
SENSOR ���

VISION�BASED NAVIGATION SOFTWARE�

TECHNICAL MANUAL

By

Stephen D� Fleischer

September ����

Copyright c� ���� by Stephen D� Fleischer

All Rights Reserved�

ii

Contents

� User�s Guide �

��� Overview �

��� Application Startup �

��� Application Execution� Modes �

��� Graphical User Interface � 	

����� Mosaic File Type � 	

����� DIB File Type �

����� Menus �

����� Dialog Boxes ��

����	 Toolbar ��

��	 Initialization File ��

��
 Stethoscope ��

� Software Architecture Overview ��

��� Introduction �

��� Advanced Vision Processor �AVP� Library ��

��� Sensor ��� Application ��

����� AVP Engine Thread ��

����� GUI Thread ��

����� Communications Link Threads ��

����� Data Logger Thread ��

iii

� AVP Library ��

��� Assumptions and Constraints �	

��� Solution ��

����� Sub�Image Texture�Based Registration � � � � � � � � � � � � � � � � � ��

����� Image Processing Pipeline ��

����� Mosaicking Process ��

� AVP Engine Thread ��

��� Data Flow Design and Implementation ��

����� Components ��

����� Signals �	

����� Parameters �

����� Adding Components�Signals�Parameters � � � � � � � � � � � � � � � �

��� System Geometry�Frame Descriptions ��

��� Signal Descriptions � 	�

��� Parameter Descriptions � 		

��	 Component Descriptions � 	�

��
 Inter�Thread Communication �
�

��
�� Thread Messaging �
	

��
�� External Access for Signals �

��
�� External Access for Parameters �
�

��� Stethoscope ��

� GUI Thread ��

	�� Documents ��

	���� DIB Document ��

	���� Mosaic Document ��

	�� Views ��

	�� Dialog Boxes ��

iv

	 Communications Link Threads ��

�� AVPNet �	

�� ComputeServerLink �

�� SpaceFrameLink �FlightTableLink� ��

�� OtterLink ��

�	 VentanaSerialLink �

� Data Logger Thread
�

��� Synchronous Data Log ��

��� Asynchronous Data Log ��

 Distributed Software Components
�

��� Smoother ��

��� Space Frame Network Node �
�

��� OTTER Network Node �
�

Bibliography ��

v

Chapter �

User�s Guide

This technical manual serves two purposes� it is designed to be both a user�s guide and

a programmer�s manual for the Sensor �version ���� application� This �rst chapter serves

as the user�s guide� and it explains how to start and run the application� load and store

mosaics� and use the graphical user interface� The remaining chapters provide an in�depth

discussion of the software implementation details� for those who wish to modify the code

for future experiments and demonstrations�

The user�s guide �Chapter �� assumes the reader has a basic knowledge of Windows con�

cepts� such as windows and window management� mouse actions� application execution� �les

and directories� etc� In addition to these requirements� the programmer�s manual �Chap�

ters ���� assumes familiarity with the Microsoft Visual Studio development environment�

the Microsoft Visual C�� compiler� the MFC �Microsoft Foundation Classes� framework�

and multi�threaded programming concepts�

��� Overview

The Sensor application performs real�time video mosaicking and visual map�based navi�

gation for mobile robots� including real�time vehicle state estimation and control� This

software runs on any PC with Windows NT ��� and a Matrox Meteor digitizer board� To

interface with external hardware� the application requires a live video input and either an

�

CHAPTER �� USER�S GUIDE �

ethernet or serial connection for bi�directional communications� In its current con�gura�

tion �without code modi�cation�� Sensor is capable of interfacing with the following three

experimental hardware systems� the Space Frame� the OTTER AUV� and the Ventana

ROV�

��� Application Startup

To start the Sensor application� double�click on the Sensor�exe �le within the Release�

subdirectory of the source code� or execute it from with Visual Studio� Be sure that the

parameters�ini is located either in the same directory as the Sensor�exe executable �for stan�

dalone execution�� in the working directory �if a shortcut to the executable has been de�ned�

such as on the Start Menu or desktop�� or within the source code hierarchy �for execution

from within Visual Studio�� Otherwise� default values for the parameters�ini entries will be

used� �See Section ��	 for more information on the parameters�ini initialization �le��

Upon successful startup� a Con�guration dialog box will pop�up requesting the user to

specify the intended application� Choose the radio button that corresponds to the target

hardware� Flight Table �� Space Frame�� OTTER� or Ventana� The Sensor application

can be executed for testing in the absence of actual hardware� in this case� be aware that

the inputs expected from the robotic system may be unde�ned�

In addition to the radio buttons� there is an �Enable smoother� checkbox� If this box

is checked� an optimal re�alignment procedure will be enabled during mosaic creation� This

procedure detects when the mosaic crosses back upon itself� aligns the overlapping images

at the crossover point� and re�aligns all other images in the mosaic to maintain the internal

consistency of the mosaic map� Note that only the crossover detection and correlation

�i�e� alignment� is performed automatically when this box is checked� to perform the �nal

smoothing �i�e� re�alignment�� an external compute server must be running �see Section �����

Note that in its current state� the mosaicking procedure is more robust without the smoother

enabled �and thus probably more useful unless the user is quite familiar with the internal

CHAPTER �� USER�S GUIDE �

workings of the mosaicking�smoothing procedure�� For more details on the smoother� refer

to Steve Fleischer�s thesis� ����

After clicking OK to �nish the Con�guration dialog box� a New dialog box appears

with two options� Mosaic and Dib� This determines what type of new �le will be created

automatically within the Sensor application �see Sections ����� and ����� for more informa�

tion on �le types�� Clicking on OK will automatically create a new �le of whatever type

was highlighted� Clicking on Cancel will start the application without opening any new

�les� For most purposes� it is easiest to just click OK to create a new Mosaic �le� so new

mosaics can be created immediately� �New �les always can be created once the application

is running��

At this point� the main application window should open� and a few seconds later� the

long rectangular Output Display dialog box will open� Due to a timing bug among the

multiple threads that I believe is contained within Windows code �not the Sensor code�� I

recommend that you do not click on any buttons or menus or try to move either window

until numbers show up in the small edit boxes on the right side of the Output Display dialog

box� �The only detrimental e�ect I�ve seen so far is that some of the graphic overlays do

not display properly� but there may be other unpredictable side e�ects��

��� Application Execution� Modes

Once the application is running� two di�erent sets of tasks can be performed� online video

mosaicking and navigation� and o�ine retrieval� viewing� and storage of Mosaic and DIB

�les� The second set of tasks will be described in Sections ����� and ����� within the context

of �le types and their manipulation� The �rst set of tasks �which are the primary goal of

the Sensor application� are de�ned and controlled by several modes of execution�

Currently� the application can be executing in one of �ve di�erent modes� Each mode is

a superset of the previous one� in other words� every mode performs the same computations

and produces the same outputs as the previous mode� plus additional computations and

outputs� Here are descriptions of the �ve modes�

CHAPTER �� USER�S GUIDE �

Idle In this mode� all sample loops are running� but SLoG �ltering of the live video image is

the only computation performed� Thus� the sample rates for every loop in the system

can be displayed on the right side of the Output Display dialog box�

Image Tracker When this mode is started �or reset�� a single reference image is taken from

the live video stream� All subsequent live images are correlated with this reference

image to calculate an image displacement that is output by the main computation

thread for display in the GUI�

Position Sensor This mode creates a video mosaic by snapping a new reference image

whenever the vehicle moves beyond the �eld of view �FOV� of the previous reference

image� This new reference image is already aligned with the previous reference image�

so it is added to the evolving mosaic� Through this mosaic creation process� the

current global state �i�e� position � orientation� of the vehicle �relative to the center

of the initial image in the mosaic� is estimated and displayed in the GUI� �In the Space

Frame con�guration� this global state is sent directly to the hardware to control the

Space Frame�� Also� if the smoother is enabled� crossover detection and correlation

of loops in the mosaic is attempted�

Error Sensor The vehicle state error is determined by calculating the di�erence between

the desired vehicle state �which can be user�speci�ed within the GUI� and the current

vehicle state� �In the OTTER con�guration� the vehicle state error is sent directly to

OTTER�s on�board controllers��

Controller A control signal is generated for the three translational degrees�of�freedom

�DOF� by using the vehicle state error as input to any of several pre�de�ned controllers�

whose gains can be modi�ed online from the GUI� �In the Ventana con�guration� the

control signals are sent to Ventana to control its thrusters directly��

The current mode of execution can be changed from either the Modes menu or one of

the �ve mode buttons on the toolbar� One can go from any mode to any other mode� in

CHAPTER �� USER�S GUIDE 	

addition� the current mode can be reset by clicking on the same mode again �for instance�

to complete the current mosaic and start a new one��

��� Graphical User Interface

This section describes the graphical user interface �GUI� that allows user intervention and

modi�cation of the real�time computation loops within the Sensor application� It includes

detailed descriptions of the �le types� menus� and dialog boxes that control the Sensor

application� However� it is recommended that the user read Chapters � and � to gain a full

understanding of the relevance of each of the GUI controls�

����� Mosaic File Type

The Mosaic �le type was de�ned speci�cally for this application� It is a format for storing on

disk the mosaics created during online execution� The Mosaic format is not actually a single

�le� it is a set of �les consisting of a single �mos �le� and a �dib �le for every image contained

within the mosaic� The �mos �le is a binary data �le that describes to the application how

to re�construct the mosaic from the series of �dib image �les�

Mosaic Creation

Although several Mosaic �les may be open within Sensor at once� exactly one of these �les is

designated by the application to be the �active� Mosaic �le� �If no Mosaic �les are open� a

new one must be created and automatically made active before a new mosaic can be created

online�� Any mosaic updates received from the main computation thread are always added

to the active mosaic� When changing or resetting modes� the currently active mosaic is set

to inactive� a new mosaic �le is opened� and it is set to active�

Mosaic Storage and Retrieval

Just like any other ��le�� a Mosaic can be saved to disk by using either the Save or Save

As��� menu items or the Save toolbar button� However� since the Mosaic is actually a set of

CHAPTER �� USER�S GUIDE

�les� it is recommended that each Mosaic be saved in its own dedicated subdirectory� When

the Save dialog box pops up� it asks for a �lename� that corresponds to the name of the

�mos �le� The �dib �les are then named image��dib� image��dib� ��� and stored in the same

directory as the �mos �le� Note that upon exiting Sensor� it will ask to save every unsaved

Mosaic �le�

To retrieve a Mosaic� use the Open��� menu item or toolbar button to open the �mos

�le� selecting the ��mos File Type in the Open dialog box if necessary� Note that all of the

proper �dib �les must be in the same directory as the �mos �le for retrieval to be successful�

As explained later in this Section under the description of Sensor�s menus� it is also

possible to export a Mosaic as a single �dib image �le� This is a more compact representation

of the mosaic� useful for importing the mosaic as a �gure into other applications� such as

PowerPoint or LaTex�

����� DIB File Type

The DIB �Device�Independent Bitmap� �le type is a standard Windows image �le format�

It has been chosen as the format in which to store individual images of the mosaic�

DIB Creation

DIB �les cannot be directly created by the user through the Sensor application� They are

created indirectly whenever a mosaic is saved to disk� each of the individual images is saved

in a �dib �le� Also� a �dib �le is created when an entire mosaic is exported as a single image

�le�

DIB Storage and Retrieval

While DIB �les cannot be directly created� existing DIB �les can be retrieved and stored by

the Sensor application� These actions can be accomplished through the standard Open����

Save� and Save As��� menu items�toolbar buttons� by selecting ��dib as the desired �le type�

CHAPTER �� USER�S GUIDE �

����� Menus

The menu bar at the top of the main Sensor window permits the user to control the function�

ality of the application� Depending on whether no individual DIB or Mosaic windows are

open� a DIB window is open and highlighted� or a Mosaic window is open and highlighted�

the menu bar changes to re ect the functionality available for that particular situation�

This section explains each of the menu options in the menu bar hierarchy�

File

This menu contains options for �le manipulation� including storage� retrieval� and printing�

New This is a standard Windows menu option� It opens a new �le� after clicking on New�

a dialog box opens so the user can specify the type of �le to open �Mosaic or DIB��

Open��� This is a standard Windows option� It opens an existing �le� after clicking on

Open���� a dialog box opens so the user can specify the �lename� using the standard Windows

exploring and �ltering capabilities�

Close This is a standard Windows option� It closes the �le window that is currently

highlighted� If the �le has never been saved to disk� a dialog box will open to ask if you

want to save the �le �rst� Note� if the �active� Mosaic window �in the sense that it will

be the one to receive new images from the online mosaicking process� is highlighted� it

cannot be closed� and a pop�up message will indicate that if the user attempts to close it�

Remember that there is always an �active� Mosaic window� unless the application has just

started and there are no Mosaic windows open�

Save This is a standard Windows option� It saves a �le to the same location under which

it was last previously saved� If the �le has never been saved� this option will behave as if

the Save As��� menu item was selected�

CHAPTER �� USER�S GUIDE �

Save As��� This is a standard Windows option� It allows the user to save a �le to a

speci�ed location� regardless of whether the �le has never been saved previously or has

been saved previously to a di�erent location� When this menu item is selected� a dialog box

opens that allows the user to specify the �lename� using the standard Windows exploring

and �ltering capabilities�

Import This submenu provides an option for importing data into the Sensor application�

It is present only if a �le window of type Mosaic is highlighted�

Mosaic Data��� This menu item allows the user to import a set of data from a �le that

modi�es the alignment of the currently highlighted Mosaic� When this menu item

is selected� a dialog box opens that allows the user to select the �lename containing

the new alignment data� This �le must have exactly the following format �little or

no error�checking is performed�� it must be a plain text �le� there must be exactly

one line for every image in the highlighted Mosaic� each line consists of two decimal

numbers� namely� the x and y global position of the center of the relevant image� in

meters� The Sensor application reads in this data and uses existing data within the

Mosaic to align the mosaic images according to the new image positions�

Export This submenu provides options for exporting data from the Sensor application in

formats other than the standard �mos �le� It is present only if a �le window of type Mosaic

is highlighted�

Corrected mosaic as DIB��� This allows the user to export the currently highlighted

Mosaic as a single DIB image �le� When this menu item is selected� a dialog box

opens that allows the user to select the location and �lename for the new DIB �le�

The mosaic is �corrected� in the sense that the conversion to global coordinates and

units �meters� has been taken into account� and if the smoother is enabled� crossover

detection�correlation and smoothing �if the external compute server is running� has

been performed� It is the same mosaic that appears in the Mosaic window� Of all

CHAPTER �� USER�S GUIDE

the import and export functions� this one will be most useful to ordinary users of the

Sensor application�

Corrected mosaic data��� This allows the user to export the mosaic alignment data for

the currently highlighted Mosaic into a text �le� When this menu item is selected� a

dialog box opens that allows the user to select the location and �lename for the new

text �le� The text �le format is as follows� there is one line in the �le for each image

in the mosaic� each line contains the following numbers� the ��D local displacement

between this image and the previous one �m ImageLocalDisp�x� �y�� the variances of

these measurements �m ImageLocalDispVar�x� �y�� the x� y location of the camera in

global coordinates that are aligned with the terrain �m CameraState TF�x� �y�� and

the variances of these measurements �m CameraState TFVar�pp������� �pp�������� The

de�nition of �corrected� is explained above�

Uncorrected mosaic as DIB��� This is identical to �Corrected mosaic as DIB����� except

that mosaic is uncorrected� i�e� the data obtained before any conversion to global

coordinates or smoothing is used to create the mosaic�

Uncorrected mosaic data��� This is identical to �Corrected mosaic data����� except that

the data exported is uncorrected� as explained above�

Print��� This is a standard Windows option� It allows the user to print the highlighted

�le window �either Mosaic or DIB� as an image to the selected printer� When this menu

item is selected� the standard Windows Print dialog box appears�

Print Preview This is a standard Windows option� When this menu item is selected� a

preview of the �le as it would look printed is displayed� BUG WARNING� I don�t think

this works correctly for either Mosaic or DIB �les�

Print Setup��� This is a standard Windows option� When this menu item is selected� the

standard Windows Print Setup dialog box appears�

CHAPTER �� USER�S GUIDE ��

Recent Files This is a standard Windows option� These items provide a list of the most

recently opened �les� This list can be used to quickly access common �les by selecting the

desired �le from the list�

Exit This is a standard Windows option� Selecting this menu item will exit the entire

Sensor application� closing all open windows and asking if any unsaved �les should be saved

to disk�

Edit

This menu is present only if there is a Mosaic or DIB window open� It is used to perform

the standard Windows Cut� Copy� Paste� and Undo operations to and from the Windows

Clipboard� However� I don�t think any of these have been implemented for either DIB�s or

Mosaic�s� feel free to try it and see if anything happens�

View

This menu is a standard Windows option that controls whether the Toolbar on the top of

the main window and�or the Status Bar on the bottom of the main window is displayed�

Selecting the Toolbar or Status Bar menu item will toggle a check mark next to that item�

indicating whether to show or hide that item in the Sensor application�s main window�

Window

This menu allows the user to manipulate the �le windows within the main Sensor application

window� It is available only if there are one or more windows open �either Mosaic or DIB��

NewWindow This is a standard Windows option� This menu item creates a new window

that displays the same �le as the currently highlighted window�

Cascade This is a standard Windows option� This menu item arranges all currently open

windows in an overlapping �i�e� cascading� format�

CHAPTER �� USER�S GUIDE ��

Tile This is a standard Windows option� This menu item arranges all currently open

windows such that there is no window overlap and all windows cover an equal portion of

the available viewing area�

Arrange Icons This is a standard Windows option� This menu item arranges any iconi�

�ed windows along a regular grid pattern�

Split This is a standard Windows option� This menu item is only available when a Mosaic

window is highlighted� and it splits the window into four sub�window that view the same

Mosaic �le�

Refresh active mosaic This menu item forces a redraw of all windows that view the

currently active mosaic� in case new updates are not properly shown� I think this is now

obsolete� as all previous problems with automatic refresh of the mosaics seem to have been

�xed�

Modes

This menu enables the user to switch between the �ve execution modes of the Sensor

application� as described in Section ���� In this menu� a bullet appears next to the currently

active mode� To change modes� click on the new desired mode� Also� it is possible to reset

the current mode either by clicking on the active mode �the one with the bullet� or by

clicking on the �Reset current mode� menu item�

Controls

This menu enables the user to access the seven dialog boxes that control speci�c aspects

of the Sensor application� To open any of the dialog boxes� click on the appropriate menu

item within this menu� Each of the dialog boxes are described in detail in Section ������

CHAPTER �� USER�S GUIDE ��

Help

The items on this menu provide the standard Windows help functionality� While the help

functionality has been built in� no speci�c help for the Sensor application has been imple�

mented� Feel free to try the menu items and see if you can �nd any useful information �e�g�

help for the standard Windows options��

Data Log

This menu is only available if a Mosaic window is currently highlighted� It implements the

data logging functionality of the Sensor application� To start recording data� click on the

�Open� menu item� A dialog box will open to ask the location and �lename to store the

data� The data is actually written into two text �les� The �rst �le� whose name is speci�ed

in the dialog box� receives synchronous data� i�e� data from every time step in the main

computation loop� The second �le� whose name is the same as the �rst with a � param�

appended� receives asynchronous data� when the data logging starts� the mode changes� or

new measurement �lter�control values are set� the relevant parameters are written to this

�le� To stop recording data� click on the �Close� menu item� Note that it is important to

remember to close the data �le� since the size of the synchronous data �le grows rapidly�

since data is recorded at ����� Hz�

The data log provides a level of detail that may not be useful for the common user� As

such� no attempt will be made to explain in this section the items that are stored in the

data logs� interested users are referred to Chapter ��

����� Dialog Boxes

All of the items that control or display the execution of the main computation thread and

peripheral threads have been grouped functionally into seven dialog boxes� This section

provides descriptions of the controls inside each of these dialog boxes� Note that many of

these controls get their default values from the parameters�ini initialization �le �Section ��	��

Thus� the initialization �le enables modi�cation of the default application behavior without

CHAPTER �� USER�S GUIDE ��

recompilation� and the dialog boxes enables modi�cation of the default behavior as the

application is running�

Image Acquisition

This dialog box controls the acquisition parameters of the image digitization process�

Brightness This slider bar controls the brightness of the digitized image� Its e�ect can

be seen in real�time if live image display is enabled in the Output Display dialog box and

the Sensor application is in Image Tracker �or greater� mode�

Contrast This slider bar controls the contrast of the digitized image� Its e�ect can be

seen in real�time if live image display is enabled in the Output Display dialog box and the

Sensor application is in Image Tracker �or greater� mode�

Image Processing

This dialog box controls the image �ltering and correlation process�

Threshold This slider bar sets the threshold that determines whether the image correla�

tion data is valid or invalid� When the image processing pipeline compares the live image

with the reference image at every time step� it outputs both a relative displacement between

images and a con�dence value� This con�dence value is in the range 	�����!� where 	�!

represents the correlation between two random images� and ���! is a perfect match� The

displacement data is considered invalid if the associated value falls below the threshold� In

Steve Fleischer�s thesis� it was determined experimentally that
�! is approximately the

cuto� between accurate and spurious data� so it is recommended that the threshold stay

set at this level� However� if it looks like �in the Output Display dialog box� the image

correlation is matching regions well� but the data is invalid� or vice versa� this value can be

changed�

CHAPTER �� USER�S GUIDE ��

AVP Desired Sample Rate This edit box sets the desired execution rate for the lowest

level of computation� the AVP image processing library� Since images are digitized at ��

Hz� this low�level loop can run up to this speed� However� if the Sensor application is

running on a computer with limited computation power� the AVP loop may consume too

many resources� nearly starving the other threads of execution time� This e�ect can be seen

by the sample rates displayed in the Output Display dialog box� and it can be adjusted by

this control� Note� Because of the timing of this loop� the actual sample rate is slightly

lower than the desired sample rate that is speci�ed in this edit box� Some trial�and�error

may be required to get exactly the desired sample rate� Also note� Since I attempt to

read in a number whenever something is typed into the edit box� you may �nd it behaves

strangely � I should have added an �Apply� button� If you have trouble� just set this in the

parameters�ini �le� since it is rarely necessary to change this value online anyway�

Mapping
Navigation

This dialog box controls the parameters relevant to the mosaicking process�

Manual Snap When creating a mosaic� the application automatically adds a new image

to the mosaic whenever the vehicle has moved far enough such that a speci�ed minimum

overlap between images has been reached� or whenever the image correlation data remains

invalid for too long� This button allows the user to specify that a new image should be

snapped and added to the mosaic immediately� regardless of the criteria for automated

image snap�

Allowable Dropouts This parameter quanti�es the statement in the previous paragraph

that a new image is snapped if the image correlation data remains invalid for too long� If the

image correlation data at the current time step is determined to be invalid� the application

has no idea how far the vehicle has moved since the last time valid data is received� so it

assumes the vehicle has not moved at all� and it increments a counter� If the counter value

exceeds the allowable number of dropouts� as speci�ed by this slider bar� the application

CHAPTER �� USER�S GUIDE �	

decides to snap a new reference image in an attempt to restart the correlation process� The

tradeo� is that minor dropouts can be ignored if the correlation process can re�acquire after

a dropout occurs� but signi�cant dropouts should be immediately corrected by resetting the

correlation process with a new reference image�

Serial Port Data

This dialog box displays the data received from Ventana via the serial port in real�time�

Thus� it is only relevant when physically connected to Ventana� The meaning of each of

the read�only edit boxes is either self�explanatory or unknown to the author� in which case

T�C� Dawe of MBARI can provide an explanation for each of these signals� If the signals

do not seem to be changing� a refresh button has been provided� however� this button is

most likely obsolete� as bugs in the automatic refresh of the data at every time step seem

to have been �xed�

Measurement Filter Parameters

Before using external input signals in computations� they are conditioned by various �lters

to improve their smoothness and eliminate spurious data� This dialog box is used to modify

the parameters that control the input �lters�

Sonar Altimeter O�set On Ventana� the sonar altimeter signal is multiplied by a scale

factor and then added to an o�set value so that the �nal result represents the range in

meters from the ocean oor to an appropriate point on the vehicle �usually the center of

the main camera upon which the altimeter is mounted�� This edit box allows the user to

set the altimeter o�set�

Sonar Altimeter Scale As explained above� this edit box allows the user to set the sonar

altimeter scaling factor�

CHAPTER �� USER�S GUIDE �

Vision X�Y Deadband Width In order to eliminate chatter on the image displacement

due to pixel�based quantization of the measurement� the raw measurements are �ltered with

a type of deadband� Any measurements that are smaller than the width of the deadband

are set to zero� larger measurements are una�ected� This edit box sets the width of the

deadband�

Velocity Filter Cuto� Frequency Both the vision and altimeter signals are used to

derive a velocity measurement through a process that includes a low�pass �lter on the

velocity� This edit box sets the cuto� frequency of that �lter� that determines the tradeo�

between signal latency and signal smoothness�

Use New Measurement Filter Parameters Whenever any of the above parameters

are changed through the edit boxes� this button must be pressed in order to apply the

changes�

Controller Parameters

This dialog box sets the parameters that are relevant to the vehicle controllers for each

degree of freedom� The user is able to set both the control mode and the control gains

through this dialog box�

The control mode for each DOF can be set independently� First� the user should choose

the X� Y� or Z radio button along the top row that corresponds to the desired DOF� Then�

the desired control mode can be speci�ed by clicking on one of the six radio buttons on the

left� Note that if the user clicks on another DOF� the control mode radio buttons change

to re ect the current mode for that DOF�

The control gains are set independently of the radio buttons� Control gains for every

degree of freedom and�or every control mode can be set by typing in the desired values into

the appropriate edit boxes� then clicking on the �Apply New Control Parameters� button

to apply the new values� even if the controllers are currently active�

CHAPTER �� USER�S GUIDE ��

No Control This control mode sets the control signal to zero at every time step for the

speci�ed DOF� This enables independent testing of each DOF�

Constant Control This control mode sets the control signal to a constant value at every

time step �corresponding to a voltage in the ��� V range for Ventana�� The output value

is equal to the value of Kp for the corresponding degree of freedom�

PD Control This control mode performs standard proportional�derivative control� using

the values of Kp and Kd for the proportional and derivative gain values� respectively�

PID Control This control mode performs standard proportional�derivative�integral con�

trol� It uses the same proportional and derivative gain values� Kp and Kd� as the PD

controller� and it also uses an integral control gain� Ki�

Lead Control This control mode implements a �rst�order lead controller� and the dialog

box enables the user to specify the pole and zero placement� and the overall gain� Kl�

Sliding Mode Control This mode implements a sliding mode controller� using the four

parameters M � K� �� and ��

Slew Rate The control signals for every DOF are �ltered with identical slew rate �lters

before output� in order to minimize spiked signals that could result in thruster breakage�

The maximum rate of change of any control signal is de�ned by this slew rate parameter�

and its units are volts�sec for the case of Ventana�

Saturator Limit All of the control signals are �ltered with identical saturators before

output� to guarantee that the signals do not exceed the thruster input voltages� This

parameter sets the upper and lower bound of the control signal�

Deadband Width To eliminate thruster propellers from constantly changing direction

due to noise around the origin� identical deadband �lters have been implemented for each

CHAPTER �� USER�S GUIDE ��

DOF control signal� All control values smaller than the deadband are set to zero� and this

parameter controls the size of the deadband�

Apply New Control Parameters Whenever any of the control parameters are changed

through the edit boxes� this button must be pressed to apply the new values�

Output Display

This dialog box is designed to display the status for all major components of the Sensor

application� Currently� it is automatically displayed upon application startup� The controls

in this dialog box can be divided into three main functions� sample rates for executing

threads� application message updates� and live display of image processing� Each of these

controls are described below�

Sample Rates As part of the execution of the Sensor application� several di�erent threads

of execution are running independently �similar to the way multiple applications can be ex�

ecuting simultaneously in Windows�� Since one of the primary functions of this application

is real�time control of mobile robots� it is important to be aware how fast the control loop

is running� The four edit boxes on the right side of the Output Display dialog box indicate

the sample rates for four di�erent threads�

AVP This is the low�level library that performs digitization� �ltering� and correlation of

the live images� Its maximum sample rate is �� Hz� but it often runs at slower rates

�either by design or by necessity� if computational power is limited�

Engine The Engine is the main computation loop within the Sensor application� It takes

image correlation results from AVP and outputs vehicle state and control signals�

Since every iteration through the Engine loop waits for measurement results from

AVP� the maximum Engine sample rate is equal to the current AVP sample rate�

If at all possible� the Engine sample rate should match the AVP sample rate� both

to avoid skipping AVP measurements and to maximize the control loop sample rate

�since Engine is responsible for calculating the control values��

CHAPTER �� USER�S GUIDE �

GUI This sample rate indicates how fast the GUI is running� Since the GUI waits for

new results from the Engine thread for display at every iteration� the maximum GUI

sample rate is usually the current Engine sample rate �although the GUI could timeout

while waiting for Engine data and end up running faster�� However� although a

faster GUI sample rate results in a more interactive interface to the user� the GUI is

considered less important than the other threads� since it is not involved in real�time

computation and control� Thus� if computational power is limited� the GUI should

be the �rst thread to slow its sample rate�

CommLink The CommLink edit box displays the sample rate of the VentanaSerialLink�

OTTERLink� or SpaceFrameLink communications loop� depending on which con�gu�

ration was chosen on application startup� Since each of these communication threads

wait for new results from the Engine thread at every iteration before sending data to

the connected hardware� the maximum CommLink sample rate is equal to the current

Engine sample rate� Since vehicle control is accomplished through this communica�

tions link� it is important for this sample rate to be as fast possible� although the

speed is often limited by the vehicle side �e�g� the Ventana serial link has a maximum

speed of �� Hz�� If the Sensor application is not connected to actual vehicle hardware�

the CommLink sample rate edit box may be empty or zero� indicating that no serial

or ethernet connection is established�

Message Box The large read�only edit box is used by all parts of the system to display

important messages to the user� Its scrollbar can be used to review previous messages�

Enable Live Video Display This checkbox enables live display of the following four

images as a mosaic is being created� depending on the current application mode and con�

�guration� live image� reference image� crossover live image� and crossover reference image�

Live Image If the current mode is Image Tracker �or greater�� the live image from the

camera input is displayed to the left of the Message Box� In addition� there is a graphic

CHAPTER �� USER�S GUIDE ��

overlay depicting the center of the image and the correlation window� In order to determine

the relative displacement between the live and reference images� an attempt is made to

match a sub�region centered in the live image� known as the correlation window� with a

corresponding region in the reference image�

Reference Image If the current mode is Position Sensor �or greater�� the latest reference

image is displayed to the left of the live image� The reference image includes several graphic

overlays depicting the current image correlation results� During the image correlation pro�

cess� the correlation window from the live image is slid around a search region de�ned in

the reference image to �nd the best possible match location� Both the search region and the

best possible match location of the correlation window are shown in the reference image�

Thus� the user can visualize the image correlation process and determine if the application

is performing adequately�

Crossover Live and Reference Images If the smoother con�guration was enabled on

startup and the mode is Position Sensor �or greater�� the most recent crossover live and

reference images will be displayed to the left of the other images� Whenever a crossover has

been detected� the live image �i�e� the crossover live image� is correlated with an existing

image in the mosaic �i�e� the crossover reference image� to determine the best re�alignment�

These two images� along with the graphic overlays that display the correlation results� are

updated in the Output Display dialog box whenever a new crossover is detected�

����� Toolbar

The Sensor toolbar contains several standard Windows toolbar buttons that correspond

to the standard Windows menu items� In addition� the seven buttons on the right side

of the toolbar are speci�c to the Sensor application� The �rst button resets the current

mode� while the next �ve buttons switch among the �ve available modes� These six buttons

are identical to the menu items under the Modes menu� The last button refreshes the

active mosaic� so it corresponds to the menu item under the Window menu� All toolbar

CHAPTER �� USER�S GUIDE ��

buttons have ToolTips� holding the mouse over the button will result in both a brief pop�up

description of the button and a description in the status bar at the bottom of the main

Sensor window�

��� Initialization File

The initialization �le� parameters�ini� allows the user to modify the default values assumed

by the application upon startup� If no parameters�ini �le exists �or it is not found in one of

the directories searched�� the application uses values hardcoded into the software� �These

values correspond to global variables that are initialized near the top of Sensor�cpp and are

declared for global use in Defaults�h�� Furthermore� the GUI enables the user to change

some of these values online during application execution �as explained in Section �����

Typical users will be concerned only with those parameters in the following groups�

Speed
Resolution
Robustness Performance Tuning Changing these values can af�

fect signi�cantly online performance� Speci�cally� the sample rates for the various

threads of execution can be a�ected�

� AVP DESIRED CALC RATE

� SCREEN UPDATE TIME

� ROI X� Y� W� H

� CORR WIN SIZE W� H

� SEARCH REGION SIZE W� H

� GAUSS SIGMA

� COLOR

� ENABLE AVP DRAW WINDOW

Geometry Settings These values should be changed to match the characteristics of the

speci�c camera and vehicle used during experiments�

CHAPTER �� USER�S GUIDE ��

� FOV X� Y

� CAMERA VEHICLE OFFSET X� Y� Z

� MAX VEHICLE VEL X� Y

Mosaic Quality Adjustment These values alter the mosaicking process to control the

visual quality of the mosaics�

� DESIRED OVERLAP

� CROP SIZE

Measurement Filter
Control Parameters These values are used to �lter incoming

sensor data and compute control output data when connected to external vehicle

hardware� �The list of parameters is evident from the comments in the parameters�ini

�le��

A sample parameters�ini �le �the one used at the time of this writing� is listed below�

The comments within the �le provide explanations for the entries�

� PARAMETERS�INI

� This file is read upon startup of the Sensor application� in order to set

� the relevant global parameters to proper defaults�

� Format�

� � For comment lines� the first non�whitespace character must be a �

� � Blank lines are ignored

� � For data lines� the format is� key value

� � Everything on the same line after the key�value pair is ignored

� number of milliseconds to wait for measurements

� these can be used to set the minimum sample rates for the thread loops

� �i�e� a timeout of ��� msec means the waiting thread will loop at 	 Hz minimum

AVP�MEASUREMENT�WAIT � � msec �� blocks forever

AVPENGINE�MEASUREMENT�WAIT ���� � msec �INFINITE blocks forever

CHAPTER �� USER�S GUIDE ��

� AVP desired calculation rate� this sets how fast the innermost image processing

� computation loop runs

� NOTE� this may need to be set slightly higher than the true desired rate�

� due to the method for timing each loop

�AVP�DESIRED�CALC�RATE ���
 � Hz � runs �� Hz on banff

AVP�DESIRED�CALC�RATE �� � Hz � runs at frame rate max� ��� Hz
 on corona

� number of seconds over which to calculate running average for

� AVP� AVP Engine� and GUI sample rates

RUNNING�AVG�TIME ������ � msec

� time between screen updates �live image� local�global position� etc�
 in GUI

�SCREEN�UPDATE�TIME �	� � msec �for banff

SCREEN�UPDATE�TIME �� � msec �for corona

� number of lines the message box can hold before contents are erased

MESSAGE�BOX�LENGTH 	��

� number of simultaneous Stethoscope connections that will be supported

SCOPE�CONNECTIONS �

� size of correlation window in live image � pixels

� these must be multiples of

� a larger window size increases robustness �by comparing a larger area

� of pixels
 and computation

CORR�WIN�SIZE�W ��

CORR�WIN�SIZE�H ��

� size of search region in reference image � pixels

� these must be multiples of

� a larger search region size increases robustness �by allowing

larger vehicle motions between samples
 and computation

�SEARCH�REGION�SIZE�W �� � for banff

�SEARCH�REGION�SIZE�H ��

SEARCH�REGION�SIZE�W �� � for corona

CHAPTER �� USER�S GUIDE ��

SEARCH�REGION�SIZE�H ��

� size of Gaussian kernel �sigma
 � pixels � range� � � �� � a

larger value increase robustness �by averaging neighboring pixels

� and computation� reduces accuracy slightly GAUSS�SIGMA

��

� initial image mode �color�TRUE or grayscale�FALSE

COLOR � � � � FALSE� � � TRUE

� horizontal and vertical fields of view �FOV
 � degrees

� these are relative to the camera frame� using the original full

� image� NOT the ROI sub�image

� Space Frame�

�FOV�X
�

�FOV�Y ��

� OTTER �underwater
�

�FOV�X �	

�FOV�Y �	

� Ventana �full zoom out
�

�FOV�X ��

�FOV�Y �	

� Ventana �new HDTV camera� zoom in
 � note that new camera provides FOV

FOV�X ��

FOV�Y ��

� size of full image �i�e� original digitized image
 � pixels

FULL�IMAGE�W 	��

FULL�IMAGE�H �
�

� location� size of region of interest �ROI
 for image �i�e� area to zoom in on

� recommended settings for avp�	��

� ROI�x� y� w� h
� ���
� ���� �	�� ���

� desired�overlap�
	�

� crop size� 	��

CHAPTER �� USER�S GUIDE �	

� recommended settings for avp��
�

� ROI�x� y� w� h
� ����� �
�� ��
� ���

� desired�overlap� ���

� crop size� ����

� avp�	�� avp��
� full scale �either avp
�

ROI�X ��
 � ��
 ��� �

ROI�Y ��� � ��� �
� �

ROI�W �	� � �	� ��
 	��

ROI�H ��� � ��� ��� �
�

� threshold value �percentage
 for the measurement confidence

� on the image local displacement

� ��� is the value Steve Fleischer determined in his thesis to be the optimal average

� across all uncontrolled variables for the given controlled variables�

� sub�image� �	�x��� �avp�	�

� ROI�x� y� w� h
� ���
� ���� �	�� ���

� correlation window� ��x��

� search region� ��x��

� gaussian kernel width� ��

THRESHOLD ����

� number of dropouts allowed before a new image is snapped and

� no motion is assumed between the snapped image and the last valid location

ALLOWABLE�DROPOUTS �

� desired overlap between adjacent images in mosaic

� Note� this is the overlap if the full 	��x�
� images were used�

� expressed as a percentage of image width or height �depending on

� the direction of minimum overlap

� range� �� 	��
 � ���� ��� finite image overlap between image � edge

� and image � center needed

DESIRED�OVERLAP
	��

� percentage amount to crop each image before display

� ����� � full sub�image� no cropping performed

CHAPTER �� USER�S GUIDE �

� this determines the cropped image width and height as a percentage

� of the original image width and height

� minimum crop to avoid gaps in mosaic � ���� � DESIRED�OVERLAP

CROP�SIZE 	���

� controls the display of the AVP Draw Window

� the Draw Window is useful for displaying the SLoG filtered

� image� but requires significant computation time

ENABLE�AVP�DRAW�WINDOW � � � � FALSE� � � TRUE

� controls live video update in Output Display dialog box

� IGNORED AT THIS TIME � this variable is already set before this file is read

ENABLE�LIVE�VIDEO � � � � FALSE� � � TRUE

� number of standard deviations for uncertainty ellipsoid during crossover detection

� ��sigma � �
��� confidence in detection

NUM�SIGMA �

� delay between any successful crossover detection �not necessarily a successful

� crossover correlation
 and the next attempt �AVPEngine time samples

CROSSOVER�SAMPLE�DELAY ��

� when checking for crossover� ignore this number of previous images in the image chain

SKIP�PROXIMAL�IMAGES �

� maximum vehicle drift rate used to determine variance after lost lock

� units� meters�sec

MAX�VEHICLE�VEL�X ���

MAX�VEHICLE�VEL�Y ���

� displacement of the camera from the vehicle center of gravity� in the vehicle frame

� ��x forward� �y right� �z down
 �meters

CAMERA�VEHICLE�OFFSET�X �

CAMERA�VEHICLE�OFFSET�Y �

CAMERA�VEHICLE�OFFSET�Z �

CHAPTER �� USER�S GUIDE ��

� measurement filter parameters

ALTITUDE�OFFSET ��� �offset to make measurement � at the origin

ALTITUDE�SCALE ��� �scale to transform measurement into meters

DEADZONE�SIZE 	�� �size of the deadzone in pixels� This should be

�bigger than � vision quantums �e�g�� ��� pixels��pixels

�so that the value can drift up�down by one step while

�still remaining in the deadzone�

VEL�FILTER�CUTOFF 	�� � rad�sec

� controller parameters

CONTROL�MODE � � � � ZERO

� � � CONSTANT

� � � PD

� � � PID

� � � LEAD

� 	 � SLIDINGMODE

SLEW�RATE ���� � volts�sec

SAT�LIMIT ���� � volts

DEADBAND ��� � volts

� x direction ��x forward

KP�X ����

KD�X ����

KL�X ���

LEAD�ZERO�X ���

LEAD�POLE�X ���

M�SM�X ����

K�SM�X ����

LAMBDA�SM�X ��	

PHI�SM�X ��	

KI�X ���	

� y direction ��y right

KP�Y ���

KD�Y ���

KL�Y ���

CHAPTER �� USER�S GUIDE ��

LEAD�ZERO�Y ���

LEAD�POLE�Y ���

M�SM�Y ����

K�SM�Y ����

LAMBDA�SM�Y ��	

PHI�SM�Y ��	

KI�Y ���	

� z direction ��z down

KP�Z ����

KD�Z ����

KL�Z ���

LEAD�ZERO�Z ���

LEAD�POLE�Z ���

M�SM�Z ����

K�SM�Z ����

LAMBDA�SM�Z ��	

PHI�SM�Z ��	

KI�Z ���

��� Stethoscope

Stethoscope is an external program written by RTI that can be used for real�time display

of important variables within the main computation thread of the Sensor application� The

Sensor application has been compiled to automatically export several relevant variables�

Thus� the Stethoscope application can be started on a remote machine �or the local machine�

and connected to the PC running Sensor� For more information on Stethoscope� see its user

manual� The variables available to Stethoscope are a subset of the signals in the AVPEngine

main computation thread� For an explanation of these signals� see Chapter ��

Chapter �

Software Architecture Overview

��� Introduction

The navigation software is a hierarchical implementation of the algorithms and function�

ality required to perform the tasks of vision sensing and robot navigation� It is designed

to be a highly exible and re�con�gurable component that can be integrated into several

di�erent types of hardware platforms� To enforce both the external interfaces to hardware

and internal interfaces among sub�components� and to enable simultaneous execution of

multiple functional blocks� this software was written as an object�oriented� multi�threaded

application� The entire application was designed to work within the distributed computing

environments of several target experimental systems�

Speci�cally� the code was written in Microsoft Visual C��
�� using the Microsoft

Foundation Classes �MFC� library� under the Windows NT ��� operating system� The host

hardware for this sensing and navigation application is a dual Pentium PC� running at ���

MHz� Live video from a camera input is captured using a Matrox Meteor digitizer board� at

frame rates of up to �� Hz and ���bit color image resolutions of up to 	�� x ��� pixels� In

addition� the PC has ethernet and serial communication ports to exchange data with other

computers� The video input and bi�directional network ports are the only connections to

external hardware�

�

CHAPTER �� SOFTWARE ARCHITECTURE OVERVIEW ��

The software hierarchy is divided into two levels� The lower level is responsible for cre�

ating and executing the image processing pipeline to perform real�time image correlations�

These local image displacement measurements are then passed to the higher level of the

hierarchy� The role of the higher level is to perform the simultaneous tasks of mapping� ve�

hicle state estimation� and navigation� The following sections describe the implementation

of each of these levels in the hierarchy�

��� Advanced Vision Processor 	AVP
 Library

The lower level of the software hierarchy is implemented as a software library known as

AVP� The AVP library was written by Rick Marks while an engineer at Teleos Research�

While AVP can perform many functions� including object tracking and stereo ranging� its

role within the navigation software is to provide the image registration capabilities described

in Chapter �� Thus� AVP creates an image processing pipeline that is capable of correlating

the live camera image with a stored reference image� In addition� the reference image can

be stored in a bu�er for later retrieval and comparison� Essentially� AVP is a software

implementation of the work originally performed by Marks on specialized hardware for

his thesis research ���� To reduce the computational requirements and satisfy the real�

time constraints of the vision sensor� the maximum resolution of the digitizer board is not

utilized� the AVP input images are ��bit grayscale� with a resolution of �	
 x ��� pixels�

��� Sensor ��� Application

The higher level of the hierarchy takes the form of a multi�threaded application called

Sensor �the latest version is ������ Each thread in the application performs a distinct� well�

de�ned task that can execute at a sample rate that is independent of the other threads�

Thread synchronization and data exchange are performed through shared memory guarded

�This application is called Sensor because it was originally designed as the vision sensing system� Since
then� the application has grown around this core functionality to include additional capabilities required for
robot navigation�

CHAPTER �� SOFTWARE ARCHITECTURE OVERVIEW ��

by mutual exclusion semaphores� remote procedure calls� and message�passing� Figure ���

graphically depicts all threads in the Sensor ��� application and the interactions among

them� and the following sections explain the role of each thread�

AVP

AVP
Engine
Thread

GUI
Thread

Compute
Server
Link

Space
Frame
Link

OTTER
Link

Ventana
Serial
Link

Data
Logger
Thread

Figure ���� Thread Diagram for Sensor ��� Application

����� AVP Engine Thread

As seen in Figure ���� the AVP Engine Thread is the central thread in the application�

This computation engine interfaces directly with the AVP library through function calls to

obtain image registration measurements� and it communicates with other threads to receive

external updates from sensors on�board the vehicle� It performs real�time calculations at

speeds of ����� Hz� where the digitization frame rate is �� Hz� The computations are divided

into functional components that are executed in sequence during every calculation cycle�

The interconnection of components is illustrated in the data ow diagram of Figure ����

CHAPTER �� SOFTWARE ARCHITECTURE OVERVIEW ��

CCrossover
Correlation

CLocal
Disp

CError
Model

CRates

CMeas
Filter

CGlobal
Disp

CState
Filter

CError
Calc

CController

CTruth
Data

CCrossover
Detection

CSnap
Check

Figure ���� Data Flow Diagram for AVP Engine Thread

The AVP Engine Thread is an implementation of the vision sensing system� and it can be

interfaced with other threads to create new applications� For this particular research it was

combined with interface and communication threads to enable a navigation application� but

it is an independent entity whose utility is not limited to AUV navigation� Additional com�

ponents were implemented within this thread to perform navigation functions in addition

to vision sensing� as shown in the block diagram of Figure ����

����� GUI Thread

The GUI Thread provides an image�based interface for the purpose of vehicle navigation�

Speci�cally� it presents the dynamic mosaic to the user in a scrollable window� with an

"x� overlay to indicate the estimated current vehicle position within the mosaic� and an "o�

overlay to indicate the goal position� The user is able to point�and�click at a new location

within �or outside of� the mosaic to specify a new goal location� These data are then sent

to the AVP Engine Thread to control the vehicle to its new desired location�

In addition to the mosaic interface� the GUI thread provides a series of menus and dialog

boxes to manage both application execution and mosaic �le storage� One of these menus

enables the user to switch the application among idle� passive sensing� and active navigation

CHAPTER �� SOFTWARE ARCHITECTURE OVERVIEW ��

modes� Within each dialog box� graphical controls exist to modify relevant parameters for

a speci�c aspect of the navigation application�

Since the GUI is not as time�critical a task as real�time vehicle sensing and control�

the GUI Thread is run at a lower priority than the core AVP Engine Thread� Since each

thread executes at an independent sample rate� the GUI Thread can slow down to yield

computational power to more urgent tasks if the processor becomes overloaded�

����� Communications Link Threads

The communications link threads are a set of threads responsible for exchanging data with

external hardware or software systems� For a particular experimental setup� each of these

threads may be active or inactive� depending on whether a link to the given device is

utilized� The roles of the various communications link threads are discussed in the following

paragraphs�

ComputeServerLink This thread is enabled whenever bounded�error navigation is re�

quired� It connects via AVPNet to a MATLAB�based smoother program that performs the

optimal estimation computations for mosaic re�alignment� The smoother program executes

a MATLAB engine remotely on a Solaris UNIX compute server� AVPNet is a simple library

written to create a two�way point�to�point connection between two programs over ethernet

using the Windows Sockets API �Applications Programming Interface��

SpaceFrameLink �FlightTableLink�� When experiments are performed on the Space

Frame� this thread connects to a network node running on a UNIX machine via AVPNet�

This network node then passes the data along to the Space Frame processor using the Net�

work Data Delivery Service �NDDS�� a low�level� high�bandwidth� peer�to�peer networking

service developed by Real�Time Innovations �RTI� for real�time communications� Sensor

�The Flight Table was a previous name for the experimental apparatus now known as the Space Frame�
In the actual Sensor ��� code� all references are made to the Flight Table� not the Space Frame�

CHAPTER �� SOFTWARE ARCHITECTURE OVERVIEW ��

data and truth measurements are received from the Space Frame� and desired position data

are sent by the application through the SpaceFrameLink�

OtterLink For experiments on OTTER� the OtterLink connects to a network node run�

ning on a UNIX machine via AVPNet� which passes the data to OTTER�s on�board pro�

cessor using NDDS� Since OTTER is an AUV� an automatic control system is executed by

the on�board processor� Thus� data from on�board sensors are received by the application�

and both vision sensor data and desired position data are sent back to the OTTER vehicle�

VentanaSerialLink Since no ethernet connection is available to the Ventana ROV� net�

work communication is accomplished over a serial line� The role of the VentanaSerialLink

is to provide a bi�directional serial connection directly to the Ventana ship�side processor�

Since Ventana is an ROV� it is not equipped with a complete automatic control system�

Thus� control computations are performed within the Sensor ��� application� Sensor data

are received from Ventana over the serial connection� and thruster commands are sent back

to the vehicle�

����� Data Logger Thread

The role of this thread is to record any relevant data in real�time for later analysis� During

each cycle of this thread� data are accessed from AVPEngineThread and saved to disk� The

Data Logger Thread has the capability to record both synchronous and asynchronous data

in real�time� Since the data logging facility is an independent thread from the primary

computations� it can run at a di�erent sample rate so AVPEngineThread can maintain a

constant time interval between cycles� However� if possible� these two threads run at the

same rate� so every iteration of the computations is collected�

Chapter �

AVP Library

This chapter presents the theoretical basis for the design decisions made in implementing

the AVP image processing library� The problem that AVP has chosen to solve is posed

in Section ���� while the solution AVP has chosen to implement is described in detail in

Secton ���� For detailed information on the actual functions contained within the AVP

library and how to integrate them into an application� refer to the AVP Manual�

��� Assumptions and Constraints

In deciding on the best approach for determining camera motion and scene geometry for

real�time vision�based navigation of underwater vehicles� it is necessary to discriminate

among several options based on how well they perform under the particular constraints

of this problem� For image correspondence� the speci�c nature of the scene determines

which method is most applicable for �nding correspondence points� To extract the desired

geometric information� a simpli�ed transformation model can be used if certain assumptions

can be made about the scene geometry and camera motion�

In order to constrain the problem and enable computationally e#cient methods for

vision sensing� the following assumptions have been made� based on the scene properties

and the capabilities of underwater vehicles�

�	

CHAPTER �� AVP LIBRARY �

� The region of operation is the near�bottom ocean oor environment� The underwater

environment has several rather unique properties� and the next section will explain

how these properties determine the proper image correspondence scheme to use�

� The scene is mostly static� and it consists entirely of an approximately ��D planar

surface within ��D space� This assumption precludes the existence of large moving

objects or a non�stationary background� although motion of very small objects relative

to the �eld of view generally are ignored by the vision sensor� Furthermore� it reduces

the required number of correspondence�pairs needed to solve for the transformation

model parameters� since the computations can take advantage of the fact that all

scene points are co�planar� The e�ect on the image registration of small ��D terrain

variations around the nominal ��D plane will be discussed in the next section�

� Sequential images from a single camera are utilized for processing� This choice con�

strains the possible images sources and resultant geometric information that can be

extracted� In other words� stereo vision techniques are not used as part of this re�

search� so only optical ow or optical displacement information may be determined�

� Large motions of the underwater vehicle are only permitted in the two translational

degrees of freedom corresponding to a single plane parallel to the terrain� This as�

sumption is justi�ed for any vehicle using an active control system to maintain its

position and orientation� The image correlation assumes that rotations and range

changes around the nominal operating point are approximately zero� The e�ect of

small rotations and range changes on the image registration will be discussed in the

next section�

� The vision sensor is required to perform in real�time� on hardware with limited com�

putational power�� As a result� computational e#ciency is an important factor in

determining which methods to use for image registration�

�The computational engine currently used is a dual�processor Pentium ����Mhz system� Upgrades to
this hardware would allow more complex algorithms to be utilized� thereby increasing the measurement
accuracies and	or robustness�

CHAPTER �� AVP LIBRARY ��

��� Solution

After considering the constraints particular to the problem of underwater vehicle navigation

along ocean oor terrain� a set of methods has been chosen to handle the process of geometric

image information extraction� The details of the texture�based image registration method

using a translational transformation model are described in this section� In addition� an

e#cient pipeline�based implementation to perform these computations on every sampled

image will be described� Finally� the process by which a mosaic is created in real�time using

these methods will be explained in detail� since this provides the basis for our advances in

mapping and state estimation�

����� Sub�Image Texture�Based Registration

In order to maximize the robustness of the measurements under arbitrary scene conditions�

a texture�based registration method is utilized� Furthermore� in order to minimize compu�

tation� subsections of each image�pair are compared� The details of this registration method

are presented in this section�

Correspondence

In the texture�based correspondence method� the images are �rst convolved with a signum

of Laplacian�of�Gaussian �SLoG� �lter� The Laplacian�of�Gaussian �LoG� operator� also

known as the Marr�Hildreth operator� recognizes rapid intensity variations and was origi�

nally used as part of �ltering schemes for edge detection ���� In conjunction with the signum

operator� it has several unique properties that make it ideal for use in the underwater en�

vironment�

The Gaussian �lter replaces each pixel in an image with a weighted average of it and

its surrounding pixels� Convolution with the Gaussian kernel acts as a low�pass �lter to

smooth the images� thus reducing the e�ect of noise on the image� This is particularly

useful for ocean oor imagery� since small particulate matter in the water� known as marine

snow� often adds a signi�cant noise component to each image�

CHAPTER �� AVP LIBRARY ��

The next phase is the Laplacian operator� which performs a spatial second derivative

in two dimensions� It acts as a high�pass �lter and has the e�ect of separating the image

into regions of similar texture� When taken together� the LoG acts as a band�pass �lter to

reject image noise� The band frequency can be moved by adjusting the standard deviation

parameter� �� of the Gaussian �lter�

The �nal stage of the �lter is a signum function that thresholds the intensity val�

ues� Thus� it transforms the image from grayscale to black�and�white� greatly reducing

the amount of information contained within the image� Furthermore� by thresholding the

intensity� the image correspondence becomes largely insensitive to lighting variations� such

as spotlight e�ects or shadows� These lighting variations are quite common underwater�

since lighting must be provided arti�cially by spotlights on�board the vehicle�

CC�$x�$y� �
mX

i��

nX

j��

I��i� j�I��i�$x� j �$y� �����

SC�$x�$y� �
mX

i��

nX

j��

XOR�sgn�r�G� � I��i� j�� sgn�r
�G� � I��i�$x� j �$y�� �����

Once each image has been �ltered� the two images are correlated to establish a correspon�

dence� Since the output of the SLoG �lter contains binary pixel values� cross correlations

�Equation ���� become sign correlations �Equation ����� signi�cantly improving the compu�

tational e#ciency of the image correspondence� To reduce the required computation further�

the correlation stage does not compare the entire two images� Instead� a correlation window

is chosen in one image� and a search region is chosen in the second image� The correlation

window is located at the center of the live image� and the search region is located within

the reference image �see below for an explanation of the live and reference images�� The

image correspondence algorithm performs the sign correlation for every possible location

of the correlation window within the search region� This produces a correlation surface�

where every point on the surface corresponds to the sign correlation value at a particular

CHAPTER �� AVP LIBRARY �

x� y location of the correlation window within the search region� The highest peak on this

surface is chosen as the best match location� and the x� y location of this peak represents

the relative image motion�

Transformation Model

Based on the fact that the robot is actively controlled to remain within a plane parallel to

the image scene� a ��DOF translational transformation model is used to extract the relative

geometry from the image correspondence measurements� Thus� the x� y pixel displacement

measurements are converted simply to meters� based on the camera �elds of view and the

range�

Since the robot controller is not perfect and the ocean oor not perfectly at� the rotation

and range change of the vehicle will not be identically zero� Thus� the assumptions of the

translational transformation model are violated routinely in practice� so it is important to

understand the e�ects of small rotations or range changes on the image correspondence�

For a non�zero yaw� range change� or ��D terrain variation away from the nominal� the

correspondence location is shifted and the measurement con�dence degrades� However� the

shift in location can be removed if the correlation window in the live image is taken to be at

the center of the image� Even if there are yaw and range changes in the presence of image

translation� the correspondence of the center of the live image with the reference image will

yield an accurate measurement� since rotation and scaling of an image shift every point in

the image except the center�

The e�ect of non�zero roll or pitch can be handled di�erently� Since roll and pitch are

equivalent to x�y translations to �rst order� they o�set the correspondence location without

degrading the measurement con�dence� This o�set can be taken into account by measuring

roll and pitch with an external sensor �e�g� inclinometer� and backing out the actual x�y

translations when solving for camera position�

CHAPTER �� AVP LIBRARY ��

����� Image Processing Pipeline

For the purpose of vehicle navigation� the goal of this vision sensor is to measure image

motion while minimizing measurement drift� Therefore� an optical displacement method

will be used� which dictates the two image sources to be the live image and a previously

stored reference image� To be able to compare non�adjacent images in the mosaic� it is also

required that any image stored in the mosaic may be used as the new reference image for

future computations�

live
image

memory

reference
image

memory

XOR

buffer of
stored images

video

(δx, δy)

SLoG SLoG

Figure ���� Image Processing Pipeline

To satisfy these constraints while performing the image registration computations e#�

ciently� an image processing pipeline has been created� as depicted graphically in Figure ����

To start a cycle� the camera video is digitized and fed into the live image memory� The

image registration is then performed on the live and reference images� and the extracted

displacement sent to the next stage of the vision sensor� This entire cycle is performed at

CHAPTER �� AVP LIBRARY ��

the frame rate of the digitizer board� subject to computational constraints� For this re�

search� the digitizer frame rate is �� Hz� and the computational hardware allows the image

processing pipeline to run at ����� Hz�

At any arbitrary time determined by the mosaicking process� a snapshot can be taken�

First� the live image is copied into the reference image memory� As soon as this transfer

occurs� this same image �now the new reference image� is copied into one of the empty slots

in the bu�er of stored images� Simultaneously� the image is added to the evolving mosaic

by copying it over to mosaic storage� If a loop in the vehicle path occurs� any image from

the bu�er may be transferred back into the reference image memory and compared to the

live image�

����� Mosaicking Process

Once the image processing pipeline has been established� the mosaicking process is rela�

tively straightforward �Figure ����� Whenever a new reference image is snapped� it is added

to the evolving mosaic� By using the last registration measurement� which compared the

new reference �then live� image to the old reference image� the new snapshot can be pre�

cisely aligned in the mosaic� A new snapshot is taken whenever the overlap between the

live image and reference image reaches a pre�speci�ed minimum area� This ensures that

there will always be su#cient overlap for image correspondence� and it produces a mosaic

whose images are taken at regular spatial intervals� On the occasion that a correspondence

measurement is deemed invalid because it falls below a given con�dence threshold� a new

snapshot is taken and the last valid measurement is used for alignment�

The advantage of this mosaicking process is that it enables dynamic mapping of the en�

vironment� New snapshots are added to the mosaic as they are received� thus enabling the

mosaic to grow over time as more terrain is explored� Also� it is possible to incorporate re�

dundant measurements to improve the map accuracy� If new alignment information between

any two images in the mosaic is received� the images can easily be shifted to accommodate

the change�

CHAPTER �� AVP LIBRARY ��

current (live)
image
reference
image

snapshots

(δx, δy)

Figure ���� Mosaicking Process

Chapter �

AVP Engine Thread

The AVP Engine Thread is the main computation thread in the Sensor application� It has

the highest priority of all threads� and it is designed to run at the same sample rate as the

AVP image processing pipeline �if possible given processor constraints�� The next section

describes the computational framework� followed by sections describing the functionality of

each piece in the framework� Finally� the protocol for communicating with other threads in

the application and the external Stethoscope program is described in Sections ��
 and ����

��� Data Flow Design and Implementation

As discussed previously in Chapter �� the architecture for the AVP Engine Thread is de�

scribed by the component�based data ow diagram of Figure ���� The diagram is simpli�ed

greatly for clarity of the overall design� it is decomposed into several fully detailed sub�

diagrams in Section ��	� This open� modular design enables programmers to make changes

as needed to �t future applications� simply by adding�deleting components and signals to

connect to the existing data ow diagram�

The data ow structure is enforced rigorously in the C�� code implementation� As

described in more detail in the following sections� the components� signals� and parameters

of the data ow diagram are implemented as class objects with the AVP Engine Thread�

and each of the components are executed in order during every iteration of the thread

��

CHAPTER �� AVP ENGINE THREAD ��

CCrossover
Correlation

CLocal
Disp

CError
Model

CRates

CMeas
Filter

CGlobal
Disp

CState
Filter

CError
Calc

CController

CTruth
Data

CCrossover
Detection

CSnap
Check

Figure ���� Data Flow Diagram for AVP Engine Thread

sample loop� The AVP Engine Thread is actually an instance of the CAVPEngineThread

class� which is derived from the CWinThread class� CAVPEngineThread has messaging

capabilities that are used for inter�thread communication �Section ��
�� During every iter�

ation of the thread�s message�handling loop� the thread checks for received messages and

calls the appropriate callback function for the �rst message in the queue� If the queue is

empty� the OnIdle�� method is called� This OnIdle�� method serves as the sample loop for

CAVPEngineThread �and all other threads in the application��

During every iteration� the OnIdle�� method checks for the availability of new external

signal or parameter data that must be input into the data ow diagram� After the external

signals and parameters are updated� this method blocks until a ag is set indicating that

new measurement data is available from the AVP image processing pipeline� The Execute��

method is then called� this method steps through an array that de�nes the order of execution

of each of the components in the data ow design� and it executes each component� Finally�

OnIdle�� creates a copy of the data for bu�ered communication with other threads�

����� Components

The boxes in the data ow diagram �Figure ��� represent components� each of which per�

forms a particular computation using its input data and outputs its results for use by other

CHAPTER �� AVP ENGINE THREAD �	

components� As stated above� the components are executed in a pre�de�ned order during

every iteration of the CAVPEngineThread loop� The array of components that de�nes the

execution order is a member variable of AVPEngineThread� All of the various components

are di�erent class objects derived from the common base class CComponent� This base class

enforces the functionality required of every component� a Reset�� method and an Execute��

method�

Whenever the application switches between modes� CAVPEngineThread receives a mes�

sage to indicate this switch� and the OnModeChange�� method is called� This method

enables and disables the appropriate components to modify the data ow diagram online

according to the desired mode� It then calls the CAVPEngineThread��Reset�� method� that

in turn calls the Reset�� methods of each enabled component �in execution order�� The Re�

set�� method allows each component to initialize itself and its output signals into a known

state�

The Execute�� method contains code that implements the component�s functionality

be perform a speci�c computation� The Execute�� method is called once during every

iteration of the CAVPEngineThread loop� It can rely on the fact that previous components

�or external data� have supplied valid input data� and it is required to set its output data

at every iteration�

In order to strictly enforce the data ow structure� every component may only access

input�output signals and parameters that have been explicitly passed to it through its con�

structor� Thus� while this makes adding or modifying components more time�consuming for

the programmer� it is in a sense self�documenting� since it is possible to look at the com�

ponent de�nition and determine which signals and parameters are used by the component

without searching through the implementation code�

����� Signals

The signals of the data ow diagram are de�ned as the input�output data �shown as arrows

in Figure ���� that are updated every iteration �i�e� synchronous data�� To implement this

in code� all of the signals that appear in the data ow diagrams are grouped into a single

CHAPTER �� AVP ENGINE THREAD �

class� CSignals� m Signals is the CAVPEngineThread member variable of this type� which

is used as the working copy of the signals for the component computations� However�

m Signals is not used as a �global� variable within the context of CAVPEngineThread and

the CComponent�derived classes� Instead� individual signal elements within m Signals are

passed by reference to each component through its constructor when it is created on the heap

�using new� and added to the m ComponentArray in CAVPEngineThread��InitInstance���

In this fashion� each component can use particular input signals and modify particular

output signals as needed� while CAVPEngineThread maintains a single common copy of

the data as each component modi�es it�

The m Bu�eredSignals member variable of CAVPEngineThread is also of type CSignals�

it is used to store a copy of the most recent signals to enable bu�ered communication with

other threads�

����� Parameters

Parameters are de�ned as the input�output data �not shown in Figure ���� that are only

updated as needed �i�e� asynchronous data�� In the more detailed diagrams of Section ��	�

the parameters are the arrows going into or out of the top of the component boxes� Pa�

rameters are often used as reference values �e�g� the current Gaussian �lter size� or event

 ags �e�g� crossover detected�� and thus they do not generally change after every iteration�

The parameters are implemented in code in the same fashion as signals� they are grouped

together into a single class� CParameters� m Parameters is a CAVPEngineThread member

variable� and individual parameters within m Parameters are passed by reference to the

components through their constructors�

����� Adding Components�Signals�Parameters

The code has been implemented in such a way that changes to the data ow design should

be easily transferred to code modi�cations� Speci�cally� components and their associated

signals and parameters can be modi�ed or removed by changing m Component Array in

CHAPTER �� AVP ENGINE THREAD ��

CAVPEngineThread��InitInstance��� To add a new component �or signal or parameter� to

the application code� the following procedure should prove useful� This procedure is in the

�le AddingComponents�txt within the C�� source code directory�

To add new components to AVPEngine�

�����������������������������������

�
 If any input�output signals do not yet exist� add them to the CSignals class�

Also� if any of the input signals are external �i�e� they are not also output

signals of any other component
� add them to the CExternalSignals class�

initialize them in ExternalSignals��Initialize�
� add a member function to

AVPEngineThread to set them� copy them from m�ExternalSignals to

m�Signals in AVPEngineThread��CheckForExternalSignalsUpdate�

�
 If any parameters do not yet exist� add them to the CParameters class� Also�

initialize them in the CParameters constructor� CParameters��CParameters�

�
 Derive a new component class from CComponent�

�
 Declare the input�output signals and parameters by reference as member variables�

	
 Delete the existing default constructor and define a constructor with all signals

and parameters as function parameters� and initialize the member variables with

these �by reference
 values in the member initialization list�

�
 In AVPEngineThread��InitInstance�
� create an object of your derived CComponent class

using the new operator� Pass to the constructor the required m�Parameters��� and

m�Signals��� that the component will need� Change the call to

ComponentArray�SetSize�
 to reflect the new number of components� Finally� add the

new component to the relevant modes in AVPEngineThread��OnModeChange�
�

�
 Override the Reset�
 member function of your derived CComponent class� In this

member function� be sure to initialize all output signals and internal member

variables�

CHAPTER �� AVP ENGINE THREAD ��

 Override the Execute�
 member function of your derived CComponent class� In this

member function� write the code that will be executed every iteration�

��� System Geometry
Frame Descriptions

Before describing in detail the functionality of each of the components in the data ow dia�

gram� the system geometry is explained in this section� The signals are named based on the

frame descriptions and the component computations are often centered around frame trans�

formations� Therefore� this section will bridge the gap between the theoretical derivation

described in Steve Fleischer�s thesis ��� and the source code implementation of the Sensor

application� While the names of variables di�er between the theory and the code� there

should still be a one�to�one correspondence between many of the variables� An attempt

was made to convey the same frame information in the naming of variables in code� as is

done through subscripts and superscripts in the thesis� The following discussion on system

geometry also assumes knowledge of the mosaicking process� as described in Chapter � of

this manual�

Based on the mechanics of the video mosaicking process� the two fundamental frames

used to describe the system geometry are attached to the most recently stored snapshot

image and the current image� These two frames are depicted in Figure ��� as I and I ��

respectively� More precisely� the frame I could be written as I�k�� since it is the kth

snapshot in the image chain that forms the mosaic� However� for the sake of simplicity� this

parameter is not explicitly written every time� In essence� frame I represents the relevant

section of the mosaic map that is used to localize the vehicle within the map� The origin of

each frame coincides with the center of the corresponding image� and the axes are aligned

with the camera orientation� The image correlator measures the local x� y displacements of

the center of image I � �i�e� the origin of frame I �� with respect to frame I�

The frames in Figure ��� are closely related to the evolving mosaic� Figure ��� illustrates

the dynamic mosaic creation process� including the current image that may or may not

become a new snapshot in the image chain that forms the mosaic� Frame I is attached

CHAPTER �� AVP ENGINE THREAD �

C’x

C’y C’z

V’x
V’y

V’z

I’x

I’y
I’z

Ix

Iy

Iz

WxWy

Wz

Tx

Ty Tz

Figure ���� System Geometry

to the most recent snapshot� and frame I � is attached to the current image� When a new

image is digitized and becomes the current image� two possibilities can occur� If the current

image did not become a snapshot image in the mosaic� the I � frame attaches to the new

current image and the I frame does not change� On the other hand� if the current image

does become part of the mosaic� the I � frame becomes the new I frame �since the current

image has become the most recent snapshot�� and the I � frame moves to the new current

image as before�

Two more frames are used to describe the ocean oor environment� Frame T is �xed in

inertial space� its origin coincides with the center of the initial image in the mosaic �i�e� the

origin of frame I����� and its axes are aligned with the sloping ocean oor terrain� Frame

CHAPTER �� AVP ENGINE THREAD 	�

W is also �xed in inertial space� its origin also coincides with the center of the initial image

in the mosaic� but its axes are aligned with gravity�

To describe the vehicle and its components� two frames have been added to Figure ����

Frame C � is aligned with the on�board camera� and it represents the camera state when

image I � was taken� The altimeter measures the range from the origin of C � �i�e� the center

of the camera� to the origin of I � �i�e� the center of the image�� Frame V �� also taken at

the time corresponding to image I �� coincides with the vehicle center of mass and is aligned

with the vehicle body� The compass and inclinometer measure the orientation of the vehicle

frame V � relative to the world frame W � and the pan�tilt sensors measure the orientation

of C � relative to V ��

For the descriptions to follow� all orientations are expressed in Z�Y�X � � �� �� � �

yaw� pitch� roll� body��xed Euler angles� To perform intermediate computations� the Euler

angles are often converted to rotation matrices�

��� Signal Descriptions

This section provides a brief description of every signal that appears in the AVP Engine

Thread data ow diagram� These signals are de�ned as member variables of the CSignals

class� which can be found in the �les Signals�h and Signals�cpp� Each signal in the following

list is written in the form type name� exactly as it would appear in a variable declaration�

Any type that is not a basic type is either a class de�ned by MFC or a class written especially

for the purposes of this application�

CTimestamps m Timestamps The tick and calculation counts that will be used to com�

pute the sample rates for several sample loops in the system� the digitization frame

rate� the AVP calculation rate� and the AVP Engine sample rate� Units� msec

CRates m Rates The digitization frame rate� the AVP calculation rate� and the AVP

Engine sample rate after these are computed from m Timestamps� Units� Hz

CImage m LiveImage The intensity and color data for the current digitized image�

CHAPTER �� AVP ENGINE THREAD 	�

CRect m SearchRegion The region of pixels in the reference image to search for a match

with the center of the live image� The search region is centered around the point that

was the maximum likelihood match estimate in the previous iteration� Units� pixels

CRect m TrueSearchRegion m SearchRegion expanded by the size of the correlation

window �i�e� the correlation window centered around the maximum likelihood match

estimate is fully enclosed in this region�� Units� pixels

CDoublePoint m ImageLocalDisp The ��D displacement vector from the center of the

reference image �I frame� to the match location in the reference image �I � frame�� In

addition� spurious data has been removed from this signal in the CMeasurementFilter

component� Units� pixels

CDoublePoint m ImageLocalDispRaw Same as m ImageLocalDisp� except that no

measurement �ltering has been performed� this is the raw result from the correla�

tion measurement� Units� pixels

double m ImageLocalDispConf The con�dence value of the current correlation mea�

surement �m ImageLocalDisp�� falling within the range 	�!����!� Units� percentage

CDoublePoint m ImageLocalDispVar The variances of the x and y components of

m ImageLocalDisp� the image local displacement vector� Units� pixels�

BOOL m DataValid A Boolean ag that is set to TRUE if the image local displace�

ment con�dence �m ImageLocalDispConf� is greater than the threshold value� and

otherwise set to FALSE�

BOOL m CurrentImageSnapped A Boolean ag that is set to TRUE if the current im�

age should be taken as a �snapshot� and added to the evolving mosaic� and otherwise

set to FALSE�

double m Altimeter The latest data received directly from the altimeter �aligned with

the camera axis� on�board the vehicle� Although there is a �lter to transform these

CHAPTER �� AVP ENGINE THREAD 	�

altimeter units into meters� for the case of Ventana� this raw signal is in units of

meters�

double m AltimeterVar The variance of the above data� Units� m Altimeter�

double m LOSRange CF The range from the camera �C � frame� to the imaged terrain

�I � frame� along the optical axis of the camera �z�axis of C � frame�� This is essentially

m Altimeter after the measurement �lter has transformed units and removed spurious

data� Units� meters

double m LOSRange CFVar The variance of m LOSrange CF� Units� meters�

double m LOSRangeVel CF The rate of change of the range vector� m LOSRange CF�

Units� meters�sec

CPoint�D m PanTilt For Ventana� the orientation of the camera �C � frame� relative to

the vehicle �V � frame�� Since Ventana�s camera is articulated in ��DOF in the tilt

direction� m PanTilt�x � pan angle� m PanTilt�y � shoulder angle� and m PanTilt�z

� wrist angle� To calculate the actual tilt angle for Ventana� tilt angle � m PanTilt�y

� m PanTilt�z � �
�
� This data is received directly from Ventana� Units� radians

CPoint�D m PanTiltVar The variances of each component measurement in m PanTilt�

Units� radians�

CPoint�D m VehicleAngles WF The orientation of the vehicle �V � frame� relative to

the world frame� W � m VehicleAngles WF�x � roll� m VehicleAngles WF�y � pitch�

m VehicleAngles WF�z � yaw� This data is received directly from the attached hard�

ware �OTTER� Ventana� or Space Frame�� Units� radians

CPoint�D m VehicleAngles WFVar The variances of each component measurement

in m VehicleAngles WF� Units� radians�

CPoint�D m VehicleAnglesVel WF The rate of change of each component measure�

ment in m VehicleAngles WF� Units� radians�sec

CHAPTER �� AVP ENGINE THREAD 	�

CDoublePoint m FOV The horizontal �x� and vertical �y� �elds of view of the camera

on�board the vehicle� This �eld of view is measured according to the original image�

not the sub�sampled image used by AVP� Units� radians

CState m CameraState VF The
�DOF state vector �x� y� z position� and roll� pitch�

yaw orientation in body��xed Z�Y�X Euler angles� describing the location of the cam�

era �C � frame� relative to the vehicle �V � frame�� Units� meters� radians

CState m CameraState VFVar The variances of the component measurements in the

vector m CameraState VF� Units� meters�� radians�

CDoublePoint m ImageLocalDispTruth For the Space Frame� the baseline truth �ac�

cording to the Space Frame� measurement of the displacement vector from the center

of the reference image to the match location in the reference image� Units� pixels

CState m ImageState TFTruth For the Space Frame� the baseline truth
�DOF state

of the image �I � frame� relative to the terrain �T frame�� Units� meters� radians

CState m VehicleState WFTruth For the Space Frame� the baseline truth
�DOF state

of the vehicle �V � frame� relative to the terrain �T frame�� Units� meters� radians

CImageDeltaXY TF m ImageDeltaXY TF The local image displacement vector �I

frame to I � frame� and the associated variances� expressed in terms of the terrain

frame T � Units� meters� meters�

CState m ImageState TF The
�DOF state of the image �I � frame� relative to the ter�

rain �T frame�� Units� meters� radians

CStateVar m ImageState TFVar The covariance matrix of the
�DOF state vector

m ImageState TF� Since this
x
 matrix is symmetric� it is expressed in terms of

the upper�left �pp�� upper�right�pq�� and lower�right �qq� quadrants� Units� meters��

meters�radians� radians�

CState m CameraState TF The
�DOF state of the camera �C � frame� relative to the

terrain �T frame�� Units� meters� radians

CHAPTER �� AVP ENGINE THREAD 	�

CStateVar m CameraState TFVar The covariance matrix of the
�DOF state vector

m CameraState TF� Since this
x
 matrix is symmetric� it is expressed in terms of

the upper�left �pp�� upper�right�pq�� and lower�right �qq� quadrants� Units� meters��

meters�radians� radians�

CState m VehicleState TF The
�DOF state of the vehicle �V � frame� relative to the

terrain �T frame�� This data has also been �ltered in the CStateFilter component�

Units� meters� radians

CState m VehicleState TFRaw The
�DOF state of the vehicle �V � frame� relative to

the terrain �T frame�� Units� meters� radians

CDoublePoint m ImageLocalVel The rate of change of the image local displacement

vector� m ImageLocalDisp� Units� pixels�sec

CState m VehicleVel VF The
�DOF vehicle velocity vector� expressed in terms of its

own frame� V �� This data has also been �ltered in the CStateFilter component� Units�

meters�sec� radians�sec

CState m VehicleVel VFRaw The
�DOF vehicle velocity vector� expressed in terms

of its own frame� V �� Units� meters�sec� radians�sec

CDoublePoint m DesiredCameraXYPos TF The x� y desired position of the camera�

expressed relative to the terrain frame� T � Units� meters

CState m DesiredVehicleState TF The
�DOF desired state of the vehicle� expressed

relative to the terrain frame� T � Units� meters� radians

CState m DesiredVehicleVel VF The
�DOF desired vehicle velocity� expressed in its

own frame� V �� Units� meters�sec� radians�sec

CState m VehicleStateError VF The
�DOF error vector between the desired vehicle

state �m DesiredVehicleState TF� and the actual vehicle state �m VehicleState TF��

expressed in terms of its own frame� V �� Units� meters� radians

CHAPTER �� AVP ENGINE THREAD 		

CState m VehicleVelError VF The
�DOF error vector between the desired vehicle

state �m DesiredVehicleVel VF� and the actual vehicle velocity �m VehicleVel VF��

expressed in terms of its own frame� V �� Units� meters�sec� radians�sec

CState m Control The
�DOF control vector that is sent to the vehicle� The range and

units of each component are determined by the CController component� For Ventana�

CController maintains a range of ��� volts� These signals have also been �ltered

through slew�rate� saturation� and deadband �lters�

CState m ControlRaw The
�DOF control vector that is output directly from the linear

controllers implemented in the CController component� The range and units of each

component are determined by the CController component� For Ventana� CController

maintains a range of ��� volts�

��� Parameter Descriptions

This section provides a brief description of every parameter that appears in the AVP En�

gine Thread data ow diagram� These parameters are de�ned as member variables of the

CParameters class� which can be found in the �les Parameters�h and Parameters�cpp� Each

parameter in the following list is written in the form type name� exactly as it would appear

in a variable declaration� Any type that is not a basic type is either a class de�ned by MFC

or a class written especially for the purposes of this application�

CSize m SubImageSize The width �x� and height �y� of the subsampled image that is

used by AVP in its image processing pipeline and provided to the GUI� Units� pixels

CSize m FullImageSize The width �x� and height �y� of the original digitized image that

is used to de�ne a �reference� pixel� regardless of the region�of�interest �ROI� used in

subsampling� Units� pixels

CRect m CorrelationWindow The region of pixels in the live image that is compared

to all possible locations within the search region in the reference image� Units� pixels

CHAPTER �� AVP ENGINE THREAD 	

int m GaussSigma The width of the Gaussian kernel used to smooth the images in the

�ltering phase of the AVP image processing pipeline� It ranges from � �no smoothing�

to ��� Units� pixels

BOOL m Color A Boolean ag set to TRUE if the color data of the digitized images

should be saved for use in the mosaic and GUI� and otherwise set to FALSE for

grayscale images� The image �ltering and correlation computations are only intensity�

based� regardless of the value of this ag�

CMosaicData m MosaicData This parameter contains all of the image data� relative

image alignment data� and associated node graph representations of the current mo�

saic�

double m Threshold The threshold below which the image local displacement measure�

ments are considered invalid� This parameter is compared to m ImageLocalDispConf

at every iteration to determine the validity of the vision measurements� Units� per�

centage

int m AllowableDropouts The number of consecutive invalid vision measurements that

is allowed before the vehicle is assumed to be �lost� and a new reference image is

snapped� If this happens� the mosaicking process assumes the vehicle has not moved

since the last valid measurement� Since this is clearly not accurate� this severely

degrades the quality of the mosaic�

BOOL m ManualSnap A Boolean ag that is set to TRUE if the user or the application

has speci�ed that a new image be snapped for the mosaic immediately �before reaching

the desired overlap with the reference image�� and otherwise set to FALSE�

double m DesiredOverlap The desired percentage overlap in either the horizontal or

vertical directions for consecutive images in the evolving mosaic� Since the center of

the live image �and the surrounding correlation window� must lie within the reference

image for correlation to be possible� the range is between � 	�! �depending on

correlation window size� and ���!� Units� percentage

CHAPTER �� AVP ENGINE THREAD 	�

BOOL m CrossoverDetected A Boolean ag that is set to TRUE if the CCrossoverDe�

tection component has detected a possible loop in the mosaic� and otherwise set to

FALSE�

int m CrossoverImage The index of the image that is suspected of overlapping with the

current live image� The range is ���		� given the image storage capacity allowed by

AVP�

CRect m CrossoverSearchRegion The region in the crossover image that must be

searched to match the center of the live image� The size of this region is computed

from the variances of individual image displacement measurements� in order to �nd a

crossover match with probabilistic certainty� Units� pixels

BOOL m CrossoverCorrelation A Boolean ag that is set to TRUE if a successful

crossover correlation has occurred� and otherwise set to FALSE�

CMeasurementFilterParams m MeasurementFilterParams This parameter has all

of the relevant parameters for the CMeasurementFilterParams component� These

values a�ect the measurement �lters on incoming sensor data�

CStateFilterParams m StateFilterParams This parameter contains all of the relevant

parameters for the CStateFilter component� These values a�ect the state �lter on the

estimate of vehicle state relative to the terrain frame�

CControllerParams m ControllerParams This parameters contains all of the relevant

parameters for the CController component� These values a�ect the controllers and

slew�rate� saturator� and deadband �lters on the control output to the vehicle�

��� Component Descriptions

This section provides a brief description of every component that appears in the AVP

Engine Thread data ow diagram� These component classes are all derived from the

CHAPTER �� AVP ENGINE THREAD 	�

CComponent class� and they all can be found in the �les CComponents�h and CCom�

ponents�cpp� Only one instance of each component class exists in the m ComponentArray

of CAVPEngineThread� so the descriptions below are labeled according to class name�

RateCalculation

Timestamps

Rates

Figure ���� Data Flow Diagram for CRateCalculation

CRateCalculation This component is responsible for collecting tick counts� computing

sample times� and calculating the following rates� the AVP Digitizer frame rate� the

AVP sample rate� and the AVPEngine loop sample rate�

CLocalDisp This component interfaces directly with the AVP image processing pipeline�

After retrieving the live image� it sets up the variables required for the correlation

measurement� The image local displacement vector and its con�dence are then deter�

mined based on the output of the AVP function call to perform the correlation� The

component handles the cases where the previous correlation was valid or invalid� the

previous live image was a snapshot added to the mosaic� and a possible crossover was

detected during the previous iteration of the AVPEngine sample loop�

CErrorModel This component determines the data validity of the vision correlation mea�

surement and calculates the measurement variances� To calculate the data validity� it

checks whether the vision measurement con�dence is above or below a given thresh�

old� The optimal threshold to use was determined experimentally in Steve Fleischer�s

CHAPTER �� AVP ENGINE THREAD 	

LocalDisp

CurrentImageSnapped

DataValid

SearchRegion

LiveImage

TrueSearchRegion

ImageLocalDisp

ImageLocalDispConf

S
ubIm

ageS
ize

C
orrelationW

indow

C
olor

C
rossoverC

orrelation

M
osaicD

ata

Figure ���� Data Flow Diagram for CLocalDisp

thesis to be about
�!� di�erent values may work better under radically di�erent

conditions� Independent of the data validity� the measurement variance is calculated

using an empirical model determined through experiments on the Space Frame� The

input to this model is the measurement con�dence� and the outputs are the variances

on the x and y image local displacements�

CMeasurementFilter The measurement �lter performs validity checks and removes spu�

rious data from the vision�based and altimeter measurements� �Although not imple�

mented� �lters could be added for other sensors� such as the compass and inclinome�

ters�� In addition� this component calculates �ltered velocities for these three degrees

of freedom� based on the input sensor data� This component is only enabled if the

Sensor application is connected to Ventana�

CHAPTER �� AVP ENGINE THREAD
�

ErrorModel

ImageLocalDisp

ImageLocalDispConf

Timestamps

LOSRange_CF

FOV

ImageLocalDispVar

DataValid

G
aussS

igm
a

C
orrelationW

indow

T
hreshold

A
llow

ableD
ropouts

M
anualS

nap

F
ullIm

ageS
ize

C
rossoverC

orrelation

Figure ��	� Data Flow Diagram for CErrorModel

CTruthData Using baseline truth measurements �m VehicleState WFTruth� from the

Space Frame� this component calculates derived quantities �m ImageState TFTruth

and m ImageLocalDispTruth� that are used as truth for comparison with correspond�

ing measurements derived from the vision data and other sensor data� This component

is only enabled if connected to the Space Frame�

CGlobalDisplacement This component performs the frame transformation that combine

the input sensor data into estimates of the image� camera� and vehicle states� For

information on the derivation of these equations� refer to Steve Fleischer�s thesis ����

CStateFilter This state �lter has the ability to modify the estimate of vehicle state relative

to the terrain frame� m VehicleState TF� and the estimate of vehicle velocity relative

to the vehicle frame� m VehicleVel VF� Currently� no �ltering is performed in this

component�

CHAPTER �� AVP ENGINE THREAD
�

MeasurementFilter

ImageLocalDisp

PanTilt

PanTiltVar

VehicleAngles_WF

VehicleAngles_WFVar

Timestamps

DataValid

CurrentImageSnapped

Altimeter

AltimeterVar

ImageLocalDisp

ImageLocalDispRaw

LOSRange_CF

LOSRange_CFVar

ImageLocalVel

LOSRangeVel_CF

VehicleAnglesVel_WF

CameraState_VF

M
easurem

entF
ilterP

aram
s

CameraState_VFVar

Figure ��
� Data Flow Diagram for CMeasurementFilter

CCrossoverDetection The responsibility of this component is to determine if it is prob�

able that the mosaic has just crossed over itself� First� the minimum measurement

variance between the live image and all other images in the mosaic are computed�

since this is needed for the detection algorithm� Then� the location of the live im�

age is compared to the locations of all other images in the mosaic to determine if a

crossover may have occurred� Only previous image displacement measurements and

variances are used� no new �computationally expensive� correlations occur�

CSnapCheck This component checks to see if a snapshot of the live image should be

taken and added to the evolving mosaic� If the minimum desired overlap between

the live and reference images has been reached� or a manual snap has been or�

dered by either the CErrorModel component �due to data validity problems�� the

CCrossoverDetection component �due to possible crossover�� or the user� the CMo�

saicData��SnapNewImage�� method is called to snap the live image and record all of

the relevant data�

CHAPTER �� AVP ENGINE THREAD
�

TruthData

VehicleState_WFTruth

CameraState_VF

ImageState_TFTruth

ImageLocalDispTruth

F
ullIm

ageS
ize

C
rossoverC

orrelation

C
rossoverIm

age

M
osaicD

ata

Figure ���� Data Flow Diagram for CTruthData

CCrossoverCorrelation If the CCrossoverDetection component indicates that a loop in

the mosaic may have occurred� this component modi�es the image processing pipeline

to compare the live image with the crossover image� In the next iteration� this com�

ponent interprets and records the results of the crossover correlation� and restores the

pipeline to normal operation�

CErrorCalculation This component produces a vehicle state error vector by calculating

the di�erence between the desired and actual vehicle states� Similarly� it produces

a vehicle velocity error vector by calculating the di�erence between the desired and

actual vehicle velocities�

CController This component calculates the control values that are sent to the vehicle ac�

tuators to perform the station�keeping� mosaicking� and navigation tasks� Speci�cally�

it implements a di�erent controller for each DOF� using the vehicle state and velocity

CHAPTER �� AVP ENGINE THREAD
�

GlobalDisplacement

VehicleAngles_WF

VehicleAngles_WFVar

FOV

CameraState_VF

CameraState_VFVar

ImageLocalVel

LOSRangeVel_CF

VehicleAnglesVel_WF

ImageLocalDisp

ImageLocalDispVar

LOSRange_CF

LOSRange_CFVar

ImageDeltaXY_TF

ImageState_TF

ImageState_TFVar

CameraState_TF

CameraState_TFVar

VehicleState_TF

VehicleVel_VF
F

ullIm
agesize

M
osaicD

ata

C
rossoverC

orrelation

C
rossoverIm

age

Figure ���� Data Flow Diagram for CGlobalDisplacement

error vectors as inputs� Currently� only the x� y� and z translational DOF are used�

Each independent control signal is sent through a slew�rate� saturator� and deadband

�lter before it is sent to the vehicle actuators�

��� Inter�Thread Communication

As evidenced by the structure of Figure ���� the CAVPEngineThread is the central thread

in the Sensor application� It is the repository for all data� and all other threads require

access to this data� Two di�erent strategies are used to communicate among threads�

message�passing� and remote function calls�

Message�passing enables the reliable� asynchronous ow of data between threads� All

messages that are sent are received �even two di�erent messages of the same message type to

the same thread�� but it is not guaranteed that they will arrive at the destination at a given

time �i�e� before the next n iterations have completed�� It is described in Section ��
���

Remote function calls are used for idempotent synchronous data ow between threads�

Given a pointer to an external thread� it is possible to call one of the thread�s methods�

CHAPTER �� AVP ENGINE THREAD
�

StateFilter

VehicleState_TF

VehicleVel_VF

VehicleState_TF

Vehicle_Vel_VF

VehicleState_TF

VEhicleVel_VFRaw

S
tateF

ilterP
aram

s

Figure ��
� Data Flow Diagram for CStateFilter

thereby giving access to the external thread�s data� However� if the external thread is

modifying its data at every iteration� the data must be protected from reading by external

threads at improper times� and from writing by more than one thread at once� Semaphores

can be used to accomplish this� A client thread calls a server thread method that blocks

until the external thread triggers a certain event �such as the end of an iteration�� At this

point� the client thread calls server thread methods that get or set certain variables� To

enforce mutual exclusion� these access methods lock the variables against use by the server

thread until the client has get�set the data� Using this model� CAVPEngineThread is the

server thread� while all other threads in the application are client threads that pend on every

iteration through the sample loop� In this fashion� other threads can get�set data at every

iteration �synchronously�� although it is not guaranteed that the other threads will �nish

their tasks in time to receive data from the very next iteration �i�e� reliable communication

CHAPTER �� AVP ENGINE THREAD
	

CrossoverDetection

LOSRange_CF

FOV

ImageDeltaXY_TF

ImageState_TF

Timestamps

F
ullIm

ageS
ize

S
ubIm

ageS
ize

C
orrelationW

indow

M
osaicD

ata

M
anualS

nap

C
rossoverD

etected

C
rossoverIm

age

C
rossoverS

earchR
egion

Figure ����� Data Flow Diagram for CCrossoverDetection

is not guaranteed�� Sections ��
�� and ��
�� describe how to access signal and parameter

data from CAVPEngineThread�

��	�� Thread Messaging

Message�passing is accomplished using the existing Windows messaging scheme that is in�

herited from the CWinThread class� Under Windows messaging� given a pointer to an exter�

nal thread� a message can be sent to that thread using CWinThread��PostThreadMessage���

As part of a thread�s message�handling loop� received messages are dispatched to the ap�

propriate callback function based on message tables de�ned during compile time� Many

user�de�ned message have been created for this purpose� In addition� new messages �and

message handler functions� can be created� the following procedure may prove useful to

programmers who wish to add messages�

To add new thread message handler functions to one of the CWinThread�derived classes�

CHAPTER �� AVP ENGINE THREAD

SnapCheck

ImageState_TF

ImageState_TFVar

LOSRange_CF

LOSRange_CFVar

FOV

VehicleState_WFTruth

CameraState_TF

CameraState_TFVar

ImageState_TFTruth

LiveImage

Timestamps

ImageLocalDispTruth

ImageLocalDisp

ImageLocalDispVar

ImageDeltaXY_TF

CurrentImageSnapped

D
esiredO

verlap

M
anualS

nap

F
ullIm

ageS
ize

M
osaicD

ata

Figure ����� Data Flow Diagram for CSnapCheck

���

�
 If not already defined� define the thread message in Defaults�h

�
 Add the ON�THREAD�MESSAGE macro to the thread�s message map in ��cpp�

�
 Add the afx�msg function declaration within the class declaration in ��h�

�
 Define the function in ��cpp�

��	�� External Access for Signals

If an external thread wishes to get signal data from CAVPEngineThread� the �rst step

is to call the WaitForUpdatedSignals�� method� This call will block until the current

CAVPEngineThread iteration has completed� At this point� the working copy of the sig�

nals� m Signals� is copied into m Bu�eredSignals� so that external threads have a static

access point until the next iteration� Once the WaitForUpdatedSignals�� method returns�

the external thread can call the appropriate Get��� method to retrieve the latest signal

CHAPTER �� AVP ENGINE THREAD
�

CrossoverCorrelation

SearchRegion

TrueSearchRegion

ImageLocalDisp

ImgeLocalDispVar

ImageLocalDispConf

ImageDeltaXY_TF

DataValid

SearchRegion

TrueSearchRegion

M
osaicD

ata

C
orrrelationW

indow

C
rossoverD

etected

C
rossoverIm

age

C
rossoverS

earchR
egion

C
rossoverC

orrelation

Figure ����� Data Flow Diagram for CCrossoverCorrelation

values from CAVPEngineThread� and this method takes care of resource locking to ensure

mutual exclusion�

Within CAVPEngineThread� signals that may be set from an external thread are part

of the CExternalSignals class� To set any of these signals� an external thread simply calls

the appropriate Set��� method� and this method takes care of resource locking to ensure

mutual exclusion� At the beginning of every CAVPEngineThread iteration� a check is made

to determine if any of these external signals have been set since the last iteration� If so� all

of the external signals �m ExternalSignals� are copied into their counterparts in the working

copy of all signals� m Signals� The following procedure explains how to add new external

signals as needed�

To add a new external signal to AVPEngineThread�

���

CHAPTER �� AVP ENGINE THREAD
�

ErrorCalculation

DesiredCameraXYPos_TF

VehicleState_TF

DesiredVehicleVel_VF

VehicleVel_VF

CameraState_TF

CameraState_VF

DesiredVehicleState_TF

VehicleStateError_VF

VehicleVelError_VF

Figure ����� Data Flow Diagram for CErrorCalculation

�
 Follow procedure to add new member variable to CSignals� if not already present�

�
 Add new member variable to CExternalSignals�

�
 Initialize the member variable in CExternalSignals��Initialize�
�

�
 Copy external signal into appropriate signal or do required processing in

CAVPEngineThread��CheckForExternalSignalsUpdate�
�

	
 Add a Get��
 method to set the new member variables

��	�� External Access for Parameters

Within CAVPEngineThread� parameters that may be accessed �read or write� from an

external thread are part of the CExternalParameters class� To set any of these exter�

nal parameters� an external thread sends a message to CAVPEngineThread� A user�

de�ned message has been created for each external parameter� At the beginning of ev�

ery CAVPEngineThread iteration� a check is made to determine if any of these external

parameters have been set since the last iteration� If so� all of the external parameters

CHAPTER �� AVP ENGINE THREAD

Controller

VehicleStateError_VF

VehicleVelError_VF

Timestamps

Control

ControlRaw

C
ontrollerP

aram
s

Figure ����� Data Flow Diagram for CController

�m ExternalParameters� are copied into their counterparts in the working copy of all param�

eters� m Parameters� Thus� parameter changes are reliable� but not necessarily synchronous�

The following procedure explains how to add new external parameters as needed�

To add a new external parameter to AVPEngineThread�

���

�
 Follow procedure to add new member variable to CParameters� if not already present�

�
 Add new member variable to CExternalParameters�

�
 Initialize the member variable in CExternalParameters��Initialize�
�

�
 Copy external parameter into appropriate parameter or do required processing in

CAVPEngineThread��CheckForExternalParametersUpdate�
�

CHAPTER �� AVP ENGINE THREAD ��

	
 Add thread messages to get�set the new member variables

�
 Add thread message post to CAVPEngineThread��OnGetAllParams�

�
 Add thread message handler to CAVPEngineThread to set values sent from GUI

 Add thread message handler to CSensorApp to get current values and show in GUI

��� Stethoscope

As explained in Section ��
� the external Stethoscope program can be used to view real�time

plots of internal variables from CAVPEngineThread� Upon initialization� the InstallSignals�

ForScope�� method is called to export all of the necessary variables for Stethoscope access�

At the end of every iteration in the OnIdle�� loop� the ScopeCollectSignals�� library function

is called to take a snapshot of all of the installed variables and send them to any connected

Stethoscope clients� To export any member variable in CAVPEngineThread to Stetho�

scope� one only needs to add new lines to the CAVPEngineThread��InstallSignalsForScope��

method for the additional variables� the data collection mechanism is already in place�

Chapter �

GUI Thread

The GUI thread� which is actually an instance of the CSensorApp class� is the original

thread created upon application startup� During the CSensorApp initialization� all other

threads are spawned from this one� For the most part� the GUI has been described fully in

the User�s Guide �Chapter ��� This chapter explains how CSensorApp follows the Microsoft

Foundation Classes �MFC� philosophy for creating applications� Once a solid understanding

of MFC is achieved� it will become evident how the CSensorApp code �ts into the MFC

framework�

As with CAVPEngineThread� CSensorApp execution consists of a message�handling

loop that dispatches messages and calls the OnIdle�� method when no messages are present

in the queue� The goal of the CSensorApp��OnIdle�� method is to access data from every

iteration of CAVPEngineThread �if possible� and provide that data to the appropriate doc�

uments and dialog boxes� Speci�cally� the CAVPEngineThread��WaitForUpdatedSignals��

method is called to block until new data is ready� Upon return� the CSensorApp thread calls

several CAVPEngineThread��Get��� methods are called� and the returned data is stored in

the active mosaic document and in the output display dialog class �COutputDisplayDlg��

The data storage� data display� and user input functions for CSensorApp are accomplished

by various documents� views� and dialog boxes� These will be discussed in the following

sections�

��

CHAPTER �� GUI THREAD ��

��� Documents

Within the MFC framework� all application data is stored in the form of documents� The

Sensor GUI has a multiple document interface �MDI�� in other words� there is more than

one type of document �data� that it can handle� The following sections describe the two

types of documents� DIB and Mosaic�

����� DIB Document

The DIB document stores images in the form of Device�Independent Bitmaps �DIB�� The

DIB document is actually a model document for the Mosaic document that was taken from

an example in the MFC documentation� This example application was used as a baseline for

building the Sensor application with Mosaic document support� so DIB document support

is actually a by�product of the baseline code� However� it does provide the ability to view

individual images within the mosaic� or a mosaic exported into a single DIB image� without

resorting to external programs�

����� Mosaic Document

The Mosaic document �CMosaicDoc� reproduces the evolving mosaic that is created during

execution of CAVPEngineThread� Snapshot images are received from CAVPEngineThread

and stored as DIB�s within the Mosaic document� along with relevant image alignment

data� The image alignment data is actually stored in two di�erent versions� uncorrected

and corrected� The uncorrected data is purely pixel�based� it represents the state�of�the�art

in mosaics before Steve Fleischer�s thesis� The corrected data has incorporated both data

from sensors other than vision and knowledge of the relationships between various frames of

reference� in order to provide a more accurate �and global� mosaic alignment� Furthermore�

the corrected data is updated when a successful crossover correlation occurs and when a

mosaic re�alignment is completed� while the uncorrected data never changes from the initial

image local displacement measurements� �Warning� There are several bugs in storing and

CHAPTER �� GUI THREAD ��

exporting uncorrected data and mosaics created from uncorrected data� Some of these bugs

have been �xed� some have not� so it is recommended these be used with caution��

The Mosaic document data can also be stored to disk via an archive �CArchive�� con�

sisting of a series of DIB �les and a binary ��mos �le that contains all of the non�image

data from the document� Both storage and retrieval of a Mosaic document from disk is

achieved through the CMosaicDoc��Serialize�� method� for more information� see the MFC

documentation on archives and serialization�

As mentioned in Chapter �� both the uncorrected and corrected data from the Mosaic

document can be exported� The data can either be exported as an ASCII �le containing

a line of data for each image� or the mosaic corresponding to the data can be exported

into a single DIB �le� For details on this process� see the CMosaicDoc methods� OnEx�

portUncorrectedMosaic��� OnExportUncorrectedData��� OnExportCorrectedMosaic��� and

OnExportCorrectedData���

��� Views

Within the MFC framework� each document class has an associated view class� The view

class is responsible for displaying the document�s data within the GUI� For the case of

the Sensor application� the classes CDIBView and CMosaicView correspond to the CDIB�

Doc and CMosaicDoc classes� respectively� Within these two view classes� the OnDraw��

method is responsible for drawing in the document window� In CMosaicView��OnDraw���

each individual image is painted on�screen in its proper location to form the mosaic� and if

the Mosaic document is currently active� graphic overlays are drawn indicating the desired

vehicle position� current vehicle position� and uncertainty in the current position� Dis�

playing graphics under Windows and MFC is a complex proposition� in addition to the

standard documentation� the �le NotesOnDrawing�txt in the Sensor source code directory

may provide useful hints on various aspects of this process�

CHAPTER �� GUI THREAD ��

��� Dialog Boxes

The following dialog box classes are used to implement the dialog boxes that can be called

from the Sensor GUI menus�

� CImageAcquisitionDlg

� CImageProcessingDlg

� CMappingNavigationDlg

� CSerialPortDataDlg

� CMeasurementFilterParametersDlg

� CControllerParametersDlg

� COutputDisplayDlg

The class de�nitions and implementations can be found in the �les Dialogs�h and Di�

alogs�cpp� As part of the dialog box creation process� each one of these classes is instanced

in CSensorApp��InitInstance��� The graphical dialog boxes were implemented using the Mi�

crosoft Visual Studio resource editor and then connected to their associated classes using

the Class Wizard� The transfer of data between the on�screen dialog box and the class

object is accomplished using dialog data exchange �DDX� concepts from MFC� for more

information� see the MFC documentation� Complete explanations of the purpose of every

control within every dialog box has already been given in the User�s Manual �Chapter ���

Chapter �

Communications Link Threads

To communicate with both external programs �i�e� a compute server� and external hardware

�i�e� Space Frame� OTTER� Ventana� without interrupting the main CAVPEngineThread

computation loop� several threads have been created� each of which is dedicated to providing

a communications link to a remote resource� Since these threads are concerned primarily

with exchanging data with CAVPEngineThread� as shown in Figure ���� they will either

call the blocking method CAVPEngineThread��WaitForUpdatedSignals�� or simply remain

idle until a message is received from CAVPEngineThread�

This chapter describes the operation of each of these communication link threads� Three

of these threads� ComputeServerLink� SpaceFrameLink �FlightTableLink�� and OTTER�

Link� communicate over ethernet using the Windows sockets protocol� and they are all

derived from the base class AVPNet� The fourth thread� VentanaSerialLink� communi�

cates via serial link� The following sections describe the AVPNet base class and all four

communication link threads�

��� AVPNet

The CAVPNetThread class is an object�oriented implementation of the AVPNet socket

communications library originally created as an add�on to AVP by Rick Marks� For more

information� see the AVP�AVPNet documentation� The �les AVPNet�h and AVPNet�cpp

�	

CHAPTER 	� COMMUNICATIONS LINK THREADS �

contain the object�oriented version of AVPNet� and they can be incorporated cleanly into

entirely di�erent MFC applications� independent of Sensor� CAVPNetThread� which is

derived from CWinThread� is designed to be a base class for communication thread classes

that wish to inherit sockets communications functionality�

When a thread class derived from CAVPNetThread is spawned� the Sensor application

acts as a sockets server� CAVPNetThread��InitInstance�� opens a port to listen for connec�

tion requests� When a remote program using the client�side version of AVPNet requests a

connection on the same port� the CAVPNetThread��Accept�� method is called automati�

cally� If there is no client already connected� a connection is established� and two archives

are created� one for reading from the socket� and one for writing to the socket�

To send data messages over the established socket connection� the derived thread class

must build up the message in the local bu�er using the CAVPNetThread��avpnetMsgStart��

and CAVPNetThread��avpnetMsgAdd��� methods� When complete� the message can be

sent over the socket by calling CAVPNetThread��avpnetMsgSend���

To receive messages� the CAVPNetThread��Receive�� method must be overridden by

the derived class� This method is called automatically whenever new data is available on

the incoming socket� Its responsibility is to parse incoming messages� using the CAVPNet�

Thread��avpnetMsgExtract��� methods�

��� ComputeServerLink

The ComputeServerLink is an instance of the CComputeServerLink class� It communicates

with the remote compute server program� which performs smoother computations to re�align

the mosaic after crossover� The compute server code is listed in Section ����

To perform its task� CComputeServerLink remains idle until CAVPEngineThread sends

it a COMPUTE SERVER UPLOAD DATA message� The OnComputeServerUploadData��

method handles this message by building the DATA UPLOAD AVPNet message and send�

ing it to the compute server�

CHAPTER 	� COMMUNICATIONS LINK THREADS ��

Concurrently� while this thread is waiting for COMPUTE SERVER UPLOAD DATA

messages� its Receive�� method is called whenever a message is received from the compute

server� The Receive�� method checks the message token to make sure the message token

is DATA DOWNLOAD� then extracts the improved mosaic re�alignment data and sends

it back to CAVPEngineThread via thread message to improve the self�consistency of the

mosaic map�

��� SpaceFrameLink 	FlightTableLink

The SpaceFrameLink is an instance of the CFlightTableLink class� and it communicates

with the Space Frame hardware� �The Flight Table is the former name of the piece of

equipment now known as the Space Frame� At the time this code was written� it was still

known as the Flight Table��

To perform its task� CFlightTableLink remains idle until CAVPEngineThread sends

a DESIRED POS UPDATE message to move the endpoint of the Space Frame to a new

location� The OnDesiredPosUpdate�� method handles this thread message by building the

MODE DATA AVPNet message with the appropriate desired position data and sending

it to the Space Frame network node� The Space Frame network node is an intermediary

program that converts AVPNet data from the Sensor application into NDDS data that is

sent directly to the Space Frame� Section ��� provides code for the Space Frame network

node� In addition� whenever a MODE CHANGE message is received� the OnModeChange��

handler function resets the perceived origin of the Space Frame to maintain consistency

between the Space Frame and Sensor reference frames�

Concurrently� while this thread is waiting for thread messages� its Receive�� method is

called whenever a message is received from the Space Frame network node� The Receive��

method checks the message token to make sure it is a TRUTH DATA message� then extracts

the measurement data taken by the high�resolution motor encoders on the Space Frame� and

transforms them into the proper frame� These sensor data serve as truth measurements to

CHAPTER 	� COMMUNICATIONS LINK THREADS ��

evaluate the performance of the Sensor application� so they are sent to CAVPEngineThread

via the relevant Set��� methods to be stored and sent along to the GUI�

��� OtterLink

The OTTERLink is an instance of the COTTERLink class� and it communicates with the

OTTER AUV� To perform its task� COTTERLink retrieves the current vehicle state by call�

ing CAVPEngineThread��GetVehicleState TF�� from the OnIdle�� method� The OnIdle��

method then builds the PSEUDO SHARPS DATA AVPNet message and sends it to the

OTTER network node� To use the vision�based vehicle state estimates from Sensor instead

of SHARPS positioning data� the vehicle state data masquerades as SHARPS data from

OTTER�s perspective� The OTTER network node is an intermediary program that converts

AVPNet data from the Sensor application into NDDS data that is sent directly to OTTER�

Also� whenever a DESIRED POS UPDATE message is received from CAVPEngineThread

to move OTTER to a new location� the OnDesiredPosUpdate�� method handles this mes�

sage by building the DESIRED POS DATA AVPNet message with the appropriate de�

sired position data and sending it to the OTTER network node� In addition� whenever a

MODE CHANGE message is received� the OnModeChange�� handler function resets the

heading o�set to maintain consistency between the OTTER and Sensor reference frames�

Concurrently� while this thread is waiting for thread messages� its Receive�� method

is called whenever a message is received from the OTTER network node� The Receive��

method checks the message token to make sure it is a OTTER STATE DATA message�

then extracts the vehicle sensor measurements and sends them to CAVPEngineThread via

the relevant Set��� methods�

CHAPTER 	� COMMUNICATIONS LINK THREADS �

��� VentanaSerialLink

The VentanaSerialLink is an instance of the CVentanaSerialLink class� and it communicates

with the Ventana ROV� CVentanaSerialLink is setup di�erently than the other communi�

cation thread classes� because the network connection to Ventana is a serial line� The

InitInstance�� method initialize the serial port and sets up CRC error�checking� since Ven�

tana uses CRC�

In addition� the InitInstance�� method starts a worker thread� ReadSerialPort��� to

continuously read the serial port� A worker thread is a single function running indepen�

dently� which does not have any Windows messaging capabilities� The ReadSerialPort��

thread performs overlapped I�O to minimize the overhead of continuously reading the se�

rial port� Whenever this thread reads a full record into its bu�er� it calls CVentanaSeri�

alLink��ParseDataRecord�� to extract the Ventana sensor data� This method extracts the

Ventana sensor data and sends it to CAVPEngineThread by calling the appropriate Set���

methods� Also� whenever the MODE CHANGE message is received by the CVentanaSeri�

alLink thread� the heading o�set is reset to maintain consistency between the Ventana and

Sensor reference frames�

To access the control data for transmission to Ventana�s thrusters� the remote method

CAVPEngineThread��WaitForUpdatedSignals�� is called from within the OnIdle�� method�

Once this blocking call returns� the control values are read using the remote method

CAVPEngineThread��GetControl�� and the WriteSerialPort�� method is called� The Write�

SerialPort�� method performs an overlapping write� including CRC� to optimize perfor�

mance�

Chapter �

Data Logger Thread

Data logging is accomplished by CDataLoggerThread� a relatively simple thread class de�

rived from CWinThread� Data logging is enabled and disabled by the START DATA LOG

and STOP DATA LOG thread messages� which are sent from the GUI thread to CDat�

aLoggerThread� The message handler methods OnStartDataLog�� and OnStopDataLog��

open and close the data log �les� respectively�

Every time a data log is opened� two �les are actually opened for recording data� The

�rst �le is a synchronous data log� In the CDataLoggerThread��OnIdle�� method� this

thread attempts to block on every iteration of CAVPEngineThread� and it collects data

using the CAVPEngineThread��Get��� methods and writes the data to the synchronous

data log� This thread is allowed to run at a slower sample rate than CAVPEngineThread�

although this would require the data logging to skip samples and thus lose some data�

Section ��� provides a list of all data recorded into the synchronous data log�

The second �le opened is an asynchronous data log� This �le records parameters

that change periodically� but at rates much slower than the CAVPEngineThread sample

rate� As part of the CDataLoggerThread��OnIdle�� method� data is written to the asyn�

chronous log only if the m WriteParamters ag is enabled� The following events cause the

m WriteParameters ag to be enabled� a data log is opened� a MODE CHANGE message

��

CHAPTER
� DATA LOGGER THREAD ��

is received� a new MEASUREMENT FILTER PARAM message is received� or a new CON�

TROLLER PARAM message is received� Section ��� provides a list of all data recorded

periodically into the asynchronous data log�

��� Synchronous Data Log

Currently� the synchronous data log �le records the following at every time step in the main

CAVPEngineThread computation loop�

� pVentanaSerialLink� �m TeleosON

� timestamps�m TickCount

� m SensorMode

� current image snapped

� image local disp conf

� data valid

� image local disp truth�x� �y

� image local disp�x� �y

� altitude

� vehicle angles wf�x� �y� �z

� image state tf truth�x� �y� �z

� image state tf�x� �y� �z

� image state tf var�pp������� �pp������

� vehicle state wf truth�x� �y� �z

� vehicle state tf�x� �y� �z

CHAPTER
� DATA LOGGER THREAD ��

� desired vehicle state tf�x� �y� �z

� vehicle state error vf�x� �y� �z

� vehicle vel vf�x� �y� �z

� vehicle vel error vf�x� �y� �z

� control raw�x� �y� �z

� control�x� �y� �z

� slew rate enabled�X AXIS�� �Y AXIS�� �Z AXIS�

� saturator enabled�X AXIS�� �Y AXIS�� �Z AXIS�

� deadband enabled�X AXIS�� �Y AXIS�� �Z AXIS�

� pVentanaSerialLink� �m Port�Stbd�Lateral�VerticalThrust

��� Asynchronous Data Log

Currently� the asynchronous data log records the following�

� timestamps�m TickCount

� m MeasurementFilterParams�m AltitudeScale� �m AltitudeO�set

� m MeasurementFilterParams�m DeadzoneSize

� m MeasurementFilterParams�m VelFilterCuto�

� m ControllerParams�m ControlMode�X AXIS�� �Y AXIS�� �Z AXIS�

� m ControllerParams�m Kp�x� �y� �z

� m ControllerParams�m Kd�x� �y� �z

� m ControllerParams�m Ki�x� �y� �z

CHAPTER
� DATA LOGGER THREAD ��

� m ControllerParams�m Kl�x� �y� �z

� m ControllerParams�m LeadPole�x� �y��z

� m ControllerParams�m LeadZero�x� �y� �z

� m ControllerParams�m Ksm�x� �y��z

� m ControllerParams�m M�x� �y� �z

� m ControllerParams�m Phi�x� �y� �z

� m ControllerParams�m lambda�x� �y� �z

� m ControllerParams�m SlewRate

� m ControllerParams�m SatLimit

� m ControllerParams�m DeadBand

� pVentanaSerialLink� �m SonyCameraTilt� � �m SonyCameraShoulder

Chapter 	

Distributed Software Components

This chapter provides brief descriptions and code listings for three external software com�

ponents that are part of the distributed system used during experiments� the smoother� the

Space Frame network node� and the OTTER network node�

��� Smoother

The smoother� otherwise known as the compute server� is a C program that runs on a

Sun UNIX workstation� This software component performs the intensive computations

necessary to optimally re�align the mosaic after a crossover correlation has occurred� To

accomplish this� the program receives input via AVPNet from Sensor� calls a MATLAB

engine to perform the matrix manipulations� and returns the results via AVPNet� The

following is a �le listing for the smoother program�

��� compute�server�link�cc ���

�include �stdio�h�

�include �stdlib�h�

�include �NDDS�h�

�include �nddstypes�CSMatNdds�h�

�� �include �CSMatNdds�h� ��

�include �avpnetC�h�

��

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS �	

�include �ComputeServer�h�

�include �engine�h�

�� global definitions ��

�define BUFFER�LENGTH ����

�� global variables ��

Engine �ep�

char buffer�BUFFER�LENGTH��

char command�string��	���

�� forward function declarations ��

void ReceiveMessages�
�

int main�int argc� char �argv��

�

�� Initialize MATLAB engine ��

if � �ep � engOpen��!��

 �

printf��Can�t start MATLAB engine!n�
�

exit���
�

"

else �

printf��Started MATLAB engine successfully!n�
�

"

engOutputBuffer�ep� buffer� BUFFER�LENGTH
�

�� Initialize AVPnet network interface to AVP PC ��

avpnetCInitialize�SENSOR�HOST� COMPUTE�SERVER�LINK�PORT
� �� client mode ��

if � avpnetCOpenConnection�

 �

printf��Error in attempting connection to AVPnet server�!n�
�

return ��
�

"

else �

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS �

printf��Connection to AVPnet server successful�!n�
�

"

while ��
 �

�� NddsConsumerPoll�itemConsumer
� Only needed if NDDS�POLLED ��

�� We sleep only to kill time� Nothing need be done here

for an NDDS�IMMEDIATE consumer� ��

��printf��Sleeping for �f sec���!n�� deadline
�

NddsUtilitySleep�deadline
���

NddsUtilitySleep�����
�

ReceiveMessages�
�

"

engClose�ep
�

return ��
�

"

void ReceiveMessages�

�

int token� head� tail� i� crossover�update�

unsigned int data�

double delta�state���� delta�state�var�������

static int index� crossovers�

int meas�

mxArray �xhat � NULL� �Phat � NULL�

double �x�data� �P�data�

if �avpnetCMsgAvailable�

 �

avpnetCMsgRead�#token
�

switch �token
 �

case DATA�UPLOAD�

printf��New DATA�UPLOAD received!n�
�

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS ��

data � avpnetCMsgExtractLong�
�

head � �int
 data�

data � avpnetCMsgExtractLong�
�

tail � �int
 data�

data � avpnetCMsgExtractLong�
�

delta�state��� � ��double
 ��int
 data

 � �e��

data � avpnetCMsgExtractLong�
�

delta�state��� � ��double
 ��int
 data

 � �e��

data � avpnetCMsgExtractLong�
�

delta�state�var������ � ��double
 ��int
 data

 � �e
�

data � avpnetCMsgExtractLong�
�

delta�state�var������ � ��double
 ��int
 data

 � �e
�

delta�state�var������ � delta�state�var�������

data � avpnetCMsgExtractLong�
�

delta�state�var������ � ��double
 ��int
 data

 � �e
�

if ��head �� �
 ## �tail �� �

 �

engEvalString�ep� �clear all��
�

index � ��

crossovers � ��

"

else �

if �tail �� �index��

 � �� new image update ��

printf��!tNew image update!n�
�

crossover�update � FALSE�

if ��tail�head
 � �
 �

printf��Problem� new image� but head and tail are not adjacent!n�
�

"

index���

meas � index � crossovers�

if �index �� �
 �

sprintf�command�string� �C � zeros����
��
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

"

else �

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS ��

sprintf�command�string� �C � �C zeros��i��
� zeros����i
����

���meas��
� ��index
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

"

"

else � �� crossover update ��

printf��!tCrossover update!n�
�

crossover�update � TRUE�

crossovers���

meas � index � crossovers�

sprintf�command�string� �C � �C� zeros����i
����

��index
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

"

sprintf�command�string� �C��i��i��i��i
 � eye��
���

��meas��� ��meas� ��tail��� ��tail
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

if �head � �
 � �� if head � �� no entries are needed ��

sprintf�command�string� �C��i��i��i��i
 � �eye��
���

��meas��� ��meas� ��head��� ��head
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

"

if �index �� �
 �

sprintf�command�string� �z � ��f� �f����

delta�state���� delta�state���
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

sprintf�command�string� �V � zeros����
��
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS �

"

else �

sprintf�command�string� �z � �z� �f� �f����

delta�state���� delta�state���
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

sprintf�command�string� �V � �V zeros��i��
� zeros����i
����

���meas��
� ��meas
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

"

sprintf�command�string� �V��i��i��i��i
 � ��f �f� �f �f����

��meas��� ��meas� ��meas��� ��meas�

delta�state�var������� delta�state�var�������

delta�state�var������� delta�state�var������
�

engEvalString�ep� command�string
�

printf���s!n�� buffer
�

if �crossover�update
 � �� crossover update � smooth data ��

engEvalString�ep� �R � inv�V
��
�

printf���s!n�� buffer
�

engEvalString�ep� �Phat � inv�C��R�C
��
�

printf���s!n�� buffer
�

engEvalString�ep� �K � Phat�C��R��
�

printf���s!n�� buffer
�

engEvalString�ep� �xhat � K�z��
�

printf���s!n�� buffer
�

xhat � engGetArray�ep� �xhat�
�

Phat � engGetArray�ep� �Phat�
�

x�data � mxGetPr�xhat
�

P�data � mxGetPr�Phat
�

for �i � �� i � index� i��
 �

avpnetCMsgStart�DATA�DOWNLOAD
�

�� image � is the global origin �i�e� never smoothed
 ��

avpnetCMsgAddLong��unsigned int
 �i��

�

avpnetCMsgAddLong��unsigned int
 �x�data���i� � �e�

�

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

avpnetCMsgAddLong��unsigned int
 �x�data���i��� � �e�

�

avpnetCMsgAddLong��unsigned int
 �P�data����index
����i
����i
� � �e

�

avpnetCMsgAddLong��unsigned int
 �P�data����index
����i
����i��
� � �e

�

avpnetCMsgAddLong��unsigned int
 �P�data����index
����i��
����i��
� � �e

�

avpnetCMsgSend�
�

"

engEvalString�ep� �save smoother��
�

printf���s!n�� buffer
�

printf��!tSmoothed data sent!n�
�

mxDestroyArray�xhat
�

mxDestroyArray�Phat
�

"

"

break�

default�

printf��Error� unknown message received�!n�
�

break�

"

"

"

��� ComputeServer�h ���

�if defined�COMPUTESERVER�H

�define COMPUTESERVER�H

�� definitions for network communications

�� for port numbers� use any number above IPPORT�RESERVED�

�� as defined in WINSOCK�H or WINSOCK��H

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

�define COMPUTE�SERVER�LINK�PORT ���� �� �x���� ��st # �nd half

�� of each byte must be equal

�define SENSOR�HOST �����
���������

�� seasteps� ����
��������

�� atlantis� ����
������

�� network message definitions

�� Sensor �� Compute Server

�define DATA�UPLOAD � �� �LONG
 head

�� �LONG
 tail

�� �LONG
 delta�x�

�� �LONG
 delta�y�

�� �LONG
 delta�var������

�� �LONG
 delta�var������ � delta�var������

�� �LONG
 delta�var������

�� Compute Server �� Sensor

�define DATA�DOWNLOAD � �� �LONG
 index

�� �LONG
 image�state�x�

�� �LONG
 image�state�y�

�� �LONG
 image�state�var������

�� �LONG
 image�state�var������ � image�state�var������

�� �LONG
 image�state�var������

�endif�� defined�COMPUTESERVER�H

��� Space Frame Network Node

The Space Frame network node is an intermediary between the dissimilar network commu�

nication schemes of the Sensor application and the Space Frame� When the Sensor code

was written� AVPNet was not available for VxWorks� and NDDS was not available for Win�

dows NT� However� since both of these services were available for UNIX� a network node

was written that translated AVPNet messages into NDDS messages� and vice�versa� This

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

allowed Sensor to communicate with the Space Frame to achieve real�time control� The

following is a �le listing for the Space Frame network node program�

��� flight�table�link�cc ���

�include �stdio�h�

�include �stdlib�h�

�include �NDDS�h�

�include �nddstypes�CSMatNdds�h�

�� �include �CSMatNdds�h� ��

�include �avpnetC�h�

�include �FlightTable�h�

�� global variable declarations ��

NDDSProducer SpaceFrameModeProducer � NULL�

CSMat SpaceFrameMode � NULL�

�� forward function declarations ��

NDDSObjectInstance SpaceFramePositionCallback�NDDSUpdateInfo updateInfo
�

void ReceiveMessages�
�

int main�int argc� char �argv��

�

int nddsDomain � �����

NDDSConsumer SpaceFramePositionConsumer � NULL�

CSMat SpaceFramePosition � NULL�

NDDSProducerPropertiesStorage prod�properties�

NDDSConsumerPropertiesStorage cons�properties�

float deadline � ����f� �� ��������f �seconds
 ��

float min�separation � ���f� �� �seconds
 ��

float persistence � 	��f� �� �seconds
 ��

float strength � ���f� �� �seconds
 ��

�� Initialize AVPnet network interface to AVP PC ��

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

avpnetCInitialize�SENSOR�HOST� FLIGHT�TABLE�LINK�PORT
� �� client mode ��

if � avpnetCOpenConnection�

 �

printf��Error in attempting connection to AVPnet server�!n�
�

return ��
�

"

else �

printf��Connection to AVPnet server successful�!n�
�

"

�� Initialize NDDS ��

if �argc ���
 �

nddsDomain � atoi�argv���
�

"

NddsInit�nddsDomain� NULL
�

NddsVerbositySet��
�

CSMatNddsRegister�
�

�� Initialize NDDS Producer ��

SpaceFrameModeProducer �

NddsProducerCreate��SpaceFrameModeProducer�� NDDS�SYNCHRONOUS�

persistence� strength
�

NddsProducerPropertiesGet�SpaceFrameModeProducer� #prod�properties
�

prod�properties�prodRefreshPeriod � ���

prod�properties�prodExpirationTime � ���

NddsProducerPropertiesSet�SpaceFrameModeProducer� #prod�properties
�

�� Ensure that SpaceFrameMode is allocated �for CSMat� it must be ��

�� allocated with proper size ��

SpaceFrameMode � new CSRealMat��SpaceFrameMode�� �� �
�

�� Note� the option parameter ����
 specifies that the matrix elements ��

�� and sizes should be sent ��

�� �see �home�kindel�nddsWish����src�nddstypes�ext�CSMatNdds�nddstcl�cc
��

NddsProducerProductionAdd�SpaceFrameModeProducer� �CSRealMat��

�SpaceFrameMode�� SpaceFrameMode� ��

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

NULL� NULL
�

�� Initialize NDDS Consumer ��

SpaceFramePositionConsumer �

NddsConsumerCreate��SpaceFramePositionConsumer�� NDDS�IMMEDIATE�

deadline� min�separation
�

NddsConsumerPropertiesGet�SpaceFramePositionConsumer� #cons�properties
�

cons�properties�subsRefreshPeriod � ���

cons�properties�subsExpirationTime � ���

NddsConsumerPropertiesSet�SpaceFramePositionConsumer� #cons�properties
�

�� Ensure that SpaceFramePosition is either allocated or is NULL

�for CSMat� it must be allocated with proper size ��

SpaceFramePosition � new CSRealMat��SpaceFramePosition�� �� �
�

NddsConsumerSubscriptionAdd�SpaceFramePositionConsumer�

�CSRealMat��

�SpaceFramePosition��

�NDDSObjectInstance
 SpaceFramePosition�

SpaceFramePositionCallback� NULL
�

while ��
 �

�� NddsConsumerPoll�itemConsumer
� Only needed if NDDS�POLLED ��

�� We sleep only to kill time� Nothing need be done here

for an NDDS�IMMEDIATE consumer� ��

��printf��Sleeping for �f sec���!n�� deadline
�

NddsUtilitySleep�deadline
���

NddsUtilitySleep�����
�

ReceiveMessages�
�

"

return ��
�

"

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
	

NDDSObjectInstance SpaceFramePositionCallback�NDDSUpdateInfo updateInfo

�

double now�

static double last�update�time�

double dT�

CSMat SpaceFramePosition � �CSMat
 updateInfo��instance�

now � NddsUtilityTimeGet�
�

�if �

�� Remove the �if����endif statements to print extensive status ��

printf���SpaceFramePosition callback�� update packet arrived �

�for !��s!� of type !��s!� STATUS� �s parameter is ��p
!n�

�data produced at time �f� received at �f� now is �f difference �

�is �f!n��

updateInfo��name� updateInfo��type�

nddsUpdateStatus�updateInfo��updateStatus��

updateInfo��callBackRtnParam�

updateInfo��remoteTimeWhenProduced�

updateInfo��localTimeWhenReceived� now�

now � updateInfo��remoteTimeWhenProduced
�

�endif �� � ��

if � strcmp�nddsUpdateStatus�updateInfo��updateStatus�� �NDDS�FRESH�DATA�

 �

dT � now � last�update�time�

last�update�time � now�

�� CSMatPrint�SpaceFramePosition
� ��

avpnetCMsgStart�TRUTH�DATA
�

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
��� �

�

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
��� �

�

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
��� �

�

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
��� �

�

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
��� �

�

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS

avpnetCMsgAddLong��unsigned int
 ��������SpaceFramePosition
�	� �

�

avpnetCMsgSend�
�

"

else �

printf��Message with status other than NDDS�FRESH�DATA received!n�
�

"

return updateInfo��instance�

"

void ReceiveMessages�

�

int token�

double xd� yd� zd� rolld� pitchd� yawd�

if �avpnetCMsgAvailable�

 �

avpnetCMsgRead�#token
�

switch �token
 �

case MODE�DATA�

xd � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

yd � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

zd � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

rolld � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

pitchd � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

yawd � ��double
 ��int
 avpnetCMsgExtractLong�

 � �e��

��SpaceFrameMode
��
 � �� �� position mode ��

��SpaceFrameMode
��
 � xd�

��SpaceFrameMode
��
 � yd�

��SpaceFrameMode
��
 � zd�

��SpaceFrameMode
��
 � rolld�

��SpaceFrameMode
�	
 � pitchd�

��SpaceFrameMode
��
 � yawd�

printf��command� �f �f �f �f �f �f �f!n�� ��SpaceFrameMode
��
�

��SpaceFrameMode
��
� ��SpaceFrameMode
��
�

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

��SpaceFrameMode
��
� ��SpaceFrameMode
��
�

��SpaceFrameMode
�	
� ��SpaceFrameMode
��

�

NddsProducerSample�SpaceFrameModeProducer
�

break�

default�

printf��Error� unknown message received�!n�
�

break�

"

"

"

��� FlightTable�h ���

�if defined�FLIGHTTABLE�H

�define FLIGHTTABLE�H

�� definitions for network communications

�� for port numbers� use any number above IPPORT�RESERVED�

�� as defined in WINSOCK�H or WINSOCK��H

�define FLIGHT�TABLE�LINK�PORT ��	� �� �x���� ��st # �nd half

�� of each byte must be equal

�define SENSOR�HOST ����������	�

�� network message definitions

�� Sensor �� Flight Table

�define MODE�DATA � �� �LONG
 desired x

�� �LONG
 desired y

�� �LONG
 desired z

�� �LONG
 desired roll

�� �LONG
 desired pitch

CHAPTER �� DISTRIBUTED SOFTWARE COMPONENTS
�

�� �LONG
 desired yaw

�� Flight Table �� Sensor

�define TRUTH�DATA � �� �LONG
 x

�� �LONG
 y

�� �LONG
 range

�� �LONG
 phi �x

�� �LONG
 theta �y

�� �LONG
 psi �z

�endif�� defined�FLIGHTTABLE�H

��� OTTER Network Node

The OTTER network node is entirely similar to the Space Frame network node� in that

it is an intermediary between the dissimilar network communication schemes of the Sensor

application and OTTER� When the Sensor code was written� AVPNet was not available

for VxWorks� and NDDS was not available for Windows NT� However� since both of these

services were available for UNIX� a network node was written that translated AVPNet

messages into NDDS messages� and vice�versa� This allowed Sensor to communicate with

OTTER to achieve real�time vehicle control�

Bibliography

��� Stephen D� Fleischer� Bounded�Error Vision�Based Navigation of Autonomous Under�

water Vehicles� PhD thesis� Stanford University� Stanford� CA
���	� May �����

��� Richard L� Marks� Experiments in Visual Sensing for Automatic Control of an Under�

water Robot� PhD thesis� Stanford University� Stanford� CA
���	� June �

	� Also

published as SUDAAR
���

��� D� Marr and E� Hildreth� Theory of edge detection� Proc� of the Royal Society of

London� pages �������� �
���

