Data Declarations

Checking the Portability of Application Data Declarations
7.3 Examining Assumptions about Data-Type Selection

Figure 7–1 shows how the structure is laid out in memory when it is compiled
using VAX C.

Figure 7–1 Alignment of mystruct Using VAX C

63 0

ZK−5209A−GE

31

Large Medium Small
:0

When compiled using the C compiler for OpenVMS I64 systems, this structure
is padded to achieve natural alignment, as shown in Figure 7–2. Note that by
adding a byte of padding after the first field (Small), both the next two fields of
the structure are aligned.

Figure 7–2 Alignment of mystruct Using C for OpenVMS I64 Systems

63 0

ZK−5210A−GE

31

Large Medium Small
:0

Note that the byte-sized and word-sized fields of the data structure still require
multiple instruction sequences for access. If the fields Small and Medium are
frequently referenced, and the entire structure is not frequently replicated,
consider redefining the data structure to use longword data types. However, if the
fields are not frequently referenced or the data structure is frequently replicated,
the cost of the byte or word references is a design trade-off the programmer must
make.

Checking the Portability of Application Data Declarations 7–5

8
Examining the Condition-Handling Code in

Your Application

This chapter describes the effect of differences between the VAX architecture
and the Intel Itanium architecture on the condition-handling code in your
application.

8.1 Overview
For the most part, the condition-handling code in your application will work
correctly on I64 systems, especially if your application uses the condition-
handling facilities provided by the high-level language in which it is written,
such as the END, ERR, and IOSTAT specifiers in Fortran. These language
capabilities insulate applications from architecture-specific aspects of the
underlying condition-handling facility.

However, there are certain differences between the I64 condition-handling facility
and the VAX condition-handling facility that might require you to modify your
source code. Such changes include:

• Changes to the mechanism array format

• Changes to the condition codes returned by the system

• Changes to how other tasks related to condition handling in your application
are accomplished, such as enabling exception signaling and specifying
condition-handling routines dynamically at run time

The following sections describe these changes and provide guidelines to help you
decide whether modifications are necessary.

8.2 Establishing Dynamic Condition Handlers
The OpenVMS I64 run-time libraries (RTLs) do not contain the routine
LIB$ESTABLISH, which the OpenVMS VAX RTLs contain. Because of the
nature of the OpenVMS I64 calling standard, setting up condition handlers is
done by compilers.

For programs that need to dynamically establish condition handlers, some I64
languages give special treatment for calls to LIB$ESTABLISH and generate
the appropriate code without actually calling an RTL routine. The following
languages support LIB$ESTABLISH semantics in a compatible fashion with the
corresponding VAX language:

• HP C and HP C++

Although HP C and HP C++ for OpenVMS I64 systems treat
LIB$ESTABLISH as a built-in function, the use of LIB$ESTABLISH is
not recommended on OpenVMS VAX or OpenVMS I64 systems. C and C++
programmers should call VAXC$ESTABLISH instead of LIB$ESTABLISH

Examining the Condition-Handling Code in Your Application 8–1

Examining the Condition-Handling Code in Your Application
8.2 Establishing Dynamic Condition Handlers

(VAXC$ESTABLISH is a built-in function on HP C and HP C++ for OpenVMS
I64 systems).

• HP Fortran

HP Fortran allows declarations to the LIB$ESTABLISH and LIB$REVERT
intrinsic functions, and converts them to HP Fortran RTL-specific entry
points.

• HP Pascal

HP Pascal provides the built-in routines, ESTABLISH and REVERT, to use
in place of LIB$ESTABLISH and LIB$REVERT. If you declare and try to use
LIB$ESTABLISH, you get a compile-time warning.

• MACRO–32

The MACRO–32 compiler attempts to call LIB$ESTABLISH if it is contained
in the source code.

If MACRO–32 programs establish dynamic handlers by storing a routine
address at 0(FP), they work correctly when compiled on an OpenVMS I64
system. However, you cannot set the condition handler address from within a
JSB (Jump to Subroutine) routine, only from within a CALL_ENTRY routine.

8.3 Examining Condition-Handling Routines for Dependencies
The calling sequence of user-written condition-handling routines remains the
same on I64 systems as on VAX systems. Condition-handling routines declare
two arguments to access the data the system returns when it signals an exception
condition. The system uses two arrays, the signal array and the mechanism
array, to convey information that identifies which exception condition triggered
the signal and to report on the state of the processor when the exception occurred.

The format of the signal array and the mechanism array is defined by the system
and is documented in the HP OpenVMS Programming Concepts Manual. On I64
systems, the data returned in the signal array and its format is the same as it is
on VAX systems, as shown in Figure 8–1.

Figure 8–1 32-Bit Signal Array on VAX and I64 Systems

Argument Count

Condition Code

Optional Message Sequence Arguments

Program Counter (PC)

Processor Status Longword (PSL)

31 0

ZK−5208A−GE

8–2 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

The following table describes the arguments in the signal array:

Argument Description

Argument Count On I64 and VAX systems, this argument contains a positive
integer that indicates the number of longwords that follow in the
array.

Condition Code On I64 and VAX systems, this argument is a 32-bit code that
uniquely identifies a hardware or software exception condition.
The format of the condition code, which remains unchanged on
I64 systems, is described in OpenVMS Programming Interfaces:
Calling a System Routine. Note that I64 systems do not support
every condition code returned on VAX systems and define
condition codes that cannot be returned on a VAX system.
Section 8.4 lists VAX condition codes that cannot be returned on
I64 systems.

Optional Message
Sequence

These arguments provide additional information about the
particular exception returned and vary for each exception. The
HP OpenVMS Programming Concepts Manual describes these
arguments.

Program Counter (PC) The address of the next instruction to be executed when the
exception occurred, if the exception is a trap; or the address of
the instruction that caused the exception, if the exception is a
fault. On I64 systems, this argument contains the lower 32 bits
of the PC (which is 64 bits long on I64 systems).

Processor Status
Longword (PSL)

A formatted 32-bit argument that describes the status of the
processor when the exception occurred. On I64 systems, this
argument contains the lower 32 bits of an Alpha-equivalent
processor status (PS) quadword. The IPL, CM, CSW, and IP
fields are valid.

On I64 systems, the mechanism array returns much of the same data that it does
on VAX systems; however, its format is different. The mechanism array returned
on I64 systems preserves the contents of a larger set of integer scratch registers
as well as the floating-point scratch registers. In addition, because these registers
are 64 bits long, the mechanism array is constructed of quadwords (64 bits) on
I64 systems, not longwords (32 bits) as it is on VAX systems. Figure 8–2 shows
the format of the mechanism array on VAX systems. Figure 8–3 shows the format
of the mechanism array on I64 systems.

Examining the Condition-Handling Code in Your Application 8–3

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Figure 8–2 Mechanism Array on VAX Systems

ZK−7668A−GE

MBMO (=−1)

MBO (=1)DTYPECLASS (=13)

64−Bit Form (DSC64)

:0

:4

quadword aligned

LENGTH

BASE

:8

:16

POS
:24

8–4 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Figure 8–3 Mechanism Array on I64 Systems

octaword aligned

CHF$IS_MCH_ARGS

CHF$IS_MCH_FLAGS

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

:72

:80

:96

:112

:176

:496

VM-1082A-AI

CHF$PH_MCH_FRAME

CHF$IS_MCH_DEPTH

CHF$IS_MCH_RESVD1

CHF$PH_MCH_DADDR

CHF$PH_MCH_ESF_ADDR

CHF$PH_MCH_SIG_ADDR

CHF$IH_MCH_RETVAL

CHF$IH_MCH_RETVAL2

CHF$PH_MCH_SIG64_ADDR

CHF$PH_MCH_SAVF32_SAVF127

:536CHF$IH_MCH_AR_LC

:544CHF$IH_MCH_AR_EC

:552CHF$PH_MCH_OSSD

:560CHF$PH_MCH_LSD

CHF$FH_MCH_RETVAL_FLOAT

CHF$FH_MCH_RETVAL2_FLOAT

CHF$FH_MCH_SAVF5

CHF$FH_MCH_SAVF2

CHF$FH_MCH_SAVF31

CHF$FH_MCH_SAVF12

CHF$IH_MCH_SAVB5

CHF$IH_MCH_SAVB1

:528

:568CHF$PH_MCH_UWR_START

CHF$S_CHFDEF2=576

Examining the Condition-Handling Code in Your Application 8–5

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

The following table describes the arguments in the mechanism array:

Argument Description

Argument Count On VAX systems, contains a positive integer that
represents the number of longwords that follow in
the array. On I64 systems, represents the number of
quadwords in the mechanism array, not counting the
argument count quadword. On I64 systems, the argument
count is 71 if CHF$V_FPREGS_VALID is clear and 263 if
that same bit is set.

Flags On I64 systems, contains various flags to communicate
additional information. Bit 0 indicates that the process
has already performed a floating-point operation in
registers F2-F31 and the corresponding floating-point
registers in the array are valid (no equivalent in the
mechanism array on VAX systems). Bit 1 indicates
that the process has already performed a floating-point
operation in registers F32-F127 and the corresponding
floating-point registers in the extension area are valid (no
equivalent in the mechanism array on VAX systems).

Frame Pointer (FP) On VAX, contains the contents of the FP. On I64, contains
the Previous Stack Pointer (PSP), which is the value of
the SP at procedure entry.

Depth On VAX and I64 systems, contains an integer that
represents the frame number of the procedure that
established the condition-handling routine, relative to
the frame that incurred the exception.

Reserved Reserved.

Handler Data Address On I64 systems, contains the address of the handler data
quadword, when a handler is present (no equivalent in
the mechanism array on VAX systems).

Exception Stack Frame
Address

On I64 systems, contains the address of the exception
stack frame (no equivalent in the mechanism array on
VAX systems).

Signal Array Address On I64 systems, contains the address of the 32-bit signal
array (no equivalent in the mechanism array on VAX
systems).

Function Return Value On I64 systems, these two quadwords contain the
contents of R8 and R9 at the time of the exception (no
equivalent in the mechanism array on VAX systems).

Signal Array Address On I64 systems, contains the address of the 64-bit signal
array (no equivalent in the mechanism array on VAX
systems).

Floating Point Extension
Address

On I64 systems, contains the address of the array
containing the contents of floating point registers F32-
F127 at the time of the exception (no equivalent in the
mechanism array on VAX systems).

Floating Return Value On I64 systems, these two quadwords contain the
contents of F8 and F9 at the time of the exception (no
equivalent in the mechanism array on VAX systems).

Registers On VAX and I64 systems, the mechanism array includes
the contents of scratch registers. On I64 systems, includes
a much larger set of registers, as well as floating-point
registers, branch registers, and some application registers.

8–6 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Argument Description

Operating System-specific
Data Area

On I64 systems, contains the address of the operating
system-specific data area of the condition handler (no
equivalent in the mechanism array on VAX systems).

Invocation Handle On I64 systems, contains the invocation handle of the
procedure that established the condition handler (no
equivalent in the mechanism array on VAX systems).

Unwind Region Address of the unwind region.

For complete information, see the HP OpenVMS Calling Standard.

Recommendations
Because the 32-bit signal array is the same on I64 systems as it is on VAX
systems, you might not need to modify the source code of your condition-handling
routine. However, changes to the mechanism array might require changes to your
source code. In particular, make note of the following:

• Check the source code of your condition-handling routine for assumptions
about the size of array elements or the ordering of array elements in the
mechanism array.

• If the condition-handling routine in your application uses the depth argument
to unwind a specific number of stack frames, you might need to modify your
source code. Because of architectural changes, the depth argument returned
on I64 systems might be different from that returned on VAX systems. (The
depth argument in the mechanism array indicates the number of frames
between the procedure that established the handler, relative to the frame that
incurred the exception.)

Applications that unwind to the establisher frame by specifying the address of
the depth argument to the SYS$UNWIND system service, or that unwind to
the caller of the establisher frame by using the default depth argument of the
SYS$UNWIND system service, continue to work correctly. Depths specified
as negative numbers still indicate exception vectors (as on VAX systems).

Example 8–1 presents a condition-handling routine written in C.

Examining the Condition-Handling Code in Your Application 8–7

Examining the Condition-Handling Code in Your Application
8.3 Examining Condition-Handling Routines for Dependencies

Example 8–1 Condition-Handling Routine in C

#include <ssdef.h>
#include <chfdef.h>

.

.

.
! int cond_handler(sigs, mechs)

struct chf$signal_array *sigs;
struct chf$mech_array *mechs;

{
int status;

" status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

if(status != 0)
{

/* ...Condition matched. Perform processing. */
return SS$_CONTINUE;

}
else
{

/* ...Condition does not match. Resignal exception. */
return SS$_RESIGNAL;

}
}

The following items correspond to Example 8–1:

! The routine defines two arguments, sigs and mechs, to access the data
returned by the system in the signal array and the mechanism array.
The routine declares the arguments using two predefined data structures,
chf$signal_array and chf$mech_array, defined by the system in the
CHFDEF.H header file.

" This condition-handling routine uses the LIB$MATCH_COND run-time
library routine to compare the returned condition code with the condition code
that identifies integer overflow (defined in SSDEF.H). The condition code is
referenced as a field in the system-defined signal data structure (defined in
CHFDEF.H).

The LIB$MATCH_COND routine returns a nonzero result when a match is
found. The condition-handling routine executes different code paths based on
this result.

8.4 Identifying Exception Conditions
Application condition-handling routines identify which exception is being signaled
by checking the condition code returned in the signal array. The following
program fragment, taken from Example 8–1, shows how a condition-handling
routine can accomplish this task by using the LIB$MATCH_COND run-time
library routine.

status = LIB$MATCH_COND(sigs->chf$l_sig_name, /* returned code */
SS$_INTOVF); /* test against */

On I64 systems, the format of the 32-bit condition code and its location in the
signal array are the same as on VAX systems. However, the condition codes
your condition-handling routine expects to receive on VAX systems might not be
meaningful on I64 systems. Because of architectural differences, some exception
conditions that are returned on VAX systems are not supported on I64 systems.

8–8 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

For software exceptions, I64 systems support the same set supported by VAX
systems, as documented in the online Help Message utility or in the OpenVMS
system messages documentation. Hardware exceptions are more architecture
specific, especially the arithmetic exceptions. Only a subset of the hardware
exceptions supported by VAX systems (documented in the HP OpenVMS
Programming Concepts Manual) are also supported on I64 systems. In addition,
the Intel Itanium architecture defines several additional exceptions that are not
supported by the VAX architecture.

Table 8–1 lists the VAX hardware exceptions that are not supported on I64
systems and the I64 hardware exceptions that are not supported on VAX systems.
If the condition-handling routine in your application tests for any of these VAX-
specific exceptions, you might need to add the code to test for the equivalent I64
exceptions. (Section 8.4.1 provides more information about testing for arithmetic
exceptions on I64 systems.)

Note

A translated VAX image run on an I64 system can still return these VAX
exceptions.

Table 8–1 Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to I64 Systems

SS$_FLTINV–Invalid floating-point operand
value (trap)

No equivalent on VAX systems

SS$_FLTINV_F–Invalid floating-point operand
value (fault)

No equivalent on VAX systems

SS$_FLTINE–Inexact floating-point result (trap) No equivalent on VAX systems

SS$_FLTINE_F–Inexact floating-point result
(fault)

No equivalent on VAX systems

SS$_FLTDENORMAL–Unnormalized floating-
point result

No equivalent on VAX systems

SS$_ALIGN–Data-alignment trap No equivalent on VAX systems

Exceptions Specific to VAX Systems

SS$_ARTRES–Reserved arithmetic trap No equivalent on I64 systems

SS$_COMPAT–Compatibility fault No equivalent on I64 systems

SS$_DECOVF–Decimal overflow1 Not generated by I64 hardware

SS$_INTDIV–Integer divide-by-zero1 Not generated by I64 hardware

SS$_INTOVF–Integer overflow1 Not generated by I64 hardware

SS$_TBIT–Trace pending No equivalent on I64 systems

SS$_OPCCUS–Opcode reserved to customer No equivalent on I64 systems

1Might be generated by software on I64 systems

(continued on next page)

Examining the Condition-Handling Code in Your Application 8–9

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

Table 8–1 (Cont.) Architecture-Specific Hardware Exceptions

Exception Condition Code Comment

Exceptions Specific to VAX Systems

SS$_RADMOD–Reserved addressing mode No equivalent on I64 systems

SS$_SUBRNG–INDEX subscript range check No equivalent on I64 systems

8.4.1 Testing for Arithmetic Exceptions on I64 Systems
While OpenVMS I64 uses most of the same floating point condition codes as
OpenVMS VAX, it uses some new ones as well. In addition, in some cases
conditions might be signalled by library software where they were caused
by hardware on the VAX; the same circumstances might result in different
exceptions on the two architectures.

Arithmetic exceptions on the Intel Itanium architecture are precise, as they
are on the VAX; that is, the exception PC provides an exact indication of the
failing instruction. (This is in contrast to the Alpha architecture, where floating
point exceptions are asynchronous and imprecise.) However, because of the I64
instruction format, the exception PC is not simply the address of the failing
instruction. I64 instructions are organized into 16 byte bundles of 3 instructions
each. The exception PC is the address of the instruction bundle, with the
instruction slot number in the low 2 bits.

Because of the differences in instruction addressing and instruction format, any
condition handler code that attempts to interpret the instruction causing the
exception must be rewritten.

Recommendations
The following guidelines can help you determine whether a condition-handling
routine that performs processing in response to an arithmetic exception needs
modification to run on I64 systems:

• If the condition-handling routine in your application only counts the number
of arithmetic exceptions that occurred, or aborts when an arithmetic exception
occurs, it requires minimal modification to work correctly on I64 systems.
These condition-handling routines require only the addition of a test for the
new I64 condition codes.

• If your application attempts to restart the operation that caused the
exception, you must rewrite any portion of the condition handler that
attempts to locate or interpret the failing instruction.

Note

A translated VAX image running on an I64 system can return VAX
exception conditions, including arithmetic exception conditions. For more
information about using the VEST command, see OpenVMS Migration
Software for VAX to Alpha Systems: Translating Images.

8–10 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.4 Identifying Exception Conditions

8.4.2 Testing for Data-Alignment Traps
On I64 systems, a data-alignment trap is generated when an attempt is made to
load or store a longword or quadword to or from a register using an address that
does not have the natural alignment of the particular data reference. (For more
information about data alignment, see Chapter 7.)

Compilers on I64 systems typically avoid triggering alignment faults by doing the
following:

• Aligning static data on natural boundaries by default. (This default behavior
can be overridden by using a compiler qualifier.)

• Generating special inline code sequences for data that is known to be
misaligned at compile time.

Note that compilers cannot align dynamically defined data. Thus, alignment
faults might be triggered.

An alignment exception is identified by the condition code SS$_ALIGN.
Figure 8–4 shows the elements of the signal array returned by the SS$_ALIGN
exception.

Figure 8–4 SS$_ALIGN Exception Signal Array

Argument Count

Condition Code (SS$_ALIGN)

Virtual Address

Register Number

Exception PC

Exception PS

31 0

ZK−5205A−GE

This signal array contains two arguments specific to the SS$_ALIGN exception:
the virtual address argument and the register number argument. The virtual
address argument contains the address of the unaligned data being accessed. The
register number argument identifies the target register of the operation.

Recommendation

• Use this exception to detect alignment exceptions during the development
of your application. In this phase, you have the opportunity to fix the data
alignment before it impacts performance for a user of your application. Once
this exception is reported, your application has already experienced the
performance impact.

Examining the Condition-Handling Code in Your Application 8–11

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

8.5 Performing Other Tasks Associated with Condition Handling
In addition to condition-handling routines, applications that include condition
handling must perform other tasks, such as identifying their condition-handling
routine to the system. The run-time library provides a set of routines that
allows applications to perform these tasks. For example, applications can call
the run-time library routine LIB$ESTABLISH to identify (or establish) the
condition-handling routine they want executed when an exception is signaled.

Because of differences between the VAX architecture and the Intel Itanium
architecture and between the calling standards for both architectures, the way in
which many of these tasks are accomplished is not the same. Table 8–2 lists the
run-time library condition-handling support routines available on VAX systems
and indicates which are supported on I64 systems.

Table 8–2 Run-Time Library Condition-Handling Support Routines

Routine Support on I64 Systems

Arithmetic Exception Support Routines

LIB$DEC_OVER–Enable or disable signaling of decimal
overflow

Not supported.

LIB$FIXUP_FLT–Change floating-point reserved operand
to a specified value

Not supported.

LIB$FLT_UNDER–Enable or disable signaling of floating-
point underflow

Not supported.

LIB$INT_OVER–Enable or disable signaling of integer
overflow

Not supported.

General Condition-Handling Support Routines

LIB$DECODE_FAULT–Analyze instruction context for
fault

Not supported.

LIB$ESTABLISH–Establish a condition handler Not supported by RTL but
supported by compilers to
provide compatibility.

LIB$MATCH_COND–Match condition value Supported.

LIB$REVERT–Delete a condition handler Not supported by RTL but
supported by compilers to
provide compatibility.

LIB$SIG_TO_STOP–Convert a signaled condition to a
condition that cannot be continued

Supported.

LIB$SIG_TO_RET–Convert a signal to a return status Supported.

LIB$SIM_TRAP–Simulate a floating-point trap Not supported.

LIB$SIGNAL–Signal an exception condition Supported.

LIB$STOP–Stop execution by using signaling Supported.

Recommendations
The following guidelines apply to applications that use run-time library routines:

• If your application enables the signaling of exceptions by calling one of the
run-time library routines that enable exception reporting, you must change
your source code. These routines are not supported on I64 systems. Note,
however, that certain types of arithmetic exceptions are always enabled on

8–12 Examining the Condition-Handling Code in Your Application

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

I64 systems. The following types of arithmetic exceptions are always enabled:

– Floating-point invalid operation

– Floating-point division by zero

– Floating-point overflow

Exceptions that are not enabled by default must be enabled at compile time.

• If your application specifies a condition-handling routine by calling the
LIB$ESTABLISH run-time library routine, you might not have to change
your source code. To preserve compatibility, most compilers on I64 systems
accept calls to the LIB$ESTABLISH routine. The compilers create a variable
on the stack to point at the ‘‘current’’ condition handler. LIB$ESTABLISH
sets this variable; LIB$REVERT clears it. The statically established handler
for these languages reads the value of this variable to determine which
routine to call. For information about specific languages, see Chapter 9.

The Fortran program in Example 8–2 uses the RTL routine LIB$ESTABLISH to
specify a condition-handling routine that tests for integer overflow by specifying
the condition code SS$_INTOVF. On VAX systems, you must compile the program
with the /CHECK=OVERFLOW qualifier to enable integer overflow detection.

For this program to run on I64 systems, as VAX systems, you must specify the
/CHECK=OVERFLOW qualifier on the compile command line to enable overflow
detection. The call to the LIB$ESTABLISH routine does not have to be removed
because HP Fortran accepts this routine as an intrinsic function.

Example 8–2 Sample Condition-Handling Program

C This program types a maximum value of integers
C Compile with /CHECK=OVERFLOW and the /EXTEND_SOURCE qualifiers

INTEGER*4 int4
EXTERNAL HANDLER
CALL LIB$ESTABLISH (HANDLER) !

int4=2147483645
WRITE (6,*) ’ Beginning DO LOOP, adding 1 to ’, int4
DO I=1,10
int4=int4+1
WRITE (6,*) ’ INT*4 NUMBER IS ’, int4

END DO
WRITE (6,*) ’ The end ...’
END

C This is the condition-handling routine

INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS(*),MECHARGS(*)
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER INDEX
INTEGER LIB$MATCH_COND

(continued on next page)

Examining the Condition-Handling Code in Your Application 8–13

Examining the Condition-Handling Code in Your Application
8.5 Performing Other Tasks Associated with Condition Handling

Example 8–2 (Cont.) Sample Condition-Handling Program

INDEX = LIB$MATCH_COND (SIGARGS(2), SS$_INTOVF)
IF (INDEX .EQ. 0) THEN

HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .GT. 0) THEN

WRITE (6,*) ’Arithmetic exception detected...’
CALL LIB$STOP(SIGARGS(1))

END IF
END

The following item corresponds to Example 8–2:

! The example calls LIB$ESTABLISH to specify the condition-handling routine.

The following example shows how to compile, link, and run the program in
Example 8–2.

$ FORTRAN/EXTEND_SOURCE/CHECK=OVERFLOW EXCEPTIION
$ LINK EXCEPTION
$ RUN EXCEPTION
Beginning DO LOOP, adding 1 to 2147483645
INT*4 NUMBER IS 2147483646
INT*4 NUMBER IS 2147483647
Arithmetic exception detected...
%TRACE-F-TRACEBACK, symbolic stack dump follows
image module routine line rel PC abs PC
exception exception$MAIN HANDLER 2662 0000000000000440 0000000000010440
DEC$FORRTL 0 00000000000DAC00 FFFFFFFF85440C00

0 FFFFFFFF8039FE70 FFFFFFFF8039FE70
image module routine line rel PC abs PC
exception exception$MAIN EXCEPTION$MAIN

10 00000000000001C0 00000000000101C0
0 FFFFFFFF80B356B0 FFFFFFFF80B356B0

DCL 0 000000000006AE90 000000007AE26E90
%TRACE-I-END, end of TRACE stack dump

8–14 Examining the Condition-Handling Code in Your Application

9
OpenVMS I64 Compilers

This chapter provides information about features that are specific to native
OpenVMS I64 compilers. In addition, it lists the features of OpenVMS VAX
compilers that are not supported by or that have changed behavior in their
OpenVMS I64 counterparts.

The following compilers are covered in this chapter:

• Ada (Section 9.1)

• BASIC (Section 9.2)

• C (Section 9.3)

• COBOL (Section 9.4)

• Fortran (Section 9.5)

• Pascal (Section 9.6)

Compiler differences fall into two categories: differences between earlier and
current versions of compilers running on OpenVMS VAX, and differences between
the HP versions running on the VAX, Alpha, and I64 computers. The OpenVMS
I64 compilers are intended to be compatible with their OpenVMS VAX and
OpenVMS Alpha counterparts. They include several qualifiers that contribute to
compatibility, as described in the following sections.

The languages conform to language standards and include support for most
OpenVMS VAX language extensions. The compilers produce output files with the
same default file types as they do on OpenVMS VAX systems, such as .OBJ for an
object module. However, some features supported by the compilers on OpenVMS
VAX systems might not be available on OpenVMS I64 systems.

For more information about the compiler differences for each language, refer to
the language documentation, especially the user’s guides and the release notes.

9.1 Compatibility of Ada between I64 Systems and VAX Systems
Two Ada compilers are available for OpenVMS systems:

• HP Ada is provided by HP and is available on VAX and Alpha OpenVMS. It
is based on the Ada 83 langauge standard and it was previously know as VAX
Ada, DEC Ada, and Compaq Ada. HP Ada is not available on OpenVMS I64.

• GNAT Pro is provided by Ada Core Technologies. It is available on Alpha and
I64 OpenVMS, and is based on the Ada 95 language standard. GNAT Pro is
also available on many other platforms, but not VAX.

OpenVMS I64 Compilers 9–1

OpenVMS I64 Compilers
9.1 Compatibility of Ada between I64 Systems and VAX Systems

Table 9–1 compares the Ada compilers.

Table 9–1 Ada Language Support for OpenVMS

Company Product Name Language Standard

HP HP Ada Ada 83

Ada Core GNAT Pro Ada 95

GNAT Pro is an Ada 95 compiler, and HP Ada is an Ada 83 compiler. Generally,
Ada 95 is highly upward compatible with Ada 83, so Ada 83 programs should run
in Ada 95 with no changes or only minor changes.

If you use Ada on VAX and are porting your applications to I64, you need to
change compilers from HP Ada to GNAT Pro.

The following options are available for port Ada applications from VAX to I64:

• Port directly to I64 using GNAT Pro

• Port to Alpha using HP Ada, then port to I64

• Port to Alpha using GNAT Pro, then port to I64

Programs that are ported must be recompiled. You cannot translate just the Ada
image from VAX to I64.

For more information, see the Ada Technical Overview and Comparison. This
document provides a detailed comparison of the compatibility of HP Ada and
GNAT Pro. It is available at:

http://h71000.www7.hp.com/commercial/ada/ada_index.html

This document is also available on systems that have Ada installed and is located
in the ADA$EXAMPLE:DEC_ADA_OVERVIEW_AND_COMPARISON.* directory.

The GNAT Pro User’s Guide is available after installation of GNAT Pro for I64,
and is located in the documentation area. It discusses compatibility with HP Ada,
and on compatibility between Ada 83 and Ada 95.

For more information about GNAT Pro, see Ada Core at:

http://www.gnat.com

You can also contact sales@adacore.com.

9.1.1 Tasking Differences
Tasks on VAX are implemented differently than on Alpha and OpenVMS I64.
Both Alpha and I64 use DECthreads, which is not availalbe on VAX.

9.1.2 Translating Images Using Ada
An Ada image cannot be translated to another machine target. Neither HP Ada
nor GNAT Pro images can be translated to Alpha or to I64.

9–2 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

9.2 Compatibility of VAX BASIC and HP BASIC
HP BASIC is based on and highly compatible with VAX BASIC, which runs on
VAX systems. Differences do exist, however, and these are summarized in the
following sections. This information can help you develop BASIC applications
that are compatible with both BASIC products and can help you migrate your
VAX BASIC applications to HP BASIC on the OpenVMS I64 and Alpha operating
systems.

9.2.1 VAX BASIC Features Not Available for HP BASIC
The following features of VAX BASIC are not available for I64 and Alpha systems:

• The VAX BASIC environment, which provides features specific to BASIC for
program development, the RUN command, and immediate mode.

• The /SYNTAX_CHECK qualifier, which specifies syntax checking after every
entered line.

• The /ANSI_STANDARD qualifier, which enforces the ANSI Minimal BASIC
standard.

• The /FLAG=BP2COMPATIBILITY qualifier value, which flags uses of features
in VAX BASIC programs that are not compatible with PDP-11 BASIC/PLUS2.

• The /FLAG=AXPCOMPATIBILITY qualifier value, which flags uses of
features in VAX BASIC programs that are not supported by I64 BASIC/Alpha
BASIC.

• The /DESIGN qualifier, which provides support for the Program Design
Facility (PDF). The compiler does not attempt to compile a program when
/DESIGN is specified.

• The Graphics statements, transformation functions, and other features
described in the Programming with VAX BASIC Graphics.

• The HFLOAT VAX floating-point format for floating-point data. Also, the
HFLOAT keyword is not accepted, neither in the DECLARE statement nor in
various built-in functions, such as the REAL function.

• The /REAL_SIZE=HFLOAT qualifier value, which causes all floating-point
data variables whose size is not explicitly declared to be HFLOAT.

9.2.2 HP BASIC Features Not Available in VAX BASIC
The following features of HP BASIC are not available in VAX BASIC:

• Support of IEEE floating-point data types SFLOAT (32-bit), TFLOAT (64-bit),
and XFLOAT (128-bit), as well as the QUAD (64-bit) integer data type.

• The /INTEGER_SIZE=QUAD qualifier value, which allows the default integer
data type size to be set to quadwords (that is, 64 bits).

• The /REAL_SIZE={ SFLOAT | TFLOAT | XFLOAT } qualifier values, which
allow the default floating-point data type size to be set to one of the IEEE
floating-point data types.

• The /SEPARATE_COMPILATION qualifier, which controls whether an
individual compilation unit becomes a separate module in an object file.

• The /SYNCHRONOUS_EXCEPTIONS qualifier, which controls whether or
not the compiler emits additional code to emulate VAX BASIC exception
behavior.

OpenVMS I64 Compilers 9–3

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

• The /WARNINGS=ALIGNMENT qualifier, which instructs the compiler to
flag all occurrences of nonnaturally aligned RECORD fields, variables within
COMMONs and MAPs, and RECORD arrays.

• The /ARCHITECTURE qualifier, which allows the compiler to potentially
generate more efficient code based on the target machine architecture.

• The /OPTIMIZE=(LEVEL=, TUNE=) qualifier values, which control the
amount of optimization performed by the compiler.

9.2.3 VAX BASIC and HP BASIC Behavior Differences
This section describes the behavior differences between VAX BASIC and HP
BASIC.

9.2.3.1 Operations with Floating-point Data Types
HP BASIC provides support for the three IEEE floating-point data types SFLOAT,
TFLOAT, and XFLOAT, which are also supported by the base hardware. It is
important to note that the Alpha architecture does not provide hardware support
for the VAX DOUBLE or D-float data type, and the Intel Itanium architecture
does not provide hardware support for any of the VAX floating-point data types
(SINGLE or F-float, DOUBLE or D-float, GFLOAT, or HFLOAT).

Table 9–2 Correspondence of Floating-Point Data Types

VAX BASIC HP BASIC (Alpha) HP BASIC (I64) IEEE

SINGLE (F-float) F-float SFLOAT SFLOAT

DOUBLE (D-float) GFLOAT TFLOAT TFLOAT

GFLOAT GFLOAT TFLOAT TFLOAT

HFLOAT XFLOAT XFLOAT XFLOAT

While floating-point data is stored in memory in its declared data type, the data
is converted to an architecture supported type before performing operations on
it. The results are then converted to the required data type before storing in
memory. This conversion process might result in a loss of precision.

9.2.3.1.1 Use of (DOUBLE) D-float Data Type in HP BASIC Because the Alpha
hardware does not fully support the D-float data type, HP BASIC performs BASIC
DOUBLE operations (+, -, and so on) in GFLOAT; as a result, approximately 3
bits of precision is lost.

9.2.3.1.2 Use of VAX Floating-Point Data Types in HP BASIC Because the Intel
Itanium hardware does not support the VAX floating-point data types, all VAX
floating-point data is converted to the appropriate IEEE floating-point data type
before performing any operations on it. Depending on the data type involved,
some precision might be lost.

9.2.3.1.3 Implicit Use of the HFLOAT Data Type VAX BASIC performs some
intermediate calculations in the HFLOAT data type, even if the source code
does not explicitly specify its use. This generally occurs when mixed data-type
operations are performed between large DECIMAL items and floating-point items.

HP BASIC for Alpha performs these operations in GFLOAT, and HP BASIC for
I64 performs them in TFLOAT. As a result, some loss of precision is possible. The
following compile-time warning message is reported if source code is encountered
that results in this difference:

9–4 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

OPEPERGFL, operation performed in GFLOAT, loss of precision possible

9.2.3.1.4 HFLOAT Data Items in CDD Records HP BASIC maps HFLOAT data
items in CDD records to a group containing a 16-byte string item, similar to other
unsupported data types found in CDD records.

9.2.3.2 Default Floating-Point Data-Type Size
For VAX BASIC and HP BASIC for Alpha, the default floating-point size is
SINGLE (VAX F-float) and for HP BASIC for I64, the default is SFLOAT.

9.2.3.3 Passing Parameters by Value
HP BASIC and VAX BASIC are able to pass actual parameters by value, but only
HP BASIC allows by-value formal parameters.

9.2.3.4 Array Parameters
The following are differences in the way HP BASIC and VAX BASIC handle array
parameters.

• Both HP BASIC and VAX BASIC perform parameter checking when an entire
array is passed to a subprogram or function. When the array that was passed
does not match the array that is expected by the subprogram or function,
the compiler issues the error message, "Arguments don’t match." VAX BASIC
performs this check each time the array is referenced. HP BASIC performs
this check once at the start of the subprogram or function.

HP BASIC processes array parameters more efficiently. The following
differences exist between HP BASIC and VAX BASIC in the way each
processes array parameters:

In HP BASIC, if a subprogram or function declares an array in its
parameter list, the calling program must pass an array when calling
the subprogram or function. If this is not done, an unexpected failure can
occur. For example, passing a null parameter instead of an array causes
a memory management violation and the program fails. In VAX BASIC,
it is valid for the program to pass a null parameter if the array is not
accessed in the subprogram or function.

In HP BASIC, the subprogram cannot trap the "Arguments don’t match"
error. The error is signaled, but can only be trapped by the calling
program.

• When passing an entire array by descriptor, VAX BASIC creates a DSC$K_
CLASS_A descriptor; HP BASIC creates a DSC$K_CLASS_NCA descriptor.

For most BASIC applications, this is not noticeable because the calling
program and the called subprogram use NCA descriptors. However, a
program that relies on the individual descriptor fields might need modification
to work with descriptors produced by HP BASIC.

For more information about DSC$K_CLASS_A and DSC$K_CLASS_NCA
descriptors, see the HP OpenVMS Calling Standard.

• VAX BASIC performs no scale or precision checking when passing entire
decimal arrays to a subprogram or function.

HP BASIC subprograms and functions check all decimal arrays received by
descriptor to verify that precision, scale factor, and bound information match
those of the parameter in the calling program.

OpenVMS I64 Compilers 9–5

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

For example, the following program causes the error ‘‘Arguments don’t match’’
when the subprogram test_func starts to execute:

DECLARE DECIMAL(5,2) a(10)
CALL test_func (a())
PRINT a(1)
END

SUB test_func (DECIMAL(10,4) b())
b(1) = 12.12
END SUB

• VAX BASIC performs minimal checking when receiving an array of records
from a caller. For example, in the following program, VAX BASIC does not
check whether the size of the array passed is equal to the size declared in the
subprogram.

• HP BASIC checks that the size of the array elements are the same and that
the number of dimensions match. The following program produces the error
‘‘Arguments don’t match’’ when the subprogram test_func starts to execute:

RECORD rec1
LONG a
LONG b

END RECORD
DECLARE rec1 a(10)
CALL test_func (a())
END

SUB test_func (rec2 a())
RECORD rec2

LONG x
LONG y
LONG z

END RECORD
a(2)::x = 1
END SUB

• VAX BASIC always performs bounds checking on arrays received as descriptor
parameters.

HP BASIC does not perform checking on arrays received as descriptor
parameters if the /CHECK=NOBOUNDS qualifier is specified. In this way,
arrays received as parameters are consistent with all other arrays.

9.2.3.5 DEF* Routines
In HP BASIC, DEF* routines cannot be called from within DEF routines or
WHEN handlers. If such calls are attempted, the following error message is
displayed:

BASIC-E-DEFSNOTALL, DEF* reference not allowed in DEF or handler

HP BASIC gives highest precedence to DEF* routines that are called from within
an expression. Thus , a DEF* routine call is evaluated first. When the DEF*
routine directly modifies the values of variables used within the same expression,
this can affect the result of the expression. If the compiler changes the order of a
DEF* call in an expression, the following warning is displayed:

BASIC-W-DEFEXPCOM, expression with DEF* too complex, moving <name>
invocation

You can avoid this error by simplifying the expression.

9–6 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

9.2.3.6 The /LINES Qualifier
In HP BASIC, the /LINES qualifier affects only the ERL function and determines
whether BASIC line numbers are reported in run-time error messages. The
following differences exist between HP BASIC and VAX BASIC:

• The /NOLINES qualifier is the default.

• You do not have to use /LINES to use the RESUME statement without a
target.

• Using /LINES in programs that have line numbers on most lines can
negatively affect run-time performance.

9.2.3.7 Appending Files at the DCL Command Line
VAX BASIC requires that source files used with the append operator (+) at the
DCL command line contain line numbers within the files or an error message is
printed.

HP BASIC does not require line numbers in either of the source files. The
append operator is treated as an OpenVMS append operator. The source files are
appended and compiled as if they were a single source file.

9.2.3.8 Unreachable Code Errors
HP BASIC performs extensive analysis when searching for unreachable code and
might report more occurrences than VAX BASIC.

In HP BASIC, the compile-time error message for unreachable code, UNREACH,
is an informational message. In VAX BASIC, the compile-time error message for
unreachable code, INACOFOL, is a warning.

HP BASIC checks for DEF functions that are never referenced and displays the
informational message ‘‘UNCALLED, routine xxxx can never be called.’’

9.2.3.9 Line Numbers
In HP BASIC, unlike VAX BASIC, does not allow duplicate line numbers or line
numbers out of ascending numerical order. This restriction applies to single
source files or to source files concatenated with "+" at the DCL command line.
Duplicate line numbers or line numbers out of ascending order cause E level
compilation errors.

HP BASIC provides an example TPU command procedure to help work around
this difference. The procedure can be used to append source files and sort BASIC
line numbers into ascending numerical order from one or more source files.

After installation of HP BASIC, the TPU command procedure is located in
SYS$COMMON:[SYSHLP.EXAMPLES.BASIC]BASIC$ENV.TPU. Instructions for
its use are in the file. Although there are no known problems, the TPU command
procedure has not been thoroughly tested. As a result, it is not supported by HP.

9.2.3.10 Error-Handling Semantics
To achieve the most efficient performance, the HP BASIC compiler might reorder
the execution of arithmetic instructions. Rarely does this result in error-handling
semantics that are incompatible with VAX BASIC; most programs are not affected
by this change.

Use the HP BASIC qualifier /SYNCHRONOUS_EXCEPTIONS for those programs
that require exact VAX BASIC behavior.

OpenVMS I64 Compilers 9–7

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

9.2.3.11 Generation of Object Modules
In HP BASIC, the default behavior places all routines (SUBs, FUNCTIONs, main
programs) compiled within a single source program into a single module in the
object file. VAX BASIC generates each routine as a separate module. Use the
HP BASIC /SEPARATE_COMPILATION qualifier to duplicate the VAX BASIC
behavior.

9.2.3.12 RESUME and DEF
VAX BASIC does not enforce the documented restriction that a RESUME
statement lexically outside a DEF (without a target specified) cannot resume
program execution within a DEF statement. HP BASIC enforces this restriction
at run time.

9.2.3.13 Exceptions
When the HP BASIC compiler determines that the result of an expression is
never used, the compiler does not generate code to evaluate that expression. This
causes an incompatibility with VAX BASIC if the removed expression causes
an exception. In the following example, the program generates a divide-by-zero
error in VAX BASIC. It runs without error in HP BASIC because HP BASIC,
recognizing that the variable A is never used, does not generate the code to
evaluate the expression that is assigned to A:

B = 5
A = B / 0
END

9.2.3.14 Compiler Message Differences
There is a small difference in the way HP BASIC and VAX BASIC report compiler
messages. In VAX BASIC, the source information appears before the message
text, and includes both source and listing line numbers. In HP BASIC, the
source information appears after the message text and includes only source line
numbers.

When the HP BASIC compiler reports source-line information, the message looks
like this:

%BASIC-E-xxxxxxxxx, xxxxxxxxxxxxxx at line number YY in file xxxxxxxxxxxxxx

In both HP BASIC and VAX BASIC, the reported line number is the physical
source-line in the file. It is not the BASIC line number that might occur in the
source program.

9.2.3.15 Error Status Returned to DCL
When errors occur, the HP BASIC and VAX BASIC compilers at times return
a different status to DCL. For example, when the file specified at the DCL
command line cannot be found, HP BASIC returns BASIC-F-ABORT; VAX BASIC
returns BASIC-F-OPENIN.

9.2.3.16 SYS$INPUT
In HP BASIC, when you specify SYS$INPUT as the input file specification at the
DCL command line, the object file and the listing file are named differently than
in VAX BASIC. In HP BASIC, the compiler names the files with the file types
.OBJ and .LIS (with no file name preceding the delimiter). In VAX BASIC, the
compiler names the files NONAME.OBJ and NONAME.LIS.

9–8 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

9.2.3.17 FSS$ Function
The VAX BASIC compiler compiles a program that uses the FSS$ function,
but if the FSS$ function is invoked at run-time, the following run-time error is
displayed:

%BAS-F-NOTIMP, Not implemented

The HP BASIC compiler reports all uses of the FSS$ function by displaying the
following error at compile time:

%BAS-E-BLTFUNNOT, built-in function not supported

9.2.3.18 BAS$K_FAC_NO Constant
The BAS$K_FAC_NO constant is not defined on I64 and Alpha systems. You
must replace all occurrences of the EXTERNAL LONG CONSTANT BAS$K_
FAC_NO with EXTERNAL LONG CONSTANT BAS$_FACILITY. OpenVMS VAX
systems use the constant BAS$K_FAC_NO to communicate the facility number
between SYS$LIBRARY:BASRTL.EXE and SYS$LIBRARY:BASRTL2.EXE. The
numbe is not needed on I64 and Alpha systems.

9.2.3.19 Math Functions with Different Results
Some math function results differ between HP BASIC and VAX BASIC because
underlying I64 and Alpha system routines use improved algorithms to perform
these operations.

9.2.3.20 Floating-Point Errors
Some programs that run successfully on VAX systems might fail on Alpha and
I64 systems with division by zero or other floating-point errors. Examine your
failing program for a dirty floating-point zero. A "dirty floating-point zero" is a
number represented by a zero exponent and a nonzero mantissa. Most OpenVMS
VAX system instructions treat the invalid floating-point number as a zero, but it
causes an exception to be generated by some I64 and Alpha instructions.

You cannot create a dirty zero by using BASIC arithmetic expressions, but you
can create a dirty zero by reading it from a file. BASIC I/O statements, such
as GET and MOVE FROM, move bytes of data to a variable without checking
whether the data is valid for the variable.

Correct the problem in one of the following ways:

• Determine how the dirty zero was created, and make the correction. This is
the preferred way.

• Write a routine to clean any floating-point numbers that receive a dirty-zero
value.

The following is an example of a routine that cleans a single-precision floating-
point number (you can write similar routines to clean double or G-floating
numbers):

SUB clean_single (SINGLE a)
MAP (over) SINGLE b
MAP (over) WORD w1, w2
b = a
IF (w1 AND 32640%) = 0% THEN

a = 0
END IF
END SUB

OpenVMS I64 Compilers 9–9

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

The routine accepts a floating-point number, checks for a zero exponent, and
clears the mantissa. It redefines the floating-point number as an integer so that
the proper bits are tested.

For more information about floating-point formats and dirty zeros, see the Alpha
Architecture Reference Manual.

9.2.3.21 Error Detection on Illegal MAT Operations
Following are two differences between HP BASIC and VAX BASIC in error
detection on illegal MAT operations:

• HP BASIC correctly reports ILLOPE (Error 141 - "Illegal operation") if an
attempt is made to perform matrix multiplication when the destination
matrix is identical to either source matrix. VAX BASIC does not correctly
detect and report the ILLOPE message if an attempt is made to perform the
following matrix multiplication, where B is a virtual array and A is either a
virtual array or an in-memory array:

MAT B = A * B

• Under certain conditions, VAX BASIC does not enforce the documented
restriction that arrays used in MAT operations must have zero lower bounds.
HP BASIC always reports either a LOWNOTZER error at compile-time or a
MATDIMERR error at run-time, when attempting to perform MAT operations
on arrays with nonzero lower bounds.

9.2.3.22 Debugging Differences
There are debugging differences between VAX BASIC and HP BASIC, especially
during use of the debugger STEP command around exception handlers, DEF
functions, external subprograms, and GOSUB routines. These differences are
described here and in the HP BASIC for OpenVMS Systems User Manual.

When the debugger STEP command is used in source code containing an error,
differences occur in debugger behavior between OpenVMS VAX and OpenVMS
BASIC/Alpha. These differences are due to architectural differences in the
hardware and software of the two systems.

In HP BASIC, a STEP command at a statement that causes an exception might
never return control to the debugger. The debugger cannot determine what
statement in the BASIC source code will execute after the exception occurs.
Therefore, set explicit breaks if you use the STEP command on statements that
cause exceptions.

The following hints should help when you use the STEP command to debug
programs that handle errors:

• If you use STEP at a statement that takes an error, the debugger does not
regain control unless the program reaches an explicit breakpoint or the next
statement that would have executed if no error had occurred. Set explicit
breaks if you want the program to stop in any other place.

• Using the STEP command at a statement that takes an error does not return
control to the debugger when the program reaches the error handler code.
If you want the program to break when program execution enters an error
handler, explicitly set a breakpoint at the error handle. This applies to both
ON ERROR handlers and WHEN handlers.

9–10 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

• If you are within a WHEN handler, a STEP command at a statement that
terminates execution within the WHEN handler (CONTINUE, RETRY, END
WHEN, END HANDLER, EXIT HANDLER) does not stop unless program
flow reaches a point where an explicit breakpoint is set.

• A STEP command at a RESUME statement in an ON ERROR handler stops
program execution at the first line of non-error-handler code.

• Use SET BREAK/EXCEPTION at the beginning of the debugging session to
prevent unexpected errors from occurring. This breakpoint is not necessary
if you have set explicit breakpoints at all error handlers. However, use of
this command breaks at all exceptions, thus allowing you to check whether
you have the proper breakpoints to stop program execution following the
exception.

9.2.3.23 Listing File Differences
Following are differences in listing files between HP BASIC and VAX BASIC:

• /MACHINE/LIST—In VAX BASIC, if you specify BASIC/MACHINE you
get a listing file containing a machine language listing but no source code
listing. In HP BASIC, if you specify BASIC/MACHINE, you do not get either
listing. You must specify /LIST to get listing files. In HP BASIC, specifying
/MACHINE/LIST gives you both the machine language and the source code in
the listing file.

When VAX BASIC creates a listing file for a program with more than one
routine, it places the machine code for each routine after the source code for
that routine. The listing file produced by the HP BASIC compiler contains
the source listing for all the routines followed by the machine code listing for
all the routines, unless you use the /SEPARATE_COMPILATION qualifier.

• %PAGE—In HP BASIC, the %PAGE directive appears on the page following
the page break. In VAX BASIC, the %PAGE directive appears on the page
before the page break.

• %TITLE and %SBTTL strings—These are truncated at 31 characters in HP
BASIC, and 45 characters in VAX BASIC.

• Form feeds—VAX BASIC treats form feeds as %PAGE directives. HP BASIC
does no special processing with form feeds. When a form feed occurs in the
source file, that form feed occurs in the listing file, but no listing header
information accompanies the form feed.

• /SHOW=MAP qualifier—The following differences occur in I64 BASIC/ Alpha
BASIC when you use the /SHOW=MAP qualifier:

HP BASIC leaves the offset field in the allocation map blank in cases
where the values are not applicable, or not available to the listing phase.

In dynamic maps of arrays, VAX BASIC reports the size of the array
descriptors; HP BASIC reports the size of the array.

• Message placement—The placement of some error messages in the listing file
might differ between VAX BASIC and HP BASIC. For example, in HP BASIC,
errors that require flow analysis such as ‘‘unreachable code’’ and ‘‘routine can
never be called’’ appear in the listing after the source code and allocation map
listing. In listings for source files that contain more than one routine, these
errors appear after the source and allocation listing for all routines in the
compilation, unless the /SEPARATE_COMPILATION qualifier is specified.

OpenVMS I64 Compilers 9–11

OpenVMS I64 Compilers
9.2 Compatibility of VAX BASIC and HP BASIC

9.2.4 Common Language Environment Differences
This section describes differences among HP BASIC, VAX BASIC, and other
languages within the common language environment.

9.2.4.1 Creating PSECTs with COMMON and MAP Statements
In HP BASIC, the PSECT attributes are different from those in VAX BASIC, as
shown in the following table:

HP BASIC VAX BASIC

NOPIC PIC

NOSHR SHR

OCTAWORD alignment LONG alignment

In HP BASIC, the lengths of PSECTs that the COMMON and MAP statements
create are rounded up to a multiple of 16. The size of the COMMON or MAP
does not change; rather the size of the PSECT does. This change is visible only to
applications that use shareable images in a multilanguage environment.

Both HP BASIC and VAX BASIC create PSECTs that are compatible with those
of other languages on the same platform, with the exception of MACRO. You can
link with modules written in languages other than MACRO without changing
code. If you link against MACRO modules that reference these PSECTs, you
might need to make corresponding changes in the MACRO code.

9.2.4.2 64-Bit Floating-Point Data
In most other HP languages, the default 64-bit floating-point data type has
changed from D-floating on OpenVMS VAX systems to G-floating on OpenVMS
Alpha systems to T-floating on OpenVMS BASIC systems. If you communicate
BASIC DOUBLE (OpenVMS D-floating) data between BASIC and one of the
other languages that have made this change, you need to do one of the following:

• In the compiler command line of the other language, change the 64-bit
floating-point data type to D-floating to match the behavior of Alpha BASIC,
or to T-floating to match the behavior of I64 BASIC.

• In your BASIC program, change the data type of 64-bit floating-point data
from DOUBLE to either GFLOAT or TFLOAT to match the other language.

9.3 Compatibility of HP C with VAX C
VAX C was the original C compiler on VAX/VMS systems. VAX C was replaced
by DEC C, later rebranded as Compaq C, and more recently as HP C. If your
program is written in VAX C, HP recommends that you first port to HP C on
OpenVMS VAX. For details, see Compaq C Migration Guide for OpenVMS VAX
Systems. This manual is available from the following URL:

http://h71000.www7.hp.com/commercial/c/docs/

If your application is already in HP C, or has been ported to HP C from VAX
C, you will still face some additional issues when porting the application to I64.
However, these will be the same issues that are common to all programming
languages (floating point, page size, granularity, alignment, atomicity, and so on).
These types of issues are covered elsewhere in this manual.

9–12 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.4 VAX COBOL and HP COBOL Compatibility and Migration

9.4 VAX COBOL and HP COBOL Compatibility and Migration
HP COBOL is based on and is highly compatible with VAX COBOL, which runs
on the OpenVMS VAX system. However, there are significant differences.

For more information, see the HP COBOL User Manual.

9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS
I64 Systems

This section discusses the compatibility between HP Fortran for OpenVMS I64
systems and HP Fortran 77 for OpenVMS VAX Systems (HP Fortran 77, formerly
VAX FORTRAN) in the following areas:

• Language features (Section 9.5.1)

• Command-line qualifiers (Section 9.5.2)

• Interoperability with translated shared images
(Section 9.5.3)

• Porting HP Fortran 77 data (Section 9.5.4)

9.5.1 Language Features
HP Fortran includes ANSI FORTRAN-77 and ISO/ANSI Fortran 9x standard
features, as well as the HP Fortran 77 extensions to these Fortran standards,
including:

• RECORD statement and STRUCTURE statement

• CDEC$ directives and the OPTIONS statement

• BYTE, INTEGER*1, INTEGER*2, INTEGER*4, LOGICAL*1, LOGICAL*2,
LOGICAL*4

• REAL*4, REAL*8, REAL*16, COMPLEX*8, COMPLEX*16

• IMPLICIT NONE statement

• INCLUDE statement

• NAMELIST I/O

• Names up to 31 characters, including dollar sign ($) and underscore (_)

• DO WHILE and END DO statements

• Use of the exclamation point (!) for end-of-line comments

• Built-in functions %DESCR, %LOC, %REF, and %VAL

• VOLATILE statement

• DICTIONARY statement (FORTRAN-77 compiler only)

• POINTER statement data type

• Recursion

• Unformatted data conversion between disk and memory

• Indexed files

• I/O statements such as PRINT, ACCEPT, TYPE, DELETE, UNLOCK

• OPEN and INQUIRE statement specifiers, including CARRIAGECONTROL,
CONVERT, ORGANIZATION, RECORDTYPE

OpenVMS I64 Compilers 9–13

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

• Other language elements identified in the appropriate Fortran language
reference manuals

For detailed information about extensions and language features, see the Fortran
langauge reference manual, which visually shows extensions of the FORTRAN-77
standard.

The remainder of this section summarizes language features specific to HP
Fortran 77 and HP Fortran language features that are shared but interpreted
differently in each language, HP Fortran restrictions that do not apply to HP
Fortran 77, and data porting considerations.

9.5.1.1 Language Features Specific to HP Fortran
The following language features are available in HP Fortran but are not
supported in HP Fortran 77 Version 6.4:

• Double quotation marks (" ") as delimiters for character constants. This can
be disabled by specifying the /VMS qualifier.

• Naturally aligned or packed boundaries for fields of records and items in
COMMON blocks.

• The INTEGER*1, INTEGER*8, and LOGICAL*8 data types.

• Support for S_floating, T_floating, and X_floating IEEE data types as well
as support for nonnative unformatted data file formats, including big-endian
numeric format. For a description of the native floating-point data types for
Alpha systems, see the HP OpenVMS Calling Standard.

• LIB$ESTABLISH and LIB$REVERT are provided as intrinsic functions for
compatibility with HP Fortran 77 condition handling.

HP Fortran converts declarations to LIB$ESTABLISH to HP Fortran RTL
specific entry points.

• The alternate ‘‘Z’’ spelling for double-precision complex intrinsic functions.
(For example, the square root double-precision intrinsic function can be
spelled as CDSQRT or ZSQRT.)

• The following intrinsic functions:

IMAG
AND
OR
XOR
LSHIFT
RSHIFT

• Certain run-time errors are specific to HP Fortran.

• Case-sensitive names.

• I/O unit numbers can be any nonnegative integer in HP Fortran. In HP
Fortran 77, the values for I/O unit numbers can range from 0 to 99.

Note

When you use the HP Fortran 90 compiler, certain features associated
with the ANSI/ISO Fortran 90 standard are not available in HP Fortran
77.

9–14 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

For an explanation of HP Fortran language features, see the Fortran language
reference manual.

9.5.1.2 Language Features Specific to HP Fortran 77
The following language features are available in HP Fortran 77 but are not
supported in HP Fortran:

• Automatic decomposition features of FORTRAN/PARALLEL=(AUTOMATIC)

• Manual (directed) decomposition features of
FORTRAN/PARALLEL=(MANUAL) using the CPAR$ directives, such as
CPAR$ DO_PARALLEL

• The following I/O and error subroutines for PDP-11 compatibility:

ASSIGN
CLOSE
ERRSET

ERRTST
FDBSET
IRAD50

RAD50
R50ASC
USEREX

When porting existing programs, calls to ASSIGN, CLOSE, and FBDSET
should be replaced with the appropriate OPEN statement. (You might
consider converting DEFINE FILE statements at the same time, even though
HP Fortran for OpenVMS Alpha does support the DEFINE FILE statement.)

In place of ERRSET and ERRTST, OpenVMS condition handling might be
used. Note that HP Fortran for OpenVMS Alpha supports the ERRSNS
subroutine.

• Radix-50 constants in the form nRxxx

For existing programs being ported, radix-50 constants and the IRAD50,
RAD50, and R50ASC routines should be replaced by data encoded in ASCII
using CHARACTER declared data.

The following HP Fortran 77 features have restricted use or are not available in
HP Fortran:

• Numeric local variables are sometimes, but not always, initialized to a zero
value, depending on the level of optimization used. To guarantee that a value
is initialized to zero under all circumstances, use an explicit assignment or
DATA statement.

• Character constants must be associated with character dummy arguments,
not numeric dummy arguments. (HP Fortran 77 for OpenVMS VAX Systems
passed ’A’ by reference if the dummy argument was numeric.) Consider
using the /BY_REF_CALL qualifier for such arguments.

• Saved dummy arrays do not work:

SUBROUTINE F_INIT (A, N)
REAL A(N)
RETURN
ENTRY F_DO_IT (X, I)
A (I) = X ! No: A no longer visible
RETURN
END

• Hollerith actual arguments must be associated with numeric dummy (formal)
arguments, not character dummy arguments.

OpenVMS I64 Compilers 9–15

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

The following language features are available in HP Fortran 77 but are not
supported in HP Fortran because of differences between the Itanium architecture
and the VAX architecture:

• Certain FORSYSDEF symbol definition modules might be specific to the VAX
or Itanium architecture.

• Precise exception-handling control

The handling of certain exceptions differs between VAX and I64 systems.

• REAL*16 data uses the H_floating data format on VAX systems and
X_floating on I64 systems.

• VAX support for D_floating

Because the I64 instruction set does not support the D_floating REAL*8
format, D_floating data is converted to T_floating by software during
computations and then converted back to D_floating format. Thus, there
are differences in D_floating arithmetic between VAX and I64 systems.

For optimal performance on I64 systems, consider using REAL*8 data in
IEEE T_floating format, perhaps using the /FLOAT qualifier to specify the
format. To create an HP Fortran for OpenVMS I64 application program to
convert D_floating data to T_floating format, use the file conversion methods
described in the Fortran language reference manual.

• Vectorization capabilities

Vectorization, including /VECTOR and its related qualifiers, and the CDEC$
INIT_DEP_FWD directive are not supported.

9.5.1.3 Interpretation Differences
The following language features are interpreted differently between HP Fortran
77 and HP Fortran:

• Random number generator (RAN)

The RAN function generates a different pattern of numbers in HP Fortran
than in HP Fortran 77 for the same random seed. (The RAN and RANDU
functions are provided for HP Fortran 77 compatibility.)

• Hollerith constants in formatted I/O statements

HP Fortran 77 and HP Fortran behave differently if either of the following
occurs:

– Two different I/O statements refer to the same CHARACTER
PARAMETER constant as their format specifier. For example:

CHARACTER*(*) FMT2
PARAMETER (FMT2=’(10Habcdefghij)’)
READ (5, FMT2)
WRITE (6, FMT2)

– Two different I/O statements use the identical character constant as their
format specifier. For example:

READ (5, ’(10Habcdefghij)’)
WRITE (6, ’(10Habcdefghij)’)

In HP Fortran 77, the value obtained by the READ statement is the output
of the WRITE statement (FMT2 is ignored). However, in HP Fortran, the
output of the WRITE statement is abcdefghij. (The value read by the READ
statement has no effect on the value written by the WRITE statement.)

9–16 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

9.5.2 Command-Line Qualifiers
Although HP Fortran and HP Fortran 77 share most qualifiers, some qualifiers
are specific to each platform. This section summarizes the differences between
HP Fortran and HP Fortran 77 command-line qualifiers.

For complete information about the HP Fortran compilation command and
options, see the HP Fortran for OpenVMS User Manual. For complete
information about the HP Fortran 77 compilation command and options, see
the DEC Fortran User Manual for OpenVMS VAX Systems.

To initiate compilation on either VAX or I64 systems, use the FORTRAN
command. On I64 systems, use the F90 command to initiate compilation using
the HP Fortran 90 compiler.

9.5.2.1 Qualifiers Specific to HP Fortran for OpenVMS I64
Table 9–3 lists HP Fortran compiler qualifiers that have no equivalent HP
Fortran 77 options and are not supported in HP Fortran 77 Version 6.4.

Table 9–3 HP Fortran Qualifiers Not in HP Fortran 77

Qualifier Description

/BY_REF_CALL Allows character constant actual arguments to be
associated with numeric dummy arguments (allowed
by HP Fortran for OpenVMS VAX Systems).

/CHECK=FP_EXCEPTIONS Controls whether messages about IEEE floating-point
exceptional values are reported at run time.

/DOUBLE_SIZE Makes DOUBLE PRECISION declarations REAL*16
instead of REAL*8.

/FAST Sets several qualifiers that improve run-time
performance.

/FLOAT Controls the format used for floating-point data (REAL
or COMPLEX) in memory, including the selection
of either VAX F_floating or IEEE S_floating for
KIND=4 data and VAX G_floating, VAX D_floating,
or IEEE T_floating for KIND=8 data. HP Fortran
77 for OpenVMS VAX Systems provides the /[NO]G_
FLOATING qualifier.

/GRANULARITY Controls the granularity of data access for shared
data.

/IEEE_MODE Controls how floating-point exceptions are handled for
IEEE data.

/INTEGER_SIZE Controls the size of INTEGER and LOGICAL
declarations.

/NAMES Controls whether external names are converted to
uppercase, lowercase, or left as is.

/OPTIMIZE The /OPTIMIZE qualifier supports the INLINE
keyword, the LOOPS keyword, the TUNE keyword,
the UNROLL keyword, and software pipelining.

/REAL_SIZE Controls the size of REAL and COMPLEX
declarations.

(continued on next page)

OpenVMS I64 Compilers 9–17

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

Table 9–3 (Cont.) HP Fortran Qualifiers Not in HP Fortran 77

Qualifier Description

/ROUNDING_MODE Controls how floating-point calculations are rounded
for IEEE data.

/SEPARATE_COMPILATION Controls whether the HP Fortran compiler:

• Places individual compilation units as separate
modules in the object file like HP Fortran 77
(/SEPARATE_COMPILATION)

• Groups compilation units as a single module in
the object file (/NOSEPARATE_COMPILATION,
the default), which allows more interprocedure
optimizations.

/SYNTAX_ONLY Requests that only syntax checking occurs and no
object file is created.

/WARNINGS Certain keywords are not available on HP Fortran 77.

/VMS Requests that HP Fortran use certain HP Fortran 77
conventions.

9.5.2.2 Qualifiers Specific to HP Fortran 77
This section summarizes HP Fortran 77 compiler qualifiers that have no
equivalent HP Fortran qualifiers.

Table 9–4 lists compilation qualifiers specific to HP Fortran 77 Version 6.4.

Table 9–4 HP Fortran 77 Qualifiers Not Available in HP Fortran

HP Fortran 77 Qualifier Description

/BLAS=(INLINE,MAPPED) Specifies whether HP Fortran 77 recognizes and inlines or maps
the Basic Linear Algebra Subroutines (BLAS). Available only in HP
Fortran 77.

/CHECK=ASSERTIONS Enables or disables assertion checking. Available only in HP Fortran
77.

/DESIGN=[NO]COMMENTS
/DESIGN=[NO]PLACEHOLDERS

Analyzes program for design information.

/DIRECTIVES=DEPENDENCE Specifies whether specified compiler directives are used at
compilation. Available only in HP Fortran 77.

/PARALLEL=(MANUAL or
AUTOMATIC)

Supports parallel processing.

/SHOW=(DATA_
DEPENDENCIES,LOOPS)

Controls whether the listing file includes:

• Diagnostics about loops that are ineligible for dependence
analysis and data dependencies that inhibit vectorization or
autodecomposition (DATA_DEPENDENCIES)

• Reports about loop structures after compilation (LOOPS)

The keywords DATA_DEPENDENCIES and LOOPS are available
only in HP Fortran 77 for OpenVMS VAX Systems.

/VECTOR Requests vector processing. Available only in HP Fortran 77.

(continued on next page)

9–18 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

Table 9–4 (Cont.) HP Fortran 77 Qualifiers Not Available in HP Fortran

HP Fortran 77 Qualifier Description

/WARNINGS=INLINE Controls whether the compiler prints informational diagnostic
messages when it is unable to generate inline code for a reference to
an intrinsic routine. Available only in HP Fortran 77.

All CPAR$ directives and certain CDEC$ directives associated with directed
(manual) decomposition and their associated qualifiers or keywords are specific to
HP Fortran 77, as described in the DEC Fortran Language Reference Manual.

For details about the HP Fortran 77 compilation commands and options, see the
DEC Fortran User Manual for OpenVMS VAX Systems.

9.5.3 Interoperability with Translated Shared Images
Using HP Fortran, you can create images that can interoperate with translated
images at image activation (run time).

To allow the use of translated shared images:

• On the FORTRAN or F90 command line, specify the /TIE qualifier.

• On the LINK command line, specify the /NONATIVE_ONLY qualifier.

The created executable image contains code that allows the resulting executable
image to interoperate with shared images, including allowing the HP Fortran 77
RTL (FORRTL) to work with the HP Fortran RTL (DEC$FORTRTL). The native
(HP Fortran RTL) and translated (HP Fortran 77 RTL) programs can perform I/O
to the same unit number, as long as the RTL that opens the file also closes it.

Programs should use the intrinsic names (without the prefix) rather than calling
routines by their complete (fac$xxxx) name. One allowable exception to using
fac$xxxx names is that translated image programs declare the FOR$RAB system
function as EXTERNAL. Native I64 programs should use FOR$RAB as an
intrinsic function.

9.5.4 Porting HP Fortran 77 Data
Record types are identical for Digial Fortran 77 and HP Fortran. If needed,
transport the data using the EXCHANGE command with the /NETWORK and
/TRANSFER=BLOCK qualifiers. To convert the file to Stream_LF format during
the copy operation, use /TRANSFER=(BLOCK,RECORD_SEPARATOR=LF)
instead of /TRANSFER=BLOCK, or specify the /FDL qualifier to the EXCHANGE
command to change the record type or other file characteristics.

If you need to convert unformatted floating-point data, keep in mind that HP
Fortran 77 programs (VAX hardware) store REAL*4 or COMPLEX*8 data in
F_floating format, REAL*8, REAL*16, or COMPLEX*16 data in either D_floating
or G_floating format, and REAL*16 data in H_floating format. HP Fortran for
OpenVMS Alpha programs (running on Alpha hardware) store REAL*4, REAL*8,
REAL*16, COMPLEX*8, and COMPLEX*16 data in one of the formats shown in
Table 9–5.

OpenVMS I64 Compilers 9–19

OpenVMS I64 Compilers
9.5 Compatibility of HP Fortran on OpenVMS VAX and OpenVMS I64 Systems

Table 9–5 Floating-Point Data on VAX and I64 Systems

Data Declaration VAX Formats I64 Formats

REAL*4 and
COMPLEX*8

VAX F_floating format IEEE S_floating or VAX F_floating1

format

REAL*8 and
COMPLEX*16

VAX D_floating or G_
floating format

IEEE T_floating, VAX D_floating1, or VAX
G_floating format

REAL*16 VAX H_floating X_floating. Requires conversion, perhaps
using the /CONVERT qualifier or
associated OPTION statement, logical
name, or OPEN statement /CONVERT
keyword. You can also use the RTL
routine CVT$CONVERT_FLOAT.

1On I64 systems, use of VAX F_floating, D_floating, or G_floating formats involving many
computations is not recommended. Consider converting F_floating format to IEEE S_floating format,
and converting D_floating and G_floating formats to IEEE T_floating format in a conversion program
that uses the HP Fortran for OpenVMS I64 conversion routines.

9.6 Compatibility of HP Pascal for I64 Systems with HP Pascal for
VAX Systems

This section compares HP Pascal to other HP Pascal compilers and lists the
differences between HP Pascal on VAX and I64 systems. For a complete
description of these features, see the HP Pascal for OpenVMS Language
Reference Manual.

9.6.1 Unused External Symbols
On OpenVMS VAX, the HP Pascal compiler produces global symbol definitions
(GSDs) only for symbols present in the final instruction stream. On OpenVMS
I64 systems, HP Pascal produces GSDs for all external definitions regardless of
whether they were used in the program or not. This might require that additional
objects be present when linking or additional shareable images be present when
running certain programs.

Such programs can be reorganized to declare such external definitions only when
they are actually used in the program.

9.6.2 Sharing Environment Files Across Platforms
The compiler only inherits environment files created from a compiler for the same
target platform. For example, you cannot inherit environment files generated by
HP Pascal for OpenVMS VAX with the HP Pascal for OpenVMS I64 compiler.

9.6.3 Default Size for Enumerated Types and Booleans
The default size for enumerations and Booleans in unpacked structures is
longword on I64 systems. On VAX systems, the default is a byte for Booleans
and small enumerations or word for larger enumerations. If you need the
VAX behavior on I64 systems, you can use the /ENUMERATION_SIZE=BYTE
qualifier, the [ENUMERATION_SIZE(BYTE)] attribute, or you can place
individual [BYTE] or [WORD] attributes on the affected fields or components.
The default for OpenVMS VAX compilers remains /ENUMERATION_SIZE=BYTE
for compatibility.

9–20 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.6 Compatibility of HP Pascal for I64 Systems with HP Pascal for VAX Systems

9.6.4 Default Data Layout for Unpacked Arrays and Records
On I64 systems, the default data layout is natural alignment. This means that
record fields and array components are aligned on boundaries based on their size.
On VAX systems, the default alignment rule is to allocate such fields on the next
byte boundary. If you need the VAX behavior on I64 systems, you can use the
/ALIGN=VAX qualifier or the [ALIGN(VAX)] attribute.

9.6.5 Default Floating Format
On I64 systems, the default floating-point format is IEEE format. The compiler
uses IEEE S_floating for REAL, IEEE T_floating for DOUBLE, and X_floating for
QUADRUPLE datatypes. On VAX systems, the default floating-point format is
VAX format. If you need the VAX floating format on OpenVMS I64 systems, you
can use the /FLOAT=G_FLOAT or /FLOAT=D_FLOAT qualifier or the [FLOAT()]
module-level attribute. When VAX format is requested on I64 systems, the
compiler converts each VAX format value to IEEE format before performing
any operation. The compiler then converts the value back to VAX format before
storing it back to memory. Because of differences in the VAX and IEEE formats,
some slight differences in precision and accuracy might occur.

9.6.6 IADDRESS and VOLATILE
The IADDRESS built-in assumes that its parameter is a VOLATILE variable, a
VOLATILE parameter, or a routine entry point. Unlike the ADDRESS built-in,
the IADDRESS buil-in does not issue a warning if the parameter does not have
the VOLATILE attribute.

On VAX systems, the HP Pascal compiler often allocates variables so that they
exist for the entire routine in which they were declared. In these situations,
using the IADDRESS built-in to obtain the address of the variable works as
expected. Usually, the address is passed to a system service by way of an item
list or something similar.

On I64 systems, the HP Pascal compiler is much more agressive with
optimizating data layout on the stack. In the absence of a VOLATILE attribute,
the compiler allocates variables for the smallest possible duration. If the address
is taken with IADDRESS, by the time the address is written into by a system
service, the variable might no longer exist and the memory store would corrupt
another variable.

In summary, if the IADDRESS built-in is used on automatic variables or
parameters, then the VOLATILE attribute must be used to ensure proper
behavior.

9.6.7 INT on Large Unsigned Numbers Now Overflows
On VAX systems, the INT built-in accepts large unsigned numbers and silently
converts them to negative integers. During the addition of 64-bit integer types
to HP Pascal, it became apparent that this behavior was wrong. Now, when
overflow checking is enabled, the INT built-in signals a run-time error if its
actual parameter cannot be represented as an INTEGER32 value.

If you have a large unsigned value that you want to convert to a negative integer,
you must use a typecast to perform the operation.

OpenVMS I64 Compilers 9–21

OpenVMS I64 Compilers
9.6 Compatibility of HP Pascal for I64 Systems with HP Pascal for VAX Systems

9.6.8 Bound Procedure Values
On VAX systems, a bound procedure value is a 2-longword data structure
that holds the address of the entry point and a frame-pointer to define the
nested environment. HP Pascal expects one of these 2-longword structures for
PROCEDURE or FUNCTION parameters. Additionally, a called routine needs
to identify when it receives a bound procedure value and not a simple routine
address. When passing a routine to a %IMMED formal routine parameter, HP
Pascal passes the address of the entry point.

On I64 systems, a bound procedure value is just a special type of function
descriptor which invokes a hidden jacket routine which in turns initializes the
frame-pointer and calls the real routine. Given this structure, a routine that is
calling another routine indirectly does not need to do anything special for bound
procedure values. Likewise, passing routines by %IMMED (or asking for the
IADDRESS of a routine) passes the address of a function descriptor just as if
the %IMMED was not present. There is no direct way in HP Pascal to obtain
the actual code address of a routine because the routine is not generally useful
without the associated function descriptor.

9.6.9 Different Descriptor Classes for Conformant Array Parameters
For conformant parameters, HP Pascal uses the "by descriptor" mechanism to
pass them from one routine to another. For conformant array parameters, HP
Pascal uses a CLASS_A descriptor on VAX systems and a CLASS_NCA descriptor
on I64 systems. The CLASS_NCA descriptors generate more efficient code
when accessing array components. If you have a foreign routine that constructs
CLASS_A descriptors for Pascal, you need to examine the code to see if changes
are necessary. For certain actual parameters, the CLASS_A and CLASS_NCA
descriptors are identical except for the DSC$B_CLASS field (which HP Pascal
does not examine). For other parameters, you either must generate a CLASS_
NCA descriptor or add an explicit CLASS_A attribute to the formal conformant
parameter in the Pascal routine.

9.6.10 Pascal Features Not Available on OpenVMS I64
The following features from HP Pascal for OpenVMS VAX systems that are not
available on HP Pascal for OpenVMS I64:

• The MFPR and MTPR built-in routines

• The /DESIGN=COMMENTS DCL qualifier

• The /SHOW=TABLE_OF_CONTENTS DCL qualifier and listing section

• The /SHOW=INLINE DCL qualifier and listing section

There are no alternatives or workarounds for these features.

Before migrating from OpenVMS VAX to OpenVMS I64, you can compile your
programs with the /PLATFORM=OPENVMS_AXP qualifier. You must use the
OPENVMS_AXP keyword because the currently shipping HP Pascal compiler
for OpenVMS VAX systems does not recogize the OPENVMS_I64 keyword for
the /PLATFORM DCL qualifier. The issues for porting from OpenVMS VAX
to OpenVMS I64 are essentially the same as those from OpenVMS VAX to
OpenVMS Alpha, with the only difference being the default floating format.

9–22 OpenVMS I64 Compilers

OpenVMS I64 Compilers
9.6 Compatibility of HP Pascal for I64 Systems with HP Pascal for VAX Systems

9.6.11 Pascal Record Layout Guide
The HP Pascal kit provides a document that further describes
data layout and data conversion issues for programs migrating
from OpenVMS VAX to OpenVMS I64. The file is located at
SYS$HELP:PASCAL_RECORD_LAYOUT_GUIDE.MEM.

OpenVMS I64 Compilers 9–23

A
Application Evaluation Checklist

Development History and Plans

1. Does the application currently run on other operating
systems or hardware architectures?

YES NO

If yes, does the application currently run on a RISC
system?

YES NO

[If so, migrating to OpenVMS I64 it will be easier.]

2. What are your plans for the application after migration?
a. No further development YES NO
b. Maintenance releases only YES NO
c. Additional or changed functionality YES NO
d. Maintain separate VAX and I64 sources YES NO
[If you answer YES to item a, you may wish to consider
translating the application. A YES response to item b
or c should give you reason to evaluate the benefits of
recompiling and relinking your application, although
translation is still possible. If you intend to maintain
separate VAX and I64 sources, as indicated by a YES to
item d, you might need to consider interoperability and
consistency issues, especially if the different versions of the
application can access the same database.]

External Dependencies

3. What is the system configuration (CPUs, memory, disks)
required to set up a development environment for the
application?
[This helps you plan for the resources needed for
migration.]

4. What is the system configuration (CPUs, memory, disks)
required to set up a typical user environment for the
application, including installation verification procedures,
regression tests, benchmarks, or workloads?
[This helps you determine whether your entire environment
is available on OpenVMS I64.]

Application Evaluation Checklist A–1

Application Evaluation Checklist

5. Does the application rely on any special hardware? YES NO
[This helps you determine whether the hardware is
available on OpenVMS I64, and whether the application
includes hardware-specific code.]

6. a. What version of OpenVMS does your application
currently run on?
b. Does the application run on OpenVMS VAX Version 6.1? YES NO
c. Does the application use features that are not available
on OpenVMS I64?

YES NO

[The migration base for OpenVMS I64 is OpenVMS
VAX Version 6.1. If you answer YES to question c,
your application might use features that are not yet
supported on OpenVMS I64, or it might be linked against
an OpenVMS RTL or other shareable image that is
incompatible with the current version of OpenVMS I64.]

7. Does the application require layered products to run?
a. From HP (other than compiler RTLs): YES NO
b. From third parties: YES NO
[If you answer YES to item a and are uncertain whether
the HP layered products are yet available for OpenVMS
I64, check with a HP support representative. If you answer
YES to item b, check with your third-party supplier.]

Composition of the Application

8. How large is your application?
a. How many modules?
b. How many lines or kilobytes of code?
c. How much disk space is required?
[This helps you "size" the effort and the resources required
for migration.]

9. a. Do you have access to all source files that make up your
application?

YES NO

b. If you are considering using HP Services, will it be
possible to give HP access to these source files and build
procedures?

YES NO

[If you answer YES to question a, translation may be your
only migration option for the files with missing sources. A
YES answer to question b allows you to take advantage of
a greater range of HP migration services.]

10. a. What languages is the application written in? (If
multiple languages are used, give the percentages of each.)
[If the compilers are not yet available, you must translate
or rewrite in a different language.]
b. If you use VAX MACRO, what are your specific reasons?

A–2 Application Evaluation Checklist

Application Evaluation Checklist

c. Can the function of the VAX MACRO code be performed
by a high-level-language compiler or a system service (such
as $GETJPI for retrieving process names)?

YES NO

11. a. Do you have regression tests for the application? YES NO
b. If yes, do they require DEC Test Manager? YES NO
[If you answer YES to question a, consider migrating those
regression tests. The DEC Test Manager is not available at
the initial release of OpenVMS I64. Contact an HP support
representative if your regression tests depend on the DEC
Test Manager.]

Dependencies on the VAX Architecture

12. a. Does the application use the H_floating data types? YES NO
b. Does the application use the D_floating data types? YES NO
c. If the application uses D_floating, does it require 56 bits
of precision (16 decimal digits) or would 53 bits (15 decimal
digits) suffice?

56 bits 53 bits

[If you answer YES to question a, you must either translate
your application to obtain H_floating compatibility, or
convert the data to G_floating, S_floating, or T_floating
format. If you answer YES to question b, you must either
translate the application to obtain full 56-bit VAX precision
D_floating compatibility, accept the 53-bit precision D_
floating format provided by I64 systems, or convert the
data to G_floating, S_floating, or T_floating format.]

13. a. Does the application use large amounts of data or data
structures?

YES NO

b. Is the data byte, word, or longword aligned? YES NO
[If you answer YES to question a, but NO to question b,
consider aligning your data naturally to achieve optimal
I64 performance. You must align data naturally if the data
is in a global section shared among a number of processes,
or if it is shared between a main program and an AST.]

14. Does the application make assumptions about how
compilers align data (that is, does the application assume
that data structures are packed, aligned naturally, aligned
on longwords, and so on)?

YES NO

[If you answer YES, you should consider portability
and interoperability issues resulting from differences in
compiler behavior, both on the I64 platform and between
the VAX and I64 platforms. Be aware that compiler
defaults for data alignment vary, as do compiler switches
for forcing alignment. Typically, VAX systems default to a
packed style alignment, whereas I64 compilers default to
natural alignment where possible.]

15. a. Does the application assume a 512-byte page size? YES NO

Application Evaluation Checklist A–3

Application Evaluation Checklist

b. Does the application assume that a memory page is the
same size as a disk block?

YES NO

[If you answer YES to question a, be prepared to adapt
the application to accommodate the I64 page size, which
is much larger than 512 bytes and varies from system
to system. Avoid hardcoded references to the page size;
rather, use memory management system services and
RTL routines wherever possible. If you answer YES to
question b, you should examine all calls to the $CRMPSC
and $MGBLSC system services that map disk sections to
memory and remove these assumptions.]

16. Does the application call OpenVMS system services? YES NO
Does the application call services that:
a. Create or map global sections (such as $CRMPSC,
$MGBLSC, $UPDSEC)

YES NO

b. Modify the working set (such as $LCKPAG, $LKWSET) YES NO
c. Manipulate virtual addresses (such as $CRETVA,
$DELTVA)

YES NO

[If you answer YES to any of these, you might need to
examine your code to make sure that it specifies the
required input parameters correctly.]

17. a. Does the application use multiple, cooperating processes? YES NO
If so:
b. How many processes?
c. What interprocess communication method is used?

$CRMPSC Mailboxes SCS Other
DLM SHM, IPC SMG$ STR$

d. If you use global sections ($CRMPSC) to share data with
other processes, how is data access synchronized?
[This helps you determine whether you need to use
explicit synchronization, and the level of effort required
to guarantee synchronization among the parts of your
application. Use of a high-level synchronization method
generally allows you to migrate an application most easily.]

18. Does the application currently run in a multiprocessor
(SMP) environment?

YES NO

[If you answer YES, it is likely that your application
already uses adequate interprocess synchronization
methods.]

19. Does the application use AST (asynchronous system trap)
mechanisms?

YES NO

[If you answer YES, determine whether the AST and main
process share access to data in process space. If so, you
might need to explicitly synchronize such accesses.]

A–4 Application Evaluation Checklist

Application Evaluation Checklist

20. a. Does the application contain condition handlers? YES NO
b. Does the application rely on immediate reporting of
arithmetic exceptions?

YES NO

[The Intel Itanium architecture does not provide immediate
reporting of arithmetic exceptions. If your handler
attempts to fix the condition and restart the instruction
sequence that led to the exception, you need to alter the
handler.]

21. Does the application run in privileged mode or link against
SYS.STB?

YES NO

If so, why?
[If your application links against the OpenVMS executive
or runs in privileged mode, you must rewrite it to work as
a native I64 image.]

22. Do you write your own device drivers? YES NO

23. Does the application use connect-to-interrupt mechanisms? YES NO
If yes, with what functionality?

24. Does the application create or modify machine instructions? YES NO
[Guaranteeing correct execution of instructions written to
the instruction stream requires great care on OpenVMS
I64.]

25. What parts of the application are most sensitive to
performance? I/O, floating point, memory, real time (that
is, interrupt latency, and so on).
[This helps you determine how to prioritize work on the
various parts of your application and allows HP to plan
performance enhancements that are most meaningful to
customers.]

Application Evaluation Checklist A–5

Glossary

alignment

See natural alignment.

atomic instruction

An instruction that consists of one or more discrete operations that are handled
by the hardware as a single operation, without interruption.

atomic operation

An operation that cannot be interrupted by other system events, such as an AST
(asynchronous system trap) service routine; an atomic operation appears to other
processes to be a single operation. Once an atomic operation starts, it always
completes without interruption.

Read-modify-write operations are typically not atomic at an instruction level on a
RISC machine.

byte granularity

A property of memory systems in which adjacent bytes can be written
concurrently and independently by different processes or processors.

CISC

See complex instruction set computer.

compatibility

The ability of programs written for one type of computer system (such as
OpenVMS VAX) to execute on another type of system (such as OpenVMS I64).

complex instruction set computer (CISC)

A computer that has individual instructions that perform complex operations,
including complex operations performed directly on locations in memory.
Examples of such operations include instructions that do multibyte data moves or
substring searches. CISC computers are typically contrasted with RISC (reduced
instruction set computer) computers.

concurrency

Simultaneous operations by multiple agents on a shared object.

granularity

A characteristic of storage systems that defines the amount of data that can be
read or written with a single instruction, or read or written independently. VAX
systems have byte or multibyte granularities while disk systems typically have
512-byte or greater granularities.

Glossary–1

image section

A group of program sections with the same attributes (such as read-only access,
read/write access, absolute, relocatable, and so on) that is the unit of virtual
memory allocation for an image.

interlocked instruction

An instruction that performs some action in a way that guarantees the complete
result as a single, uninterruptible operation in a multiprocessing environment.
Since other potentially conflicting operations can be blocked while the interlocked
instruction completes, interlocked instructions can have a negative performance
impact.

load/store architecture

A machine architecture in which data items are first loaded into a processor
register, then operated on, and finally stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits
are numbered from right to left, 0 to 31. The address of the longword is the
address of the byte containing the low-order bit (bit 0). A longword is naturally
aligned if its address is evenly divisible by 4.

multiple instruction issue

Issuing more than one instruction during a single clock cycle.

natural alignment

Data storage in memory such that the address of the data is evenly divisible by
the size of the data in bytes. For example, a naturally aligned longword has an
address that is evenly divisible by 4, and a naturally aligned quadword has an
address that is evenly divisible by 8. A structure is naturally aligned when all its
members are naturally aligned.

page size

The number of bytes that a system’s hardware treats as a unit for address
mapping, sharing, protection, and movement to and from secondary storage.

pagelet

A 512-byte unit of memory in an Itanium environment. On OpenVMS I64
systems, certain DCL and utility commands, system services, and system
routines accept as input or provide as output memory requirements and quotas
in terms of pagelets. Although this allows the external interfaces of these
components to be compatible with those of VAX systems, OpenVMS I64 internally
manages memory only in even multiples of the CPU memory page size.

PALcode

See privileged architecture library.

privileged architecture library (PAL)

A library of callable routines for performing instructions unique to a particular
operating system. Special instructions call the routines, which must run without
interruption.

Glossary–2

processor status (PS)

On Alpha systems, a privileged processor register consisting of a quadword of
information including the current access mode, the current interrupt priority
level (IPL), the stack alignment, and several reserved fields.

processor status longword (PSL)

On VAX systems, a privileged processor register consisting of a word of privileged
processor status and the processor status word itself. The privileged processor
status information includes the current interrupt priority level (IPL), the previous
access mode, the current access mode, the interrupt stack bit, the trace trap
pending bit, and the compatibility mode bit.

processor status word (PSW)

On VAX systems, the low-order word of the processor status longword. Processor
status information includes the condition codes (carry, overflow, 0, negative),
the arithmetic trap enable bits (integer overflow, decimal overflow, floating
underflow), and the trace enable bit.

program counter (PC)

That portion of the CPU that contains the virtual address of the next instruction
to be executed. Most current CPUs implement the program counter as a register.
This register is visible to the programmer through the instruction set.

quadword

Four contiguous words (64 bits) starting on any addressable byte boundary.
Bits are numbered from right to left, 0 to 63. The address of a quadword is the
address of the word containing the low-order bit (bit 0). A quadword is naturally
aligned if its address is evenly divisible by 8.

quadword granularity

A property of memory systems in which adjacent quadwords can be written
concurrently and independently by different processes or processors.

read-modify-write operation

A hardware operation that involves the reading, modifying, and writing of a piece
of data in main memory as a single, uninterruptible operation.

read-write ordering

The order in which memory on one CPU becomes visible to an execution agent (a
different CPU or device within a tightly coupled system).

reduced instruction set computer (RISC)

A computer that has an instruction set reduced in complexity, but not necessarily
in the number of instructions. RISC architectures typically require more
instructions than CISC architectures to perform a given operation, because an
individual instruction performs less work than a CISC instruction.

RISC

See reduced instruction set computer.

Glossary–3

synchronization

A method of controlling access to some shared resource so that predictable, well-
defined results are obtained when operating in a multiprocessing environment or
in a uniprocessing environment using shared data.

translated code

The native OpenVMS I64 object code in a translated image. Translated code
includes:

• OpenVMS I64 code that reproduces the behavior of equivalent VAX code in
the original image

• Calls to the Translated Image Environment (TIE)

translated image

An OpenVMS I64 executable or shareable image created by translation of
the object code of a VAX image. The translated image, which is functionally
equivalent to the VAX image from which it was translated, includes both
translated code and the original image. See VAX Environment Software
Translator.

Translated Image Environment (TIE)

A native Alpha shareable image that supports the execution of translated
images. The TIE processes all interactions with the native Alpha system and
provides an environment similar to OpenVMS VAX for the translated image by
managing VAX state; by emulating VAX features such as exception processing,
AST delivery, and complex VAX instructions; and by interpreting untranslated
VAX instructions.

translation

The process of converting a VAX binary image to an OpenVMS I64 image that
runs with the assistance of the TIE on an Alpha system. Translation is a static
process that converts as much VAX code as possible to native Alpha instructions.
The TIE interprets any untranslated VAX code at run time.

VEST

See VAX Environment Software Translator.

VAX Environment Software Translator (VEST)

A software migration tool that performs the translation of VAX executable
and shareable images into translated images that run on Alpha systems. See
translated image.

word granularity

A property of memory systems in which adjacent words can be written
concurrently and independently by different processes or processors.

writable global section

A data structure (for example, FORTRAN global common) or shareable
image section potentially available to all processes in the system for use in
communicating between processes.

Glossary–4

Index

A
Access modes

inner, 2–10
Ada

see GNAT Pro Ada
see HP Ada

Ada 83, 9–2
Ada 95, 9–2
$ADJWSL system service

page-size dependencies, 5–2
Alignment

See Data alignment
Allocating memory

by expanding virtual address space
page-size dependencies, 5–6

freeing allocated memory
page-size dependencies, 5–9

page-size dependencies, 5–6
reallocating existing virtual addresses

page-size dependencies, 5–8
specifying address ranges, 5–8
specifying page counts, 5–6
using the $CRETVA system service, 5–9
using the $EXPREG system service, 5–7

Analyze/Image utility (ANALYZE/IMAGE), 3–6
Analyze/Object utility (ANALYZE/OBJECT), 3–6
Analyzing an application, 2–9, 2–19
AP

See Argument pointer (AP)
Application Migration Detailed Analysis Service,

1–6
Application Migration Service, 1–6
Applications

analyzing, 2–9, 2–19
establishing baseline values for, 3–7
languages used, A–2
size, A–2

Architecture
dependencies, 2–11

ARCH_NAME keyword
determining host architecture, 4–7

ARCH_TYPE keyword
determining host architecture, 4–6

Argument pointer (AP), 2–17
Arithmetic exceptions, 2–16

on I64 systems, 8–10
array parameters

differences between I64 BASIC/Alpha BASIC
and VAX BASIC, 9–5

Assembly language
no performance advantage on I64, 2–10
replaced by system services, 2–10

AST parameter list
reliance on architectural details of, 2–18

ASTs (asynchronous system traps), A–4
sharing data, 2–14
synchronizing with, 2–15

AST service routines
dependence on parameter list, 2–18

Asynchronous system traps
See ASTs

Atomic instructions
effect on synchronization, 6–2

Atomicity
definition, 2–14
language constructs to guarantee, 2–14
of read-modify-write operations, 2–7
preserving in translated images, 6–10

B
Based images, 2–5
Baseline values for application

establishing, 3–7
BASIC, 9–3
Buffer sizes

in mixed-architecture OpenVMS Cluster
systems, 2–15

Bugs
latent, 3–8

Build procedures, 2–2
changes required, 1–1

Byte granularity
effect on synchronization, 6–2

Index–1

C
C

header files for defining macros, 3–4
include files, 3–2
LIB$ESTABLISH, 8–1

Call frames
interpreting contents of, 2–17

Calling standard
code that relies on, 3–18
reliance on, 2–16

Calls
nonstandard

writing jacket routines for, 2–9
CALLx VAX instruction, 2–9
Choosing a migration method, 2–3, 2–7
CLI$DCL_PARSE

external definition, 3–15
CLUE (Crash Log Utility Extractor)

See Crash Log Utility Extractor
CMA_DELAY API library routine, 3–16
CMA_TIME_GET_EXPIRATION API library

routine, 3–16
$CMEXEC system service, 2–10
$CMKRNL system service, 2–10
CMS, 3–2
CMS (Code Management System), 2–2
COBOL, 3–4

fast performance, 2–13
packed decimal data, 2–13

Code Management System
See CMS

Code reviews, 2–19
command definition file, 3–15
Command procedures, 1–1
Compatibility

OpenVMS I64 and OpenVMS I64, 1–1
using translation for, 1–5, 2–8

Compile commands
changes required, 3–3

Compile procedures, 3–2
Compilers

architectural differences, 3–4
availability on I64, 2–3
availability on I64 systems, 4–2
commands, 3–3
compatibility between compilers on VAX

systems and on I64 systems, 9–1 to 9–23
data alignment defaults, 2–7
differences, 9–1
messages generated by, 2–19
native I64, 2–3, 3–3
optimizing, 3–3
options

exception reporting, 8–10
qualifiers, 1–1

Compilers (cont’d)
qualifiers for VAX dependencies, 3–4
use of LIB$ESTABLISH routine, 8–1

Conditionalized code, 3–9
Condition code

matching, 8–8
Condition handlers, 3–12, A–5

establishing dynamic, 2–17, 8–1, 9–14
Condition handling

alignment fault reporting, 8–11
arithmetic exceptions, 8–10
condition codes, 8–8
enabling overflow detection, 8–13
hardware exception conditions, 8–9
mechanism array format, 8–3
on I64 systems, 8–1
run-time library support routines, 8–12
signal array format, 8–2
specifying condition handlers, 8–13
unwinding, 8–7
VAX hardware exceptions, 8–9
with translated images, 8–9
writing condition handlers, 8–2

Connect-to-interrupt mechanisms, A–5
CPU keyword

determining the host architecture, 4–7
Crashes

analyzing, 3–6
Crash Log Utility Extractor (CLUE), 3–6, 3–7
$CREPRC system service

page-size dependencies, 5–2
$CRETVA system service, A–4

code example, 5–9
page-size dependencies, 5–2
reallocating memory on an I64 system, 5–8

$CRMPSC system service, 2–10, 2–15, 2–16, A–4
mapping a single page section

page-size dependencies, 5–12
mapping into a defined address range

code example, 5–14
page-size dependencies, 5–13

page-size dependencies, 5–2
used to map into expanded virtual address

space
code example, 5–11
page-size dependencies, 5–10

D
Data

See also Data alignment
ODS-1 format not supported in OpenVMS I64,

1–2
ODS-2 format unchanged, 1–2
porting between HP Fortran for OpenVMS

Alpha and HP Fortran 77, 9–19
shared

access, 2–11

Index–2

Data
shared (cont’d)

unintentional sharing, 6–8
Data alignment, 2–7, 2–11, 2–13, 3–17 to 3–18,

A–3
compiler defaults, 2–7
compiler options, 2–11, 2–12, 3–17
exception reporting, 8–11
finding unaligned data, 2–11, 3–17
global sections, 2–5
incompatibility with translated software, 2–12,

3–18
natural alignment of data, 2–7, 3–17
performance, 2–7, 2–11, 3–17
run-time faults, 2–20
static unaligned data, 2–20
unaligned stack operations, 2–20

Databases
same function on OpenVMS I64, 1–3

Data types, 2–13, 2–14
decimal, 2–13
differences between HP Fortran for OpenVMS

Alpha and HP Fortran 77, 9–19
D_floating, 2–7, 2–14, 2–20

full precision, 1–2, A–3
G_floating, 1–2, 2–7, 2–14
H_floating, 1–2, 2–7, 2–11, 2–13, 2–20, A–3
I64 implementations, 2–13
IEEE formats, 2–14

little endian, 1–2
packed decimal, 2–7, 2–20
portability between VAX and I64 systems, 7–1
supported by Itanium architecture, 7–1
supported by VAX architecture, 7–1

Data-type sizes
effect on protection of shared data, 6–8

DCL (DIGITAL Command Language), 1–1
Debugger

detecting unaligned data, 2–11
Debuggers

DELTA, 3–5
native I64, 3–5
SCD, 3–5
XDelta, 3–5

Debugging, 3–5
Debug symbol table, 3–12
DECforms, 1–1
DECmigrate

VEST
/PRESERVE qualifier, 6–10

DECset, 3–6
DECwindows, 1–1
Delta/XDelta Debugger (DELTA/XDELTA)

See also Debugger
DELTA Debugger, 3–5
$DELTVA system service, A–4

freeing allocated memory
page-size dependencies, 5–9

$DELTVA system service (cont’d)
page-size dependencies, 5–3

Dependencies on other software
identifying, 2–1

$DEQ system service, 2–14, 2–16
Device configuration functions

in SYSMAN for OpenVMS I64, 1–2
Device drivers, 2–5

Step 1 interface, 1–3
Step 2 interface, 1–3
user-written, 1–3, 2–10, A–5
written in C, 1–3

Diagnostic features
compilers, 2–19
VEST, 2–19

DIGITAL Command Language
See DCL

Disk block size
relation to page size, 2–15

(DOUBLE) D-float Data Type in HP BASIC, 9–4
DPML (HP Portable Mathematics Library)

compatibility, 4–6
Dump files

See System dump files
DWARF image file format, 3–12
Dynamic condition handler

establishing, 2–17
D_floating data type, 1–2, 2–14, 2–20

E
Editors

unchanged for OpenVMS I64, 1–1
ELF object file format, 3–12
$ENQ system service, 2–14, 2–16
Evaluating code, 1–4

checklist, A–1
Exception handling

See Condition handling
Exception reporting, 2–16

compiler options, 8–10
immediacy of, A–5
reliance on architectural details of, 2–18

Executive images
slicing, 3–7

$EXPREG system service
allocating memory on I64 systems, 5–6
code example, 5–7
page-size dependencies, 5–3

F
File types

on I64 systems, 4–2
Flag-passing protocols

for synchronization, 2–16

Index–3

floating-point arithmetic, 2–12
Floating-point data types

64-bit floating-point data type in BASIC, 9–12
comparison of VAX and I64 types, 9–19
comparison of VAX and Itanium types, 2–13
converting H_floating data, 9–20
CVT$CONVERT_FLOAT RTL routine, 9–20
default size in VAX BASIC, 9–5
differences between HP Fortran 77 and HP

Fortran, 9–19
errors in BASIC, 9–9
IEEE, 3–13
in HP BASIC, 9–4
locating references, 2–20
supported by HP BASIC, 9–4
VAX, 3–13
VAX little-endian formats, 9–19

Fortran
/CHECK qualifier, 2–19

free routine
memory allocation, 5–1

G
Generating VAX instructions at run time, 2–5,

2–19
$GETJPI system service

page-size dependencies, 5–3
$GETQUI system service

page-size dependencies, 5–4
$GETSYI system service, 2–15

determining host architecture, 4–6
obtaining the system page size, 5–20
page-size dependencies, 5–4

$GETUAI system service
page-size dependencies, 5–4

Global sections
alignment of, 2–5
creating, A–4
mapping, A–4
writable, 2–14

Global symbol tables
See GSTs

GNAT Pro Ada, 9–1
Granularity, 2–16
GSTs (Global symbol tables), 2–9
G_floating data type, 1–2, 2–14

H
HFLOAT data type, 9–4
HP Ada, 9–2
HP BASIC

appending files at DCL command line, 9–7
common language environment, 9–12
compiler messages, 9–8
creating PSECTS, 9–12
debugging differences from VAB BASIC, 9–10

HP BASIC (cont’d)
error detection on illegal MAT operations, 9–10
error handling, 9–7
error status returned, 9–8
features not available in VAX BASIC, 9–3
floating-point errors, 9–9
line numbers, 9–7
/LINES qualifier, 9–7
listing file, 9–11
math functions, 9–9
object modules, 9–8
operations with floating-point data types, 9–4
RESUME and DEF statements, 9–8
unreachable code errors, 9–7
use of SYS$INPUT, 9–8

HP COBOL
compatibility between HP COBOL and VAX

COBOL, 9–13
differences from VAX COBOL, 9–13

HP Fortran
compatibility with HP Fortran 77

architectural differences, 9–16
command line, 9–17
interpretation differences, 9–16
language features, 9–13
porting data, 9–19
restrictions, 9–15

compatibility with HP Fortran for OpenVMS
VAX Systems, 9–13

differences with HP Fortran 77, 9–13
establishing dynamic condition handler, 9–14
interoperability considerations, 9–19
intrinsic names

prefixes, 9–19
LIB$ESTABLISH routine, 9–14
LIB$REVERT routine, 9–14
performing I/O from native and translated

images, 9–19
qualifiers not available in HP Fortran 77, 9–17
qualifiers specific to HP Fortran 77, 9–18
support for floating-point data types, 9–19

HP Fortran for OpenVMS Alpha
porting data, 9–19

HP Fortran for OpenVMS I64
LIB$ESTABLISH routine, 8–1
LIB$REVERT routine, 8–1

HP OpenVMS Migration Software for Alpha to
Integrity Servers, 3–2

resources required, 3–3
runs on Alpha and I64 systems, 3–3

HP Pascal
differences with VAX Pascal, 9–20
LIB$ESTABLISH routine, 8–1

HP Portable Mathematics Library
See DPML

Index–4

HW_MODEL keyword
determining the host architecture, 4–7

H_floating data type, 1–2, 2–11, 2–13, 2–20

I
I64 BASIC/Alpha BASIC

DEF* routines, 9–6
IAS

see Itanium Assember
IEEE data types

little endian, 1–2
IEEE floating-point data types, 2–14
Images

creating, 4–2
translated

condition handling, 8–9
preserving atomicity in, 6–10

inadr argument
used with $CRETVA system service, 5–8

Include files
for C programs, 3–2

Inner access modes, 2–5, 2–10
Instructions

atomicity, 2–14, 2–15
memory fence, 2–16

Instruction stream
inspecting, 2–5

Interoperability
confirming, 3–9
of native I64 and translated images, 2–5, 2–8

Interrupt priority level
See IPL

IPL (interrupt priority level)
elevated, 2–5

Itanium Assembler, 3–6

J
Jacket routines, 2–9

created automatically, 2–9
writing for nonstandard calls, 2–9

JSB VAX instruction, 2–9

L
Languages, programming

See programming languages
$LCKPAG system service, A–4

page-size dependencies, 5–4
LIB$ESTABLISH routine, 2–17, 8–1, 9–14

support on I64 systems, 8–13
LIB$FREE_VM_PAGE routine

page-size dependencies, 5–6
LIB$GET_VM_PAGE routine

page-size dependencies, 5–6

LIB$LOCK_IMAGE routine, 3–19
LIB$MATCH_COND routine, 8–8
LIB$REVERT routine, 2–17, 9–14
LIB$UNLOCK_IMAGE routine, 3–19
LIB$WAIT

common code for I64 and Alpha, 3–14
Librarian utility (LIBRARIAN)

native Alpha, 3–5
Library (LIB$) routines, 2–14

LIB$ESTABLISH, 2–17
LIB$REVERT, 2–17
not on OpenVMS I64, 1–2

Link commands
changes required, 3–3

Linker utility
commands, 3–3
default page size, 3–3
features specific to OpenVMS I64, 4–3
native I64, 3–5
/NONATIVE_ONLY option, 2–9
options file changes, 1–1

Linking
creating native I64 images, 4–2

Link procedures, 3–2
Little-endian data types, 1–2
$LKWSET system service, A–4

page-size dependencies, 5–21
Load locked instruction (LDxL), 6–2
Locking pages

page-size dependencies, 5–21
Locking services

$DEQ, 2–14, 2–16
$ENQ, 2–14, 2–16

M
Machine instructions

creating, A–5
MACRO–32 compiler, 3–4
MACRO code

replacing, A–3
malloc routine

memory allocation, 5–1
Managing code migration, 1–4
Mapping memory

See Memory mapping
Mapping sections

into expanded virtual address space
page-size dependencies, 5–10

mapping a single page
page-size dependencies, 5–12

mapping into a defined address range
page-size dependencies, 5–13

Mathematic routines
compatibility, 4–6

Index–5

Mechanism array
format, 8–3
reliance on architectural details of, 2–18
using the depth argument, 8–7

Mechanism array data structure, 3–12
Memory allocation

by expanding virtual address space
page-size dependencies, 5–6

finding page-size dependencies in, 5–6
freeing allocated memory

page-size dependencies, 5–9
page-size dependencies, 5–1
reallocating existing virtual addresses

page-size dependencies, 5–8
specifying address ranges, 5–8
specifying page counts, 5–6
using the $CRETVA system service, 5–9
using the $EXPREG system service, 5–7

Memory fence instructions, 2–16
Memory locking

page-size dependencies, 5–1, 5–21
Memory management functions

page-size dependencies, 5–1
summary, 5–2 to 5–5

Memory-management system services, 2–16
Memory mapping

into expanded virtual address space
page-size dependencies, 5–10

mapping a single page
page-size dependencies, 5–12

mapping into a defined address range
page-size dependencies, 5–13
required changes, 5–16

page-size dependencies, 5–1
using the $CRMPSC system service, 5–11

Memory protection
page-size dependencies, 5–1
page size granularity, 2–15

Message utility (MESSAGE)
native Alpha, 3–5

$MGBLSC system service, 2–16, A–4
page-size dependencies, 5–4

Migration
and program architectural dependencies, 2–7
comparison of, 2–5
ease of, 1–1
for user-mode code, 1–4
privileged code, 2–10
selecting, 2–3, 2–7
support, 1–5
third-party products, 2–2
user-mode code, 1–1, 1–4

Migration Assessment Service, 1–6
Migration methods

illustration of, 1–5
Migration planning

services, 1–5

Migration services
Application Migration, 1–6
Application Migration Detailed Analysis, 1–6
Migration Assessment, 1–6
System Migration, 1–6
System Migration Detailed Analysis, 1–6

Migration tools, 3–2
MMS, 3–2
MMS (Module Management System), 2–2
Module Management System

See MMS
MTH$ routines

compatibility, 4–6
Multiprocessing, A–4

N
/NATIVE_ONLY qualifier, 9–19
Natural alignment of data, 2–7, 3–17
Network interfaces

supported on OpenVMS I64, 1–3
Nonstandard calls

writing jacket routines for, 2–9

O
Object file format

reliance on, 3–12
OpenVMS I64 operating system

compatibility goals of, 1–1
diagnostic features, 2–19

OpenVMS Mathematics Run-Time Library
compatibility, 4–6

Optimized code, 2–10
Optimizing compilers, 3–3
Order information

migration services, 1–6
OSMAI utility, 2–6
Overflow detection

enabling, 8–13

P
Packed decimal data type, 2–13, 2–20
Pagelets

definition, 5–1
using with $EXPREG system service, 5–6

Page sizes, 2–15, 2–16, A–3
compatibility with OpenVMS VAX, 5–1
dependencies on VAX page size, 5–1
permissive protection, 2–5, 2–8
supported by I64 systems, 5–1
using $GETSYI to obtain the page size at run

time, 5–20
Parallel Processing Run-Time Library (PPL$)

routines, 2–16

Index–6

PCA (Performance and Coverage Analyzer)
analyzing images, 2–20
detecting unaligned data, 2–11, 2–20
identifying critical images, 2–6

PCs (Program counters), 2–5
in signal array on I64 systems, 8–3
modifying, 2–18

PDP-11 compatibility mode, 2–5
Performance and Coverage Analyzer

See PCA
Performance monitors

third-party, 2–10
PGFIPLHI bugchecks, 3–18
Planning a migration, 1–4, 2–1
Portability

See Compatibility
#PRAGMA NO_MEMBER_ALIGNMENT, 2–12
Privileged code

finding with VEST, 2–20
migrating to OpenVMS I64, 2–10

Privileged mode operation, A–5
Privileged shareable images, 2–10
Privileged VAX instructions, 2–5
Procedure arguments

accessing, 2–17
Processor status longword (PSL), 2–18
Processor status longwords

See PSLs
Process space

used by translated image, 2–5
Program counters

See PCs
Programming languages

See also specific languages; Compilers
Ada, 3–3
BASIC, 3–3
BLISS, 3–3
C, 3–2, 3–3

VOLATILE declaration, 2–14
C++, 3–3
COBOL, 3–3
Fortran, 3–3
Pascal, 3–3
VAX MACRO, 3–3

Program sections
overlaid, 3–12

PSLs (Processor status longwords)
in signal array on I64 systems, 8–3

$PURGWS system service
page-size dependencies, 5–4

R
Rdb/VMS

same function on OpenVMS I64, 1–3
Read/write operations

ordering of, 2–8, 2–16
Read/write ordering, 6–9

effect on synchronization, 6–2
Recompiling, 2–19

changes in compile commands, 3–3
comparison with translating, 2–6, 2–7
effect of architectural dependencies, 2–7, 2–8
produces native I64 image, 3–3
resolving errors, 3–3
restrictions, 2–3
to create native I64 images, 1–5

Record Management Services
See RMS

Relinking, 3–5
changes in link commands, 3–3
to create native I64 images, 1–5

retadr argument
used with $CRETVA system service, 5–9
used with $CRMPSC system service, 5–11
used with $EXPREG system service, 5–7

Return addresses
modifying on stack, 2–17

Reviewing application code, 2–19
RMS (Record Management Services)

unchanged for OpenVMS I64, 1–2
Run-time library routines

calling interface unchanged, 1–2
different operation on OpenVMS I64, 1–2
LIB$ESTABLISH, 2–17
LIB$REVERT, 2–17
page-size dependencies, 5–6

S
SCD Debugger, 3–5
SDA (System Dump Analyzer utility)

See System Dump Analyzer utility
Selecting a migration method, 2–3, 2–7
Self-modifying code, 2–5
$SETAST system service, 2–15
$SETPRT system service

page-size dependencies, 5–4
$SETUAI system service

page-size dependencies, 5–5
Shareable images

identifying, 2–1
linker options file changes required, 1–1
privileged, 2–10
translated, 2–9

Index–7

Shared data, 2–14
atomicity of, 2–14
unintentional sharing, 6–8

Signal array
format, 8–2
reliance on architectural details of, 2–18

Sliced images, 3–7
$SNDJBC system service

page-size dependencies, 5–5
Software migration tools, 1–5
SS$_ALIGN exception, 8–9

signal array format, 8–11
SS$_FLTDIV exception, 3–12
SS$_FLTINV exception, 3–12
SS$_HPARITH exception, 3–12
SS$_INVARG exception

mapping memory, 5–12
returned when mapping memory, 5–13

Stack
modifying return addresses on, 2–17

Stack switching, 2–5
Store conditional instruction (STxC), 6–2
Switching stacks, 2–5
Symbol vectors

declaring universal symbols on I64 systems,
4–2

Synchronization, 6–1 to 6–10
and VEST, 2–20
explicit, 2–14
instructions, 2–8
latent problems, 2–19
of interprocess communication, A–4
using flag-passing protocols, 2–16
using system services, 2–16

SYS$GOTO_UNWIND system service, 3–12
SYS$GOTO_UNWIND_64 system service, 3–12
SYS$LCKPAG system service, 3–19
SYS$LCKPAG_64 system service, 3–19
SYS$LIBRARY:LIB

compiling against, 2–10
SYS$LKWSET system service, 3–18
SYS$LKWSET_64 system service, 3–18
SYS$UNWIND routine, 8–7
SYS.STB

linking against, 2–10, A–5
SYSGEN (System Generation utility)

See System Generation utility
SYSMAN (System Management utility)

See System Management utility
System-Code Debugger

See also Debugger
System Dump Analyzer utility (SDA), 3–6

OpenVMS I64, 3–6
System dump files

analyzing, 3–6

System Generation utility (SYSGEN)
device configuration functions, 1–2

System library
compiling against, 2–10

System Management utility (SYSMAN)
device configuration functions, 1–2

System Migration Detailed Analysis Service, 1–6
System Migration Service, 1–6
System services

calling interface unchanged, 1–2
$CMEXEC, 2–10
$CMKRNL, 2–10
$CRETVA, A–4
$CRMPSC, 2–10, 2–15, 2–16, A–4
$DELTVA, A–4
$DEQ, 2–14, 2–16
different operation on OpenVMS I64, 1–2
$ENQ, 2–14, 2–16
$GETSYI, 2–15
$LCKPAG, A–4
$LKWSET, A–4
memory management, 2–16
memory management functions

page-size dependencies, 5–2
$MGBLSC, 2–16, A–4
protection problems created, A–4
replacing VAX MACRO code, 2–10
$SETAST, 2–15
SYS$GOTO_UNWIND, 3–12
SYS$GOTO_UNWIND_64, 3–12
SYS$LCKPAG, 3–19
SYS$LCKPAG_64, 3–19
SYS$LKWSET, 3–18
SYS$LKWSET_64, 3–18
undocumented, 2–5
$UPDSEC, A–4
user-written, 2–10

System space
reference to addresses in, 2–5, 2–10

System symbol table (SYS.STB)
linking against, 2–10

T
Testing applications

establishing baseline values on VAX systems,
3–7

on I64 systems, 3–8
Test tools, 3–2

I64 specific, 3–8
ported to I64, 3–8

Third-party products
migrating, 2–2

THREADCP command, 3–16
Threaded code, 2–5
Thread interfaces

legacy API library routines, 3–16
support on I64, 3–15

Index–8

Threads of execution
effect on synchronization, 6–1

TIE (Translated Image Environment), 1–2, 3–3
/TIE qualifier

HP Fortran support, 9–19
Translated Image Environment

See TIE
Translated images

library routine calls, 1–2
preserving atomicity in, 6–10
system service calls, 1–2

Translating
See also VEST

Translation, 1–2, 3–6
as a stage in migration, 2–8
comparison with recompiling, 2–6, 2–7
effect of architectural dependencies, 2–7, 2–8
for compatibility, 1–5, 2–8
programs in languages with no I64 compiler,

3–4
restrictions, 2–3

U
$ULKPAG system service

page-size dependencies, 5–5
Unaligned data

in dynamic structures, 2–20
supported under translation, 2–7

Unaligned variables, 2–20
Uninitialized variables, 2–20
Unwinding in exception handlers, 8–7
$UPDSEC system service, A–4

page-size dependencies, 5–5
User-mode images

slicing, 3–7
User-written device drivers

on OpenVMS Alpha systems, 1–3

V
Variables

shared
atomicity of, 2–14

unaligned, 2–20
uninitialized, 2–20

VAX architecture
dependencies, 2–11

VAX BASIC
behavior differences from HP BASIC, 9–4
compatibility with HP BASIC, 9–3
features not available for HP BASIC, 9–3

VAX calling standard
reliance on, 2–16

VAX dependency checklist, 2–11

VAX Environment Software Translator
See VEST

VAX floating-point data types in HP BASIC, 9–4
VAX FORTRAN

See HP Fortran for OpenVMS VAX Systems
VAX instructions

CALLx, 2–9
generating at run time, 2–5, 2–19
JSB, 2–9
modifying, 2–18
privileged instructions, 2–5
reliance on behavior of, 2–18
vector instructions, 2–5

VAX MACRO
See also MACRO–32 compiler
as compiled language, 2–10
LIB$ESTABLISH routine, 8–1
only a migration aid, 2–10
replaced by system services, 2–10

VAX MACRO-32 compiler, 2–17
only a migration aid, 2–10

VAX MACRO compiler
recompiling on OpenVMS I64 systems, 3–4

VAX SCAN compiler, 2–3
Vector instructions, 2–5
VEST (VAX Environment Software Translator)

as analysis tool, 2–20
restrictions, 2–20

/FLOAT=D53_FLOAT qualifier, 2–7
/FLOAT=D56_FLOAT qualifier, 2–7
/OPTIMIZE=ALIGNMENT qualifier, 2–7
/PRESERVE=INSTRUCTION_ATOMICITY

qualifier, 2–7
/PRESERVE=READ_WRITE_ORDERING

qualifier, 2–8
/PRESERVE qualifier, 6–10

VEST/DEPENDENCY analysis tool, 2–1
Virtual addresses

manipulating, A–4
Volatile attribute

protecting shared data, 6–8

W
Working set

modifying, A–4
Writable global sections, 2–14

X
XDelta Debugger, 3–5

Index–9

