
Users Guide

GOTCHA

Release 4.0.0

IBM Haifa Research Laboratory

Contents

1 Introduction 5
1.1 Overview.. 5
1.2 Requirements ... 6
1.3 What’s New in this Release ... 6
1.4 The GOTCHA-Spider Methodology ... 7

1.4.1 Write a Behavioral Model for Test 8
1.4.2 Write a Testing Interface ... 8
1.4.3 Generate Abstract Test Suites.. 8
1.4.4 Review Behavioural Model, Abstract Tests, and Testing
Interface ... 9
1.4.5 Execute the Test Suite ... 9
1.4.6 Observe and Iterate .. 9

1.5 The contents of this document ... 9

2 Writing a Behavioural Model 11
2.1 What is a Behavioural Model?... 11
2.2 Writing a Behavioural Model .. 11
2.3 Basic GDL Concepts.. 13

2.3.1 Backus-Naur Form (BNF) ... 13
2.3.2 Lexical Conventions .. 13

2.4 GDL Syntax ... 15
2.4.1 Model Syntax... 15
2.4.2 Declaration Syntax... 15
2.4.3 Procedure and Function Syntax ... 17
2.4.4 Expression Syntax.. 18
2.4.5 Statement Syntax ... 21
2.4.6 Rules and Directives Syntax.. 25

2.5 A Sample Model – Hello World .. 35
2.5.1 Hello World Application Specification 35
2.5.2 The GDL Model of Hello World 35
2.5.3 The Hello World Finite State Machine.............................. 37

3 Generating Test Suites – First Steps 39
3.1 The Abstract Test Suite – GOTCHA’s output file 39
3.2 Interactive Test Generation.. 42

3.2.1 Introduction to the Interactive Generator 42

GOTCHA Users Guide Page i of 108 Contents

3.2.2 Starting An Interactive GOTCHA Session........................ 43
3.2.3 What to do in RuleWait ... 43
3.2.4 What to do in StateWait... 45
3.2.5 A Sample Interactive Session .. 47

3.3 Generating test suites quickly .. 54
3.3.1 Random test generation ... 56
3.3.2 Input coverage test generation ... 57
3.3.3 Input transition coverage test generation........................... 58
3.3.4 Input transition pair coverage test generation.................... 59
3.3.5 The parameters for quick test generation........................... 60
3.3.6 Coverage Criteria and Test Constraints 61

4 Writing Test Generation Directives 62
4.1 Explicitly specifying coverage models .. 62

4.1.1 Reachability ... 64
4.1.2 Coverability and Coverage Tasks 65

4.2 Writing Testing Directives... 67
4.2.1 Test Constraints ... 67
4.2.2 Coverage Criteria... 70

5 Generating Test Suites – With Explicit Directives 78
5.1 Automatically Creating an Abstract Test Suite Using an Explicit
Coverage Model... 78
5.2 Complete GOTCHA Runtime Options.. 79

5.2.1 Help (-h)... 79
5.2.2 More Help (-morehelp).. 79
5.2.3 Input Coverage Test Generation (-rctg)............................. 81
5.2.4 Random Test Generation (-rtg).. 81
5.2.5 Input Transition Coverage Test Generation (-rtctg) 81
5.2.6 Input Transition Pair Coverage Test Generation (-rpctg).. 82
5.2.7 Full Traversal Test Generation .. 82
5.2.8 Full Traversal Test Generation On The Fly (-fulltg –
gotfp<n>) ... 82
5.2.9 Number of test cases (-st<n>).. 83
5.2.10 Test case length recommendation (-gtlub<n>) 83
5.2.11 Coverage Factor (-gtcf<n>) ... 84
5.2.12 Interactive Test Generation (-itg) 84
5.2.13 Code Debugger (-dbg) ... 84
5.2.14 Input and Output (-o <filename>, >) 84
5.2.15 Compact State Representation (-c) 85
5.2.16 Disable Runtime Checking (-d) 85
5.2.17 Memory Allocation (-m<n>) ... 85
5.2.18 Random Seed (-rs<n>)... 85
5.2.19 Model Traversal Library (-lib)... 85
5.2.20 Initial State Space Exploration Strategy (-gtb, -gtd, -gtc)85

Contents Page ii of 108 GOTCHA Users Guide

5.2.21 Further Exploration Strategy (-gftb, -gftd, -gftc)............. 86
5.2.22 Test Case Length Recommendation (-gtlub<n>, -
gtllb<n>), Test Case Extension Strategy (-ues -eftc).................... 86
5.2.23 Random reorder (-rr).. 86
5.2.24 Loop Exit (-loop<n>)... 86
5.2.25 Output Format (-ps, -gts) ... 87
5.2.26 Progress Reports (-p<n>, -pn, -gtp<n>, -gtpn, -gdp<n>) 87
5.2.27 Coverage Task Details (-gpnc) .. 87
5.2.28 Uncoverable States, Transitions, Tasks Details (-gde, -
gtur, -gus<n>) .. 87
5.2.29 Forbidden State, Forbidden Transition, Invariant Details
(-fst<n>, -fp, -ip).. 87

5.3 The Full Traversal Test Generation Algorithm 88

6 The Programming Interface to the Test Generator 90
6.1 Creating the Model Traversal Library ... 90
6.2 Test Generator API .. 90

7 Debugging a Model 94
7.1 Debugger Commands... 94
7.2 Sample Debug Session... 95

8 Browsing Test Suites 101

9 Glossary of Terms 101

10 Index 104

GOTCHA Users Guide Page iii of 108 Contents

1 Introduction

This is the user’s guide for the GOTCHA software test suite generator. GOTCHA is
designed for use with the Spider test execution engine. We begin with an overview of the
entire process. More details on the Spider test execution engine may be found in the
Spider Test Execution Engine Users Guide and the Model Driven Test Overview
document.

1.1 Overview
GOTCHA-Spider (previously known as GOTCHA-TCBeans) is a set of tools for:
1. Creating and editing models of software components

2. Generating test suites for software components, using a variety of methods.

3. Debugging models of software components.

4. Creating scripts for test drivers.

5. Running test suites against the software components.

6. Comparing the observed results with the results predicted by a model of the
component under test.

7. Viewing and analyzing both the test suites and their execution trace.

GOTCHA (an acronym for Generation of Test Cases for Hardware Architectures) is the
part of the tool that generates an abstract test suite from a behavioural model of the
software and a set of testing directives.

Spider (which used to be known as TCBeans – when it focused more on Java
components) is the part of the tool that interprets the abstract test suite. It either translates
the abstract test suite into runnable test scripts or runs the test suite against the unit and
automatically compares the results with the model predictions.

This document is an overview on how to use both GOTCHA and Spider together. For
more details on either of the individual componets see their respective user manuals.

GOTCHA is the property of the IBM Corporation and is copyright © 2000. Spider is the
joint property of the AGEDIS consortium (www.agedis.de).

GOTCHA-Spider Release 4.0 is an extension of GOTCHA-TCBeans Release 3.0. See
What’s New in this Release.

GOTCHA Users Guide Page 5 of 108 Introduction

http://w3.haifa.ibm.com/softwaretesting/gtcb/

GOTCHA is derived from the Murphi model checker - a public domain program
available on the Murphi Home Page, and the ESPRIT Genevieve Project.

This release of GOTCHA-Spider is tailored to work with the Cygnus g++ compiler
available from Redhat. However, this should not be interpreted to mean that GOTCHA-
Spider is Open Source code.

GOTCHA-Spider is currently available only to internal IBM users and members of the
AGEDIS consortium.

1.2 Requirements
To install and run GOTCHA-Spider, you need the following:
• A computer running Windows 95, 98, 2000, XP Windows NT, AIX, or Linux.

• Java Developer’s Kit JDK 1.2 or higher.

• The GOTCHA-Spider software package is available (for IBM users) from
http://w3.haifa.ibm.com/softwaretesting/gtcb/ and directly from Alan Hartman
(hartman@il.ibm.com for members of the AGEDIS consortium).

• A C++ compiler, preferably g++ from Redhat, which can also be downloaded from
our website. (AGEDIS members will receive the whole package on a CD-ROM)

1.3 What’s New in this Release
This release (4.0) of GOTCHA-Spider provides substantially new functions in addition to
the existing functions available in GOTCHA-TCBeans Release 3.0.

GOTCHA-Spider 4.0. contains the following new and enhanced features:
• A convenient editor for GOTCHA models using the Eclipse framework

• A new set of test generation methods especially tailored for models which suffer
from state space explosion see Section 3.3 Generating test suites quickly.

• The ability to use the #include macro in GOTCHA models

• New forms of ruleset for conrolling state explosion in data intensive GOTCHA
models see Section 2.4.6.7 Rulesets with Explicit Input Tables and Section 2.4.6.8
Rulesets with Input and Input Pair Coverage.

• New coverage criteria enabling reference to the rules and their parameters see
Sections 4.2.2.3 Some Explicit Transition and 4.2.2.6 Explicit Transition Projection.

• Abstract test suite output conforming to the new ATS standard defined in the
AGEDIS project

Introduction Page 6 of 108 GOTCHA Users Guide

http://sprout.stanford.edu/dill/murphi.html
http://www.haifa.il.ibm.com/projects/verification/genevieve.html
http://www.cygnus.com/cygwin/
http://w3.haifa.ibm.com/softwaretesting/gtcb/
mailto:hartman@il.ibm.com

1.4 The GOTCHA-Spider Methodology

Specifications
1.Create Model

Behavioural
Model

Testing
Objectives

2.Create Directives

Test
Generation
Directives

Testing
Architecture

Test
Execution
Directives

3.Generate Test Suites

Test
Suites

4.Review all the above

Test
Suites

5.Execute Test Suites

Test
Results

6.Analyze and Feedback

Unit
Under
Test

Figure 1. Methodology Diagram

The GOTCHA-Spider methodology for software testing is the process supported by the
GOTCHA-Spider software testing toolkit. To use the tool effectively, you must follow
the methodology. The methodology consists of the following phases:
1. Write and debug a behavioural model of the software with testing directives.

Specification defects are discovered at this stage.

2. Write a testing interface between the model and the application under test. You can
write the testing interface in a language understood by an existing test execution
engine or by the Spider test driver. Interface defects are discovered at this stage.

3. Generate one or more abstract test suites (ATS) derived from the behavioral model
using one or more of the GOTCHA test generators. Review the abstract test suite
using the Test Suite Browser (TSBrowser tool). If necessary, modify the model,
test constraints, or coverage criteria.

4. Review the model and testing interface with the development team and test team.
Further specification defects are discovered at this review.

5. Execute the test suites against the software unit under test using an existing test
execution engine or using the Spider test driver. Spider executes the abstract test
suite and writes the results to a standardized Suite Execution Trace (SET).

6. Review the Suite Execution Trace with the TSBrowser. Coding defects are
discovered at this phase. Observe the test results and, if necessary, augment or
restrict the model or interface and repeat steps 4-6.

GOTCHA Users Guide Page 7 of 108 Introduction

1.4.1 Write a Behavioral Model for Test
The first step in the methodology is to write and debug a behavioral model of the
software application under test in the GOTCHA Definition Language (GDL) – a dialect
of the Murphi Definition Language. The model is written on the basis of the software
specifications, and in conjunction with the code architects and developers. The model
may also contain testing directives, including descriptions of the coverage goals and test
constraints required by the test suite. If no coverage goals are explicitly stated, then a set
of default coverage goals are available, or a set of random test cases may be generated.
GOTCHA provides an interactive test generation and debugging facility for exploration
of the model and manual test generation if necessary.

1.4.2 Write a Testing Interface
The second step in the methodology is to create a testing interface between the model and
the application under test. The purpose of the interface is to provide the connection
between concepts used in the behavioral model and those of the software unit and/or the
test execution engine.

Prepare the testing interface by coding an abstract to concrete (A2C) test translation table.
The initial A2C translation table is in an html document generated by the interface
wizard.

Test suites can be executed using the Spider test driver. The Spider testing interface is a
Java class appropriate for testing software applications written in Java, C, or C++.
Defects in the software interface specifications are often exposed when writing and
compiling the interface class.

1.4.3 Generate Abstract Test Suites
The GOTCHA tool has several test generators for creating abstract test suites for the
behavioural model.

The simplest of these test generators generates a set of random input sequences and their
expected behaviour.

Another test generator is interactive and can be used to construct an abstract test suite by
hand.

The remaining test generators generate test suites based on some form of coverage model.

The simplest coverage model is a guarantee of covering all inputs to all methods
described in the model. More complex coverage models are available, and at the highest
level of sophistication, the user may define an abstract set of coverage tasks, each of
which will be covered by the test suite generated by the GOTCHA comprehensive test
suite generator.

The tool reports any coverage tasks that cannot be covered by a test satisfying the
constraints. Often these indicate bugs in the model or overly constraining test
requirements. However, they may also expose defects in the specification.

You can use the TSBrowser tool to view the abstract test suite.

Introduction Page 8 of 108 GOTCHA Users Guide

http://sprout.stanford.edu/dill/murphi.html

1.4.4 Review Behavioural Model, Abstract Tests, and Testing
Interface

A vital part of the GOTCHA-Spider process is the review of the behavioural model,
abstract tests, and testing interface. Testers, architects, and developers of the software
conduct the review. The model review reveals inaccuracies, omissions, and contradictions
in the specifications. The abstract test review often unearths issues that may be have been
misinterpreted by the testers. It also serves to focus the discussion of the behavioural
model. The testing interface review reveals problems related to the interface design and
specification. These interface defects are similar to those faced by a customer writing an
application or component that interacts with the software unit under test.

In addition to revealing specification and interface defects, the review process also
reveals defects caused by imperfect communication between members of the
development and test teams. Catching these bugs early in the process saves time and
expense later on.

The tools that may be used during the review include the interactive test generator, the
test suite browser, and the interactive test execution engine.

1.4.5 Execute the Test Suite
The Spider Test Driver can execute a GOTCHA abstract test suite directly against the
application under test. This produces a suite execution trace that not only records the test
execution, but also compares the outcome of each step in the test with the outcome
predicted by the model.

You can use the TSBrowser tool to view the suite execution trace.

The test execution phase usually reveals most of the coding and design bugs.

1.4.6 Observe and Iterate
You should compare the results of executing the test with the coverage goals of the test
plan. If necessary, make further modifications to the model, the testing directives, and/or
the test generator’s runtime parameters. You can then generate further abstract test suites
to improve the effectiveness of the test.

1.5 The contents of this document
This document is a manual of the GOTCHA tool for generating test cases from a software
model, and thus we concentrate on the first three steps of the methodology:

1. Writing a model

2. Writing test generation directives

3. Generating a test suite

The GOTCHA tool includes several algorithms with built-in testing objectives, so that
one may use the tool initially without explicitly writing test generation directives.

GOTCHA Users Guide Page 9 of 108 Introduction

2 Writing a Behavioural Model

2.1 What is a Behavioural Model?
A behavioural model of a software unit is an abstract description of the software that
includes abstract descriptions of its data types (classes), data structures (objects), and
transitions. The transitions of a model are the events that cause its data structures to
change their values, and the procedures and functions invoked in order to compute the
new values. If the software under test is an API (Application Programming Interface), the
calls to the interface are usually modelled by transitions. Transitions are the external
events that trigger changes in the state of the software. Transitions may also occur as a
result of the passage of time.

A GOTCHA behavioural model also includes directives to guide the test generator in its
choice of test cases to generate. These directives are called coverage criteria and test
constraints. Other directives may also be given at the time of running the model, but most
coverage criteria and test constraints must be coded into the model itself. It is advisable to
keep the coverage criteria and test constraints in separate files to separate out the
behavioural aspects of the model from the testing strategy to be used.

The software model is written in a special purpose language for the description of
models. This language is based on the Murphi Description Language; large portions of
the text in this chapter are taken from the Murphi User’s Manual.

2.2 Writing a Behavioural Model
A GOTCHA Definition Language (GDL) model is divided into three parts, which must
occur one after the other. The model itself may be spread over a number of files (each of
file type .g). We recommend that you keep the file(s) containing test generation directives
separate from the file(s) that describe the behavioural model itself.

The three parts of a GDL model are:

GOTCHA Users Guide Page 11 of 108 Writing a Behavioural Model

http://sprout.stanford.edu/dill/murphi.html

Declarations

Procedures

Rules

1. Declarations

2. Functions and Procedures

3. Rules and Directives

A GDL description consists of:
• Declarations of constants, types, and global variables.

• Declarations and descriptions of functions and procedures (optional).

• A collection of transition rules.

• A description of the states where test cases may start.

• A description of the states where test cases may end (optional).

• A set of coverage criteria (optional).

• A set of state invariants and test constraints (optional).

The behavioural part of GDL is a collection of transition rules. Each transition rule is a
command with a pre-condition (a Boolean expression on the global variables) and an
action (a block of statements that modify the values of the variables). In GDL Release 3.0
and higher, a transition rule may have several actions associated with it, each of which
represents a possible outcome of the transition rule. A transition with more than one
possible action is called a pluRule and is used to model non-deterministic behaviour of
software.

The condition and the action(s) are both written in a Pascal-like language. The action can
be an arbitrarily complex statement block containing loops and conditionals. No matter
how complex it is, the action is executed ATOMICALLY; no other rule can change the
variables or otherwise interfere with it while it is being executed.

A GDL Model implicitly determines a state graph (see A Sample Model – Hello World).
A state is a node in the graph that is labeled by an assignment of a value to each global
variable. The start states of the graph are defined by TC_StartTestCase clauses in the
<rules> section of the program. The transitions or directed arcs of the graph are defined

Writing a Behavioural Model Page 12 of 108 GOTCHA Users Guide

by rules within the <rules> section of the program. Rule name strings and ruleset
parameters label the arcs.

2.3 Basic GDL Concepts

2.3.1 Backus-Naur Form (BNF)
The syntax is specified in this guide in a Backus-Naur Form:
 <> denote nonterminals.

 [] denote optional sections.

 {} denote repetition zero or more times.

 a | b denotes either a or b.

 () denote grouping.

When any of these symbols are required within the language, they are escaped with
backslashes.

2.3.2 Lexical Conventions

2.3.2.1 Reserved Words
The following are reserved words in GDL:

alias array assert

begin boolean break

by case CC_All_State

CC_All_Transition CC_Some_State CC_Some_Transition

CC_State_Projection CC_Transition_Projection clear

const coverage_var do

else elsif end

endalias endexists endfor

endforall endfunction endif

endpluRule endprocedure endrecord

endrule endruleset endstartstate

endswitch endwhile enum

error exists false

finalstate for forall

from from_condition function

GOTCHA Users Guide Page 13 of 108 Writing a Behavioural Model

if in includes

interleaved invariant length

of on ordenum

pluRule procedure process

program put record

return rule ruleset

startstate switch TC_EndTestCase

TC_Forbidden_State TC_Forbidden_Transition TC_Forbidden_Path

TC_StartTestCase TC_Within then

to to_condition traceuntil

true type var

while #include

ruleID CC_Some_Explicit_Transit
ion

CC_Projected_Explicit_Tr
ansition

via via_condition inputcoverage

inputtable endinputtable inputpaircoverage

Reserved words are written out in the BNF. Some of these reserved words do not yet
have defined meanings; these are reserved for future expansion. Those words are in,
interleaved, process, program and traceuntil.

The new reserved words in Release 4.0 appear at the end of the table in blue.

2.3.2.2 Case Sensitivity
GDL is case-sensitive, except for the reserved words. For example, 'foo' and 'Foo'
represent different identifiers. 'Begin' and 'BeGiN' represent the same reserved word.

2.3.2.3 Include Files
A GDL file may have another GDL file included in it by a pre-processor, just as in the
case of C.

The line
#include filename.g

will result in the entire contents of filename.g being included in the file which contains
it.

2.3.2.4 Synonyms for End
The reserved word 'end' is a synonym for every specific type of end: 'end' may be used
freely in place of 'endrule', 'endfor', etc.

Writing a Behavioural Model Page 14 of 108 GOTCHA Users Guide

2.3.2.5 Identifiers
An identifier is any sequence of letters, underscores, and digits beginning with a letter.
All identifiers beginning with underscore are reserved for use by the system. Identifiers
are referred to in the BNF below as <ID>.

2.3.2.6 Strings
A string, referred to in the BNF as <string>, is a sequence of characters other than double
quote (\") enclosed in double quotes.

2.3.2.7 Integer Constants
Integer constants, <integer-constant> in the BNF, are specified in base 10.

2.3.2.8 Comments
There are two types of comments in GDL: Ada-style comments that begin with -- and end
with a newline. C-style comments that begin with /* and end with */. C-style comments
do not nest.

2.4 GDL Syntax

2.4.1 Model Syntax
A Model has the following BNF structure:

<Model> ::= { <decl> } -- Constant, type, and global variable declarations

 { <procdecl> } -- Procedure and function declarations

 { <rules> } -- Rules, directives, and invariants

2.4.2 Declaration Syntax
Declarations have the following syntax:

 <decl> ::= const { <constdecl> ; }

 | type { <typedecl> ; }

 | var { <vardecl> ; }

 | coverage_var { <vardecl> ; }

2.4.2.1 Constant declarations

 <constdecl> ::= <ID> : <expr>

GOTCHA Users Guide Page 15 of 108 Writing a Behavioural Model

The <expr> of a constant declaration must have a value that can be evaluated at
compilation time.

2.4.2.2 Type declarations
 <typedecl> ::= <ID> : <typeExpr>

The special enumerated type "boolean" is predefined, along with the constants "true" and
"false". The type "integer" is not predefined, because using general integers without
restricting them to subranges would consume too much memory.

The simple types are Boolean, enumerations, finite subranges of integers.

The compound types are arrays of compound or simple types, records of compound or
simple types. The index types of arrays must be simple types.

 <typeExpr> ::= <ID> -- a previously defined type.

 <typeExpr> ::= <expr> .. <expr> -- Integer subrange.

 <typeExpr> ::= enum \{ <ID> {, <ID> } \} -- enumeration.

 <typeExpr> ::= record { <vardecl> } end

 <typeExpr> ::= array \[<typeExpr> \] of <typeExpr>

2.4.2.3 Union Types
In addition to the type expressions defined in the previous section on Type declarations,
GDL also contains another simple data type. The syntax for a union type is as follows:

<typeExpr> ::= union \{ <list> \}

<list> ::= <list>, <listelt> | <listelt>, <listelt> /*at least two members in the list*/

<listelt> ::= ID /* an enum type that has already been declared */

The union type provides a shorthand for referring to several enumerated types at once,
while retaining the separation between parts of the larger enumerated union type. For
example:
Type vowel_t : enum {A, E, I, O, U};

 consonant_t : enum {B, C, D, F, G, H, J, K, L, M, N, P, Q,
R, S, T, V, W, X, Y, Z};

 letter_t : union {vowel_t, consonant_t};

The minimum element of a union type (used by clear) is the minimum element of the
first enumerated type in the list. Therefore, the minimum element of letter_t would be
A.

2.4.2.4 Variable declarations
 <vardecl> ::= <ID> { , <ID> } : <typeExpr>

Variable declarations are used to define the global or state variables and also for the
definition of local variables.

Writing a Behavioural Model Page 16 of 108 GOTCHA Users Guide

The use of the reserved word Coverage_var for coverage variables is no longer
necessary in Release 3.0, since the coverage criteria CC_State_Projection and
CC_Transition_Projection provide more expressibility of the important variables to be
covered. See Coverage Criteria.

Example: The following example illustrates declarations.
Const

 NUSERS: 3;

 NFILES: 3;

 FOO : NFILES /4;

 BAR : true;

Type

 userid_t: enum {a, b, c};

 fileid_t: 1..NFILES;

 cmd_t: enum { Open_for_Read, Open_for_Write, Close };

 file_status_t : enum { Closed, Reading, Writing };

 response_code_t: enum{ AcceptCommand, RejectCommand };

 status_resp_t: enum { OpenR, OpenW, Closed, Locked };

 file_control_block_t : array [userid_t] of file_status_t ;

Var

 system_status: array [fileid_t] of file_control_block_t;

 response : response_code_t;

 result : Boolean;

 reason : status_resp_t;

 filenum : fileid_t;

In the example, constant declarations precede type declarations, which precede variable
declarations. In a GDL model in general, this need not be the case. Constant, type, and
variable declarations may be interspersed in any order, provided that any instance of an
identifier is declared before being used. (This is because GOTCHA uses a one-pass
compiler).

The array system_status is a two-dimensional array – since it is an array of
file_control_block_t, which is itself an array. The second index of the array is an
enumerated type (userid_t), so that one would access a member of the array as
system_status[1][a].

The division in GDL is integer division, so that the constant FOO evaluates to zero.

2.4.3 Procedure and Function Syntax
All procedures and functions must be declared at the top level of the program, with the
following syntax:

 <procdecl> ::= <procedure>

 | <function>

GOTCHA Users Guide Page 17 of 108 Writing a Behavioural Model

 <procedure> ::= procedure <ID> \([<formal> { ; <formal> }] \) ;

 [{ <decl> } begin] [<stmts>] end;

 <function> ::= function <ID> \([<formal> { ; <formal> }] \)

 : <typeExpr>;

 [{ <decl> } begin] [<stmts>] end;

Unlike Pascal procedures, procedures and functions with no arguments still need the
parentheses surrounding the empty parameter list.

Functions must return a value with a return statement at some point in the function.
Functions can have side effects; however, there are restrictions on the use of functions
with side effects.

The format of the parameter list in a procedure or a function is:

 <formal> ::= [var] <ID> { , <ID> } : <typeExpr>

Formal parameters declared "var" are passed by reference. Formals that are not declared
"var" are also passed by reference, but the function or procedure is not allowed to modify
them.

Formal parameter declarations and local declarations shadow declarations outside their
scope.

Example: the following example illustrates procedures and functions.
 procedure Swap(var i, j: val_t);
 var temp: val_t;
 begin
 temp := i;
 i := j;
 j := temp;
 end;

 function plustwo(input: val_t): val_t;
 const two : 2;
 begin
 return (input + two);
 end;

2.4.4 Expression Syntax
GDL is a strongly typed language, so expressions that mix variables of different types are
syntactically illegal. Type equivalence is by name only, so two variables that are declared
as being of type 1..4 will not be considered as the same type unless a type declaration has
named the type 1..4.

Expressions of any integer subrange type are legal wherever an integer expression is legal
(although they may generate a run-time error when running GOTCHA; see assignments
below). Booleans are not type-compatible with integer expressions.

Writing a Behavioural Model Page 18 of 108 GOTCHA Users Guide

It is an error to use an out-of-bounds index for an array. This too is detected only when
GOTCHA is run.

Ordered enumerated types are now supported in GDL. These are enumerated types with
an order defined between members of the type. This allows the user to use the
comparison operators, <, >, <=, >= in addition to the = and != operators which are
defined for Murphi enumerated types.

2.4.4.1 Designators
 <designator> := <ID> { . <ID> | \[<expr> \] }

As usual, the form <designator>.<ID> refers to selecting a field of a record. The form
<designator> [<expr>] refers to selecting an element of an array.

2.4.4.2 Expressions
<expr> := \(expr \)

 | <designator>

 | <integer-constant>

 | <ID> \(<actuals> \) -- a function call.

 | forall <quantifier>

 do <expr> endforall -- universal quantification, see below.

 | exists <quantifier>

 do <expr> endexists -- existential quantification, see below.

 | <expr> + <expr>

 | <expr> - <expr>

 | <expr> * <expr> -- multiplication.

 | <expr> / <expr> -- integer division.

 | <expr> % <expr> -- remainder.

 | ! <expr> -- logical negation (not).

 | <expr> | <expr> -- logical disjunction (or).

 | <expr> & <expr> -- logical conjunction (and).

 | <expr> -> <expr> -- logical implication. (implies)

 | <expr> < <expr>

 | <expr> <= <expr>

 | <expr> > <expr>

 | <expr> >= <expr>

 | <expr> = <expr>

 | <expr> != <expr> -- not equals

 | <expr> ? <expr> : <expr> -- C-style conditional expression.

GOTCHA Users Guide Page 19 of 108 Writing a Behavioural Model

2.4.4.3 Operators
The priority of operators is as follows, with lowest-priority operators listed first and
operators on the same line having equal priority:

 ?:

 ->

 |

 &

 !

 < <= = != >= >

 + -

 * / %

• '+', '-', '*', '/', '%', '<', '<=', '>=', and '>' are only defined on integer operands.

• '=' and '!=' are only defined on simple operands (not on records or arrays).

• '!', '&', '!', and '->' are only defined on Boolean operands.

• For the '?:' operator, the test must be a Boolean expression, and the two alternatives
must be of compatible type.

• '+', '-', '%','/', and '*' return an integer; the rest return Booleans, except for '?:' and
function calls.

• a->b "a implies b" or “if a then b” is equivalent to bV!a (either b is true or a is false)
. The truth table for “a implies b” is given below:

a b a->b (a implies b)

T T T

T F F

F T T

F F T

2.4.4.4 'Forall' and 'Exists' Operators
The <quantifier> used in "exists" and "forall" has the following syntax:

 <quantifier> ::= <ID> : <typeExpr>

 | <ID> := <expr> to <expr> [by <expr>]

Recall that the syntax for quantified expressions (“exists” or “forall”) is:

Writing a Behavioural Model Page 20 of 108 GOTCHA Users Guide

<quantified_expr> :=

 | forall <quantifier>

 do < boolexpr > endforall

 | exists <quantifier>

 do < boolexpr > endexists

For a quantified expression, the boolexpr must be a Boolean expression; it is evaluated
once for each value of the quantifier. A "forall" is true if and only if its expression is true
for every value of the quantifier; an "exists" is true if its expression is true for some value
of the quantifier.

Consider the following examples:
forall f:fileid_t do array[f]>0 endforall;

is equivalent to
array[1]>0 & array[2]>0 & array[3]>0

exists f:fileid_t do array[f]>0 endexists;

is equivalent to
array[1]>0 | array[2]>0 | array[3] >0

2.4.5 Statement Syntax
The followings are the statements in GDL:

 <stmts> ::= <stmt> {; [<stmt>] }

 <stmt> ::= <assignment> /* assignment */

 | <ifstmt> /* if statement */

 | <switchstmt> /* switch statement */

 | <forstmt> /* for statement */

 | <whilestmt> /* while statement */

 | <proccall> /* procedure call */

 | <clearstmt> /* clear statement */

 | <errorstmt> /* error assertion */

 | <assertstmt> /* assertion */

 | <putstmt> /* output statement */

 | <returnstmt> /* function return */

 | <breakstmt> /* debugger break statement */

GOTCHA Users Guide Page 21 of 108 Writing a Behavioural Model

2.4.5.1 Assignment
 <assignment> ::= <designator> := <expression>

The target and the expression must have compatible types, and the target must not be
declared const. One of the most common GDL syntax errors occurs when the tester writes
= instead of := for assignment.

Assigning a value to a variable that is outside its range will generate an error. This error
is detected at run time.

2.4.5.2 If statement
 <ifstmt> ::= if < boolexpr > then [<stmts>]

 { elsif < boolexpr > then [<stmts>] }

 [else [<stmts>]]

 endif

Each of the <expr>'s must be of Boolean type.

A very common syntax error is the omission of the “endif” from an “if” statement. C
programmers are also likely to forget the “then”. The quirky spelling of “elsif” is also a
problem for some.

Example:
 if (response1 != response2)

 then result := OneAcceptOneReject;

 else

 if (response1 = AcceptCommand)

 then result := BothAccepted;

 else result := BothRejected;

 endif;

 endif;

2.4.5.3 Switch statement
 <switchstmt> ::= switch <expr>

 { case <expr> {, <expr>} : [<stmts>] }

 [else [<stmts>]]

 endswitch

Each of the expressions in the case must be a constant of a compatible type with the
switch expression. If no case expression is matched, the code labeled 'else' is executed.

There is no fall through on cases (unlike in C).

Example:
switch system_status[f][u]

 case Reading , Writing:

Writing a Behavioural Model Page 22 of 108 GOTCHA Users Guide

 response := Unchanged;

 case Closed:

 if File_Available_For_Read(f,u)

 then

 response := Accept_Command;

 system_status[f][u] := Reading;

 else

 response := Reject_Command;

 endif;

 else

 Error “Illegal value for system_status”;

endswitch;

2.4.5.4 For statement
 <forstmt> ::= for <quantifier> do [stmts] endfor

Quantifiers apply to "for" statements, to quantified expressions, and to rulesets (see
below).

 <quantifier> ::= <ID> : <typeExpr> {; <ID : <typeExpr> }

 | <ID> := <expr> to <expr> [by <expr>]

The first form executes the body of the “for” statement for each value in the <typeExpr>
(which must be a simple type), from least to greatest value. The second form corresponds
to the Modula-2 FOR statement. The two expressions must be of integer type, and the
"by" expression must be a constant expression.

Examples:
for u: userid_t do

array[u] := 0;

endfor;

for f:= 1 to 3 by 2 do

array[f] := 0;

endfor;

For f : fileid_t; u: userid_t Do

 system_status[f][u] := Closed;

End;

Note: Using a quantifier, in a “for” statement or a quantified expression, declares the
<ID> of the quantifier local to the “for” statement, shadowing any external
declarations. (C programmers beware – you are used to declaring your loop variables
before using them.)

It is illegal to modify the quantifier variable from within the body of the “for” loop.

GOTCHA Users Guide Page 23 of 108 Writing a Behavioural Model

2.4.5.5 While statement
 <whilestmt> ::= while < boolexpr > do [stmts] end

Example:
f:=1;

while f<=3 do

array[f] := 0;

f:=f+1;

endwhile;

An infinite loop is a runtime error. Infinite loops pose a practical problem for GOTCHA.
Right now, GOTCHA stops with an error message after 10,000 iterations as a default
option. The user may change this limit by a command-line runtime argument to
GOTCHA.

2.4.5.6 Procedure call
 <proccall> ::= <ID> \(<expr> {, <expr> } \)

This obeys all the standard rules of procedures. Const formal parameters can be passed an
actual of any compatible type; var parameters must be passed an lvalue of the same type;
a var parameter of a subrange type must be passed an lvalue of the same subrange type.

2.4.5.7 Clear statement
 <clearstmt> ::= clear <designator>

This sets all components of an lvalue to the minimum values of their type. The minimum
value of an enumerated type is the first value declared in the list of names. The minimum
value of the type boolean is false.

NOTE: "Clear" is frequently used to set "uninteresting" variables to a fixed value;
otherwise, many states would be created during test generation with random values in
these variables. We do not recommend the use of "clear" for other purposes.

2.4.5.8 Error assertion
 <errorstmt> ::= error <string>

An "error" statement generates a run-time error. If an "error" statement is executed, test
generation terminates and the specified string is printed to the console. See example
above.

2.4.5.9 Assertion
 <assertstmt> ::= assert < boolexpr > [<string>]

Writing a Behavioural Model Page 24 of 108 GOTCHA Users Guide

 "assert < boolexpr > <string>" is completely equivalent to

 "if !< boolexpr > then error <string> end"

2.4.5.10 Output statement
 <putstmt> ::= put (<expr> | <string>)

Prints out the indicated value, each time the statement is executed. This is handed straight
to printf, so be careful to include a
 put "\n"

after each line you want to print.

Generally, this will cause a large quantity of material to be printed during test generation
(with much duplication). We have used it for debugging and for generating a file of all
possible values of certain variables (which we then process to eliminate duplicates).

2.4.5.11 Function return:
 <returnstmt> ::= return [<expr>]

Exits the current procedure, function, rule, or startstate. If exiting a function, the <expr>
must be provided and must match the return type of the function; otherwise, there must
be no return value.

2.4.5.12 Debug break statement:
 <breakstmt> ::= break

A "break" statement will cause the test generator to halt execution at this point in the
code when GOTCHA is run with the –dbg flag. For more details about the model
debugging interface see Debugging a Model. If the tool is run without the flag –dbg, than
a "break" statement has no effect.

2.4.6 Rules and Directives Syntax
This section deals with behavioural rules. For details about coverage criteria and test
constraints see Writing Testing Directives.

The syntax for behavioural rules and directives is as follows:

 <rules> ::= <rule> {; <rule> } [;]

 <rule> ::= <simplerule>

 | <pluRule>

 | <starttestcase>

GOTCHA Users Guide Page 25 of 108 Writing a Behavioural Model

 | <plustarttestcase>

 | <invariant>

 | <ruleset>

 | <aliasrule>

 | <coveragecriterion>

 | <testconstraint>

2.4.6.1 Simple rule
 <block> ::= begin

 [<stmts>]

 end

<simplerule> ::= rule <Rule_Identification_string>

 [<boolexpr > ==>] {<decl> } <block> [;]

A simple rule determines a transition from one state of the finite state graph to another.

A simple rule defines a transition between states. Logically, it consists of a block, which
is a set of statements to be executed, and a condition, a Boolean expression characterizing
the states under which the block may be executed. If the condition is true in a state, then
the body of the rule may be executed to provide a transition to another state.

The condition of a rule is optional. When no condition is specified, the rule is enabled in
all states.

The Rule_Identification_string that labels the rule is output to the abstract test suite as a
method pattern, whenever the transition defined by the rule is included in a test case. For
more details of the use of the method pattern, see section 3.1 The Abstract Test Suite –
GOTCHA’s output file.

It is an error to use an expression with side effects in a rule condition. An example of
such an illegal action would be to call a (Boolean) function that changes the value of a
state variable.

NOTE: The GOTCHA compiler does not usually pick up these errors – so be extra
careful!

The rule may declare local variables, constants, and types, which are not part of the state.

It is an error if the model does not have at least one simple rule or pluRule.

Example:
Rule "Close(int f, char u)"

 TRUE

Writing a Behavioural Model Page 26 of 108 GOTCHA Users Guide

==>

begin

 response := AcceptCommand;

 if (system_status[f][u] = Closed) then

 reason := FileStatusUnchanged;

 else

 reason := FileClosed;

 system_status[f][u] := Closed;

 endif;

end;

2.4.6.2 PluRule
<blocks> ::= <block> { <block> }

<pluRule> ::= rule < Rule_Identification_string >

 [<boolexpr > ==>]

 [{<decl> } pluRule <blocks>]

 endpluRule [;]

A pluRule determines a transition from one state of the finite state graph to several
equally valid alternative outcomes. It is used to model a situation where there are several
possible outcomes to applying a particular stimulus to the system under test.

An example of such a situation is when the stimulus (rule) consists of two processes
simultaneously requesting the same resource. It is possible that both the first process and
second process get the resource. In this case you would use a pluRule, with the first block
of statements allocating the resource to process one and putting process two into a wait,
and the second block of statements reversing the roles.

A simple rule defines a transition between states. A pluRule defines the sets of possible
outcomes of applying a stimulus to a non-deterministic software module. Logically, it
consists of a set of blocks (each of which is a set of statements to be executed) and a
condition (a Boolean expression characterizing the states under which the stimulus may
be applied). If the condition is true in a state, then any one of the blocks of the pluRule
may be executed to provide a transition to another state.

The condition of a pluRule is optional. When no condition is specified, the pluRule is
enabled in all states.

It is an error to use an expression with side effects in a rule condition. An example of
such an illegal action would be to call a (Boolean) function that changes the value of a
state variable.

NOTE: The GOTCHA compiler does not usually pick up these errors – so be extra
careful!

GOTCHA Users Guide Page 27 of 108 Writing a Behavioural Model

The Rule_Identification_string that labels the rule is output to the abstract test suite as a
method pattern, whenever the transition defined by the rule is included in a test case. For
more details on the method pattern, see section 3.1 The Abstract Test Suite – GOTCHA’s
output file.

The pluRule may declare local variables, constants, and types, which are not part of the
state. The blocks of statements are enclosed within the keywords "pluRule" and
"endpluRule."

It is an error if the model does not have at least one simple rule or pluRule.

NOTE: There is no semicolon between the blocks in a pluRule. See the example below.

PluRules should be used sparingly, since they create the possibility of executing a test
case with an undecidable outcome (i.e., one may not know if a particular execution of a
test case was successful or not, which could cause a lengthy retry cycle). Example:
Rule "GetResource(int r, char u1) || GetResource(int r, char u2)"

 u1 < u2 -- different users

==>

pluRule

 begin -- First possibility, user 1 gets in first

 AssignResource(r, u1);

 end -- first possibility

 begin -- Second possibility, user 2 gets in first

 AssignResource(r, u2);

 end -- second possibility

endpluRule;

2.4.6.3 Start Test Case
 <starttestcase> ::= TC_StartTestCase < Rule_Identification_string >

 { <decl> } <block> [;]

A TC_StartTestCase is a special type of rule. It is executed only at the beginning of a test
generation. In other words, every test in the test suite consists of one TC_StartTestCase
and then one or more simple rules. A TC_StartTestCase rule has no preconditions.

If a TC_StartTestCase does not assign a value to a global variable, that global variable is
"cleared" (i.e., the compiler inserts a "clear" statement for every global variable at the
beginning of each TC_StartTestCase block).

If the model does not have one TC_StartTestCase or non-deterministic
TC_StartTestCase, then the GOTCHA translator creates a default TC_StartTestCase rule,
which clears all state variables.

The Rule_Identification_string that labels the rule is output to the abstract test suite as a
method pattern, whenever the transition defined by the rule is included in a test case. For

Writing a Behavioural Model Page 28 of 108 GOTCHA Users Guide

more details on the method pattern, see section 3.1 The Abstract Test Suite – GOTCHA’s
output file.

Example:
TC_StartTestCase "Initialize()"

Begin

 clear system_status;

 response := RejectCommand;

 reason := FileClosed;

End;

2.4.6.4 Non-deterministic Start Test Case
 <plustarttestcase> ::= TC_StartTestCase < Rule_Identification_string >

 [{ <decl> } pluRule <blocks>]

 endpluRule [;]

A non-deterministic TC_StartTestCase is the analog of a pluRule for starting a test case.
You should use it if the system under test cannot be initialized in a predictable state. The
blocks of a non-deterministic StartTestCase describe each of the possible starting
configurations.

If a block in a non-deterministic StartTestCase does not assign a value to a global
variable, that global variable is "cleared" (i.e., the compiler inserts a "clear" statement for
every global variable at the beginning of each StartTestCase block.)

The Rule_Identification_string that labels the rule is output to the abstract test suite as a
method pattern, whenever the transition defined by the rule is included in a test case. For
more details on the method pattern, see section 3.1 The Abstract Test Suite – GOTCHA’s
output file.

Example:
TC_StartTestCase "Initialize()"

PluRule

 begin

 clear system_status;

 response := RejectCommand;

 clear reason;

end

 begin

 clear system_status;

 response := AcceptCommand;

 clear reason;

end

GOTCHA Users Guide Page 29 of 108 Writing a Behavioural Model

EndpluRule;

2.4.6.5 Invariant
 <invariant> ::= invariant [<string>] < boolexpr >

The form

 invariant "foo"

 <expr>

is syntactic sugar for

 rule

 !<expr>

 ==>

 Error "Invariant violated: foo"

 end

Many modelers find it more natural to use an embedded specification style with assert
and error statements than to use invariants for some conditions. However, for properties
that are conveniently expressed as invariants, it is generally more efficient to express
them as invariants, because the compiler can then take advantage of the restricted
properties of that invariant.

Invariants are typically used in the debugging phase of writing a model; they have no
function in test generation.

It is an error to use an expression with side effects in an invariant.

Example:
Invariant “At most one writer on the file”

 NumWriters(f) <= 1;

2.4.6.6 Ruleset
 <ruleset> ::= ruleset <quantifier>

 {; <quantifier> } do [<rules>] end

A ruleset can be thought of as syntactic sugar for creating a copy of its component rules
for every possible value of its quantifiers. In GOTCHA 4.0 we also introduce ways of
limiting the number of rules generated by a ruleset.

Writing a Behavioural Model Page 30 of 108 GOTCHA Users Guide

When a rule within the ruleset is included in a test, the values of the quantifying variables
are output to the abstract test suite as a data pattern. A data pattern looks like a sequence
of assignment statements.

Rulesets may be thought of as passing parameters to their constituent rules. In the
following example, the ruleset passes a fileid and a userid to the rule, which opens a file
for reading.

The standard ruleset uses all possible combinations of the input values. The following
example creates an Open_for_Read() rule for each possible combination of files and
users. If there are three users and two files, the number of rules generated will be six.

Ruleset f: fileid_t; u: userid_t

 Do

 Rule "Open_for_Read(int f,int u)"

 reset_status != hung

 ==>

 Begin

 switch system_status[f][u]

 case Reading , Writing:

 response := Unchanged;

 case Closed:

 if File_Available_For_Read(f,u)

 then

 response := Accept_Command;

 system_status[f][u] := Reading;

 else

 response := Reject_Command;

 endif;

 endswitch;

 End;

End; -- of ruleset

Rulesets may also pass parameters to directives including TC_StartTestCase and
TCEndTestCase; not only to simple rules. For more details on the use of rulesets to pass
parameters to the unit under test, see section 3.1 The Abstract Test Suite – GOTCHA’s
output file.

2.4.6.7 Rulesets with Explicit Input Tables
 <ruleset> ::= ruleset <quantifier>

 {; <quantifier> }

 InputTable <identifier> <Input_Table_Identification_string>

GOTCHA Users Guide Page 31 of 108 Writing a Behavioural Model

 <TableRow> { <TableRow>}

 EndInputTable

do [<rules>] end

 <TableRow> ::= <constant_expression> {<constant_expression> };

A ruleset with an explicit input table allows the user to define precisely which
combinations of values for the parameters will be input to the rules within the ruleset. In
a standard ruleset, all possible combinations of values are used. The user should use an
explicit input table or an implicit input table when the number of possible combinations
of input variables is too large.

The following is an example of an explicit input table:
type

 Result_t : enum {OK, MyError };

 int_range_t : 0..3;

 Type2: enum { a, b, c, d, e };

ruleset r: Result_t; aa: int_range_t; bb:int_range_t; cc:Type2

InputTable TableId "A Sample Input Table"

 OK 0 1 a;

 OK 3 1 a;

 MyError 1 3 d;

 MyError 2 0 e;

endInputTable

do

 rule "F2(r,aa,bb,cc)"

 :

endruleset;

The rule F2(r,aa,bb,cc) is only instantiated in the model with the four combinations
of values given in the input table rather than the 1605442 =××× possible
combinations of the four input parameters r, aa, bb, and cc.

Compilation errors will occur if the constant expressions in the table rows are not of the
correct type required by the quantifier of the ruleset, or if the number of constant
expressions in a row does not equal the number of quantifiers in the ruleset.

2.4.6.8 Rulesets with Input and Input Pair Coverage
 <ruleset> ::= ruleset <quantifier>

 {; <quantifier> }

Writing a Behavioural Model Page 32 of 108 GOTCHA Users Guide

 inputcoverage {<integer_expression>} |

 inputpaircoverage {<integer_expression>}

do [<rules>] end

There are two types of rulesets with implicit input tables (other than the standard ruleset
which implicitly defines all possible combinations).

Input Coverage rulesets create a table of values where each input value occurs a fixed
minimum number n of times in the table. If no <integer_expression> is given for the
coverage factor n, then n is assumed to be 1.

The following is an example of an input coverage ruleset:
type

 Result_t : enum {OK, MyError };

 int_range_t : 0..3;

 Type2: enum { a, b, c, d, e };

ruleset r: Result_t; aa: int_range_t; bb:int_range_t; cc:Type2

InputCoverage

do

 rule "F2(r,aa,bb,cc)"

 :

endruleset;

The rule F2(r,aa,bb,cc) will be instantiated in the model with an input table which is
guaranteed to include each value of each of the four input parameters r, aa, bb, and cc at
least once. For example GOTCHA may instantiate this as a set of five rules with the
following values of the input parameters:

r aa bb cc
OK 0 1 a
MyError 1 3 b
OK 2 0 c
MyError 3 2 d
OK 0 3 e

Specifying
InputCoverage 2

would produce a table with ten entries, guaranteed to cover each input value at least
twice, for example:

r aa bb cc
OK 0 1 a

GOTCHA Users Guide Page 33 of 108 Writing a Behavioural Model

MyError 1 3 b
OK 2 0 c
MyError 3 2 d
OK 1 3 e
MyError 2 1 a
OK 2 2 b
MyError 0 0 c
OK 3 0 d
MyError 1 2 e

Input Pair Coverage rulesets create a table of values where each pair of input values
occurs a fixed minimum number n of times in the table. If no <integer_expression> is
given for the coverage factor n, then n is assumed to be 1.

The following is an example of an input pair coverage ruleset:
type

 int_3_t : 0..2;

ruleset aa: int_3_t; bb:int_3_t; cc: int_3_t; dd : int_3_t
InputPairCoverage

do

 rule "F4(aa,bb,cc,dd)"

 :

endruleset;

The rule F4(aa,bb,cc,dd) will be instantiated in the model with an input table which
is guaranteed to include each pair of values of each of the four input parameters aa, bb,
cc, and dd, at least once. For example GOTCHA may instantiate this as a set of nine rules
with the following values of the input parameters:

aa bb cc dd

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

Writing a Behavioural Model Page 34 of 108 GOTCHA Users Guide

The input table constructed by GOTCHA for input pair coverage is close to the minimum
possible size (number of rows) that covers each pair of inputs. To estimate how large this
minimum size is multiply the sizes of the two largest quantifier ranges (in the example
above this is) to get a lower bound. If the number of quantifiers, q, in the
ruleset (in the example above) is large, one should multiply the lower bound by a
factor roughly equal to .

933 =×
4=q

q2log

2.5 A Sample Model – Hello World
This section contains a simple model of a piece of software whose specifications are
given below. All the source code for the application and its models are contained in the
samples directory (see Model Driven Test Overview).

2.5.1 Hello World Application Specification
The application is a class whose purpose is to output the letters of the string " HELLO
WORLD ". The class has three methods:

• initialize() – which sets a pointer at the blank character before the H, and enables
the object to receive forward() calls.

• forward() – which moves the pointer forward in the string and outputs the next
character. After reaching the blank at the end of the string, forward() returns a
Null character.

• quit() – which returns a Null character and prevents any further calls to the
forward() method.

2.5.2 The GDL Model of Hello World
The model is given below:
-- The Declarations

Const MAXPOS : 12;

Type position_t : 0..MAXPOS;

Type char_t : enum{Null, H, E, L, O, blank, W, R, D};

Var ch: char_t;

Var pos : position_t;

Var alive : boolean;

-- The functions

function stringchar(p : position_t) : char_t;

var result : char_t;

begin

 switch pos

 case 0,6,12: result := blank;

GOTCHA Users Guide Page 35 of 108 Writing a Behavioural Model

 case 1: result := H;

 case 2: result:=E;

 case 3,4,10: result:=L;

 case 5,8: result:=O;

 case 7: result:=W;

 case 9: result:=R;

 case 11: result:=D;

 endswitch;

 return result;

end;

-- The transition Rules

Rule "forward()"

 alive

==>

Begin

 if pos < MAXPOS

 then

pos := pos + 1;

 ch := stringchar(pos);

 else

 ch := Null;

 endif;

End;

Rule "quit()"

 alive

==>

Begin

 alive := false;

 ch := Null;

 pos := 0;

End;

-- The Test Constraint for starting a test case

TC_StartTestCase "initialize()"

Begin

 alive := true;

Writing a Behavioural Model Page 36 of 108 GOTCHA Users Guide

 ch := blank;

 pos := 0;

End;

2.5.3 The Hello World Finite State Machine
The finite state machine graph described in this model is shown pictorially below. Note
that the values of the three state variables alive, ch, and pos describe each state. We
have chosen to illustrate the nature of projection onto variables by drawing the values
taken by the projection variable, ch, on the X-axis, and the values taken by the non-
projection variables (alive and pos) on the Y-axis. A state will be denoted by the
ordered pair (ch, alive and pos) to emphasize the use of the ch variable as the x-
coordinate and the combination of alive and pos as the y-coordinate in the diagrams
below.

In theory, any combination of values is possible, so any position in the diagram below
could represent a state. For example the state (Null, True 0) is represented in the
bottom left hand corner. The state (Null, True 12) is represented in the top lefthand
corner. All states with ch = Null are in the leftmost column. All states with ch = D are
in the rightmost column.

T
0

blank

T
1
H

T
2
E

T
4
L

T
3
L

T
5
O

T
6

blank

T
7
W

T
8
O

T
9
R

T
10
L

T
11
D

T
12

blank

F
0

Null

Hello World FSM

forward()

quit()

Alive
pos
ch

state

Alive
pos
ch

StartTestCase state

T
12
Null

The start test case state is coloured green, and all other intermediate states are blue.

The rule, forward() enables us to pass from one state to another using the solid arrows,
while the dotted arrows represents the quit() transitions. In general when drawing state
graphs, the arrows are labelled with the name of the rule that is activated to make the

GOTCHA Users Guide Page 37 of 108 Writing a Behavioural Model

transition between states. Note that a loop represents a transition from a state to itself, as
in the forward() transition from the state (Null, True 12).

Writing a Behavioural Model Page 38 of 108 GOTCHA Users Guide

3 Generating Test Suites – First
Steps

3.1 The Abstract Test Suite – GOTCHA’s output file
GOTCHA generates a set of test cases and outputs the resulting test suite to a file using
the XML Schema for Abstract Test Suites defined by the AGEDIS project. The Abstract
Test Suite (ATS), and its extension the Suite Execution Trace (SET) are formally defined
and largely explained in the TestSuite User’s Guide. Not all the features described in that
document are used by the GOTCHA generated test cases. In this section we describe the
features of an ATS that are produced by GOTCHA.

Note that the ATS can be most conveniently viewed using the TSBrowser which is a
separate component in the Model Driven Test Tools. Any XML viewer or flat file editor
may be used to view the test suites.

The first filename of the GDL model is used as the class name of the unit under test in
the ATS.

The constants declared in the model are translated as constants in the ATS file.

The types declared in the model are translated as types in the ATS file. Some types not
explicitly declared in the model may appear as types in the ATS file. A type expression
used in the model will be declared with a new GOTCHA generated name, and some new
types may be defined by GOTCHA when the use is made of certain test constraints and
coverage criteria.

Each stimulus of the unit under test corresponds to a Rule in the GDL model. These rules
are listed as members of the class, and their signature is derived from the rulesets which
enclose the rule in the GDL model. Each rule will generate a member of the class. Some
additional members will also be declared when GOTCHA generates a default end test
case condition or start test case rule.

Each state variable in the model also generates a member of the class.

For example if the model contained the following lines in the file named filesystem.g:

GOTCHA Users Guide Page 39 of 108 Generating Test Suites – First Steps

Const NFILES: 3;

Type userid_t: enum {a, b, c};

 fileid_t: 1..NFILES;

 response_code_t: enum { AcceptCommand, RejectCommand } ;

Var response: response_code_t;

Ruleset f : fileid_t; u: userid_t

Do

Rule "OpenForRead(int f, char u)"

..

EndRuleSet;

TC_StartTestCase "Initialize()"

The ATS file would contain the following XML fragments describing the model:

<testSuite>

<abstractTestSuite generator="GOTCHA">

<model>

<class name="filesystem">

 <constants>

 <constant name="NFILES" type="int">

 <value>3</value>

 </constant>

 </constants>

<types>

 <type name="fileid_t">

 <range type = "int">

 <interval from="1" to="3"/>

 </range>

 </type>

 <type name="userid_t">

 <enum>

 <element name="c"/>

 <element name="b"/>

 <element name="a"/>

 </enum>

 </type>

 <type name="response_code_t">

Generating Test Suites – First Steps Page 40 of 108 GOTCHA Users Guide

 <enum>

 <element name="RejectCommand"/>

 <element name="AcceptCommand"/>

 </enum>

 </type>

</types>

 <members>

 <member signature="Initialize()"/>

 <member signature="OpenForRead(fileid_t, userid_t)"/>

 <member signature="response:response_code_t"/>

 </members>

</class>

<object name="filesystem_1" class="filesystem"/>

</model>

The test cases then follow the model in the ATS file. Each test case consists of a series of
steps, each step being either an invocation of a rule or checking the values of the state
variables.

For example:

<testCase id="TestCase0">

<step id="S0_S000000000031_0">

<interaction object="filesystem_1" signature="Initialize()"
type="call_return">

</interaction>

</step>

<step id="S1_S000000000031_1">

<interaction object="filesystem_1"
signature="response:response_code_t" type="check">

<value>RejectCommand</value>

</interaction>

</step>

<step id="S4_00000000040R500000100000_0">

<interaction object="filesystem_1"
signature="OpenForRead(fileid_t, userid_t)" type="call_return">

<value>2</value>

<value>c</value>

</interaction>

</step>

<step id="S5_00000000040R500000100000_1">

GOTCHA Users Guide Page 41 of 108 Generating Test Suites – First Steps

<interaction object="filesystem_1"
signature="response:response_code_t" type="check">

<value>AcceptCommand</value>

</interaction>

</step>

</testCase>

</testSuite>

Spider test execution directives are used to map GOTCHA state variables, rules and types
to their implementation counterparts. The class representing the implementation defaults
to the model’s name. State variables and rules default to implementation data members
and methods with the same name. Spider invokes the rule implementation method when
the rule is fired in the abstract test suite. It then compares each state variable with its
implementation data member to determine whether the actual results are equal to the
results predicted by the model. Table 1 describes the implementation defaults for the
GOTCHA types:
Table 1 GOTCHA to Spider Defaults

GOTCHA type default implementation type

boolean boolean

Integer range integer

enumeration string

array array

record Class (inside model’s class)

The default value of the enumeration members is the members’ name.

Changes to the above defaults are specified in Spider test execution directives. For more
details see the Model Directed Test Overview and the Spider Test Execution User Guide.

3.2 Interactive Test Generation
The GOTCHA tool provides methods for generating a test suite both automatically and
interactively. It is often helpful to use the interactive test generator as an aid in
understanding the model that has been built before starting to generate automatically. The
interactive generation acts as a sanity check on the model, and provides a convenient
method for debugging the model, and generating a few tests for the review process.

3.2.1 Introduction to the Interactive Generator
The GOTCHA interactive test generator serves two main purposes:
• Enables you to walk through the finite state machine and observe the effects of the

rules, preconditions, StartTestCase clauses, EndTestCase clauses, and other testing
directives on the state variables.

Generating Test Suites – First Steps Page 42 of 108 GOTCHA Users Guide

• Enables the creation of manually constructed test cases and small test suites in the
abstract test suite format.

The interactive generator uses a command line interface with short letter or number
commands, which you input. The interactive session maintains a record of the steps taken
so far in exploring the model. This is retained in memory as the current test case. The
current test case can be stored in the current test suite. After storing a test case, a new test
case can be started from a StartTestCase rule, or a new test can be created, carrying on
from where the previous test case left off.

After saving one or more test cases, the resulting test suite can be printed to an abstract
test suite file.

The interactive session may be in one of two conditions:
4. Waiting for a choice of rule (RuleWait), or

5. Waiting for a choice of state (StateWait).

The second condition – StateWait – is only encountered if the previous rule chosen was a
pluRule, or if the test case is started by a non-deterministic StartTestCase rule.

3.2.2 Starting An Interactive GOTCHA Session
In order to invoke the interactive generator, use the following command in a DOS
window:

GOTCHA beh_model.g test_dir.g –itg

This assumes that the behavioural model and test directives are in the files beh_model.g
and test_dir.g respectively.

At the start of an interactive GOTCHA session, the following actions take place:
• If there is more than one StartTestCase rule, the session displays all the StartTestCase

rules and prompts the user to choose one. The session is now in the RuleWait
condition.

• If the only StartTestCase rule is deterministic, then the session displays the set of
rules enabled in the state reached by applying the StartTestCase rule. The session is
now in the RuleWait condition, and the current test case already contains the first rule
and state specified by the unique StartTestCase rule and its outcome.

• If the only StartTestCase rule is non-deterministic (a pluRule), the session enters the
StateWait condition and displays the set of possible states reachable.

3.2.3 What to do in RuleWait
When the session is in RuleWait, it lists all the enabled rules at the current state.
The number of rules displayed is governed by the Rules Per Screen parameter (default 5)
– but all enabled rules can be displayed using the (m) more command.

The format of a list of enabled rules is as follows:

Rule 1 (E0V1F0):

MethodPattern1 DataInputPattern1

GOTCHA Users Guide Page 43 of 108 Generating Test Suites – First Steps

Rule 2 (E1V2F1):

MethodPattern2 DataInputPattern2

(EnVmFk) indicates that the states reachable from this rule include n valid
EndTestCase states, m valid non-EndTestCase states, and k forbidden states
(forbidden by a test constraint).

The RuleWait user options are:
• Choosing a rule (enter the number of the rule selected). This action appends the new

rule to the current test case and displays the set of alternative states. The choice may
result in three possible outcomes:

a. If the rule chosen is not a pluRule and it generates a single permissible
state (E1V0F0 or E0V1F0), then the new state is entered, followed by the
list of enabled rules. The session remains in RuleWait.

b. If the rule chosen generates only forbidden states (E0V0Fn), then all the
forbidden states are displayed. The session remains in RuleWait and
prompts you to choose another rule to continue.

c. If the rule is a pluRule that generates both permissible and forbidden
states, then all states are displayed. The session moves to StateWait, but
only permissible states may be chosen.

• Show Current State (c): displays the values of all the state variables in the current
state. The session remains in RuleWait.

• Back (b): retracts the previous state or rule choice. The session transitions to either
StateWait or RuleWait, depending on the previous choice, and displays the
appropriate list of states or rules.

• Restart (r): prompts for save/delete of the partial test case and performs the action
requested. The session returns to its initial state, while retaining the current test suite
in memory.

• Save (partial) test (s): saves the current partial test case to the current test suite in
memory. The session remains in RuleWait.

• Print (partial) test (p): prints the current partial test to an ATS file and prompts for a
file name, and whether to continue from the current state or return to a StartTestCase.
The session remains in RuleWait.

• Print test suite (ps): prints the current partial test and all the saved tests to an ATS file
and asks whether to start a new test case, start a new test suite, or continue from the
current position. The session remains in RuleWait.

• Discard test suite (d): prompts for confirmation, then discards all tests stored so far.
The session returns to its initial state.

• Information (i): displays the number of test cases in the current test suite, the number
of states and rules in the current test case, and whether or not the current state is an
EndTestCase state.

• Commands Help(h): lists the commands available and their interpretation (1-NR, c, b,
r, s, p, ps, d, i, h, m, o, q). The session remains in RuleWait.

Generating Test Suites – First Steps Page 44 of 108 GOTCHA Users Guide

• More (m): continues the display of the current enabled rules list.

• User Interface Options (o): allows you to change the user interface options. There are
three user interface options currently available:

a. Show the states in a long or shortened form. The long form of the states shows
each of the variable names and their respective values. The short form shows
only the values in a compressed string.

b. Rules Per Screen – limits the number of rules displayed in a group, use (m) more
to see the next set of rules in a group.

c. States Per Screen – limits the number of states displayed in a group, use (m)
more to see the next set of states in the group. This parameter applies to the
alternative states list, the EndTestCase states list, and the Forbidden states list.

• Quit (q): prompts for save/delete partial test, prompts for print/discard current test
suite. The interactive GOTCHA session is terminated.

3.2.4 What to do in StateWait
Upon entering the StateWait condition, the interactive GOTCHA session prints the list
of possible alternative states resulting from the application of a pluRule. The number of
states displayed is governed by the States Per Screen parameter (default 5) – but all
alternatives can be displayed using the (m) more command.

The format of a list of possible alternative states is as follows:

State 1 (E):

 var1 = val11

var2 = val12

…

varn = val1n

State 2 (V):

var1 = val21

 var2 = val2,

 …

 varn = val2n

State 3 (F):

 var1 = val31

 var2 = val32

 …

 varn = val3n

(E) indicates that the state is a valid EndTestCase state.

(V) indicates that the state is a valid non-EndTestCase state.

(F) indicates a forbidden state (forbidden by a test constraint).

GOTCHA Users Guide Page 45 of 108 Generating Test Suites – First Steps

Valid EndTestCase states will be displayed before valid non-EndTestCase states, and
forbidden states will be displayed last.

StateWait user options are:
• Choose a state (input a state number): appends the new state to the current test case

and displays the set of enabled rules in the new state. The session moves to RuleWait.

• Show EndTestCase constraints (e): displays which EndTestCase constraints are
satisfied by the listed EndTestCase states. The session remains in StateWait.

Sample Display:

The above states are EndTestCase states because:

State 1:

EndTestCasePattern1

ParameterPattern1

State 1:

EndTestCasePattern2

ParameterPattern2

State 2:

EndTestCaseStatePattern3

ParameterPattern3

• Show Forbidden (f): displays the constraints violated by the forbidden states that are
reachable by applying the rule just chosen. The session remains in StateWait.

Sample Display:

The above states are forbidden because:

State 3:

TestConstraintPattern1 ParameterPattern1

State 3:

TestConstraintPattern2 ParameterPattern2

State 4:

TestConstraintPattern3 ParameterPattern3

• Show Current State (c): displays the current state. The session remains in StateWait.

• Back (b): retracts the previous rule choice and displays the set of enabled rules again.
The session moves to RuleWait.

• Restart (r): prompts for save/delete of the partial test suite and performs the request.
The session reinitializes the current test case.

Generating Test Suites – First Steps Page 46 of 108 GOTCHA Users Guide

• Information (i): displays the number of test cases in the current test suite, the number
of states and rules in the current test case, and whether or not the current state is an
EndTestCase state.

• Commands Help(h): lists the commands available and their interpretation (1-V, c, b,
r, e, f, i, h, m, o, q) where V is the total number of valid states.

• More (m): continues the current state list under display. If all alternatives are being
displayed, it displays the next set of alternatives; if EndTestCase states are being
displayed, it displays the next set of EndTestCase states; and if forbidden states are
being displayed, it displays the next set of forbidden states.

• User Interface Options (o): allows you to change the user interface options. There are
three user interface options currently available:

a. Show the states in a long or shortened form. The long form of the states shows
each of the variable names and their respective values. The short form shows
only the values in a compressed string.

b. Rules Per Screen – limits the number of rules displayed in a group, use (m) more
to see the next set of rules in a group.

c. States Per Screen – limits the number of states displayed in a group, use (m)
more to see the next set of states in the group. This parameter applies to the
alternative states list, the final states list, and the illegal states list.

• Quit (q): prompts for save/delete partial test, prompts for print/discard current test
suite. Exits the program

3.2.5 A Sample Interactive Session
In this section we describe a session using the interactive test generator on the sample
filesystem.g in the samples/filesystem/models folder.

To start the session, issue the following command:
>> gotcha samples/fs_plurule/models/filesystem_p.g –itg

The screen then shows the following text:
Input Model: filesystem_p

Algorithm:

~~~~~~~~~~ 

         GOTCHA Test Generation in interactive mode 

         Random Seed is 1556053837. 

         Setting up interactive GOTCHA test generation 

         Computing test start states and rules 

         Firing unique start rule 

Initialize() 

         Entering unique start state 

         Rules enabled in current state: 

GOTCHA Users Guide                 Page 47 of 108 Generating Test Suites – First Steps 
 



 

Rule 1(E0V2F0): 

OpenForWrite(int f, char u1) || OpenForWrite(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 2(E0V2F0): 

OpenForRead(int f, char u1) || OpenForRead(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 3(E1V0F0): 

Close(int f, char u) 

f = 1 

u = a 

Rule 4(E1V0F0): 

Close(int f, char u) 

f = 1 

u = b 

Rule 5(E0V1F0): 

OpenForWrite(int f, char u) 

f = 1 

u = a 

Enter m to see more enabled rules 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q  

 

The model has been compiled, and the interactive test generator has started running. 
When the message “Computing test start states and rules” appears, the system computes 
all the StartTestCase rules.  

Since there is only one StartTestCase rule, it fires this rule to start the test case. The 
generator moves to the unique start state, and computes the rules that are currently 
enabled in this new state.  

We see that eight rules are enabled, the first five are displayed, and the remainder can be 
displayed by typing m (more). 

 
>> m 

         Rules enabled in current state: 

Rule 6(E0V1F0): 

OpenForWrite(int f, char u) 

f = 1 

u = b 

Generating Test Suites – First Steps      Page 48 of 108 GOTCHA Users Guide 
 



 

Rule 7(E0V1F0): 

OpenForRead(int f, char u) 

f = 1 

u = a 

Rule 8(E0V1F0): 

OpenForRead(int f, char u) 

f = 1 

u = b 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Typing the command h (Show Command Help) will give the full text of the commands 
available: 

 
>> h 

Choose a Rule Number(1-8) or one of the following: 

c - show Current state,         b  - Back up one step, 

r - Restart the current test,   s  - Save current test, 

p - print current test,         ps - Print the whole test suite 

d - Discard the test suite,     i  - show current Information, 

h - show command Help,          o  - User interface options, 

m - show More rules,            q - Quit GOTCHA. 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Typing the commands i (information) and c (current state) will give the following text: 

 
>> i 

The current test suite has 0 test cases. 

The current test case has 1 state and 1 rule. 

The current state is an EndTestCase state. 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

>> c 

         The state is: 

second_reason = FileOpenForRead 

main_reason = FileClosed 

response = RejectCommand 

system_status[1][a] = Closed 

system_status[1][b] = Closed 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

GOTCHA Users Guide                 Page 49 of 108 Generating Test Suites – First Steps 
 



 

Choosing Rule 1, which is a pluRule, will lead to one of two valid states – neither of 
which is an EndTestCase state or a forbidden state, since the text displayed after Rule1 is 
E0V2F0. On the other hand choosing Rule 3 (E1V0F0) will lead to a valid EndTestCase 
state. Choosing Rule 1 will cause the interactive GOTCHA session to enter into the 
StateWait condition, since there are two possible outcomes. Choosing Rule 3 will lead 
back into the RuleWait condition, since there is only one possible outcome to Rule 3.  

First try Rule 1: 
>> 1 

         You have chosen Rule Number 1: 

         Possible outcome states of rule chosen: 

State 1(V): 

second_reason = FileLocked 

main_reason = FileOpenForWrite 

response = OneAcceptOneReject 

system_status[1][a] = Closed 

system_status[1][b] = Writing 

State 2(V): 

second_reason = FileLocked 

main_reason = FileOpenForWrite 

response = OneAcceptOneReject 

system_status[1][a] = Writing 

system_status[1][b] = Closed 

Enter a State Number (1-2), c, b, r, e, f, i, h, m, o, or q 

 

You are now in the StateWait condition, and the options that you can choose from have 
changed accordingly. If you type h (Show Command Help), you will get a full list of the 
options: 
>> h 

Choose a State Number (1-2), or one of the following: 

c - show Current state,           b - Back up one step, 

r - Restart the current test,     e - show EndTestCase state 
details, 

f - show Forbidden state details, i - show current Information, 

h - show command Help,            o - User interface Options, 

m - show More states,             q - Quit GOTCHA. 

Enter a State Number (1-2), c, b, r, e, f, i, h, m, o, or q 

 

Choose State 1 to see what the next set of options will be: 
>> 1 

         You have chosen State Number 1: 

         Rules enabled in current state: 

Generating Test Suites – First Steps      Page 50 of 108 GOTCHA Users Guide 
 



 

Rule 1(E0V2F0): 

OpenForWrite(int f, char u1) || OpenForWrite(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 2(E0V2F0): 

OpenForRead(int f, char u1) || OpenForRead(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 3(E0V1F0): 

Close(int f, char u) 

f = 1 

u = a 

Rule 4(E1V0F0): 

Close(int f, char u) 

f = 1 

u = b 

Rule 5(E0V1F0): 

OpenForWrite(int f, char u) 

f = 1 

u = a 

Enter m to see more enabled rules 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

As before, eight rules are enabled. Choose Rule 3 to obtain the following outcome: 
>> 3 

         You have chosen Rule Number 3: 

         Rules enabled in current state: 

Rule 1(E0V2F0): 

OpenForWrite(int f, char u1) || OpenForWrite(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 2(E0V2F0): 

OpenForRead(int f, char u1) || OpenForRead(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

GOTCHA Users Guide                 Page 51 of 108 Generating Test Suites – First Steps 
 



 

Rule 3(E0V1F0): 

Close(int f, char u) 

f = 1 

u = a 

Rule 4(E1V0F0): 

Close(int f, char u) 

f = 1 

u = b 

Rule 5(E0V1F0): 

OpenForWrite(int f, char u) 

f = 1 

u = a 

Enter m to see more enabled rules 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Now choose Rule 4, which should lead to an EndTestCase state. This will produce a test 
that satisfies all the constraints, which you will then save to the current test suite, and 
print to an abstract test suite file.  

Applying Rule 4 gives the following: 
>> 4 

         You have chosen Rule Number 4: 

         Rules enabled in current state: 

Rule 1(E0V2F0): 

OpenForWrite(int f, char u1) || OpenForWrite(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 2(E0V2F0): 

OpenForRead(int f, char u1) || OpenForRead(int f, char u2) 

f = 1 

u1 = a 

u2 = b 

Rule 3(E1V0F0): 

Close(int f, char u) 

f = 1 

u = a 

Rule 4(E1V0F0): 

Close(int f, char u) 

f = 1 

Generating Test Suites – First Steps      Page 52 of 108 GOTCHA Users Guide 
 



 

u = b 

Rule 5(E0V1F0): 

OpenForWrite(int f, char u) 

f = 1 

u = a 

Enter m to see more enabled rules 

         Current state is an EndTestCase state. 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Entering s (Save) to save the current test case to the current test suite leads to the 
following dialog: 
>> s 

Do you wish to start a new test case? (y/n) 

>> n 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Answering no to the question allows you to continue a second test case from the end of 
the first test case. Had you answered yes, the current test case would start again from a 
starttestcase state. To verify, type i (for Information): 
>> i 

The current test suite has 1 test case. 

The current test case has 4 states and 4 rules. 

The current state is an EndTestCase state. 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Now enter ps (Print the test suite). This adds the current test case to the current test suite 
and outputs the resulting suite to an abstract test suite file: 
>> ps 

Enter a file name for the abstract test suite: 

>> pxx 

Printing Current Test Suite to file pxx.ats 

Do you wish to: 

         start a new test case? (r) 

         start a new test suite? (d) 

         or continue? (c) 

>> c 

Continue interactive test generation with current suite and test 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

GOTCHA Users Guide                 Page 53 of 108 Generating Test Suites – First Steps 
 



 

Choosing the option to continue retains the current test case and current test suite in 
memory. Choosing to start a new test case retains only the current test suite  

Request information to clarify the situation after c before quitting: 
>> i 

The current test suite has 2 test cases. 

The current test case has 4 states and 4 rules. 

The current state is an EndTestCase state. 

Enter a Rule Number(1-8), c, b, r, s, p, ps, d, i, h, m, o, or q 

 

Now enter q to quit the interactive GOTCHA session: 
>> q 

You have chosen to quit the interactive GOTCHA session 

Do you wish to save the current test in the current test suite? 
(y/n) 

>> n 

Discarding Current Test Case 

Do you wish to print the test suite before quitting the session? 
(y/n) 

>> n 

Task completed. 

3.3 Generating test suites quickly 
The next step, after writing a behavioural model and testing directives, is to produce an 
abstract test suite. The GOTCHA components include several test generators. In this 
section we discuss four automated robust test generators. 

These four test generators automatically generate an abstract test suite using implicitly 
defined coverage criteria. The fifth test generator is interactive and is discussed in the 
previous section on Interactive Test Generation. The most powerful test generators use 
full state space traversal algorithms with explicitly defined coverage criteria and they are 
discussed in Section  5 5. 

The advantage of using the test generators discussed in this section is that they do not 
suffer from the state explosion problems encountered with full state space traversal of 
large models. 

The test generators discussed here all have implicitly defined coverage models. This 
means that there is no need for the user to explicitly specify a coverage model, and there 
is no need for the user to be actively involved in the test selection. 

The default test generation strategy used by GOTCHA is input coverage, which can be 
invoked by the following command: 

GOTCHA modelname.g –o modelname  
This will create a test suite modelname.ats, using the input coverage test generator with 
default values of its parameters. This assumes that the installation directory has been set 

Generating Test Suites – First Steps      Page 54 of 108 GOTCHA Users Guide 
 



 

as an environment variable named GOTCHA_HOME, and that the behavioural model is in 
the file modelname.g. The abstract test suite is written to a file entitled modelname.ats.  

There are four speedy test generators supplied by GOTCHA: 

• Random  

• Input coverage 

• Input transition coverage 

• Input transition pair coverage 

Each of these test generators generates a set of test cases for any model, irrespective of 
the state explosion problem. 

They all ignore any coverage criteria and TC_EndTestCase constraints in the input model 
(see Section  4.1 Explicitly specifying coverage models and Section  4.2 Writing Testing 
Directives). 

The random test generator generates a set of randomly chosen transitions in each test 
case. 

The input coverage test generator choses test cases in such a way that all input values 
of all rules appear somewhere in the test suite.  

The input transition coverage test generator choses test cases in such a way that all 
input values of all rules appear in every transition position in the test suite. 

The input transition pair coverage test generator choses test cases in such a way that 
all pairs of input values of all rules appear in every pair of transition positions in the test 
suite. 

The latter three test generators are ordered by increasing thoroughness of the test suite 
generated. This means that the coverage tasks implicitly defined for the input coverage 
are contained in the tasks defined for the input transition coverage, which are in turn 
contained in the tasks defined for the input transition pair coverage. 

If a model has two rules: Rule1() which is not contained in a ruleset, and Rule2(bool b) 
which is contained in a ruleset with a Boolean variable, b, as input, and furthermore, each 
of the rules is enabled at all states, then: 

The input coverage generator would generate only one test case: 
Rule2(true) Rule1, Rule2(false). 

The input transition coverage generator would generate three test cases: 
Rule2(true), Rule1, Rule2(false). 

Rule2(false), Rule2(true), Rule1. 

Rule1, Rule2(false), Rule2(true). 

The input transition pair coverage generator would generate nine test cases: 
Rule2(true), Rule1, Rule2(false). 

Rule2(false), Rule2(true), Rule1. 

Rule1, Rule2(false), Rule2(true). 

Rule2(true), Rule2(true), Rule2(true). 

Rule2(false), Rule2(false), Rule2(false). 

GOTCHA Users Guide                 Page 55 of 108 Generating Test Suites – First Steps 
 



 

Rule1, Rule1, Rule1. 

Rule2(true), Rule2(false), Rule1. 

Rule2(false), Rule1, Rule2(true). 

Rule1, Rule2(true), Rule2(false). 

In the rest of this section we give more details on each of the speedy test generators. 

3.3.1 Random test generation 
The random test generator provided by GOTCHA can be invoked from the command line 
as follows: 

GOTCHA modelname.g –o modelname -rtg  
This will create a test suite modelname.ats, with ten test cases each containing at most ten 
randomly chosen transitions. To control the number of test cases generated, and the 
number of transitions in each test case, use the command: 

GOTCHA modelname.g –o modelname -rtg –st5 –gtlub15 
This will create a test suite with 5 test cases each containing 15 randomly chosen 
transitions. 

Invoking the random test generator without specifying a random seed will produce 
different results on each invocation. To specify the random seed, and thus guarantee 
repeatable results use the flag –rs as shown below: 

GOTCHA modelname.g –o modelname –rtg –rs1234  
The output of the random test generator looks like the following: 

 
============================================================ 

GOTCHA Release 4.0 

Generation Of Test Cases from Haifa. 

Copyright (C) 1999,2002 

by the IBM Corporation. 

============================================================ 

Input Model: filesystem.g  

Test Generator: 

         GOTCHA Random Test Generator 

WARNING: The Random Test Generator ignores all 
TC_EndTestCase constraints 

WARNING: The Random Test Generator ignores all CC_ coverage 
criteria 

         Number of test cases 10. 

         Test Case Length 10. 

         Random Seed is 1234. 

 

Generating Test Suites – First Steps      Page 56 of 108 GOTCHA Users Guide 
 



 

Random Test Case generation completed 

Generated 10 random test cases 

3.3.2 Input coverage test generation 
The input coverage test generator can be invoked from the command line as follows: 

GOTCHA modelname.g –o modelname -rctg  
This will create a test suite modelname.ats, using the input coverage test generator with 
default values of its parameters. The default configuration for this test generator 
generates at most ten test cases each containing at most ten transitions, and attempts to 
cover each rule and start state with each possible input (ruleset values) at least once.  

The input coverage generator has the following input parameters: 

• Test case length, controlled by the flag –gtlub (default value 10). 

• Limit on the number of test cases generated, controlled by the flag –st (default 
value 10). 

• The coverage factor, which controls the number of times each rule and startstate 
is to be covered. Controlled by the flag –gtcf (default value 1). 

• The random seed, controlled by the flag –rs (default value, time of day). 

The input coverage test generator attempts to use every rule and every start state with 
every possible combination of inputs at least c times in the test suite, where c is the 
coverage factor. It will stop without achieving 100% coverage if it reaches its limit on the 
number of test cases. It reports on the coverage achieved as follows: 

 
Number of Coverage Tasks: 

        Start Rules: 1 

        Transition Rules: 27 

 

Number of start rules completely covered 1 

Start rule coverage: 100% 

Number of transition rules completely covered 27 

Transition rule coverage: 100% 

 

Number of test cases generated 3 

The number of start rules completely covered indicates the number of start rules that 
appear at least c times in the test suite, where c is the coverage factor. Likewise the 
number of transition rules completely covered is the number of transition rules that occur 
at least c times in the test suite. 

GOTCHA Users Guide                 Page 57 of 108 Generating Test Suites – First Steps 
 



 

3.3.3 Input transition coverage test generation 
The input transition coverage test generator can be invoked from the command line as 
follows: 

GOTCHA modelname.g –o modelname -rtctg  
This will create a test suite modelname.ats, using the input transition coverage test 
generator with default values of its parameters. The default configuration for this test 
generator generates at most ten test cases each containing at most ten transitions, and 
attempts to cover each rule and its inputs in each transition position at least once.  

The input transition coverage generator has the following input parameters: 

• Test case length, controlled by the flag –gtlub (default value 10). 

• Limit on the number of test cases generated, controlled by the flag –st (default 
value 10). 

• The coverage factor, which controls the number of times each rule is to be 
covered in each transition position. Controlled by the flag –gtcf (default value 
1). 

• The random seed, controlled by the flag –rs (default value, time of day). 

The input transition coverage test generator attempts to use every rule with every possible 
combination of inputs at each transition position at least c times in the test suite, where c 
is the coverage factor. It may stop after reaching its limit on the number of test cases. It 
reports on the coverage achieved as follows: 
Estimated number of Coverage Tasks: Upper Bound 244 Lower Bound 
244 

Number of tasks completely covered 91 

Coverage estimate: Between 37% and 37% 

Number of test cases generated 10 

The number of input transition coverage tasks is estimated by the number of enabled 
rules observed at each transition position. At different times in the generation process, 
different numbers of rules may be enabled at a particular transition in the test case. At the 
first step of a test case, the number of start rules enabled is always the same. However, 
the number of transition rules enabled may vary according to the state variables which 
determine whether or not the guards on the transition rules are enabled.  

Note that the lower bounds and upper bounds count the minimum and maximum numbers 
of rules enabled at a particular transition – they do not count the number of distinct rules 
enabled at that position. So if at some stage only Rules 1 and 2 are enabled at position 1, 
and at another stage Rules 1 and 3 are enabled, the minimum and maximum number of 
rules enabled will still be 2, and the task will be considered as covered if two distinct 
rules at that position are exercised. Thus the upper bound on the number of tasks may be 
underestimated. 

The input transition coverage generator stops generating test cases either when the 
maximum number of test cases has been generated, or when the lower bound on the 
number of coverage tasks has been achieved. 

Generating Test Suites – First Steps      Page 58 of 108 GOTCHA Users Guide 
 



 

3.3.4 Input transition pair coverage test generation 
The input coverage test generator can be invoked from the command line as follows: 

GOTCHA modelname.g –o modelname -rpctg  
This will create a test suite modelname.ats, using the input transition pair coverage test 
generator with default values of its parameters. The default configuration for this test 
generator generates at most 100 test cases each containing at most five transitions, and 
attempts to cover each pair of rules and their inputs in each pair of transition positions at 
least once.  

The input transition pair coverage generator has the following input parameters: 

• Test case length, controlled by the flag –gtlub (default value 5). 

• Limit on the number of test cases generated, controlled by the flag –st (default 
value 100). 

• The coverage factor, which controls the number of times each rule is to be 
covered in each transition position. Controlled by the flag –gtcf (default value 
1). 

• The random seed, controlled by the flag –rs (default value, time of day). 

The input transition pair coverage test generator attempts to use every pair of rules with 
every possible combination of inputs at each pair of transition positions at least c times in 
the test suite, where c is the coverage factor. It may stop after reaching its limit on the 
number of test cases. It reports on the coverage achieved as follows: 
Estimated number of Coverage Tasks: Upper Bound 4482 Lower Bound 
4482 

Number of tasks completely covered 708 

Coverage estimate: Between 15% and 15% 

Number of test cases generated 100 

The number of input transition pair coverage tasks is estimated by the product of pairs of 
the number of enabled rules observed at each pair of transition positions. At different 
times in the generation process, different numbers of rules may be enabled at a particular 
transition in the test case. At the first step of a test case, the number of start rules enabled 
is always the same. However, the number of transition rules enabled may vary according 
to the state variables which determine whether or not the guards on the transition rules 
are enabled.  

Note that the lower bounds and upper bounds count the minimum and maximum numbers 
of rules enabled at a particular transition – they do not count the number of distinct rules 
enabled at that position. So if at some stage only Rules 1 and 2 are enabled at position 1, 
and at another stage Rules 1 and 3 are enabled, the minimum and maximum number of 
rules enabled will still be 2. If the same thing happens at position 2 of the test case, then 
the minimum number of pairs will be estimated as 4, even though there are potentially 9 
possible combinations. Thus the upper bound on the number of tasks may be 
underestimated. 

The input transition pair coverage generator stops generating test cases either when the 
maximum number of test cases has been generated, or when the lower bound on the 
number of coverage tasks has been achieved. 

GOTCHA Users Guide                 Page 59 of 108 Generating Test Suites – First Steps 
 



 

3.3.5 The parameters for quick test generation 
The runtime parameters for quick test generation fall into four categories: 

1. The input file names 

2. The output file name 

3. The test generation algorithm 

4. The optional parameters 

A typical command line invocation of GOTCHA is as follows: 

GOTCHA modelname.g –o atsname <algflag> <optflags>  
Where the input file is modelname.g, the test cases will be output to the file atsname.ats, 
the algflag is an algorithm flag – one of the five quick algorithms (-rtg, -rctg (the default), 
-rtctg, -rpctg, or –itg), and the optflags sets values for the optional parameters of the 
algorithm selected. The four algorithms defined by the flags -rtg, -rctg, -rtctg, and -rpctg, 
are discussed in the previous four subsections. The interactive test generator (-itg) is 
discussed in the next section. 

3.3.5.1 Specifying the input files 
Any argument without a – is taken to be an input filename and must end in .g. Up to ten 
input files can be specified, and each input file may include any number of #include 
macros to include other .g files. The input files are processed in the order that they are 
specified on the command line. 

3.3.5.2 Specifying the output files 
The runtime argument –o followed by a space and a string, say atsname, specifies that 
the abstract test suite will be output to a set of files whose root is the file atsname.ats.  

3.3.5.3 Specifying the quick generation algorithm 
The quick generation algorithms are specified by selecting one of the following runtime 
parameters: 
-rtg      Random test generator 

-rctg     Input coverage test generator 

-rtctg    Input transition coverage test generator 

-rpctg    Input transition pair coverage test generator 

-itg      Interactive test generator 

3.3.5.4 Specifying the optional runtime parameters 
The optional runtime parameters for the four main test generation algorithms are used 
to control the number of tests cases generated, the length of the test cases, and the 
number of times that each coverage task is covered.  

-st<n>  Stop after n test cases generated 

-gtlub<n>  Test cases of length n 

–gtcf<n>  Coverage factor (generate n tests for each task) 

Generating Test Suites – First Steps      Page 60 of 108 GOTCHA Users Guide 
 



 

-rs<n>       Use n as the seed for randomization  

 

The –st flag puts an upper bound on the number of test cases to be generated by any of 
the test generation algorithms. Do not leave a space between the flag and its parameter. 

Invoking GOTCHA with the flag –st15 will ensure that no more than 15 test cases are 
generated by the test generator. If the coverage goals are reached before the number of 
test cases is exhausted, the test generator will stop before generating 15 test cases. The 
default number of test cases depends on the test generator being used, see the following 
table of default values: 

Test Generator Default maximum number of test 
cases 

Random 10 

Input Coverage 10 

Input Transition Coverage 10 

Input Transition Pair 
Coverage 

100 

    
The gtlub parameter specifies the number of transitions to be generated in each test 
case. All test cases will be of the length specified unless the test case reaches a state 
where no more transitions are possible. Invoking GOTCHA with the flag –gtlub15 will 
ensure that all test cases have at most 15 transitions (counting the start transition). All 
test cases will have precisely 15 transitions unless the model itself has limits on the 
number of transitions. 

The model and the algorithm determine a number of coverage tasks which must be 
covered by the test cases generated. Increasing the coverage factor requires that the 
generator cover each of these tasks more times. Invoking GOTCHA with the flag –
gtcf3 and input coverage will ensure that each input occurs three times in the test suite 
(provided this can be done within the number of test cases specified by the –st 
parameter). The flag has no impact on the random test generator. 

There is an additional parameter to control the random number generator used. 
Specifying the same random seed will guarantee that the same test cases are output. If 
the random seed is not specified, the random number generator is seeded by the time of 
day, and different test cases will result from each invocation of the algorithm. 

3.3.6 Coverage Criteria and Test Constraints 
When using the “quick” test generation algorithms (random, input coverage, input 
transition coverage, and input pair transition coverage) or the interactive test generator, 
all coverage criteria in the model are ignored. However all test constraints, with the 
exception of TC_EndTestCase, are respected. 

The quick test generators create test cases that may end at a state that satisfies an 
EndTestCase constraint or not. If the test case does end at an EndTestCase state, the 
EndTestCase condition will be noted in the Abstract Test Case. 

GOTCHA Users Guide                 Page 61 of 108 Generating Test Suites – First Steps 
 



 

4 Writing Test Generation 
Directives 

4.1 Explicitly specifying coverage models 
The purpose of this section is to clarify the concepts of: 

• Projected State 

• Reachable State 

• Coverable State 

• Coverage Task 

These concepts are defined in the Glossary – but they may be easier to assimilate through 
this example. 

In order to explicitly specify a set of coverage tasks, we add the following code to our 
Hello World model: 
-- The Test Constraint for ending a test case 

TC_EndTestCase "afterquit()" 

     !alive; 

 

-- A Coverage Criterion 

CC_State_Projection 

 TRUE  

 On 

 ch; 

Writing Test Generation Directives      Page 62 of 108 GOTCHA Users Guide 
 



 

T
0

blank

T
1
H

T
2
E

T
4
L

T
3
L

T
5
O

T
6

blank

T
7
W

T
8
O

T
9
R

T
10
L

T
11
D

T
12

blank

F
0

Null

Hello World FSM

forward()

quit()

Alive
pos
ch

state

Alive
pos
ch

StartTestCase state

Projected state

EndTestCase states

T
12

Null

 
 

The start test case state is coloured green, intermediate states are blue and the set of all 
end test case states (all states with alive = FALSE) is coloured red. The set of all states 
with ch = L are included in the yellow shaded column. Each column of the diagram 
represents a “projected state”. 

The TC_EndTestCase clause above is a Boolean expression and not an assignment 
statement. It is shorthand for: “Any state where the value of the expression is TRUE is a 
legitimate place to finish a test.” In this example we can finish a test case whenever the 
alive variable is FALSE. 

The CC_State_Projection clause describes the fact that we want to project all of the 
states in our state machine onto the values of the state variable ch. Thus each column is 
collapsed into a single “projected state”. The arc from (L, 3, true) to (L, 4, true) becomes 
a loop in the projected space from [L] to itself. The symbol [L] represents all three states 
with first coordinate equal to L. 

The projected state graph is illustrated below: 

GOTCHA Users Guide                 Page 63 of 108 Writing Test Generation Directives 
 



 

[Null] [H] [E] [L] [O] [blank] [W] [R] [D]

 
This projected state machine graph is derived from the full state machine graph by 
projecting all the states in a single column onto a single projected state.  

4.1.1 Reachability 
The concepts of reachable and unreachable states are illustrated in the next diagram.  

A state is reachable if there is a sequence of transitions (rules) that produces the state 
from a start test case state. So for example the state (L, True 3) is reachable since the 
sequence:  

1. initialize() (blank, True 0)  

2. forward() (H, True 1)  

3. forward() (E, True 2)  

4. forward() (L true 3) 

starts from a StartTestCase state (blank, True 0) and reaches (L, True 3) by 
applying the forward() rule three times. 

 

Writing Test Generation Directives      Page 64 of 108 GOTCHA Users Guide 
 



 

T
0

blank

T
1
H

T
2
E

T
4
L

T
3
L

T
5
O

T
6

blank

T
7
W

T
8
O

T
9
R

T
10
L

T
11
D

T
12

blank

F
0

Null

Alive
pos
ch

Unreachable state

T
12

Null

T
1

Null

T
8

blank

W

W

 
The states (Null, True 1) and (blank, True 8) are unreachable, despite the fact 
that they contain legitimate values of all three state variables. If the application ever 
entered one of these states, it would indicate a bug, since these states can never be 
reached in the model.  

4.1.2 Coverability and Coverage Tasks 
We now consider a slightly modified Hello World example in order to illustrate the 
concepts of uncoverable and coverable states and coverage tasks. Let us assume that 
instead of TC_EndTestCase !alive;, we have TC_EndTestCase ch=blank;. This 
situation is illustrated in the figure below. 

GOTCHA Users Guide                 Page 65 of 108 Writing Test Generation Directives 
 



 

F
0

Null

T
0

blank

T
1
H

T
2
E

T
4
L

T
3
L

T
5
O

T
6

blank

T
7
W

T
8
O

T
9
R

T
10
L

T
11
D

T
12

blank

Reachable Uncoverable state

EndTestCase states

T
12

Null

T
12

Null

 
A state is coverable if there exists a path from a StartTestCase state to the state in 
question (i.e. it is reachable), and then on to an EndTestCase state. 

In the above situation, (Null, True 12) and (Null, False 0) are reachable states 
– since they can be reached from the StartTestCase state. However, they are 
uncoverable, since there is no path from either of these states to an EndTestCase state 
(i.e. one where ch = blank). 

All the other reachable states are coverable, since a sequence of twelve forward() 
transitions passes through each of the other reachable states from the StartTestCase state. 
This sequence ends at the state (blank, True 12), which is an EndTestCase state 
since it satisfies ch = blank, and thus all the states in this sequence are coverable. 

A coverage task is a set of states or transitions all of which satisfy some instance of a 
coverage criterion.  

In the case of State Projection coverage (defined below), a coverage task is a projected 
state – or, equivalently, the set of all states in the full state machine that map onto a state 
in the projected graph. Each member of the set is called a representative of the coverage 
task. 

In our example there are nine coverage tasks, one for each reachable value of the 
projection variable ch. The coverage task [H] has only one representative (H, True 1), 
but the coverage task [blank] has three representatives (blank, True 0) (blank, 
True 6) and (blank, True 12). 

A coverage task is uncoverable if all its representatives are uncoverable. Or equivalently 
a coverage task is coverable if any one of its representatives is coverable. 

Writing Test Generation Directives      Page 66 of 108 GOTCHA Users Guide 
 



 

In our example (with the changed EndTestCase condition), the coverage task [Null] is 
uncoverable while the other eight coverage tasks are all coverable. 

[Null] [H] [E] [L] [O] [blank] [W] [R] [D]

[ch] Uncoverable task

[ch] Coverable task

EndTestCase states

StartTestCase state

 

The test case consisting of six forward() transitions starts at the StartTestCase state, 
ends at an EndTestCase state and covers the tasks [blank], [H], [E], [L], and [O]. The 
tasks [blank] and [L] are each covered twice by this test case. The test case consisting of 
twelve forward() transitions covers all eight coverable tasks. There is no test case 
satisfying the test constraints that includes any representative of [Null], and so this task is 
uncoverable.   

4.2 Writing Testing Directives 
Testing directives have the same syntax as rules, but they are used specifically to drive 
the test generation process – not to describe the finite state machine or state graph, which 
is the behavioural model of the software under test. We recommend that you keep the 
testing directives in a .g file separate from the behavioural model .g file(s). 

Testing directives come in two types: coverage criteria and test constraints. Note that 
TC_StartTestCase is a very special case of test constraint. 

4.2.1 Test Constraints 
<testconstraint> ::= TC_EndTestCase < string >  <boolexpr> 

      TC_Forbidden_State [<string>] < boolexpr > |  

GOTCHA Users Guide                 Page 67 of 108 Writing Test Generation Directives 
 



 

                                TC_Forbidden_Transition [<string>] < boolexpr >; < boolexpr > |  

                                 TC_Forbidden_Transition [<string>]  

                                                                 [From] < boolexpr > To < boolexpr > |  

                               TC_Forbidden_Path [<string>] < boolexpr >; < boolexpr >; <expr> |  

                               TC_Forbidden_Path [<string>]  

[From] < boolexpr > To < boolexpr > Length <expr>|  

                              TC_Within [<string>] < boolexpr >; < boolexpr >; < boolexpr > |  

                              TC_Within [<string>]  

[From] < boolexpr > To < boolexpr > Includes < boolexpr >   

 

The test constraints all have an optional string that is used in the abstract test suite as a 
name for the test constraint. This is especially important in the case of a TC_EndTestCase 
constraint, which appears at the end of every test case. 

The expressions must all be Boolean expressions in the variables within the scope of the 
constraint. The only exception is the length expression in the forbidden path constraint – 
which must evaluate to an integer in the range 2–7. 

 

4.2.1.1 End Test Case 
 TC_EndTestCase  < string >  <expr> 

 

EndTestCase states are the last state in any test generated by the full traversal test 
generator, thus they are effectively a test constraint. Every test generated with the full 
traversal algorithm must finish in a state where some End Test Case expression evaluates 
to True.  

If the model contains no TC_EndTestCase constraint, then the GOTCHA compiler inserts 
a default constraint that makes every state an EndTestCase state. 
TC_EndTestCase “Default” TRUE; 

It is an error to use an expression with side effects in a TC_EndTestCase expression. An 
example of such an illegal action would be to call a (Boolean) function that changes the 
value of a state variable.  

NOTE: The GOTCHA compiler gives a warning only when a function call has such side 
effects – so be extra careful! 

The string is output to the test case as a method pattern, and any parameters to the 
TC_EndTestCase (should it be enclosed in a ruleset) are output as data patterns in the 
abstract test suite.  

 

Writing Test Generation Directives      Page 68 of 108 GOTCHA Users Guide 
 



 

4.2.1.2 Forbidden State 
The semantics of a Forbidden State test constraint are that: No test will be generated that 
passes through a state where the expression is TRUE.  

NOTE: This constraint is applied throughout the test generation, and it can have a 
dramatic effect in reducing the size of the reachable state graph. It is a key element in 
controlling the size of the test suite and in dealing with the state explosion problem.  

Specifying TC_Forbidden_State var1=3; removes all states where var1=3 from the 
state space and thus from all the tests generated. Any state that can only be reached via 
states with var1=3 is also eliminated.  

Specifying TC_Forbidden_State TRUE; causes GOTCHA to generate no tests since 
all paths pass through a forbidden state. 

4.2.1.3 Forbidden Transition 
The semantics of a Forbidden Transition test constraint are that: No test will be 
generated that passes through a transition where the first expression is true before the 
transition, and the second is true after the transition.  

NOTE: This constraint is applied throughout the test generation, and it can decrease the 
size of the reachable state graph. It is a method for controlling the size of the test suite 
and dealing with the state explosion problem.  

Specifying TC_Forbidden_Transition var1=3; var1!=3 will remove all 
transitions from the state space when var1 is altered from 3 to some other value by the 
transition. Any state that can only be reached via such a transition will also be eliminated. 

 

4.2.1.4 Forbidden Path 
The semantics of a Forbidden Path test constraint are that: No test will be generated that 
passes from a state where the first expression is true to a state where the second is true in 
k or fewer steps, where k is the value of the third expression.  

Note that when k=1 this is just a forbidden transition and the forbidden transition 
construct should be used.  

NOTE: This constraint is applied throughout the test generation. It can have a positive or 
negative effect on the size of the reachable state space, since an additional state variable 
is introduced to keep track of the constraint. This additional variable can be seen in the 
abstract test suite and has a name that contains the user’s name for the constraint. The 
longer the path, the more likely this constraint is to increase the size of the state space. 

Specifying TC_Forbidden_Path var1=3; var1!=3; 4; will remove all execution 
sequences which alter var1 from 3 to another value in four or fewer steps. Any state that 
can only be reached via such a sequence will also be eliminated. 

 

GOTCHA Users Guide                 Page 69 of 108 Writing Test Generation Directives 
 



 

4.2.1.5 Within 
The semantics of a Within test constraint are that: No test will be generated that passes 
from a state where the first expression is true to a state where the second is true, without 
passing through a state where the third expression is true.  

NOTE: This constraint is applied throughout the test generation. It can have a positive or 
negative effect on the size of the reachable state space, since an additional state variable 
is introduced to keep track of the constraint. This additional variable can be seen in the 
abstract test suite and has a name that contains the user’s name for the constraint. 

Specifying  
TC_Within "Interesting" From Cmd=FileOpen To Cmd=FileClose 
Includes Cmd=Write & nbytes > 0;  

will cause all test sequences, which contain a Close command following an Open 
command to include a Write command with a non-zero nbytes. 

4.2.2 Coverage Criteria 
<coveragecriterion> ::=  

                                    CC_Some_State [<string>] <boolexpr> | 

                                    CC_Some_Transition [<string>] <boolexpr>; <boolexpr> |  

                                    CC_Some_Transition [<string>]  

                                            [From] <boolexpr> To <boolexpr> | 

                    CC_Some_Explicit_Transition [<string>] 

                                               [From] <boolexpr>; [Via] <boolexpr>; [To] <boolexpr>; | 

          CC_State_Projection [<string>]  

                                             <boolexpr> On <type_exprs_pairs> ; | 

                                    CC_Transition_Projection [<string>]  

                                              From_condition <boolexpr> From <type_exprs_pairs> ;  

                                              To_condition <boolexpr> To <type_exprs_pairs> ; | 

CC_Projected_Explicit_Transition [<string>]  

                         From_condition <boolexpr> From <type_exprs_pairs> ;  

                         Via_condition <boolexpr> Via <type_exprs_pairs> ;  

                         To_condition <boolexpr> To <type_exprs_pairs> ; | 

                                    CC_All_State [<string>] <boolexpr> |  

                                    CC_All_Transition [<string>] <boolexpr>; <boolexpr> |  

                                    CC_All_Transition [<string>] [From] <boolexpr> To <boolexpr> 

 

<type_exprs_pairs> ::= <type_expr_pair> {;[<type_expr_pair>]} 

Writing Test Generation Directives      Page 70 of 108 GOTCHA Users Guide 
 



 

<type_expr_pair> ::= expr : typeid  | nonint_type_expr 

 

Coverage criteria are a way to direct the full traversal test generator. They supply criteria 
for what tests to generate (as opposed to test constraints, which tell the generator which 
tests not to generate). 

The coverage criteria all have an optional string that is used only in the printout as a 
name for the criterion. The expressions denoted by boolexpr must all be Boolean 
expressions in the variables within the scope of the criterion.  

The <type_exprs_pairs> token stands for a semicolon delimited string of tokens, each of 
which is either a simple expression or a simple expression followed by its type identifier. 
The type identifiers are only necessary when the expression is of integer subrange type, 
otherwise, the type identifier can be omitted since the compiler can deduce the type of the 
expression. Note also that a Boolean expression is a special case of an enumerated type 
expression. 

Some_Explicit_Transition and Projected_Expilict_Transition criteria permit the use of a 
special reserved keyword RuleId in their “via” condition and projection parts. They also 
contain some special additional options and limitations as opposed to other coverage 
criteria. Please, see more information in the corresponding sections. 

4.2.2.1 Some State 
Some State coverage is a criterion that describes a single coverage task. The task is 
specified by the Boolean expression, which is evaluated at each state to decide whether or 
not it is a representative of the coverage task. Any state where the Boolean expression 
evaluates to TRUE is a representative of this coverage task, and GOTCHA will generate 
a test case that passes through a randomly chosen representative state. 

Specifying CC_Some_State TRUE; will cause GOTCHA to generate a single test 
through a randomly chosen state. If no coverage criteria are given in the model, this 
coverage criterion is the default that is added to the model. 

Specifying CC_Some_State "Interesting" var1=3 & var2=4; will cause 
GOTCHA to generate a single test, which includes a randomly chosen state where var1=3 
and var2=4 (if such a state, which is both reachable and coverable, exists). 

 

4.2.2.2 Some Transition 
Some Transition coverage also describes a single coverage task. The task is specified by 
two Boolean expressions, which are evaluated at the beginning and end (respectively) of 
each transition, to decide if it is a representative of the coverage task or not. Any 
transition from s to t where the FROM expression evaluates to TRUE on s and the TO 
expression evaluates to TRUE on t is a representative of the task.. GOTCHA will 
generate a test case that passes through a randomly chosen representative transition. 

Specifying CC_Some_Transition TRUE; TRUE; - will cause GOTCHA to generate a 
single test through a randomly chosen transition, since every transition is a representative 
of this task.  

Specifying CC_Some_Transition "Interesting" var1=3; var2=4; will cause 
GOTCHA to generate a single test which includes some transition from a state where 

GOTCHA Users Guide                 Page 71 of 108 Writing Test Generation Directives 
 



 

var1=3 to a state where var2=4 (if such a transition, which is both reachable and 
coverable, exists). 

4.2.2.3 Some Explicit Transition 
Some Explicit Transition coverage also describes a single coverage task. The task is 
specified by three Boolean expressions. A transition from s to t, performed by the 
application of rule r, may be regarded as a representative of the coverage task if all of the 
following conditions are satisfied:  

• The FROM expression evaluates to TRUE on s  

• The TO expression evaluates to TRUE on t.  

• The VIA expression also evaluates to TRUE on r. 

The VIA expression has some special properties – which make it somewhat different 
from the TO and FROM expressions.  

o The VIA expression can utilize the keyword ruleID, which can be regarded as a 
variable, containing the id of the applied rule. It can also use names of model 
rules as part of the expression (specifically to compare ruleID with the specific 
rule names). Integer values are assigned to all the rule names inside the 
GOTCHA model. The later the rule is defined in the model code – the higher the 
value. 

 Example:  VIA (ruleID > (“some_rulename”))    

In this case the rule r must satisfy the condition (r > (“some rulename”)) in order 
to be a representative of the coverage task. The string “some rulename” must be 
the name of some rule, defined within the GOTCHA model. All rules defined in 
the model body after the rule “some rulename” will satisfy this condition. 

o The VIA expression can reference values of state variables, defined in the 
GOTCHA model. These values are calculated in the FROM state. (Of course, 
their value may change in the TO state of the transition). 

o The VIA expression can reference values of rule parameters. Caution must be 
used, so as not to reference a parameter, that is not applicable to the 
corresponding rule. The VIA expressions are calculated in the C- style manner. 
This means, that if partial calculation of the expression (according to the 
precedence rules) is enough to deduce its value – the computation is terminated 
and the remaining part of the expression is ignored. For example, a | b will 
calculate only the “a” part of the expression if a evaluates to TRUE – as this is 
enough to deduce the value of a | b - and both parts if “a” evaluates to FALSE 

Example:  (part of GOTCHA model) 

                    Ruleset i : 1 .. 3  

                    Do  

                        Rule “abc”  

                             : 

                     End; 

                     Rule “cde” 

Writing Test Generation Directives      Page 72 of 108 GOTCHA Users Guide 
 



 

                            :   

 Example 1:     VIA (i > 1)   --incorrect 

This is an incorrect use of a rule parameter within a coverage criterion, since 
parameter i is not defined for all the model rules. An attempt to evaluate it for 
rule “cde” to see if it satisfies the coverage model will fail. 

Example 2:     VIA ((ruleID = (“abc”)) & (i > 1))   --correct 

In this case only if the rule r is “abc” the term (i > 1) is evaluated. Parameter i is 
defined for rule “abc”. 

Example 3:     VIA ((i > 1) & (ruleID = (“abc”)))   --incorrect 

In this case the (i > 1) expression is evaluated for all the rules, before the ruleID 
is checked to be “abc”. Hence, it is also evaluated for “cde” – which results in 
failure. 

Note that rule parameters with the same name must be of the same type. In case of 
integer subranges, these types may have different names, but must have the same range.   

GOTCHA will generate a test case that passes through a randomly chosen representative 
transition that satisfies all the three Boolean conditions (TO, FROM and VIA). 

Specifying CC_Some_Explicit_Transition TRUE; TRUE; TRUE; - will cause 
GOTCHA to generate a single test through a randomly chosen transition, created by 
applying a randomly choosen rule, since every transition + corresponding rule 
combination is a representative of this task.  

Specifying CC_Some_ Explicit_Transition "Interesting" var1=3; VIA 
ruleID = “abc”; var2=4; will cause GOTCHA to generate a single test which 
includes some transition from a state where var1=3 to a state where var2=4 (if such a 
transition, which is both reachable and coverable, exists), applying a rule, which has a 
name “abc” in the Gotcha model with any of its possible input parameters. 

4.2.2.4 State Projection 
State Projection coverage describes a set of coverage tasks and not a single task. Each 
task is an equivalence class of states of the finite state machine. The projection variables 
are the expressions given in the list of expressions. The condition provides a method for 
further subsetting the set of tasks and their representatives. 

The concept of projected state coverage is explained more fully in the section entitled: A 
Sample Model – Hello World. 

For example to specify coverage tasks in the Hello World model projected onto the 
values of the ch variable, as in the example above, we would use the following coverage 
criterion: 
CC_State_Projection TRUE On ch; 

This means that each coverage task is specified by the different values taken by the 
variable ch. So one coverage task is represented by any state with ch =A, another by all 
states with ch =B, up to a maximum of 26 coverage tasks. In the example, the coverage 
task with ch =L has three representatives. 

If we had specified: 

GOTCHA Users Guide                 Page 73 of 108 Writing Test Generation Directives 
 



 

CC_State_Projection NumOhs=1 On ch; 

Then only two reachable states would satisfy the condition (O,2,1) and (W,2,1), 
where each state is denoted by the triple (ch, numEls, numOhs). And since each of 
these is in a different coverage task (has different values for currenChar), GOTCHA 
would attempt to generate two test cases – one through each of these states. (In practice it 
would only generate the first test case, since this test covers both coverage tasks in this 
simple model.) 

With this semantics for State Projection, you can designate several projections in the 
same model. You are not limited to state variables, and can define implicit variables for 
projection.  

For example if the state contains two integer variables x and y, but you are interested in 
test cases where the values of the sum x+y are distinct, then you would use the coverage 
criterion: 
CC_State_Projection TRUE On x+y:sum_range_t; 

Specifying CC_State_Projection TRUE On var1; var2; var3; - is equivalent to 
the projected state coverage available in previous releases of GOTCHA, where var1, 
var2, and var3 are all Boolean coverage variables.  

An upper limit on the number of coverage tasks generated by a State Projection criterion 
of the form:  

CC_State_Projection boolexpr On var1; var2; var3; 

is the product of the ranges of the three variables. If all three variables were Boolean, 
then up to 2*2*2 = 8 tasks would be generated by this coverage criterion. The actual 
number of tasks, and hence test cases, generated could be smaller, for one of the 
following reasons: 

• The subsetting effect of the Boolean expression may reduce the number of 
representatives of a task to zero. 

• Not all eight tasks may be reachable from a StartTestCase state. 

• More than one of the tasks may be covered by a single test case.  

• No reachable representative of a task is actually coverable. 

4.2.2.5 Transition Projection 
Transition Projection also describes a set of coverage tasks in a similar way to State 
Projection. It is as though we are projecting the state space onto two different sets of 
variables whose values are given by the expressions in the lists. We consider the 
transitions of interest to be those whose projections are distinct, when their first state is 
projected onto the first list, and their second state is projected onto the second list. 
Moreover, we are able to specify different subsetting conditions on each of the two 
projections. 

The criterion below is equivalent to the projected transition coverage available in 
previous releases of GOTCHA, where var1, var2, and var3 are all Boolean coverage 
variables.  
CC_Transition_Projection  

From_Condition TRUE From var1; var2; var3;  

Writing Test Generation Directives      Page 74 of 108 GOTCHA Users Guide 
 



 

To_Condition TRUE To var1; var2; var3;  

Let us assume that BoolArray is an array of Boolean variables, and that enumvar1 is of 
an enumerated type with three possible values, v1, v2, and v3. Then specifying  
CC_Transition_Projection "Interesting"  

From_Condition system=stable From BoolArray[0];  

To_Condition system=unstable To enumvar1;  

will cause GOTCHA to generate up to 2*3=6 test cases:  

• one with a transition from a state with system=stable and 
BoolArray[0]=TRUE to a state with system=unstable and enumvar1=v1.  

• one with a transition from a state with system=stable and 
BoolArray[0]=TRUE to a state with system=unstable and enumvar1=v2.  

• one with a transition from a state with system=stable and 
BoolArray[0]=TRUE to a state with system=unstable and enumvar1=v3.  

• one with a transition from a state with system=stable and BoolArray[0]= 
FALSE to a state with system=unstable and enumvar1=v1.  

• one with a transition from a state with system=stable and BoolArray[0]= 
FALSE to a state with system=unstable and enumvar1=v2.  

• one with a transition from a state with system=stable and BoolArray[0]= 
FALSE to a state with system=unstable and enumvar1=v3.  

There may be fewer than six test cases generated if there are no reachable and coverable 
transitions where one of the above situations occurs. Fewer than six test cases may also 
be generated if a single test case can be constructed with more than one of the required 
transitions occurring in the same test case. 

4.2.2.6 Explicit Transition Projection 
Explicit Transition Projection describes a set of coverage tasks in a similar way to 
Transition Projection. The conditions FROM_CONDITION and TO_CONDITION and 
the FROM and TO projection expressions are defined exactly as in the 
Transition_Projection coverage criteria. Additionally, the Projected_Explicit_Transition 
defines a Boolean condition that must be satisfied and a projection expression, that must 
be calculated. These correspond to the rule that causes the transfer between the states, s 
and t, of the transition. As in the Some_Explicit_Transition criteria, the 
Projected_Explicit_Transition corresponds to a set {s,t,r} – where s,t are states of a 
transition and r – the rule that causes this transition. 

The VIA_CONDITION Boolean expression is defined exactly as in the 
Some_Explicit_Transition and can reference the RuleId value, rule names and rule 
parameters. 

The VIA projection expression adds another set of variables (in addition to the ones for 
the FROM and TO sets) that are projected on from the state space. The only difference is 
that the expressions that define the values of these variables are governed by the rules 
similar to the ones for the Boolean expression of the VIA_CONDITION. 

Overall, this coverage criteria may be seen as the projection of all the possible 
combinations {state, rule, state} onto the values of the expressions defined for each of 

GOTCHA Users Guide                 Page 75 of 108 Writing Test Generation Directives 
 



 

these three components. The VIA expression defines a set of expressions to be projected 
on from variable values, the rule name and parameters.  

Here is the summary of the rules for the VIA projection expression. 

o The VIA expression may contain the RuleID keyword. This may be seen as the 
name of the rule that causes the transition in question. This expression may also 
contain the names of rules in the GDL model.  

Example 1: 

VIA (ruleID > (“abc”)); 

All the {s, r, t} combinations will be projected on a boolean variable for ths 
expression. In case r is defined in the model after “abc” – this variables value is 
TRUE. Otherwise – FALSE.  

Example 2: 

VIA ruleID; 

All the {s, r, t} combinations will be projected on a variable which can have as 
many values as the number of different rules in the model. The rule parameters 
do not have any influence on the value of the projection expression. {s1, r1, t1} 
and {s2, r2, t2} will represent the same coverage task if and only if r1 is the same 
rule as r2. 

o The VIA expression may contain global variables. The values of these variables 
are calculated as they are in the state, from which the transition is made (s). 

o The VIA expression may contain the names of the rules input parameters. It is an 
error to use a parameter that is not defined for all the rules that satisfy the 
VIA_CONDITION expression. 

Example:  (part of GOTCHA model) 
                    Ruleset i : 1 .. 3  

                    Do  

                        Rule “abc”  

                             : 

                     End; 

                     Rule “cde” 

                            :   

Example 1:    VIA_CONDITION TRUE VIA i;   --incorrect 

This is an incorrect use of a rule parameter within a coverage criterion, since 
parameter i is not defined for the model rule “cde” (which satisfies the 
VIA_CONDITION expression). An attempt to evaluate the projection expression 
for rule “cde”will fail. 

Example 2:     VIA_CONDITION ruleID = (“abc”) VIA i;   --correct 

In this case the projection expression i is evaluated only if rule r is “abc”. 
Parameter i is defined for rule “abc”. There will be three representatives for the 
coverage criteria in this case – one for every possible value of parameter i for 
rule “abc”. 

Writing Test Generation Directives      Page 76 of 108 GOTCHA Users Guide 
 



 

Note that rule parameters with the same name must be of the same type. In the case of 
integer subranges, these types may have different names, but must have the same range.   

Consider a model, with a Boolean variable var1 and two rules “abc” and “cde”. Now 
consider the following coverage criterion: 

CC_Projected_Explicit_Transition FROM_CONDITION TRUE FROM var1;  

                                                          VIA_CONDITION TRUE VIA ruleID; 

                                                          TO_CONDITION TRUE TO TRUE; 

This will cause GOTCHA to generate up to 4 test cases. These test cases will cover the 
following combinations of variable values / rules: 

• one with a transition from a state with var1=false through activation of rule 
“abc”.  

• one with a transition from a state with var1=true through activation of rule “abc”. 

• one with a transition from a state with var1=false through activation of rule 
“cde”. 

• one with a transition from a state with var1=true through activation of rule “cde”. 

There may be fewer than four test cases generated if there are no reachable and coverable 
transitions where one of the above situations occurs. Fewer than four test cases may also 
be generated if a single test case can be constructed with more than one of the required 
transition/rule combinations occurring in the same test case. 

4.2.2.7 All State 
All State coverage describes a subset of all projected states that are projected onto the 
coverage variables.  

NOTE: We no longer recommend the use of this coverage criterion because State 
Projection enables you to define an equivalent coverage criterion without using coverage 
variables in the declarations section of the model.  

Specifying CC_All_State Boolexpr; is equivalent to the projected state coverage 
achieved by the criterion CC_State_Projection Boolexpr On var1; var2; 
var3, where var1, var2, and var3 are defined as Coverage_var in the declarations 
section of the model. 

We no longer recommend the use of this criterion and its companion 
CC_All_Transition, since they require the coverage notions to be a part of the 
behavioural model, rather than a separate entity in a possibly different file. 

4.2.2.8 All Transition 
All Transition coverage describes a subset of all projected transitions projected onto the 
coverage variables. The subset is specified by two Boolean expressions, which are 
evaluated at the start and end (respectively) of each transition to determine whether or not 
it is a representative of a coverage task.  

GOTCHA Users Guide                 Page 77 of 108 Writing Test Generation Directives 
 



 

NOTE: We no longer recommend the use of this coverage criterion becauseTransition 
Projection allows you to define an equivalent coverage criterion without using coverage 
variables in the declarations section of the model. 

If var1, var2, and var3 are defined as coverage_var in the declarations section of the 
model, then CC_All_Transition Boolexpr1; Boolexpr2; - is equivalent to the 
transition projection criterion:  
CC_Transition_Projection  

From_Condition Boolexpr1 From var1; var2; var3;  

To_Condition Boolexpr2 To var1; var2; var3;  

5 Generating Test Suites – With 
Explicit Directives 

5.1 Automatically Creating an Abstract Test Suite 
Using an Explicit Coverage Model 

You can create an abstract test suite using an explicit coverage model with full traversal 
of the state space using the GOTCHA command as follows: 
 GOTCHA beh_model.g test_dir.g –o model –fulltg <GOTCHA_options> 

This assumes that the installation directory has been set as an environment variable 
named Gotcha_TCBeans, and that the behavioural model and test directives are in the 
files beh_model.g and test_dir.g respectively. The abstract test suite is written to a 
file entitled model.ats. The progress messages are written to stdout, which defaults to 
the screen. 

You can use runtime options to customize the resulting test suite. These runtime options 
serve several purposes, including:  
• Customizing the output.  

• Varying the algorithms used to generate the test suite. 

• Giving soft constraints on the test cases.  

• Allocating memory.  

Generating Test Suites – With Explicit Directives      Page 78 of 108 GOTCHA Users Guide 
 



 

• Initialising the random number generator. 

In order to understand some of the runtime options fully, refer Section  5.3 on the The 
Full Traversal Test Generation Algorithm. 

5.2 Complete GOTCHA Runtime Options 

5.2.1 Help (-h) 
To display the basic GOTCHA runtime options, use the command line:  

GOTCHA modelname.g –h  
The results are displayed below: 

 
Basic GOTCHA options <default –rctg –st10 –gtlub10>: 

       -o <filename>      Output the test suite to <filename>.ats, 

                          progress messages to standard output 

  -rctg    Input coverage test generation 

  -st<n>    Stop after n test cases generated 

  -gtlub<n>    Test case length recommendation 

       -morehelp          Full set of Gotcha options 

       -rs<v>             Seed for randomization. Default TOD 

       -rtg               Random test generator 

  -itg               Run Interactive Test Generator 

  -l                 Print license 

   -morehelp      Print full details of all GOTCHA runtime options 

   An argument without a – is taken to be an input filename and must end in .g 

5.2.2 More Help (-morehelp) 
To display all GOTCHA runtime options, use the command line:  

GOTCHA modelname.g –morehelp  
The results are displayed below: 
1) Basic <default –rctg –st10 –gtlub10>: 

       -o <filename>      Output the test suite to <filename>.ats, 

                          progress messages to standard output 

  -rctg    Input coverage test generation 

  -st<n>    Stop after n test cases generated 

  -gtlub<n>    Test case length recommendation 

       -morehelp          Full set of Gotcha options 

GOTCHA Users Guide                 Page 79 of 108 Generating Test Suites – With Explicit Directives 
 



 

       -rs<v>             Seed for randomization. Default TOD 

       -rtg               Random test generator 

  -itg               Run Interactive Test Generator 

  -l                 Print license 

   -morehelp      Print full details of all GOTCHA runtime options 

   An argument without a – is taken to be an input filename and must end in .g 
  

2) Test Generation Strategy: (default: -rctg -st10 -gtlub10 -gtcf1 
-m8) 

        -rctg      Input coverage test generation. 

        -st<n>     Stop after n tests generated. 

        -gtlub<n>  Test case length recommendation. 

        -gtcf<n>   Coverage factor (all coverage tasks). 

        -itg       Interactive test generation. 

        -rtg       Random test generation. 

        -rtctg     Input transition coverage test generation. 

        -rpctg     Input transition pair coverage test generation. 

        -dbg       Run model debugger. 

        -fulltg    Full traversal with coverage criteria test 
generation 

        -m<n>      Memory allocation in Mb. Default: 8Mb 

        -loop<n>  Maximum number of cycles in any while loop 
limited to 10^n, n in 1..8. 

3) Full Traversal Parameters: (default: -gtb -gftb) 

        -gtd, -gtb, -gtc     Initial state traversal by Depth 
First Search, Breadth First Search, Task Coverage Search. 

        -gftd, -gftb, -gftc  Further traversal by Depth First 
Search, Breadth First Search, Task Coverage Search. 

        -gtllb<n>  Test case length lower bound recommendation. 

        -ues    Test extension by unbounded search on the state 
space. 

        -efct   Test extension attempt should be performed from 
the covered task, not the final state of the extended test. 

        -rr   Randomly reorder lists of next states, reachable 
from the current one 

        -gotfp<n> Activate On The Fly test generation every 10^n 
states explored. 

4) GOTCHA Output Options: (default: -gus0, -fst1, -gtp2, -gdp2, -
p3) 

-ps Print out full states in test cases, as 
opposed to state changes. 

Generating Test Suites – With Explicit Directives      Page 80 of 108 GOTCHA Users Guide 
 



 

-gts Don't print out the generated test cases. 

-p<n> Report progress every 10^n space exploration 
events, n in 1..5. 

-pn Print no space exploration progress reports. 

-gtp<n> Report progress every 10^n test cases 
generated, n in 1..5. 

-gtpn Print no test case generation progress 
reports. 

-gdp<n> Report progress every 10^n tasks covered, n 
in 1..5. 

-gpnc Print the number of new covered tasks before 
each test case. 

-gde Print details of uncoverable tasks at the 
end. 

-gtur Print details on uncoverable task 
representatives. 

-gus<n> Report the first n uncoverable states. 

-fst<n> Report the first n forbidden 
states/transitions found. 

-fp Print a path from an initial state to a 
forbidden state/transition. 

-ip Print a path from an initial state to an 
invariant. 

5.2.3 Input Coverage Test Generation (-rctg) 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –rctg  
this starts the input coverage test generator on the behavioural model contained in 
modelname.g. This generates a test case covering each rule with all possible inputs. For 
details about the interactive test generation process see Section  3.3.2 Input coverage test 
generation. 

5.2.4 Random Test Generation (-rtg) 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –rtg  
this starts the random test generator on the behavioural model contained in modelname.g. 
For details about the random test generation process see Section  3.3.1 Random test 
generation. 

5.2.5 Input Transition Coverage Test Generation (-rtctg) 
If you invoke GOTCHA with the command line: 

GOTCHA Users Guide                 Page 81 of 108 Generating Test Suites – With Explicit Directives 
 



 

GOTCHA modelname.g –rtctg  
this starts the input transition coverage test generator on the behavioural model contained 
in modelname.g. This generates a test case covering each rule with all possible inputs in 
each possible transition position of a test case. For details about the input transition 
coverage test generation process see Section  3.3.3 Input transition coverage test 
generation. 

5.2.6 Input Transition Pair Coverage Test Generation (-rpctg) 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –rpctg  
this starts the input transition pair coverage test generator on the behavioural model 
contained in modelname.g. This generates a test case covering each pair of rules with all 
possible inputs in each possible pair of transition positions of a test case. For details 
about the input transition pair coverage test generation process see Section  3.3.4 Input 
transition pair coverage test generation. 

5.2.7 Full Traversal Test Generation 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –fulltg  
this starts the full traversal test generator on the behavioural model contained in 
modelname.g. This generates test cases which satisfy all the test constraints and cover 
every task specified in the coverage criteria specified in modelname.g.  

The process involves first traversing the entire state space of the model and then 
generating test cases which satisfy all the constraints in order to cover all tasks specified 
in the coverage criteria. If no test constraints are in the model, the only constraint added 
is that every state may satisfy the EndTestCase constraint. If no coverage criteria are 
specified, the default coverage criterion is to cover some example of an arbitrary state.  

For details about the full traversal test generation process see Section  5.3. 

5.2.8 Full Traversal Test Generation On The Fly (-fulltg –
gotfp<n>) 

When invoking the full traversal test generator, GOTCHA completes the initial state 
space exploration before beginning to generate test cases. If the state space is very large 
this can take a long time and may even fail to complete due to memory limitations. When 
this occurs it is advisable to use on-the-fly test case generation, which generates test cases 
as soon as possible after a certain number of states have been added to ReachableStates.  

The drawbacks of on-the-fly test case generation are:  
• Length extension algorithms cannot be invoked before the entire state space has been 

explored.  

• Randomization of test cases is less accurate. 

Generating Test Suites – With Explicit Directives      Page 82 of 108 GOTCHA Users Guide 
 



 

On-the-fly test case generation can be invoked after every 10, 100, 1000, 10,000, or 
100,000 states are added to ReachableStates with the flag –gotfp1, -gotfp2,…, 
-gotfp5, respectively.  

5.2.9 Number of test cases (-st<n>) 
The –st flag puts an upper bound on the number of test cases to be generated by any of 
the automated test generation algorithms. Do not leave a space between the flag and its 
parameter. 

Invoking GOTCHA with the flag –st15 will ensure that no more than 15 test cases are 
generated by the test generator. If the coverage goals are reached before the number of 
test cases is exhausted, the test generator will stop before generating 15 test cases. The 
default number of test cases depends on the test generator being used, see the following 
table of default values: 

Test Generator Default maximum number of test 
cases 

Random 10 

Input Coverage 10 

Input Transition Coverage 10 

Input Transition Pair Coverage 100 

Full Traversal Coverage 1000 

Full Traversal Coverage On The 
Fly 

100 

 

5.2.10 Test case length recommendation (-gtlub<n>) 
The –gtlub flag is the recommended test length to be used by the test generator. 
Different test generators use different defaults for the test length recommendation. The 
test length includes the start rule as one of its transitions. The default used by each test 
generator is given in the following table: 

Test Generator Default test length 
recommendation 

Random 10 

Input Coverage 10 

Input Transition Coverage 10 

Input Transition Pair 
Coverage 

5 

Full Traversal Coverage 50 

 

GOTCHA Users Guide                 Page 83 of 108 Generating Test Suites – With Explicit Directives 
 



 

5.2.11 Coverage Factor (-gtcf<n>) 
The coverage factor controls the number of representatives generated for each coverage 
task in the whole test suite. This parameter is used by all test generators except random. 
The default is 1. Specifying –gtcf3 causes GOTCHA to generate the test suite so that it 
will have at least 3 occurrences of each coverage task in the abstract test suite. The test 
cases pass through different representatives chosen at random from among the 
representatives of a given coverage task. GOTCHA may repeat a test case in order to 
reach the coverage factor. 

5.2.12 Interactive Test Generation (-itg) 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –itg  
this starts an interactive test generation session on the behavioural model contained in 
modelname.g. For details about the interactive test generation process see Section  3.1 
Interactive Test Generation. 

5.2.13 Code Debugger (-dbg) 
If you invoke GOTCHA with the command line: 

GOTCHA modelname.g –dbg  
This starts a code debug session on the behavioural model contained in modelname.g. 
The model can be debugged in conjunction with the GOTCHA test generation algorithm 
(the default) or in conjunction with the interactive test generator. For details about the 
code debugging process see Debugging a Model. 

NOTE: The use of this option degrades GOTCHA’s performance considerably, so use it 
only when you are actually debugging. 

5.2.14 Input and Output (-o <filename>, >) 
The standard command line invocation for GOTCHA is: 
GOTCHA infile1.g infile2.g infile3.g –o outfile 

This assumes that the behavioural model and testing directives are spread across three 
files, and that the abstract test suite is written to outfile.ats. GOTCHA accepts up to 10 
input files. 

The output of GOTCHA may be directed to two separate files by using the –o flag and 
the redirection symbol >. The abstract test suite is directed to the file following the –o 
flag, and the progress indicators and other messages (including compilation and error 
messages) are directed to the file following the redirection symbol >. If no file names are 
given on the command line, the output is directed to the screen (stdout). 
GOTCHA helloworld.g –o helloworld > helloworld.msgs 

The command above directs the abstract test suite to helloworld.ats, and the messages to 
the file helloworld.msgs. 

Generating Test Suites – With Explicit Directives      Page 84 of 108 GOTCHA Users Guide 
 



 

5.2.15 Compact State Representation (-c) 
The –c option produces a test generator that encodes the states of the model very 
compactly. It is rumored that this option saves space and impacts negatively on runtime 
of the test generator. It definitely saves space – and we have yet to see a case where it had 
a negative effect on the runtime. We recommend using this option with the full traversal 
test generator. 

5.2.16 Disable Runtime Checking (-d) 
The –d option produces a test generator that does not conduct runtime checking of the 
ranges of variables. This is reputed to make the generator faster, but it may also cause 
ungraceful crashes if your model causes a variable to go out of range. Use this option 
only after the model has been completely debugged. 

5.2.17 Memory Allocation (-m<n>) 
This is a critical runtime parameter for the full traversal test generator. It determines the 
memory size (in MB) allocated for the ReachableStates data structure. The default is 8 
MB. 

5.2.18 Random Seed (-rs<n>) 
This is a critical runtime parameter for all GOTCHA test generators. It determines the 
seed used by the random number generator. The random number generator is called at 
several points in all the test generation algorithms. If no random seed is specified, the test 
generator takes a random number from the time-of-day clock on the computer. In order to 
repeat a test generation run in all its details, you must use the same random seed. 

5.2.19 Model Traversal Library (-lib) 
The -lib parameter causes the creation of the model traversal library, which can be used 
to implement a user-programmed test generator. Invoking GOTCHA with –lib causes 
GOTCHA to produce a library, not a test suite. When omitted, GOTCHA produces an 
abstract test suite, using one of the test generators.  

5.2.20 Initial State Space Exploration Strategy (-gtb, -gtd, -gtc) 
These flags control the strategy for full traversal initial state space exploration.  

The default is breadth first search, which produces short tests by taking a shortest path 
tree as the exploration tree.  

Depth first search produces very long tests, and is recommended only if the test suite 
contains a single, long test. Using depth first search for more than one test usually 
generates tests with high redundancy. If you use the coverage task strategy, the test suite 
should be shorter, but this effect is not guaranteed in all cases. 

Coverage directed space exploration directs the test generator to explore states that 
contain new coverage tasks before states that represent tasks that have already been seen. 

GOTCHA Users Guide                 Page 85 of 108 Generating Test Suites – With Explicit Directives 
 



 

It sometimes produces tests with many different tasks in each test, and thus reduces the 
overall length of the test suite. 

In terms of the algorithm, the initial state exploration strategy controls which algorithm is 
used to ChooseAndRemove a state from the frontier. 

5.2.21 Further Exploration Strategy (-gftb, -gftd, -gftc) 
These flags control the full traversal strategy that determines whether a state is or is not 
covered during the AfterExplorationGeneration algorithm.  

Breadth first search yields shorter tests than depth first search.  

Coverage first search may not yield shorter individual tests, but tends to yield shorter test 
suites overall.  

The default strategy is a breadth first search. 

5.2.22 Test Case Length Recommendation (-gtlub<n>, -gtllb<n>),  
Test Case Extension Strategy (-ues -eftc) 

The length recommendations are soft constraints on the abstract test suite. If possible, the 
test cases will have more transitions than the lower bound and fewer transitions than the 
upper bound. However GOTCHA may be unsuccessful in its attempts to increase or 
decrease the length of a test. The default test extension algorithm in full traversal is 
breadth first. 

Do not leave a space between the flag and its parameter. The usage is: 
GOTCHA helloworld.g –gtllb25 –ues –o helloworld.ats 

The test case extension strategy is invoked by the full traversal generator during the 
output of a test. The strategy that has the lowest computation time is the default (without 
either ues or eftc). Unbounded extension search and coverage task extension have longer 
computation times, but may result in more successful extensions to the test case. The two 
switches are independent of each other, so there are four possible test extension 
strategies. 

The test case reduction strategy is unique, and always gives the shortest possible test 
passing through a given task representative. 

5.2.23 Random reorder (-rr) 
The rules enabled for execution at each state are ordered in a fixed order based on their 
order in the input file. This can lead to test suites that appear to be very predictable in 
some models. The –rr flag eliminates the fixed ordering of rule invocation and thus 
randomizes the test suite better. This flag may have a negative impact on the performance 
of the test generator. 

5.2.24 Loop Exit (-loop<n>) 
All “while” loops in a GOTCHA model are limited in the number of times they are 
allowed to execute. The default is 10,000 iterations. This parameter may be set to any 
power of 10 from 10 to 108. 

Generating Test Suites – With Explicit Directives      Page 86 of 108 GOTCHA Users Guide 
 



 

5.2.25 Output Format (-ps, -gts) 
The option –ps alters the format of the abstract test suite by printing the values of all state 
variables after every transition, and not just the values that have changed. The default is 
to print only changed values of state variables. This option may be desirable both when 
debugging the model, and when using A2C translation. 

The option –gts suppresses all test case output, and prints only the progress reports and 
messages.  

5.2.26 Progress Reports (-p<n>, -pn, -gtp<n>, -gtpn, -gdp<n>) 
The options –p<n> and –pn control the printing of messages concerning the number of 
states currently in ReachableStates and FrontierStates. Reports are printed every 1000 
new states in ReachableStates by default, but you can changes this to 0, 10, 100, 1000, 
10,000, or 100,000. 

The options –gtp<n> and –gtpn control the printing of messages concerning the number 
of test cases generated so far. Reports are printed every 100 test cases by default, but you 
can changes this frequency to 0, 10, 100, 1000, 10,000, or 100,000. 

The option –gdp<n> controls the printing of messages concerning the number of 
coverage tasks covered so far. Reports are printed every 100 tasks by default, but you can 
changes this frequency to 10, 100, 1000, 10,000, or 100,000. 

5.2.27 Coverage Task Details (-gpnc) 
The flag –gpnc causes a comment to be inserted in the abstract test suite at the beginning 
of each test indicating how many new coverage tasks are contained in this test. A 
coverage task is “new” if no representative of that task has appeared in a previous test. 

5.2.28 Uncoverable States, Transitions, Tasks Details (-gde, -gtur, 
-gus<n>) 

These flags control output to the console – not to the abstract test suite. They describe 
uncoverable tasks, uncoverable representatives, and uncoverable states respectively.  

The flag –gus<n> produces a printout the first n times that an uncoverable state is 
encountered during either exploration phase. The same state may be output several times. 
The default produces no printout. 

The flag –gtur produces a printout when a task representative (state or transition) is 
proved uncoverable. 

The flag –gde produces output when a whole task is proved uncoverable. 

5.2.29 Forbidden State, Forbidden Transition, Invariant Details (-
fst<n>, -fp, -ip) 

The flag –fst<n> produces a printout to the console the first n times that each test 
constraint violation is encountered. The same state or transition may be output several 

GOTCHA Users Guide                 Page 87 of 108 Generating Test Suites – With Explicit Directives 
 



 

times. The default is –fst1, which produces a printout when the first instance of each 
constraint violation is encountered. 

The flag –fp extends the printout produced by –fst by giving an execution path from a 
start state to the forbidden state just encountered. This is useful for debugging the model. 

The flag –ip causes an execution path to be printed whenever a state that violates an 
invariant is encountered. After encountering a state that violates an invariant GOTCHA 
stops. 

5.3 The Full Traversal Test Generation Algorithm 
The test generation algorithm uses three principal data structures: 
• A hash table, called ReachableStates, which contains a list of all the states reached, 

and an indication of whether that state is coverable, uncoverable, or undecided. Each 
state also keeps a record of its immediate ancestor in the exploration tree. 

• A stack or queue of states, called FrontierStates, which contains all those states that 
have been reached, but whose neighbors have not yet been examined. 

• A set of coverage tasks, called TaskTree, which contains a list of reachable coverage 
tasks, together with accounting details of the task’s representative states. A task is 
marked as covered when a test through one of its representatives is output. A task is 
marked as uncoverable after all its representatives have been marked as uncoverable. 

The algorithm implemented in the test generator is approximated by the following 
pseudo-code (many details have been omitted or abstracted out): 
main(); 

Set ReachableStates, FrontierStates, TaskTree all 
empty ( ); 

for all s  StartStates do StateCheck(s); 

while FrontierStates g  do 

 s = ChooseAndRemoveStateFrom(FrontierStates) 

 for all r  Rules do 

  If r is enabled in s then 

  Begin 

   d = Apply r to s 

   If TransitionCheck(s,d) then 
StateCheck(d) 

  End 

 Endfor 

 Every once in a while do OnTheFlyGeneration(); 

Endwhile; 

AfterExplorationGeneration(); 

End Main 

 

Generating Test Suites – With Explicit Directives      Page 88 of 108 GOTCHA Users Guide 
 



 

Procedure StateCheck(s) 

If s is Forbidden then return; 

If s is not in ReachableStates then insert it in both 
ReachableStates and FrontierStates 

If s belongs to any coverage task, update the TaskTree 

If s is a final state mark it and its ancestors in the 
exploration tree as coverable 

End Procedure StateCheck 

 

Function TransitionCheck(s,d) 

 If (s,d) is a forbidden transition return FALSE 

 If (s,d) belongs to a coverage task, update TaskTree 

 return TRUE 

End Function TransitionCheck 

 

Procedure OnTheFlyGeneration() 

 For all s  ReachableStates 

  If s is coverable and belongs to an uncovered task in 
TaskTree, then Output a test through s and update TaskTree. 

 For all s  ReachableStates and s not in FrontierStates 

  If (s,d) is not a forbidden transition and belongs to 
an uncovered task in TaskTree, then Output a test through (s,d) 
and update TaskTree. 

 Return to Main 

End Procedure OnTheFlyGeneration 

 

Procedure AfterExplorationGeneration() 

 For all t  TaskTree 

  If t is neither covered nor uncoverable 

  Then for all r representatives of t 

   If r is undecided then decide if r is coverable 
or not by a further search starting from r 

   If r is coverable Output a test, update t, break 

   Else just update t. 

End Procedure AfterExplorationGeneration 

GOTCHA Users Guide                 Page 89 of 108 Generating Test Suites – With Explicit Directives 
 



 

6 The Programming Interface to 
the Test Generator 

GOTCHA provides an API that can be used to implement a user-programmed test 
generator, using the state space description extracted from the GOTCHA model. The API 
functionality is similar to the one provided by the Interactive Test Generator, but geared 
towards convenience of use by a programmer.  

It is possible to use the API in conjunction with a test driver that interacts with the unit 
under test. This possibility allows the creation of test cases that respond to the non-
deterministic actions of the application. It also allows an on-the-fly coverage 
improvement algorithm by allowing test generation and test execution to take place 
concurrently. 

In order to access the API a user must create the model traversal library, using GOTCHA 
–lib option. 

6.1 Creating the Model Traversal Library 
The Model Traversal Library is a static C++ library, which has a permanent interface, but 
a model – specific implementation. In particular, its functionality depends not only on the 
model, but also on the model’s test constraints.   

Entering the command: 
GOTCHA beh_model.g test_dir.g –lib –o beh_model_api 

will create the Model Traversal Library named beh_model_api.dll. Note, that using –lib 
will prevent GOTCHA from running the traversal engine on the model and thus from 
creating any tests. This also means that test generation directives and test printing 
instructions to GOTCHA become irrelevant and are ignored. 

The include files are under the GOTCHA_TCBeans root (wherever you have installed 
GOTCHA-TCBeans), in the include/ directory. In order to use the library, you need to 
include the itg_api.h header file. The namespace of the library is GOTCHA_HRL. The 
functionality of the library can be accessed through public methods of 
GOTCHA_HRL::ITG_API class. 

6.2 Test Generator API 
This section covers the Model Traversal Library API. The model library contains the 
definition of the ITG_API class. Objects of this class can be used to:  

The Programming Interface to the Test Generator      Page 90 of 108 GOTCHA Users Guide 
 



 

• Access the state space of the model.  

• Activate model rules.  

• Inspect the values of the state variables.  

• Create test suites. 

It is important to understand the basic behavior of the ITG_API class object to use the 
API. The object can be in one of the four states:  

• START  

• RULE_WAIT  

• STATE_WAIT 

• FINAL.  

These states mirror the state of the current test case that is being created by user actions. 
In other words: the application of the main methods of the object, in addition to 
traversing the model’s state space, also update the current test case. This test case depicts 
the path taken by the user so far.  

The ITG_API object is created in START state. In this state, the values of the system 
variables are not yet defined. The values are defined by choosing a StartTestCase rule. 
The user may change the state of the object by alternatively choosing the rule to be 
applied in the current state, and then choosing a state from the list of alternatives states, 
reachable by the last applied rule. The choice is made using the <rule_id> and <state_id> 
parameters in the method calls. These ids are nothing more than the sequential number of 
rule/state in the current list of choices. To make a reasonable choice, the user can use 
information calls, to get the values of state variables in different states or the names of the 
rules to be applied. 

The include files are under the GOTCHA_TCBeans root (wherever you have installed 
GOTCHA-TCBeans), in the include/ directory. In order to use the library, you need to 
include the itg_api.h header file. The namespace of the library is GOTCHA_HRL. The 
functionality of the library can be accessed through public methods of 
GOTCHA_HRL::ITG_API class. 

The return values of all the methods follow the principles: 

1. In case of success return true (if boolean) or actual value (int or std::string 
pointer) 

2. In case of failure return false (if boolean), 0(if int) or pointer to empty string (if 
std::string) 

3. std::string is defined in the STL (Standard Template Library). 

4. All methods that return pointers to std::string, allocate memory for these strings. 
The user is responsible for cleaning up the space allocated for such strings. 

 

The following table lists the public methods of the ITG_API class objects. 

              

Method Description 

GOTCHA Users Guide                 Page 91 of 108 The Programming Interface to the Test Generator 
 



 

ITG_API(); Constructor. Initialization. 

~ITG_API(); Destructor. Clean up. 

/* test suite controls */  

bool StartTestSuite(void); Starts a new test suite. Discards the old one. Doesn’t 
alter the current test case. 

bool DiscardTestCase(void); Discards the current test case (together with the undo 
information). 

bool SaveTestCase(void); Adds the current test case to the test suite. Does not 
discard the current test case. The current test case can 
be updated (including undo option) from the same 
point. 

bool NewTestCase(void); Discards the current test case. 

bool PrintTestSuite(char* 
filename); 

Prints the test suite in the files filename.ats and 
filename_0.ats (master and slave) 

bool PrintTestCase(char* 
filename); 

Creates a temporary test suite, consisting of a single 
test case (the current test case) and prints it out in two 
files (master and slave), like PrintTestSuite. 

/*info calls */  

std::string *GetVal(const 
std::string& var_name, int 
state_id); 

Allocates a new std::string (as defined in STL) and 
assigns to it the value of state variable <var_name> in 
state <state_id>. This method can be called in 
STATE_WAIT state. In case of problems (e.g. called 
in RULE_WAIT, no variable with <var_name> in the 
model, or erroneous state_id, etc.) the method returns a 
pointer to an empty string. 

std::string *GetVal(const 
std::string& var_name); 

The same as the previous method, but used only in 
RULE_WAIT, START or FINAL state. 

int CountEnabledRules(void); Returns the number of enabled rules in the current 
state. Can only be used in RULE_WAIT, START or 
FINAL state. In STATE_WAIT returns 0. 

int 
CountAlternativeStates(void); 

Returns the number of alternative states that can be 
reached by activating the last chosen rule. Can only be 
used in STATE_WAIT state. In other states returns 0. 

bool IsFinalState(int state_id); Returns true if the state <state_id>, reached by the last 
rule activation, satisfies some TC_EndTestCase 
condition. Can only be used in STATE_WAIT state. 
In other states returns false. 

bool IsFinalState(void); The same as the previous method, can only be used in 
non STATE_WAIT state. Otherwise, returns false. 

bool IsLegalState(int state_id); Returns true if the state <state_id>, reached by the last 
rule activation, does not violate some test constraint. 
Can only be used in STATE_WAIT state. In 

The Programming Interface to the Test Generator      Page 92 of 108 GOTCHA Users Guide 
 



 

RULE_WAIT, START or FINAL state, returns false. 

std::string *RuleName(int 
rule_id); 

Allocates std::string and returns the name of the rule 
with <rule_id> in the current state. Can only be used 
in non STATE_WAIT state. In STATE_WAIT state 
returns a pointer to an empty string. 

int NumStartRules() Returns the number of start rules in the model 

int NumRules() Returns the number of transition rules in the model 

int RuleNumber(int rule_id) Can only be used in RULE_WAIT. Behave differently 
at the start of a test case. Returns the absolute rule 
number in the range 0..NumStartRules-1 if the itg is 
waiting for a startrule. Returns the absolute rule 
number in the range 0..NumRules-1 if the itg is 
waiting for a transition rule.  

/*main controls */  

bool ApplyRule(int rule_id); Makes rule with <rule_id> the next rule of the current 
test case. Returns true in case of success. Used only in 
RULE_WAIT, START states. Changes the state of the 
system to STATE_WAIT. In other states or in case of 
erroneous rule_id returns false and does nothing. 

bool Finalize(void); Adds the final clause to the current test case, returns 
true, switches the system state to FINAL. Can only be 
applied in RULE_WAIT state. In case of failure 
(current state doesn’t satisfy any TC_EndTestCase 
condition or wrong state of system) returns false and 
does nothing. 

bool SetCurrentState(int 
state_id); 

Makes state with <state_id> the next state of the 
current test case. Is used only in STATE_WAIT state. 
In case of success returns true and switches the state to 
RULE_WAIT. In case of failure does nothing and 
returns false. Please, note, that it is impossible to set a 
state in case it violates some test constraint. 

bool Undo(void); Undo the last test case operation (one of the following 
3 methods can be undone: ApplyRule, Finalize, 
SetCurrentState. The operation restores the state of the 
system before the method that is undone and restores 
the current test case to the one before the operation. 
Undo() can be applied a number of times (returning 
true), until the state of the system becomes START 
(start of test suite reached). An application of Undo() 
in START does nothing and returns false. Other 
operations can not be undone. 

GOTCHA Users Guide                 Page 93 of 108 The Programming Interface to the Test Generator 
 



 

7 Debugging a Model 

The Code Debugger has two main purposes: 
• Debugging the code of a rule, procedure or function. 

• Using breakpoints to reach a specific rule. This can be difficult with the Interactive 
Test Generator, since reaching a state where the particular rule is enabled may be 
complicated.  

To activate the Code Debugger run GOTCHA with the -dbg option.  

GOTCHA modelname.g –dbg  
or 

GOTCHA modelname.g –dbg -itg 
The first command runs the standard GOTCHA traversal and test generation algorithm 
and stops at the first invocation of a rule or at the first break; statement encountered in 
this algorithm. 

The second command enters the interactive test generation framework. When a rule, 
procedure, or function with a break statement is invoked, the Code Debugger takes 
control beneath the interactive test generator control mechanism. 

You can insert breakpoints in the model by using the break statement. You can also 
insert or remove them during debugging. The debugger enables you to inspect the values 
of global (state) variables at run time, while stepping through the code of a rule, function, 
or procedure. 

We do not recommend using breakpoints in the code of functions that are called by the 
guard of a rule or in an expression used in a test constraint or coverage criterion. This is 
because the GOTCHA or Interactive Test Generators call these functions frequently in 
the course of their computations.   

Running in debug mode degrades performance. We recommend its use only for 
debugging. 

7.1 Debugger Commands 
The following features are implemented in the Code Debugger: 

1. Code navigation: Enables you to move through simple GOTCHA model 
statements (i.e., one-line GOTCHA statements, such as assignment, clear, 
procedure call, and so forth). Use the following debugger instructions to 
navigate:  

Debugging a Model      Page 94 of 108 GOTCHA Users Guide 
 



 

• next (n):  Goes to the next simple statement in the model. When there are no 
more simple statements in the current rule, the debugger goes to the first 
simple statement of the next rule fired, or to the first call to a function or 
procedure that is invoked before the next rule is fired. If the current statement 
is a procedure call or contains a function call, the procedure or function will 
not be entered. 

• step into (si):  Same as next, but procedures or functions called in the current 
statement are entered. 

• step out (so): Same as next, but the next stop is outside the scope of the 
current function, procedure, or rule. Execution continues until the current 
scope is exited. 

• continue (c): Runs until the next breakpoint. 

2. Dynamic breakpoints: You may insert, remove, enable, and disable 
breakpoints at any simple statement during debugging. The specific breakpoint 
handling commands are:  

• insert breakpoint (ib): Inserts a breakpoint at a simple statement. 

• remove breakpoint (rb): Removes a breakpoint at a simple statement. 

• disable all breakpoints (rab): Disables all breakpoints currently enabled 
(including static breakpoints), but does not delete them. 

• enable all breakpoints (eab): Reverses the disabling of breakpoints. 

3. Code Context Display: When the debugger stops at a statement, the statement 
is displayed in the context of the two preceding and following lines of code. 
The current statement is marked by the “>>” sign. If the current statement is an 
enabled breakpoint (static or dynamic), it is marked “*>>”.If the current 
statement is a disabled breakpoint, it is marked “@>>”. The command to show 
the current code position again is:  

• print code (pc) 

4. Variable Display: You can display the values of all state variables. The 
command for state variable display is:  

• print (p) 

5. General Control: The basic help and quit operations:  

• quit (q) When running  the Code Debugger under the Interactive Test 
Generator mode, you can exit GOTCHA, using the q option from the Code 
Debugger. In this case, no “save current test case?” questions will be asked. 

• help (h):  Lists the available commands. 

7.2 Sample Debug Session 
This section describes a session using the Code Debugger in conjunction with the 
interactive test generator on the sample SimpleTicketMachine.g in the 
samples/ticketmachine/models folder.  

GOTCHA Users Guide                 Page 95 of 108 Debugging a Model 
 



 

Issue the following command to start the session: 
gotcha samples/ticketmachine/models/SimpleTicketMachine.g –itg -
dbg 

 

The following text is displayed: 
 
Input Model: simpleticketmachine.g 
 
 
Algorithm: 
~~~~~~~~~~ 
 GOTCHA Test Generation in interactive mode
 Random Seed is 847463941.
 Setting up interactive GOTCHA test generation
 Computing test start states and rules
 Firing unique start rule
Initialize the machine

 Code line 33 file simpleticketmachine.g:

 TC_StartTestCase "Initialize the machine"
 begin
 >> coinBuffer := 0;
 coinStore := 0;
 coinTray := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

Note that the code debugger takes control before the interactive test generator, since the
interactive test generator invokes the unique start test case rule before giving you control.
Input the command h to see the list of Code Debugger commands:

h
 Code Debugger Commands:

 p - print out local and global variables
 pc - print out code location
 c - continue
 n - next
 si - step into
 so - step out
 ib - insert breakpoint
 rb - remove breakpoint
 rab - disable all breakpoints
 eab - enable all breakpoints
 q - quit
 h - print commands list

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

Enter c to resume running the interactive test generator:

Debugging a Model Page 96 of 108 GOTCHA Users Guide

c
 Entering unique start state
 Rules enabled in current state:
Rule 1(E1V0F0):
serviceMachine - service the machine
Rule 2(E1V0F0):
collectTickets - empty the ticket tray
Rule 3(E1V0F0):
collectCoins - empty the coin return tray
Rule 4(E1V0F0):
returnCoins - press the coin return button
Rule 5(E1V0F0):
printTicket - press the Green button
Enter m to see more enabled rules
Enter a Rule Number(1-6), c, b, r, s, p, ps, d, i, h, m, o,
eab, rab, st or q

The interactive test generator is now running. Choose the rule returnCoins, where there is
a breakpoint:

4
 You have chosen Rule Number 4:

 Code line 79 file simpleticketmachine.g:

 if coinTray + coinBuffer <= coinTrayCapacity
 then
*>> break;
 coinTray := coinTray + coinBuffer;
 coinBuffer := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

You have returned to the Code Debugger menu.

This section demonstrates the p command to print all the values of the global variables,
and the n and s commands to step through the code:

p
 State Variables:

result = Reset
ticketStore = 10
ticketTray = 0
coinTray = 0
coinStore = 0
coinBuffer = 0

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
n

 Code line 80 file simpleticketmachine.g:

 then
 break;

GOTCHA Users Guide Page 97 of 108 Debugging a Model

 >> coinTray := coinTray + coinBuffer;
 coinBuffer := 0;
 result := coinReturnOK;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
n

 Code line 81 file simpleticketmachine.g:

 break;
 coinTray := coinTray + coinBuffer;
 >> coinBuffer := 0;
 result := coinReturnOK;
 else

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
si

The difference between n (next) and si (step into) is only observable if the current
line contains a call to a function or procedure. If the current line contains a call to a
function or procedure, then si moves the user to the first line of the called procedure,
whereas n simply moves to the next line of code in the current scope.

 Code line 82 file simpleticketmachine.g:

 coinTray := coinTray + coinBuffer;
 coinBuffer := 0;
 >> result := coinReturnOK;
 else
 coinTray := coinTrayCapacity;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

Now invoke the so (step out) command, which moves to the next highest scope. In this
case, the upper scope is the interactive test generator. However, had you been inside the
code of a procedure called by a rule, you would have returned to the rule at the line of
code immediately after the procedure call:

so
 Rules enabled in current state:
Rule 1(E1V0F0):
serviceMachine - service the machine
Rule 2(E1V0F0):
collectTickets - empty the ticket tray
Rule 3(E1V0F0):
collectCoins - empty the coin return tray
Rule 4(E1V0F0):
returnCoins - press the coin return button
Rule 5(E1V0F0):
printTicket - press the Green button
Enter m to see more enabled rules

Debugging a Model Page 98 of 108 GOTCHA Users Guide

 Current state is an EndTestCase state.
Enter a Rule Number(1-6), c, b, r, s, p, ps, d, i, h, m, o,
eab, rab, st or q

Choose Rule 1 – serviceMachine, where there is another breakpoint in the source code of
the model:

1
 You have chosen Rule Number 1:

 Code line 110 file simpleticketmachine.g:

 ==>
 begin
*>> break;
 coinBuffer := 0;
 coinStore := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

The next section of the sample session demonstrates the use of the commands to insert,
enable, and disable breakpoints:

rb
 Breakpoint removed

 Code line 110 file simpleticketmachine.g:

 ==>
 begin
 >> break;
 coinBuffer := 0;
 coinStore := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
si

 Code line 111 file simpleticketmachine.g:

 begin
 break;
 >> coinBuffer := 0;
 coinStore := 0;
 coinTray := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
ib
 Breakpoint created

GOTCHA Users Guide Page 99 of 108 Debugging a Model

 Code line 111 file simpleticketmachine.g:

 begin
 break;
*>> coinBuffer := 0;
 coinStore := 0;
 coinTray := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
rab
 All breakpoints disabled

 Code line 111 file simpleticketmachine.g:

 begin
 break;
@>> coinBuffer := 0;
 coinStore := 0;
 coinTray := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h - help
eab
 All breakpoints enabled

 Code line 111 file simpleticketmachine.g:

 begin
 break;
*>> coinBuffer := 0;
 coinStore := 0;
 coinTray := 0;

 Please, enter a command from the list
 p, pc, c, n, si, so, rab, eab, q, ib, rb, h – help

Now quit the debug session:
q
Task completed.

Debugging a Model Page 100 of 108 GOTCHA Users Guide

8 Browsing Test Suites

The test suite browser, TSBrowser allows you to view an ATS (abstract test suite) or
SET (suite execution trace) file. The test suite is displayed in a tree structure with test
suites hierarchically above test cases and test cases above interactions.

The Test Suite Browser will be documented elsewhere.

9 Glossary of Terms

API
Application Programming Interface.

ATS
Abstract Test Suite: an XML markup language for the test suites generated by the
GOTCHA test generator.

Behavioural Model
A behavioural model of a software unit is an abstract description of the software that
includes abstract descriptions of its data types (classes), data structures (objects), and
transitions (events which cause the data structures to change their values).

Coverable State
A state is coverable if there exists a test case which begins at a start state, passes through
the state in question, and continues on to a final state while satisfying all the test
constraints.

Coverable Task
A coverage task may be either a set of states or a set of transitions. A state or transition
that belongs to a coverage task is said to be a representative of that task. A coverage task

GOTCHA Users Guide Page 101 of 108 Browsing Test Suites

is coverable if there exists a representative of that task which is coverable. That is, if
there is a test satisfying all the test constraints that includes a state or transition, which
belongs to the task.

A task is uncoverable if all its representatives are uncoverable.
Coverable Transition

A transition is coverable if there exists a test case which begins at a start state, passes
through the transition in question, and continues on to a final state while satisfying all the
test constraints.

Coverage Criterion
A coverage criterion is a description of a set of tasks that the test suite should cover. The
coverage criteria expressible in GOTCHA Definition Language are sets of states, sets of
transitions, and projected states and transitions.

Coverage Task
A coverage task may be either a set of states or a set of transitions. A state or transition
that belongs to a coverage task is said to be a representative of that task. An example of
a coverage task might be a projected state.

Failed
A test case outcome that indicates that one of the test case’s transitions completed with a
state not predicted by the transition’s associated rule.

GDL
The GOTCHA Definition Language. A language based on the Murphi description
language for describing behavioural models of software units.

ITG
The GOTCHA Interactive Test Generator: An interface for generating test cases for a
GDL model either manually or through an application programming interface (the model
traversal library).

PluRule
A pluRule in a behavioural model is the description of a stimulus to the unit under test
that can have more than one possible valid effect on the system. The various possible
outcomes are described by sets of GDL statements enclosed in a Begin End block. The
set of all outcomes is enclosed in a pluRule EndpluRule block.

Projected State
The projected state of a state in a behavioural model is defined by the values of all its
coverage variables. The coverage variables are a subset of the global or state variables of
the model. Two different states with the same projection are said to be representatives of
the projected state. A state may also be projected onto a sequence of expressions, this
projection computes the values of the expressions and ignores all other state variables.
This form of projection is used by the coverage criterion CC_State_Projection.

Projected Explicit Transition
A projected explicit transition consists of a pair of projected states and a ruleID condition
with the property that there exists a transition from some representative of the first
projected state to some representative of the second projected state using a rule which
satisfies the ruleID condition.

Projected Transition

Glossary of Terms Page 102 of 108 GOTCHA Users Guide

A projected transition consists of a pair of projected states with the property that there
exists a transition from some representative of the first projected state to some
representative of the second projected state.

Reachable State
A state is reachable if there exists a path (or sequence of transitions) in the model from a
start state to the state in question.

Rule
A rule is a description of the behaviour of the unit under test under a given stimulus. A
rule consists of a Boolean precondition, which determines if the stimulus may be applied
in a given state, and a set of GDL statements that assign new values to the state variables.

SET
Suite execution trace. The SET is an XML markup language that describes a trace of a
test suite execution.

State
The state of a model is its current situation including its responses to prior stimuli. The
state of a behavioural model is specified by the values of all its global variables (or state
variables).

Suite
A test suite is a sequence of tests.

Successful
A test case outcome that indicates that all of the test case’s transitions completed with
states predicted by the transitions’ associated rules.

Test
A test (or test case) is a sequence of transitions starting at a start state and finishing at a
final state.

Test Constraint
A test constraint is a limitation on the form of test cases that the GOTCHA test generator
can produce.

Test Directive
A test directive is either a test constraint, coverage criterion, or run-time parameter of the
GOTCHA tool that influences the test suite produced.

Test Suite
A test suite is a set of test cases.

Transition
A transition is an event that causes a behavioural model to change its state. A transition is
specified by a state of the model, a rule that is enabled in that state, and the new state that
results from activating the rule. The first state is called the source of the transition, and
the second state is called the destination of the transition. In an abstract test, a transition is
given by the rule and its destination state only, since the source of the transition is always
the destination of the preceding transition.

Undecided
A test case outcome that indicates that one of the test case’s transitions completed with an
alternate state predicted by the transition’s associated pluRule.

UUT

GOTCHA Users Guide Page 103 of 108 Glossary of Terms

Unit Under Test: the software application being tested.

10 Index

Designators, 19
directives, 26 A Dynamic breakpoints, 95

All State coverage, 77
E All Transition coverage, 78

alternative states. See PluRule
enabled rules, 43 API: test generation, 91
End Test Case: formerly finalstate, 68 assert, 25
Error, 25 Assignment, 22
Exists, 21 ATS, 39
explicit coverage model, 78
Explicit Transition Projection, 75 B Exploration Strategy, 86
Expression Syntax, 18 Backus-Naur Form, 13
Expressions, 19 Behavioural Model, 11

Behavioural Model Syntax, 15
F behavioural rules, 26

BNF, 13
For, 23
Forall, 21 C Forbidden Path, 69
Forbidden State, 69, 88 Case Sensitivity, 14
Forbidden Transition, 69, 88 Clear, 24
format: output. See Code Context Display, 95
FrontierStates, 88 Code Debugger: GDL, 94
Full State Space Exploration Strategy, 86 Code navigation, 95
full traversal, 78 Comments, 15
Full Traversal, 82; on the fly, 83 Compact State Representation, 85
Full Traversal Parameters, 80 compound types, 16
Function Syntax, 17 Constant declarations, 15

Coverability, 65

G coverable, 66
Coverage Criteria, 70
coverage factor, 33 GDL, 11
Coverage Factor, 84 GDL Syntax, 15
coverage models, 62 Glossary, 103
coverage task, 66 GOTCHA Runtime Options, 79
Coverage Task, 65, 87

H
D

Hello World, 35
Debugger Commands, 95
Declaration Syntax, 15

Index Page 104 of 108 GOTCHA Users Guide

I Requirements, 6
reserved words, 13

Identifiers, 15 return, 25
If statement, 22 rules, 26
input and output files, 84 Rules Per Screen, 44
Input Coverage Ruleset, 33 ruleset, 31, 32, 33
Input coverage test generation, 57 RuleWait, 42, 43
Input Pair Coverage Ruleset, 33 Runtime Checking, 85
Input Tables, 32
Input transition coverage test generation, 58 S Input transition pair coverage test generation, 59
Interactive Test Generation, 42 Sample Interactive Session, 47
interactive test generator commands, 46 simple rule, 26, 27
Invariant, 30, 88 simple types, 16
ITG_API, 92 Some Explicit Transition coverage, 72

Some State coverage, 71
M Some Transition coverage, 71

Starting An Interactive GOTCHA Session, 43
Memory Allocation, 85 state, 11
methodology, 7 State Projection coverage, 73
Model Syntax, 15 state variables: printing all, 87
model traversal: API, 91 Statement Syntax, 21
model traversal library, 90 States Per Screen, 44
Model traversal library, 85 StateWait, 42, 45
Murphi, 11 Switch, 22

N T
Non-deterministic StartTestCase, 29 TaskTree, 88

TC_StartTestCase, 29; formerly startstate, 29
test case: length, 83 O
Test Case: Extension Strategy, 86; Length

Recommendation, 86 Operators, 20
test cases: coverage factor, 61; length, 61; number, 83 Ordered enumerated types, 19
Test Constraints, 67 Output Options, 81
Test Generation Algorithm: full traversal, 88
Test Generation Directives, 62 P Test Generation Strategy, 80
Test Generator API, 91 parameter list, 18
test suite browser, 103 PluRule, 27
Testing directives, 67 priority of operators, 20
tests cases: number, 61 Procedure call, 24
transition, 11, 103 Procedure Syntax, 17
Transition Projection, 74 Progress Reports, 87
two-dimensional array, 17 projected state graph, 63
Type declarations, 16 put, 25

U Q
uncoverable, 66 quick generation algorithm codes, 60
Uncoverable States, 88 Quick test generation algorithms, 54
Uncoverable Tasks, 88 quick test generation parameters, 60
Uncoverable Transitions, 88
union type, 16 R

V Random reorder, 87
Random Seed, 85

Variable declarations, 16 Random test generation, 56
Variable Display, 96 Reachability, 64
VIA expression, 72 ReachableStates, 88

GOTCHA Users Guide Page 105 of 108 Index

VIA projection expression, 76
VIA_CONDITION, 75

W
What’s New, 6
While, 24
Within, 70

Index Page 106 of 108 GOTCHA Users Guide

	Introduction
	Overview
	Requirements
	What’s New in this Release
	The GOTCHA-Spider Methodology
	Write a Behavioral Model for Test
	Write a Testing Interface
	Generate Abstract Test Suites
	Review Behavioural Model, Abstract Tests, and Testing Interface
	Execute the Test Suite
	Observe and Iterate

	The contents of this document

	Writing a Behavioural Model
	What is a Behavioural Model?
	Writing a Behavioural Model
	Basic GDL Concepts
	Backus-Naur Form (BNF)
	Lexical Conventions
	Reserved Words
	Case Sensitivity
	Include Files
	Synonyms for End
	Identifiers
	Strings
	Integer Constants
	Comments

	GDL Syntax
	Model Syntax
	Declaration Syntax
	Constant declarations
	Type declarations
	Union Types
	Variable declarations

	Procedure and Function Syntax
	Expression Syntax
	Designators
	Expressions
	Operators
	'Forall' and 'Exists' Operators

	Statement Syntax
	Assignment
	If statement
	Switch statement
	For statement
	While statement
	Procedure call
	Clear statement
	Error assertion
	Assertion
	Output statement
	Function return:
	Debug break statement:

	Rules and Directives Syntax
	Simple rule
	PluRule
	Start Test Case
	Non-deterministic Start Test Case
	Invariant
	Ruleset
	Rulesets with Explicit Input Tables
	Rulesets with Input and Input Pair Coverage

	A Sample Model – Hello World
	Hello World Application Specification
	The GDL Model of Hello World
	The Hello World Finite State Machine

	Generating Test Suites – First Steps
	The Abstract Test Suite – GOTCHA’s output file
	Interactive Test Generation
	Introduction to the Interactive Generator
	Starting An Interactive GOTCHA Session
	What to do in RuleWait
	What to do in StateWait
	A Sample Interactive Session

	Generating test suites quickly
	Random test generation
	Input coverage test generation
	Input transition coverage test generation
	Input transition pair coverage test generation
	The parameters for quick test generation
	Specifying the input files
	Specifying the output files
	Specifying the quick generation algorithm
	Specifying the optional runtime parameters

	Coverage Criteria and Test Constraints

	Writing Test Generation Directives
	Explicitly specifying coverage models
	Reachability
	Coverability and Coverage Tasks

	Writing Testing Directives
	Test Constraints
	End Test Case
	Forbidden State
	Forbidden Transition
	Forbidden Path
	Within

	Coverage Criteria
	Some State
	Some Transition
	Some Explicit Transition
	State Projection
	Transition Projection
	Explicit Transition Projection
	All State
	All Transition

	Generating Test Suites – With Explicit Directives
	Automatically Creating an Abstract Test Suite Using an Explicit Coverage Model
	Complete GOTCHA Runtime Options
	Help (-h)
	More Help (-morehelp)
	Input Coverage Test Generation (-rctg)
	Random Test Generation (-rtg)
	Input Transition Coverage Test Generation (-rtctg)
	Input Transition Pair Coverage Test Generation (-rpctg)
	Full Traversal Test Generation
	Full Traversal Test Generation On The Fly \(-ful
	Number of test cases (-st<n>)
	Test case length recommendation (-gtlub<n>)
	Coverage Factor (-gtcf<n>)
	Interactive Test Generation (-itg)
	Code Debugger (-dbg)
	Input and Output (-o <filename>, >)
	Compact State Representation (-c)
	Disable Runtime Checking (-d)
	Memory Allocation (-m<n>)
	Random Seed (-rs<n>)
	Model Traversal Library (-lib)
	Initial State Space Exploration Strategy (-gtb, -gtd, -gtc)
	Further Exploration Strategy (-gftb, -gftd, -gftc)
	Test Case Length Recommendation (-gtlub<n>, -gtllb<n>), Test Case Extension Strategy (-ues -eftc)
	Random reorder (-rr)
	Loop Exit (-loop<n>)
	Output Format (-ps, -gts)
	Progress Reports (-p<n>, -pn, -gtp<n>, -gtpn, -gdp<n>)
	Coverage Task Details (-gpnc)
	Uncoverable States, Transitions, Tasks Details (-gde, -gtur, -gus<n>)
	Forbidden State, Forbidden Transition, Invariant Details (-fst<n>, -fp, -ip)

	The Full Traversal Test Generation Algorithm

	The Programming Interface to the Test Generator
	Creating the Model Traversal Library
	Test Generator API

	Debugging a Model
	Debugger Commands
	Sample Debug Session

	Browsing Test Suites
	Glossary of Terms
	Index

