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Introduction

Implementing an operating system is very di�cult and learning it is often even
more di�cult. For a system programmer one of the hardest kind of problems
is solving hardware related errors. Reproducing these error is often tedious and
some knowledge and skills from electrical engineering might be also required to
diagnose them. Development of an operating system that runs on real hardware
would be an unmanageable task for many students, so MSIM simulator was cre-
ated for education purposes. MSIM simulates a computer machine, which can
be composed of MIPS processors, the main memory and several devices. One of
the most important advantage of using the simulator is that errors of a simulated
program can be almost always reproduced by running the simulation from the
beginning. The need for special hardware and more complicated booting is also
eliminated by the simulator usage.

MSIM also provides some debugging functionality such as: instruction step-
ping; instruction breakpoints; memory breakpoints; a trace log of an execution;
and a memory dump. Furthermore, the utility objdump can be used for ob-
taining the layout of the program code in the main memory. However, �nding
errors in the MSIM environment is still much more di�cult than errors that an
application programmer solves typically; and students of the operating systems
course at MFF UK spend signi�cant amount of time by debugging. The high
di�culty of debugging an operating system for MSIM is probably because of: the
usual coding in low level C language; the missing operating system (which usually
detects some erroneous conditions in user space); the usage of non-transparent
mechanisms and algorithms; and unavailable debugger. Sometimes the system
programmer also needs to write in assembler language and an error in such a code
can be extremely hard to be found.

This thesis is concerned with an implementation of a GUI based debugger that
provides comfortable debugging of MSIM applications. Some mechanisms, which
are used in debuggers, are also described. In addition some advanced debugging
techniques that are not commonly implemented in debuggers are proposed.

The initial chapters of this text cover terms and introduce debuggers from the
point of view of this work. Then the usefulness of the debugger for MSIM is de-
picted in the chapter Debugging without a debugger. The chapters Design of the
MSIM debugger and Implementation and know-how are concerned about realiz-
ing the debugger. The last section discusses some unusual or advanced debugging
methods. The attachments contain: instructions how to setup development envi-
ronment from scratch; the user manual; and a discussion about picked di�culties
during development of large projects.
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1. Terminology

Several speci�c or not well-known terms are used in this thesis. They are ex-
plained in this chapter. Terminology that is closely related to debuggers is intro-
duced in the chapter 2.

1.1 Generally used terms

Generally used, but perhaps, not well-known terms are:

� Debugger. Programmers often call logical errors in programs as bugs.
The derived word debugger denotes a special piece of software that helps to
search those bugs. Debuggers enable the programmer at least to stop the
program and inspect internal state of the program.

� Debuggee. Not a very common word even in programming. It denotes a
program that is being analyzed by a debugger. In the scope of this thesis,
a debuggee is typically an operating system that is executed in MSIM.

� Intrusive debugging. The intrusiveness is quite a rare word that is often
used by developers of debuggers. Intrusive debugging means a debugging
that a�ects the debuggee a lot. Intrusive debugging is an undesired property
of debuggers, because it changes behaviour of debuggees during debugging
in an essential way.

� Race condition. An error in synchronization of parallelly executed code.

� Translation lookaside bu�er (TLB). A TLB serves as a cache for
virtual-to-physical addresses translation. It caches information from page
tables and it is integrated in a processor for fast access. During an address
translation the processor looks into its TLB at �rst. If the needed infor-
mation is not in the TLB, the processor searches page tables or asks the
operating system to �ll the TLB with the needed information. Details of
the TLB mechanism depends on the type of the processor.

� Virtual machine, Computer simulator. The term virtual machine des-
ignates two things, which are further called more speci�cally as a process
virtual machine and a system virtual machine.

A process virtual machine is a program that interprets code of another pro-
gram and provides necessary API for the interpreted program. An examples
of a process virtual machine is the java program. This kind of virtual ma-
chines is not referred in this work.

A system virtual machines is a program that emulates work of a computer.
Usually it interprets code of an operating system. Examples of system vir-
tual machines are the programs: QEMU, WMware Workstation, or MSIM.

In this work, the term computer simulator is a synonym for the term
system virtual machine.
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1.2 Speci�c terms for this work

Terms that are speci�c only for this work are:

� MSIM application. A program that is executed in MSIM.

� MSIM debugger. Software that enables the programmer to debug an
MSIM application in the Eclipse IDE. The main goal of this work is to
implement it.
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2. Overview of debuggers

The purpose of the debuggers is to help the programmer to diagnose the behaviour
of a program that is being analyzed. Such a program is called a debuggee. De-
buggers achieve its purpose by controlling execution of the debuggee (stopping
and resuming the execution, executing the next line of code, stopping after the
execution reaches a speci�c location, . . . ) and showing the state of the debuggee
(values of variables, call stack, . . . ).

A more general text about debuggers can be found in the initial chapters of
Rosenberg's book [1]. This book also presents principles of debugging and one of
them - the Heiseinberg principle adapted for debugging - is referred in this thesis.
The Heiseinberg principle adapted for debugging is called just the Heiseinberg
principle in the scope of this work. The principle states that the observations
from the debugger might be misleading if the state of the debuggee is being
a�ected by the debugger. Usually it is impossible not to a�ect the debuggee at
all. So the debugger should be designed to minimalize its intrusiveness.

Let us additionally note two mechanisms in debuggers that are a good illus-
tration how debuggers work - managing breakpoints and stack unwinding. Break-
point mechanisms are described in [1, Ch. 6] and stack unwinding is described in
[1, Ch. 7].

Debuggers are categorized in [1] by several points of view. Two points of view
are considered here:

� debuggers according to type of debugging session,

� instruction-level versus source-level debuggers.

2.1 Debuggers according to type of debugging ses-

sion

1. Userspace debuggers

Userspace debuggers are the most commonly-used debuggers. A debuggee
for this kind of debugger is typically executed in the environment of a
general-purpose operating system. These kinds of operating systems use
the concept of virtual memory, which among the other things does not
allow a process to read the memory of another process. Therefore, userspace
debuggers must use a special way how to access the memory of the debuggee.
Commonly-used mechanism is based on special functions for debugging that
are provided by the API of the operating system. The debugger is executed
as a standalone process and controls the debuggee via the API functions.

An overview of the debugging API can be found in [1, Ch. 4] for several
operating systems.

2. Kernel debuggers
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There are di�erences between debugging a userspace application and de-
bugging a kernel of an operating system. It might not be very suitable for
the debugger to be a process of the debugged operating system, because
the debugger would in�uence events occurring in the operating system. For
example, stopping the operating system might cause troubles to the correct
function of the debugger (such as stopped interaction with the user, dis-
abled access to the �lesystem, etc.). One approach to overcome this issue
is that the debugger hooks into the kernel and implements all the needed
functionalities in its own way. Therefore, such a debugger is independent
on the services of the operating system. Examples of these debuggers are
SyserDebugger, SoftICE or BugChecker. Another approach is running the
debugger on a di�erent computer that is connected to the computer where
the debugged kernel is running. KGDB debugger can be referred as an
example of these debuggers. Common ways of the connection between the
computers are via the serial port or via the ethernet where UDP or TCP
protocol are used. There must be support for such a session in the de-
bugged kernel. With respect to the Heisenberg principle it is bene�cial that
the kernel module for the communication a�ects the other parts of kernel
as little as possible. For example, avoiding virtual memory usage might be
an appreciated feature of the module.

3. Debuggers for programmable embedded devices

Embedded devices often have a realtime operating system or no operating
system at all. Writing a program for such a device is like writing a module
for an operating system. The debuggers in this area usually require special
hardware for connection with the examined device. These debuggers should
not be automatically supposed to do all the things that the debuggers for
userspace applications do. Also the amount of data transfered between the
device and the debugger may be so large that transferring them via the
serial port would make the debugging very slow.

Two examples of the such shortcomings are mentioned. At �rst debugging
an atmega64 device with AVR Dragon debugger has been experienced not
showing values of local variables. Secondly debugging Siemens TC65 device
via the serial port is more e�cient to be done by printing debug messages
than with the help of a slow debugger.

4. Debuggers for a system virtual machine

This kind of debuggers can be used for diagnosing an operating system or
�rmware of an embedded device. However, simulations are usually used in
special situations (e.g. in education), so debuggers for system virtual ma-
chines are not commonly encountered. The debugger can be implemented
directly in the simulator or can be a standalone process, which commu-
nicates with the simulator. Debugging simulated programs has signi�cant
advantages. The debugging is very unintrusive and the simulator can pro-
vide debugging information that are not usually available.

A complex debugger for a simulator is also able to process the structures of
the debugged operating system. For example that allows the debugger to
recognize userspace threads and processes and therefore work as a userspace
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debugger. Such a debugger would be a strong tool for analyzing events
across the whole operating system.

2.2 Instruction-level versus source-level debuggers

The adjectives source-level and instruction-level are used in this thesis. This
section explains them.

A program code written in a compiled programming language is transformed
into a binary code during the compilation. The binary code can be then executed
by the machine. Usually the programmer wants to see the code in the form
that he has written it in. However, there are domains where the form of the
binary code is essential for the programmer (for example, debugging an interrupt
system).

The debuggers that shows the original form of the code are called source-level
debuggers. On the other hand the debuggers that shows the binary form are
called instruction-level debuggers or sometimes assembly-level debuggers. The
debuggers can of course show both the forms.

Typically the userspace debuggers shows the code in the original high level
language and optionally in the instruction-level form. That is because in very
most of the situations there is no need to implement a userspace application in
an assembly-level language.

Other debuggers than the userspace ones should de�nitely show the instruc-
tions of the binary form, because an assemly code may be used in the domain of
operating systems and embedded devices.

Breakpoints allow the programmer to stop the execution of the debuggee at
the desired location. The programmer uses a breakpoint by putting it on the
code where the debuggee should be stopped. A source-level breakpoint is put on
a line of high-level language code and an instruction-level breakpoint is put on
an instruction.

Debuggers allow the programmer also to step the stopped debuggee. Stepping
will resume the execution just for one statement of the code. For high-level
languages the statement is often one line of the code and such stepping is called
source-level stepping. For assembly-level languages the statement corresponds to
one instruction and such stepping is therefore called instruction-level stepping.
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3. Debugging without a debugger

Analyzing erroneous behaviour of an MSIM application can be done in several
ways without the debugger. This section discusses the bene�ts that the debug-
ger would bring. The following debugging techniques are available without the
debugger:

1. Debugging messages

Debugging messages are commonly used to provide some general informa-
tion such as size of the physical memory, build time of current program or
an overview of program initialization. It is also useful to have the messages
in a piece of code where a problematic behaviour is expected. Another
e�cient usage of the messages is during debugging of recursive functions.

Printing the messages also works as a limited replacement for the missing
debugger. By printing a message the programmer can �nd out the values of
variables or check whether the analyzed code has been executed. However,
using the debugger for this purpose is much faster and comfortable. Because
in order to print the message the programmer would have to compile and
run the program again. Also printing too many debugging messages may
not be very readable for the programmer.

2. Reading code

In the opinion of many, analyzing code has proven to be one of the more
e�cient ways of debugging an MSIM application. For more complicated
problems this technique is often even faster than the use of the debugger.
On the other hand the technique has one important disadvantage - the
programmer has to think a lot. Analyzing the code can be very exhausting
for the programmer if it is done often. 1

3. Consulting the problem with colleagues

Sometimes the programmer runs out of all ideas of how to localize the source
of bad behaviour. Describing and discussing the problem can then bring
new approaches how to �nd the source of error.

4. Using MSIM built-in support for debugging

MSIM provides support for instruction-level debugging. For use of the
instruction-level debugging the programmer is often required to know the
address of the analyzed code or variables. The objdump utility can help the
programmer to �nd out these addresses. Also the programmer can dump
content of registers and the main memory (instructions or raw data) during
the simulation.

1 Also note that this method of debugging has been observed to be very ine�cient for
beginning programmers. The reason is perhaps that they are not used to how environment and
constructs of the programming languages work. Using the debugger would probably help a lot
to overcome this issue. Unfortunately most students who don't like programming have some
mental problems with using the debugger.
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The simulator supports instruction-level breakpoints and instruction-level
stepping. Using the instruction breakpoint is not very helpful for common
debugging of a C code. The programmer would have to know the memory
address for putting the breakpoint. For inspection of variables he would
have to search for the meaning of the registers in analyzed location.

The binary of an MSIM application can contain special instructions that
are recognized by the simulator. Executing of such an instruction will, for
example, switch the simulator to the interactive mode. In the interactive
mode the simulation is stopped and the programmer can inspect the state
of machine, perform stepping or resuming the simulation, or dump the
registers. These special instructions can be valuable during debugging of
low level code such as exception handling.

Memory breakpoints are also supported in MSIM. They are typically used
when the programmer does not know where his variable is being changed.
After the breakpoint is set, the simulator will stop on the memory access
on the speci�ed address.

The execution of instructions can be logged. MSIM prints the number of
the executing processor, address of the executed instruction, name of the
instruction, operands and how the operands changed. The following snippet
illustrates that:2

1 BFC00000 l u i a0 , 0x8000 # a0 : 0x0−>0x80000000
0 BFC00000 l u i a0 , 0x8000 # a0 : 0x0−>0x80000000
1 BFC00004 o r i a0 , a0 , 0x1000 # a0 : 0x80000000−>0x80001000
0 BFC00004 o r i a0 , a0 , 0x1000 # a0 : 0x80000000−>0x80001000
1 BFC00008 sw 0 , ( a0 )
0 BFC00008 sw 0 , ( a0 )
. . .

On a machine with one processor it is possible for the programmer to use
this execution trace for searching the error. Cooperation with the objdump
during the trace analysis is a need for e�ciency. Knowledge of the used
ABI also makes this method more e�cient. The size of the trace can easily
reach hundreds of megabytes, so orienting in the trace can be overwhelming
for the programmer. The trace from the multiprocessor machine is too
di�cult to be analyzed by a human being. Such a trace would have to be
further processed to be more valuable. For example, grouping the executed
instructions to the blocks that are related to threads would be useful for
debugging race conditions.

2 The snippet is taken from [14] and is shortened to �t the width page better.
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4. Design of the MSIM debugger

Implementing a debugger can easily be a complex and work-intensive task. This
chapter describes considerations that has led to a quality solution with manage-
able implementation. The MSIM debugger has some speci�c features, so this
chapter additionally discusses usefulness of these features and approach of their
implementation.

4.1 The big decisions

The debugger could be implemented as a part of MSIM or as a standalone process.
Integrating the debugger into MSIM would allow the debugger to access the
debuggee easily. On the other hand it would be much harder to maintain MSIM
stable. The maintainability is the reason why the integration with MSIM is not
considered. For example, attempts for creating a GUI for MSIM were made and
they were proven unfortunate because of portability and maintainability.

So the preferred way is keeping the debugger as a standalone process. The
debugger is supposed be connected with MSIM via a TCP connection on the
same computer. The implementation can be done completely from scratch or
some existing opensource debugger can be adapted. Writing the whole own de-
bugger would be very labor-intensive so using the opensource debugger is much
more e�cient way. GDB (GNU debugger) is a good candidate. It is often used
debugger in the UNIX environment and it supports remote debugging via a TCP
connection.

However, GDB is a console based program and the goal of this thesis is creation
of a GUI based debugger. Fortunately GDB provides support for creating a
GUI front-end. Again it is possible to create the whole own front-end or use
an existing one. The suitable opensource front-end was searched, because the
�rst option is much more work-intensive. Eclipse IDE was very promising and it
was chosen. Among the debugger it integrates many tools such as: e�cient code
editor; code analyzer; or very �exible con�guration for building and launching
programs. Moreover Eclipse with the CDT plugin already allows to develop and
debug C/C++ programs. During the debugging session CDT works as a front-end
of GDB.

Choosing GDB as a back-end and the Eclipse IDE as a front-end leads to
highly comfortable and e�cient debugging. All of the functionality for common
debugging is already implemented, but the debugging of a MSIM application is
speci�c in a couple of things. Therefore further changes in the behaviour of CDT
and GDB are required. Changes in MSIM are also needed to be done.

Launching a debugging session for an MSIM application should be done in a
few steps:

1. Eclipse should run MSIM and GDB.
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2. A TCP connection between MSIM and GDB should be established.

3. Eclipse should take control of MSIM by instructing GDB.

Unfortunately running MSIM at the start of the debugging session is not
con�gurable in Eclipse and, therefore, it needs to be added. Both Eclipse and
GDB does not support viewing the contents of the TLB or the physical memory.
MSIM, for example, is not very ready for debugging of a multiprocessor machine.

For testing of the debugger it is suitable to use an MSIM application that
is not too trivial and not too complex. A good candidate for testing is Kalisto.
Kalisto is a base for operating systems that are developed by the students of
an operating systems course. Kalisto will serve for testing purposes and as the
reference MSIM application for this thesis.

Development of MSIM debugger will, therefore, require work with four projects:
the CDT plugin of Eclipse, GDB, MSIM and Kalisto.

4.2 Debugging multiprocessor machine

Developing an MSIM application for multiprocessor machine can easily be a night-
mare for a programmer. For example, ways how to diagnose an assembly-level
race condition are very limited for a multiprocessor machine. Therefore, it is im-
portant to support debugging of virtual machines with more than one processor.

A straightforward way of making this debugging possible is representing the
processors as threads in the debugger. Such an approach would require mostly
changes only on the MSIM side, because the concept of thread monitoring is
already implemented on the GDB side. This design would have to be reconsidered
if the threads inside the MSIM application should also be monitored.

4.3 Memory access

Accessing memory contents of the debuggee is a basic functionality of debug-
gers. A few troubles were encountered during implementation of the memory
access. These troubles required some designing considerations. The whole issue
is described in [7] and [10].

4.3.1 Di�erent memory space for each thread

All the threads in the same process usually have the same address space. How-
ever, in MSIM debugging sessions a thread corresponds to a processor, and each
processor can be in di�erent addressing mode (or can have di�erent contents
of its TLB). Therefore, threads can have di�erent address space for the MSIM
debugger.
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Fortunately, GDB remote protocol handles this uncommonness correctly, be-
cause it speci�es the desired thread/processor along with each memory access
command. However, problems appeared in the CDT plugin. The plugin does not
specify the desired thread along with a memory access command, although the
protocol of communication between GDB and Eclipse allows it.

Two approaches for solving this trouble were considered:

1. GDB allows debugging of multiple processes at the same time. The MSIM
plugin could use this feature and represent a processor in MSIM as a process.
However, this approach would require large changes in the CDT plugin. For
example, launching of debugging sessions would require starting of a group
of processes, or a few GUI views would have to be updated. Additionally
the internal data model would have to be modi�ed very probably. This
approach was rejected because of the large expected changes.

2. CDT would be changed to specify the desired thread when sending every
memory access command. This approach required much smaller changes
and, therefore, it has been implemented.

4.3.2 Address spaces with holes

Generally, some blocks of memory addresses can be invalid. For usual userspace
programs it would mean that the blocks of memory are not mapped. And for
programs simulated in MSIM it would mean the same, or additionally, it would
mean that there is no physical memory on the related addresses.

GDB accesses the memory by commands that specify the starting address and
the length of the accessed memory. Such an access operation fails if the starting
address is invalid, and it does not matter whether there is any valid memory in
the speci�ed block. This causes troubles especially in the CDT plugin, because
in the described failure situation it marks the whole memory block as invalid.
Therefore, the user can see that some valid memory is marked as invalid. And
additionally, sometimes the user is not allowed to refresh the invalidated block.

With the current set of memory access commands, GDB would have to create
a command for each accessed byte to prevent the described problem. That would
possibly have impacts on performance, so another approach has been proposed.
GDB would ask the target (e.g. an operating system or MSIM) about the memory
map of the debuggee. Then the Eclipse front-end would use this information for
exact determination of invalid blocks of memory.

Obtaining the memory map in GDB is already implemented for a few plat-
forms. However, it is not supported for remote targets; and the memory map is
not printed in a comfortable way for parsing in front-ends. And �nally, appropri-
ate changes in the CDT plugin would have to be done.

This feature is generally bene�cial, so it should be added to the GDB and
CDT mainlines. That would require discussions and acceptance of both the com-
munities. The discussions were initiated ([7] and [9]), but the proposed changes
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has not been accepted so far. Therefore, this feature has not been implemented
yet.

4.3.3 Memory mapped devices

The user of the MSIM debugger could be also enabled to access memory mapped
devices via memory views. However, this feature would be related mostly with
hardware debugging, so it is unimportant. But at least reading of read-only and
read-write devices were allowed, because the changes were small and straightfor-
ward.

4.4 Showing TLB content

Please note that the possibility of accessing TLB from an operating system de-
pends on the family of the used processor. On the Intel IA32 family the operating
system can only invalidate TLB contents ([12]). For example, the invalidation is
used during a memory address space switching. The rest of the TLB management
is handled by the processor. On the other hand, theMIPS R4000 platform leaves
all the TLB management to the operating system ([13]).

4.4.1 How is the knowledge of TLB contents useful

The possibility to show the TLB contents may be handy during implementation
of the TLB �lling mechanism - which is the main reason why the TLB contents
can be shown in the MSIM plugin. The implementation of the TLB mechanism
is typically done in early stages of an operating system development and in this
phase the programmer may appreciate seeing the TLB contents. However, later
the TLB just re�ects a part of page tables, so an eventual problem with an address
translation would not be caused by TLB handlers very likely. Therefore, showing
TLB contents is not expected to be very important for a debugging programmer.

Information in TLB can be also used by a kernel debugger for translation of
virtual addresses. However, translating with information in TLB would have a
disadvantage for the debugger. The debugger could not conclude anything about
the translation when information of translated virtual address is not available in
TLB. Therefore, for the debugger it would be better to use page tables for address
translation purposes. So, the TLB contents are not very important for internal
processing in kernel debuggers too.

4.4.2 TLB diagnostic with common debuggers

Showing of TLB contents is not implemented in common debuggers, because it
is more likely related with hardware debugging and it is typically impossible.
Additionally, even if obtaining TLB contents would be possible for the debugged
platform, more complications would have to be dealt. For example, running the
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kernel debugger as a userspace process can change the TLB contents and that
violates the Heisenberg principle. Therefore, it might be possible to obtain the
TLB contents by using a debugger that connects remotely to the debugged kernel.
However, handling of such a connection on the kernel side would have to leave
the TLB unchanged. All that summarized, obtaining the TLB contents on a real
machine would be a complicated matter or it would not be possible at all.

On the other hand, obtaining the TLB contents from a simulator is very easy.
That is also the case of MSIM and, therefore, the contents are shown in the MSIM
plugin.

4.5 Passing TLB contents and physical memory

to the MSIM plugin

Information about TLB and physical memory is easily obtained in MSIM. The
question for this section is how to pass that information to the MSIM plugin.

The chosen way is extending the GDB remote protocol and sending the in-
formation through GDB. Thus GDB is able to pre-process the information, but
currently, that is not needed.

The other considered way was sending the information through a separate
TCP connection from MSIM directly to the MSIM plugin. The advantage of this
approach is that it does not require changes into GDB. Therefore, the MSIM
debugger would be more maintainable with future versions of GDB.

4.6 Design of implementation

Implementing a debugger is a complex matter and numerous mechanisms are
needed to be designed. The designer has to decide how to: make GUI respon-
sive; store user's settings; communicate with the debuggee and control it; allow
debugging of more than one debuggee at the same time; design the object model
and represent data; and so on. . .

Most of these decisions has already been made by authors of the chosen
projects. Therefore, not many things were left to design in this work. The
most important mechanisms are outlined in the chapter 5.

However, there are two notable design issues related to MSIM:

� Changing the MSIM main loop

� Extending breakpoints framework of MSIM

4.6.1 The main loop modi�cation

MSIM performs the simulation in its main loop. In each iteration of the loop it
stepped all the processors and then checked whether there is a need for commu-
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nication with GDB. An example for such a need is a breakpoint hit.

The problem with this mechanism was that more than one processor could
hit a breakpoint in one iteration. In such a situation GDB responds only to one
of the breakpoint hits.

The solution for this trouble was stepping only one device in each iteration of
the main loop.

4.6.2 Breakpoints related to all the processors

Before this work MSIM allowed breakpoints that are only related to one processor.
In other words a breakpoint was hit if and only if the related processor executed
the instruction where the breakpoint is placed.

The problem was that during a debugging session CDT and GDB relates
breakpoints only with the currently debugged thread/processor. That mecha-
nism was unfortunate for the MSIM debugger users, because they expect all the
threads/processors to be stopped at (usual) breakpoints.

The solution for this problem was implementing breakpoints that are related
to all the processors in MSIM.
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5. Implementation and know-how

This chapter describes how debugging of Kalisto-like programs in the Eclipse
IDE has been made possible. It is aimed for programmers who possibly want to
modify the source �les of this project and need an initial introduction. The source
codes of this project are well commented, so we just describe what and where is
implemented instead of going into details. Additionally, well-tried practices are
mentioned.

5.1 The big picture

Figure 5.1: Conception of the MSIM debugger.

For debugging an MSIM application in the Eclipse IDE four pieces of software
are needed: a special branch of MSIM; patched GDB 7.2; the patched CDT 8.0
plugin; and the MSIM plugin for Eclipse.

The debugging session is controlled by the Eclipse framework. During the
launch of the session Eclipse starts an MSIM process. MSIM is ordered via the
remote-gdb command-line option to wait for the GDB connection on the speci�ed
TCP/IP port.

After the MSIM process is started, the Eclipse starts a GDB process. The
GDB process communicates with Eclipse via the standard input and output and
the format of transfered data is speci�ed by the GDB machine interface (MI).
The CDT plugin allows to display a gdb-trace console window, which logs all the
MI communication. This window is very useful for troubleshooting and is also
suitable to get an idea of how the MI data looks like. In the next step, Eclipse
commands GDB to connect remotely to MSIM. Then the simulation in MSIM is
controlled by the Eclipse through GDB.

It might be useful to mention that Eclipse tries to do at least evaluations
of debugging information (such as stack unwinding or symbol translation) as
possible and leaves this stu� for GDB. On the other hand Eclipse minimize the
tra�c between itself and GDB by implementing various caching mechanisms.

15



Communication between MSIM and GDB is client-server based. MSIM is the
server and GDB is the client. The format of the communication is de�ned by
the GDB Remote Protocol. Various more or less detailed documentations can be
found on the web - this one was used: [5]. MSIM allows printing the data that
are transfered between MSIM and GDB. For enabling of the printings the macro
GDB_DEBUG must be de�ned during compilation of MSIM. In Eclipse these
printings can be seen in the msim console window.

Using the gdb-trace window and the MSIM printings of the GDB_DEBUG
macro is the basic approach for analyzing bugs or diagnosing unexpected be-
haviour of the debugger. It helps greatly to localize the place of problem.

Both MSIM and GDB patch were developed as Eclipse Make�le projects.
That provides a good code browsing support and intellisence. Additionally, if
you use '-g -O0' compilation options, you can debug these projects in the Eclipse
IDE. Running a separate instance of Eclipse for each project (that implies having
two workspaces) was preferred, because it allows more comfortable debugging of
communication between the two processes.

5.2 Relevant parts of MSIM

If you want to change the GDB interface of MSIM, understanding the following
list of things will be probably useful for you:

� Main loop of the simulation

� Device model

� Breakpoints

� GDB interface

5.2.1 The main loop

MSIM is a single-threaded C program, which controls the whole simulation from
the loop in function go_machine of �le machine.c. To understand the main loop
and how the data transfers to GDB are initiated see the functions: go_machine,
handle_gdb, gdb_startup, should_listen_gdb, next_device_step, and next_machine_cycle
in �le machine.c.

5.2.2 Device model

Each hardware unit (CPU, operating memory, keyboard, . . . ) is represented
as a device in MSIM. See the device_s structure in device.h for a better idea
how the devices are represented. The data speci�c to a device are carried in
the data �eld of the device_s structure. Each device has its type that de�nes
operations of the device such as reading or stepping. The type is de�ned by
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the device_type_s structure in the same �le. If a device does not support an
operation, the appropriate function pointer in device_type_s has the NULL value.

The general functions for devices are implemented in the device.c �le. Spe-
cialized implementation of devices is located in appropriate �les such as dcpu.c
or ddisk.c. If you want to work just with the GDB interface, you will likely want
to know how to iterate over devices of the speci�ed type. The function dev_next
does it. Here is an example of its usage:

/* I t e r a t e over a l l the p roce s so r s */
device_s *dev = NULL;
while ( dev_next(&dev , DEVICE_FILTER_PROCESSOR) ) {

cpu_t *cpu = ( cpu_t*) dev−>data ;

// . . . do whatever i s needed wi th the proces sor
}

You also might be interested how to access the memory of the simulated
program. The functions mem_read and mem_write in �le machine.c serves that
purpose.

5.2.3 Breakpoints

MSIM supports instruction-level breakpoints and memory breakpoints. Both
these kinds of breakpoints can be set from the MSIM command-line or from GDB.
However, handling of a breakpoint hit di�ers for the command-line breakpoints
and for the GDB breakpoints. So the breakpoints are distinguished by the enum
breakpoint_kind_t in �le breakpoint.h.

The code in �le breakpoint.c handles allocation, registration, search and hit
of breakpoints.

5.2.4 GDB interface

The GDB interface is implemented in �le gdb.c. The central function is the
gdb_session, which is called from the handle_gdb in the �le machine.c. Dur-
ing an execution of the gdb_session the simulation remains suspended and the
gdb_session handles all the GDB communication until the simulation is resumed
by the debugger. The user of the debugger should be able to interrupt the run-
ning simulation, so MSIM also reads the input from GDB in a non-blocking way
in the function gdb_is_interrupt.

Hit of a breakpoint that is set from GDB is handled by sending an appropriate
event packet to GDB and then waiting for a reply inside the gdb_session.

Additionally, it might be useful to know that the Hc, c and s packets are
implemented, but currently they should not be used. The vCont packet is used
instead of them. For more details see the issue [6].
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5.3 GDB patch and troubleshooting

The GDB patch for this thesis allows physical memory and the TLB to be shown
in the Eclipse IDE. Additionally, the patch �xes the issues [6] and [8]. These
errors are supposed to be corrected in the GDB mainline, so the �xing part of
the patch should not be needed in the future. However, the rest of the patch is
speci�c just for MSIM, so the GDB community will not accept it very likely.

5.3.1 Accessing physical memory

Packet for reading the memory is named vPmem and for writing the memory
vPMem. In comparison to the commands m and M they di�er just by usage of
physical addresses. So the syntax and meaning of the parameters remains the
same as for the m and M packets.

Functions remote_read_bytes and remote_write_bytes are used for work with
the memory on a remote target. The patch extends them by an additional pa-
rameter that speci�es whether the memory operation is with physical memory or
with virtual memory. The parameter is passed through the global variable trans-
fer_mode in �le msim.c. Using the global variable keeps the changes of the patch
minimized, because otherwise the parameter would have to be passed through a
long chain of functions.

5.3.2 Reading TLB contents

A special packet named vtlb is designed for this purpose. The response for the
packet has the following syntax:
ENTRIES_COUNT,ITEMS_COUNT;ENTRY0;ENTRY1; . . . ;ENTRY_LAST;

where the ENTRIES_COUNT speci�es the count of TLB entries and the
ITEMS_COUNT speci�es the count of �elds in each entry. The syntax of an
entry is:
NAME0=VALUE0,NAME1=VALUE1, . . . ,NAME_LAST=VALUE_LAST

Both the names and values of items are text strings without control characters
that are used in the remote protocol and syntax of this packet.

GDB does not interpret the obtained TLB contents and just prints them to
the output in the MI format. Implementation of TLB reading is placed in the
function remote_read_tlb in �le remote.c and in functions of the �le msim.c.

5.3.3 Extending MI commands

The commands are declared or de�ned in �les mi-cmds.h, mi-main.c and msim.c.
The commands -data-read-memory and -data-write-memory are extended for
work with the physical memory. The patch adds a new option -physical that
tells to access the physical memory.

18



The MI command for obtaining TLB contents is named -data-read-tlb. It can
use the �thread parameter for specifying the CPU of the obtained TLB. The
answer is de�ned by the following synopsis:

ANSWER <− t l b=MI_LIST_OF_ENTRIES
ENTRY <− entry=MI_LIST_OF_ITEMS
ITEM <− NAME=VALUE

The NAME and VALUE are strings obtained from the vtlb packet.

You can see an example of the command usage in the gdb-trace console win-
dow, when you display the TLB Contents window.

5.3.4 Troubleshooting GDB

The important �les for controlling the debugging session in GDB are remote.c,
target.c and infrun.c. They are densely commented, but their functions are some-
times very long, which makes them tough for understanding. It is useful to enable
appropriate debugging messages for deep analysis of GDB behaviour. The mes-
sages can be enabled by the commands set debug remote 1 and set debug infrun
1. Problems with GDB can be also discussed in the GDB mailing list.

5.4 The MSIM plugin

Before we describe the implementation of the MSIM plugin itself, it would be
suitable to mention the following aspects of the Eclipse framework and the CDT
plugin:

� plugin extensions and extension-points mechanism,

� the Debugger Services Framework (DSF).

Basically, the MSIM plugin does these things:

� handles new way of launching,

� extends some DSF services to customize Eclipse behaviour,

� adds the physical memory view and the TLB view.

Also note, that the WindowBuilder plugin was the preferred tool for creating
GUI.
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5.4.1 Eclipse plugin extension mechanism

In the Eclipse framework a plugin is a special kind of a java project. A plugin can
declare an extension point that can be extended by functionality of other plugins.
The plugin can also declare an extension for an extension point. The extensions
and extension points of a plugin can be con�gured in the �le plugin.xml in the root
directory of the project. You can use a comfortable IDE view for editing this �le.
The options and parameters of extension points and extensions are documented
in Eclipse or CDT reference documentation. As an example of a usage of this
mechanism see how the TLB Contents view was con�gured and implemented in
the MSIM plugin.

5.4.2 DSF services

CDT uses the Debugger Services Framework (DSF) as a comfortable way of
implementing GUI data providers. There is a nice tutorial for DSF [11] on the
Eclipse sites. Basically, the framework allows an easy use of asynchronously called
methods. With the usage of this framework, it is easy to prevent blocking of the
thread that handles GUI. Thus the GUI is responsive.

A DSF service is a class that provides speci�c data to the rest of world,
typically in an asynchronous way. Examples of these services are: the MIMemory
for access to the memory of the debuggee; the MIBreakpointsManager for work
with breakpoints; or the MsimBackend for starting and eventually killing the
MSIM process.

The data from services are obtained by giving an appropriate context to the
service. The context is an object of a class that implements the IDMContext
interface. Some contexts have a hierarchical structure and it is useful to under-
stand it. Especially, how variables of type IDMContext can be transformed into
variables of a more speci�c type. Methods getAdapter and getAncestorOfType
serves that purpose.

5.4.3 Launching debugging sessions

Launching a debugging session for MSIM is the most similar to the launch of a
remote GDB session. The main di�erence is that the launch of MSIM session
additionally requires starting an MSIM process. The most important method
is the MsimLaunchDelegate.launchDebugSession. It creates all the DSF services
that are needed for the session and then it gives initial commands to GDB.

Some DSF services of GDB are left unmodi�ed, some are modi�ed (MIMem-
ory), and some are added (MsimBackend or TLB). The MsimBackend service
cares about running MSIM. Creation of the services is implemented in the class
MsimServicesLaunchSequence. Initialization of GDB is done in the class Msim-
FinalLaunchSequence.

Launching MSIM requires some speci�c settings. These settings are held
in a class that implements the ILaunchCon�guration interface. The interface
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works as a map of attributes and their values. Names of the attributes are
taken from classes ICDTLaunchCon�gurationConstants, IGDBLaunchCon�gura-
tionConstants and IMsimLaunchCon�gurationConstants. You can search for us-
age of these attributes by listing all the references of your desired attribute. The
GUI for MSIM debug con�guration settings is implemented in classes Msim-
LaunchCon�gurationTab, MsimLaunchTabComposite and MsimTabGroup.

Handling key shortcuts for launching debugging sessions is located in the class
MsimApplicationShortcut.

5.4.4 Customizing the memory service

The most important change of GDB services is in the way of work with the
operating memory. The whole issue is reported in [10]. The CDT plugin consid-
ered that all the threads of a process have the same address space. That is not
right for a MSIM debugging session, because a thread represents a processor and
processors can be in di�erent addressing modes. Therefore, appropriate changes
had to be done. To understand the changes well, we should see how the work
with memory was done in original CDT. Please be aware that it is a complicated
mechanism.

GUI works with instances of DsfMemoryBlock class. The memory that is
contained in the block is characterized by its start address, its length and by a
memory context. Usually memory contexts di�erentiate memory blocks that are
related to di�erent debuggees. The memory block objects listen to memory re-
lated events of the memory service and eventually updates their contents. Objects
of DsfMemoryBlock gets the actual memory contents from the memory service in
the method fetchMemoryBlock. Instances of DsfMemoryBlock are created by the
class DsfMemoryBlockRetrieval, which speci�es the memory context of the block.

The memory service (MIMemory) caches the memory obtained from GDB.
The cache is invalidated when a resume or a suspend event occurs. MIMem-
ory uses two separate caching mechanisms to implement the caching behaviour.
The �rst mechanism stores the continuous pieces of memory in a list for each
memory context. These lists are stored in a map that uses memory contexts as
keys. In other words MIMemory stores a separate list of loaded memory blocks
for each debugged process. This mechanism is implemented in the MIMem-
ory.MIMemoryCache class.

The second mechanism is implemented in the CommandCache class and it
caches the results of MI commands. The commands themselves are used as keys
for searching the cached result.

Work with the contexts that are given to the memory service is quite a prob-
lematic matter. Possible contexts that are used for memory access are a thread
group context and a thread context. The structure of these contexts is shown in
�gures 5.2 and 5.3.

The only memory context of those in �gures 5.2 and 5.3 was the thread
group context (GDBProcesses_7_0.GDBContainerDMC ). Therefore, the mem-
ory service receives as a parameter even contexts that are not memory con-
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GDBProcesses_7_0 .GDBContainerDMC // a thread group con t ex t
GDBProcesses_7_0 .MIProcessDMC // a process con t ex t

GDBControlDMContext

Figure 5.2: Parents of a thread group context.

GDBProcesses_7_0 .MIExecutionDMC // a thread con t ex t
GDBProcesses_7_0 .GDBContainerDMC // a thread group con t ex t

GDBProcesses_7_0 .MIProcessDMC // a process con t ex t
GDBControlDMContext

GDBProcesses_7_0 .MIThreadDMC // an OS thread con t ex t
GDBProcesses_7_0 .MIProcessDMC // a process con t ex t

GDBControlDMContext

Figure 5.3: Parents of a thread context.

texts. So the service tries to drill the memory context from the passed con-
text. It chooses the nearest parent that represents a memory context, which is
always the thread group in the original CDT. Note, that the method DMCon-
texts.getAncestorOfType is used for getting the memory context from the given
context.

Additionally, context given to the memory service a�ects also options of the
MI memory access command. Using the thread group context will add a �thread-
group group-name option, and then GDB will read memory of a random thread
from the group. Using the thread context will add a �thread thread-number op-
tion, and then GDB will read memory of the given thread. GDB implements
memory access of a thread by:

1. Selecting the thread in the GDB remote communication,

2. Accessing the memory,

3. Selecting the previously selected thread back.

Now let us see what is wrong with the described memory mechanism for an
MSIM debugging session and how the mechanism was customized. Firstly, we
want to use only �thread option for memory commands. Secondly, even if we
give a thread context to the memory service, the service will use the thread
group context as the memory context. So all the threads of the debuggee will
share the same list of cached memory blocks.

The solution for this problem was achieved by creating a new classMsimThread-
DMContext for both the memory context and the thread context. In order not
to violate the function of the previous implementation, the classes that derives
MIMemory are allowed to provide their own caching mechanism for memory
blocks. A new caching mechanism was created in the class MsimMemory. The
main di�erence is that the key for the list of cached blocks is a pair of values:
memory context - thread context. Additionally, the class MsimMemoryBlockRe-
trieval ensures that a thread group context will be never given to the memory
service.
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5.4.5 Accessing physical memory

Modifying the memory access mechanism for reading physical memory is quite
straight-forward if we understand how the memory mechanism works.

A new memory context MsimPhysicalMemoryDMContext for physical mem-
ory was created. We also need the MsimPhysicalMemoryBlockRetrieval memory
retrieval that will return DSF memory blocks with the new memory context. The
Physical Memory view will use this block retrieval.

Additionally, we need the memory service to re�ect this new memory context.
Therefore, the service will now use new MI commands MIDataReadMemoryM-
simExt and MIDataWriteMemoryMsimExt for accessing the memory. For previ-
ously used memory contexts these commands behave exactly like the previously
used ones, but they add the -physical option for the MsimPhysicalMemoryDM-
Context context.

The GUI for the physical memory is implemented in the class PhysicalMem-
oryBrowser.

5.4.6 Viewing TLB Contents

Understanding implementation of the TLB Contents view is nothing really hard.
The implementation is quite straight-forward, because the contents of TLB can
be only read and displayed. Additionally, the appropriate DSF service does not
use any caching mechanism - the performance impact has not been observed.

The GUI is in classes TLBBrowser, TLBPane and TLBTableViewer. The
class TLB implements the DSF service.
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6. Advanced debugging features

For debugging of interpreted code it is possible to use debugging techniques that
are impracticable for debugging on a real machine. Some of these techniques are
proposed in the following text.

6.1 Debuggee-speci�c debugging information

Some advanced debugging features requires the debugger to manipulate with in-
ternal data structures of the debuggee. For example, the debugger may need to
know: the kernel structure of a thread; the list of active synchronization primi-
tives; the list of opened �le descriptors; or page tables of a process.

For MSIM, it would be very hard to obtain these pieces of information just
by reading registers and the memory. One way of overcoming this trouble would
be that the user would specify additional information to the debugger. For ex-
ample, he would specify an address of the current_threads variable that holds
information about currently running threads. Then, the debugger would be able
to obtain data about running threads by reading the speci�ed memory.

The described mechanism would not work well if the debugging information
was not in a �xed memory place. Therefore, a new way of passing advanced
debugging information is needed to be designed. Two approaches are proposed
in the following text:

1. using special debugging devices in MSIM,

2. using a special connection to the debuggee.

6.1.1 Communication between the debuggee and the de-

bugger

The �rst one is de�ning a special interface between MSIM and the debuggee and
then extending the GDB remote interface. For example, the interface between
MSIM and the debuggee could be realized by creating new types of instruction.
However, perhaps the best would be adding special debugging devices to MSIM.
For a better idea of how these devices would work, let us consider such a device
for monitoring of currently running threads on a multi-processor machine. Typ-
ical kernels hold a special variable for each processor that determines currently
running thread on the related processor. During a context switch the debuggee
would write to the thread monitoring device along with changing the variable for
currently running thread. GDB would ask MSIM for contents of the device to
get the list of currently running threads in the debuggee. This mechanism would
allow easy additions of debugging devices.

The second way is opening another debugging connection directly to the de-
buggee. It would work in the same way as debugging usual kernels remotely.
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Thus MSIM would not be aware of passing the debugging information at all. The
only thing MSIM would have to provide is a device for a network interface card or
a serial port. On the other hand, the debuggee would have to implement serving
of the device and handlers for the GDB remote communication. Controlling the
debuggee via two debugging sessions would require changes in the internal logic
of the debugger. For minimal changes the connection to the debuggee would be
used just for obtaining information that are di�cult for MSIM to obtain. And
the connection to MSIM would be used for both controlling and obtaining basic
debugging information.

6.2 Extended execution control

Debuggers typically do not allow to resume just one speci�ed thread while the
others are stopped. This can be unpleasant for the developer. For example, he
may want to debug just one thread and does not allow the others to change the
state of the program. Such a debugging option usually requires a cooperation with
the scheduler of the operating system. Unfortunately most operating systems do
not support such a feature. GDB has interface only for locking the scheduler of
the operating system. Using the locking (if it is supported) prevents the current
thread to be preempted. Additional details about this matter can be found in [3].

For MSIM it is not hard to implement controlling execution only of the spec-
i�ed processors. Unfortunately GDB and Eclipse are not prepared for such a
debugging possibility and therefore changes in them would have to be done. For
GDB at least the remote connection interface and the command line interface
would have to be extended. For support in Eclipse a checkbox with function
Execute only the current thread is proposed. This button might be placed next
to the buttons Resume, Stop, Step over, . . . .

The described feature could be generalized to control execution of not just a
single thread but more selected threads. For example, the programmer debugging
a multi-threaded program could use the generalized execution control to test
whether a critical section is handled properly. He would stop one thread in the
critical section and then he would allow the other threads to run. The code in
the critical section would not be secured properly if any other thread would enter
it.

6.3 Detection of violated critical sections

Logical errors in thread synchronization are very hard for diagnosis. The following
mechanism could help signi�cantly to localize these errors.

In a typical mutual exclusion problem the programmer uses mutex to allow
at most one of the threads to execute the synchronized code at the same time.
The synchronized code is located in so-called critical sections.

In the proposed mechanism the programmer would annotate the critical sec-
tions and specify the related mutual exclusion problem for each section. The
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debugger would then put internal breakpoints to the beginnings and ends of the
annotated critical sections. Thus the debugger could check whether the mutual
exclusion conditions holds every time when a thread enters a critical section. If
the condition would not hold, the debugger would stop execution and report it
to the programmer. Therefore, the programmer would know that there is a race
condition in the shown critical section and he would be in much better position
for diagnosing it.

The proposed mechanism can be implemented even in the environment of
usual operating systems that runs on real hardware. The information provided
by the annotations would have to be re�ected by the compiler and stored in
the executable �le. The operating system would put breakpoints and handle
them in the same way as the debugger would do. The simplest way of stopping
an execution when the mutual exclusion condition does not hold is killing the
process. But for better debugging support the operating system could allow an
external debugger to attach to the broken program, or at least generate a core
dump of the program.

6.4 Debugging of debuggee's internal threads

The current implementation of the MSIM debugger represents each processor in
MSIM as a thread in the debugger. However, a typical debuggee implements its
own thread system and the programmer may want to see actions of debuggee's
threads. A debuggee's thread can be executed on di�erent processors, so currently
the programmer would have to check which debuggee's thread is being executed
on the stopped processor. That would not be very comfortable.

Additionally, stepping of debuggee's thread would not work well with the
current implementation. For example, let us consider that the programmer steps
over a thread_sleep call. Note that the debugger performs stepping over by the
following actions:

1. Put a breakpoint on the next statement.

2. Resume the debuggee.

3. When the breakpoint is hit, check whether the thread that hit the break-
point is the same as the stepped thread. If so, stop the execution and inform
the user. Otherwise resume the execution and wait for the next breakpoint
hit.

The programmer would expect that the execution will be stopped when the
stepped debuggee's thread wakes up. However, currently the execution will be
stopped when the stepped processor reaches the statement after the thread_sleep
call. And in that time the processor can execute the code of a di�erent thread.
So the execution would be stopped in another debuggee's thread. Moreover, the
debugger will not stop the execution if a di�erent processor reaches the statement.
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And the debuggee's thread can be executed on the di�erent processor when it
wakes up. Therefore, the debugger could even never stop after the stepping.

Support for viewing and debugging of debuggee's threads would require the
debugger to distinguish two types of threads - threads for representing processors
and threads for representing debuggee's internal threads. The user interface of
the debugger would have to re�ect these two types. And user's actions for exe-
cution control (e.g. stepping) would have to be related with either processors or
debuggee's threads.

Additionally, the debugger would have to keep track of currently running
debuggee's threads and obtain list of all the debuggee's threads. Section 6.1
discusses how to obtain that information.

6.5 Debugging code in virtual memory

So far the code of the debuggee has been always placed in physical memory in
addresses that are known after compilation. But the code can be also placed in
virtual memory and that brings complications.

Firstly a virtual address space is typically related with a debuggee's internal
process. Therefore, debugging of code in virtual memory requires the debugger
to access virtual memory of the debugged process. For doing so, the debugger
would need at least to obtain page tables of the desired process.

Secondly the code in the virtual memory can be relocated during loading to
the memory. For more information about relocation see [2, Ch. 4.1.3, p. 377].
Therefore, the location of the code in the virtual memory can be determined only
by the debuggee. And the debugger needs to know the location, because it is
used for translation of debugging symbols.

Section 6.1 discusses possible ways how the debugger can obtain page tables
or the information about relocation.

6.6 Debugging either userspace or kernelspace code

The programmer may want to debug just events in the kernel and ignore what
the examined debuggee's thread does in userspace. Or on the other hand, he may
want to debug actions in userspace and ignore what is happening in the kernel.

Whether a debuggee's thread is in userspace or in kernelspace is determined
by control bits in the CP0 coprocessor of the executing processor. MSIM can
easily access these bits and monitor their changes. The debugger could use this
information to stop when the kernelspace/userspace status of the debugged thread
changes, or to �lter breakpoints where the user does not want to stop.
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6.7 Recording execution

MSIM can provide execution trace log, which allows the programmer to see what
the machine has been doing. Unfortunately, the log is usually overwhelming for
the programmer, so he uses it only when most other debugging methods failed.
However, the debugger could greatly improve readability of the log.

The debugger could easily replace addresses of symbols by the symbols them-
selves. The trace log of MSIM could be transfered to the debugger during de-
bugging session, or MSIM would store the log into a �le and the debugger would
post-process the �le. Showing the log in an IDE view would be useful, because
the debugger could show the related lines of C source code to the selected line
of the trace log. Additionally, the debugger could be able to reconstruct the call
stack from the log.

The trace log for a multiprocessor machine in its raw form is not very human-
readable. That is because the programmer sees instructions of all the processors
melted together. It is very hard just to seek what one single processor is doing.
The picture 6.1 illustrates how such a log looks like.

Figure 6.1: Melted trace log for a multiprocessor machine. The picture
shows how MSIM generates log for a machine with three processors. Four in-
structions are shown for each processor.

The debugger in an IDE could show the log for a multiprocessor machine in
much more readable way. It would create a standalone GUI element for each pro-
cessor to display instructions of the processor. These elements would be grouped
one next to the other as the picture 6.2 illustrates.

6.7.1 Call trees

For a single-threaded program the execution can be also described by displaying a
call tree. A node of such a tree represents a routine and a transition represents a
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call of a subroutine. A call tree contains less information than an execution trace,
because it contains only names of routines. That may be actually an advantage,
because the programmer usually starts to analyze the execution by �nding out
where he is and how he has got there. And he can see it directly from the call
three.

However, the debugger can construct the call stack from an execution trace
too. Therefore, the actual advantage of call trees with comparison to execution
traces is that call trees shows how routines are called in a larger way. For example,
the programmer can see directly from the call three what routine is called right
after the current routine returns.

Unfortunately, displaying a call tree to show how the program has been exe-
cuted has numerous problems:

1. Displaying conditional statements in the tree

The information in the usual call tree may not be su�cient for the program-
mer. He may want to know how the execution has been branched inside
a routine. Therefore the branching statements such as if or switch should
be shown in the tree as nodes. Additionally, such a node should contain
information how the branching condition has been evaluated.

2. Displaying loops in the tree

Usual presentation of call trees can be easily unreadable. For example,
calling a simple routine in a loop with one million iterations would result
in displaying one million of nodes. The programmer would get immediately
lost in traversing such a tree. Therefore, the loop should be also represented
as a node in the tree and the programmer should be allowed to display only
subtree of a speci�c iteration.

3. Multi-threading

A call tree is related to a single thread. For a multi-threaded program, there
is a simple idea of having a standalone call tree for each thread. However,
the programmer may want to compare what the threads are doing at speci�c

Figure 6.2: Separated trace log for a multiprocessor machine.
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time. For example, that could be done by selecting a node in one call tree
and then asking the debugger to show where the others were when the
selected node was being executed. Nodes does not specify the location on
instruction-level precision, so the shown result would be a range of possible
nodes likely.

4. Handlers for asynchronous events

Call trees do not re�ect asynchronous events such as interrupt handling in
a kernel or signal handling in a userspace program. It may be acceptable to
consider an execution of an event handler as an execution of a standalone
thread. Thus each handler would be related to its own call tree.

5. Call trees for threads that represents processors

Unfortunately, the call three concept does not make a good sense for record-
ing execution of a thread that represents a processor in MSIM. For example,
one assumption of a call tree is that it re�ects all the routines of just one
thread. However, a routine can be executed on more than one processor
and that violates the assumption.

For a summary, call trees are a way of representing an execution of a pro-
gram. They bring a series of design questions to be practically useful. With
the comparison to the execution traces they do not have remarkable advantages.
Additionally, the traces are much more easier for implementation in the MSIM
environment. Therefore, in author's opinion a theoretical usage of the call tree
concept can be expected more likely in debugging.

6.8 Reverse execution

Programmers would appreciate the ability to return the state of the debuggee back
to some point. They would possibly like to evaluate what values the variables
has had. Also, it is quite common that the debugging programmer steps the
program to many times and misses an important moment. Normally he would
have to reproduce the whole stepping procedure, but with reverse execution he
would just do one step back.

Reverse execution is typically implemented by recording changes made by
each instruction. For example, an instruction that would change the memory
would correspond to the record: memory changed at address X, previous value
Y, new value Z.

Another approach of implementing reverse execution is suggested. MSIM
would periodically create a snapshot of the whole machine. In order to return
the program to some previous point the MSIM would load the nearest snapshot
before that point and execute forwardly to the point.

Reverse execution is obviously very demanding feature for the size of mem-
ory. Therefore, memory usage is an important property of implementation. Two
situations are considered to compare the two described approaches of realizing re-
verse execution. At �rst let us consider that reverse execution could be performed
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only for a �xed count of previous instructions. This limitation would not matter
in situations such as the example with the programmer who has done too many
steps and missed an important moment. For the low enough count of reversible
instructions the typical approach of recording changes would be more suitable.
That is because remembering changes of so few instructions is not demanding for
the size of memory. Additionally, reversing those instructions would be probably
much faster than loading the snapshot of the machine.

On the other hand, the programmer may want to reverse the program before
the loop with too many iterations, so the limited reverse execution would be
useless for this purpose. For unlimited reverse execution it is harder to guess
which approach is better and a study of the memory usage is suggested.

There is another notable thing about reverse execution. The state of a pro-
gram can also be determined by non-deterministic events such as a key press.
These events are very hard or impossible to be reversely executed in real ma-
chines. For the MSIM environment it is possible to remember changes caused by
these events. Therefore, in the MSIM environment the reverse execution may be
applied even to non-deterministic programs.
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7. Conclusion

In this work we implemented the MSIM plugin for Eclipse, a patch for the GNU
debugger, and we modi�ed MSIM. These things together form the MSIM debug-
ger. The debugger allows comfortable debugging of programs that are simulated
in MSIM. Thus, the goal of this thesis has been achieved. The table 7.1 reviews
debugging possibilities of the MSIM debugger. Hopefully, this work will save a
lot of debugging time to MSIM users.

Additionally, many debugging features that can not be implemented in com-
mon debuggers, can be implemented in the MSIM debugger. Some of these
features are discussed in this work. The usefulness of the features may not be
guessed well, but we could have the possibility to observe how students debug
an operating system. Thus we could be able to collect typical use-cases of the
debugging features and evaluate their bene�ts. These evaluations would provide
a good background for potential research in debugging.
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Table 7.1: Comparison of di�erent debugging scenarios. The �rst three
columns are related to the debugging of programs executed in MSIM. The last
column shows possibilities of an IDE-based debugger for common userspace
C/C++ programs to point out the contrast. The pictures are derived from
http://eci2.xstamper.com/ProductDetail.aspx?productid=11420.
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A. Setting up the development

environment

Creating the development environment is explained for Windows 7 with Cygwin.
This platform is probably one of the more complicated platforms for the setup.
For Linux you may skip steps that make sense only for the Cygwin platform.
This procedure is not the only way of the setup and you can customize it if you
do not like it. Unfortunately, you will probably meet minor issues during the
setup that can vary for each platform or version of the distribution. We describe
how to handle these issues in Cygwin, but something relevant can be changed
there in a few months. Therefore, detailed instructions might be misleading in
the future. Please be aware that making the whole procedure may take several
hours of work.

For further development you may want to work with: both the MSIM plugin
and the CDT plugin; GDB; MSIM; and Kalisto. These directions lead to a well-
tried development environment that has one Eclipse IDE instance for each of the
projects. You may not need diagnosing GDB behaviour, for example, and in such
a case you can skip some steps in the GDB part of the procedure.

Firstly, you will need to install binutils for the MIPS platform. Use the script
toolchain.mips.sh, which can be downloaded on the sites http://d3s.mff.

cuni.cz/~ceres/sch/osy/main.php. Make sure that you have all the prerequi-
sites installed - it will save you a lot of time.

We will try to make the following directory structure in your working direc-
tory:

working_dir
runtime−Ec l i p s eApp l i c a t i on // workspace f o r Ka l i s t o
workspace_gdb
workspace_msim
workspace_msim_plugin

So let us start by creating the workspace directories. In the following sections
we will �ll each of them. The runtime-EclipseApplication workspace will be
created automatically.

A.1 Workspace for MSIM plugin

At �rst we need to start with the CDT development. The procedure for CDT is
also described in http://wiki.eclipse.org/CDT/git. Please see it, because it
may be more updated.

1. Download Eclipse Classic 3.7 from the sites of the Eclipse project. Extract
it wherever you want and run it. This will be our Eclipse for developing
the MSIM plugin, so select the workspace_msim_plugin as the workspace
directory. We need to install additional plugins - EGit and Remote System
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Explorer End-User Runtime. The best way of installation is probably going
through Help->Install New Software menu in Eclipse.

2. Download CDT8.0 package from CDT sites. We will need only the package
(zip archive), so do not install it. Extract it wherever you want and open
Preferences->Plug-in Development->API Baselines in Eclipse. Click on
the Add Baseline. . . button and select your extracted CDT folder.

3. Now we need to checkout two additional projects from CVS. Use the CVS
client in Eclipse. In CVS Repositories view click on the Add CVS Repos-
itory, paste :pserver:anonymous@dev.eclipse.org:/cvsroot/tools in
the Host edit box and �nish the addition. Right click on the HEAD ->
org.eclipse.orbit -> net.sourceforge.lpg.lpgjavaruntime and select Checkout
As. . . . Click twice on the Next button, then refresh the tags and select the
version 1.1 in branches.

4. The second repository is :pserver:anonymous@dev.eclipse.org:/cvsroot/
eclipse and the project name is org.eclipse.test.performance. You do not
need to specify branch this time.

5. Now we will clone the CDT repository. The CDT community has recently
switched their version control system from CVS to Git, so we will use the
installed EGit plugin. Clone a Git repository in the Git Repositories win-
dow. The URL is git://git.eclipse.org/gitroot/cdt/org.eclipse.

cdt.git. Select only the cdt_8_0 branch. The directory of the clone does
not matter, but I preferred the workspace_msim_plugin. When the cloning
is done, right click on the Working directory in the Git Repositories view
and import all the projects.

6. Build the workspace. Unfortunately some problems can easily occur in
this step. The package org.eclipse.cdt.internal.core.macosx could not have
a reference to package org.eclipse.cdt.core, which can be �xed by adding the
reference in the quick �x menu on the appropriate import line. You can
also meet an error that a major version should be incremented, which can
be corrected by the quick �x too. Sometimes it is enough just to clean the
workspace and build it again.

7. Make sure that CDT is working by running any CDT project as an Eclipse
Application. This step should create the runtime-EclipseApplication direc-
tory as a workspace for the currently launched Eclipse.

8. Checkout the MSIM plugin from https://svn.fenix-hosting.cz/repos/

msim_debugger to workspace_msim_plugin. The login is public and the
password is public too. You can use Sublipse plugin or any other SVN client
to do it.

9. Apply the patch msim_plugin/patches/MSIM-CDT8.0.patch to any CDT
project in Eclipse. You can do it through Team->Apply Patch. . . menu in
the Project Explorer.

10. Build the workspace and run the MSIM plugin as an Eclipse Application.
The MSIM plugin should be now ready for work.
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A.2 Workspace for GDB

In this section we will patch GDB and prepare Eclipse for developing GDB. The
users might want to patch GDB too, so they can also use these instructions for
patching. Note that you does not have to install the Eclipse if you prefer another
way of debugging.

1. Download gdb-7.2 source �les and copy it the workspace_gdb directory.

2. Copy the msim_plugin/patches/MSIM-GDB7.2.patch to the workspace_

gdb and apply the patch by the command:
patch − i MSIM−GDB7. 2 . patch −p1 −u

3. Con�gure GDB for MIPS and build it. You might need the termcap library,
which might be located in the libncurses5-dev package.

cd gdb−7.2
. / c on f i gu r e −−t a r g e t=mips
make

4. Make sure that GDB is built properly by running gdb-7.2/gdb/gdb.

5. Now we will prepare Eclipse. Download another Eclipse. This time we
will need Eclipse for C/C++ development and the version does not matter.
Run it and create a new project from the existing code. Code is located in
gdb-7.2/gdb and choose the appropriate toolchain (e. g. Cygwin GCC for
the Cygwin platform).

6. Change the compilation option -O2 to -O0 -g in gdb-7.2/gdb/Makefile.
Rebuild the gdb-7.2/gdb sources.

7. Start debugging in Eclipse, choose C/C++ Local Application and then
gdb/mi debugger. For Cygwin you might need to set the location of source
�les. The directory where your Cygwin is installed should work. Now you
should be able to debug the patched GDB.

A.3 Workspace for MSIM

Now let us make MSIM working. We need a speci�c branch of MSIM, which is
located on a bazaar based repository. Usage of di�erent versioning system for
each project is quite unfortunate. Hopefully, MSIM and MSIM plugin will use
the same versioning system in the future. So far you will need a bazaar client for
development of MSIM. Additionally, you might be required to have a Launchpad
account for checkout of MSIM.

1. Get the speci�c branch of MSIM into the workspace_msim. The branch is
located on the URL https://code.launchpad.net/~fyzmat/msim-private-tm/

trunk. You might need to upload your public SSH key to Launchpad. The
following command can be used for obtaining the branch:
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bzr branch lp :~ fyzmat/msim−private−tm/ trunk

2. Con�gure the MSIM branch. Package makedepend, which can be located in
the imake package, might be required. Use the command:

. / c on f i gu r e

3. A problem with linking the readline library was encountered in Cygwin.
You might need an installation of ncurses library and to add -lncurses to
the LIBS variable in src/Makefile. Also, you might have to change the
following lines in that make�le:

#o r i g i n a l l i n e s :
$ (TARGET) : $ (OBJECTS) $ (DEPEND)

$ (CC) $ (CFLAGS) $ (LIBS) −o $@ $ (OBJECTS)

#changed l i n e s :
$ (TARGET) : $ (OBJECTS) $ (DEPEND)

$ (CC) $ (CFLAGS) −o $@ $ (OBJECTS) $ (LIBS)

4. Open Eclipse for C/C++ development and choose the workspace_msim as
the workspace directory. Create a C project in the same way as for GDB.
Uncomment the DEBUG line in src/Makefile.local.template and save
it as Makefile.local.

5. When the Kalisto workspace is prepared, you might want to simulate your
version of Kalisto during debugging of MSIM. In such a case add symbolic
links to the msim.conf and the kernel directory into the MSIM bin direc-
tory.

6. After the previous step both MSIM and GDB can be tried. Run MSIM
with the parameter �remote-gdb=10001, then run GDB and then write a
GDB command target remote :10001. You should be able to read values of
registers in GDB (the info registers command).

A.4 Workspace for Kalisto

1. Run the MSIM plugin and create the C project by going through C Project
-> Make�le Project -> Empty Project.

2. Download Kalisto from http://d3s.mff.cuni.cz/~ceres/sch/osy/main.

php and copy it to the directory of the created project. Refresh the Project
Explorer.

3. For compiling on the Cygwin platform go to the Preferences -> Build ->
C/C++ Environment and add the PATH=;"C:\cygwin\bin" environment
variable. The path re�ect the location of your cygwin installation.

4. For launching the debugging session by the key shortcut go to the Prefer-
ences -> Run/Debug -> Launching and check the Always launch previously
launched application option.
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5. Change the CCFLAGS from -O2 to -g -O0 in the kernel/Makefile.

6. For executing Kalisto in the current development version of MSIM, you can
make a symbolic link in the root directory of Kalisto that points to a binary
of MSIM in workspace_msim.

7. Finally you will be required to create a debug con�guration. Open the
Debug con�gurations dialog, create a new C/C++ MSIM Application con-
�guration, �ll in the debugged binary (usually kernel.raw), the path for
the patched GDB and for MSIM. Now click on the Debug button and,
hopefully, enjoy.
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B. User manual

Users are supposed to understand debugging concepts in general. This manual
helps with the initial setup and describes more important GUI elements of the
Eclipse IDE.

B.1 Installation

The user needs to install three programs: the branch of MSIM that is developed in
this work, patched GDB-7.2, and Eclipse with appropriate plugins. Distribution
packages for MSIM and patched GDB are not available, because the MSIM branch
is intended to be merged into the MSIM mainline before distribution. Instruction
how to build these two programs are in sections A.2 and A.3.

Several problems has been encountered during creation of a standard distri-
bution of Eclipse plugins (patched CDT and the MSIM plugin). Unfortunately,
these problems has not been overcome yet. Therefore, the user is currently sup-
posed to build patched CDT and the MSIM plugin and run it inside Eclipse as
an Eclipse Application. One way to do so is using the instructions in A.1, but it
is quite long and uncomfortable.

A much faster way of running the MSIM plugin is prepared. The user has
a prepared workspace in the attached CD (workspace_msim_plugin). He is
supposed to do the following steps:

1. Install Java Development Kit.

2. Install Eclipse Classic 3.7. The version is important and this instance of
Eclipse is also located in the CD.

3. Choose the workspace_msim_plugin workspace as the active workspace
after starting the Eclipse.

4. Establish an API baseline. The instructions are in the step 2 of the section
A.1.

5. Clean the workspace and rebuild it. Versioning errors such as @since can
be ignored.

6. Open the Project Explorer view, right click on the project org.eclipse.cdt
and run it as an Eclipse Application.

B.2 Setting up a new project

Kalisto is intended to be the typical project. Instructions how to setup Kalisto
are in the section A.4 of the chapter Setting up the development environment.
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B.3 Debugging views

This section contains screenshots of important GUI views. The relevant GUI
elements are marked and described.

Views can be activated in the Window -> Show view menu.

Figure B.1: Source view with other views in the side toolbar.
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Name Notes

1 Source view

2 Place for breakpoints Right click to open menu and toggle or en-
able/disable source-level breakpoints

3 Line where the debugged
thread is stopped

4 Memory Browser view

5 Variables view

6 Registers view

7 Breakpoints view

8 TLB Contents view

9 Physical Memory view

10 Console view

11 Project Explorer view

12 Disassembly view

13 Debug view
Table B.1: Marked GUI elements of the view B.1.
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Figure B.2: Memory browser view.

Name Notes

1 Expression input You can type here any expression that spec-
i�es an address

2 Go to the speci�ed ad-
dress

3 Create a new tab

4 Tabs for browsing memory

5 Address column of the tab

6 Column with hex-dumped
memory

It is possible to change the memory by writ-
ing desired hexadecimal values in this col-
umn.

7 Column with ASCII-
dumped memory

It is possible to change the memory by writ-
ing desired ASCII chars in this column.

Table B.2: Marked GUI elements of the view B.2.
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Figure B.3: Variables view.

Name Notes

1 Table with local variables The rows contain an identi�er, a type, and
a value of the related local variable. The
user can change values of variables in the
last column.

2 Details for values
Table B.3: Marked GUI elements of the view B.3.

Name Notes

1 Table with registers The rows contain a name of the register and
its value. The user can change values of reg-
isters in the column with values. Changed
registers are colored.

2 Details for values
Table B.4: Marked GUI elements of the view B.4.
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Figure B.4: Registers view.

Figure B.5: Breakpoints view.
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Name Notes

1 List of breakpoints Both normal and memory breakpoints are
listed.

2 Remove all breakpoints

3 Additional options The user can set a memory breakpoint in
this menu. Another way of setting a mem-
ory breakpoint is via the menu Run -> Tog-
gle Watchpoint.

Table B.5: Marked GUI elements of the view B.5.

Figure B.6: TLB Contents view.

Name Notes

1 Index column Each row re�ects translation of one page to one frame.
Note that a TLB entry for the R4000 processor maps
a pair of the following pages to two frames. The used
way of displaying a TLB entry is separating it into
two rows.

2 Page index Address of a virtual page divided by size of one page.

3 Mask TLB hit occurs when virtual_address & mask ==
page_index. This value is derived from the PageMask
register. Bits 0-12 are always zeroes, bits 13-24 are
set by the debuggee, and bits 25-31 are always ones.
See [13] [p. 81] for more details.
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4 Global bit ASID is ignored if this bit is set. Note that this bit
is never directly accessed by the debuggee. It is com-
puted during a TLB write as logical AND of EntryLo0
and EntryLo1 global bits.

5 ASID Address space identi�er of the entry. Note that the
current ASID is stored in the EntryHi register.

6 Valid bit This bit is set if the page-to-frame translation of this
row is enabled.

7 Dirty bit This bit is set if the page is writeable.

8 Frame Address of the translated physical frame.

9 Coherency bits Three coherency bits. Not used in MSIM.
Table B.6: Marked GUI elements of the view B.6.

Figure B.7: Physical memory view. The usage is the same as for the Memory
browser view
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Figure B.8: Console view.

Name Notes

1 Console output Useful for seeing MSIM output or GDB/MI commu-
nication.

2 Terminate de-
bugging session

3 Select another
console

Table B.7: Marked GUI elements of the view B.8.

Figure B.9: Project explorer view. The Kalisto project is currently loaded.
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Figure B.10: Disassembly view.

Name Notes

1 Disassembly view C source is merged into the instructions.
The �rst column holds addresses of instruc-
tions or lines of the C code. The second col-
umn contains instructions and the C code.
Symbols are added to the known addresses.

2 Place for breakpoints Right click to open menu and toggle or en-
able/disable instruction-level breakpoints.

3 Line where the debugged
thread is stopped

4 Search input Any expression that speci�es an address can
be typed here.

Table B.8: Marked GUI elements of the view B.10.
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Figure B.11: Debug view.

Name Notes

1 Debug view All the processes, their threads and call
stacks are listed. The user selects the cur-
rent thread by choosing it in this view.

2 Resume

3 Interrupt

4 Terminate debugging ses-
sion

5 Step into

6 Step over

7 Step out

7 Toggle instruction-level
debugging

This enables the user to do instruction-level
stepping.

Table B.9: Marked GUI elements of the view B.11.
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C. Summary of �les for this work

Files that are needed for further development or deployment of this work are
located in the attached CD. Additionally, most of them is available online. The
tables C.1 and C.2 summarize locations of the �les.

Description Online URL

Eclipse Classic 3.7 Eclipse download sites

CDT-8.0 CDT download sites

GDB-7.2 GDB download sites

Kalisto http://d3s.mff.cuni.cz/~ceres/sch/osy/main.php

Script for installing
MIPS binutils

http://d3s.mff.cuni.cz/~ceres/sch/osy/main.php

Source codes of the
MSIM branch

lp:~fyzmat/msim-private-tm/trunk

Source codes of the
MSIM plugin

https://svn.fenix-hosting.cz/repos/msim_debugger

login public, password public

Table C.1: URLs of �les for this work.
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Description Path in CD

Eclipse Classic 3.7 eclipse3.7.0-linux32 or eclipse3.7.0-win32

Workspace for the MSIM
plugin

workspace_msim_plugin.zip

Workspace for MSIM workspace_msim

Workspace for GDB workspace_gdb

Runtime workspace for
Kalisto

runtime-EclipseApplication

CDT-8.0 cdt-master-8.0.0.zip

GDB-7.2 gdb-7.2.tar.gz

Kalisto kalisto-0.8.8.tar.bz2

Script for installing
MIPS binutils

toolchain.mips

Source codes of the
MSIM branch

repos/msim-specific-branch

Source codes of the
MSIM plugin

repos/msim-plugin

Patch for GDB-7.2 repos/msim-plugin/patches/MSIM-GDB7.2.patch

Patch for CDT-8.0 repos/msim-plugin/patches/MSIM-CDT8.0.patch

Table C.2: Contents of the attached CD.
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D. Getting familiar with the Eclipse

platform

This appendix describes what makes development in the Eclipse platform di�-
cult, but it can be also considered as a general observation of di�culties with
orientation in source codes and complications during debugging. Many of the
described issues are met during development of a larger project.

Writing plugins for the Eclipse platform is hard for a programmer who is not
familiar enough with the platform. Amount of Eclipse source codes is huge and
for a single person it demanding to remember deeper level of knowledge about all
parts of Eclipse. For example, the implementation of the CDT plugin consists of
7000 java �les. Studying documentation does not seem to be very overview giving.
Most of the source codes is at least brie�y commented. Especially valuable are
comments at the beginning of a �le that describes: what the class does; how it
interacts with its surrounding; and brie�y how it is implemented. Unfortunately
these comments are often missing. With a bit of luck it is possible to �nd some
information about concepts on web in form of wiki pages, presentations, . . . .

An unfamiliar developer can become more aware of how most of the mech-
anisms are designed by programming longer in the Eclipse environment or by
cooperation with a familiar colleague. For a standalone programmer a suitable
practice for getting familiar with writing Eclipse plugins is searching source codes
where a similar thing to the desired one is implemented. Sometimes an example
is available for this purpose. The programmer can also use a debugger for trying
how the code behaves.

The IDE support is essential for e�cient orientation in source codes. The
IDE functions go to declaration, �nd usages, show call hierarchy and show type
hierarchy are especially useful. However, the following list describes troublesome
situations or factors that made the orientation di�cult:

1. Search for the place of implementation

In smaller projects it is commonly possible to guess the location of the
searched implementation according to the name of classes. In case of the
large CDT plugin this search is often tedious and can take hours to an
unacquainted developer. An example is searching for a method that handles
clicking the Debug button on the Debug con�gurations dialog. The fastest
practice to �nd it seems to be searching the codes and con�guration �les
for a text that is near the button on the screen.

2. Connecting plugins via the con�guration �les

In the Eclipse platform the plugins declare theirs extension points and are
linked with the extension points of other plugins. This mechanism realizes
easy extensibility by new plugins. However, the mentioned IDE functions
does not take this into consideration.

3. Invoking methods in another thread
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There is a concept in parts of CDT determining that some code should be
called asynchronously in a di�erent thread. Sometimes this is unnatural,
because there is no clear need for doing it. Such a code breaks logical
structure of the call stack - it is more di�cult to discover which code invoked
an asynchronously executed method.

Fortunately most of the invocations follow the pattern D.1.

f S e s s i o n . getExecutor ( ) . submit (new DsfRunnable ( ) {
public void run ( ) {

// . . . asynchronous ly invoked code
}

}) ;

Figure D.1: Pattern for calling asynchronous methods.

Let us suppose that we would like to �nd out what methods called the
asynchronous action when the debuggee hits a breakpoint in the action.
Usually we would see that directly from the call stack, but in this case the
last useful record in the call stack will be the run method of the submitted
DsfRunnable. The workaround about this is to put the breakpoint on the
submit call and debug the action again. Then we will see the upper records
in the call stack.

4. Coding style that prevents fast use of the debugger

Preferred coding style varies from programmer to programmer and here is
pointed out what has bad impact on debugging. From the debugging point
of view it is unfortunate to use more than two or three dotted dereferences
on the same line of code.

For example, �nding out what leads to a raised NullPointerException on the
snipped line D.2 may be work-intensive. Just splitting the line as illustrated
in D.3 would help a lot.

St r ing s = getManager ( ) . getConf ig ( type ) . getOptions ( ) . f i l t e r (
p r e f s ) . get ( key ) ;

Figure D.2: Too many dereferences in one line of code.

Options opts = getManager ( ) . getConf ig ( type ) . getOptions ( ) ;
S t r ing s = opts . f i l t e r ( p r e f s ) . get ( key ) ;

Figure D.3: Split line D.2.

The second pointed style, which is not very debuggable, is a usage of com-
plicated expressions in conditions like in the code D.4.

The snippet D.5 allows the programmer to put a breakpoint to the last line
and immediately see which condition is evaluated in an unexpected way.
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private boolean i s InProperPath ( IOutput entry , S t r ing path ) {
i f ( entry . path ( ) . i sP r e f i xO f ( path ) && ! i sExc luded ( path , entry .

ge tExc lus ionPatte rn ( ) ) ) {

return true ;
}

return fa l se ;
}

Figure D.4: A complicated expression.

private boolean i s InProperPath ( IOutput entry , S t r ing path ) {
St r ing outputEntryPath = entry . path ( ) ;
boolean isOnOutputEntry = outputEntryPath . i sP r e f i xO f ( path ) ;

S t r ing exc lu s i onPat t e rn = entry . ge tExc lus ionPatte rn ( ) ;
boolean i sExc luded = isExc luded ( path , exc lu s i onPat t e rn ) ;

return isOnOutputEntry && ! isExc luded ;
}

Figure D.5: The improved expression D.4.
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