

User manual and reference for Frame3DD: A Structural Frame Analysis Program Department of Civil and Environmental Engineering Edmund T. Pratt School of Engineering Duke University - Box 90287, Durham, NC 27708-0287

Henri P. Gavin, P.E., Ph.D.,

FRAME3DD

Version 0.20100105

Frame3DD is a program for the static and dynamic structural analysis of two- and three-dimensional frames and trusses with elastic and geometric stiffness.

Frame3DD is preferably executed from the <u>command prompt</u> (Windows) or <u>shell</u> (Linux) or <u>terminal</u> (OS X), as follows, with filenames changed as required:

frame3dd inputfile.3dd outputfile.txt

Frame3DD reads a plain-text **Input Data file**, containing joint coordinates, frame element geometry, material moduli, fixed joints, prescribed displacements, load information, and optionally, mass information if a modal analysis is to be carried out.

Frame3DD appends results to a plain-text **Output Data file**. Results from the most recent analysis are appended to the **end** of the Output Data file. Each section of the Output Data gives the date and time of the analysis, recapitulates the input information, gives joint displacements in global coordinates, frame element end-forces in local coordinates, reactions in global coordinates, and natural frequencies and mode shapes in global coordinates.

Frame3DD writes a <u>Gnuplot</u> script file used for viewing deformed frames and dynamic mode shapes. If the Output Data is written to a file called **MyResultsA.out**, the Gnuplot script is written to a file called **MyResultsA.plt**. Graphical output may be viewed by starting Gnuplot and typing: **Ioad 'MyResultsA.plt**'.

Frame3DD can consider multiple static load cases in a single analysis. Separate output data files list the internal axial force, shear forces, torsion, and bending moments along each frame element for each static load case.

Frame3DD may optionally interface with Matlab and with spreadsheet programs.

Frame3DD is **free open-source software**; you may redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the <u>Free Software Foundation</u>. The software is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See <u>LICENSE.txt</u> for details.

Contents

- 1. Getting started
- 2. Input Data and Output Data
- 3. How to install and run Frame3DD
 - 1. Linux
 - 2. Mac OS X
 - 3. Windows
- 4. Matlab Interface
- 5. Spreadsheet Interface
- 6. FrameEd
- 7. Structural Modeling

- 8. Numerical Details
- 9. Input Data Format
- 10. Variable Definitions
- 11. Command-line options
- 12. <u>Source code</u>
- 13. Exit code index
- 14. Enhancements projected for future versions
- 15. <u>References</u>

1. Getting started

- 1. Read the User Manual and Reference (this file).
- 2. <u>Download</u> Frame3DD and save the Frame3DD folder to your Desktop (more details below).
- 3. Optionally, obtain a copy of Gnuplot for your operating system (more details below).
- 4. Open a terminal, go to the Frame3DD directory, and run the program on one of the examples using a command like ...

frame3dd examples/exE.3dd examples/exE.out

- 5. Open the Output Data file using a good text editor and view the Output Data.
- 6. Plot the structural configuration, the deformed structural shape, and mode-shapes, by starting Gnuplot, and typing

gnuplot> cd 'Desktop/Frame3DD/examples'
gnuplot> load 'exE.plt'

Observe a series of plots by hitting the Return (or Enter) key between plots. If a dynamic analysis was performed, you will enjoy an animation of selected mode shapes. Continue to hit the Return (or Enter) key until the last plot is displayed.

2. Input Data and Output Data

The **Input Data file** is a plain text file and must adhere to the format <u>described below</u>. Several examples are given at <u>http://frame3dd.sourceforge.net/</u>. When writing your own input files, note the following points:

- Comments may be placed anywhere in the file and are helpful in organizing the Input Data.
- A comment begins with one of the following four characters # %?; and continues to the end of the line.
- All commas in the Input Data are ignored.
- Floating point numbers must be entered as 1.234 1234 or 1.234e3.
- Arithmetic expressions such as 1.234*10^3 or 6*sin(pi/2) are **not** allowed in the Input Data (unless the <u>Matlab</u> <u>interface</u> is used).

To write your own Input Data file, it may be helpful to start with an example that resembles the system you would like to analyze. Carefully compare the graphical output of the example, the Input Data file, the Output Data file, and the <u>Input</u> <u>Data format</u>, with the <u>variable definitions</u> at the end of this page.

You may edit Input Data files using a good plain text editor (vim, jEdit, nano, gedit (Linux), NotePad++ (Windows), etc.), using the Matlab interface, or using spreadsheet programs (GoogleDocs, OpenOffice, Gnumeric, or Excel).

Details regarding the Matlab interface to Frame3DD are <u>here</u>. Details regarding the spreadsheet interface to Frame3DD are <u>here</u>.

It might take a few tries to get your Input Data just right. Frame3DD checks the Input Data for errors prior to analyzing the system and, where possible, displays descriptive diagnostic messages when errors are found with the Input Data.

Frame3DD generates several **additional output files** used in plotting deformed frames. By default, these output files are sent to a temporary file folder. On OS X, Linux, and Unix, the location of this folder defaults to the **/tmp** directory. On Windows, the location of this folder defaults to **C:\WINDOWS\Temp**. If you would like your output files to be sent to another location, you can set the <u>environment variable</u> **FRAME3DD_OUTDIR** with the path to your desired temporary output directory. The additional output files will then appear in the folder you have specified.

3. How to install and run Frame3DD

Compiled executable programs are updated with some regularity. Frame3DD installation packages are available for download for Linux, for OS X, and for Windows operating systems as .ZIP archives. These installation .ZIP archives include:

- A copy of the GPL license (LICENSE.txt)
- The executable program (frame3dd) for the selected operating system (Linux, OS X, or Windows)
- This manual, (doc/user-manual.html)
- Some general information (README.txt)
- Some Windows-specific issues (README-win32.txt)
- The Matlab interface code (matlab/)
- A summary of recent updates to the program (ChangeLog.txt)
- A set of example Input Data files (examples/)

A separate Windows installer includes a Microstran viewer module for Frame3DD.

The date stamp at the beginning of the manual corresponds to the release date of the code.

3.1 Linux

For Linux you may install Frame3DD from a .ZIP archive or you may compile for Linux or Unix from the source code. The following instructions install Frame3DD to the **Desktop** but other directories may be substituted, if so desired.

3.1.1 Installing from the .ZIP archive for Linux

- 1. Linux and Unix systems have good plain text editors pre-installed (<u>vim</u>, <u>gedit</u>, <u>nano</u>). There should be no need to install another editor. A tutorial for vim is <u>here</u>.
- 2. <u>Download</u> the Frame3DD .ZIP archive (Frame3DD_VERSION_linux.zip) and save it in your **Desktop**.
- 3. If the .ZIP archive was not automatically unzipped, double-click the icon to extract it to your **Desktop**.
- (Recommended) Put the Frame3DD directory in your path and set the FRAME3DD_OUTDIR location. To do this, double-click the Home icon on the Desktop, and select View > Show Hidden Files

If you have a file called **.bashrc** in your home directory, open it with a double-click. Copy-and-paste the following ten lines into the beginning of **.bashrc**

```
# for Frame3DD ... http://frame3dd.sourceforge.net/
# add Frame3DD executable directory to the path
export PATH=$PATH:$HOME/Desktop/Frame3DD/
# create a Frame3DD output directory
if [ ! -d /tmp/frame3dd_temp_$USER ]; then
    mkdir /tmp/frame3dd_temp_$USER
    echo "creating /tmp/frame3dd_temp_$USER for Frame3DD"
fi
# specify the Frame3DD output directory
export FRAME3DD_OUTDIR=/tmp/frame3dd_temp_$USER
```

```
... save, and exit the editor.
```

If you have a file named **.cshrc** in your home directory, open it with a double-click. Copy-and-paste the following ten lines into the beginning of **.cshrc**

```
# for Frame3DD ... http://frame3dd.sourceforge.net/
# add Frame3DD executable directory to the path
set path = ( $path $home/Desktop/Frame3DD )
# create a Frame3DD output directory
if ( ! -d /tmp/frame3dd_temp_$user ) then
    mkdir /tmp/frame3dd_temp_$user
    echo "creating /tmp/frame3dd_temp_$user for Frame3DD"
endif
# specify the Frame3DD output directory
setenv FRAME3DD_OUTDIR /tmp/frame3dd_temp_$user
```

... save, and exit the editor.

5. Open a Terminal window. (Right-click on an open part of the Desktop and select **Open Terminal**.) Change to the directory containing the Frame3DD example files and run an example, as follows.

cd ~/Desktop/Frame3DD/examples/
frame3dd exE.3dd exE.out

Some run-time information will be displayed on the Terminal and the results of your Frame3DD analysis will have been appended to the end of the **exE.out** Output Data file. Data files used primarily for plotting are stored in the **/tmp/frame3dd_temp_\$USER** directory.

6. You may view Output Data files and edit Input Data files using a good plain text editor (vim, gedit, nano), or a

spreadsheet program (<u>GoogleDocs</u>, <u>OpenOffice</u>, <u>Gnumeric</u>). For example, to read or edit the Input Data file. Double-click the **Home** icon on the Desktop, navigate to the directory of your data files, right click on the Data File and select the editor of your choice.

7. Run your own Frame3DD analyses within the Terminal window using a command like ...

frame3dd MyFrame.3dd MyResultsA.out

Use Gnuplot to view the graphical output.

- 1. Gnuplot is commonly pre-installed on Linux systems. If it is not, you may install it only if you have root privileges using a command like ... sudo apt-get install gnuplot ... or by using the package manager GUI installed on your system.
- 2. Start Gnuplot in the Terminal with the command:

gnuplot

3. Display the plots of your structure using Gnuplot with a command like ...

```
gnuplot> load 'MyResultsA.plt'
```

where MyResultsA.out is the name of of the Output Data file specified when running Frame3DD.

- 4. Hit the 'Return' key in the Terminal window to see the sequence of plots and animations until the **gnuplot>** prompt returns. Or hit **CTRL-C** to stop the plots at the current plot.
- 5. To save the current plot as a PostScript file in the Frame3DD/examples directory, use the **saveplot** script included in the Frame3DD/examples directory.

```
gnuplot> load 'saveplot'
gnuplot> !cp my-plot.ps PlotFileA.ps
```

6. After finishing with your plots, you can exit Gnuplot by typing ...

```
gnuplot> quit
```

3.1.2 Installing from source for Linux or Unix

The following instructions work on Ubuntu 8.10 - 9.10 and should work with minor changes on any other recent Linux or Unix system.

1. Ensure you have Python, SCons and GCC installed on your system. On Debian-based systems it should suffice to

sudo apt-get install build-essential scons

2. If you would like to build the Microstran viewer, ensure that the package libsoqt-dev4 is installed on your system.

sudo apt-get install libsoqt-dev4

- 3. <u>Download</u> the Frame3DD source-code tarball (frame3dd-VERSION.tar.bz2) and save it in your home directory.
- 4. Open a Terminal, unpack the source code, enter the source directory, and build the code, as follows:

```
tar jxvf frame3dd-VERSION.tar.bz2
cd frame3dd-VERSION
scons
```

5. If you have root privileges, install build/frame3dd to /usr/local/bin/ ...

sudo scons install

or you may install frame3dd in another system directory if your choosing, such as, ...

sudo scons install INSTALL_PREFIX=/usr/bin/

6. If you do not have root privileges, you can run Frame3dd directly from the build tree:

export LD_LIBRARY_PATH=~/frame3dd-VERSION/build
export PATH=\$PATH:~/frame3dd-VERSION/build

7. Copy one of the frame3dd-VERSION/examples/*.3dd files (e.g., **exE.3dd**) into your home directory, make sure you have write-privileges for the file, and run one of the examples

frame3dd exE.3dd exE.out

3.2 Mac OS X

For OS X running on an Intel processor, you may install Frame3DD from a .ZIP archive or you may compile from the source code. The following instructions install Frame3DD to the **Desktop** but other directories may be substituted, if so desired.

3.2.1 Installing from the .ZIP archive for OS X

- 1. Install a good plain text editor for OS X: jEdit, or Vim. A tutorial for Vim is here. Alternatively, you may use TextEdit.
- 2. <u>Download</u> the Frame3DD .ZIP archive (Frame3DD_VERSION_osx.zip) and save it in your **Desktop**.
- 3. If the .ZIP archive was not automatically unzipped, double-click the icon to extract it to your **Desktop**.
- 4. (*Recommended*) Put the **Frame3DD** directory in your path and set the **FRAME3DD_OUTDIR** location. To do this, open your ~/.profile file using your good text editor.

```
* Using TextEdit, open a Terminal Applications > Utilities > Terminal and type: open -a TextEdit .profile
* Using jEdit, File > Open and type ~/.profile in the File Name: text entry bar.
```

* Using Vim, **File > Open** and select **.profile** from your home directory.

```
Copy-and-paste the following ten lines into the beginning of ~/.profile
```

```
# for Frame3DD ... http://frame3dd.sourceforge.net/
# add Frame3DD executable directory to the path
export PATH=$PATH:$HOME/Desktop/Frame3DD/
# create a Frame3DD output directory
if [ ! -d /tmp/frame3dd_temp_$USER ]; then
    mkdir /tmp/frame3dd_temp_$USER
    echo "creating /tmp/frame3dd_temp_$USER for Frame3DD"
fi
# specify the Frame3DD output directory
export FRAME3DD_OUTDIR=/tmp/frame3dd_temp_$USER
```

... save, and exit the editor.

5. Open a Terminal (Applications > Utilities > Terminal), change to the directory of example files and run an example.

```
cd ~/Desktop/Frame3DD/examples/
frame3dd exE.3dd exE.out
```

Some run-time information will be displayed on the Terminal and the results of your Frame3DD analysis will have been appended to the end of the **exE.out** Output Data file. Data files used primarily for plotting are stored in the **/tmp/frame3dd_temp_\$USER** directory.

- You may view Output Data files and edit Input Data files using your plain text editor (<u>iEdit</u>, <u>Vim</u>, <u>TextEdit</u>) or a spreadsheet program (<u>GoogleDocs</u>, <u>OpenOffice</u>).
 If you use Apple's TextEdit, make sure you are in Plain Text mode ... [SHIFT] [APPLE] [T] ... or ... Format > Make Plain Text ...
 Pue your source frame3DD applying within the Terminal window using a command like
- 7. Run your own Frame3DD analyses within the Terminal window using a command like \dots

frame3dd MyFrame.3dd MyResultsA.out

Use <u>Gnuplot</u> to view the graphical output.

- 1. From you Mac's Administrator account, first install Xcode, then install MacPorts, and finally install Gnuplot.
 - To install Xcode, go to the <u>Apple Developer Connection (ADC)</u>, join ADC to create an account, log in, and then click on **Downloads** > **Developer Tools**, and browse for the version of Xcode for your version of OS X.
 - For OS X **10.4** Tiger, install Xcode **2.5** Developer Tools
 - For OS X 10.5 Leopard, install Xcode 3.1.4 Developer Tools
 - For OS X 10.6 Snow Leopard, install Xcode 3.2.1 Developer Tools
 - Make sure the "Unix Development" option is selected if installing Xcode 3.1.4 or 3.2.1.
 - To install MacPorts for your version of OS X (10.4 Tiger, 10.5 Leopard, or 10.6 Snow Leopard), follow these instructions.
 - To install Gnuplot, open a terminal and type:

```
sudo port install gnuplot
```

If this is your first MacPorts package installation, it will take several minutes to complete.

2. Visualize your Frame3DD analysis output. Open a Terminal window (Applications > Utilities > Terminal) and ...

gnuplot

```
gnuplot> cd '~/Desktop/Frame3DD/examples'
gnuplot> load 'MyResultsA.plt'
```

where MyResultsA.out is the name of of the Output Data file specified when running frame3dd.

- 3. Hit the 'Return' key in the Terminal window to see the sequence of plots and animations until the **gnuplot>** prompt returns.
- 4. To save the current plot as a PDF file in the Frame3DD/examples directory, use the **saveplot_osx** script included in

the Frame3DD/examples directory.

gnuplot> load 'saveplot_osx'
gnuplot> !cp my-plot.pdf PlotFileA.pdf

5. After finishing with your plots, you can exit Gnuplot by typing ...

gnuplot> quit

3.2.2 Compiling the source on OS X

- 1. Install the Xcode Developer Tools for your version of OS X as described above.
- 2. <u>Download</u> the Frame3DD source-code tarball (frame3dd-VERSION.tar.bz2) and save it in your home directory.
- 3. Unpack the source code, enter the source directory, and build the code, as follows:

gcc -0 -o frame3dd main.c frame3dd.c frame3dd_io.c ldl_dcmp.c lu_dcmp.c coordtrans.c eig.c nrutil.

3.3 Windows

For Microsoft Windows, you may install Frame3DD from a .ZIP archive, you may use a binary installer (which may sometimes be out of date), or you may compile from the source code. The following instructions install Frame3DD to the **Desktop** but other directories may be substituted, if so desired.

3.3.1 Installing from the .ZIP archive for Windows

- Install a good plain text editor for Windows: <u>NotePad++</u>, or <u>jEdit</u>, or <u>gvim</u>. A tutorial for gvim is <u>here</u>. Alternatively, you may use <u>NotePad</u>.
- 2. <u>Download</u> the Frame3DD .ZIP archive (Frame3DD_VERSION_win32.zip) and save it to your **Desktop**.
- If the .ZIP archive was not automatically unzipped, double-click the icon to extract it to your **Desktop**.
 (*Recommended*) Put the **Frame3DD** directory in your path and set the **PATH** and **FRAME3DD_OUTDIR** environment variables.

To do this, right-click My Computer > Properties > Advanced > Environment Variables Set a new user variable name PATH with variable value %HOMEPATH%\Desktop\Frame3DD Set a new user variable name FRAME3DD_OUTDIR with variable value %HOMEPATH%\Desktop \Frame3DD\temp

(The Desktop\Frame3DD\temp folder should already exist.)

Detailed information on how to set environment variables in Windows is here, if you need it.

 Open a "<u>command prompt window</u>" (Start > All Programs > Accessories > Command Prompt), change to the directory of example files, and run an example, as follows:

chdir %HOMEPATH%\Desktop\Frame3DD\examples frame3dd exE.3dd exE.out

Alternatively, you may double-click on the **frame3dd** program icon and enter the Input Data file name and Output Data file name when prompted, as follows:

Please enter the input data file name: examples/exE.3dd Please enter the output data file name: examples/exE.out

Some run-time information will be displayed on the Command Prompt window and the results of your Frame3DD analysis will have been appended to the end of the **exE.out** Output Data file. Data files used primarily for plotting are stored in the **Desktop\Frame3DD\temp** folder.

- You may view Output Data files and edit Input Data files using a good plain text editor (<u>NotePad++</u>, <u>iEdit</u>, <u>avim</u>), or a spreadsheet program (<u>GoogleDocs</u>, <u>OpenOffice</u>).
- 7. Run your own Frame3DD analyses within the Command Prompt window using a command like ...

frame3dd MyFrame.3dd MyResultsA.out

Use <u>Gnuplot</u> to view the graphical output.

- 1. <u>Download</u> the MS-Windows version of Gnuplot and save it to your **Desktop**.
- 2. Navigate to **Desktop > Gnuplot > bin** and right click on **wgnuplot** to create a shortcut to your **Desktop**.
- 3. Clicking on the **wgnuplot** icon on the Desktop will start Gnuplot.
- 4. To load the plot into Gnuplot, first change directory to to location of your output files, by clicking on the ChDir button at the top of the Gnuplot window and navigating to Desktop > Frame3DD > examples.
- 5. Display the plots of your structure using Gnuplot with a command like ...

gnuplot> load 'MyResultsA.plt'

where MyResultsA.out is the name of of the Output Data file specified when running Frame3DD.

- 6. Click **OK** to see the next plot or **Cancel** to stop with the current plot.
- 7. To save the current plot as a PostScript file in the Frame3DD/examples folder, use the **saveplot_w32** script included in the Frame3DD/examples folder.

```
gnuplot> load 'saveplot_w32'
gnuplot> !copy my-plot.ps PlotFileA.ps
```

3.3.2 Installing from the binary installer

- Install a good plain text editor for Windows: <u>NotePad++</u>, or <u>jEdit</u>, or <u>gvim</u>. A tutorial for gvim is <u>here</u>. Alternatively, you may use <u>NotePad</u>.
- 2. Download and run the binary installer (frame3dd-VERSION.exe).
- 3. (*Recommended*) Put the **Frame3DD** directory in your path and set the **PATH** and **FRAME3DD_OUTDIR** environment variables.

```
To do this, right-click My Computer > Properties > Advanced > Environment Variables
Set a new user variable name PATH with variable value %PROGRAMFILES%Frame3DD
Set a new user variable name FRAME3DD_OUTDIR with variable value %HOMEPATH%Desktop
\Frame3DD\temp.
```

You will need to create this Temp folder: **Desktop\Frame3DD\temp** before running **Frame3DD**. Detailed information on how to set environment variables in Windows is <u>here</u>, if you need it.

- Copy one or more of the example files (eg exE.3dd) from your %PROGRAMFILES%\FRAME3DD\examples folder into your Desktop folder
- Open a "<u>command prompt window</u>" (Start > All Programs > Accessories > Command Prompt), change to the directory of example files and run an example:

chdir %HOMEPATH%\Desktop frame3dd exE.3dd exE.out

Some run-time information will be displayed on the Command Prompt window and the results of your Frame3DD analysis will have been appended to the end of the **exE.out** Output Data file. Data files used primarily for plotting are stored in the **Desktop\Frame3DD\temp** folder.

6. You may run **Frame3DD**, examine the analysis results, visualize the results using Gnuplot, and edit Input Data files as described above.

3.3.3 Compiling the source on Windows

- 1. Install a GCC compatible compiler, such as the DIGPP gcc compiler, the LCC-win32 compiler, or the MinGW compiler.
- 2. <u>Download</u> the Frame3DD source-code tarball (frame3dd-VERSION.tar.bz2) and save it in your home directory.
- 3. Unpack the source code, enter the source directory, and build the code, as follows:

gcc -0 -o frame3dd main.c frame3dd.c frame3dd_io.c ldl_dcmp.c lu_dcmp.c coordtrans.c eig.c nrutil.

4. Matlab Interface

Frame3DD may optionally be executed from within Matlab on any platform, via the Matlab interface function frame 3dd.m

```
function [D,R,F,L,Ks] = frame 3dd(XYZ,JTS,RCT,EAIJ,P,U,D)
% [D,R,F,L,Ks] = frame 3dd (XYZ,JTS,RCT,EAIJ,P,U,D)
å
% Solve a a three-dimensional frame analysis problem
웅
% INPUT DATA:
웅
웅
  XYZ : a 4xJ matrix containing the XYZ coordinate of each joint
웅
           row 1 = X-axis coordinate for each joint
웅
           row 2 = Y-axis coordinate for each joint
웅
           row 3 = Z-axis coordinate for each joint
           row 4 = rigid radius
å
                                     for each joint
웅
웅
  JTS : a 2xB matrix indicating which 2 joints each frame element connects
웅
           row 1 = the 'starting' joint for each frame element
웅
           row 2 = the 'ending'
                                  joint for each frame element
웅
웅
  RCT : a 6xJ matrix indicated which joints have reactions
ŝ
         0: the joint has no reaction in that degree of freedom,
```

```
웅
         1: the joint does have a reaction in that degree of freedom.
8
웅
 EAIJ : a 10xB containing the section and modulus properties of each frame el.
         row 1 = Ax cross section area
                                            for each frame el.
웅
웅
         row 2 = Asy shear area y-direction for each frame el.
         row 3 = Asz shear area z-directionfor each frame el.
å
         row 4 = Jxx torsional moment of inertia - x axis for each frame el.
å
         row 5 = Iyy bending moment of inertia - y axis for each frame el.
å
ဗ္ဂ
         row 6 = Izz bending moment of inertia - z axis for each frame el.
         row 7 = E elastic modulus
웅
                                         for each frame el.
8
         row 8 = G
                     shear modulus
                                            for each frame el.
8
         row 9 = p roll angle
                                            for each frame el.
8
         row 10 = d mass density
                                            for each frame el.
ဗ္ဂ
ဗ္ဂ
    P : a 6xJ matrix containing the components of the external
        forces and moments applied to each joint.
å
          row 1 = Joint Force in X-direction
å
                                                for each joint
å
          row 2 = Joint Force in Y-direction
                                                for each joint
웅
          row 3 = Joint Force in Z-direction for each joint
웅
          row 4 = Joint Moment about X-axis for each joint
웅
          row 5 = Joint Moment about Y-axis
                                                for each joint
웅
          row 6 = Joint Moment about Z-axis for each joint
웅
웅
    U : a 3xB matrix containing the unif. dist. load on each frame element
          row 1 = uniform distributed load along the local element x axis
웅
          row 2 = uniform distributed load in the local element y axis
ဗ္ဂ
ဗ္ဂ
          row 3 = uniform distributed load in
                                                 the local element z axis
웅
웅
    D : a 6xJ matrix of prescribed displacements at the reaction DoF's
웅
          row 1 = prescribed joint displ. in the X-direction for each joint
웅
          row 2 = prescribed joint displ. in the Y-direction for each joint
          row 3 = prescribed joint displ. in the Z-direction for each joint
웅
웅
          row 4 = prescribed joint rot'n about the X-axis for each joint
웅
          row 5 = prescribed joint rot'n about the Y-axis for each joint
웅
          row 6 = prescribed joint rot'n about the Z-axis for each joint
웅
웅
 OUTPUT DATA:
웅
웅
    D : a 6xJ matrix of the deflections and rotations of each joint
웅
    R : a 6xJ matrix of the reaction forces and moments
ဗ္ဂ
    F : a 12xB matrix of the end forces of each frame element
å
    L : a 1xB vector of the length of each frame element
å
   Ks : a 6Jx6J matrix of the structural stiffness matrix
```

The **Frame3DD** executable program (**frame3dd** on Linux or OS X, **frame3dd.exe** on Windows) and the matlab interface function, **frame_3dd.m** must be saved to directories within your Matlab path. To display the or modify the matlab path, use the matlab command **path**.

In Linux and OS X you can add the Frame3DD directory to your matlab path with the matlab commands:

path([getenv('HOME') '/Desktop/Frame3DD'],path)
path([getenv('HOME') '/Desktop/Frame3DD/matlab'],path)

In Windows you can add the Frame3DD directory to your matlab path with the matlab commands:

path([getenv('USERPROFILE') '/Desktop/Frame3DD'],path)
path([getenv('USERPROFILE') '/Desktop/Frame3DD/matlab'],path)

The matlab interface function, <u>frame 3dd.m</u>, executes the system command (**frame3dd** on Linux or OS X, **frame3dd.exe** on Windows) to compute the solution.

The Matlab file for your problem first sets up the various matrices defining the problem for analysis and calls frame_3dd.m
 A Matlab varian of Example A illustrates have to analyze problems using the Matlab interface to Erame2DD

A Matlab version of Example A illustrates how to analyze problems using the Matlab interface to Frame3DD.

- Matlab versions of the other examples are forthcoming.
- 2. frame_3dd.m writes a Frame3DD input data file called IOdata.FMM,
- 3. frame_3dd.m calls a system command to run the executable program frame3dd in the input data file IOdata.FMM .
- The executable program frame3dd writes the Output Data to IOdata.OUT , and also writes IOdata_out.m, containing the Output Data.
 An file containing the Output Data.

An m-file containing the Output Data is written whenever the frame3dd executable is run on a file ending in ".FMM", whether or not the analysis is initiated by frame_3dd.m.

- 5. frame_3dd.m runs IOdata_out.m, containing the matrices D, R, F, L, and Ks,
- 6. frame_3dd.m returns D, R, F, L, and Ks, to the Matlab workspace, or to your Matlab function.

This m-function interface to **Frame3DD** is currently capable of static analyses. It does not (yet) implement the following features of **Frame3DD**:

- Matlab functions for graphical display of the results
- gravity loading
- point forces applied between the joints of a frame element
- temperature loads
- multiple load cases
- modal analysis
- matrix condensation

Adding these features would require editing the matlab inteface function, frame_3dd.m.

5. Spreadsheet Interface

Input Data for **Frame3DD** may be read and written using spreadsheet programs (excel, <u>GoogleDocs</u>, <u>OpenOffice</u>, <u>Gnumeric</u>).

Any of the **Frame3DD** example Input Data files may be opened with a spreadsheet program. When editing an Input Data file with a spreadsheet program, save it in **.CSV** format (with a "**.CSV**" filename extension).

When run on a **.CSV** file, **Frame3DD** writes results as plain text to the named Output Data file and also writes results of the static analyses to a spreadsheet with a filename ending in "**.CSV**". For example, running **Frame3DD** as follows:

frame3dd MyFrame.CSV MyResultsA.out

results in the two Output Data files **MyResultsA.out** and **MyResultsA_out.CSV**. These **.CSV** files may be viewed, edited, pre-processed, and post-processed with a spreadsheet program.

The results spreadsheet file includes an index table specifying the row numbers of each type of result. Sections of an example results spreadsheet are shown below.

	Α	В	С	D	E	F	G	Н		
1	FRAME3D	D version	: 200901	01	http://fra	ame3dd.s	f.net/			ĥ
2	GPL Copy	/right (C)	1992-2009	9, Henri P.	Gavin					
3	FRAME30	D is distr	ibuted in 1	the hope	that it wil	l be use fu	l but with	no warrar	nty.	
4	For detai	ls see the	GNU Pub	lic Licence	e: http://v	www.fsf.or	g/copyleft	t/gpl.html		ľ
5	Example	B: a pyrar	nid-shape	d frame -	static a	and dynan	nic analys	IS		
6	Thu Jan 1	07:59:50	2009							
7	.CSV form	natted res	sults of Fr	ame3DD	analysis					
8										
9		Load Cas	Displace	End Force	Reaction	S				
10	First Row	1	21	28	38					
11	Last Row	1	25	35	42					
12	First Row	2	49	56	66					
13	Last Row	2	53	63	70					
14	First Row	3	77	84	94					
15	Last Row	3	81	91	98					
16										
17	LOAD	CASE 2	1 OF 3							
18										
19	JOINT	DISPL	АСЕМЕ	NTS (gl	obal)					
20	Joint	X-dsp	Y-dsp	Z-dsp	X-rot	Y-rot	Z-rot			
21	1	0.10231	-0.3640	-1.4532	0.00243	0.00065	-6E-07			
22	2	0	0	0	0	0	0			2

This example has three load cases.

Displacements for load case 1 start at row 21 and end at row 25. Frame element end forces for load case 1 start at row 28 and end at row 35. Reaction forces for load case 1 start at row 38 and end at row 42.

Displacements for load case 2 start at row 49 and end at row 53. Frame element end forces for load case 2 start at row 56 and end at row 63. Reaction forces for load case 2 start at row 66 and end at row 70.

Displacements for load case 3 start at row 77 and end at row 81. Frame element end forces for load case 3 start at row 84 and end at row 91. Reaction forces for load case 3 start at row 94 and end at row 98.

For any **Frame3DD** .CSV results file, the spreadsheet cells containing the result row numbers are given in the following table.

Load Case 1	First Row	Last Row
Joint Displacements	C-10	C-11
Frame Element End Forces	D-10	D-11
Reaction Forces	E-10	E-11
Load Case 2	First Row	Last Row
Joint Displacements	C-12	C-13
Frame Element End Forces	D-12	D-13
Reaction Forces	E-12	E-13
Load Case 3	First Row	Last Row
Joint Displacements	C-14	C-15
Frame Element End Forces	D-14	D-15
Reaction Forces	E-14	E-15
et cetera		

H

	isplacem	ient results a		Ins A throug	n 0.				
ĺ		Α	В	С	D	E	F	G	
ĺ	18								
	19	JOINT	DISPL	АСЕМЕ	NTS (gl	obal)			
	20	Joint	X-dsp	Y-dsp	Z-dsp	X-rot	Y-rot	Z-rot	
	21	1	0.10231	-0.3640	-1.4532	0.00243	0.00065	-6E-07	
Í	22	2	0	0	0	0	0	0	

The columns of the spreadsheet results file are arranged as follows. Displacement results are in columns A through G:

Frame element end force results are in columns A through H:

	Α	В	С	D	E	F	G	Н	
26	BEAM	END F	ORCES	(local)					^
27	Beam	Joint	Nx	Vy	Vz	Txx	Муу	Mzz	
28	1	1	51.0162	-0.0174	-0.3470	-3.7671	61.0322	6.98192	
29	1	2	-51.016	0.01740	0.34699	3.76713	59.3415	7.86974	_
30	2	1	58.5714	0.02283	-0.3205	2.51591	60.9668	-4.4747	
31	2	3	-58.571	-0.0228	0.32046	-2.5159	57.8686	-4.8709	
32	3	1	38.4099	-0.0105	-0.4001	3.76838	59.716	-7.0299	

Reaction results are in columns A through G:

	A	В	С	D	E	F	G	Н	Ī
36	REACT	IONS (global)						
37	Joint	Fx	Fy	Fz	Mxx	Муу	Mzz		
38	1	0	0	0	0	0	0		
39	2	33.8149	25.3394	28.5874	29.6051	-51.973	4.45839		
40	3	-38.859	29.1157	32.7562	30.885	49.172	-2.6572		
41	4	-25 396	-19 034	21 6389	-43 297	44 7314	-4 9047		

Modal analysis results are not (yet) written to the .CSV formatted output file.

6. FrameEd

Frame_Ed is a Windows GUI for the 20020103 version of **Frame3DD** (Jan 3, 2002). The .zip file <u>FrameEd.zip</u> includes:

- the GUI executable, Frame_Ed.exe
- the frame analysis executable, Frame3d.exe, for the 20020103 version
- an example input file, exG.3dd, for the 20020103 version
- a template for the Input Data file, ex2002.3dd, for the 20020103 version

Differences between the 2002 and the current versions of **Frame3DD** are:

- The 2002 version does not support comments in the Input Data.
- The 2002 version does not support multiple load cases.
- The 2002 version does not support roll angles for frame element orientation.
- The 2002 version uses the Jacobi method for modal analysis.
- The 2002 version requires specification of joint masses and inertias for every joint.
- The 2002 version does not support panning of the animation.
- The 2002 version uses Guyan reduction for matrix condensation, to match the first mode.

Source code for FrameEd is not currently available, and development on this GUI is no longer active.

7. Structural Modeling

7.1 Units

The Output Data is formatted using floating point display, not scientific notation. To obtain the greatest number of significant

digits in the output, use units of force and length such that the modulus of elasticity occupies three to five figures before the decimal point. For example, if the frame to be analyzed is made of steel or aluminum, use units of (kips (1000 pounds) and inches), or (Newtons, millimeters, and tonne), or (MegaNewtons, meters, and kilotonnes).

It is recommended to write the units used in your analysis in the *title* of the analysis and throughout the Input Data files, as is done in the example Input Data files.

- 1 inch = 25.4 millimeter = 0.0254 meter
- 1 kip = 4 448.221 6 Newton = 0.004 448 221 6 MegaNewton
- 1 kip/square inch = 6.894 757 28 Newton/square millimeter = 6.894 757 28 MegaNewton/square meter
- 1 kip/cubic inch = 0.027 679 904 593 tonne/cubic millimeter = 27.679 904 593 kilotonne/cubic meter
- 1 /deg.F = 1.8 /deg.C

7.2 Joints, Coordinates, Support Conditions and Reactions

Joint positions are specified by locations in a three-dimensional Cartesian coordinate system. Each joint has six coordinates: three translations in the global *X*, *Y*, and *Z* directions and three rotations about the global *X*, *Y*, and *Z* axes. Optionally, joints may be modeled as "rigid" within a sphere of radius *r*. The effects of finite joint sizes are modeled approximately in the calculation of the frame element stiffness through the use of an *effective beam length*, which is the joint-to-joint length of the frame element less the rigid radii on each end. All joints are fully moment resisting. Semi-rigid connections may be modeled through the use of short frame elements at the ends of longer members.

For two-dimensional (planar) structures the global X direction is horizontal and the global Y direction is vertical. For threedimensional structures the global X and Y directions are horizontal and the global Z direction is vertical.

Joint numbers should be assigned in a systematic way, moving from one end of the structural system to the opposite end.

Support conditions are modeled by fixing the degrees of freedom collocated with reaction forces. By default, displacements at the fixed degrees of freedom may be prescribed as a type of loading. Elastic support conditions may be modeled by additional elements with the desired flexibility. Static reaction forces at the fixed degrees of freedom are computed and are appended to the Output Data file.

7.3 Numbering of Frame Element Starting Joints and Ending Joints

Coordinate transformations in 3D are not unique and depend upon the sequence of rotations. In some cases the orientation of an element within a structure may not be obvious if the element has rotated by more than 90 degrees in going from the local system to the global system. For this reason it can be helpful to define end joints in a way that requires rotations of less than 90 degrees about any axis. Coordinate transformations in 2D are unique and these potential ambiguities are not a concern. For 3D structures the following recommendations can help in avoiding ambiguous coordinate transformations.

Frame elements connect pairs of joints. Each frame element has a "starting joint" (element joint 1, J1) and an "ending joint" (element joint 2, J2), as described in the <u>Input Data format</u>. In principle, either joint of the frame element could be joint J1 and either joint could be J2. The assignment of J1 and J2 to the frame element should not affect the results. However, to avoid confusion in certain 3D models, the following guidelines are recommended:

• In general joint J1 of the frame element should have more negative coordinates than joint J2 of the element.

More specifically, specifying element joint 1 location as (x1, y1, z1) and element joint 2 location as (x2, y2, z2),

- If $x1 \neq x2$ then x1 should be less then x2. Joint J2 should be toward the more positive side of the X-axis.
- If $x_1 = x_2$ and $y_1 \neq y_2$ then y_1 should be less then y_2 . Joint J2 should be toward the more positive side of the Y-axis.
- If x1=x2 and y1=y2 and z1 ≠ z2 then z1 should be less then z2. Joint J2 should be toward the more positive side of the Z-axis.

The figure below attempts to illustrate the application of these guidelines.

7.4 Frame Element Cross Section Properties

Cross-sectional properties of frame elements are specified in a local coordinate system, in which the *x*-axis of the local coordinate system is oriented along the axis of the frame element. The local *y*-axis and *z*-axis are aligned with the principle directions of the shape of the cross section.

7.4.1 Axial Effects

Ax is the cross-sectional area of the frame element, which is given as the cross-sectional area of the material perpendicular to the local x-axis.

7.4.2 Shear Effects

Shear strains in frame elements are distributed in a relatively complicated manner over the cross section. Shear areas are effective cross-sectional areas corresponding to a uniform distribution of shear strain over the cross section. The shear area values, *Asy* and *Asz*, fully account for the non-uniform distribution of shear strain in the cross section. For slender frame elements (in which the span-to-depth ratio is greater than 10) shear deformations contribute only slightly to the overall structural deformation. For stocky frame elements (in which the span-to-depth ratio is less than 5) shear deformations contribute significantly to the overall structural deformation. The shear area formulas below for circular, square, and rectangular, cross sections provide accurate approximations of the exact values of these variables. Regardless of the section shape, the shear areas *Asy* and *Asz* are less than the cross section area *Ax*.

7.4.3 Torsion Effects

Polar Moments of Inertia depend on the shape of the cross-section. For sections with a circular cross section: |xx = |yy + |zz|

For sections with a solid rectangular cross section (width=b, depth=d (b < d)): $lxx = 0 d b^3$ where Q = 1/3 - 0.2244 / (d/b + 0.1607);Q = 1/3 - 0.224 / (d/b + 0.161);0.35 0.3 0.25 O 0.2 0.15 0.1 10 100 d/b

For more details, see page 271 of Timoshenko and Goodier (1951).

For open sections made up of thin plates (length=b, thickness=t): $Jxx = \Sigma_i [b_i t_i^3 / 3]$

For closed single-box sections made up of thin plates (length=b, thickness=t): $Jxx = 4 A^2 / \Sigma_i [b_i / t_i]$ where A is the area enclosed by the box.

Restraints to warping deformation are not considered in the analysis.

7.4.4 Bending Effects

The bending moments of inertia, *lyy* and *lzz*, are the principle bending moments of inertia for the cross section.

7.4.5 Cross Section Properties of Circular Tube, Square Tube, Rectangular Tube and I-shaped Sections

Circular Tube

Circular Tube (outer radius = R_o , inner radius = R_i):

- $Ax = \pi (R_0^2 R_i^2)$
- $Asy = Asz = Ax / (1.124235 + 0.055610(R_i/R_o) + 1.097134(R_i/R_o)^2 0.630057(R_i/R_o)^3) \pm 0.5\%$
- $Asy = Asz = Ax / (1.06124 + 0.59546(R_i/R_o)) \pm 2\%$

- $Jxx = (1/2) \pi (R_0^4 R_i^4)$
- $lxx = lyy = (1/4) \pi (R_0^4 R_i^4)$

Square Tube (outer dimension = $b \times b$, wall thickness = t):

- $Ax = b^2 (b 2t)^2$
- $Asy = Asz = Ax / (2.08334 0.70154(t/b) 8.00313(t/b)^2 + 12.22572(t/b)^3) \pm 0.5\%$
- $Asy = Asz = Ax / (2.1186 1.9900(t/b)) \pm 2\%$
- $Jxx = (b t)^3 t$
- $lzz = lyy = (1/12) (b^4 (b 2t)^4)$

Rectangular Tube (outer dimension = $a \times b$, wall thickness = t):

- Ax = ab (a 2t)(b 2t)
- $Asy = Ax / (1.14766 + 0.28187(t/b) + 0.96199(b/a) 2.17742(t/a)) \pm 1\% \dots$ (a > b)
- $Asy = Ax / (1.10498 1.98518(t/a) + 8.74762(t/a)^3 + 0.99548(b/a) + 0.69146(tb/a^2) 5.36255(t^2b/a^3)) \pm 1\% \dots$ (b > a)
- $Asz = Ax / (1.10498 1.98518(t/b) + 8.74762(t/b)^3 + 0.99548(a/b) + 0.69146(ta/b^2) 5.36255(t^2a/b^3)) \pm 1\% \dots$ (a > b)
- $Asz = Ax / (1.14766 + 0.28187(t/a) + 0.96199(a/b) 2.17742(t/b)) \pm 1\% \dots$ (b > a)
- $Jxx = 2 t (a t)^2 (b t)^2 / (a + b 2t)$
- $lyy = (1/12) (ab^3 (a 2t)(b 2t)^3)$
- $Izz = (1/12) (a^{3}b (a 2t)^{3}(b 2t))$

I sections (depth = d, width = b, flange thickness = t, web thickness = w):

- Ax = bd (d-2t)(b-w)
- Asy = 1.64 b t
- Asz = dw
- $Jxx = (1/3) (2 b t^3 + d w^3)$
- $lyy = (1/12) (bd^3 (b-w)(d-2t)^3)$
- $lzz = (1/12) (2 t b^3 + (d-2t)w^3)$

Note: Commercial sections have rounded corners. Manufacturer specifications for cross sectional properties account for the fact that the corners of the cross sections are rounded. Manufacturer specifications for section properties should therefore be used whenever available. Some tabulated section properties are provided below.

7.4.6 Cross Section Properties Of Some Common Steel Sections

- <u>Structural Steel</u>
- Steel W-section I beams #1
- Steel W-section I beams #2
- <u>Steel S-section I beams</u>
- Steel Angles #1
- Steel Angles #2
- <u>Steel Channels</u>

- <u>Aluminum I beam</u>
- Aluminum Channels

7.4.7 Cross Section Properties Of Some Standard Wood Sections

	Ax in^2	Asy in^2	Asz in^2	Jxx in^4	Iyy in^4	Izz in^4
2x3	3.750	2.500	2.500	1.776	1.953	0.708
2x4	5.250	3.500	3.500	2.875	6.359	0.984
2x5	6.750	4.500	4.500	3.984	11.390	1.266
2x6	8.250	5.500	5.500	5.099	20.800	1.547
2x8	10.850	7.233	7.233	7.057	47.630	2.039
2x10	13.880	9.253	9.253	9.299	98.930	2.602
2x12	16.880	11.253	11.253	11.544	178.000	3.164
2x14	19.880	13.253	13.253	13.790	290.800	3.727

7.5 Approximate Properties of Structural Materials

			Thermal		Modulus
	Young's	Shear	Expansion	Mass	per
	Modulus	Modulus	Coefficient	Density	Density
	Е	G	a	d	E/d
	N/mm^2	N/mm^2	/deg.C	T/mm^3	mm^2/s^2
Stool 136	20000	79300	11 70-6	7 850-9	2 55013
Boron Fiber-Epoxy	106000	38000	30 0e=6	7.00e=9	5 30e13
Carbon Fiber-Epoxy	83000	30000	30.0e-6	1.54e-9	5.39e13
Aluminum 2024-T4	73100	28000	23.2e-6	2.78e-9	2.63e13
Aluminum 6061-T6	68900	26000	23.6e-6	2.70e-9	2.55e13
Kevlar Fiber-Epoxy	40000	50000	30.0e-6	1.40e-9	2.86e13
Glass Fiber-Epoxy	22000	80000	30.0e-6	1.97e-9	1.12e13
Magnesium AM1000A	44800	17500	25.2e-6	1.80e-9	2.49e13
Douglas Fir	12400	4600	30.0e-6	0.50e-9	2.48e13

Note:

- These material properties are approximate.
- Properties of Douglas Fir vary naturally by +/- 15 percent.
- Properties of Fiber-Epoxy composites depend on the volume fraction and orientations of the fibers. The values above correspond to volume fractions of roughly 50 percent.

MatWeb lists properties of other materials.

7.6 Frame Element Coordinate Transformation

When a frame element is placed into the structure it is translated and rotated and optionally rolled about its local x-axis.

The default coordinate transformation process starts with the frame element's centroidal axis placed along the global *X*-axis, and the principle axes of the cross section (the local *y*- and *z*-axes) aligned with the global *Y*- and *Z*-axes. The global *Y*- and *Z*-axes must coincide with the principle axes of the cross section. To place the frame element in the structure, first it is rotated about the global *Y*-axis, then about the global *Z*-axis, then 'rolled' or spun about the local *x*-axis. If the roll angle, *p*, is zero, this process results in a transformation for which loads in the global *Z*-direction will cause no cross-axis bending. In this code, this type of coordinate transformation is called "*Z*-axis is vertical" and is selected primarily for the sake of visualization with Gnuplot, in which the *Z*-axis is vertical for all three-dimensional plots.

Another, more customary, coordinate transformation process is also implemented in the software. In the alternative coordinate transformation process, the frame element is first rotated about the global *Z*-axis, then about the global *Y*-axis, then rolled about the local *x*-axis. If the roll angle is zero, this transformation results in a frame element with no cross-axis bending due to loads are applied in the global *Y*-direction. In the code, this type of transformation is called "*Y*-axis is vertical." For a derivation of the alternative coordinate transformation method, refer to section 8.3 of the textbook *Matrix Analysis of Structures* by A. Kassimali.

By allowing the frame element to be 'rolled' about its local *x*-axis during the stiffness matrix assembly process, cross-axis bending effects may be included. Issues related to rolling of cross sections and cross-axis bending are important for threedimensional structural systems or planar structures with out-of-plane deformation, such as grillages. For planar structures with deformations only in the plane, these issues do not arise. In addition, these issues do not arise for three-dimensional structures made entirely of elements for which lyy=lzz, i.e., square and circular cross sections. To reiterate, in 2D frames, the roll angle *p* does not matter, and can be set to 0 (zero) for all frame elements. For frame elements with doubly-symmetric sections (e.g., circular or square) the roll angle *p* does not matter, and can be set to 0 (zero). For 3D frames made of non-circular or non-square sections and all frame elements are aligned with the global X, Y, or Z axes then the roll angle *p* might matter but *p* would probably be either "0" or "90 degrees." Again, for planar structures, with no out-of-plane bending, which lie in the global X-Y, Y-Z, or X-Z planes, and for structures made entirely of bars with lyy=lzz, the roll angle, *p* may be set to zero.

Coordinate transformations do not currently consider the effect of finite joint sizes, and are based on joint-to-joint lengths of each frame element.

7.7 Connections

All connections in a **Frame3DD** analysis are moment-resisting. Internal hinges may be modeled using a short element with low values of *Jxx*, *Iyy*, and *Izz*. Many connections are more realistically modeled as having some flexibility. Such semi-rigid connections may be modeled through the inclusion of short frame elements with appropriate section and material properties to model the behavior of the connection. Frame elements may be considered infinitely rigid within a sphere of a specified radius, *r* around a joint. The effects of finite joint sizes are modeled approximately in the calculation of frame element stiffness through the use of an *effective beam length*, which is the joint-to-joint length of the frame element less the rigid radii on each end.

To analyze a structure as a "truss" with this software, specify *Jxx*, *Iyy*, and *Izz* to be much smaller than they would be normally, but not zero. If the shear forces and bending moments in the structural elements are small, then the structural model represents a "truss" approximation of the actual structure. Shear deformation effects and geometric stiffness effects should **not** be incorporated if *Jxx*, *Iyy*, and *Izz* are made very small. See Frame3DD example A.

7.8 Shear Deformation, Geometric Stiffness, and Buckling

The **Frame3DD** analysis will optionally include the effects of shear deformation and/or geometric stiffness. The geometric stiffness matrix includes the effects of axial forces on bending and warping-torsional behaviors. When both shear deformations and geometric stiffness effects are included, the geometric stiffness matrix includes shear deformation effects. If shear deformation effects are not to be included, simply set the *shear* variable to zero (0). If shear deformation effects are neglected then the values for the shear areas *Asy* and *Asz* **are not** used in the calculations. Any non-zero value for *Asy* and *Asz* will do.

To determine the buckling load of a structure, include geometric stiffness effects and increase the loads until the stiffness matrix ceases to be positive- definite. Additionally, you may compute the fundamental natural frequency of the structure and observe how the fundamental frequency decreases with increased loading. In principle, the fundamental frequency is zero when the loads are at the buckling load.

If geometric stiffness effects are included in the analysis and if the loads are close to the buckling load of the structure, then it is recommended to put two or three joints along each frame element. (i.e. divide each frame element into three or four segments). Including these extra joints is strongly recommended if a buckling analysis is to be performed.

Whenever geometric stiffness effects are included, the analysis is non-linear and superposition does not hold. In most cases the geometric stiffness matrix lies between the un-stressed stiffness matrix and the tangent stiffness matrix.

7.9 Loads

Seven types of static loads may be specified:

• Gravity Loads

Uniformly-distributed gravity loads may be applied to each frame element in a structural model. Gravity loads are specified in terms of the three componenets of gravitational acceleration in the structure's global *X-Y-Z* coordinate system. The magnitude of the gravity load applied to a frame element is the product of the frame element's mass density, its cross-sectional area, and the structure's gravitational acceleration resultant. The direction of the gravity load is the same as the direction of the gravitational acceleration resultant.

• Joint Loads

Concentrated static force loads and concentrated static moments may be applied to individual joints. These loads are specified as values of point forces and concentrated moments applied to joints in the directions of the structure's global *X*-*Y*-*Z* coordinate system.

• Uniformly-Distributed Loads

Uniformly distributed static loads may be applied in the local element coordinate system over the entire length of a frame element. Uniformly distributed loads are specified as values of the load per unit length applied to the frame element in the local x direction, the local y direction, and the local z direction.

• Frame Element Point Loads

Concentrated static force loads may be applied to frame elements between the joints. Up to ten frame element point loads may be specified per frame element. These loads are specified as values of point forces applied to the frame element in the directions of the frame element's local coordinate system at a distance x from joint J1 of the frame element.

Trapezoidally-Distributed Loads

Trapezoidally distributed loads may be applied over a partial span of frame elements. Up to ten trapezoidal loads may be specified per frame element. Trapezoidally distributed loads have components in the local x direction, the local y direction, and the local z direction. Trapezoidally distributed loads are specified by the distances along the local x-axis where the loading starts and stops, and by the value of the load at the starting location and the stopping location.

The starting location for a trapezoidal load must be greater than 0 and less than the stopping location of the trapezoidal load. The stopping location for a trapezoidal load must be greater than the starting value of the trapezoidal load and less than the length of the frame element. Fixed end forces computed from trapezoidal loads include the effects of shear deformation when shear deformation effects are incorporated.

• Thermal Loads

Thermal loads assume a linear temperature gradient through cross sections. Thermal loads are specified by values for the coefficient of thermal expansion, the depth of the section in the local y direction, the depth of the section in the local z direction, and the temperature changes on the +y surface, the -y surface, the +z surface, and the -z surface. Thermal loads are applied over the entire frame element.

Prescribed Displacements

Static joint displacements and rotations may be prescribed only at reaction degrees of freedom. Static joint displacements and rotations are specified in the structure's global *X*-*Y*-*Z* coordinate system.

Up to thirty static load cases may be anlayzed by specifying the variable nL in the Input Data file, and by specifying the seven types of loads for each load case, as shown in Frame3DD example A and Frame3DD example B.

More than one load of the same type on the same element or joint may be specified. For example, one or more trapezoidally distributed loads may be applied to the same frame element in the same load case.

Whenever the average axial strain in a frame element connection (Nx/(EAx)) exceeds 0.001 (0.1%) in magnitude, a warning message is displayed indicating the strain level and the element in question. Most structural materials yield at strains between 0.1% and 0.2%. When this warning message is displayed the structure is likely in an overloaded condition and the loads should be reduced. Note that this check for overloaded elements provides an approximate stress check. A more complete stress check would compute the composite axial, shear, torsion and bending stresses and strains within each element. Such a check requires additional cross section information: the section moduli and the section dimensions, as described in sections 7.13 and 7.14 below.

The static stability of many structures depends upon a level of prestress within the structure. In such goemetrically non-linear analyses, pre-stressed structres may be modeled by specifying a uniform temperature cooling in all pre-tensioned elements. The value of the temperature change corresponding to a desired pre-stress tension force depends on the stiffness of the components of the structural system and may be determined with a few iterations. As an initial guess, set the temperature change to be (-T)/(a E Ax), where *T* is the value of the desired pre-stress tension of the frame element, *a* is the coefficient of thermal expansion, *E* is the elastic modulus, and *Ax* is the cross section area of the frame element. Section 8, below, describes how thermal (pre-stress) loads are analyzed before the response to mechanical loads is analyzed.

7.10 Dynamic Modal Analysis

The **Frame3DD** analysis will optionally include a dynamic analysis for natural modes of vibration. Dynamic properties may be obtained for the un-stressed or the stressed structure by either neglecting or including geometric stiffness effects. The mass may be modeled using either the consistent mass matrix or the lumped mass matrix.

The natural frequencies and mode-shapes of the structural frame may be computed from the stiffness and mass matrices using either the Stodola method or the Jacobi method. The solution method and the convergence tolerance for these iterative methods is specified in the Input Data file. If a dynamic modal analysis is to be carried out, the Input Data file must also specify the mass density of each frame element, additional mass carried by the frame element, and extra mass or inertia carried by the joints. A specified set of modes may be animated within Gnuplot.

Frame3DD has the capability of computing the natural frequencies and mode-shapes of frames that are fully restrained, partially restrained, or completely un-restrained. Partially restrained frames have up to six independent rigid body modes. A completely un-restrained frame has six independent rigid body modes. The stiffness matrix for partially restrained and completely unrestrained structures is not invertible. Such structural configurations can not carry static loads. Furthermore, the numerical methods used in computing the natural frequencies and mode shapes presume that the stiffness matrix is invertible. A numerical trick called "frequency shifting" overcomes this difficulty. Presuming the mass matrix [*M*] is invertible, and given a *sufficiently large* positive scalar value *s*, the matrix [[*K*] + *s*[*M*]] is invertible, even if the stiffness

matrix [K] is not invertible. So, for the purpose of computing the natural frequencies of frames with rigid-body modes, [K] is replaced by [[K]+s[M]]. The desired natural frequencies are shifted by an amount equal to the "shift" variable, *s*, and are shifted back, after the natural frequencies and mode shapes are found. The mode shapes are un-changed by this "shifting." If natural frequencies are computed as "nan" (not a number) try increasing the value of the frequency shift variable either in the Input Data file or using the <u>-f command line option</u>. Structural models that are partially restrained or unrestrained should not include geometric stiffness effects.

A Sturm check is carried out to determine if any eigen-values were missed.

If a dynamic analysis is not to be performed, simply set the <u>nM variable</u> (the number of desired modes) to zero (0). If *nM* is set to zero, **Frame3DD** will stop reading the Input file at this point. If *nM* is set to zero, there is no need to provide numerical values for the quantities after the *nM* variable.

7.11 Matrix Condensation

Reduced order stiffness and mass matrices may be computed via a static condensation, Guyan reduction, or dynamic condensation. The condensed mass and stiffness matrices are saved as text files called Kc and Mc. The Guyan reduction method is generalized so that the condensed matrices match the fundamental frequency of the original structure exactly. The dynamic condensation method is a pseudo-inverse-modal-matrix method, and the resulting condensed mass and stiffness matrices match the modal matrix is computed using a regularization method which somewhat improves the conditioning of the condensed mass and stiffness matrices.

7.12 End Force Sign Convention

The frame element end forces listed in the Output data file adhere to a sign convention determined by the local coordinate system of the frame element. The local coordinate system of the frame element has its origin at joint 1 of the frame element. The local *x*-axis lies along the element, from joint 1 to joint 2. The local *y* and *z* axes are aligned with the principle axes of the frame element cross section. The frame element end forces are designated as Nx, Vy, Vz for the axial force and end shears in the local *y* and *z* directions; and Tx, My, Mz for the torsional moment and bending moments about the local *y* and *z* axes. The sign convention for frame element end forces is shown in the figure below. The double-headed arrows adhere to the "right hand rule."

The mathematical signs of the member end forces are relative to the local x-y-z axes of the frame element and designate the direction of the force along those axes. A positive Nx at joint 1 of the member is compressive, while a negative Nx at joint 2 is also compressive. The opposite is true for tension. The Output Data lists a "t" or a "c" along with the axial forces (Nx) in order to help clarify whether the end force is putting the frame element into **t**ension or **c**ompression. A frame element with positive My at joint 1 and a negative My at joint 2 has positive curvature in the x-z plane. A frame element

with negative Mz at joint 1 and a positive Mz at joint 2 has positive curvature in the x-y plane.

7.13 Internal Frame Element Forces and Transverse Displacements

Frame3DD optionally generates output data files listing the internal axial force, shear forces, torsion, and bending momements and transverse displacements for each frame element. These quantities are tabulated at user-specified increments of length dx along the local *x*-axis of each frame element. If the *x*-axis increment, dx, is specified as a value of "-1" then the calculation of internal frame element forces and transverse displacements is skipped. Otherwise a separate internal force output file is written for each load case. For frame elements of length shorter than dx, internal forces and displacements are calculated at *x*=0 and *x*=*L*. If the Frame3DD analysis Output Data file is named **MyResultsA.if02** for load case 2, and so on. The internal force output data contains a section for each frame element. Each section has eleven columns, as follows:

- column A: (x) x-axis data with a user-specified x-axis increment, dx.
- column B: (Nx) frame element axial force along the local x-axis
- column C: (Vy) frame element shear force in the local y direction
- column D: (Vz) frame element shear force in the local z direction
- column E: (Tx) frame element torsion about the local *x*-axis
- column F: (My) frame element bending moments about the local -y-axis
- column G: (Mz) frame element bending moments about the local z-axis
- column H: (Dx) frame element axial displacement in the local x direction
- column I: (Dy) frame element transverse displacement in the local y direction
- column J: (Dz) frame element transverse displacement in the local z direction
- column K: (Rx) frame element twist rotation about the local x-axis

The data in the frame element internal force data file is tab-delimitted. The frame element internal force data file may be plotted with Gnuplot, may be read by a spreadsheet program, may be read by Matlab or may be read by your own program for further post-processing or visualization. An example of the first several lines of an internal force data file is shown here. In this example, the *x*-axis increment, dx, has a length of 10 mm.

	А	В	С	D	E	F	G	Н	I	J
1	# FRAME3	DD ANALYS	SIS RESULT	S http://fr	ame3dd.sf	net/ VERS	ION 20100	105		
2	# Example	e B: a pyra	mid-shape	d frame	- static and	d dynamic	analysis (N	I mm ton)		
3	# MyResu	ltsA.if02								
4	# Mon Jan	11 11:20	59 2010							
5	#LOAD	CASE 2	2 of 3							
6	#FRAM	E ELEM	IENT IN	TERNA	L FORC	E S (local)			
7	#FRAM	E ELEM	IENT TH	RANSVE	RSE D	ISPLAC	EMENT	S (local)		
8										
9	#	Elmnt	J1	J2	X1	Y1	Z1	X2	Y2	Z2
10	#@	1	2	1	-1200	-900	0	0	0	1000
11	#.x	Nx	Vy	Vz	Тх	My	Mz	Dx	Dy	Dz
12	0	-100.41	-4.1321	91.7254	1096.50	30000.8	-147.19	0	0	0
13	10	-100.40	-4.1321	90.7485	1096.50	29088.4	-105.75	0.00076	0.02544	-0.0088
14	20	-100.38	-4.1321	89.7715	1096.50	28185.9	-64.323	0.00152	0.04809	0.01118
15	30	-100.36	-4.1321	88.7946	1096.50	27293.1	-22.892	0.00229	0.06800	0.05867
16	40	-100.35	-4.1321	87.8176	1096.50	26410.1	18.5390	0.00305	0.08520	0.13280
17	50	-100.33	-4.1321	86.8407	1096.50	25536.8	59.9701	0.00381	0.09975	0.23266
18	60	-100.32	-4.1321	85.8638	1096.50	24673.3	101.401	0.00457	0.11169	0.35736
19	70	-100.30	-4.1321	84.8868	1096.50	23819.6	142.832	0.00533	0.12105	0.50603
20	80	-100.29	-4.1321	83.9099	1096.50	22975.7	184.264	0.00610	0.12789	0.67780
21	00	100 27	/ 1221	02 0220	1006 50	221/11 5	225 605	0 00696	0 1 2 2 2 2	0 071 02

The header information for each frame element contains the element number (column B), the element's end joints (columns C and D), the end joint coordinates (columns E - J), and the number of *x*-axis increments for the frame element (column K). The data for this part of the header information is preceded with a '@' character, to facilitate parsing of this data file. The last header character prior to the the internal force data is a '~' character, again to facilitate parsing of the data. In the figure above, *nx* is 181 (K,10), indicating that the following element data is tabulated at 181 increments along the local *x*-axis.

The data in this file is sufficient to plot the undeformed mesh, the deformed mesh, and plots of internal forces, torisons, and

moments super-imposed upon the structural mesh.

The sign convention for internal forces and transverse displacements is as follows:

- Positive internal axial force (Nx) is tensile.
- Positive internal shear forces (Vy and Vz) are in the positive y and z directions on positive x surfaces.
- Positive internal torsion (Tx) is counter-clockwise about the positive x-axis.
- Positive bending moments (My and Mz) produce positive curvature bending deformation in the x-z and x-y planes.
- Positive transverse displacements (Dy and Dz) are in the positive y and z directions.

The sign convention for internal forces is illustrated below:

Internal forces and transverse displacements are computed using numerical integration of the distributed loads on the frame elements. A corrected trapezoidal integration method is implemented so that the internal force and transverse displacement data match the known internal forces and joint displacements at both ends of each frame element. Internal forces and displacements computed with a smaller increment length, dx, are more accurate. In general, a value of dx equal to one percent to ten percent of the typical frame element length is sufficiently accurate.

7.14 Stress Check

7.14.1 Section Modulus and Torsion Shear Constant

The section properties required for elastic frame analysis are Ax, Asy, Asz, Jxx, Iyy, and Izz, as described section 7.4. To compute stresses from the frame element end forces, the following section properties are required:

- Section Area, Ax ,
- Section Shear Area, Asy and Asz,
- Section Modulus, Sy and Sz , and
- Torsion Shear Constant, C .

The units of Sy, Sz and C are length-cubed (like in³ or mm³). Referring to the text and figures of section 7.4, the section moduli and torsional shear constants may be found as follows:

Circular Tube (outer radius = R_o , inner radius = R_i):

- $Sy = Sz = Iyy / R_o = Izz / R_o$
- $C = Jxx / R_o$

Square Tube (outer dimension = $b \times b$, wall thickness = t):

Sy = Sz = lyy / (b/2) = lzz / (b/2)
C = 2 t (b-t)²

Rectangular Tube (outer dimension = $a \times b$, wall thickness = t):

- Sy = lyy / (b/2)
- Sz = Izz / (a/2)
- C = 2 t (a-t) (b-t)

I sections (depth = d, width = b, flange thickness = t, web thickness = w):

- Sy = lyy / (d/2)
- Sz = Izz / (b/2)
- *C* = *Jxx* / (*1.28 t*) ... assuming *t* > *w*

Note: Commercial sections have rounded corners. Manufacturer specifications for cross sectional properties account for the fact that the corners of the cross sections are rounded. Manufacturer specifications for section properties should therefore be used whenever available. Some tabulated section properties are provided in section 7.4.

7.14.2 Axial Stress

Given the section properties Ax, Sy, and Sz, the axial stresses at the ends of frame elements may be bounded as follows:

At end (1) of a frame element the maximum bending plus axial tensile stress in the frame element is no greater than:

• $-Nx_1 / Ax + abs(Myy_1) / Sy + abs(Mzz_1) / Sz$

At end (2) the maximum bending plus axial tensile stress in the frame element is no greater than:

• $+Nx_2 / Ax + abs(Myy_2) / Sy + abs(Mzz_2) / Sz$

A "c" indicator on "Nx" values in the Frame3DD Output Data file indicates compression. A "t" indicator on "Nx" values indicates tension.

7.14.3 Shear Stress

Given the section properties *Asy*, *Asz*, and *C*, the axial stresses at the ends of frame elements may be approximated as follows:

At end (1) the shear stress in the local y axis (on average) is:

abs(Vy1) / Asy + abs(Txx1) / C

At end (1) the shear stress in the local z axis (on average) is

• $abs(Vz_1) / Asz + abs(Txx_1) / C$

And likewise for end (2).

8. Numerical Details

Frame3DD imposes no limit on the number of degrees of freedom. Dynamic memory allocation is accomplished by the public-domain routines found in Press, W.H., et al, *Numerical Recipes In C*, (Cambridge, England: Cambridge University Press, 1991).

Frame3DD analyzes the response to temperature loads alone prior to solving for the response to the combination of temperature loads and mechanical loads. In this way, temperature loads may be used to simulate the effect of pre-tension in structures, which can provide geometric stiffness. For each load case **Frame3DD** carries out the following nine steps:

- 1. Assemble the structural stiffness matrix for the un-stressed structure.
- 2. Compute the joint displacements due to temperature loads using a linear elastic analysis.
- 3. Compute frame element end forces from the displacements due to temperature loads.
- 4. Assemble the structural stiffness matrix again.

If goemetric stiffness effects are to be considered, the assembly process makes use of the axial frame element forces arising from the temperature loads.

- 5. Compute the joint displacements due to mechanical loads.
- 6. Add the joint displacements due to mechanical loads to the joint displacements due to temperature loads.
- 7. Compute frame element end forces from the displacements due to the combined temperature and mechanical loads.
- 8. If geometric stiffness effects are to be considered, carry out quasi Newton-Raphson iterations to converge upon the displacements that satisfy equilibrium.

The assembly process makes use of the axial frame element forces arising from the combined temperature and mechanical loads.

9. Compute the "RMS relative equilibrium error."

Solutions of the matrix equation, K d = f, make use of LDL' decomposition/back-substitution with sparse-matrix short-cuts and iterative improvement for enhanced speed and accuracy.

When the program is executed, various solution errors are displayed to the screen and are written to the Output Data file. Iterative improvements to the LDL' back-substitution make use of a quasi Newton-Raphson method:

$$K dD(i) = F - K D(i)$$
$$D(i+1) = D(i) + dD(i)$$

where

- D(i) is the displacement vector at iteration i ,
- K is the stiffness matrix ,
- F is the applied load vector ,
- dD(i) is the incremental displacement vector at iteration i, and
- D(i+1) is the displacement vector at iteration i+1

At each LDL' back-substitution iteration, the equilibrium error is displayed to the screen as the "RMS equilibrium precision." This error is the root-mean-square of dD(i). Iterations are stopped when this error decreases by less than ten percent in an iteration.

When geometric stiffness effects are included, the solution is obtained iteratively, using a quasi Newton-Raphson method:

$$K(D(i)) dD(i) = F - K(D(i)) D(i)$$

 $D(i+1) = D(i) + dD(i)$

where

- D(i) is the displacement vector at iteration i,
- K(D(i)) is the secant stiffness matrix at displacements D(i)
- F is the applied load vector,
- dD(i) is the incremental displacement vector at iteration i, and
- D(i+1) is the displacement vector at iteration i+1

At each Newton-Raphson iteration, the relative equilibrium error is displayed to the screen. This error is the root-meansquare of (F - K(D(i)) D(i)) divided by the root-mean-square of F. Newton-Raphson iterations stop when this error is less than the convergence tolerance. The convergence tolerance is specified as the convergence tolerance for the modal-analysis. The default value is 0.00001

The accuracy of the final solution is checked using a global equilibrium check and the equilibrium error is reported. The "RMS relative equilibrium precision" is the root-mean-square of internal frame element forces and external applied loads at every un-restrained degree of freedom normalized by the root-mean-square of the applied loads. This equilibrium error is typically less than one part in one-billion when geometric stiffness effects are neglected. If an analysis has an "RMS relative equilibrium precision" larger than 0.001, the results should not be trusted.

If the "RMS relative equilibrium precision" is not adequately small and geometric stiffness effects *are not* included in the analysis, try including the effects of geometric stiffness by changing the geometric stiffness variable *geom* in the Input Data file to 1 or by using the <u>-gOn command line option</u>. Conversely, if the "RMS relative equilibrium precision" is not adequately small and geometric stiffness effects *are* included in the analysis, try neglecting the effects of geometric stiffness by changing the geometric stiffness variable *geom* in the Input Data file to 0 or by using the <u>-gOff command line option</u>.

Natural frequencies and mass-normalized mode-shapes of the lower modes may be obtained using a generalized Jacobi sub-space iteration procedure or a Stodola iteration procedure. Jacobi-subspace iterations are stopped when the frequency convergence error is less than the specified frequency convergence tolerance. The frequency convergence error is defined here as:

error = | fN(i) - fN(i-1) | / fN(i)

where

- *fN(i)* is the highest natural frequency computed at iteration *i* ,
- fN(i-1) is the highest natural frequency computed at iteration i-1 ,

9. Input Data Format

Click here to download an Input Data template, template.3dd, or copy-and-paste the text below.

The first line of the Input Data file must be a one-line title of your analysis. It is recommended to write the system of units into the title. The title must not contain the '@' or the '~' characters, as these characters are used for parsing the Internal Force data file.

Template Input Data file for Frame3DD - 3D structural frame analysis (N,mm,ton)

this template indicates units of Newton, millimeter, and tonne

other units may be specified as desired

joint data ...

nJ		<pre># number of joints</pre>						
#.joint	X-coord	Y-coord	Z-coord	radius				
#	mm	mm	mm	mm				
J[1]	x[1]	y[1]	z[1]	r[1]				
:	:	:	:	:				
J[nJ]	x[nJ]	y[nJ]	z[nJ]	r[nJ]				

reaction data ...

nR			#	number o	f joints	with read	ctions	
#.joint	Х	Y	Z	XX	YY	ZZ	0:free,	1:fixed
J[1]	Rx[1]	Ry[1]	Rz[1]	Rxx[1]	Ryy[1]	Rzz[1]		
:	:	:	:	:	:	:		
J[nR]	Rx[nR]	Ry[nR]	Rz[nR]	Rxx[nR]	Ryy[nR]	Rzz[nR]		

frame element data ...

```
nE
```

number of frame elements

#.elmnt	t j1	j2	Ax mm^2	Asy mm^2	Asz mm^2	Jx mm^4	Iy mm^4	Iz mm^4	E MPa	G MPa	roll deg	density
" M[1]	J1[1]	J2[1]	Ax[1]	Asy[1]	Asz[1]	Jx[1]	Iy[1]	Iz[1]	E[1]	G[1]	p[1]	d[1]
: M[nE]	: J1[nE]	: J2[nE]	: Ax[nE]	: Asy[nE]	: Asz[nE]	: Jx[nE]	: Iy[nE]	: Iz[nE]	: E[nE]	: G[nE]	: p[nE]	: d[nE]

```
shear # 1=Do, 0=Don't include shear deformation effects
geom # 1=Do, 0=Don't include geometric stiffness effects
exagg_static # exaggeration factor for static mesh deformations
dx # length of x-axis increment for frame element internal force data, mm
# if dx is -1 then internal force calculations are skipped
```

load data ...

nL # number of static load cases, 1..30

Begin Static Load Case 1

gravitational acceleration for self-weight loading, mm/s^2 (global) # gХ qY qΖ # mm/s^2 mm/s^2 mm/s^2 qZ qX gΥ nF # number of loaded joints (global) #.joint X-load Y-load Z-load X-mom Y-mom Z-mom # N N.mm N.mm N.mm Ν Ν Fz[1] J[1] Fx[1] Fy[1] Mxx[1] Myy[1] Mzz[1] : : : : : : : J[nF] Fx[nF] Fy[nF] Fz[nF] Mxx[nF] Mzz[nF] Myy[nF] # number of uniformly-distributed element loads (local) nIJ #.elmnt X-load Y-load 7-load uniform member loads in member coordinates N/mm # N/mm N/mm M[1] Ux[1] Uy[1] Uz[1] : : : : M[nU] Ux[nU] Uy[nU] Uz[nU] # number of trapezoidally-distributed element loads (local) n₩ # stop start stop start #.elmnt loc'n loc'n load load N/mm # mm mm N/mm wx2[1] # locations and loads - local x-axis M[1] xx1[1] xx2[2] wx1[1] wy2[1] # locations and loads - local y-axis xy1[1] xy2[2] wy1[1] wz2[1] # locations and loads - local z-axis xz1[1] xz2[2] wz1[1] : : : : : M[nW] xx1[nW] xx2[nW] wx1[nW] wx2[nW] # x1 and x2: start and end locations xy1[nW] xy2[nW] wy1[nW] wy2[nW] # w1 and w2: start load and end load xz2[nW] wz1[nW] wz2[nW] # 0 < x1 < x2 < Lxz1[nW] nP # number of concentrated interior point loads (local) x-loc'n point loads in member coordinates #.elmnt X-load Y-load Z-load M[1] Px[1] Py[1] Pz[1] x[1] : : : : : # x=distance from coordinate J1 M[nP] Px[nP] Py[nP] Pz[nP] x[nP] # 0 < x < LnТ # number of frame elements with temperature changes (local) #.elmnt coef. y-depth z-depth deltaTy+ deltaTydeltaTz+ deltaTz-# /deg.C mm mm deg.C deg.C deq.C deq.C M[1] a[1] Ty+[1] Ty-[1] Tz+[1] Tz-[1] hy[1] hz[1] : : : : : : : : M[nT] a[nT] hy[nT] hz[nT] Ty+[nT] Ty-[nT] Tz+[nT] Tz-[nT] nD # number of prescribed displacements nD<=nR (global)</pre> #.jnt X-displ Y-displ Z-displ X-rot'n Y-rot'n Z-rot'n # radian radian radian mm mm mm J[1] Dx[1] Dy[1] Dz[3] Dxx[1] Dyy[1] Dzz[1] : : : : : : J[nD] Dx[nD] Dy[nD] Dz[nD] Dxx[nD] Dyy[nD] Dzz[nD] # End Static Load Case 1 # Begin Static Load Case 2 # gravitational acceleration for self-weight loading, mm/s² (global) # qX qY qΖ mm/s^2 mm/s^2 mm/s^2 # qX qY qΖ # number of loaded joints (global) nF

#.joint #	X-load N	Y-load N	Z-load N	X-mom N.mm	Y-mom N.mm	Z-mom N.mm			
J[1]	Fx[1]	Fy[1]	Fz[1]	Mxx[1]	Myy[1]	Mzz[1]			
: J[nF]	: Fx[nF]	: Fy[nF]	: Fz[nF]	: Mxx[nF	:] Myy[nF]	: Mzz[nF]			
nU		# nur	nber of ur	niformly-	distributed e	element loads (local)			
#.elmnt	X-load	Y-load	Z-load	uniform	member loads	s in member coordinates			
#	N/mm	N/mm	N/mm						
M[1]	Ux[1]	Uy[1]	Uz[1]						
• M[nU]	Ux[nU]	Uy[nU]	• Uz[nU]						
n₩		# nur	mber of ti	capezoida	lly-distribut	ed element loads (local)			
#	start	stop	start	stop					
#.elmnt	loc'n	loc'n	load	load					
# Mr11	mm vv1[1]	mm vv2[2]	N/mm	N/mm	# locations a	and loads - logal y-avis			
ыгт	xv1[1]	xv2[2]	wx1[1] wv1[1]	wx2[1] wv2[1]	# locations a	and loads - local x-axis			
	xz1[1]	xz2[2]	wz1[1]	wz2[1]	<pre># locations a</pre>	and loads - local z-axis			
:	:	:	:	:					
M[nW]	xx1[nW]	xx2[nW]	wx1[nW]	wx2[nW]	<pre># x1 and x2:</pre>	start and end locations			
	xy1[nW]	xy2[n₩]	wy1[nW]	wy2[nW]	# w1 and w2:	start load and end load			
	xzl[nW]	xz2[nW]	wzl[nW]	wz2[nW]	# 0 < x1 < x2	2 < Г			
nP		# nur	mber of co	oncentrat	ed interior p	point loads (local)			
#.elmnt	X-load	Y-load	Z-load	x-loc'	n point load	ls in member coordinates			
M[1]	Px[1]	Py[1]	Pz[1]	x[1]		c			
: M[nD]	: Dv[nD]	: Dv[nD]	: Dz[nD]	: v[nD]	# $x=distance$ # $0 < x < T$	e from coordinate JI			
[]	I A[III]	I Y[III]	12[111]	v[m]					
nT		# nur	mber of fi	came elem	ents with tem	mperature changes (local)			
#.elmnt	coef.	y-depth	z-depth	deltaTy+	deltaTy- d	deltaTz+ deltaTz-			
# MC11	/deg.C	mm	mm har 11	deg.C	deg.C	deg.C deg.C			
	a[1] •		112[1] •	1y+[1] •	1y-[1]	12+[1] 12-[1]			
M[nT]	a[nT]	hy[nT]	hz[nT]	Ty+[nT]	Ty-[nT]	Tz+[nT] Tz-[nT]			
nD		# nur	nber of pi	rescribed	displacement	s nD<=nR (global)			
#.jnt	X-displ	Y-displ	Z-displ	X-rot'n	Y-rot'n	Z-rot'n			
#	mm	mm	mm	radian	radian	radian			
J[1] :	UX[1] :	ן ו ןעַט :	Dz[3]	Dxx[1]	Dyy[1] :	Dzz[1]			
J[nD]	Dx[nD]	Dy[nD]	Dz[nD]	Dxx[nD] Dyy[nD]	Dzz[nD]			
# End St	atic Load	l Case 2							
# repeat	up to 30) static]	Load cases	5					
# dynam	ic analysi	ls data							
nM	nM # number of desired dynamic modes								
# if nM	# if nM is set to 0 (zero) the remaining Input Data may be omitted								
<pre>Mmethod # 1= Subspace-Jacobi iteration, 2= Stodola (matrix iteration) method lump # 0= consistent mass matrix, 1= lumped mass matrix tol # frequency convergence tolerance approx le-4</pre>									
shift exagg_mo	<pre># frequer odal # ex</pre>	ncy shift- kaggerate	-factor fo modal mes	or rigid sh deform	body modes, m ations	make 0 for pos.def. [K]			

```
# extra joint inertia data ...
       # number of joints with extra joint mass or rotatory inertia
nI
#.jnt
                 XX-inertia YY-inertia ZZ-inertia
       mass
#
                 tonne.mm^2
                             tonne.mm^2
       tonne
                                         tonne.mm^2
                 JMx[1]
                             JMy[1]
                                          JMz[1]
       JMs[1]
J[1]
                                                   # (global coordinates)
  :
           :
                     :
                                 :
                                             :
                             JMy[nI]
                 JMx[nI]
                                          JMz[nI]
J[nI] JMs[nI]
# extra frame element mass data ...
       # number of frame elements with extra mass
nX
#.elmnt extra mass
         tonne
#
         BMs[1]
 M[1]
   :
             :
 M[nX] BMs[nE]
# mode shape animation data ...
                         # number of modes to be animated
nA
# list of modes to be animated, sorted in increasing order
anim[0] ... anim[nA]
pan
                         # pan rate of the animation 0 = no panning
# matrix condensation data ...
Cmethod # matrix condensation method ... 0=none, 1=static, 2=Guyan, 3=dynamic
nC
       # number of condensed joints
#.jnt X
            Y
                     z
                            XX
                                    YY
                                           ZZ 1: condense; 0: don't
J[1] cx[1] cy[1] cz[1]
                           cxx[1] cyy[1] czz[1]
              : :
                               :
                                    : :
  :
        :
J[nC] cx[nC] cy[nC] cz[nC] cxx[nC] cyy[nC] czz[nC]
 m[1] m[2] m[3] ...
                             # list of modes matched in dynamic condensation
                             # if Cmethod == 1, only mode m[1] is matched.
```

10. Variable Definitions

a	- Coefficient of thermal expansion (1/degree)
anim	- List of modes to be animated, by mode number
Ax	- Cross-sectional area of a prismatic frame element
	(The x-axis is along the element length, in local coordinates)
Asy	- Shear area in the local y-axis of a prismatic frame element
Asz	- Shear area in the local z-axis of a prismatic frame element
BMs	- extra mass on a frame element, not including self mass
Cmethod	- matrix condensation method 0=none, 1=static, 2=Guyan, 3=dynamic
cx	- 1: retain X d.o.f. in condensed system at joint J; 0: don't
су	- 1: retain Y d.o.f. in condensed system at joint J; 0: don't
cz	- 1: retain Z d.o.f. in condensed system at joint J; 0: don't
CXX	- 1: retain X axis rotation at joint J; 0: don't
суу	- 1: retain Y axis rotation at joint J; 0: don't
CZZ	- 1: retain Z axis rotation at joint J; 0: don't
Dx	- Prescribed displacement in the global X direction
Dy	- Prescribed displacement in the global Y direction
Dz	- Prescribed displacement in the global Z direction
Dxx	- Prescribed rotation in the global X direction
Dyy	- Prescribed rotation in the global Y direction
Dzz	- Prescribed rotation in the global Z direction
d	- mass density of a frame element

dx	_	x-axis increment for frame element internal force data
E	_	Modulus of elasticity of a frame element
exagg modal	_	Exaggeration factor for the modal displacements in the plot
exagg static	_	Exaggeration factor for the static displacements in the plot
Fx	_	Joint load in the global X direction
Fy	_	Joint load in the global Y direction
Fz	_	Joint load in the global Z direction
G	_	Shear modulus of elasticity of frame element i
qX	_	gravitational acceleration in the global X direction
aY	_	gravitational acceleration in the global Y direction
qZ	_	gravitational acceleration in the global Z direction
geom	_	1: include geometric stiffness effects, 0: do not.
hy	_	cross-section dimension in the local y coordinate dir.
hz	_	cross-section dimension in the local z coordinate dir.
Iy	_	Moment of inertia for bending about the local y axis
Iz	_	Moment of inertia for bending about the local z axis
J	_	Joint number
J1	_	Joint 1 of a frame element
J2	_	Joint 2 of a frame element
JMs	_	extra mass of a joint for translational motion
JMx	_	extra rotatory inertia of a joint about global x coord. dir.
JMy	_	extra rotatory inertia of a joint about global y coord. dir.
JMz	_	extra rotatory inertia of a joint about global z coord. dir.
Jx	_	Torsional moment of inertia of a frame element
lump	_	1: use lumped mass matrix, 0: use consistent mass matrix
M	_	Member number
Mxx	_	Joint Moment about the global X axis
Mvv	_	Joint Moment about the global Y axis
Mzz	_	Joint Moment about the global Z axis
 m	_	list of modes to match in dynamic condensation
Mmethod	_	the modal analysis method 1: Subspace Jacobi, 2: Stodola
nA	_	number of mode shapes to Animate must be less than 20
nC	_	number of joints for matrix Condensation
nD	_	number of joints with prescribed Displacements ($nD \le nR$)
nE	_	number of frame Elements
nF	_	number of joints with point Forces or concentrated moments
nI	_	number of joints with extra joint mass or Inertia
nJ	_	number of Joints
nL	_	number of static Load cases
nM	_	number of Modes to be calculated
nP	_	number of frame elements with concentrated point loads
nR	_	number of joints with Reaction forces
nT	_	number of frame elements with Temperature changes
nU	_	number of uniformly distributed loads
nW	_	number of trapezoidally distributed loads
q	_	the roll angle of the frame element, in degrees
pan	_	the pan rate of the view point during animation
Px	_	concentrated point load in the local x direction
Py	_	concentrated point load in the local y direction
Pz	_	concentrated point load in the local z direction
Rx	_	1: reaction force in the global X direction, 0: free
Ry	_	1: reaction force in the global Y direction, 0: free
Rz	_	1: reaction force in the global Z direction, 0: free
Rxx	_	1: reactoin moment about the global X axis, 0: free
Ryy	_	1: reaction moment about the global Y axis, 0: free
Rzz	_	1: reaction moment about the global Z axis, 0: free
r	_	r radius of rigid joint sphere around joint i
shear	_	1: include shear deformations, 0: do not.
shift	_	shift factor for non-definite stiffness matrices
tol	_	tolerance for finding mode shapes ~ 1.e-4
ту+	_	temperature change on the local +y face of the element
Ту-	_	temperature change on the local -y face of the element

Tz+	- temperature change on the local +z face of the element
Tz-	- temperature change on the local -z face of the element
Ux	- uniform distributed load in the local X direction
Uy	- uniform distributed load in the local Y direction
Uz	- uniform distributed load in the local Z direction
wx1	- starting value for trapezoidally-distributed loads in the local x-direction
wx2	- stopping value for trapezoidally-distributed loads in the local x-direction
wyl	 starting value for trapezoidally-distributed loads in the local y-direction
wy2	 stopping value for trapezoidally-distributed loads in the local y-direction
wz1	 starting value for trapezoidally-distributed loads in the local z-direction
wz2	 stopping value for trapezoidally-distributed loads in the local z-direction
xx1	- distance along a frame element for starting trapezoidally-distributed loads in the x-direction
xx2	- distance along a frame element for stopping trapezoidally-distributed loads in the x-direction
xy1	- distance along a frame element for starting trapezoidally-distributed loads in the y-direction
xy2	- distance along a frame element for stopping trapezoidally-distributed loads in the y-direction
xz1	- distance along a frame element for starting trapezoidally-distributed loads in the z-direction
xz2	- distance along a frame element for stopping trapezoidally-distributed loads in the z-direction
x	- x coordinate of a joint in global coordinates
v	- v coordinate of a joint in global coordinates
Z	- v coordinate of a joint in global coordinates
_ xP	- distance from J1 to the concentrated point load

11. Command-line options

- Frame3DD is executed from within a terminal or "command prompt window" .
- Frame3DD may be run with interactive prompting for file names by typing ...

frame3dd

• Frame3DD may be run without command-line options by typing ...

frame3dd InFile OutFile

• Frame3DD may be run with command-line options by typing ...

frame3dd -i InFile -o OutFile [OPTIONS]

... where [OPTIONS] over-rides values in the Input Data file and includes one or more of the following:

-i	InFile	the input data file name described in the manual
-0	OutFile	the output data file name
-h		print this help message and exit
-v		display program version, website, brief help info and exit
-a		display program version, website, and exit
-c		data check only - the output data reviews the input data
-q		suppress screen output except for warning messages
-w		write stiffness and mass matrices to files named Ks Kd Md
- x		suppress writing of 't' or 'c' for sign of axial forces
- s	On Off	On: include shear deformation or Off: neglect
-g	On Off	On: include geometric stiffness or Off: neglect
-e	value	level of deformation exaggeration for Gnuplot output

-z force X-Y-Z plotting -l On Off On: lumped mass matrix or Off: consistent mass matrix -f value modal frequency shift for unrestrained structures JS modal analysis method: J=Jacobi-Subspace or S=Stodola -m -t value convergence tolerance for modal analysis -p value pan rate for mode shape animation -r value matrix condensation method: 0, 1, 2, or 3 _ _ _ _ _____

Examples:

Display help information and exit:

frame3dd -h

Suppress screen output:

frame3dd -i InFile -o OutFile -q

Include shear deformation, over-riding the Input Data file value:

frame3dd -i InFile -o OutFile -sOn

Include geometric stiffness and set deformed mesh exaggeration value, over-riding Input Data file values:

frame3dd -i InFile -o OutFile -e100 -gOn

Use consistent mass matrix, set deformed mesh exaggeration value, set the animation pan rate, over-riding Input Data file values, and force 3D plotting in Gnuplot:

frame3dd -i InFile -o OutFile -10ff -e100 -p3.4 -z

12. Source code

The source code is written in ANSI C and is extensively commented. The source code includes functions for frame analysis, LDL' decomposition, LU decomposition, Newton-Raphson iteration, sub-space iteration, Stodola iteration, Sturm eigen-value check, static condensation, Guyan reduction, and dynamic condensation.

file name	description
main.c	main driver routines
frame3dd.c	frame analysis
frame3dd_io.c	input-output functions
eig.c	generalized eigenvalue analysis
ldl_dcmp.c	LDL' decomposition
lu_dcmp.c	LU decomposition
coordtrans.c	coordinate transformation
nrutil.c	dynamic memory allocation

In addition to the recommended method using <u>SCons</u> (see <u>above</u>), Frame3DD can also be compiled directly with the <u>GNU</u> <u>gcc compiler</u>, the <u>Apple Xcode gcc compiler</u>, the <u>DJGPP gcc compiler</u>, the <u>LCC-win32 compiler</u>, and the <u>MinGW gcc</u> <u>compiler</u>.

Using GCC, the command to compile is:

gcc -O -o frame3dd main.c frame3dd.c frame3dd io.c ldl dcmp.c lu dcmp.c coordtrans.c eig.c nrutil.c -lm

13. Exit code index

When Frame3DD exits it returns an integer value to the system calling Frame3DD. An exit code of 0 (zero) indicates error-free completion. Prior to exiting with a non-zero exit code, Frame3DD writes a diagnostic error message to "stderr". Exit code values have the following meanings:

- 0 : error-free completion
- 1 : unknown error
- 2 : error with the command line options (see Section 11, above)
- 3 : error with the command line option for shear deformation -s
- 4 : error with the command line option for geometric stiffness -g

- 5 : error with the command line option for lumped mass -I
- 6 : error with the command line option for modal analysis method -m
- 7 : error with the command line option for modal analysis tolerance -t
- 8 : error with the command line option for modal analysis shift -f
- 9 : error with the command line option for pan rate -p
- 10 : error with the command line option for matrix condensation -r
- 11 : error in opening the Input Data file
- 12 : error in opening the temporary cleaned input data file for writing
- 13 : error in opening the temporary cleaned input data file for reading
- 14 : error in opening the Output Data file
- 15 : error in creating the path for temporary output data files
- 16 : error in creating the temporary output data file path name
- 17 : error in opening the .CSV (spread-sheet) output data file
- 18 : error in opening the .M (matlab) output data file
- 19 : error in opening the interior force output data file for writing
- 20 : error in opening the interior force output data file for reading
- 21 : error in opening the undeformed mesh ouput data file
- 22 : error in opening the deformed mesh ouput data file
- 23 : error in opening the plotting script file for writing first static load case plots
- 24 : error in opening the plotting script file for appending second and higher static load case results
- 25 : error in opening the plotting script file for appending modal plots
- 26 : error in opening the plotting script file for appending modal animations
- 27 : error in opening the modal mesh data file
- 28 : error in opening the modal mesh animation data file
- 29 : error in opening the mass data debugging file , MassData.txt
- 30 : cubic curvefit system matrix for element deformation is not positive definite
- 31 : non-positive definite structural static stiffness matrix
- 32 : error in eigen-problem analysis
- 40 : error in input data file •
- 41 : input data formatting error in the joint data, joint number out of range
- 51 : input data formatting error in the frame element data, frame element number out of range
- 52 : input data formatting error in the frame element data, joint number out of range
- 53 : input data formatting error in the frame element data, negative section value
- 54 : input data formatting error in the frame element data, cross section area is 0 (zero)
- 55 : input data formatting error in the frame element data, shear area and shear modulus are 0 (zero)
- 56 : input data formatting error in the frame element data, torsional moment of inertia is 0 (zero)
- 57 : input data formatting error in the frame element data, bending moment of inertia is 0 (zero)
- 58 : input data formatting error in the frame element data, modulus value is non-positive
- 59 : input data formatting error in the frame element data, mass density value is non-positive
- 60 : input data formatting error in the frame element data, frame element starts and stops at the same joint •
- 61 : input data formatting error in the frame element data, frame element has length of zero
- 71 : input data formatting error with the "shear" variable specifying shear deformation
 72 : input data formatting error with the "geom" variable specifying geometric stiffness
- 73 : input data formatting error with the "exagg_static" variable specifying static mesh exageration
- 74 : input data formatting error with the "dx" variable specifying the length of the internal force x-axis increment
- 80 : input data formatting error in reaction data, number of joints with reactions out of range
- 81 : input data formatting error in reaction data, joint number out of range
- 82 : input data formatting error in reaction data, reaction data is not 1 (one) or 0 (zero)
- 83 : input data formatting error in reaction data, specified joint has no reactions
- 84 : input data formatting error in reaction data, under-restrained structure
- 85 : input data formatting error in reaction data, fully restrained structure •
- 86 : input data formatting error in extra joint inertia data, joint number out of range
- 87 : input data formatting error in extra beam mass data, frame element number out of range
- 88 : input data formatting error in mass data, frame element with non-positive mass
- 90 : input data formatting error in matrix condensation data, number of joints with condensed degrees of freedom are less than the total number of joints
- 91 : input data formatting error in matrix condensation data, joint number out of range
- 92 : input data formatting error in matrix condensation data, mode number out of range
- 94 : input data formatting error in matrix condensation data, number of condensed degrees of freedom greater than number of modes
- 100 : input data formatting error in load data
- 101 : number of static load cases must be greater than zero
- 102 : number of static load cases must be less than 30
- 121 : input data formatting error in joint load data, joint number out of range
- 131 : input data formatting error in uniformly-distributed load data, number of uniform loads is greater than the number of frame elements
- 132 : input data formatting error in uniformly-distributed load data, frame element number out of range
- 140 : input data formatting error in trapezoidally-distributed load data, too many trapezoidally distributed loads

- 141 : input data formatting error in trapezoidally-distributed load data, frame element number out of range
- 142 : input data formatting error in trapezoidally-distributed load data, x1 < 0
- 143 : input data formatting error in trapezoidally-distributed load data, x1 > x2
- 144 : input data formatting error in trapezoidally-distributed load data, x2 > L
- 150 : input data formatting error in internal concentrated load data, number concentrated loads greater than number of frame elements
- 151 : input data formatting error in internal concentrated load data, frame element number out of range
- 152 : input data formatting error in internal concentrated load data, x-location less than 0 or grater than L
- 160 : input data formatting error in thermal load data, number thermal loads greater than number of frame elements
- 161 : input data formatting error in thermal load data, frame element number out of range
- 162 : input data formatting error in thermal load data, frame element number out of range
- 171 : input data formatting error in prescribed displacement data, prescribed displacements may be applied only at coordinates with reactions
- 200 : memory allocation error
- 201 : error in opening an output data file saving a vector of "floats"
- 202 : error in opening an output data file saving a vector of "ints"
- 203 : error in opening an output data file saving a matrix of "floats"
- 204 : error in opening an output data file saving a matrix of "doubles"
- 205 : error in opening an output data file saving a symmetric matrix of "floats"
- 206 : error in opening an output data file saving a symmetric matrix of "doubles"

14. Enhancements projected for future versions

- A GPL'able GUI
 - FrameEd is a Windows GUI for the 20020103 version of Frame3DD (Jan 3, 2002). (See above.)
 - Work has been done on a <u>Qt</u> GUI (Fall 2004)
 - A Microstran-Viewer interface is in the works here. (Summer 2008)
 - A Google-sketchup interface is in the works here and possibly here. (Summer 2008)
 - Wood truss analysis and design software that makes use of Frame3DD is in development here (Winter 2010).
- Consistent mass matrix including the effects of shear deformation on rotatory inertia
- Dynamic time-history analysis with the HHT-alpha method
- Spectral modal superposition
- Member end joint releases
- Linearly tapered frame elements
- Sparse matrix storage and <u>sparse matrix solvers</u>
- ... your recommendations ... send me an e-mail!

15. References

This software was developed using methods described in the following texts. The two primary sources are the texts by <u>A.</u> <u>Kassimali</u> and <u>J.S. Przemieniecki</u>. Other relevant books and articles are:

- 1. Howard G. Allen, Background to Buckling, McGraw-Hill, 1980. ASIN: 0070841004
- 2. Klaus-Jurgen Bathe, Finite Element Procedures, Prentice-Hall, 1995. ISBN: 0133014584
- 3. Arthur P. Boresi, Richard J. Schmidt, and Omar M. Sidebottom, <u>Advanced Mechanics of Materials</u>, John Wiley & Sons, 1993. ISBN: 0471551570
- 4. Raymond W. Clough and Joseph Penzien, Dynamics of Structures, McGraw-Hill, 1993. ASIN: 0070113920
- 5. J. P. Den Hartog, Advanced Strength of Materials, Dover Press, 1987. ISBN: 0486654079
- 6. Thomas J. R. Hughes, <u>The Finite Element Method</u>: <u>Linear Static and Dynamic Finite Element Analysis</u>, Dover Press, 2000. ISBN: 0486411818
- 7. Aslam Kassimali, Matrix Analysis of Structures, Brooks/Cole, 1999. ISBN: 0534206700
- 8. Jaroslav Mackerle, <u>Finite element linear and nonlinear, static and dynamic analysis of structural elements: a</u> <u>bibliography (1992-1995)</u>, Engineering Computations, vol. 14, no. 4, pp. 347-440, 1997.
- 9. Jaroslav Mackerle, <u>Finite element linear and nonlinear</u>, <u>static and dynamic analysis of structural elements an</u> <u>addendum A bibliography (1996-1999)</u>, Engineering Computations, vol. 17, no. 3, pp. 274-351, 2000.
- William McGuire, Richard H. Gallagher, and Ronald D. Ziemian, <u>Matrix Structural Analysis</u>, 2nd ed. John Wiley, 1999. ISBN: 0471376515
- 11. W.D. Pilkey, Weize Kang and Uwe Schramm, <u>New structural matrices for a beam element with shear deformation</u>, Finite Elements in Analysis and Design, vol. 19, pp. 25-44, 1995.
- 12. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, <u>Numerical Recipes in C: The Art of</u> <u>Scientific Computing</u>, Cambridge University Press, 1993. ISBN: 0521431085
- 13. J.S. Przemieniecki, Theory of Matrix Structural Analysis, Dover Press, 1985. ISBN: 0486649482
- 14. Robert E. Sennett, Matrix Analysis of Structures, Waveland Press, 2000.ISBN: 1577661435
- 15. S. Timoshenko and J.N. Goodier, Theory of Elasticity, 2nd ed., McGraw Hill, 1951.
- 16. Ansel C. Ugural and Saul K. Fenster, Advanced Strength and Applied Elasticity, 3rd ed., Prentice-Hall, 1995. ISBN:

013137589X

About this document

Authors:

Henri P. Gavin, P.E., Ph.D. Department of Civil and Environmental Engineering Duke University, Box 90287 Durham, NC 27708--0287

John Pye Dept of Engineering Australian National University

SOURCEFORGE.NET*

Source code for this document as well as Frame3dd itself is available from http://www.sourceforge.net/projects/frame3dd/

Last update: Last updated 11/09/2010 11:08:06 (see full revision log)