
Oracle8

Utilities

Release 8.0

December 1997

Part No. A58244-01

 Oracle8 Utilities

Part No. A58244-01

Release 8.0

Copyright © 1990, 1997, Oracle Corporation. All rights reserved.

Primary Author: Jason Durbin

Contributors: Karleen Aghevli, Allen Brumm, Paul Lane, Visar Nimani, Joan Pearson, Mike
Sakayeda, James Stenois, Chao Wang , Gail Ymanaka, Hiro Yoshioka

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-
safe, back up, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by
such use of the Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, Oracle8, SQL*Forms, Net8, and SQL*Plus are registered trademarks of Oracle Corporation,
Redwood Shores, California.

Oracle Call Interface, Oracle7, Oracle7 Server, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++, and Enter-
prise Manager are trademarks of Oracle Corporation, Redwood Shores, California.

Contents

Preface .. xxi

The Oracle Utilities .. xxii
Audience... xxii
How Oracle8 Utilities Is Organized... xxiii

Part I: Export/Import.. xxiii
Part II: SQL*Loader ... xxiii
Part III: NLS Utilities ... xxiv
Part IV: Offline Database Verification Utility.. xxiv

Conventions Used in This Manual ... xxv
Text of the Manual.. xxv

We Welcome Your Comments.. xxvi

Part I: Export/Import

1 Export

What is the Export Utility? .. 1-2
Reading the Contents of an Export File... 1-3
Access Privileges... 1-3

Export Modes ... 1-4
Understanding Table-Level and Partition-Level Export .. 1-6

Using Export .. 1-6
Before Using Export ... 1-6
Invoking Export .. 1-7
 iii

Getting Online Help ... 1-9
The Parameter File.. 1-10

Export Parameters ... 1-11
BUFFER .. 1-13
COMPRESS.. 1-13
CONSISTENT.. 1-14
CONSTRAINTS .. 1-15
DIRECT .. 1-15
FEEDBACK.. 1-16
FILE... 1-16
FULL ... 1-16
GRANTS... 1-16
HELP... 1-17
INCTYPE.. 1-17
INDEXES.. 1-17
LOG... 1-17
OWNER.. 1-17
PARFILE... 1-17
POINT_IN_TIME_RECOVER... 1-18
RECORD .. 1-18
RECORDLENGTH ... 1-18
RECOVERY_TABLESPACES.. 1-19
ROWS ... 1-19
STATISTICS ... 1-19
TABLES .. 1-19
USERID... 1-21
Parameter Interactions ... 1-21

Example Export Sessions ... 1-22
Example Export Session in Full Database Mode.. 1-22
Example Export Session in User Mode.. 1-24
Example Export Sessions in Table Mode .. 1-25
Example Export Session Using Partition-Level Export... 1-27

Using the Interactive Method ... 1-29
Restrictions... 1-31
 iv

Warning, Error, and Completion Messages ... 1-32
Log File... 1-32
Warning Messages.. 1-32
Fatal Error Messages .. 1-33
Completion Messages .. 1-33

Direct Path Export... 1-33
Invoking a Direct Path Export .. 1-34
Character Set Conversion .. 1-36
Performance Issues... 1-36
Restrictions .. 1-37

Incremental, Cumulative, and Complete Exports .. 1-37
Restrictions .. 1-37
Base Backups ... 1-37
Incremental Exports ... 1-37
Cumulative Exports ... 1-38
Complete Exports ... 1-39
Benefits ... 1-39
A Scenario .. 1-40
Which Data Is Exported? ... 1-41
Example Incremental Export Session .. 1-42
System Tables.. 1-43

Network Considerations ... 1-44
Transporting Export Files Across a Network... 1-44
Exporting and Importing with Net8.. 1-44

Character Set and NLS Considerations .. 1-45
Character Set Conversion .. 1-45
NCHAR Conversion During Export and Import .. 1-45
Single-Byte Character Sets During Export and Import... 1-46
Multi-Byte Character Sets and Export and Import.. 1-46

Considerations in Exporting Database Objects .. 1-46
Exporting Sequences .. 1-46
Exporting LONG Datatypes ... 1-47
Exporting Foreign Function Libraries ... 1-47
Exporting Directory Aliases.. 1-47
Exporting BFILE Columns and Attributes.. 1-47
 v

Exporting Array Data... 1-47
Exporting Object Type Definitions... 1-48
Exporting Advanced Queue (AQ) Tables ... 1-49
Exporting Nested Tables.. 1-49

Using Different Versions of Export ... 1-49
Using a Previous Version of Export ... 1-49
Using a Higher Version Export... 1-50

Creating Oracle Release 7 Export Files from an Oracle8 Server .. 1-50
Excluded Objects... 1-51
Exporting to Version 6 ... 1-51

2 Import

What is the Import Utility? ... 2-3
Table Objects: Order of Import ... 2-4
Compatibility... 2-5

Import Modes .. 2-5
Understanding Table-Level and Partition-Level Import .. 2-6

Using Import .. 2-7
Before Using Import ... 2-7
Invoking Import.. 2-7
Getting Online Help ... 2-10
The Parameter File.. 2-11

Privileges Required to Use Import .. 2-11
Access Privileges... 2-12
Importing Objects into Your Own Schema... 2-12
Importing Grants .. 2-13
Importing Objects into Other Schemas.. 2-14
Importing System Objects ... 2-14
User Privileges .. 2-14

Importing into Existing Tables ... 2-14
Manually Creating Tables before Importing Data... 2-15
Disabling Referential Constraints... 2-15
Manually Ordering the Import ... 2-15

Import Parameters... 2-16
ANALYZE.. 2-19
 vi

BUFFER.. 2-19
CHARSET .. 2-20
COMMIT.. 2-20
DESTROY... 2-21
FEEDBACK.. 2-22
FILE... 2-22
FROMUSER... 2-22
FULL... 2-23
GRANTS .. 2-23
HELP .. 2-23
IGNORE ... 2-23
INCTYPE.. 2-24
INDEXES.. 2-25
INDEXFILE.. 2-25
LOG .. 2-26
PARFILE .. 2-26
POINT_IN_TIME_RECOVER... 2-26
RECORDLENGTH ... 2-26
ROWS ... 2-27
SHOW... 2-27
SKIP_UNUSABLE_INDEXES... 2-27
TABLES .. 2-27
TOUSER ... 2-29
USERID .. 2-29

Using Table-Level and Partition-Level Export and Import .. 2-30
Guidelines for Using Partition-Level Import ... 2-30
Migrating Data Across Partitions and Tables... 2-31
Combining Multiple Partitions into One .. 2-31
Reconfiguring Partitions.. 2-32

Example Import Sessions .. 2-33
Example Import of Selected Tables for a Specific User... 2-33
Example Import of Tables Exported by Another User ... 2-34
Example Import of Tables from One User to Another.. 2-35
Example Import Session Using Partition-Level Import.. 2-35
 vii

Using the Interactive Method ... 2-41
Importing Incremental, Cumulative, and Complete Export Files ... 2-43

Restoring a Set of Objects .. 2-43
Importing Object Types and Foreign Function Libraries from an Incremental
Export File.. 2-44

Controlling Index Creation and Maintenance .. 2-45
Index Creation and Maintenance Controls ... 2-45
Delaying Index Creation.. 2-46

Reducing Database Fragmentation ... 2-47
Warning, Error, and Completion Messages ... 2-47
Error Handling... 2-48

Row Errors ... 2-48
Errors Importing Database Objects .. 2-48
Fatal Errors... 2-49

Network Considerations.. 2-50
Transporting Export Files Across a Network ... 2-50
Exporting and Importing with Net8 .. 2-50

Import and Snapshots .. 2-50
Master Table .. 2-51
Snapshot Log ... 2-51
Snapshots ... 2-51

Storage Parameters.. 2-52
Read-Only Tablespaces.. 2-53
Rollback Segments.. 2-53

Dropping a Tablespace... 2-54
Reorganizing Tablespaces ... 2-54
Character Set and NLS Considerations .. 2-55

Character Set Conversion .. 2-55
Import and Single-Byte Character Sets.. 2-55
Import and Multi-Byte Character Sets... 2-56

Considerations for Importing Database Objects .. 2-57
Importing Object Identifiers.. 2-57
Importing Existing Object Tables and Tables That Contain Object Types......................... 2-58
Importing Nested Tables ... 2-58
Importing REF Data ... 2-59
Importing Array Data .. 2-59
 viii

Importing BFILE Columns and Directory Aliases... 2-60
Importing Foreign Function Libraries ... 2-60
Importing Stored Procedures, Functions, and Packages .. 2-60
Importing Advanced Queue (AQ) Tables... 2-61
Importing LONG Columns... 2-61
Importing Views ... 2-61

Generating Statistics on Imported Data... 2-62
Using Oracle7 Export Files.. 2-62

Check Constraints on DATE Columns.. 2-62
Using Oracle Version 6 Export Files.. 2-63

CHAR columns ... 2-63
Syntax of Integrity Constraints... 2-63
Status of Integrity Constraints .. 2-63
Length of DEFAULT Column Values.. 2-63

Using Oracle Version 5 Export Files.. 2-64

Part II: SQL Loader

3 SQL*Loader Concepts

SQL*Loader Basics ... 3-2
SQL*Loader Control File... 3-3

Control File Contents and Storage ... 3-4
Data Definition Language (DDL)... 3-5

Input Data and Datafiles ... 3-6
Input Data Formats .. 3-6

Data Conversion and Datatype Specification ... 3-10
Discarded and Rejected Records ... 3-13

The Bad File ... 3-13
SQL*Loader Discards... 3-15

Log File and Logging Information .. 3-15
Conventional Path Load versus Direct Path Load.. 3-16
Partitioned Object Support... 3-17
 ix

4 SQL*Loader Case Studies

The Case Studies ... 4-2
Case Study Files .. 4-2
Tables Used in the Case Studies .. 4-3

Contents of Table EMP... 4-3
Contents of Table DEPT... 4-4

References and Notes ... 4-4
Running the Case Study SQL Scripts ... 4-4
Case 1: Loading Variable-Length Data.. 4-5

Control File .. 4-5
Invoking SQL*Loader .. 4-6
Log File ... 4-6

Case 2: Loading Fixed-Format Fields .. 4-8
Control File .. 4-8
Datafile ... 4-9
Invoking SQL*Loader .. 4-9
Log File ... 4-9

Case 3: Loading a Delimited, Free-Format File ... 4-11
Control File .. 4-11
Invoking SQL*Loader .. 4-12
Log File ... 4-13

Case 4: Loading Combined Physical Records ... 4-14
Control File .. 4-14
Data File ... 4-15
Invoking SQL*Loader .. 4-16
Log File ... 4-16
Bad File ... 4-17

Case 5: Loading Data into Multiple Tables.. 4-18
Control File .. 4-18
Data File ... 4-19
Invoking SQL*Loader .. 4-19
Log File ... 4-20
Loaded Tables ... 4-22
 x

Case 6: Loading Using the Direct Path Load Method.. 4-24
Control File .. 4-24
Invoking SQL*Loader .. 4-25
Log File... 4-25

Case 7: Extracting Data from a Formatted Report... 4-27
Data File ... 4-27
Insert Trigger... 4-27
Control File .. 4-28
Invoking SQL*Loader .. 4-30
Log File... 4-30
Dropping the Insert Trigger and the Global-Variable Package ... 4-31

Case 8: Loading a Fixed Record Length Format File .. 4-32
Control File .. 4-32
Table Creation ... 4-33
Input Data File .. 4-34
Invoking SQL*Loader .. 4-34
Log File... 4-34

5 SQL*Loader Control File Reference

Overview .. 5-2
Data Definition Language (DDL) Syntax... 5-4

High-Level Syntax Diagrams.. 5-4
Expanded Clauses and Their Functionality... 5-7

Position Specification...5-7
Field Condition ..5-7
Column Name ..5-8
Datatype Specification ...5-8
Precision vs. Length ...5-10
Date Mask .. 5-10
Delimiter Specification... 5-10

Comments... 5-11
Specifying Command-Line Parameters in the Control File ... 5-11

OPTIONS ... 5-11
Specifying RECOVERABLE and UNRECOVERABLE ... 5-12
 xi

Specifying Filenames and Database Objects .. 5-12
Database Object Names within Double Quotation Marks ... 5-12
SQL String within Double Quotation Marks .. 5-13
Filenames within Single Quotation Marks.. 5-13
Quotation Marks in Quoted Strings... 5-13
Backslash Escape Character .. 5-13
Using a Backslash in Filenames .. 5-14

Including Data in the Control File with BEGINDATA ... 5-15
Identifying Datafiles .. 5-16

Naming the File... 5-16
Specifying Multiple Datafiles.. 5-17
Examples of How to Specify a Datafile ... 5-17

Specifying READBUFFERS .. 5-18
Specifying Datafile Format and Buffering... 5-18

File Processing Example .. 5-18
Specifying the Bad File .. 5-19

Examples of How to Specify a Bad File ... 5-20
Rejected Records ... 5-20

Integrity Constraints .. 5-21
Specifying the Discard File ... 5-21

Using a Control-File Definition .. 5-21
Examples of How to Specify a Discard File .. 5-22

Discarded Records .. 5-23
Limiting the Number of Discards .. 5-23

Handling Different Character Encoding Schemes ... 5-24
Multi-Byte (Asian) Character Sets .. 5-24
Input Character Conversion.. 5-24

Loading into Empty and Non-Empty Tables ... 5-25
How Non-Empty Tables are Affected ... 5-26
INSERT... 5-26
APPEND .. 5-26
REPLACE... 5-26
TRUNCATE... 5-27
Specifying One Method for All Tables .. 5-27
 xii

Continuing an Interrupted Load.. 5-27
State of Tables and Indexes ... 5-27
Using the Log File... 5-28
Dropping Indexes ... 5-28
Continuing Single Table Loads .. 5-28
Continuing Multiple Table Conventional Loads ... 5-28
Continuing Multiple Table Direct Loads .. 5-28

Assembling Logical Records from Physical Records .. 5-29
Examples of How to Specify CONTINUEIF... 5-32

Loading Logical Records into Tables .. 5-33
Specifying Table Names .. 5-33
Table-Specific Loading Method.. 5-34
Table-Specific OPTIONS keyword... 5-34
Choosing which Rows to Load... 5-34
Specifying Default Data Delimiters ... 5-35
Handling Short Records with Missing Data... 5-35

Index Options .. 5-36
SORTED INDEXES Option ... 5-36
SINGLEROW Option ... 5-37

Specifying Field Conditions... 5-37
Comparing Fields to BLANKS ... 5-38
Comparing Fields to Literals .. 5-39

Specifying Columns and Fields ... 5-39
Specifying the Datatype of a Data Field.. 5-40

Specifying the Position of a Data Field .. 5-40
Using POSITION with Data Containing TABs .. 5-41
Using POSITION with Multiple Table Loads .. 5-42

Using Multiple INTO TABLE Statements ... 5-43
Extracting Multiple Logical Records ... 5-43
Distinguishing Different Input Record Formats .. 5-44
Loading Data into Multiple Tables .. 5-45
Summary.. 5-45

Generating Data .. 5-46
Loading Data Without Files .. 5-46
Setting a Column to a Constant Value .. 5-46
 xiii

Setting a Column to the Datafile Record Number ... 5-47
Setting a Column to the Current Date ... 5-47
Setting a Column to a Unique Sequence Number ... 5-48
Generating Sequence Numbers for Multiple Tables ... 5-49

Specifying Datatypes ... 5-50
Datatype Conversions.. 5-50
Native Datatypes .. 5-51
Character Datatypes ... 5-58
Numeric External Datatypes... 5-60
Specifying Delimiters ... 5-60
Conflicting Character Datatype Field Lengths... 5-63

Loading Data Across Different Operating Systems... 5-65
Determining the Size of the Bind Array... 5-65

Minimum Requirements.. 5-65
Performance Implications.. 5-66
Specifying Number of Rows vs. Size of Bind Array.. 5-66
Calculations ... 5-67
Minimizing Memory Requirements for the Bind Array ... 5-70
Multiple INTO TABLE Statements .. 5-70
Generated Data ... 5-71

Setting a Column to Null or Zero .. 5-71
DEFAULTIF Clause.. 5-71
NULLIF Keyword... 5-71
Null Columns at the End of a Record.. 5-72

Loading All-Blank Fields .. 5-72
Trimming Blanks and Tabs ... 5-72

Datatypes ... 5-73
Field Length Specifications.. 5-73
Relative Positioning of Fields.. 5-74
Leading Whitespace ... 5-75
Trailing Whitespace.. 5-76
Enclosed Fields.. 5-77
Trimming Whitespace: Summary .. 5-77

Preserving Whitespace ... 5-78
PRESERVE BLANKS Keyword .. 5-78
 xiv

Applying SQL Operators to Fields.. 5-78
Referencing Fields .. 5-79
Referencing Fields That Are SQL*Loader Keywords.. 5-80
Common Uses ... 5-80
Combinations of Operators... 5-80
Use with Date Mask ... 5-80
Interpreting Formatted Fields... 5-80

6 SQL*Loader Command-Line Reference

SQL*Loader Command Line .. 6-2
Using Command-Line Keywords .. 6-3
Specifying Keywords in the Control File .. 6-3

Command-Line Keywords .. 6-3
BAD (bad file).. 6-3
BINDSIZE (maximum size)... 6-3
CONTROL (control file) .. 6-4
DATA (data file) ... 6-4
DIRECT (data path).. 6-4
DISCARD (discard file) ... 6-4
DISCARDMAX (discards to disallow) .. 6-5
ERRORS (errors to allow).. 6-5
FILE (file to load into) .. 6-5
LOAD (records to load) ... 6-5
LOG (log file)... 6-6
PARFILE (parameter file) .. 6-6
PARALLEL (parallel load) .. 6-6
ROWS (rows per commit) ... 6-6
SILENT (feedback mode) .. 6-7
SKIP (records to skip)... 6-8
USERID (username/password).. 6-8

Index Maintenance Options ... 6-8
SKIP_UNUSABLE_INDEXES... 6-8
SKIP_INDEX_MAINTENANCE.. 6-9

Exit Codes for Inspection and Display ... 6-9
 xv

7 SQL*Loader: Log File Reference

Header Information .. 7-2
Global Information... 7-2
Table Information ... 7-3
Datafile Information ... 7-4
Table Load Information ... 7-4
Summary Statistics ... 7-5

Oracle8 Statistics Reporting to the Log.. 7-6

8 SQL*Loader: Conventional and Direct Path Loads

Data Loading Methods... 8-2
Conventional Path Load .. 8-2
Direct Path Load ... 8-4

Using Direct Path Load .. 8-9
Setting Up for Direct Path Loads.. 8-9
Specifying a Direct Path Load... 8-9
Building Indexes ... 8-9
Indexes Left in Index Unusable State... 8-11
Data Saves .. 8-12
Recovery... 8-13
Loading LONG Data Fields... 8-14

Maximizing Performance of Direct Path Loads .. 8-15
Pre-allocating Storage for Faster Loading... 8-15
Pre-sorting Data for Faster Indexing.. 8-16
Infrequent Data Saves .. 8-18
Minimizing Use of the Redo Log.. 8-18
Disable Archiving ... 8-18
Specifying UNRECOVERABLE.. 8-18
NOLOG Attribute... 8-19

Avoiding Index Maintenance ... 8-19
Direct Loads, Integrity Constraints, and Triggers .. 8-20

Integrity Constraints .. 8-20
Database Insert Triggers .. 8-21
Permanently Disabled Triggers & Constraints... 8-24
Alternative: Concurrent Conventional Path Loads ... 8-24
 xvi

Parallel Data Loading Models.. 8-25
Concurrent Conventional Path Loads ... 8-25
Inter-Segment Concurrency with Direct Path .. 8-25
Intra-Segment Concurrency with Direct Path.. 8-25
Restrictions on Parallel Direct Path Loads.. 8-26
Initiating Multiple SQL*Loader Sessions.. 8-26
Options Keywords for Parallel Direct Path Loads .. 8-27
Enabling Constraints After a Parallel Direct Path Load ... 8-28

General Performance Improvement Hints .. 8-28

Part III: NLS Utilities

9 National Language Support Utilities

NLS Data Installation Utility ... 9-2
Overview.. 9-2
Syntax ... 9-2
Return Codes... 9-3
Usage .. 9-4
NLS Data Object Files .. 9-4

NLS Configuration Utility... 9-16
Overview.. 9-16
Syntax ... 9-16
Menus... 9-17

NLS Calendar Utility ... 9-20
Overview.. 9-20
Syntax ... 9-20
Usage .. 9-20

Part IV: Offline Database Verification Utility

10 Offline Database Verification Utility

DB_VERIFY ... 10-2
Restrictions .. 10-2
Syntax ... 10-2
 xvii

Enterprise Manager .. 10-3
Sample DB_VERIFY Output ... 10-4

SQL*Loader Extensions to the DB2 Load Utility.. B-2
Using the DB2 RESUME Option ... B-3
Inclusions for Compatibility .. B-3

LOG Statement .. B-4
WORKDDN Statement .. B-4
SORTDEVT and SORTNUM Statements .. B-4
DISCARD Specification ... B-4

Restrictions... B-4
FORMAT Statement ... B-5
PART Statement .. B-5
SQL/DS Option .. B-5
DBCS Graphic Strings .. B-5

SQL*Loader Syntax with DB2-compatible Statements ... B-5

Appendix A SQL*Loader Reserved Words
Appendix B DB2/DXT User Notes
 xviii

Send Us Your Comments

Oracle8 Utilities , Release 8.0

Part No. A58244-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of
this publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chap-
ter, section, and page number (if available). You can send comments to us in the following ways:

■ infodev@us.oracle.com
■ FAX - 650.506.7200. Attn: Oracle Utilities
■ postal service:

Server Technologies Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.
 xix

Please provide the following information:

Name:

Title

Company:

Department:

Electronic Mail Address:

Postal Address:

Phone Number:

Book Title:

Version Number:

■ If you like, you can use the following questionnaire to give us feedback. Edit the online
release notes file, extract a copy of this questionnaire, and send it to us.Did you find any
errors?

■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chap-
ter, section, and page number (if available).
xx

Preface

This manual describes how to use the Oracle8 Server utilities for data transfer,
maintenance, and database administration.

Oracle8 Utilities contains information that describes the features and functionality
of the Oracle8 and the Oracle8 Enterprise Edition products. Oracle8 and Oracle8
Enterprise Edition have the same basic features. However, several advanced fea-
tures are available only with the Enterprise Edition, and some of these are optional.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8 and the Oracle8 Enterprise Edition.
xxi

The Oracle Utilities
This manual describes the basic concepts behind each utility and provides exam-
ples to show how the utilities are used.

Some of the information this manual provides must be supplemented for the high-
security version of the Oracle8 Server, Trusted Oracle. Such information is marked
with references to the Trusted Oracle documentation.

Audience
This manual is for database administrators (DBAs), application programmers,
security administrators, system operators, and other Oracle users who perform
the following tasks:

■ archive data, back up an Oracle database, or move data between Oracle data-
bases using the Export/Import utilities

■ load data into Oracle tables from operating system files using SQL*Loader

■ create and maintain user-defined character sets (NLS Utilities) and other
Oracle NLS data

To use this manual, you need a working knowledge of SQL and Oracle8 funda-
mentals, information that is contained in Oracle8 Concepts. In addition,
SQL*Loader requires that you know how to use your operating system’s file
management facilities.

Note: This manual does not contain instructions for installing the utilities,
which is operating system-specific. Installation instructions for the utilities can
be found in your operating system-specific Oracle8 documentation.
xxii

How Oracle8 Utilities Is Organized
This manual is divided into four parts:

Part I: Export/Import
Chapter 1, “Export”

This chapter describes how to use Export to write data from an Oracle database
into transportable files. It discusses guidelines, export modes, interactive and com-
mand-line methods, parameter specifications, and incremental exports. It also pro-
vides several examples of Export sessions.

Chapter 2, “Import”

This chapter shows you how to use Import to read data from Export files into an
Oracle database. It discusses guidelines, interactive and command-line methods,
parameter specifications, and incremental imports. It also provides several exam-
ples of Import sessions.

Part II: SQL*Loader
Chapter 3, “SQL*Loader Concepts”

This chapter introduces SQL*Loader and describes its features. It also introduces
data loading concepts. It discusses input to SQL*Loader, database preparation, and
output from SQL*Loader.

Chapter 4, “SQL*Loader Case Studies”

This chapter presents case studies that illustrate some of the features of
SQL*Loader. It demonstrates the loading of variable-length data, fixed-format
records, a free-format file, multiple physical records as one logical record, multiple
tables, and direct file loads.

Chapter 5, “SQL*Loader Control File Reference”

This chapter describes the data definition language (DDL) used by SQL*Loader to
map data to Oracle format. It discusses creating the control file to hold DDL source,
using the LOAD DATA statement, specifying data files, specifying tables and col-
umns, and specifying the location of data.

Chapter 6, “SQL*Loader Command-Line Reference”

This chapter describes the command-line syntax used by SQL*Loader. It discusses
the SQLLOAD command, command-line arguments, suppressing SQL*Loader mes-
sages, and sizing the bind array.
xxiii

Chapter 7, “SQL*Loader: Log File Reference”

This chapter describes the information contained in the log file.

Chapter 8, “SQL*Loader: Conventional and Direct Path Loads”

This chapter describes the conventional path load method and the direct path load
method— a high performance option that significantly reduces the time required to
load large quantities of data.

Part III: NLS Utilities
Chapter 9, “National Language Support Utilities”

Part III explains how to use the NLS utilities: the NLS Data Installation utility,
which helps you convert text-format updates to NLS objects; The NLS Configura-
tion utility, which helps you configure your NLS boot files so that only the NLS
objects you want will be loaded; the NLS Calendar utility, which allows you to
update existing NLS calendar data with additional ruler eras.

Part IV: Offline Database Verification Utility
Chapter 10, “Offline Database Verification Utility”

This chapter describes how to use the offline database verification utility.

Appendix A, “SQL*Loader Reserved Words”

This appendix lists the words reserved by the Oracle utilities.

Appendix B, “DB2/DXT User Notes”

This appendix describes differences between the data definition language syntax of
SQL*Loader and DB2 Load Utility control files. It discusses SQL*Loader extensions
to the DB2 Load Utility, the DB2 RESUME option, options included for compatibil-
ity, and SQL*Loader restrictions.
xxiv

Conventions Used in This Manual
This manual follows textual and typographic conventions explained in the follow-
ing sections.

Text of the Manual
The following conventions are used in the text of this manual:

PL/SQL, SQL, and SQL*Plus commands and statements are displayed in a fixed-
width font using the following conventions, separated from normal text as in the
following example:

ALTER TABLESPACE users ADD DATAFILE ’users2.ora’ SIZE 50K;

UPPERCASE
Words

Uppercase text is used to call attention to command key-
words, object names, parameters, filenames, and so on, for
example:

“If you create a private rollback segment, its name must be
included in the ROLLBACK_SEGMENTS parameter in the
PARAMETER file.”

Italicized Words Italicized words are used at the first occurrence and defini-
tion of a term, as in the following example:

“A database is a collection of data to be treated as a unit. The
general purpose of a database is to store and retrieve related
information, as needed.”

Italicized words are used also to indicate emphasis, book
titles, and to highlight names of performance statistics.

Punctuation: , ’ ” Example statements may include punctuation such as
commas or quotation marks. All punctuation given in
example statements is required. All statement examples
end with a semicolon. Depending on the application in
use, a semicolon or other terminator may or may not be
required to end a statement.

UPPERCASE Words:
INSERT, SIZE

Uppercase words in example statements indicate the key-
words in Oracle SQL. However, when you issue state-
ments, keywords are not case-sensitive.
xxv

We Welcome Your Comments
We value and appreciate your comments as an Oracle user and reader of our manu-
als. As we write, revise, and evaluate, your opinions are the most important input
we receive. At the back of this manual is a Reader’s Comment Form that we encour-
age you to use to tell us both what you like and what you dislike about this (or
other) Oracle manuals. If the form is missing, or you would like to contact us,
please use the following address or fax number:

Oracle8 Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065
U.S.A.
FAX: 415-506-7200

You can also e-mail your comments to:

infodev@us.oracle.com

Lowercase Words:
emp, users2.ora

Lowercase words in example statements indicate words
supplied only for the context of the example. For exam-
ple, lowercase words may indicate the name of a table,
column, or file. Some operating systems are case sensi-
tive, so refer to your installation or user’s manual to find
whether you must pay attention to case.
xxvi

Part I

Export/Import

Part I describes the Export and Import utilities. These utilities are complemen-
tary. Export writes data from an Oracle database into a transportable operating
system file. Import reads data from this file back into an Oracle database. You
can use Export and Import to accomplish the following tasks:

■ move data between Oracle databases, even if the databases are on different
systems or platforms

■ move data from one tablespace or schema to another

■ repartition data in tables

■ store definitions of database objects (such as tables, clusters, and indexes)
with or without the data

■ archive inactive data or store temporary data

■ store Oracle data in operating system files outside a database

■ upgrade to new releases of Oracle

■ back up entire Oracle databases or back up only tables whose data changed
since the last export, using an incremental export or a cumulative export

■ selectively back up parts of a database in a way that requires less storage
space than a system backup

■ restore a database by importing from incremental or cumulative exports

■ restore tables that were dropped, if they had been exported previously

■ move data between older and newer versions or releases of Oracle

save space or reduce fragmentation on the platform used by the Oracle database

 E
1

Export

This chapter describes how to use the Export utility to write data from an Oracle
database into an operating system file in binary format. This file is stored outside
the database, and it can be read into another Oracle database by using the Import
utility (described in Chapter 2, “Import”). This chapter covers the following topics:

■ What is the Export Utility?

■ Export Modes

■ Using Export

■ Export Parameters

■ Example Export Sessions

■ Using the Interactive Method

■ Warning, Error, and Completion Messages

■ Direct Path Export

■ Incremental, Cumulative, and Complete Exports

■ Network Considerations

■ Character Set and NLS Considerations

■ Considerations in Exporting Database Objects

■ Using Different Versions of Export

■ Creating Oracle Release 7 Export Files from an Oracle8 Server
xport 1-1

What is the Export Utility?
What is the Export Utility?
Export provides a simple way for you to transfer data objects between Oracle
database. Export extracts the object definitions and table data from an Oracle
database and stores them in an Oracle binary-format Export dump file located
typically on disk or tape.

Such files can then be FTPed or physically transported (in the case of tape) to a
different site and used, with the Import utility, to transfer data between data-
bases that are on machines not connected via a network or as backups in addi-
tion to normal backup procedures.

The Export and Import utilities can also facilitate certain aspects of Oracle
Advanced Replication functionality like offline instantiation. See Oracle8 Replica-
tion for more information.

Note that, Export dump files can only be read by the Oracle utility, Import (see
Chapter 2, “Import”). If you need to read load data from ASCII fixed-format or
delimited files, see Part II, SQL*Loader of this manual.

When you run Export against an Oracle database, objects (such as tables) are
extracted, followed by their related objects (such as indexes, comments, and grants)
if any, and then written to the Export file. See Figure 1–1.

Note: If you are working with the Advanced Replication Option, refer to the
information about migration and compatibility in Oracle8 Replication. If you
are using Trusted Oracle, see the Trusted Oracle documentation for informa-
tion about using the Export utility in that environment.
1-2 Oracle8 Utilities

What is the Export Utility?
Figure 1–1 Exporting a Database

Reading the Contents of an Export File
Export files are stored in Oracle-binary format. Export files generated by Oracle8
Export cannot be read by utilities other than Oracle8 Import. Export files created by
Oracle8 Export cannot be read by earlier versions of the Import utility. Similarly,
Import can read files written by Export, but cannot read files in other formats. To
load data from ASCII fixed-format or delimited files, see Part II of this manual for
information about SQL*Loader.

You can, however, display the contents of an export file by using the Import
SHOW parameter. For more information, see “SHOW” on page 2-27.

Access Privileges
To use Export, you must have the CREATE SESSION privilege on an Oracle data-
base. To export tables owned by another user, you must have the
EXP_FULL_DATABASE role enabled. This role is granted to all DBAs.

If you do not have the system privileges contained in the EXP_FULL_DATABASE
role, you cannot export objects contained in another user’s schema. For example,
you cannot export a table in another user’s schema, even if you created a synonym
for it.

Table 1Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Index 1

Table 2

Table 3

Table 4

Index 4

Table 5

Index 5

Table 6
 Export 1-3

Export Modes
Export Modes
The Export utility provides three modes of export. All users can export in table
mode and user mode. A user with the EXP_FULL_DATABASE role (a privileged
user) can export in table mode, user mode, and full database mode. The database
objects that are exported depend on the mode you choose.

See “Export Parameters” on page 1-11 for information on specifying each mode.

You can use the conventional path Export or direct path Export to export in any of
the three modes. The differences between conventional path export and direct path
Export are described in “Direct Path Export” on page 1-33.

Table 1–1 shows the objects that are exported and imported in each mode.

Table 1–1 Objects Exported and Imported in Each Mode

Table Mode User Mode Full
Database
Mode

For each table in the TABLES
list, users can export and import:

For each user in the Owner list,
users can export and import:

Privileged users can export and
import all database objects except
those owned by SYS:

object type definitions used by
table

foreign function libraries tablespace definitions

table definitions object types profiles

pre-table actions database links user definitions

table data by partition sequence numbers roles

nested table data cluster definitions system privilege grants

owner’s table indexes

table constraints (primary,
unique, check)

owner’s table grants

In addition, for each table that the
specified user owns, users can
export and import:

role grants

default roles

tablespace quotas

analyze tables object type definitions used by
table

resource costs

column and table comments table definitions rollback segment definitions

auditing information pre-table actions database links

table referential constraints table data by partition sequence numbers

owner’s table triggers nested table data all directory aliases

post-table actions owner’s table indexes 1 all foreign function libraries
1-4 Oracle8 Utilities

Export Modes
In addition, privileged users can
export and import:

table constraints (pri-
mary,unique,check)

owner’s table grants

all object types

all cluster definitions

triggers owned by other users analyze table password history

indexes owned by other users column and table comments default and system auditing

private synonyms

user stored procedures, packages,
and functions

For each table, the privileged
user can export and import:

auditing information object type definitions used by
table

user views table definitions

analyze cluster pre-table actions

referential integrity constraints table data by partition

triggers 2 nested table data

post-table actions table indexes

snapshots table constraints (primary,
unique, check)

snapshot logs table grants

job queues analyze table

refresh groups column and table comments

auditing information

all referential integrity constraints

all synonyms

all views

all stored procedures, packages,
and functions

all triggers

post-table actions

analyze cluster

all snapshots

all snapshot logs

all job queues

Table 1–1 Objects Exported and Imported in Each Mode (Cont.)

Table Mode User Mode Full
Database
Mode
 Export 1-5

Using Export
Understanding Table-Level and Partition-Level Export
In table-level Export, an entire partitioned or non-partitioned table, along with its
indexes and other table-dependent objects, is exported. All the partitions of a parti-
tioned table are exported. (This applies to both direct path Export and conventional
path Export.) All Export modes (full, user, table) support table-level Export.

In partition-level Export, the user can export one or more specified partitions of a
table. Full database and user mode Export do not support partition-level Export;
only table mode Export does. Because incremental Exports (incremental, cumula-
tive, and complete) can be done only in full database mode, partition-level Export
cannot be specified for incremental exports.

In all modes, partitioned data is exported in a format such that partitions can be
imported selectively.

For information on how to specify a partition-level Export, see “TABLES” on
page 1-19.

Using Export
This section describes how to use the Export utility, including what you need to do
before you begin exporting and how to invoke Export.

Before Using Export
To use Export, you must run the script CATEXP.SQL or CATALOG.SQL (which
runs CATEXP.SQL) after the database has been created.

all refresh groups and children

1. Non-privileged users can export and import only indexes they own on tables they own. They cannot
export indexes they own that are on tables owned by other users, nor can they export indexes owned by
other users on their own tables. Privileged users can export and import indexes on the specified users’
tables, even if the indexes are owned by other users. Indexes owned by the specified user on other users’
tables are not included, unless those other users are included in the list of users to export.

2. Non-privileged and privileged users can export and import all triggers owned by the user, even if they
are on tables owned by other users.

Table 1–1 Objects Exported and Imported in Each Mode (Cont.)

Table Mode User Mode Full
Database
Mode
1-6 Oracle8 Utilities

Using Export
Note: The actual names of the script files depend on your operating system.
The script file names and the method for running them are described in your
Oracle operating system-specific documentation.

CATEXP.SQL or CATALOG.SQL needs to be run only once on a database. You do
not need to run it again before you perform the export. The script performs the fol-
lowing tasks to prepare the database for Export:

■ creates the necessary export views

■ assigns all necessary privileges to the EXP_FULL_DATABASE role

■ assigns EXP_FULL_DATABASE to the DBA role

Before you run Export, ensure that there is sufficient disk or tape storage space to
which to write the export file. If there is not enough space, Export terminates with a
write-failure error.

You can use table sizes to estimate the maximum space needed. Table sizes can be
found in the USER_SEGMENTS view of the Oracle data dictionary. The following
query displays disk usage for all tables:

select sum(bytes) from user_segments where segment_type=’TABLE’;

The result of the query does not include disk space used for data stored in LOB
(large object) columns.

See the Oracle8 Reference for more information about dictionary views.

Invoking Export
You can invoke Export in one of the following ways:

■ Enter the following command:

exp username/password PARFILE=filename

PARFILE is a file containing the export parameters you typically use. If you use
different parameters for different databases, you can have multiple parameter
files. This is the recommended method.

■ Enter the command

exp username/password

followed by the parameters you need.
 Export 1-7

Using Export
Note: The number of parameters cannot exceed the maximum length of a com-
mand line on the system.

Enter only the command exp username/password to begin an interactive ses-
sion and let Export prompt you for the information it needs. The interactive
method provides less functionality than the parameter-driven method. It exists for
backward compatibility.

You can use a combination of the first and second options. That is, you can list
parameters both in the parameters file and on the command line. In fact, you can
specify the same parameter in both places. The position of the PARFILE parameter
and other parameters on the command line determines what parameters override
others. For example, assume the parameters file params.dat contains the parame-
ter INDEXES=Y and Export is invoked with the following line:

exp system/manager PARFILE=params.dat INDEXES=N

In this case, because INDEXES=N occurs after PARFILE=params.dat , INDEXES=N
overrides the value of the INDEXES parameter in the PARFILE.

You can specify the username and password in the parameter file, although, for
security reasons, this is not recommended. If you omit the username/password
combination, Export prompts you for it.

See “Export Parameters” on page 1-11 for descriptions of the parameters.

To see how to specify an export from a database that is not the default database,
refer to “Exporting and Importing with Net8” on page 1-44.

Invoking Export as SYSDBA
Typically, you should not need to invoke Export as SYSDBA. However, if you
are using Tablespace Point-In-Time Recovery (TSPITR) which enables you to
quickly recover one or more tablespaces to a point-in-time different from that of
the rest of the database, you will need to know how to do so.

Attention: It is recommended that you read the information about TSPITR in
the Oracle8 Backup and Recovery Guide, “POINT_IN_TIME_RECOVER” on
page 2-26, and “RECOVERY_TABLESPACES” on page 1-19 before continuing with
this section.

To invoke Export as SYSDBA, use the following syntax:

exp username/password AS SYSDBA
1-8 Oracle8 Utilities

Using Export
or, optionally

exp username/password@instance AS SYSDBA

Note: Since the string “AS SYSDBA” contains a blank, most operating systems
require that entire string ‘username/password AS SYSDBA’ be placed in quotes
or marked as a literal by some method. Note that some operating systems also
require that quotes on the command line be escaped as well. Please see your
operating system-specific Oracle documentation for information about special
and reserved characters on your system.

Note that if either the username or password is omitted, Export will prompt
you for it.

If you prefer to use the Export interactive mode, please see “Interactively Invoking
Export as SYSDBA” on page 1-29 for more information.

Getting Online Help
Export provides online help. Enter exp help=y on the command line to see a help
screen like the one shown below.

> exp help=y

Export: Release 8.0.4.0.0 - Production on Fri Nov 03 9:26:39 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

You can let Export prompt you for parameters by entering the EXP
command followed by your username/password:

 Example: EXP SCOTT/TIGER

Or, you can control how Export runs by entering the EXP command followed
by various arguments. To specify parameters, you use keywords:

 Format: EXP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
 Example: EXP SCOTT/TIGER GRANTS=Y TABLES=(EMP,DEPT,MGR)
 or TABLES=(T1:P1,T1:P2), if T1 is partitioned table

USERID must be the first parameter on the command line.

Keyword Description (Default) Keyword Description (Default)
--
USERID username/password FULL export entire file (N)
BUFFER size of data buffer OWNER list of owner usernames
 Export 1-9

Using Export
FILE output file (EXPDAT.DMP) TABLES list of table names
COMPRESS import into one extent (Y) RECORDLENGTH length of IO record
GRANTS export grants (Y) INCTYPE incremental export type
INDEXES export indexes (Y) RECORD track incr. export (Y)
ROWS export data rows (Y) PARFILE parameter filename
CONSTRAINTS export constraints (Y) CONSISTENT cross-table consistency
LOG log file of screen output STATISTICS analyze objects(ESTIMATE)
DIRECT direct path (N)
FEEDBACK display progress every x rows (0)
POINT_IN_TIME_RECOVER Tablespace Point-in-time Recovery (N)
RECOVERY_TABLESPACES List of tablespace names to recover
VOLSIZE number of bytes to write to each tape volume

Export terminated successfully without warnings.

The Parameter File
The parameter file allows you to specify Export parameters in a file where they can
easily be modified or reused. Create the parameter file using any flat file text edi-
tor. The command-line option PARFILE=filename tells Export to read the param-
eters from the specified file rather than from the command line. For example:

exp PARFILE= filename
exp username/password PARFILE= filename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(value)
KEYWORD=(value1 , value2 , ...)

The following example shows a partial parameter file listing:

FULL=Y
FILE=DBA.DMP
GRANTS=Y
INDEXES=Y
CONSISTENT=Y

Additional Information: The maximum size of the parameter file may be limited
by the operating system. The name of the parameter file is subject to the file nam-
ing conventions of the operating system. See your Oracle operating system-specific
documentation for more information.

You can add comments to the parameter file by preceding them with the pound (#)
sign. Export ignores all characters to the right of the pound (#) sign.
1-10 Oracle8 Utilities

Export Parameters
Export Parameters
The following three diagrams show the syntax for the parameters that you can spec-
ify in the parameter file or on the command line.

The remainder of this section describes each parameter.

exp

HELP = Y

username / password
@ connect–string

ExpOpts_1 ExpOpts_2

FULL = Y

INCTYPE =

INCREMENTAL

CUMULATIVE

COMPLETE

RECORD =
Y

N

OWNER =
(username

,

)

username

TABLES =

(
schema .

tablename
: partitionname

,

)

schema .
tablename

: partitionname

POINT_IN_TIME_RECOVER = Y RECOVERY_TABLESPACES =
(tablespacename

,

)

tablespacename

p p
 Export 1-11

Export Parameters
PARFILE = filename

FILE = filename

LOG = filename

COMPRESS =
Y

N

ROWS =
Y

N

DIRECT =
Y

N

FEEDBACK = integer

STATISTICS =

COMPUTE

ESTIMATE

NONE

INDEXES =
Y

N

CONSTRAINTS =
Y

N

GRANTS =
Y

N

CONSISTENT =
Y

N

BUFFER = integer

RECORDLENGTH = integer
1-12 Oracle8 Utilities

Export Parameters
BUFFER
Default: operating system-dependent. See your Oracle operating system-specific
documentation to determine the default value for this parameter.

Specifies the size, in bytes, of the buffer used to fetch rows. As a result, this parame-
ter determines the maximum number of rows in an array fetched by Export. Use
the following formula to calculate the buffer size:

buffer_size = rows_in_array * maximum_row_size

If you specify zero, the Export utility fetches only one row at a time.

Tables with LONG, LOB, BFILE, REF, ROWID, or type columns are fetched one
row at a time.

Note: The BUFFER parameter applies only to conventional path Export. It has
no effect on a direct path Export.

COMPRESS
Default: Y

Specifies how Export and Import manage the initial extent for table data.

The default, COMPRESS=Y, causes Export to flag table data for consolidation into
one initial extent upon Import. If extent sizes are large (for example, because of the
PCTINCREASE parameter), the allocated space will be larger than the space
required to hold the data when you specify COMPRESS=Y.

If you specify COMPRESS=N, Export uses the current storage parameters, includ-
ing the values of initial extent size and next extent size. The values of the parame-
ters may be the values specified in the CREATE TABLE or ALTER TABLE
statements or the values modified by the database system. For example, the NEXT
extent size value may be modified if the table grows and if the PCTINCREASE
parameter is nonzero.

Note: Although the actual consolidation is performed upon import, you can
specify the COMPRESS parameter only when you export, not when you
import. The Export utility, not the Import utility, generates the data definitions,
including the storage parameter definitions. Thus, if you specify COM-
PRESS=Y when you export, you can import the data in consolidated form
only.

Note: LOB data is not compressed. For LOB data, the original values of initial
extent size and next extent size are used.
 Export 1-13

Export Parameters
CONSISTENT
Default: N

Specifies whether or not Export uses the SET TRANSACTION READ ONLY state-
ment to ensure that the data seen by Export is consistent to a single point in time
and does not change during the execution of the export command. You should
specify CONSISTENT=Y when you anticipate that other applications will be updat-
ing the database after an export has started.

If you specify CONSISTENT=N (the default), tables are usually exported in a single
transaction. If a table contains nested tables, the outer table and each inner table are
exported as separate transactions. If a table is partitioned, each partition is exported
as a separate transaction.

Therefore, if nested tables and partitioned tables are being updated by other appli-
cations, the data that is exported could be inconsistent. To minimize this possibil-
ity, export those tables at a time when updates are not being done.

The following chart shows a sequence of events by two users: USER1 exports parti-
tions in a table and USER2 updates data in that table.

If the export uses CONSISTENT=Y, none of the updates by USER2 are written to
the export file.

If the export uses CONSISTENT=N, the updates to TAB:P1 are not written to the
export file. However, the updates to TAB:P2 are written to the export file because
the update transaction is committed before the export of TAB:P2 begins. As a
result, USER2’s transaction is only partially recorded in the export file, making it
inconsistent.

If you use CONSISTENT=Y and the volume of updates is large, the rollback seg-
ment will be large. In addition, the export of each table will be slower because the
rollback segment must be scanned for uncommitted transactions.

Time
Sequence USER1 USER2

 1 Begins export of TAB:P1

 2 Updates TAB:P2
Updates TAB:P1
Commit transaction

 3 Ends export of TAB:P1

 4 Exports TAB:P2
1-14 Oracle8 Utilities

Export Parameters
Keep in mind the following points about using CONSISTENT=Y:

■ To minimize the time and space required for such exports, you should export
tables that need to remain consistent separately from those that do not.

For example, export the EMP and DEPT tables together in a consistent export,
and then export the remainder of the database in a second pass.

■ To reduce the chances of encountering a “snapshot too old” error, export the
minimum number of objects that must be guaranteed consistent.

The “snapshot too old” error occurs when rollback space has been used up,
and space taken up by committed transactions is reused for new transactions.
Reusing space in the rollback segment allows database integrity to be pre-
served with minimum space requirements, but it imposes a limit on the
amount of time that a read-consistent image can be preserved.

If a committed transaction has been overwritten and the information is needed
for a read-consistent view of the database, a “snapshot too old” error results.

To avoid this error, you should minimize the time taken by a read-consistent
export. (Do this by restricting the number of objects exported and, if possible,
by reducing the database transaction rate.) Also, make the rollback segment as
large as possible.

Note: You cannot specify CONSISTENT=Y with an incremental export.

CONSTRAINTS
Default: Y

Specifies whether or not the Export utility exports table constraints.

DIRECT
Default: N

Specifies whether you use direct path or conventional path Export.

Specifying DIRECT=Y causes Export to extract data by reading the data directly,
bypassing the SQL Command Processing layer (evaluating buffer). This method
can be much faster than a conventional path export.

You can further improve performance by using direct path Export with the data-
base in direct read mode. Contention for resources with other users is eliminated
because database blocks are read into the private buffer cache, rather than a public
buffer cache.
 Export 1-15

Export Parameters
Direct read mode is enabled if the database compatibility mode is 7.1.5 or higher.
For more information about direct read mode, see the Oracle8 Administrator’s Guide.

Direct path Export cannot be used to export data from tables that contain column
types that were introduced in Oracle8. Those column types are REF, LOB, BFILE,
or object type columns (which include VARRAYs and nested tables). If a table con-
tains any of these objects, only the table definition is exported, not the data, and a
warning message is given.

For more information about direct path Exports, see “Direct Path Export” on
page 1-33.

FEEDBACK
Default: 0 (zero)

Specifies that Export should display a progress meter in the form of a dot for n
number of rows exported. For example, if you specify FEEDBACK=10, Export dis-
plays a dot each time 10 rows are exported. The FEEDBACK value applies to all
tables being exported; it cannot be set on a per-table basis.

FILE
Default: expdat.dmp

Specifies the name of the export file. The default extension is .dmp, but you can
specify any extension.

FULL
Default: N

Indicates that the Export is a full database mode Export (that is, it exports the entire
database.) Specify FULL=Y to export in full database mode. You need the
EXP_FULL_DATABASE role to export in this mode.

GRANTS
Default: Y

Specifies whether or not the Export utility exports grants. The grants that are
exported depend on whether you use full database or user mode. In full database
mode, all grants on a table are exported. In user mode, only those granted by the
owner of the table are exported.
1-16 Oracle8 Utilities

Export Parameters
HELP
Default: N

Displays a help message with descriptions of the Export parameters.

INCTYPE
Default: none

Specifies the type of incremental Export. The options are COMPLETE, CUMU-
LATIVE, and INCREMENTAL. See “Incremental, Cumulative, and Complete
Exports” on page 1-37 for more information.

For more information on the system tables that support incremental export and
for the definitions of ITIME, EXPID, and CTIME, see “System Tables” on page 1-43.

INDEXES
Default: Y

Specifies whether or not the Export utility exports indexes.

LOG
Default: none

Specifies a file name to receive informational and error messages. For example:

exp system/manager LOG=export.log

If you specify this parameter, messages are logged in the log file and displayed to
the terminal display.

OWNER
Default: undefined

Indicates that the Export is a user-mode Export and lists the users whose objects
will be exported.

PARFILE
Default: undefined

Specifies a filename for a file that contains a list of Export parameters. For more
information on using a parameter file, see “The Parameter File” on page 1-10.
 Export 1-17

Export Parameters
POINT_IN_TIME_RECOVER
Default: N

Indicates whether or not the Export utility exports one or more tablespaces in an
Oracle database. On Import, you can recover the tablespace to a prior point in time,
without affecting the rest of the database. For more information, see the Oracle8
Backup and Recovery Guide.

RECORD
Default: Y

Indicates whether or not to record an incremental or cumulative export in the sys-
tem tables SYS.INCEXP, SYS.INCFIL, and SYS.INCVID. For information about
these tables, see “System Tables” on page 1-43.

RECORDLENGTH
Default: operating system dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parameter
is necessary when you must transfer the export file to another operating system
that uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent value
for BUFSIZ. For more information about the BUFSIZ default value, see your operat-
ing system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your system’s
BUFSIZ. (The highest value is 64KB.) Changing the RECORDLENGTH parameter
affects only the size of data that accumulates before writing to the disk. It does not
affect the operating system file block size.

Note: You can use this parameter to specify the size of the Export I/O buffer.

Additional Information: See your Oracle operating system-specific documenta-
tion to determine the proper value or to create a file with a different record size.
1-18 Oracle8 Utilities

Export Parameters
RECOVERY_TABLESPACES
Default: undefined

Specifies the tablespaces that will be recovered using point-in-time recovery. For
more information about point-in-time recovery, see the Oracle8 Backup and Recov-
ery Guide.

ROWS
Default: Y

Specifies whether or not the rows of table data are exported.

STATISTICS
Default: ESTIMATE

Specifies the type of database optimizer statistics to generate when the exported
data is imported. Options are ESTIMATE, COMPUTE, and NONE. See the Oracle8
Concepts manual for information about the optimizer.

TABLES
Default: undefined

Specifies that the Export is a table-mode Export and lists the table names and parti-
tion names to export. You can specify the following when you specify the name of
the table:

■ schema specifies the name of the user’s schema from which to export the
table or partition.

■ tablename indicates that the export is a table-level Export. Table-level
Export lets you export entire partitioned or non-partitioned tables. If a table
in the list is partitioned and you do not specify a partition name, all its parti-
tions are exported.

■ partition name indicates that the export is a partition-level Export. Partition-
level Export lets you export one or more specified partitions within a table.

If you use tablename:partition name, the specified table must be partitioned,
and partition-name must be the name of one of its partitions.

The following line shows an example of a partition-level Export:

exp system/manager FILE = export.dmp TABLES = (scott.b:px, scott.b:py, mary.c, d:qb)
 Export 1-19

Export Parameters
In this example, scott.b must be a partitioned table, and px and py must be two
of its partitions. The table denoted by mary.c can be a partitioned or non-parti-
tioned table. Table d, however, must be a partitioned table, and qb must be one of
its partitions.

If the table-name or partition-name for the same table is used redundantly
Export recognizes the duplicate entries and exports the table or partition only
once. For example, the following:

exp system/manager FILE = export.dmp TABLES = (sc, sc:px, sc)

causes one export of table sc.

Additional Information: Some operating systems, such as UNIX, require that
you use escape characters before special characters, such as a parenthesis, so
that the character is not treated as a special character. On UNIX, use a back-
slash (\) as the escape character, as shown in the following example:

TABLES=\(EMP,DEPT\)

Table-Name Restrictions
Table names specified on the command line cannot include a pound (#) sign, unless
the table name is enclosed in quotation marks. Similarly, in the parameter file, if a
table name includes a pound (#) sign, the Export utility interprets the rest of the
line as a comment, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, Export interprets
everything on the line after EMP# as a comment, and therefore does not export the
tables DEPT and MYDATA:

TABLES=(EMP#, DEPT, MYDATA)

However, given the following line, the Export utility exports all three tables:

TABLES=("EMP#", DEPT, MYDATA)

Attention: When you specify the table name using quotation marks, the name
is case sensitive. The name must exactly match the table name stored in the
database. By default, table names in a database are stored as uppercase.

In the previous example, a table named EMP# is exported, not a table named emp#.
Because the tables DEPT and MYDATA are not specified in quotation marks, the
names are not case sensitive.
1-20 Oracle8 Utilities

Export Parameters
Additional Information: Some operating systems require single quotation
marks rather than double quotation marks, or vice versa; see your Oracle
operating system-specific documentation. Different operating systems also
have other restrictions on table naming. For example, the UNIX C shell does
not handle a dollar sign ($) or pound sign (#) (or certain other special charac-
ters).

You must use escape characters to get such characters in the name past the
shell and into Export.

USERID
Default: none

Specifies the username/password (and optional connect string) of the user initi-
ating the export. If you omit the password Export will prompt you for it.

When using Tablespace Point-in-Time-Recovery USERID can also be:

username/password AS SYSDBA

or

username/password@instance AS SYSDBA

See “Invoking Export as SYSDBA” on page 1-8 for more information. Note also that
your operating system may require you to treat AS SYSDBA as a special string
requiring you to enclose the entire string in quotes as described on 1 - 8.

Optionally, you can specify the @connect_string clause for Net8. See the user’s
guide for your Net8 protocol for the exact syntax of @connect_string. See also
Oracle8 Distributed Database Systems.

Parameter Interactions
Certain parameters can conflict with each other. For example, because specifying
TABLES can conflict with an OWNER specification, the following command causes
Export to terminate with an error:

exp system/manager OWNER=jones TABLES=scott.emp

Similarly, OWNER conflicts with FULL=Y and TABLE conflicts with FULL=Y.

Although ROWS=N and INCTYPE=INCREMENTAL can both be used, specifying
ROWS=N (no data) defeats the purpose of incremental exports, which is to make a
backup copy of tables that have changed.
 Export 1-21

Example Export Sessions
Example Export Sessions
The following examples show you how to use the command line and parameter file
methods in the full database, user, and table modes.

Example Export Session in Full Database Mode
Only users with the DBA role or the EXP_FULL_DATABASE role can export in full
database mode. In this example, an entire database is exported to the file dba.dmp
with all GRANTS and all data.

Parameter File Method >

exp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
GRANTS=y
FULL=y
ROWS=y

Command-Line Method >

exp system/manager full=Y file=dba.dmp grants=Y rows=Y

Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov 7 8:23:12 1997
(c) Copyright 1997 Oracle Corporation. All rights reserved.
Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
. exporting foreign function library names
1-22 Oracle8 Utilities

Example Export Sessions
. exporting object type definitions

. exporting cluster definitions

. about to export SYSTEM's tables via Conventional Path ...

. . exporting table DEF$_AQCALL 0 rows exported

. . exporting table DEF$_AQERROR 0 rows exported

. . exporting table DEF$_CALLDEST 0 rows exported

. . exporting table DEF$_DEFAULTDEST 0 rows exported

. . exporting table DEF$_DESTINATION 0 rows exported

. . exporting table DEF$_ERROR 0 rows exported

. . exporting table DEF$_LOB 0 rows exported

. . exporting table DEF$_ORIGIN 0 rows exported

. . exporting table DEF$_PROPAGATOR 0 rows exported

. . exporting table DEF$_TEMP$LOB 0 rows exported

. about to export SCOTT's tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. . exporting table DEPT 8 rows exported

. . exporting table MANAGER 4 rows exported

. exporting referential integrity constraints

. exporting posttables actions

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting user history table

. exporting default and system auditing options
Export terminated successfully without warnings.
 Export 1-23

Example Export Sessions
Example Export Session in User Mode
Exports in user mode can back up one or more database users. For example, a DBA
may want to back up the tables of deleted users for a period of time. User mode is
also appropriate for users who want to back up their own data or who want to
move objects from one owner to another. In this example, user SCOTT is exporting
his own tables.

Parameter File Method >

exp scott/tiger parfile=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
OWNER=scott
GRANTS=y
ROWS=y
COMPRESS=y

Command-Line Method >

exp scott/tiger file=scott.dmp owner=scott grants=Y rows=Y compress=y

Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov 7 4:12:14 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set
. exporting foreign function library names for user SCOTT
. exporting object type definitions for user SCOTT

About to export SCOTT's objects ...
. exporting database links
. exporting sequence numbers
. exporting cluster definitions
. about to export SCOTT's tables via Conventional Path ...
. . exporting table BONUS 0 rows exported
. . exporting table DEPT 4 rows exported
. . exporting table EMP 14 rows exported
. . exporting table SALGRADE 5 rows exported
1-24 Oracle8 Utilities

Example Export Sessions
. exporting synonyms

. exporting views

. exporting stored procedures

. exporting referential integrity constraints

. exporting triggers

. exporting posttables actions

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children
Export terminated successfully without warnings.

Example Export Sessions in Table Mode
In table mode, you can export table data or the table definitions. (If no rows are
exported, the CREATE TABLE statement is placed in the export file, with grants
and indexes, if they are specified.)

A user with the EXP_FULL_DATABASE role can use table mode to export tables
from any user’s schema by specifying TABLES=schema.table

If schema is not specified, Export defaults to the previous schema from which an
object was exported. If there is not a previous object, Export defaults to the
exporter’s schema. In the following example, Export defaults to the SYSTEM
schema for table a and to SCOTT for table c :

> exp system/manager tables=(a, scott.b, c, mary.d)

A user without the EXP_FULL_DATABASE role can export only tables that the
user owns. A user with the EXP_FULL_DATABASE role can export dependent
objects that are owned by other users. A non-privileged user can export only depen-
dent objects that the user owns.

Exports in table mode do not include cluster definitions. As a result, the data is
imported into unclustered tables. Thus, you can use table mode to uncluster tables.

Example 1
In this example, a DBA exports specified tables for two users.

Parameter File Method >

exp system/manager parfile=params.dat
 Export 1-25

Example Export Sessions
The params.dat file contains the following information:

FILE=expdat.dmp
TABLES=(scott.emp,blake.dept)
GRANTS=y
INDEXES=y

Command-Line Method >

exp system/manager tables=(scott.emp,blake.dept) grants=Y indexes=Y

Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov 7 9:24:34 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
Current user changed to SCOTT
. . exporting table EMP 14 rows exported
Current user changed to BLAKE
. . exporting table DEPT 8 rows exported
Export terminated successfully without warnings.

Example 2
In this example, user BLAKE exports selected tables that he owns.

Parameter File Method >

exp blake/paper parfile=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
TABLES=(dept,manager)
ROWS=Y
COMPRESS=Y
1-26 Oracle8 Utilities

Example Export Sessions
Command-Line Method >

exp blake/paper file=blake.dmp tables=(dept, manager) rows=y compress=Y

Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov 5 9:25:33 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table DEPT 8 rows exported
. . exporting table MANAGER 4 rows exported
Export terminated successfully without warnings.

Example Export Session Using Partition-Level Export
In partition-level export, you can specify the partitions of a table that you want to
export.

Example 1
Assume EMP is a partitioned table with two partitions M and Z (partitioned on
employee name). As this example shows, if you export the table without specifying
a partition, all of the partitions are exported.

Parameter File Method

> exp scott/tiger parfile=params.dat

The params.dat file contains the following:

TABLES=(emp)
ROWS=y

Command-Line Method

> exp scott/tiger tables=emp rows=Y
 Export 1-27

Example Export Sessions
Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov7 12:44:14 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition M 8 rows exported
. . exporting partition Z 6 rows exported
Export terminated successfully without warnings.

Example 2
Assume EMP is a partitioned table with two partitions M and Z (partitioned on
employee name). As this example shows, if you export the table and specify a parti-
tion, only the specified partition is exported.

Parameter File Method >

exp scott/tiger parfile=params.dat

The params.dat file contains the following:

TABLES=(emp:m)
ROWS=y

Command-Line Method >

exp scott/tiger tables=emp:m rows=Y

Export Messages

Export: Release 8.0.4.0.0 - Production on Fri Nov 7 10:32:12 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set
1-28 Oracle8 Utilities

Using the Interactive Method
About to export specified tables via Conventional Path ...
. .exporting table EMP
. . exporting partition M 8 rows exported
Export terminated successfully without warnings.

Using the Interactive Method
Starting Export from the command line with no parameters initiates the interactive
method. The interactive method does not provide prompts for all Export functional-
ity. The interactive method is provided only for backward compatibility.

If you do not specify a username/password combination on the command line,
the Export utility prompts you for this information.

Interactively Invoking Export as SYSDBA
Typically, you should not need to invoke Export as SYSDBA. However, if you
are using Tablespace Point-In-Time Recovery (TSPITR) which enables you to
quickly recover one or more tablespaces to a point-in-time different from that of
the rest of the database, you will need to know how to do so.

Attention: It is recommended that you read the information about TSPITR in
the Oracle8 Backup and Recovery Guide, “POINT_IN_TIME_RECOVER” on
page 2-26, and “RECOVERY_TABLESPACES” on page 1-19 before continuing with
this section.

If you use the Export interactive mode, you will not be prompted to specify
whether you want to connect as SYSDBA or @instance. You must specify “AS
SYSDBA” and/or “@instance” with the username.

So the response to the Export interactive username prompt could be for exam-
ple:

username/password@instance as sysdba
username/password@instance
username/password as sysdba
username/password
username@instance as sysdba (prompts for password)
username@instance (prompts for password)
username (prompts for password)
username AS sysdba (prompts for password)
/ as sysdba (no prompt for password, OS authentication

is used)
/ (no prompt for password, OS authentication

is used)
 Export 1-29

Using the Interactive Method
/@instance as sysdba (no prompt for password, OS authentication
is used)

/@instance (no prompt for password, OS authentication
is used)

Note: if you omit the password and allow Export to prompt you for it, you can-
not specify the @instance string as well. You can specify @instance only with
username.

Then, Export displays the following prompts:

Enter array fetch buffer size: 4096 > 30720

Export file: expdat.dmp >

(1)E(ntire database), (2)U(sers), or (3)T(ables): (2)U > E

Export grants (yes/no): yes >

Export table data (yes/no): yes >

Compress extents (yes/no): yes >

Export done in US7ASCII character set and WE8DEC NCHAR character set
About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
. exporting rollback segment definitions
. exporting database links
. exporting sequence numbers
. exporting directory aliases
. exporting foreign function library names
. exporting object type definitions
. exporting cluster definitions
. about to export SYSTEM's tables via Conventional Path ...
. about to export SYSTEM's tables via Conventional Path ...
. . exporting table DEF$_AQCALL 0 rows exported
. . exporting table DEF$_AQERROR 0 rows exported
. . exporting table DEF$_CALLDEST 0 rows exported
. . exporting table DEF$_DEFAULTDEST 0 rows exported
. . exporting table DEF$_DESTINATION 0 rows exported
. . exporting table DEF$_ERROR 0 rows exported
. . exporting table DEF$_LOB 0 rows exported
1-30 Oracle8 Utilities

Using the Interactive Method
. . exporting table DEF$_ORIGIN 0 rows exported

. . exporting table DEF$_PROPAGATOR 0 rows exported

. . exporting table DEF$_TEMP$LOB 0 rows exported

. about to export SCOTT's tables via Conventional Path ...

. . exporting table BONUS 0 rows exported

. . exporting table DEPT 4 rows exported

. . exporting table EMP 14 rows exported

. . exporting table SALGRADE 5 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. . exporting table DEPT 8 rows exported

. . exporting table MANAGER 4 rows exported

. exporting referential integrity constraints

. exporting posttables actions

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting user history table

. exporting default and system auditing options
Export terminated successfully without warnings.

You may not see all prompts in a given Export session because some prompts
depend on your responses to other prompts. Some prompts show a default answer.
If the default is acceptable, press [Return].

Restrictions
Keep in mind the following points when you use the interactive method:

■ In user mode, Export prompts for all user names to be included in the export
before exporting any data. To indicate the end of the user list and begin the cur-
rent Export session, press [Return].

■ In table mode, if you do not specify a schema prefix, Export defaults to the
exporter’s schema or the schema containing the last table exported in the cur-
rent session.
 Export 1-31

Warning, Error, and Completion Messages
For example, if BETH is a privileged user exporting in table mode, Export
assumes that all tables are in BETH’s schema until another schema is speci-
fied. Only a privileged user (someone with the EXP_FULL_DATABASE
role) can export tables in another user’s schema.

■ If you specify a null table list to the prompt “Table to be exported,” the Export
utility exits.

Warning, Error, and Completion Messages
The Export utility attempts to save as much of the database as possible, even when
part of it has become corrupted, but errors can occur. This section discusses how
Export handles those errors.

Log File
You can capture all Export messages in a log file, either by using the LOG parame-
ter (see “LOG” on page 1-17) or, for those systems that permit it, by redirecting
Export’s output to a file. The Export utility writes a log of detailed information
about successful unloads and any errors that may occur. Refer to the operating sys-
tem-specific Oracle documentation for information on redirecting output.

Warning Messages
Export does not terminate after non-fatal errors. For example, if an error occurs
while exporting a table, Export displays (or logs) an error message, skips to the
next table, and continues processing. These non-fatal errors are known as warnings.

Export issues a warning whenever it encounters an invalid object. For example, if a
non-existent table is specified as part of a table-mode export, the Export utility
exports all other tables. Then, it issues a warning and terminates successfully, as
shown in the following listing:

> exp scott/tiger tables=xxx,emp
...
About to export specified tables via Conventional Path ...
EXP-00011: SCOTT.XXX does not exist
. . exporting table EMP 14 rows exported
Export terminated successfully with warnings.
1-32 Oracle8 Utilities

Direct Path Export
Fatal Error Messages
Some errors are fatal and terminate the Export session. These errors typically occur
because of an internal problem or because a resource, such as memory, is not avail-
able or has been exhausted. For example, if the CATEXP.SQL script is not executed,
Export issues the following fatal error message:

EXP-00024: Export views not installed, please notify your DBA

Additional Information: Messages are documented in the Oracle8 Messages
manual and in your Oracle operating system-specific documentation.

Completion Messages
When Export completes without errors, Export displays the message “Export termi-
nated successfully without warnings.” If one or more non-fatal errors occurs but
Export is able to continue to completion, Export displays the message “Export ter-
minated successfully with warnings.” If a fatal error occurs, Export terminates
immediately with the message “Export terminated unsuccessfully.”

Direct Path Export
Export provides two methods for exporting table data:

■ conventional path Export

■ direct path Export

Conventional path Export uses the SQL SELECT statement to extract data from
tables. Data is read from disk into a buffer cache, and rows are transferred to the
evaluation buffer. The data, after passing expression evaluation, is transferred to
the Export client, which then writes the data into the export file.

Direct path Export extracts data much faster than a conventional path export.
Direct path Export achieves this performance gain by reading data directly, bypass-
ing the SQL Command Processing layer and saves on data copies whenever possi-
ble.

For added performance, you can set the database to direct read mode. This elimi-
nates contention with other users for database resources because database blocks
are read into the Export session’s private buffer, rather than into a public buffer
cache. For more information about direct read mode, see the Oracle8 Administrator’s
Guide.

Figure 1–2 on page 1 - 35 shows how data extraction differs between conventional
path and direct path Export.
 Export 1-33

Direct Path Export
In a direct path Export, data is read from disk into the buffer cache and rows are
transferred directly to the Export client. The Evaluating Buffer is bypassed. The data
is already in the format that Export expects, thus avoiding unnecessary data conver-
sion. The data is transferred to the Export client, which then writes the data into the
export file.

Invoking a Direct Path Export
To use direct path Export, specify the DIRECT=Y parameter on the command line
or in the parameter file. The default is DIRECT=N, which extracts the table data
using the conventional path.

Note: The Export parameter BUFFER applies only to conventional path
exports. For direct path Export, use the parameter RECORDLENGTH to spec-
ify the size of the buffer that Export uses for writing to the export file.
1-34 Oracle8 Utilities

Direct Path Export
Figure 1–2 Database Reads on Conventional Path and Direct Path

Oracle Server

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Private
Buffer

or
Buffer
Cache

Oracle Server

Conventional Path Direct Path

Export

Dump File Generate SQL
Commands

SQL Command
Processing

Buffer Cache
Management

Evaluating
Buffer

Read
Database

Blocks

Database

Private
Buffer

or
Buffer
Cache

Database
 Export 1-35

Direct Path Export
Character Set Conversion
Direct path Export exports in the database server character set only. If the character
set of the export session is not the same as the database character set when an
export is initiated, Export displays a warning and aborts. Specify the session charac-
ter set to be the same as that of the database before retrying the export.

Performance Issues
To reduce contention with other users for database resources during a direct path
Export, you can use database direct read mode. To enable the database direct read
mode, enter the following in the INIT.ORA file:

compatible = <db_version_number>,

The db_version_number must be 7.1.5 or higher. For more information about direct
read mode, see the Oracle8 Administrator’s Guide.

You may improve performance by increasing the value of the RECORDLENGTH
parameter when you invoke a direct path Export. Your exact performance gain var-
ies depending upon the following factors:

■ DB_BLOCK_SIZE

■ the types of columns in your table

■ your I/O layout (The drive receiving the export file should be separate from
the disk drive where the database files reside.)

When using direct path Export, set the RECORDLENGTH parameter equal to the
DB_BLOCK_SIZE database parameter, so that each table scan returns a full data-
base block worth of data. If the data does not fit in the export I/O buffer, the
Export utility performs multiple writes to the disk for each database block.

The following values are generally recommended for RECORDLENGTH:

■ multiples of the file system I/O block size

■ multiples of DB_BLOCK_SIZE

Note: Other factors also affect the use of direct read mode. See the Oracle8 Adminis-
trator’s Guide for more information.
1-36 Oracle8 Utilities

Incremental, Cumulative, and Complete Exports
Restrictions
The following restrictions apply when executing a direct path Export:

■ You cannot use direct path Export to export rows that contain LOB, BFILE,
REF, or object type columns, including VARRAY columns and nested tables.
Only the data definition to create the table is exported, not the data.

■ You cannot use the interactive method to invoke direct path Export.

Incremental, Cumulative, and Complete Exports
Incremental, cumulative, and complete Exports provide time- and space-effective
backup strategies. This section shows how to set up and use these export strategies.

Restrictions
You can do incremental, cumulative, and complete Exports only in full database
mode (FULL=Y). Only users who have the EXP_FULL_DATABASE role can run
incremental, cumulative, and complete Exports. This role contains the privileges
needed to modify the system tables that track incremental exports. “System Tables”
on page 1-43 describes those tables.

You cannot specify incremental Exports as read-consistent.

Base Backups
If you use cumulative and incremental Exports, you should periodically perform a
complete Export to create a base backup. Following the complete Export, perform fre-
quent incremental Exports and occasional cumulative Exports. After a given period
of time, you should begin the cycle again with another complete Export.

Incremental Exports
An incremental Export backs up only tables that have changed since the last incre-
mental, cumulative, or complete Export. An incremental Export exports the table
definition and all its data, not just the changed rows. Typically, you perform incre-
mental Exports more often than cumulative or complete Exports.

Assume that a complete Export was done at Time 1. Figure 1–3 on page 1 - 38
shows an incremental Export at Time 2, after three tables have been modified. Only
the modified tables and associated indexes are exported.
 Export 1-37

Incremental, Cumulative, and Complete Exports
Figure 1–3 Incremental Export at Time 2

Figure 1–4 shows another incremental Export at Time 3, after two tables have been
modified since Time 2. Because Table 3 was modified a second time, it is exported
at Time 3 as well as at Time 2.

Figure 1–4 Incremental Export at Time 3

Cumulative Exports
A cumulative Export backs up tables that have changed since the last cumulative or
complete Export. A cumulative Export compresses a number of incremental
Exports into a single cumulative export file. It is not necessary to save incremental
export files taken before a cumulative export because the cumulative export file
replaces them.

Index 1

Table 1Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 6

Table 3

Index 4

Table 3Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 4
1-38 Oracle8 Utilities

Incremental, Cumulative, and Complete Exports
Figure 1–5 shows a cumulative Export at Time 4. Tables 1 and 6 have been modified
since Time 3. All tables modified since the complete Export at Time 1 are exported.

Figure 1–5 Cumulative Export at Time 4

This cumulative export file includes the changes from the incremental Exports from
Time 2 and Time 3. Table 3, which was modified at both times, occurs only once in
the export file. In this way, cumulative exports save space over multiple incremen-
tal Exports.

Complete Exports
A complete Export establishes a base for incremental and cumulative Exports. It is
equivalent to a full database Export, except that it also updates the tables that track
incremental and cumulative Exports.

Figure 1–6 on page 1 - 40 shows a complete Export at Time 5. With the complete
Export, all objects in the database are exported regardless of when (or if) they were
modified.

Benefits
Incremental and cumulative Exports help solve the problems faced by administra-
tors who work in environments where many users create their own tables. For
example, administrators can restore tables accidentally dropped by users.

Index 1

Index 4

Table 1Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 4

Table 6

Table 3
 Export 1-39

Incremental, Cumulative, and Complete Exports
The benefits of incremental and cumulative Exports include:

■ smaller export files

■ less time to export

These benefits result because not all tables have changed. As a result, the time and
space required for an incremental or cumulative Export is shorter than for a full
database Export.

Figure 1–6 Complete Export at Time 5

A Scenario
The scenario described in this section shows how you can use cumulative and incre-
mental Exports.

Assume that as manager of a data center, you do the following tasks:

■ a complete Export (X) every three weeks

■ a cumulative Export (C) every Sunday

■ an incremental Export (I) every night

Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

Database Export file

Table 5

Index 4

Index 1

Index 5

Table 6

Table 4

Table 3

Table 2

Table 1
1-40 Oracle8 Utilities

Incremental, Cumulative, and Complete Exports
Your export schedule follows:

DAY: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 X I I I I I I C I I I I I I C I I I I I I X

Sun Sun Sun Sun

To restore through day 18, first you import the system information from the incre-
mental Export taken on day 18. Then, you import the data from:

1. the complete Export taken on day 1

2. the cumulative Export taken on day 8

3. the cumulative Export taken on day 15

4. three incremental Exports taken on days 16, 17, and 18

The incremental Exports on days 2 through 7 can be discarded on day 8, after the
cumulative Export is done, because the cumulative Export incorporates all the
incremental Exports. Similarly, the incremental Exports on days 9 through 14 can
be discarded after the cumulative Export on day 15.

Note: The section “INCTYPE” on page 1-17 explains the syntax to specify incremen-
tal, cumulative, and complete Exports.

Which Data Is Exported?
The purpose of an incremental or cumulative Export is to identify and export only
those database objects (such as clusters, tables, views, and synonyms) that have
changed since the last Export. Each table is associated with other objects, such as
the data, indexes, grants, audits, triggers, and comments.

The entire grant structure for tables or views is exported with the underlying base
tables. Indexes are exported with their base table, regardless of who created the
index. If the base view is included, “instead of” triggers on views are included.

Any modification (UPDATE, INSERT, or DELETE) on a table automatically quali-
fies that table for incremental Export. When a table is exported, all of its inner
nested tables and LOB columns are exported also. Modifying an inner nested table
column causes the outer table to be exported. Modifying a LOB column causes the
entire table containing the LOB data to be exported.

Also, the underlying base tables and data are exported if database structures have
changed in the following ways:

■ a table is created

■ a table definition is changed by an ALTER TABLE statement
 Export 1-41

Incremental, Cumulative, and Complete Exports
■ comments are added or edited

■ auditing options are updated

■ grants (of any level) are altered

■ indexes are added or dropped

■ index storage parameters are changed by an ALTER INDEX statement

In addition to the base tables and data, the following data is exported:

■ all system objects (including tablespace definitions, rollback segment defini-
tions, and user privileges, but not including temporary segments)

■ information about dropped objects

■ clusters, tables, views, procedures, functions, and synonyms created since the
last export

■ all type definitions

Note: Export does not export grants on data dictionary views for security rea-
sons that affect Import. If such grants were exported, access privileges would be
changed and the user would not be aware of this. Also, not forcing grants on
import allows the user more flexibility to set up appropriate grants on import.

Example Incremental Export Session
The following example shows an incremental Export session after the tables
SCOTT.EMP and SCOTT.DEPT are modified:

> exp system/manager full=y inctype=incremental

Export: Release 8.0.4.0.0 - Production on Fri Nov 7 10:03:22 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export done in US7ASCII character set and WE8DEC NCHAR character set

About to export the entire database ...
. exporting tablespace definitions
. exporting profiles
. exporting user definitions
. exporting roles
. exporting resource costs
1-42 Oracle8 Utilities

Incremental, Cumulative, and Complete Exports
. exporting rollback segment definitions

. exporting database links

. exporting sequence numbers

. exporting directory aliases

. exporting foreign function library names

. exporting object type definitions

. exporting cluster definitions

. about to export SYSTEM's tables via Conventional Path ...

. about to export SCOTT's tables via Conventional Path ...

. . exporting table DEPT 8 rows exported

. . exporting table EMP 23 rows exported

. about to export ADAMS's tables via Conventional Path ...

. about to export JONES's tables via Conventional Path ...

. about to export CLARK's tables via Conventional Path ...

. about to export BLAKE's tables via Conventional Path ...

. exporting referential integrity constraints

. exporting posttables actions

. exporting synonyms

. exporting views

. exporting stored procedures

. exporting triggers

. exporting snapshots

. exporting snapshot logs

. exporting job queues

. exporting refresh groups and children

. exporting default and system auditing options

. exporting information about dropped objects
Export terminated successfully without warnings.

System Tables
The user SYS owns three tables (INCEXP, INCFIL, and INCVID) that are main-
tained by Export. These tables are updated when you specify RECORD=Y (the
default). You should not alter these tables in any way.

SYS.INCEXP
The table SYS.INCEXP tracks which objects were exported in specific exports. It
contains the following columns:

You can use this information in several ways. For example, you could generate a
report from SYS.INCEXP after each export to document the export file. You can use
the views DBA_EXP_OBJECTS, DBA_EXP_VERSION, and DBA_EXP_FILES to dis-
play information about incremental exports.
 Export 1-43

Network Considerations
SYS.INCFIL
The table SYS.INCFIL tracks the incremental and cumulative exports and assigns a
unique identifier to each. This table contains the following columns:

When you export with the parameter INCTYPE = COMPLETE, all the previous
entries are removed from SYS.INCFIL and a new row is added specifying an “x” in
the column EXPTYPE.

SYS.INCVID
The table SYS.INCVID contains one column for the EXPID of the last valid export.
This information determines the EXPID of the next export.

Network Considerations
This section describes factors to take into account when you use Export and Import
across a network.

Transporting Export Files Across a Network
Because the export file is in binary format, use a protocol that supports binary trans-
fers to prevent corruption of the file when you transfer it across a network. For
example, use FTP or a similar file transfer protocol to transmit the file in binary
mode. Transmitting export files in character mode causes errors when the file is
imported.

Exporting and Importing with Net8
By overcoming the boundaries between different machines and operating systems
on a network, Net8 (previous versions are called SQL*Net) provides a distributed
processing environment for Oracle8 products. With Net8 (and SQL*Net V2), you
can perform exports and imports over a network. For example, if you run Export
locally, you can write data from a remote Oracle database into a local export file. If
you run Import locally, you can read data into a remote Oracle database.

To use Export with Net8, include the @connect_string after the username/
password when you enter the exp command, as shown in the following example:

exp scott/tiger@SUN2 FILE=export.dmp FULL=Y

For the exact syntax of this clause, see the user’s guide for your Net8 or
SQL*Net protocol. For more information on Net8 or Oracle Names, see the Net8
Administrator’s Guide. See also “Invoking Export as SYSDBA” on page 1-8 if you are
using Tablespace Point-in-Time Recovery.
1-44 Oracle8 Utilities

Character Set and NLS Considerations
Character Set and NLS Considerations
This section describes the behavior of Export and Import with respect to National
Language Support (NLS).

Character Set Conversion
The Export utility writes to the export file using the character set specified for the
user session, such as 7-bit ASCII or IBM Code Page 500 (EBCDIC). If necessary,
Import translates the data to the character set of its host system. Import converts
character data to the user-session character set if that character set is different from
the one in the export file.

The export file identifies the character encoding scheme used for the character data
in the file. If that character set is any single-byte character set (for example,
EBCDIC or USASCII7), and if the character set used by the target database is also a
single-byte character set, the data is automatically converted to the character encod-
ing scheme specified for the user session during import, as specified by the
NLS_LANG environment variable. After the data is converted to the session charac-
ter set, it is then converted to the database character set. See also “Single-Byte Char-
acter Sets During Export and Import” on page 1-46.

During the conversion, any characters in the export file that have no equivalent in
the target character set are replaced with a default character. (The default character
is defined by the target character set.) To guarantee 100% conversion, the target
character set should be a superset or equivalent of the source character set.

For multi-byte character sets, conversion is performed only if the length of the char-
acter string cannot expand as a result of the conversion.

When you use direct path Export, the character set of the user’s session must be the
same as the database character set.

Caution: When the character set width differs between the export client and
the export server, truncation of data can occur if conversion causes expansion
of data. If truncation occurs, Export displays a warning message.

For more information, refer to the National Language Support section of the
Oracle8 Reference.

NCHAR Conversion During Export and Import
The Export utility always exports NCHAR data in the national character set of the
Export server. (You specify the national character set with the NATIONAL charac-
ter set statement at database creation.)
 Export 1-45

Considerations in Exporting Database Objects
The Import utility does no translation of NCHAR data, but, if needed, OCI auto-
matically converts the data to the national character set of the Import server.

Single-Byte Character Sets During Export and Import
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when you
import an 8-bit character set export file. This occurs if the client machine has a
native 7-bit character set or if the NLS_LANG operating system environment vari-
able is set to a 7-bit character set. Most often, you notice that accented characters
lose their accent mark.

This situation occurs because the 8-bit characters in the export file are converted to
7-bit characters through the client application. When sent to the database, the 7-bit
characters are converted by the server into 8-bit characters. To avoid this situation,
you must turn off one of these conversions. One way to do this is to set
NLS_LANG to the character set of the export file data.

Multi-Byte Character Sets and Export and Import
An export file that is produced with a multi-byte character set (for example, Chi-
nese or Japanese) must be imported on a system that has the same character set or
where the ratio of the width of the widest character in the import character set to
the width of the smallest character in the export character set is 1. If the ratio is not
1, Import cannot translate the character data to the Import character set.

Considerations in Exporting Database Objects
The following sections describe points you should take into consideration when
you export particular database objects.

Exporting Sequences
If transactions continue to access sequence numbers during an export, sequence
numbers can be skipped. The best way to ensure that sequence numbers are not
skipped is to ensure that the sequences are not accessed during the export.

Sequence numbers can be skipped only when cached sequence numbers are in use.
When a cache of sequence numbers has been allocated, they are available for use in
the current database. The exported value is the next sequence number (after the
cached values). Sequence numbers that are cached, but unused, are lost when the
sequence is imported.
1-46 Oracle8 Utilities

Considerations in Exporting Database Objects
Exporting LONG Datatypes
On export, LONG datatypes can be fetched in sections and do not require contigu-
ous memory. However, enough memory must be available to hold the contents of
each row, including the LONG data.

LONG columns can be up to 2 gigabytes in length.

Note: All data in a LOB column does not need to be held in memory at the
same time. LOB data is loaded and unloaded in sections.

Exporting Foreign Function Libraries
The contents of foreign function libraries are not included in the export file.
Instead, only the library specification (name, location) is included in full database
and user mode export. The database administrator must move the library and
update the library specification if the database is moved to a new location.

Exporting Directory Aliases
Directory alias definitions are included only in a full database mode Export. To
move a database to a new location, the database administrator must update the
directory aliases to point to the new location.

Directory aliases are not included in user or table mode Export. Therefore, you
must ensure that the directory alias has been created on the target system before
the directory alias is used.

Exporting BFILE Columns and Attributes
The export file does not hold the contents of external files referenced by BFILE col-
umns or attributes. Instead, only the names and directory aliases for files are cop-
ied on Export and restored on Import. If you move the database to a location where
the old directories cannot be used to access the included files, the database adminis-
trator must move the directories containing the external files to a location where
they can be accessed.

Exporting Array Data
When the Export utility processes array columns and attributes, it allocates a buffer
to accommodate an array using the largest dimensions that could be expected for
the column or attribute. If the maximum dimension of the array greatly exceeds the
memory used in each instance of the array, the Export may result in memory
exhaustion.
 Export 1-47

Considerations in Exporting Database Objects
For example, if an array usually had 10 elements, but was dimensioned for a mil-
lion elements, the Export utility would size its buffers to accommodate a million
element instance.

Exporting Object Type Definitions
In all Export modes, the Export utility includes information about object type defi-
nitions used by the tables being exported. The information, including object name
and object identifier, is needed to verify that the object type on the target system is
consistent with the object instances contained in the dump file.

In full database or user mode, the Export utility writes all object type definitions to
the export file before it writes the table definitions.

In all modes, the Export utility also writes object type definitions for a table to the
export file immediately preceding the table definition. This ensures that the object
types needed by a table are created with the same object identifier at import time. If
the object types already exist on the importing system, this allows Import to verify
that the object identifiers are the same.

Note however, that the information preceding the table definition does not always
include all the object type definitions needed by the table. Note the following
points about the information preceding the table definition:

■ If a column is an object type owned by the owner of the table, its full type defi-
nition is included.

■ If the object type definition depends on nested or referenced types, those
nested or referenced types are exported iteratively, until Export reaches a type
not owned by the table owner.

■ If object types from other schemas are used, Export writes a warning message.

■ If the user is not a privileged user, only object type definitions to which the
user has execute access are included.

■ If a column is an object type not owned by the owner of the table, the full object
type definition is not written to the export file. Only enough information is
written to verify that the type exists, with the same object identifier, on the
import target system.

The user must ensure that the proper type definitions exist on the target system,
either by working with the DBA to create them, or by importing them from full
database or user mode exports performed by the DBA.
1-48 Oracle8 Utilities

Using Different Versions of Export
The user must be cautious when performing table mode Import because the full
definitions of object types from other schemas are not included in the information
preceding the table.

It is important to perform a full database mode Export regularly to preserve all
object type definitions. Alternatively, if object type definitions from different sche-
mas are used, the DBA should perform a user mode Export of the proper set of
users. For example, if Scott’s table TABLE1 contains a column on Blake’s type
Type1, the DBA should perform a user mode Export of both Blake and Scott to pre-
serve the type definitions needed by the table.

Exporting Advanced Queue (AQ) Tables
Queues are implemented on tables. The export and import of queues constitutes
the export and import of the underlying queue tables and related dictionary tables.
You can export and import queues only at queue table granularity.

When you export a queue table, both the table definition information and the
queue data are exported. Because the queue table data is exported as well as the
table definition, the user is responsible for maintaining application-level data integ-
rity when queue table data is imported.

Exporting Nested Tables
Inner nested table data is exported whenever the outer containing table is exported.
Although inner nested tables can be named, they cannot be exported individually.

Using Different Versions of Export
This section describes the general behavior and restrictions of running an Export
version that is different from Oracle8.

Using a Previous Version of Export
In general, you can use the Export utility from any Oracle release 7 to export from
an Oracle8 server and create an Oracle release 7 export file. (This procedure is
described in “Creating Oracle Release 7 Export Files from an Oracle8 Server” on
page 1-50.)

Oracle Version 6 (or earlier) Export cannot be used against an Oracle8 database.
 Export 1-49

Creating Oracle Release 7 Export Files from an Oracle8 Server
Whenever a lower version Export utility runs with a higher version of the Ora-
cle Server, categories of database objects that did not exist in the lower version
are excluded from the export. (See “Excluded Objects” on page 1-51 for a complete
list of Oracle8 objects excluded from an Oracle release 7 Export.)

Attention: When backward compatibility is an issue, use the earlier release
or version of the Export utility against the Oracle8 database, and use conven-
tional path export.

Attention: Export files generated by Oracle8 Export, either direct path or
conventional path, are incompatible with earlier releases of Import and can
be imported only with Oracle8 Import.

Using a Higher Version Export
Attempting to use a higher version of Export with an earlier Oracle server often
produces the following error:

EXP-37: Database export views not compatible with Export utility
EXP-0: Export terminated unsuccessfully

The error occurs because views that the higher version of Export expects are not
present. To avoid this problem, use the version of the Export utility that
matches the Oracle server.

Creating Oracle Release 7 Export Files from an Oracle8 Server
You can create an Oracle release 7 export file from an Oracle8 database by run-
ning Oracle release 7 Export against an Oracle8 server. To do so, however, the
user SYS must first run the CATEXP7.SQL script, which creates the export
views that make the database look, to Export, like an Oracle release 7 database.

Note: An Oracle8 Export requires that the CATEXP.SQL script is run
against the database before performing the Export. CATEXP.SQL is usually
run automatically when the user SYS runs CATALOG.SQL to create the nec-
essary views. CATEXP7.SQL, however, is not run automatically and must
be executed manually. CATEXP7.SQL and CATEXP.SQL can be run in any
order; after one of these scripts has been run, it need not be run again.
1-50 Oracle8 Utilities

Creating Oracle Release 7 Export Files from an Oracle8 Server
Excluded Objects
The Oracle release 7 Export utility produces an Oracle release 7 export file by
issuing queries against the views created by CATEXP7.SQL. These views are
fully compatible with Oracle release 7 and consequently do not contain the fol-
lowing Oracle8 objects:

■ directory aliases

■ foreign function libraries

■ object types

■ tables containing objects introduced in Oracle8 (such objects include LOB,
REF, and BFILE columns and nested tables)

■ partitioned tables

■ Index Organized Tables (IOT)

■ tables containing more than 254 columns

■ tables containing NCHAR columns

■ tables containing VARCHAR columns longer than 2,000 characters

■ reverse indexes

■ password history

Exporting to Version 6
If you need to export data from a Version 6 system, use the Oracle release 7.2 or
earlier Export utility. Refer to the Oracle release 7.2 or earler documentation for
information about any restrictions. Note that release 7.3 cannot be used.
 Export 1-51

Creating Oracle Release 7 Export Files from an Oracle8 Server
1-52 Oracle8 Utilities

 I
2

Import

This chapter describes how to use the Import utility, which reads an export file into
an Oracle database.

Import reads only export files created by Export. For information on how to export
a database, see Chapter 1, “Export”. To load data from other operating system files,
see the discussion of SQL*Loader in Part II of this manual.

This chapter discusses the following topics:

■ What is the Import Utility?

■ Import Modes

■ Using Import

■ Privileges Required to Use Import

■ Importing into Existing Tables

■ Import Parameters

■ Using Table-Level and Partition-Level Export and Import

■ Example Import Sessions

■ Using the Interactive Method

■ Importing Incremental, Cumulative, and Complete Export Files

■ Controlling Index Creation and Maintenance

■ Reducing Database Fragmentation

■ Warning, Error, and Completion Messages

■ Error Handling
mport 2-1

■ Network Considerations

■ Import and Snapshots

■ Dropping a Tablespace

■ Reorganizing Tablespaces

■ Character Set and NLS Considerations

■ Considerations for Importing Database Objects

■ Generating Statistics on Imported Data

■ Using Oracle7 Export Files

■ Using Oracle Version 6 Export Files

■ Using Oracle Version 5 Export Files

Note: If you are working with the Advanced Replication Option, refer to Oracle8
Replication, Appendix B, “Migration and Compatibility.” If you are using Trusted
Oracle, see the Trusted Oracle documentation for information about using the
Import utility in that environment.
2-2 Oracle8 Utilities

What is the Import Utility?
What is the Import Utility?
The basic concept behind Import is very simple. Import inserts the data objects
extracted from one Oracle database by the Export utility (and stored in an
Export dump file) into another Oracle database. Export dump file can only be
read by Import. See Chapter 1, “Export” for more information about Oracle’s
Export utility.

Import reads the object definitions and table data that the Export utility
extracted from an Oracle database and stored in an Oracle binary-format Export
dump file located typically on disk or tape.

Such files are typically FTPed or physically transported (in the case of tape) to a
different site and used, with the Import utility, to transfer data between data-
bases that are on machines not connected via a network or as backups in addi-
tion to normal backup procedures.

The Export and Import utilities can also facilitate certain aspects of Oracle
Advanced Replication functionality like offline instantiation. See Oracle8 Replica-
tion for more information.

Note that, Export dump files can only be read by the Oracle utility Import. If
you need to load data from ASCII fixed-format or delimited files, see Part II,
SQL*Loader of this manual.

Note: If you are working with the Advanced Replication Option, refer to the
information about migration and compatibility in Oracle8 Replication. If you
are using Trusted Oracle, see the Trusted Oracle documentation for informa-
tion about using the Export utility in that environment.

Figure 2–1 illustrates the process of importing from an Export dump file.
 Import 2-3

What is the Import Utility?
Figure 2–1 Importing an Export File

Table Objects: Order of Import
Table objects are imported as they are read from the export file. The export file con-
tains objects in the following order:

1. table definitions

2. table data

3. table indexes

4. integrity constraints, triggers, and bitmap indexes

First, new tables are created. Then, data is imported and indexes are built. Then
triggers are imported, integrity constraints are enabled on the new tables, and
any bitmap indexes are built. This sequence prevents data from being rejected
due to the order in which tables are imported. This sequence also prevents
redundant triggers from firing twice on the same data (once when it was origi-
nally inserted and again during the import).

For example, if the EMP table has a referential integrity constraint on the DEPT
table and the EMP table is imported first, all EMP rows that reference departments
that have not yet been imported into DEPT would be rejected if the constraints
were enabled.

Table 1 Table 1 Table 5Table 3

Index 1 Index 5Table 4

Table 2 Table 6Index 4

DatabaseExport file

Table 4

Table 5

Index 4

Index 1

Index 5

Table 6

Table 3

Table 2
2-4 Oracle8 Utilities

Import Modes
When data is imported into existing tables however, the order of import can still
produce referential integrity failures. In the situation just given, if the EMP table
already existed and referential integrity constraints were in force, many rows could
be rejected.

A similar situation occurs when a referential integrity constraint on a table refer-
ences itself. For example, if SCOTT’s manager in the EMP table is DRAKE, and
DRAKE’s row has not yet been loaded, SCOTT’s row will fail, even though it
would be valid at the end of the import.

Suggestion: For the reasons mentioned previously, it is a good idea to disable
referential constraints when importing into an existing table. You can then re-
enable the constraints after the import is completed.

Compatibility
Import can read export files created by Export Version 5.1.22 and later.

Import Modes
The Import utility provides three modes of import. The objects that are
imported depend on the Import mode you choose for the import and the mode
that was used during the export. All users have two choices of import mode. A
user with the IMP_FULL_DATABASE role (a privileged user) has three choices:

See “Import Parameters” on page 2-16 for information on specifying each mode.

A user with the IMP_FULL_DATABASE role must specify one of these options or
specify an incremental import. Otherwise, an error results. If a user without the
IMP_FULL_DATABASE role fails to specify one of these options, a user-level
import is performed.

Table This mode allows you to import specified tables in your schema,
rather than all your tables. A privileged user can qualify the tables
by specifying the schema that contains them. The default is to
import all tables in the schema of the user doing the import.

User This mode allows you to import all objects that belong to you
(such as tables, data, grants, and indexes). A privileged user
importing in user mode can import all objects in the schemas of a
specified set of users.

Full Database Only users with the IMP_FULL_DATABASE role can import in
this mode which imports a Full Database Export dump file.
 Import 2-5

Import Modes
Table 1–1 on page 1 - 4 shows the objects that are exported and imported in each
mode.

Understanding Table-Level and Partition-Level Import
You can import tables and partitions in the following ways:

■ Table-level Import: imports all data from the specified tables in an Export file.

■ Partition-level Import: imports only data from the specified source partitions.

You must set the parameter IGNORE = Y when loading data into an existing table.
See “IGNORE” on page 2-23 for information on the parameter IGNORE.

Table-Level Import
For each specified table, table-level Import imports all of the table’s rows. With
table-level Import:

■ All tables exported using any Export mode (Full, User, Table) can be imported.

■ Users can import the entire (partitioned or non-partitioned) table or partitions
from a table-level export file into a (partitioned or non-partitioned) target table
with the same name.

If the table does not exist, and if the exported table was partitioned, table-level
Import creates a partitioned table. If the table creation is successful, table-level
Import reads all of the source data from the export file into the target table. After
Import, the target table contains the partition definitions of all of the partitions asso-
ciated with the source table in the Export file. This operation ensures that the physi-
cal and logical attributes (including partition bounds) of the source partitions are
maintained on Import.

Partition-Level Import
Partition-level Import imports a set of partitions from a source table into a target
table. Note the following points:

■ Import always stores the rows according to the partitioning scheme of the tar-
get table.

■ Partition-level Import lets you selectively retrieve data from the specified parti-
tions in an export file.

■ Partition-level Import inserts only the row data from the specified source parti-
tions.
2-6 Oracle8 Utilities

Using Import
■ If the target table is partitioned, partition-level Import rejects any rows that fall
above the highest partition of the target table.

■ Partition-level Import can be specified only in table mode.

Partition-level Export and Import provide a way to merge partitions in the same
table, even though SQL does not explicitly support merging partitions. A DBA can
use partition-level Import to merge a table partition into the next highest partition
on the same system. See “Example 2: Merging Partitions of a Table” on page 2-38
for an example of merging partitions.

Partition-level Export and Import do not provide for splitting a partition. For infor-
mation on how to split a partition, refer to the Oracle8 Administrator’s Guide. For
information about Import, see “Using Table-Level and Partition-Level Export and
Import” on page 2-30.

Using Import
This section describes what you need to do before you begin importing and how to
invoke and use the Import utility.

Before Using Import
To use Import, you must run either the script CATEXP.SQL or CATALOG.SQL
(which runs CATEXP.SQL) after the database has been created.

Additional Information: The actual names of the script files depend on your
operating system. The script file names and the method for running them are
described in your Oracle operating system-specific documentation.

CATEXP.SQL or CATALOG.SQL need to be run only once on a database. You do
not need to run either script again before performing future import operations.
Both scripts performs the following tasks to prepare the database for Import:

■ assign all necessary privileges to the IMP_FULL_DATABASE role

■ assign IMP_FULL_DATABASE to the DBA role

■ create required views of the data dictionary

Invoking Import
You can invoke Import in three ways:

■ Enter the following command:

imp username/password PARFILE=filename
 Import 2-7

Using Import
PARFILE is a file containing the Import parameters you typically use. If you
use different parameters for different databases, you can have multiple parame-
ter files. This is the recommended method. See “The Parameter File” on
page 2-11 for information on how to use the parameter file.

■ Enter the command

imp username/password <parameters>

replacing <parameters> with various parameters you intend to use. Note
that the number of parameters cannot exceed the maximum length of a com-
mand line on your operating system.

■ Enter the command

imp username/password

to begin an interactive session, and let Import prompt you for the information it
needs. Note that the interactive method does not provide as much functionality
as the parameter-driven method. It exists for backward compatibility.

You can use a combination of the first and second options. That is, you can list
parameters both in the parameters file and on the command line. In fact, you can
specify the same parameter in both places. The position of the PARFILE parameter
and other parameters on the command line determines what parameters override
others. For example, assume the parameters file params.dat contains the parame-
ter INDEXES=Y and Import is invoked with the following line:

imp system/manager PARFILE=params.dat INDEXES=N

In this case, because INDEXES=N occurs after PARFILE=params.dat , INDEXES=N
overrides the value of the INDEXES parameter in the PARFILE.

You can specify the username and password in the parameter file, although, for
security reasons, this is not recommended.

If you omit the username and password, Import prompts you for it.

See “Import Parameters” on page 2-16 for a description of each parameter.

Invoking Import as SYSDBA
Typically, you should not need to invoke Import as SYSDBA. However, if you
are using Tablespace Point-In-Time Recovery (TSPITR) which enables you to
quickly recover one or more tablespaces to a point-in-time different from that of
the rest of the database, you will need to know how to do so.
2-8 Oracle8 Utilities

Using Import
Attention: It is recommended that you read the information about TSPITR in
the Oracle8 Backup and Recovery Guide, “POINT_IN_TIME_RECOVER” on
page 2-26, and “RECOVERY_TABLESPACES” on page 1-19 before continuing with
this section.

To invoke Import as SYSDBA, use the following syntax:

imp username/password AS SYSDBA

or, optionally

imp username/password@instance AS SYSDBA

Note: Since the string “AS SYSDBA” contains a blank, most operating systems
require that entire string ‘username/password AS SYSDBA’ be placed in quotes
or marked as a literal by some method. Note that some operating systems also
require that quotes on the command line be escaped as well. Please see your
operating system-specific Oracle documentation for information about special
and reserved characters on your system.

Note that if either the username or password is omitted, Import will prompt
you for it.

If you use the Import interactive mode, you will not be prompted to specify
whether you want to connect as SYSDBA or @instance. You must specify “AS
SYSDBA” and/or “@instance” with the username.

So the response to the Import interactive username prompt could be for exam-
ple:

username/password@instance as sysdba
username/password@instance
username/password as sysdba
username/password
username@instance as sysdba (prompts for password)
username@instance (prompts for password)
username (prompts for password)
username as sysdba (prompts for password)
/ as sysdba (no prompt for password, OS authentication

is used)
/ (no prompt for password, OS authentication

is used)
/@instance as sysdba (no prompt for password, OS authentication

is used)
/@instance (no prompt for password, OS authentication

is used)
 Import 2-9

Using Import
Note: if you omit the password and allow Import to prompt you for it, you can-
not specify the @instance string as well. You can specify @instance only with
username.

Getting Online Help
Import provides online help. Enter imp help=y on the command line to see a help
printout like the one shown below.

> imp help=y

Import: Release 8.0.4.0.0 - Production on Fri Nov 07 12:14:11 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

You can let Import prompt you for parameters by entering the IMP
command followed by your username/password:

 Example: IMP SCOTT/TIGER

Or, you can control how Import runs by entering the IMP command followed
by various arguments. To specify parameters, you use keywords:

 Format: IMP KEYWORD=value or KEYWORD=(value1,value2,...,valueN)
 Example: IMP SCOTT/TIGER IGNORE=Y TABLES=(EMP,DEPT) FULL=N
 or TABLES=(T1:P1,T1:P2), if T1 is partitioned table

USERID must be the first parameter on the command line.

Keyword Description (Default) Keyword Description (Default)
--
USERID username/password FULL import entire file (N)
BUFFER size of data buffer FROMUSER list of owner usernames
FILE input file (EXPDAT.DMP) TOUSER list of usernames
SHOW just list file contents (N) TABLES list of table names
IGNORE ignore create errors (N) RECORDLENGTH length of IO record
GRANTS import grants (Y) INCTYPE incremental import type
INDEXES import indexes (Y) COMMIT commit array insert (N)
ROWS import data rows (Y) PARFILE parameter filename
LOG log file of screen output
DESTROY overwrite tablespace data file (N)
INDEXFILE write table/index info to specified file
CHARSET character set of export file (NLS_LANG)
2-10 Oracle8 Utilities

Privileges Required to Use Import
POINT_IN_TIME_RECOVER Tablespace Point-in-time Recovery (N)
SKIP_UNUSABLE_INDEXES skip maintenance of unusable indexes (N)
ANALYZE execute ANALYZE statements in dump file (Y)
FEEDBACK display progress every x rows(0)
VOLSIZE number of bytes in file on each volume of a file on tape

Import terminated successfully without warnings.

The Parameter File
The parameter file allows you to specify Import parameters in a file where they can
be easily modified or reused. Create a parameter file using any flat file text editor.
The command line option PARFILE=<filename> tells Import to read the parameters
from the specified file rather than from the command line. For example:

imp parfile= filename

or

imp username/password parfile= filename

The syntax for parameter file specifications is one of the following:

KEYWORD=value
KEYWORD=(value)
KEYWORD=(value1 , value2 , ...)

You can add comments to the parameter file by preceding them with the pound (#)
sign. All characters to the right of the pound (#) sign are ignored.

The following is an example of a partial parameter file listing:

FULL=Y
FILE=DBA.DMP
GRANTS=Y
INDEXES=Y # import all indexes

See “Import Parameters” on page 2-16 for a description of each parameter.

Privileges Required to Use Import
This section describes the privileges you need to use the Import utility and to
import objects into your own and others’ schemas.
 Import 2-11

Privileges Required to Use Import
Access Privileges
To use Import, you need the privilege CREATE SESSION to log on to the Oracle8
server. This privilege belongs to the CONNECT role established during database
creation.

You can do an import even if you did not create the export file. However, if the
export file was created by someone using the EXP_FULL_DATABASE role, you
can import that file only if you have the IMP_FULL_DATABASE role.

Importing Objects into Your Own Schema
Table 2–1 lists the privileges required to import objects into your own schema. All
of these privileges initially belong to the RESOURCE role.

Table 2–1 Privileges Required to Import Objects into Your Own Schema

Object Privileges
Privilege
Type

clusters CREATE CLUSTER system

And: tablespace quota, or

UNLIMITED TABLESPACE system

database links CREATE DATABASE LINK system

CREATE SESSION on remote
db

system

database triggers CREATE TRIGGER system

indexes CREATE INDEX system

And: tablespace quota, or

UNLIMITED TABLESPACE system

integrity con-
straints

ALTER TABLE object
2-12 Oracle8 Utilities

Privileges Required to Use Import
Importing Grants
To import the privileges that a user has granted to others, the user initiating the
import must either own the objects or have object privileges with the WITH
GRANT OPTION. Table 2–2 shows the required conditions for the authorizations
to be valid on the target system.

libraries CREATE ANY LIBRARY system

packages CREATE PROCEDURE system

private synonyms CREATE SYNONYM system

sequences CREATE SEQUENCE system

snapshots CREATE SNAPSHOT system

stored functions CREATE PROCEDURE system

stored procedures CREATE PROCEDURE system

table data INSERT TABLE object

table definitions CREATE TABLE system

(including com-
ments

And: tablespace quota, or

and audit options) UNLIMITED TABLESPACE system

views CREATE VIEW system

And: SELECT on the base table, or object

SELECT ANY TABLE system

object types CREATE TYPE system

foreign function
libraries

CREATE LIBRARY system

Table 2–2 Privileges Required to Import Grants

Grant Conditions

object privileges Object must exist in the user’s schema, or user
must have the object privileges with the WITH
GRANT OPTION.

system privileges User must have system privileges as well as the
WITH ADMIN OPTION.

Table 2–1 Privileges Required to Import Objects into Your Own Schema

Object Privileges
Privilege
Type
 Import 2-13

Importing into Existing Tables
Importing Objects into Other Schemas
To import objects into another user’s schema, you must have the
IMP_FULL_DATABASE role enabled.

Importing System Objects
To import system objects from a full database export file, the role
IMP_FULL_DATABASE must be enabled. The parameter FULL specifies that these
system objects are included in the import when the export file is a full export:

■ profiles

■ public database links

■ public synonyms

■ roles

■ rollback segment definitions

■ system audit options

■ system privileges

■ tablespace definitions

■ tablespace quotas

■ user definitions

■ directory aliases

User Privileges
When user definitions are imported into an Oracle database, they are created with
the CREATE USER command. So, when importing from export files created by pre-
vious versions of Export, users are not granted CREATE SESSION privileges auto-
matically.

Importing into Existing Tables
This section describes factors to take into account when you import data into exist-
ing tables.
2-14 Oracle8 Utilities

Importing into Existing Tables
Manually Creating Tables before Importing Data
When you choose to create tables manually before importing data into them from
an export file, you should use either the same table definition previously used or a
compatible format. For example, while you can increase the width of columns and
change their order, you cannot do the following:

■ add NOT NULL columns

■ change the datatype of a column to an incompatible datatype (LONG to NUM-
BER, for example)

■ change the definition of object types used in a table

Disabling Referential Constraints
In the normal import order, referential constraints are imported only after all tables
are imported. This sequence prevents errors that could occur if a referential integ-
rity constraint existed for data that has not yet been imported.

These errors can still occur when data is loaded into existing tables, however. For
example, if table EMP has a referential integrity constraint on the MGR column that
verifies the manager number exists in EMP, a perfectly legitimate employee row
might fail the referential integrity constraint if the manager’s row has not yet been
imported.

When such an error occurs, Import generates an error message, bypasses the
failed row, and continues importing other rows in the table. You can disable
constraints manually to avoid this.

Referential constraints between tables can also cause problems. For example, if
the AEMP table appears before the BDEPT table in the export file, but a referen-
tial check exists from the AEMP table into the BDEPT table, some of the rows
from the AEMP table may not be imported due to a referential constraint viola-
tion.

To prevent errors like these, you should disable referential integrity constraints
when importing data into existing tables.

Manually Ordering the Import
When the constraints are re-enabled after importing, the entire table is checked,
which may take a long time for a large table. If the time required for that check is
too long, it may be beneficial to order the import manually.
 Import 2-15

Import Parameters
To do so, do several imports from an export file instead of one. First, import tables
that are the targets of referential checks, before importing the tables that reference
them. This option works if tables do not reference each other in circular fashion,
and if a table does not reference itself.

Import Parameters
The following diagrams show the syntax for the parameters that you can specify in
the parameter file or on the command line:

The remainder of this section describes each parameter.

imp

HELP =
Y

N

username / password
@ connect–string

ImpOpts_1 ImpOpts_2
2-16 Oracle8 Utilities

Import Parameters
FULL = Y

INCTYPE =
SYSTEM

RESTORE

TOUSER = username

FROMUSER =
(username

,

)

username TOUSER option TABLES option

POINT_IN_TIME_RECOVER =
Y

N

 Import 2-17

Import Parameters
PARFILE = filename

FILE = filename

LOG = filename

ROWS =
Y

N

COMMIT =
Y

N

FEEDBACK = integer

BUFFER = integer

RECORDLENGTH = integer

IGNORE =
Y

N

DESTROY =
Y

N

INDEXES =
Y

N

INDEXFILE = filename

SKIP_UNUSABLE_INDEXES =
Y

N

GRANTS =
Y

N

ANALYZE =
Y

N

CHARSET = charactersetname

SHOW =
Y

N

2-18 Oracle8 Utilities

Import Parameters
The parameters are as follows:

ANALYZE
Default: Y

Specifies whether or not the Import utility executes SQL ANALYZE statements
found in the export file.

BUFFER
Default: operating system-dependent

The buffer-size is the size, in bytes, of the buffer through which data rows are trans-
ferred.

The parameter BUFFER (buffer size) determines the number of rows in the array
inserted by Import. The following formula gives an approximation of the buffer
size that inserts a given array of rows:

buffer_size = rows_in_array * maximum_row_size

TOUSER =
(username

,

)

username

TABLES =

(tablename
: partition

,

)

tablename
: partition
 Import 2-19

Import Parameters
For tables containing LONG, LOB, BFILE, REF, ROWID or type columns, rows are
inserted individually. The size of the buffer must be large enough to contain the
entire row, except for LOB columns. If the buffer cannot hold the longest row in a
table, Import attempts to allocate a larger buffer.

Additional Information: See your Oracle operating system-specific documenta-
tion to determine the default value for this parameter.

CHARSET
Default: none

Note: This parameter applies to Oracle Version 5 and 6 export files only.

Oracle Version 5 and 6 export files do not contain the NLS character set identi-
fier. However, a Version 5 or 6 export file does indicate whether the user session
character set was ASCII or EBCDIC.

Use this parameter to indicate the actual character set used at the time of export.
The Import utility will verify whether the specified character set is ASCII or
EBCDIC based on the character set in the export file.

If you do not specify a value for the CHARSET parameter, Import will verify that
the user session character set is ASCII, if the export file is ASCII, or EBCDIC, if the
export file is EBCDIC.

Use of this parameter is not recommended. It is provided only for compatibility
with previous versions. Eventually, it will no longer be supported.

If you are using an Oracle7 or Oracle8 Export file, the character set is specified
within the export file, and conversion to the current database’s character set is auto-
matic. Specification of this parameter serves only as a check to ensure that the
export file’s character set matches the expected value. If not, an error results.

COMMIT
Default: N

Specifies whether Import should commit after each array insert. By default, Import
commits after loading each table, and Import performs a rollback when an error
occurs, before continuing with the next object.

If a table has nested table columns or attributes, the contents of the nested tables
are imported as separate tables. Therefore, the contents of the nested tables are
always committed in a transaction distinct from the transaction used to commit the
outer table.
2-20 Oracle8 Utilities

Import Parameters
If COMMIT=N and a table is partitioned, each partition in the Export file is
imported in a separate transaction.

Specifying COMMIT=Y prevents rollback segments from growing inordinately
large and improves the performance of large imports. Specifying COMMIT=Y is
advisable if the table has a uniqueness constraint. If the import is restarted, any
rows that have already been imported are rejected with a non-fatal error. Note that,
if a table does not have a uniqueness constraint, and you specify COMMIT=Y,
Import could produce duplicate rows when you re-import the data.

For tables containing LONG, LOB, BFILE, REF, ROWID or type columns, array
inserts are not done. If COMMIT=Y, Import commits these tables after each row.

DESTROY
Default: N

Specifies whether or not the existing data files making up the database should be
reused. That is, the DESTROY parameter specifies that Import should include the
reuse option in the datafile clause of the CREATE TABLESPACE command.

The export file contains the datafile names used in each tablespace. If you attempt
to create a second database on the same machine (for testing or other purposes), the
Import utility overwrites the original database’s data files when it creates the
tablespace. This is undesirable. With this parameter set to N (the default), an error
occurs if the data files already exist when the tablespace is created.

To eliminate this error when you import into a secondary database, pre-create the
tablespace and specify its data files. (Specifying IGNORE=Y suppresses the object
creation error that the tablespace already exists.)

To bypass the error when you import into the original database, specify
IGNORE=Y to add to the existing data files without replacing them. To reuse the
original database’s data files after eliminating their contents, specify DESTROY=Y.

Note: If you have pre-created your tablespace, you must specify DESTROY=N or
your pre-created tablespace will be lost.

Warning: If datafiles are stored on a raw device, DESTROY=N does not prevent files
from being overwritten.
 Import 2-21

Import Parameters
FEEDBACK
Default: 0 (zero)

Specifies that Import should display a progress meter in the form of a dot for n
number of rows imported. For example, if you specify FEEDBACK=10, Import dis-
plays a dot each time 10 rows have been imported. The FEEDBACK value applies
to all tables being imported; it cannot be set on a per-table basis.

FILE
Default: expdat.dmp

The name of the export file to import. You do not have to be the Oracle user who
exported the file. However, you do need to have current access to the file. The
default extension is .dmp, but you can specify any extension.

FROMUSER
Default: none

A list of schemas containing objects to import. The default for users without the
IMP_FULL_DATABASE role is a user mode import. That is, all objects for the cur-
rent user are imported. (If the TABLES parameter is also specified, a table mode
import is performed.)

When importing in user mode, all other objects in the export file are ignored. The
effect is the same as if the export file had been created in user mode (or table
mode). See Table 1–1 on page 1 - 4 for the list of objects that are imported in user
mode and table mode.

For example, the following command treats the export file as though it were simply
a user mode export of SCOTT’s objects:

imp system/manager FROMUSER=scott

If user SCOTT does not exist in the current database, his objects are imported into
the importer’s schema — in this case, the system’s. Otherwise, the objects are
imported in SCOTT’s schema. If a list of schemas is given, each schema can be spec-
ified only once. Duplicate schema names are ignored. The following example
shows an import from two schemas:

imp system/manager FROMUSER=scott,blake

Note: Specifying FROMUSER=SYSTEM does not import system objects. It
imports only those objects that belong to user SYSTEM.
2-22 Oracle8 Utilities

Import Parameters
When FROMUSER is specified and TOUSER is missing, the objects of FROMUSER
are imported back to FROMUSER. However, if the schema specified in FRO-
MUSER does not exist in the current database, the objects are imported into the
importer’s schema.

To import system objects (for example, user definitions and tablespaces), you must
import from a full export file specifying FULL=Y.

FULL
Default: N

Specifies whether to import the entire export file.

GRANTS
Default: Y

Specifies whether to import object grants.

By default, the Import utility imports any object grants that were exported. If
the export was a user-mode Export, the export file contains only first-level
object grants (those granted by the owner). If the export was a full database
mode Export, the export file contains all object grants, including lower-level
grants (those granted by users given a privilege with the WITH GRANT
OPTION). If you specify GRANTS=N, the Import utility does not import object
grants. (Note that system grants are imported even if GRANTS=N.

Note: Export does not export grants on data dictionary views for security rea-
sons that affect Import. If such grants were exported, access privileges would be
changed and the user would not be aware of this. Also, not forcing grants on
import allows the user more flexibility to set up appropriate grants on import.

HELP
Default: N

Displays a description of the Import parameters.

IGNORE
Default: N

Specifies how object creation errors should be handled. If you specify IGNORE=Y,
Import overlooks object creation errors when it attempts to create database objects.
If you specify IGNORE=Y, Import continues without reporting the error.
 Import 2-23

Import Parameters
If you accept the default IGNORE=N, Import logs and/or displays the object
creation error before continuing.

For tables, IGNORE=Y causes rows to be imported into existing tables. No message
is given. IGNORE=N causes an error to be reported, and the table is skipped if it
already exists.

Note that only object creation errors are ignored; other errors, such as operating sys-
tem, database, and SQL errors, are not ignored and may cause processing to stop.

In situations where multiple refreshes from a single export file are done with
IGNORE=Y, certain objects can be created multiple times (although they will have
unique system-defined names). You can prevent this for certain objects (for exam-
ple, constraints) by doing an export in table mode with the CONSTRAINTS=N
parameter. Note that, if you do a full export with the CONSTRAINTS parameter
set to N, no constraints for any tables are exported.

If you want to import data into tables that already exist— perhaps because you
want to use new storage parameters, or because you have already created the table
in a cluster — specify IGNORE=Y. The Import utility imports the rows of data into
the existing table.

Warning: When you import into existing tables, if no column in the table is
uniquely indexed, rows could be duplicated if they were already present in the
table. (This warning applies to non-incremental imports only. Incremental
imports replace the table from the last complete export and then rebuild it to its
last backup state from a series of cumulative and incremental exports.)

INCTYPE
Default: undefined

Specifies the type of incremental import.

The options are:

SYSTEM Imports the most recent version of system objects. You should
specify the most recent incremental export file when you use
this option. A SYSTEM import imports foreign function libraries
and object type definitions, but does not import user data or
objects.

RESTORE Imports all user database objects and data contained in the
export file.
2-24 Oracle8 Utilities

Import Parameters
See “Importing Incremental, Cumulative, and Complete Export Files” on page 2-43
for more information about the INCTYPE parameter.

INDEXES
Default: Y

Specifies whether or not to import indexes. System-generated indexes such as LOB
indexes, OID indexes, or unique constraint indexes are re-created by Import regard-
less of the setting of this parameter.

If indexes for the target table already exist, Import performs index maintenance
when data is inserted into the table.

You can postpone all user-generated index creation until after Import completes by
specifying INDEXES = N.

INDEXFILE
Default: none

Specifies a file to receive index-creation commands.

When this parameter is specified, index-creation commands for the requested
mode are extracted and written to the specified file, rather than used to create
indexes in the database. Tables and other database objects are not imported.

The file can then be edited (for example, to change storage parameters) and used as
a SQL script to create the indexes. To make it easier to identify the indexes defined
in the file, the export file’s CREATE TABLE statements and CREATE CLUSTER
statements are included as comments.

Note: Since Release 7.1, the commented CREATE TABLE statement in the
indexfile does not include primary/unique key clauses.

Perform the following steps to use this feature:

1. Import using the INDEXFILE parameter to create a file of index-creation com-
mands.

2. Edit the file, making certain to add a valid password to the CONNECT string.

3. Rerun Import, specifying INDEXES=N.

[This step imports the database objects while preventing Import from using the
index definitions stored in the export file.]
 Import 2-25

Import Parameters
4. Execute the file of index-creation commands as a SQL script to create the
index.

The INDEXFILE parameter can be used only with the FULL=Y, FROMUSER,
TOUSER, or TABLES parameters.

LOG
Default: none

Specifies a file to receive informational and error messages. If you specify a log file,
the Import utility writes all information to the log in addition to the terminal dis-
play.

PARFILE
Default: undefined

Specifies a filename for a file that contains a list of Import parameters. For more
information on using a parameter file, see “The Parameter File” on page 2-11.

POINT_IN_TIME_RECOVER
Default: N

Indicates whether or not Import recovers one or more tablespaces in an Oracle data-
base to a prior point in time, without affecting the rest of the database. For more
information, see the Oracle8 Backup and Recovery Guide.

RECORDLENGTH
Default: operating system-dependent

Specifies the length, in bytes, of the file record. The RECORDLENGTH parame-
ter is necessary when you must transfer the export file to another operating sys-
tem that uses a different default value.

If you do not define this parameter, it defaults to your platform-dependent
value for BUFSIZ. For more information about the BUFSIZ default value, see
your operating system-specific documentation.

You can set RECORDLENGTH to any value equal to or greater than your sys-
tem’s BUFSIZ. (The highest value is 64KB.) Changing the RECORDLENGTH
parameter affects only the size of data that accumulates before writing to the
disk. It does not affect the operating system file block size.

Note: You can use this parameter to specify the size of the Export I/O buffer.
2-26 Oracle8 Utilities

Import Parameters
Additional Information: See your Oracle operating system-specific docu-
mentation to determine the proper value or to create a file with a different
record size.

ROWS
Default: Y

Specifies whether or not to import the rows of table data.

SHOW
Default: N

When you specify SHOW, the contents of the export file are listed to the display
and not imported. The SQL statements contained in the export are displayed in the
order in which Import will execute them.

The SHOW parameter can be used only with the FULL=Y, FROMUSER, TOUSER,
or TABLES parameters.

SKIP_UNUSABLE_INDEXES
Default: N

Specifies whether or not Import skips building indexes that were set to the Index
Unusable state (set by either system or user). Refer to “ALTER SESSION SET
SKIP_UNUSABLE_INDEXES=TRUE” in the Oracle8 SQL Reference manual for
details. Other indexes (not previously set Index Unusable) continue to be updated
as rows are inserted.

This parameter allows you to postpone index maintenance on selected index parti-
tions until after row data has been inserted. You then have the responsibility to
rebuild the affected index partitions after the Import. You can use the INDEXFILE
parameter in conjunction with INDEXES = N to provide the SQL scripts for re-creat-
ing the index. Without this parameter, row insertions that attempt to update unus-
able indexes fail.

TABLES
Default: none

Specifies a list of table names to import. Use an asterisk (*) to indicate all tables.
When specified, this parameter initiates a table mode import, which restricts the
import to tables and their associated objects, as listed in Table 1–1 on page 1 - 4. The
 Import 2-27

Import Parameters
number of tables that can be specified at the same time is dependent on command
line limits.

Any table-level Import or partition-level Import attempts to create a partitioned
table with the same partition names as the exported partitioned table, including
names of the form SYS_Pnnn. If a table with the same name already exists,
Import processing depends on the setting of the IGNORE parameter.

Unless SKIP_UNUSABLE_INDEXES=Y, inserting the exported data into the target
table fails if Import cannot update a non-partitioned index or index partition that is
marked Indexes Unusable or otherwise not suitable.

Although you can qualify table names with schema names (as in SCOTT.EMP)
when exporting, you cannot do so when importing. In the following example, the
TABLES parameter is specified incorrectly:

imp system/manager TABLES=(jones.accts, scott.emp,scott.dept)

The valid specification to import these tables is:

imp system/manager FROMUSER=jones TABLES=(accts)
imp system/manager FROMUSER=scott TABLES=(emp,dept)

If TOUSER is specified, SCOTT’s objects are stored in the schema specified by
TOUSER. If user SCOTT does not exist in the current database, his tables are
imported into the importer’s schema — system in the previous example. Other-
wise, the tables and associated objects are installed in SCOTT’s schema.

Additional Information: Some operating systems, such as UNIX, require that
you use escape characters before special characters, such as a parenthesis, so
that the character is not treated as a special character. On UNIX, use a back-
slash (\) as the escape character, as shown in the following example:

TABLES=\(EMP,DEPT\)

Table Name Restrictions
Table names specified on the command line or in the parameter file cannot include
a pound (#) sign, unless the table name is enclosed in quotation marks.

For example, if the parameter file contains the following line, Import interprets
everything on the line after EMP# as a comment. As a result, DEPT and MYDATA
are not imported.

TABLES=(EMP#, DEPT, MYDATA)
2-28 Oracle8 Utilities

Import Parameters
However, if the parameter file contains the following line, the Import utility
imports all three tables:

TABLES=(”EMP#”, DEPT, MYDATA)
Attention: When you specify the table name in quotation marks, it is case sensi-
tive. The name must exactly match the table name stored in the database. By
default, database names are stored as uppercase.

Additional Information: Some operating systems require single quotes instead
of double quotes. See your Oracle operating system-specific documentation.

TOUSER
Default: none

Specifies a list of usernames whose schemas will be imported. The
IMP_FULL_DATABASE role is required to use this parameter.

To import to a different schema than the one that originally contained the object,
specify TOUSER. For example:

imp system/manager FROMUSER=scott TOUSER=joe TABLES=emp

If multiple schemas are specified, the schema names are paired. The following
example imports SCOTT’s objects into JOE’s schema, and FRED’s objects into
TED’s schema:

imp system/manager FROMUSER=scott,fred TOUSER=joe,ted

Note: If the FROMUSER list is longer than the TOUSER list, you can use the fol-
lowing syntax to ensure that any extra objects go into the TOUSER schema:

emp system/manager FROMUSER=scott TOUSER=ted,ted

Note that user Ted is listed twice.

USERID
Default: undefined

Specifies the username/password (and optional connect string) of the user per-
forming the import.

When using Tablespace Point-in-Time-Recovery USERID can also be:

username/password AS SYSDBA
 Import 2-29

Using Table-Level and Partition-Level Export and Import
or

username/password@instance AS SYSDBA

See “Invoking Import as SYSDBA” on page 2-8 for more information. Note also
that your operating system may require you to treat AS SYSDBA as a special
string requiring you to enclose the entire string in quotes as described on 2 - 8.

Optionally, you can specify the @connect_string clause for Net8. See the user’s
guide for your Net8 protocol for the exact syntax of @connect_string. See also
Oracle8 Distributed Database Systems.

Using Table-Level and Partition-Level Export and Import
Both table-level Export and partition-level Export can migrate data across tables
and partitions.

Guidelines for Using Partition-Level Import
This section provides more detailed information about partition-level Import. For
general information, see “Understanding Table-Level and Partition-Level Import”
on page 2-6.

Partition-level Import cannot import a non-partitioned exported table. However, a
partitioned table can be imported from a non-partitioned exported table using
table-level Import. Partition-level Import is legal only if the source table (that is, the
table called tablename at export time) was partitioned and exists in the Export file.

■ If the partition name is not a valid partition in the export file, Import generates
a warning.

■ The partition name in the clause refers to only the partition in the Export file,
which may not contain all of the data of the entire table on the export source
system.

If ROWS = Y (default), and the table does not exist in the Import target system, all
of the rows for the specified partition in the table are inserted into the same parti-
tion in the table in the Import target system.

If ROWS = Y (default), but the table already existed before Import, all the rows for
the specified partition in the table are inserted into the table. The rows are stored
according to the partitioning scheme of the target table. If the target table is parti-
tioned, Import reports any rows that are rejected because they fall above the high-
est partition of the target table.
2-30 Oracle8 Utilities

Using Table-Level and Partition-Level Export and Import
If ROWS = N, Import does not insert data into the target table and continues to pro-
cess other objects associated with the specified table and partition in the file.

If the target table is non-partitioned, the partitions are imported into the entire
table. Import requires IGNORE = Y to import one or more partitions from the
Export file into a non-partitioned table on the import target system.

Migrating Data Across Partitions and Tables
The presence of a table-name:partition-name with the TABLES parameter results in
reading from the Export file only data rows from the specified source partition. If
you do not specify the partition name, the entire table is used as source.

Import issues a warning if the specified partition is not in the list of partitions in
the exported table.

Data exported from one or more partitions can be imported into one or more parti-
tions. Import inserts rows into partitions based on the partitioning criteria in the
import database.

In the following example, the Import utility imports the row data from the source
partition py of table scott.b into the py partition of target table scott.b , after
the table and its partitions are created:

imp system/manager FILE = export.dmp FROMUSER = scott TABLES=b:py
The following example causes row data of partitions qc and qd of table scott.e
to be imported into the table scott.e :

imp scott/tiger FILE = export.dmp TABLES = (e:qc, e:qd) IGNORE=y

If table “e” does not exist on the Import target system, it is created and data is
inserted into the same partitions. If table “e” existed on the target system before
Import, the row data is inserted into the partitions whose range allows insertion.
The row data can end up in partitions of names other than qc and qd .

Note: With partition-level Import to an existing table, you must set up the tar-
get partitions properly and use IGNORE=Y.

Combining Multiple Partitions into One
Partition merging allows data from multiple partitions to be merged into one parti-
tion on the target system. Because partitions are re-created identical to those on the
exported table when IGNORE=N, partition merging succeeds only when
IGNORE = Y and the partitioned table with the proper partition bounds exists on
the Import target system. The following example assumes the presence of the
 Import 2-31

Using Table-Level and Partition-Level Export and Import
Export file (exp.dmp) containing a partitioned table “c” that has partitions
qa, qb , and qc . Prior to Import, the target table c is created with partitions,
including the qc partition. Partition qd is created with a partition range that can
take row data from partitions qa and qb of source table “c” .

imp mary/lamb FILE = exp.dmp TABLES = (c:qa, c:qb) IGNORE = Y

This command line causes Import to import partitions qa and qb of table mary.c
into partition qd of mary.c in the Import target system.

See “Example 2: Merging Partitions of a Table” on page 2-38 for an additional exam-
ple of merging partitions.

Reconfiguring Partitions
You can use partition-level Export and Import to reconfigure partitions. Perform
the following steps:

1. Export the table to save the data.

2. Alter the table with the new partitioning scheme.

3. Import the table data.

For example, a user can move data that was previously stored in partitions P1 and
P2 in table T into partitions of different ranges of table T on the same system.
Assume that the source table T has other partitions besides P1 and P2. Assume that
the target partitions are now called P1, P2, P3, and P4. The following steps can be
used:

1. Export data from partition P1, P2 of Table T (or export table T).

2. Alter the table by performing the following:

Issue the SQL statement ALTER TABLE T DROP PARTITION for P1 and P2.

Issue the SQL statement ALTER TABLE T ADD PARTITION for P1, P2, P3,
and P4.

3. Import data from exported partitions P1 and P2 (or import table T) with
IGNORE = Y.

If the target table is partitioned, Import rejects any rows that fall above the highest
partition of the target table.

If you want to achieve some parallelism, export each partition of the original table
at the same time into separate files. After you create the table again, issue multiple
import commands to import each of the export files in parallel.
2-32 Oracle8 Utilities

Example Import Sessions
Example Import Sessions
This section gives some examples of import sessions that show you how to use the
parameter file and command-line methods. The examples illustrate four scenarios:

■ tables imported by an administrator into the same schema from which they
were exported

■ tables imported by a user from another schema into the user’s own schema

■ tables imported into a different schema by an administrator

■ tables imported using partition-level Import

Example Import of Selected Tables for a Specific User
In this example, using a full database export file, an administrator imports the
DEPT and EMP tables into the SCOTT schema. If the SCOTT schema does not exist,
the tables are imported into the SYSTEM schema.

Parameter File Method >

imp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=dba.dmp
SHOW=n
IGNORE=n
GRANTS=y
FROMUSER=scott
TABLES=(dept,emp)

Command-Line Method >

imp system/manager file=dba.dmp fromuser=scott tables= (dept,emp)

Import Messages

Import: Release 8.0.4.0.0 - Production on Mon Nov 7 10:22:12 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Server Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export file created by EXPORT:V08.00.03 via conventional path
 Import 2-33

Example Import Sessions
. importing SCOTT's objects into SCOTT

. . importing table "DEPT" 4 rows imported

. . importing table "EMP" 14 rows imported
Import terminated successfully without warnings.

Example Import of Tables Exported by Another User
This example illustrates importing the UNIT and MANAGER tables from a file
exported by BLAKE into the SCOTT schema.

Parameter File Method >

imp scott/tiger parfile=params.dat

The params.dat file contains the following information:

FILE=blake.dmp
SHOW=n
IGNORE=n
GRANTS=y
ROWS=y
FROMUSER=blake
TOUSER=scott
TABLES=(unit,manager)

Command-Line Method >

imp scott/tiger fromuser=blake touser=scott file=blake.dmp
tables=(unit,manager)

Import Messages

Import: Release 8.0.4.0.0 - Production on Fri Nov 7 14:55:17 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Server Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export file created by EXPORT:V08.00.04 via conventional path
Warning: the objects were exported by BLAKE, not by you
. importing BLAKE's objects into SCOTT
. . importing table "UNIT" 4 rows imported
. . importing table "MANAGER" 4 rows imported
Import terminated successfully without warnings.
2-34 Oracle8 Utilities

Example Import Sessions
Example Import of Tables from One User to Another
In this example, a DBA imports all tables belonging to SCOTT into user BLAKE’s
account.

Parameter File Method >

imp system/manager parfile=params.dat

The params.dat file contains the following information:

FILE=scott.dmp
FROMUSER=scott
TOUSER=blake
TABLES=(*)

Command-Line Method >

imp system/manager file=scott.dmp fromuser=scott touser=blake tables=(*)

Import Messages

Import: Release 8.0.4.0.0 - Production on Fri Nov 7 21.14.1 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to: Oracle8 Server Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Export file created by EXPORT:V08.00.04 via conventional path
Warning: the objects were exported by SCOTT, not by you
. . importing table "BONUS" 0 rows imported
. . importing table "DEPT" 4 rows imported
. . importing table "EMP" 14 rows imported
. . importing table "SALGRADE" 5 rows imported
Import terminated successfully without warnings.

Example Import Session Using Partition-Level Import
This section describes how to use partition-level Import to partition an unparti-
tioned table, merge partitions of a table, and repartition a table on a different col-
umn.
 Import 2-35

Example Import Sessions
The examples in this section assume that the following tablespaces exist:

■ tbs_e1, tbs_e2, tbs_e3

■ tbs_d1, tbs_d2, tbs_d3

Example 1: Partitioning an Unpartitioned Table
Perform the following steps to partition an unpartitioned table:

1. Export the table to save the data.

2. Drop the table from the database.

3. Create the table again with partitions.

4. Import the table data.

The following example shows how to partition an unpartitioned table:

> exp scott/tiger tables=emp file=empexp.dmp
.
.
.
About to export specified tables via Conventional Path ...
. . exporting table EMP 14 rows exported
Export terminated successfully without warnings.
.
.
.
SQL> drop table emp cascade constraints;
Table dropped.
SQL> create table emp
 2 (
 3 empno number(4) not null,
 4 ename varchar2(10),
 5 job varchar2(9),
 6 mgr number(4),
 7 hiredate date,
 8 sal number(7,2),
 9 comm number(7,2),
 10 deptno number(2)
 11)
 12 partition by range (empno)
 13 (
 14 partition emp_low values less than (7600)
 15 tablespace tbs_e1,
 16 partition emp_mid values less than (7900)
2-36 Oracle8 Utilities

Example Import Sessions
 17 tablespace tbs_e2,
 18 partition emp_high values less than (8100)
 19 tablespace tbs_e3
 20);
Table created.
SQL> exit
imp scott/tiger tables=emp file=empexp.dmp ignore=y
.
..
Export file created by EXPORT:V08.00.03 via conventional path
. importing SCOTT's objects into SCOTT
. . importing table "EMP" 14 rows imported
Import terminated successfully without warnings

The following SELECT statements show that the data is partitioned on the empno
column:

SQL> select empno from emp partition (emp_low);
 EMPNO

 7369
 7499
 7521
 7566
4 rows selected.

SQL> select empno from emp partition (emp_mid);
 EMPNO

 7654
 7698
 7782
 7788
 7839
 7844
 7876
7 rows selected.

SQL> select empno from emp partition (emp_high);
 EMPNO

 7900
 7902
 7934
3 rows selected.
 Import 2-37

Example Import Sessions
Example 2: Merging Partitions of a Table
This example assumes the EMP table has three partitions, based on the EMPNO col-
umn, as shown in Example 1.

Perform the following steps to merge partitions of a table:

1. Export the partition you want to merge. This saves the data.

2. Alter the table to delete the partition you want to merge.

3. Import the partition to be merged.

The following example shows how to merge partitions of a table:

exp scott/tiger tables=emp:emp_mid file=empprt.dmp
.
.
.

About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_MID 7 rows exported
Export terminated successfully without warnings.
.
.
.
SQL> alter table emp drop partition emp_mid;
Table altered.
.
.
.
imp scott/tiger fromuser=scott tables=emp:emp_mid file=empprt.dmp ignore=y
.
.
.
Export file created by EXPORT:V08.00.04 via conventional path
. importing SCOTT's objects into SCOTT
. . importing partition "EMP":"EMP_MID" 7 rows imported
Import terminated successfully without warnings.
2-38 Oracle8 Utilities

Example Import Sessions
The following SELECT statements show the data from the deleted EMP_MID parti-
tion now merged in the EMP_HIGH partition:

SQL> select empno from emp partition (emp_low);
 EMPNO

 7369
 7499
 7521
 7566
4 rows selected.
SQL> select empno from emp partition (emp_high);
 EMPNO

 7900
 7902
 7934
 7654
 7698
 7782
 7788
 7839
 7844
 7876
10 rows selected.

Example 3: Repartitioning a Table on a Different Column
This example assumes the EMP table has two partitions, based on the EMPNO col-
umn, as shown in Example 2. This example repartitions the EMP table on the
DEPTNO coumn.

Perform the following steps to repartition a table on a different column:

1. Export the table to save the data.

2. Delete the table from the database.

3. Create the table again with the new partitions.

4. Import the table data.

The following example shows how to repartition a table on a different column:

exp scott/tiger tables=emp file=empexp.dat
.
.
.

 Import 2-39

Example Import Sessions
About to export specified tables via Conventional Path ...
. . exporting table EMP
. . exporting partition EMP_LOW 4 rows exported
. . exporting partition EMP_HIGH 10 rows exported
Export terminated successfully without warnings.
.
.
.
SQL> drop table emp cascade constraints;
Table dropped.
SQL>
SQL> create table emp
 2 (
 3 empno number(4) not null,
 4 ename varchar2(10),
 5 job varchar2(9),
 6 mgr number(4),
 7 hiredate date,
 8 sal number(7,2),
 9 comm number(7,2),
 10 deptno number(2)
 11)
 12 partition by range (deptno)
 13 (
 14 partition dept_low values less than (15)
 15 tablespace tbs_d1,
 16 partition dept_mid values less than (25)
 17 tablespace tbs_d2,
 18 partition dept_high values less than (35)
 19 tablespace tbs_d3
 20);
Table created.
SQL> exit
imp scott/tiger tables=emp file=empexp.dat ignore=y
.
.
.
Export file created by EXPORT:V08.00.04 via conventional path
. importing SCOTT's objects into SCOTT
. . importing partition "EMP":"EMP_LOW" 4 rows imported
. . importing partition "EMP":"EMP_HIGH" 10 rows imported
Import terminated successfully without warnings.
2-40 Oracle8 Utilities

Using the Interactive Method
The following SELECT statements show that the data is partitioned on the
DEPTNO column:

SQL> select empno, deptno from emp partition (dept_low);
 EMPNO DEPTNO
---------- ----------
 7934 10
 7782 10
 7839 10
3 rows selected.
SQL> select empno, deptno from emp partition (dept_mid);
 EMPNO DEPTNO
---------- ----------
 7369 20
 7566 20
 7902 20
 7788 20
 7876 20
5 rows selected.
SQL> select empno, deptno from emp partition (dept_high);
 EMPNO DEPTNO
---------- ----------
 7499 30
 7521 30
 7900 30
 7654 30
 7698 30
 7844 30
6 rows selected.

Using the Interactive Method
Starting Import from the command line with no parameters initiates the interactive
method. The interactive method does not provide prompts for all Import function-
ality. The interactive method is provided only for backward compatibility.

If you do not specify a username/password on the command line, the Import util-
ity prompts you for this information. The following example shows the interactive
method:

> imp system/manager

Import: Release 8.0.4.0.0 - Production on Fri Nov 7 10:11:37 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.
 Import 2-41

Using the Interactive Method
Connected to: Oracle8 Server Release 8.0.4.0.0 - Production
PL/SQL Release 8.0.4.0.0 - Production
Import file: expdat.dmp >
Enter insert buffer size (minimum is 4096) 30720>
Export file created by EXPORT:V08.00.04 via conventional path
Warning: the objects were exported by BLAKE, not by you
List contents of import file only (yes/no): no >
Ignore create error due to object existence (yes/no): no >
Import grants (yes/no): yes >
Import table data (yes/no): yes >
Import entire export file (yes/no): no > y
. importing BLAKE's objects into SYSTEM
. . importing table "DEPT" 4 rows imported
. . importing table "MANAGER" 3 rows imported
Import terminated successfully without warnings.

You may not see all the prompts in a given Import session because some prompts
depend on your responses to other prompts. Some prompts show a default answer;
if the default is acceptable, press [RETURN].

Note: If you specify N at the previous prompt, Import prompts you for a
schema name and the tables names you want to import for that schema:

Enter table(T) or partition(T:P) names. Null list means all tables for user

Entering a null table list causes all tables in the schema to be imported. You can
only specify one schema at a time when you use the interactive method.

Interactively Invoking Import as SYSDBA
Typically, you should not need to invoke Import as SYSDBA. However, if you
are using Tablespace Point-In-Time Recovery (TSPITR) which enables you to
quickly recover one or more tablespaces to a point-in-time different from that of
the rest of the database, you will need to know how to do so.

Attention: It is recommended that you read the information about TSPITR in
the Oracle8 Backup and Recovery Guide, “POINT_IN_TIME_RECOVER” on
page 2-26, and “RECOVERY_TABLESPACES” on page 1-19 before continuing with
this section.
2-42 Oracle8 Utilities

Importing Incremental, Cumulative, and Complete Export Files
Importing Incremental, Cumulative, and Complete Export Files
Because an incremental export extracts only tables that have changed since the last
incremental, cumulative, or complete export, an import from an incremental export
file imports the table’s definition and all its data, not just the changed rows.

Because imports from incremental export files are dependent on the method used
to export the data, you should also read “Incremental, Cumulative, and Complete
Exports” on page 1-37.

It is important to note that, because importing an incremental export file imports
new versions of existing objects, existing objects are dropped before new ones are
imported. This behavior differs from a normal import. During a normal import,
objects are not dropped and an error is usually generated if the object already exists.

Restoring a Set of Objects
The order in which incremental, cumulative, and complete exports are done is
important. A set of objects cannot be restored until a complete export has been run
on a database. Once that has been done, the process of restoring objects follows the
steps listed below.

Note: To restore a set of objects, you must first import the most recent incremen-
tal export file to import the system objects (that is, specify INCTYPE=SYSTEM
for the import). Then, you must import the export files in chronological order,
based on their export time (that is, specify INCTYPE=RESTORE for the import).

1. Import the most recent incremental export file (specify INCTYPE=SYSTEM for
the import) or cumulative export file, if no incremental exports have been taken.

2. Import the most recent complete export file.

3. Import all cumulative export files after the last complete export.

4. Import all incremental export files after the last cumulative export.

For example, if you have the following:

■ one complete export called X1

■ two cumulative exports called C1 and C2

■ three incremental exports called I1, I2, and I3

then you should import in the following order:

imp system/manager INCTYPE=SYSTEM FULL=Y FILE=I3
imp system/manager INCTYPE=RESTORE FULL=Y FILE=X1
 Import 2-43

Importing Incremental, Cumulative, and Complete Export Files
imp system/manager INCTYPE=RESTORE FULL=Y FILE=C1
imp system/manager INCTYPE=RESTORE FULL=Y FILE=C2
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I1
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I2
imp system/manager INCTYPE=RESTORE FULL=Y FILE=I3

Notes:

■ You import the last incremental export file twice; once at the beginning to
import the most recent version of the system objects, and once at the end to
apply the most recent changes made to the user data and objects.

■ When restoring tables with this method, you should always start with a clean
database (that is, no user tables) before starting the import sequence.

Importing Object Types and Foreign Function Libraries from an Incremental Export File
For incremental imports only, object types and foreign function libraries are han-
dled as system objects. That is, their definitions are only imported with the other
system objects when INCTYPE = SYSTEM. This imports the most recent definition
of the object type (including the object identifier) and the most recent definition of
the library specification.

Then, as tables are imported from earlier incremental export files using
INCTYPE=RESTORE, Import verifies that any object types needed by the table
exist and have the same object identifier. If the object type does not exist, or if it
exists but its object identifier does not match, the table is not imported.

This indicates the object type had been dropped or replaced subsequent to the
incremental export, requiring that all tables dependent on the object also had
been dropped.

If a user had execute access to an object type and created a table containing data of
that object type, but the execute privilege is later revoked, import of that table will
fail. The user must be regranted execute privilege to successfully import the table.
2-44 Oracle8 Utilities

Controlling Index Creation and Maintenance
Controlling Index Creation and Maintenance
This section describes the behavior of Import with respect to index creation and
maintenance.

Index Creation and Maintenance Controls
If SKIP_UNUSABLE_INDEXES=Y, the Import utility postpones maintenance on all
indexes that were set to Index Unusable before Import. Other indexes (not previ-
ously set Index Unusable) continue to be updated as rows are inserted. This
approach saves on index updates during Import and assumes that users can issue
the appropriate ALTER INDEX statements for other indexes not covered in the
exported list, before Import.

Delayed index maintenance may cause a violation of an existing unique integrity
constraint supported by the index. The existence of a unique integrity constraint on
a table does not prevent existence of duplicate keys in a table that was imported
with INDEXES = N. The supporting index will be in UNUSABLE state until the
duplicates are removed and the index is rebuilt.

Table 2–3 is a summary of results for combinations of IGNORE and INDEXES
parameters with partition-level Import.

Table 2–3 Partition-Level IGNORE and INDEXES Combinations

Import

INDEXES=Y INDEXES=N

Create
indexes

Delay index main-
tenance on Index
Unusable

Create
indexes

Delay index main-
tenance on Index
Unusable

IGNORE
= Y

indexes
before
Import

Existent No No No Yes

Non-exis-
tent

Yes N/A No N/A

IGNORE
= N

indexes
before
Import

Existent Error Error No Yes

Non-exis-
tent

Yes N/A No N/A
 Import 2-45

Controlling Index Creation and Maintenance
Delaying Index Creation
Import provides you with the capability of delaying index creation and mainte-
nance services until after completion of the import and insertion of exported data.
Performing index (re)creation or maintenance after Import completes is generally
faster than updating the indexes for each row inserted by Import.

Index creation can be time consuming, and therefore can be done more efficiently
after the Imports of all other objects have completed. You can postpone creation of
global and local indexes until after the Import completes by specifying INDEXES =
N (INDEXES = Y is the default) and INDEXFILE = filename. The index-creation
commands that would otherwise be issued by Import are instead stored in the spec-
ified file.

After the Import is complete, you must create the indexes, typically by using the
contents of the file (specified with INDEXFILE) as an SQL script.

If the total amount of index updates are smaller during data insertion than at index
rebuild time after Import, users can choose to update those indexes at table data
insertion time by setting INDEXES = Y.

Example of Postponing Index Maintenance
For example, assume that partitioned table t with partitions p1 and p2 exists on
the Import target system. Assume that local indexes p1_ind on partition p1 and
p2_ind on partition p2 exist also. Assume that partition p1 contains a much larger
amount of data in the existing table t , compared with the amount of data to be
inserted by the Export file (expdat.dmp). Assume that the reverse is true for p2 .

Consequently, performing index updates for p1_ind during table data insertion
time is more efficient than at partition index rebuild time. The opposite is true for
p2_ind .

Users can postpone local index maintenance for p2_ind during Import by using
the following steps:

1. Issue the following SQL statement before Import:

ALTER TABLE t MODIFY PARTITION p2 UNUSABLE LOCAL INDEXES;

2. Issue the following Import command:

imp scott/tiger FILE=export.dmp TABLES = (t:p1, t:p2)
IGNORE=Y SKIP_UNUSABLE_INDEXES=Y

This example executes the ALTER SESSION SET SKIP_UNUSABLE_INDEXES=Y
statement before performing the import.
2-46 Oracle8 Utilities

Warning, Error, and Completion Messages
3. Issue the following SQL statement after Import:

ALTER TABLE t MODIFY PARTITION p2 REBUILD UNUSABLE LOCAL INDEXES;

In this example, local index p1_ind on p1 will be updated when table data is
inserted into partition p1 during Import. Local index p2_ind on p2 will be
updated at index rebuild time, after Import.

Reducing Database Fragmentation
A database with many non-contiguous, small blocks of free space is said to be frag-
mented. A fragmented database should be reorganized to make space available in
contiguous, larger blocks. You can reduce fragmentation by performing a full data-
base export and import as follows:

1. Do a full database export (FULL=Y) to back up the entire database.

2. Shut down Oracle after all users are logged off. Use the MONITOR command
in SQL*DBA or Server Manager to check for active database users.

3. Delete the database. See your Oracle operating system-specific documentation
for information on how to delete a database.

4. Re-create the database using the CREATE DATABASE command.

5. Do a full database import (FULL=Y) to restore the entire database.

See the Oracle8 Administrator’s Guide for more information about creating databases.

Warning, Error, and Completion Messages
By default, Import displays all error messages. If you specify a log file by using the
LOG parameter, Import writes the error messages to the log file in addition to dis-
playing them on the terminal. You should always specify a log file when you
import. (You can redirect Import’s output to a file on those systems that permit I/O
redirection.)

Additional Information: For information on the LOG parameter, see “LOG”
on page 2-26. Also see your operating system-specific documentation for infor-
mation on redirecting output.

When an import completes without errors, the message “Import terminated suc-
cessfully without warnings” is issued. If one or more non-fatal errors occurred, and
Import was able to continue to completion, the message “Import terminated suc-
cessfully with warnings” occurs. If a fatal error occurs, Import ends immediately
with the message “Import terminated unsuccessfully.”
 Import 2-47

Error Handling
Additional Information: Messages are documented in Oracle8 Messages and
your operating system-specific documentation.

Error Handling
This section describes errors that can occur when you import database objects.

Row Errors
If a row is rejected due to an integrity constraint violation or invalid data, Import
displays a warning message but continues processing the rest of the table. Some
errors, such as “tablespace full,” apply to all subsequent rows in the table. These
errors cause Import to stop processing the current table and skip to the next table.

Failed Integrity Constraints
A row error is generated if a row violates one of the integrity constraints in force on
your system, including:

■ not null constraints

■ uniqueness constraints

■ primary key (not null and unique) constraints

■ referential integrity constraints

■ check constraints

See the Oracle8 Application Developer’s Guide and Oracle8 Concepts for more informa-
tion on integrity constraints.

Invalid Data
Row errors can also occur when the column definition for a table in a database is
different from the column definition in the export file. The error is caused by data
that is too long to fit into a new table’s columns, by invalid data types, and by any
other INSERT error.

Errors Importing Database Objects
Errors can occur for many reasons when you import database objects, as described
in this section. When such an error occurs, import of the current database object is
discontinued. Import then attempts to continue with the next database object in the
export file.
2-48 Oracle8 Utilities

Error Handling
Object Already Exists
If a database object to be imported already exists in the database, an object creation
error occurs. What happens next depends on the setting of the IGNORE parameter.

If IGNORE=N (the default), the error is reported, and Import continues with the
next database object. The current database object is not replaced. For tables, this
behavior means that rows contained in the export file are not imported.

If IGNORE=Y, object creation errors are not reported. Although the database object
is not replaced, if the object is a table, rows are imported into it. Note that only
object creation errors are ignored, all other errors (such as operating system, data-
base, and SQL) are reported and processing may stop.

Warning: Specifying IGNORE=Y can cause duplicate rows to be entered into a
table unless one or more columns of the table are specified with the UNIQUE
integrity constraint. This could occur, for example, if Import were run twice.

Sequences
If sequence numbers need to be reset to the value in an export file as part of an
import, you should drop sequences. A sequence that is not dropped before the
import is not set to the value captured in the export file, because Import does not
drop and re-create a sequence that already exists. If the sequence already exists, the
export file’s CREATE SEQUENCE statement fails and the sequence is not imported.

Resource Errors
Resource limitations can cause objects to be skipped. When you are importing
tables, for example, resource errors can occur as a result of internal problems, or
when a resource such as memory has been exhausted.

If a resource error occurs while you are importing a row, Import stops processing
the current table and skips to the next table. If you have specified COMMIT=Y,
Import commits the partial import of the current table. If not, a rollback of the cur-
rent table occurs before Import continues. (See the description of “COMMIT” on
page 2-20 for information about the COMMIT parameter.)

Fatal Errors
When a fatal error occurs, Import terminates. For example, if you enter an invalid
username/password combination or attempt to run Export or Import without hav-
ing prepared the database by running the scripts CATEXP.SQL or CATALOG.SQL,
a fatal error occurs and causes Import to terminate.
 Import 2-49

Network Considerations
Network Considerations
This section describes factors to take into account when using Export and Import
across a network.

Transporting Export Files Across a Network
When transferring an export file across a network, be sure to transmit the file using
a protocol that preserves the integrity of the file. For example, when using FTP or a
similar file transfer protocol, transmit the file in binary mode. Transmitting export
files in character mode causes errors when the file is imported.

Exporting and Importing with Net8
By eliminating the boundaries between different machines and operating systems
on a network, Net8 provides a distributed processing environment for Oracle8
products. Net8 lets you export and import over a network.

For example, running Export locally, you can write data from a remote Oracle data-
base into a local export file. Running Import locally, you can read data into a
remote Oracle database.

To use Export or Import with Net8, you must include the connection qualifier
string @connect_string when entering the username/password in the exp or imp
command. For the exact syntax of this clause, see the user’s guide for your Net8
protocol. For more information on Net8, see the Net8 Administrator’s Guide. See also
Oracle8 Distributed Database Systems. See also “Interactively Invoking Import as SYS-
DBA” on page 2-42 if you are using Tablespace Point-in-Time Recovery.

Import and Snapshots
The three interrelated objects in a snapshot system are the master table, optional
snapshot log, and the snapshot itself. The tables (master table, snapshot log table
definition, and snapshot tables) can be exported independently of one another.
Snapshot logs can be exported only if you export the associated master table. You
can export snapshots using full database or user-mode Export; you cannot use
table-mode Export.

This section discusses how fast refreshes are affected when these objects are
imported. Oracle8 Replication provides more information about snapshots and snap-
shot logs.
2-50 Oracle8 Utilities

Import and Snapshots
Master Table
The imported data is recorded in the snapshot log if the master table already exists
for the database to which you are importing and it has a snapshot log.

Snapshot Log
When a snapshot log is exported, ROWIDs stored in the snapshot log have no
meaning upon import. As a result, each ROWID snapshot’s first attempt to do a
fast refresh fails, generating an error indicating that a complete refresh is required.

To avoid the refresh error, do a complete refresh after importing a ROWID snap-
shot log. After you have done a complete refresh, subsequent fast refreshes will
work properly.

In contrast, when a snapshot log is exported, primary key values do retain their
meaning upon Import. Therefore, primary key snapshots can do a fast refresh after
the import. See Oracle8 Replication for information about primary key snapshots.

Snapshots
A snapshot that has been restored from an export file has “gone back in time” to a
previous state. On import, the time of the last refresh is imported as part of the
snapshot table definition. The function that calculates the next refresh time is also
imported.

Each refresh leaves a signature. A fast refresh uses the log entries that date from the
time of that signature to bring the snapshot up to date. When the fast refresh is
complete, the signature is deleted and a new signature is created. Any log entries
that are not needed to refresh other snapshots are also deleted (all log entries with
times before the earliest remaining signature).

Importing a Snapshot
When you restore a snapshot from an export file, you may encounter a problem
under certain circumstances.

Assume that a snapshot is refreshed at time A, exported at time B, and refreshed
again at time C. Then, because of corruption or other problems, the snapshot needs
to be restored by dropping the snapshot and importing it again. The newly
imported version has the last refresh time recorded as time A. However, log entries
needed for a fast refresh may no longer exist. If the log entries do exist (because
they are needed for another snapshot that has yet to be refreshed), they are used,
and the fast refresh completes successfully. Otherwise, the fast refresh fails, generat-
ing an error that says a complete refresh is required.
 Import 2-51

Storage Parameters
Importing a Snapshot into a Different Schema
Snapshots, snapshot logs, and related items are exported with the schema name
explicitly given in the DDL statements, therefore, snapshots and their related
items cannot be imported into a different schema.

If you attempt to use FROMUSER/TOUSER to import snapshot data, an error
will be written to the Import log file and the items will not be imported.

Storage Parameters
By default, a table is imported into its original tablespace.

If the tablespace no longer exists, or the user does not have sufficient quota in the
tablespace, the system uses the default tablespace for that user unless the table:

■ is partitioned

■ is a type table

■ contains LOB columns

If the user does not have sufficient quota in the default tablespace, the user’s tables
are not imported. (See “Reorganizing Tablespaces” on page 2-54 to see how you can
use this to your advantage.)

The OPTIMAL Parameter
The storage parameter OPTIMAL for rollback segments is not preserved during
export and import.

Storage Parameters for OID INDEXes and LOB Columns
Tables are exported with their current storage parameters. For object tables, the
OIDINDEX is created with its current storage parameters and name, if given. For
tables that contain LOB columns, LOB data and LOB indexes are created with their
current storage parameters. If users alter the storage parameters of existing tables
prior to export, the tables are exported using those altered storage parameters. The
storage parameters for LOB data and LOB indexes cannot be altered.

Note that LOB data and LOB indexes might not reside in the same tablespace as the
containing table. The tablespace for that data must be read/write at the time of
import or the table will not be imported.
2-52 Oracle8 Utilities

Storage Parameters
If LOB data or LOB indexes reside in a tablespace that does not exist at the time
of import or the user does not have the necessary quota in that tablespace, the
table will not be imported. Because there can be multiple tablespace clauses,
including one for the table, Import cannot determine which tablespace clause
caused the error.

Overriding Storage Parameters
Export files include table storage parameters, so you may want to pre-create large
tables with the different storage parameters before importing the data. If so, you
must specify the following on the command line or in the parameter file:

IGNORE=Y

The Export COMPRESS Parameter
By default at export time, the storage parameters for large tables are adjusted to
consolidate all data for the table into its initial extent. To preserve the original size
of an initial extent, you must specify at export time that extents not be consolidated
(by setting COMPRESS=N.) See “COMPRESS” on page 1-13 for a description of the
COMPRESS parameter.

Read-Only Tablespaces
Read-only tablespaces can be exported. On import, if the tablespace does not
already exist in the target database, the tablespace is created as a read/write
tablespace. If you want read-only functionality, you must manually make the
tablespace read-only after the import.

If the tablespace already exists in the target database and is read-only, you must
make it read/write before the import.

Rollback Segments
When you initialize a database, Oracle creates a single system rollback segment
(named SYSTEM). Oracle uses this rollback segment only for transactions that
manipulate objects in the SYSTEM tablespace. However, if you want to import into
a different tablespace, you must create a new rollback segment. This restriction
does not apply if you intend to import only into the SYSTEM tablespace. For details
on creating rollback segments, see the Oracle8 Administrator’s Guide.
 Import 2-53

Dropping a Tablespace
Dropping a Tablespace
You can drop a tablespace by redefining the objects to use different tablespaces
before the import. You can then issue the import command and specify IGNORE=Y.

In many cases, you can drop a tablespace by doing a full database export, then cre-
ating a zero-block tablespace with the same name (before logging off) as the
tablespace you want to drop. During import, with IGNORE=Y, the relevant CRE-
ATE TABLESPACE command will fail and prevent the creation of the unwanted
tablespace.

All objects from that tablespace will be imported into their owner’s default
tablespace with the exception of partitioned tables, type tables, and tables that con-
tain LOB columns. Import cannot determine which tablespace caused the error.
Instead, the user must create the table and import the table again, specifying
IGNORE=Y.

Objects are not imported into the default tablespace if the tablespace does not exist
or the user does not have the necessary quotas for the default tablespace.

Reorganizing Tablespaces
If a user’s quotas allow it, the user’s tables are imported into the same tablespace
from which they were exported. However, if the tablespace no longer exists or the
user does not have the necessary quota, the system uses the default tablespace for
that user as long as the table is unpartitioned, contains no LOB columns, and the
table is not a type table.

If the user is unable to access the default tablespace, the tables cannot be imported.
This scenario can be used to move user’s tables from one tablespace to another.

For example, you need to move JOE’s tables from tablespace A to tablespace B after
a full database export. Follow these steps:

1. If JOE has the UNLIMITED TABLESPACE privilege, revoke it. Set JOE’s quota
on tablespace A to zero. Also revoke all roles that might have such privileges
or quotas.

Note: Role revokes do not cascade. Therefore, users who were granted other
roles by JOE will be unaffected.

2. Export JOE’s tables.

3. Drop JOE’s tables from the tablespace.

4. Give JOE a quota on tablespace B and make it the default tablespace.
2-54 Oracle8 Utilities

Character Set and NLS Considerations
5. Create JOE’s tables into tablespace B.

6. Import JOE’s tables. (By default, Import puts JOE’s tables into
tablespace B.)

Note: An index on the table is created in the same tablespace as the table itself,
unless it already exists.

Character Set and NLS Considerations
This section describes the behavior of Export and Import with respect to character
sets and National Language Support (NLS).

Character Set Conversion
Export writes export files using the character set specified for the user session, for
example, 7-bit ASCII or IBM Code Page 500 (EBCDIC).

The import session and the target database character sets can differ from the source
database character set. This circumstance requires one or more character set conver-
sion operations. The export file identifies the character encoding scheme used for
its character data.

If necessary, Import automatically translates the data to the character set of its host
system. Import converts character data to the user-session character set if that char-
acter set is different from the one in the export file. See also “Character Set Conver-
sion” on page 1-36 and page 1 - 45 for a description of how Export handles
character set issues.

Import can convert data to the user-session character set only if the ratio of the
width of the widest character in the import character set to the width of the small-
est character in the export character set is 1.

Import and Single-Byte Character Sets
If the export file character set is any single-byte character set (for example, EBCDIC
or USASCII7), and if the character set used by the target database is also a single-
byte character set, the data is converted automatically during import to the charac-
ter encoding scheme specified for the user session by the NLS_LANG parameter.
After the data is converted to the session character set, it is converted to the data-
base character set.
 Import 2-55

Character Set and NLS Considerations
Some 8-bit characters can be lost (that is, converted to 7-bit equivalents) when
importing an 8-bit character set export file. This occurs if the machine on which
the import occurs has a native 7-bit character set, or the NLS_LANG operating
system environment variable is set to a 7-bit character set. Most often, this is
seen when accented characters lose the accent mark.

To avoid this unwanted conversion, you can set the NLS_LANG operating system
environment variable to be that of the export file character set.

When importing an Oracle Version 5 or 6 export file with a character set differ-
ent from that of the native operating system or the setting for NLS_LANG, you
must set the CHARSET import parameter to specify the character set of the
export file.

Refer to the sections “Character Set Conversion” on page 1-45 and “Single-Byte
Character Sets During Export and Import” on page 1-46 for additional information
on single-byte character sets.

Import and Multi-Byte Character Sets
For multi-byte character sets, Import can convert data to the user-session character
set only if the ratio of the width of the widest character in the import character set
to the width of the smallest character in the export character set is 1. If the ratio is
not 1, the user-session character set should be set to match the export character set,
so that Import does no conversion.

During the conversion, any characters in the export file that have no equivalent in
the target character set are replaced with a default character. (The default character
is defined by the target character set.) To guarantee 100% conversion, the target
character set must be a superset (or equivalent) of the source character set.

For more information, refer to the National Language Support section of the
Oracle8 Reference.

Because character set conversion lengthens the processing time required for
import, limit the number of character set conversions to as few as possible.

In the ideal scenario, the import session and target database character sets are the
same as the source database character set, requiring no conversion.

If the import session character set and the target database character set are the
same, but differ from the source database character set, one character set conver-
sion is required.
2-56 Oracle8 Utilities

Considerations for Importing Database Objects
Oracle8 can export and import NCHAR datatypes. Import does no translation of
NCHAR data, but, if needed, OCI automatically converts the data to the national
character set of the Import server.

Considerations for Importing Database Objects
This section describes the behavior of various database objects during Import.

Importing Object Identifiers
The Oracle8 server assigns object identifiers to uniquely identify object types, object
tables, and rows in object tables. These object identifiers are preserved by import.

For object types, if IGNORE=Y and the object type already exists and the object
identifiers match, no error is reported. If the object identifiers do not match, an
error is reported and any tables using the object type are not imported.

For object types, if IGNORE=N and the object type already exists, an error is
reported. If the object identifiers do not match, any tables using the object type are
not imported.

For object tables, if IGNORE=Y and the table already exists and the object identifi-
ers match, no error is reported. Rows are imported into the object table. If the object
identifiers do not match, an error is reported and the table is not imported.

For object tables, if IGNORE = N and the table already exists, an error is reported
and the table is not imported.

For object tables, if IGNORE=Y and if the table already exists and the table’s object
identifiers match, import of rows may fail if rows with the same object identifier
already exist in the object table.

Because Import preserves object identifiers of object types and object tables, note
the following considerations when importing objects from one schema into another
schema, using the FROMUSER and TOUSER parameters:

■ If the FROMUSER’s object types and object tables already exist on the target
system, errors occur because the object identifiers of the TOUSER’s object types
and object tables are already in use. The FROMUSER’s object types and object
tables must be dropped from the system before the import is started.

■ If an object table was created using the OID AS option to assign it the same
object identifier as another table, both tables cannot be imported. One may be
imported, but the second receives an error because the object identifier is
already in use.
 Import 2-57

Considerations for Importing Database Objects
Importing Existing Object Tables and Tables That Contain Object Types
Users frequently pre-create tables before import to reorganize tablespace usage or
change a table's storage parameters. The tables must be created with the same defi-
nitions as were previously used or a compatible format (except for storage parame-
ters). For object tables and tables that contain columns of object types, format
compatibilities are more restrictive.

For object tables, the same object type must be specified and that object type must
have the same object identifier as the original. The object table's object type and
identifier must be the same as the original object table's object type.

For tables containing columns of object types, the same object type must be speci-
fied and that type must have the same object identifier as the original.

Export writes information about object types used by a table in the Export file,
including object types from different schemas. Object types from different schemas
used as top level columns are verified for matching name and object identifier at
import time. Object types from different schemas that are nested within other
object types are not verified. If the object type already exists, its object identifier is
verified. Import retains information about what object types it has created, so that
if an object type is used by multiple tables, it is created only once.

In all cases, the object type must be compatible in terms of the internal format used
for storage. Import does not verify that the internal format of a type is compatible.
If the exported data is not compatible, the results are unpredictable.

Importing Nested Tables
For nested tables, the storage information for the inner tables is exported with a
DDL statement separate from the creation of the outer table. Import handles the
multiple statements as one atomic operation. If the creation of the outer table fails,
the inner table storage information is not executed. If the creation of the outer table
succeeds, but the storage creation for any inner nested table fails, the entire table is
dropped and table data is not imported. If the outer table already exists and
IGNORE=Y, the inner table storage is not created.

Because inner nested tables are imported separately from the outer table, attempts
to access data from them while importing may produce unexpected results. For
example, if an outer row is accessed before its inner rows are imported, Import
returns an incomplete row to the user.
2-58 Oracle8 Utilities

Considerations for Importing Database Objects
Inner nested tables are exported separately from the outer table. Therefore, situa-
tions may arise where data in an inner nested table might not be properly imported:

■ Suppose a table with an inner nested table is exported and then imported with-
out dropping the table or removing rows from the table. If the IGNORE=Y
parameter is used, there will be a constraint violation when inserting each row
in the outer table. However, data in the inner nested table may be successfully
imported, resulting in duplicate rows in the inner table.

■ If fatal errors occur inserting data in outer tables, the rest of the data in the
outer table is skipped, but the corresponding inner table rows are not skipped.
This may result in inner table rows not being referenced by any row in the
outer table.

■ If an insert to an inner table fails after a non-fatal error, its outer table row will
already have been inserted in the outer table and data will continue to be
inserted in it and any other inner tables of the containing table. This circum-
stance results in a partial logical row.

■ If fatal errors occur inserting data into an inner table, the import skips the rest
of that inner table’s data but does not skip the outer table or other nested tables.

■ You should always carefully examine the logfile for errors in outer tables and
inner tables. To be consistent, table data may need to be modified or deleted.

Importing REF Data
REF columns and attributes may contain a hidden ROWID that points to the refer-
enced type instance. Import does not automatically recompute these ROWIDs for
the target database. You should execute the following command to reset the
ROWIDs to their proper values:

ANALYZE TABLE [schema.]table VALIDATE REF UPDATE

See the Oracle8 SQL Reference manual for more information about the ANALYZE
TABLE command.

Importing Array Data
When the Import utility processes array columns or attributes, it allocates buffers to
accommodate an array using the largest dimensions that could be expected for the
column or attribute. If the maximum dimension of the array greatly exceeds the
memory used in each instance of the array, the Import may fail due to memory
exhaustion.
 Import 2-59

Considerations for Importing Database Objects
Importing BFILE Columns and Directory Aliases
Export and Import do not copy data referenced by BFILE columns and attributes
from the source database to the target database. Export and Import only propagate
the names of the files and the directory aliases referenced by the BFILE columns. It
is the responsibility of the DBA or user to move the actual files referenced through
BFILE columns and attributes.

When you import table data that contains BFILE columns, the BFILE locator is
imported with the directory alias and file name that was present at export time.
Import does not verify that the directory alias or file exists. If the directory alias or
file does not exist, an error occurs when the user accesses the BFILE data.

For operating system directory aliases, if the directory syntax used in the export
system is not valid on the import system, no error is reported at import time. Subse-
quent access to the file data receives an error.

It is the responsibility of the DBA or user to ensure the directory alias is valid on
the import system.

Note: Instances of BFILE columns and attributes contain text strings for the name
of the DIRECTORY ALIAS and file name referenced by the instance. Export stores
these strings in the character set of the exported database. Import converts the text
used to store the directory alias name and the file name of a BFILE column from the
character set of the export database to the character set of the import database.

Importing Foreign Function Libraries
Import does not verify that the location referenced by the foreign function library is
correct. If the formats for directory and file names used in the library's specifica-
tion on the export file are invalid on the import system, no error is reported at
import time. Subsequent usage of the callout functions will receive an error.

It is the responsibility of the DBA or user to manually move the library and ensure
the library's specification is valid on the import system.

Importing Stored Procedures, Functions, and Packages
When a local stored procedure, function, or package is imported, it retains its
original specification timestamp. The procedure, function, or package is recom-
piled upon import. If the compilation is successful, it can be accessed by remote
procedures without error.
2-60 Oracle8 Utilities

Considerations for Importing Database Objects
Procedures are exported after tables, views, and synonyms, therefore they usu-
ally compile successfully since all dependencies will already exist. However,
procedures, functions, and packages are not exported in dependency order. If a
procedure, function, or package depends on a procedure, function, or package
that is stored later in the Export dump file, it will not compile successfully. Later
use of the procedure, function, or package will automatically cause a recompile
and, if successful, will change the timestamp. This may cause errors in the
remote procedures that call it.

Importing Advanced Queue (AQ) Tables
Importing a queue also imports any underlying queue tables and the related dictio-
nary tables. A queue can be imported only at the granularity level of the queue
table. When a queue table is imported, export pre-table and post-table action proce-
dures maintain the queue dictionary.

Importing LONG Columns
LONG columns can be up to 2 gigabytes in length. In importing and exporting, the
LONG columns must fit into memory with the rest of each row’s data. The memory
used to store LONG columns, however, does not need to be contiguous because
LONG data is loaded in sections.

Importing Views
Views are exported in dependency order. In some cases, Export must determine the
ordering, rather than obtaining the order from the server database. In doing so,
Export may not always be able to duplicate the correct ordering, resulting in compi-
lation warnings when a view is imported and the failure to import column com-
ments on such views. In particular, if VIEWA uses the stored procedure PROCB
and PROCB uses the view VIEWC, Export cannot determine the proper ordering of
VIEWA and VIEWC. If VIEWA is exported before VIEWC and PROCB already
exists on the import system, VIEWA receives compilation warnings at import time.

Grants on views are imported even if a view has compilation errors. A view could
have compilation errors if an object it depends on, such as a table, procedure, or
another view, does not exist when the view is created. If a base table does not exist,
the server cannot validate that the grantor has the proper privileges on the base
table with the GRANT OPTION.

Therefore, access violations could occur when the view is used, if the grantor
does not have the proper privileges after the missing tables are created.
 Import 2-61

Generating Statistics on Imported Data
Generating Statistics on Imported Data
The Export parameter STATISTICS controls the generation of database opti-
mizer statistics during import.

When you specify either the COMPUTE or ESTIMATE option of the STATIS-
TICS parameter, all indexes, tables, and clusters that have had ANALYZE
applied to them are exported with the commands necessary to generate the
appropriate statistics (estimated or computed) on import. You can set the ANA-
LYZE Import parameter to N to prevent Import from generating optimizer sta-
tistics.

Note: Generation of statistics is limited to those objects that already had
them before export. Statistics are not automatically generated for every
index, table, and cluster in the database as a result of this option.

If your installation generally uses either estimated or computed statistics, it is a
good idea to include the STATISTICS parameter whenever you use Export. The
cost during Export is negligible — statistics are not recorded in the export file,
only a command to generate them. The default is STATISTICS=ESTIMATE. See
Oracle8 Concepts for more information about the optimizer.

By using the STATISTICS parameter during Export, you ensure that the appro-
priate statistics are gathered when the data is imported. If your export file was
created without this parameter, or if you have changed your method of collect-
ing statistics, use Import’s INDEXFILE parameter to generate a list of imported
objects. Then, edit that list to produce a series of ANALYZE commands on them
and execute the resulting SQL script. (For more information, see “INDEXFILE” on
page 2-25.)

Using Oracle7 Export Files
This section describes guidelines and restrictions that apply when you import
data from an Oracle7 database into an Oracle8 server. Additional information
may be found inOracle8 Migration.

Check Constraints on DATE Columns
In Oracle8, check constraints on DATE columns must use the TO_DATE func-
tion to specify the format of the date. Because this function was not required in
earlier Oracle versions, data imported from an earlier Oracle database might not
have used the TO_DATE function. In such cases, the constraints are imported
into the Oracle8 database, but they are flagged in the dictionary as invalid.
2-62 Oracle8 Utilities

Using Oracle Version 6 Export Files
The catalog views DBA_CONSTRAINTS, USER_CONSTRAINTS, and
ALL_CONSTRAINTS can be used to identify such constraints. Import issues a
warning message if invalid date constraints are in the database.

Using Oracle Version 6 Export Files
This section describes guidelines and restrictions that apply when you import
data from an Oracle Version 6 database into an Oracle8 server. Additional infor-
mation may be found in the Oracle8 Migration manual.

CHAR columns
Oracle Version 6 CHAR columns are automatically converted into the Oracle
VARCHAR2 datatype.

Syntax of Integrity Constraints
Although the SQL syntax for integrity constraints in Oracle Version 6 is differ-
ent from the Oracle7 and Oracle8 syntax, integrity constraints are correctly
imported into Oracle8.

Status of Integrity Constraints
NOT NULL constraints are imported as ENABLED. All other constraints are
imported as DISABLED.

Length of DEFAULT Column Values
A table with a default column value that is longer than the maximum size of
that column generates the following error on import to Oracle8:

ORA-1401: inserted value too large for column

Oracle Version 6 did not check the columns in a CREATE TABLE statement to
be sure they were long enough to hold their DEFAULT values so these tables
could be imported into a Version 6 database. The Oracle8 server does make this
check, however. As a result, tables that could be imported into a Version 6 data-
base may not import into Oracle8.

If the DEFAULT is a value returned by a function, the column must be large
enough to hold the maximum value that can be returned by that function. Other-
wise, the CREATE TABLE statement recorded in the export file produces an
error on import.
 Import 2-63

Using Oracle Version 5 Export Files
Note: The maximum value of the USER function increased in Oracle7, so col-
umns with a default of USER may not be long enough. To determine the maxi-
mum size that the USER function returns, execute the following SQL command:

DESCRIBE user_sys_privs

The length shown for the USERNAME column is the maximum length returned
by the USER function.

Using Oracle Version 5 Export Files
Oracle8 Import reads Export dump files created by Oracle Version 5.1.22 and
later. Keep in mind the following:

■ CHAR columns are automatically converted to VARCHAR2

■ NOT NULL constraints are imported as ENABLED

■ Import automatically creates an index on any clusters to be imported
2-64 Oracle8 Utilities

Part II

SQL*Loader

Part II explains how to use SQL*Loader, a utility for loading data from external
files into Oracle database tables. SQL*Loader processes a wide variety of input
file formats and gives you control over how records are loaded into Oracle
tables.

If you have never used a data loading product, begin by reading the introduc-
tion in Chapter 3 and then examine the case studies provided in Chapter 4.
These two chapters provide a good introduction to data loading concepts.

If you are comfortable with data loading concepts, you might start with the
examples in Chapter 4 and then consult Chapter 5 and Chapter 6 for more
detailed reference information on SQL*Loader.

The following topics are covered in this part of this manual:

■ Overview of SQL*Loader Concepts (Chapter 3)

■ SQL*Loader Case Studies in action (Chapter 4)

■ SQL*Loader Control File Reference (Chapter 5)

■ SQL*Loader Command-Line Reference (Chapter 6)

■ SQL*Loader: Log File Reference (Chapter 7)

■ SQL*Loader: Conventional and Direct Path Loads (Chapter 8)

 SQL*Loader Con
3

SQL*Loader Concepts

This chapter explains the basic concepts of loading data into an Oracle database
with SQL*Loader. This chapter covers the following topics:

■ SQL*Loader Basics

■ SQL*Loader Control File

■ Input Data and Datafiles

■ Data Conversion and Datatype Specification

■ Discarded and Rejected Records

■ Log File and Logging Information

■ Conventional Path Load versus Direct Path Load

■ Partitioned Object Support

Note: If you are using Trusted Oracle, see the Trusted Oracle documentation for
information about using the SQL*Loader in that environment.
cepts 3-1

SQL*Loader Basics
SQL*Loader Basics
SQL*Loader loads data from external files into tables in an Oracle database.
SQL*Loader has many features of the DB2 Load Utility from IBM, as well as sev-
eral other features that give it additional power and flexibility. SQL*Loader accepts
input data in a variety of formats, can perform filtering (selectively loading records
based upon their data values), and can load data into multiple Oracle database
tables during the same load session.

Figure 3–1 shows the basic components of a SQL*Loader session in operation.

Figure 3–1 SQL*Loader Overview

SQL*Loader takes a control file as its input, which describes the load to SQL*Loader.
The control file also specifies the input datafile(s).

As it executes, SQL*Loader produces a log file where it writes information about the
load. If records are rejected (typically because of incorrect data), it produces a bad
file containing the rejected records. It also may produce a discard file containing
records that did not meet the specified selection criteria.

Discard
Files

Bad
Files

Database

SQL*Loader

Loader
Control

File

Bad
Files

Log
File

Discard
Files

Bad
FilesInput

Datafiles

TableTableIndexes
TableTableTables
3-2 Oracle8 Utilities

SQL*Loader Control File
SQL*Loader can:

■ Load data from multiple input datafiles of different file types

■ Handle fixed-format, delimited-format, and variable-length records

■ Manipulate data fields with SQL functions before inserting the data into data-
base columns

■ Support a wide range of datatypes, including DATE, BINARY, PACKED DECI-
MAL, and ZONED DECIMAL

■ Load multiple tables during the same run, loading selected rows into each table

■ Combine multiple physical records into a single logical record

■ Handle a single physical record as multiple logical records

■ Generate unique, sequential key values in specified columns

■ Use the operating system’s file or record management system to access datafiles

■ Load data from disk, tape, or named pipes

■ Thoroughly report errors so you can easily adjust and load all records

■ Use high-performance “direct” loads to load data directly into database files
without Oracle processing (discussed in Chapter 8, “SQL*Loader: Conven-
tional and Direct Path Loads”)

SQL*Loader Control File
The control file, written in SQL*Loader data definition language (DDL), specifies
how to interpret the data, what tables and columns to insert the data into, and may
also include input datafile management information.

The data for SQL*Loader to load into an Oracle database must be in files accessible
to SQL*Loader (typically a file in a file system, on tape, or a named pipe, depend-
ing on the platform). SQL*Loader requires information about the data to be loaded
which provides instructions for mapping the input data to columns of a table.
These instructions are written in SQL*Loader DDL, typically by the DBA using the
system text editor. Following are some of the items that are specified in the
SQL*Loader control file:

■ Specifications for loading logical records into tables

■ Field condition specifications

■ Column and field specifications
 SQL*Loader Concepts 3-3

SQL*Loader Control File
■ Data-field position specifications

■ Datatype specifications

■ Bind array size specifications

■ Specifications for setting columns to null or zero

■ Specifications for loading all-blank fields

■ Specifications for trimming blanks and tabs

■ Specifications to preserve white space

■ Specifications for applying SQL operators to fields

SQL*Loader DDL is upwardly compatible with the DB2 Load Utility from IBM.
Normally you can use a control file for the DB2 Load Utility as a control file for
SQL*Loader. See Appendix B, “DB2/DXT User Notes” for differences in syntax.

Control File Contents and Storage
Some DDL statements are mandatory. They must define where to find the input
data. They must also define the correspondence between the input data and the
Oracle database tables or indexes.

DDL options are available to describe and manipulate the file data. For example,
the instructions can include how to format or filter the data, or how to generate
unique ID numbers for a field.

A control file can contain the data itself after the DDL statements, as shown in
Case 1 on page 4-5, or in separate files, as shown in Case 2 on on page 4-8. Detailed
information on creating control files using SQL*Loader DDL is given in “Data Defi-
nition Language (DDL) Syntax” on page 5-4.

Content Guidelines
■ The control file is written in free format. That is, statements can continue from

line to line with new lines beginning at any word.

■ Uppercase or lowercase is not significant except in strings specified within sin-
gle or double quotation marks.

■ Comments can be included, prefixed by two hyphens (--). A comment can
appear anywhere on a line. SQL*Loader ignores everything from the double
hyphens to the end of line.

■ SQL*Loader does not recognize comments in a datafile or in the data portion of
the control file. It considers a double dash in those areas to be data.
3-4 Oracle8 Utilities

SQL*Loader Control File
■ SQL*Loader reserved words (see Appendix A, “SQL*Loader Reserved Words”
for a complete list) can serve for database object’s names if they are enclosed in
single or double quotation marks.

Storage
How you store the control file depends on how your operating system organizes
data. For example, a UNIX environment stores a control file in a file; in MVS envi-
ronments, the control file can be stored as a member in a partitioned dataset.

The control file must be stored where SQL*Loader can read it.

Data Definition Language (DDL)
SQL*Loader data definition language (DDL) is used to specify how SQL*Loader
should map the input data it is loading to the columns of a table in an Oracle data-
base. Chapter 5, “SQL*Loader Control File Reference” details the syntax and seman-
tics of SQL*Loader DDL.

DDL statements serve several purposes. Some statements specify input data loca-
tion or format. Other DDL statements specify which Oracle table to load, mapping
of the columns of a table to fields within an input record (field specifications), and
specification of the loader input datatype of a field.

A single DDL statement comprises one or more keywords and the arguments and
options that modify that keyword’s functionality. The following example from a
control file contains several statements specifying how SQL*Loader is to load the
data from an input datafile into a table in an Oracle database:

LOAD DATA
INFILE ’example.dat’
INTO TABLE emp
(empno POSITION(01:04) INTEGER EXTERNAL,
ename POSITION(06:15) CHAR,
job POSITION(17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL,
sal POSITION(32:39) DECIMAL EXTERNAL,
comm POSITION(41:48) DECIMAL EXTERNAL,

...

This example shows the keywords LOAD DATA, INFILE, INTO TABLE, and POSI-
TION.
 SQL*Loader Concepts 3-5

Input Data and Datafiles
Input Data and Datafiles
The data for SQL*Loader to load into an Oracle database must be accessible to
SQL*Loader, typically in files on disk or tape, or via a named pipe.

Input Data Formats
SQL*Loader can load data (see “Binary versus Character Data” on page 3-9) that
has been stored in data fields (see “Data Fields”) and records of various formats.
The record format may be specified in the control file as a file processing option.
SQL*Loader recognizes the following three record formats:

■ Stream Record Format (Default Format)

■ Fixed Record Format

■ Variable Record Format

Stream Record Format (Default Format)
Stream format records are only as long as needed to contain the data. Each physical
record ends with a terminating character (or characters on some platforms). The
record terminator is typically a newline character (‘\n’), or a carriage return fol-
lowed by a newline (“\r\n”). The record terminator used is platform dependent.
Case 3 on page 4-11 shows delimited fields.

Fixed Record Format
In fixed format, the data records all have the same fixed-length format. That is, every
record is the same fixed length, and the data fields in each record have the same
fixed length, type, and position, as shown in Figure 3–2.

Figure 3–2 Fixed Format Records

A l f r e d 1 9 2 6

S c o t t 3 0 1

T o m 1 9

Field 2
INTEGER

Field 1
CHAR

1 2 3 4 5 6 7 8 9 10
3-6 Oracle8 Utilities

Input Data and Datafiles
In this figure, each record’s bytes 1 through 6 are specified to contain CHAR data
while bytes 7 through 10 are specified to contain INTEGER data. The fields are the
same size in each record, regardless of the length of the data; the fields are fixed
length rather than variable length. The record size also is fixed, at 10 bytes for each
record. Case 2 on page 4-8 shows fixed-length records.

Fixed format records make each record exactly the same number of bytes long and
each specified field within each record of the specified data type and specified
length. The processing option specification in the control file should contain the
string “fix n”, where n is the size of the record. Note that if you are loading data
that is contained in the control file itself (using INFILE *), you cannot load using
fixed length.

The following example control file and data will load the included records, which
have a fixed length of 11 characters (10 characters of data plus one newline charac-
ter for ease of editing the data with the system text editor). It is important to note
that SQL*Loader does not require a record terminator for fixed length records, but
if a record terminator is present, it must be included in the record length.

Fixed Format Example Control File and Data

load data
infile ‘example.dat’ “fix 11”
badfile ‘example.bad’
discardfile ‘example.dsc’
discardmax 999
truncate
into table example
(rown position(1-5), cmnt position(6-10))
example.dat:
00001abcde
00002fghij
00003klmno
00004pqrst
00005uvwxy

Variable Record Format
Figure 3–3 shows variable length records containing one varying-length character
field and one varying-length integer field. In this format, the length of each field
and record can vary. For example, in each record the first field may be specified to
hold a character string, separated by a space from the next field, which may be spec-
ified to hold an integer.
 SQL*Loader Concepts 3-7

Input Data and Datafiles
If the operating system record-terminator character (such as newline) is used to
mark where varying-length records end for ease of editing with a text editor,
the record size must include the record-terminator.

Figure 3–3 Variable Format Records

Variable Format Example Control File and Data This example uses variable record for-
mats where each record has a variable length n, and n is specified in the first 5 char-
acters of the record. The file processing option should contain the string “var”. The
following control and data file will load records with variable length records:

load data
infile ‘example.dat’ “var”
badfile ‘example.bad’
discardfile ‘example.dsc’
discardmax 999
truncate
into table example
fields terminated by “,” optionally enclosed by ‘”’
(rown, cmnt, len)
example.dat:
0001500001,a,00015,
0005000002,abcdefghijklmnopqrstuvwxyzABCDEFGHIJ,00050,
0005900003,abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRS,00059,
0005200004,abcdefghijklmnopqrstuvwxyzABCDEFGHIJKL,00052,
0004800005,abcdefghijklmnopqrstuvwxyzABCDEFGH,00048,

Note: For fixed and variable length record formats no assumptions are made about
newlines (or other terminator(s)) at the end of each physical record.

A l f r e d 1 9 2 6

S c o t t 3 0 1

T o m 1 9

Field 2
INTEGER

EXTERNAL

Field 1
CHAR
3-8 Oracle8 Utilities

Input Data and Datafiles
Logical versus Physical Records
Another distinction is the difference between logical and physical records. A record
or line in a file (either of fixed length or terminated) is considered a physical record.
An operating system-dependent file/record management system, such as DEC’s
Record Management System (RMS) or IBM’s Sequential Access Method (SAM)
returns physical records.

A logical record, however, comprises one or more physical records. Sometimes the
logical and physical records are equivalent. Such is the case when only a few short
columns are being loaded. However, sometimes several physical records must be
combined to make one logical record. For example, a single logical record contain-
ing twenty-four 10-character columns could comprise three 80-character files; thus
three physical records would constitute the single logical record.

SQL*Loader allows you to compose logical records from multiple physical records
by using continuation fields. Physical records are combined into a single logical
record when some condition of the continuation field is true. You can specify that a
logical record be composed of multiple, physical records in the following ways:

■ A fixed number of physical records are concatenated to form a logical record
(no continuation field is used).

■ Physical records are appended if the continuation field contains a specified
string (or another test, such as “not equal”, succeeds when applied to the con-
tinuation field).

■ Physical records are appended if they contain a specified character as their last
non-blank character.

Binary versus Character Data
Binary is a “native” datatype. Native datatypes may be implemented differently on
different operating systems or on different hardware architectures. For more infor-
mation on native datatypes, see “Native Datatypes” on page 5-51.

Character data can be included in any record format. For more information on char-
acter datatypes, see “Character Datatypes” on page -58.

SQL*Loader can load numeric data in binary or character format. Character format
is sometimes referred to as numeric external format.

Binary data should not be loaded using stream record format (newline terminated
records) as a binary input field may contain a newline character that would incor-
rectly be considered to be the record delimiter.
 SQL*Loader Concepts 3-9

Data Conversion and Datatype Specification
Data Fields
Data (binary or character) in records is broken up into fields. Each field can be speci-
fied in terms of a specific position and length, or fields’ positions and lengths can
vary, limited by delimiters, in the following example, commas:

1,1,2,3,5,8,13

Enclosed fields are both preceded and followed by enclosure delimiters, such as the
quotation marks in the following example:

”BUNKY”

Data Conversion and Datatype Specification
Figure 3–4 shows the stages in which fields in the datafile are converted into col-
umns in the database during a conventional path load (direct path loads are con-
ceptually similar, but the implementation is different.) The top of the diagram
shows a data record containing one or more fields. The bottom shows the desti-
nation database column. It is important to understand the intervening steps
when using SQL*Loader.

Figure 3–4 depicts the “division of labor” between SQL*Loader and the Oracle8
server. The field specifications tell SQL*Loader how to interpret the format of the
datafile. The Oracle8 server then converts that data and inserts it into the database
columns, using the column datatypes as a guide.

Keep in mind the distinction between a field in a datafile and a column in the data-
base. Remember also that the field datatypes defined in a SQL*Loader control file are
not the same as the column datatypes.

SQL*Loader uses the field specifications in the control file to parse the input data
and populate the bind arrays which correspond to a SQL insert statement using
that data. The insert statement is then executed by the Oracle8 server to be stored
in the table. The Oracle8 server uses the datatype of the column to convert the data
into its final, stored form.
3-10 Oracle8 Utilities

Data Conversion and Datatype Specification
In actuality, there are two conversion steps:

1. SQL*Loader identifies a field in the datafile, interprets the data, and passes it to
the Oracle8 server via a bind buffer.

2. The Oracle8 server accepts the data and stores it in the database.

Figure 3–4 Translation of Input Data Field to Oracle Database Column

DATA FILE

Data Field

How to interpret the
field to recognize data.

CONTROL
 FILE

FIELD
SPECIFICATION

DATABASE TABLE
SPECIFICATION

COLUMN
DATATYPE

SQL
LOADER

SERVER

ROW
INSERT

DATA TO
INSERT

How to convert and
store the data.

DATABASE
COLUMN

STORED
DATA
 SQL*Loader Concepts 3-11

Data Conversion and Datatype Specification
In Figure 3–5, two CHAR fields are defined for a data record. The field specifica-
tions are contained in the control file. Note that the control file CHAR specification
is not the same as the database CHAR specification. A data field defined as CHAR
in the control file merely tells SQL*Loader how to create the row insert. The data
could then be inserted into a CHAR, VARCHAR2, NCHAR, NVARCHAR, or even
a NUMBER column in the database, with the Oracle8 Server handling any neces-
sary conversions.

By default, SQL*Loader removes trailing spaces from CHAR data before passing it
to the database. So, in Figure 3–5, both field A and field B are passed to the data-
base as three-column fields. When the data is inserted into the table, however, there
is a difference.

Figure 3–5 Example of Field Conversion

DATA
FILE

ROW
INSERT

DATABASE

SQL
LOADER

SERVER

Field 1

aaa bbb

Column 1 Column 2

Table

CHAR (5) VARCHAR (5)Column Datatypes

CHAR (5) CHAR (5)Control File Specifications

a a a _ _ b b b

a a a b b b

Field 2
3-12 Oracle8 Utilities

Discarded and Rejected Records
Column A is defined in the database as a fixed-length CHAR column of length 5.
So the data (aaa) is left justified in that column, which remains five characters wide.
The extra space on the right is padded with blanks. Column B, however, is defined
as a varying length field with a maximum length of five characters. The data for that
column (bbb) is left-justified as well, but the length remains three characters.

The name of the field tells SQL*Loader what column to insert the data into. Because
the first data field has been specified with the name “A” in the control file,
SQL*Loader knows to insert the data into column A of the target database table.

It is useful to keep the following points in mind:

■ The name of the data field corresponds to the name of the table column into
which the data is to be loaded.

■ The datatype of the field tells SQL*Loader how to treat the data in the datafile
(e.g. bind type). It is not the same as the column datatype. SQL*Loader input
datatypes are independent of the column datatype.

■ Data is converted from the datatype specified in the control file to the datatype
of the column in the database.

■ The distinction between logical records and physical records.

Discarded and Rejected Records
Records read from the input file might not be inserted into the database. Figure 3–6
shows the stages at which records may be rejected or discarded.

The Bad File
The bad file contains records rejected, either by SQL*Loader or by Oracle. Some of
the possible reasons for rejection are discussed in the next sections.

SQL*Loader Rejects
Records are rejected by SQL*Loader when the input format is invalid. For example,
if the second enclosure delimiter is missing, or if a delimited field exceeds its maxi-
mum length, SQL*Loader rejects the record. Rejected records are placed in the bad
file. For details on how to specify the bad file, see “Specifying the Bad File” on
page 5-19
 SQL*Loader Concepts 3-13

Discarded and Rejected Records
Figure 3–6 Record Filtering

SQL*Loader

When-clause
Evaluation

RDBMS

RecordRecord

Read in

Rejected

RejectedDiscarded Selected

Inserted

Bad
File

Database

Accepted

SQL*Loader

Field Processing

Discard
File
3-14 Oracle8 Utilities

Log File and Logging Information
Oracle Rejects
After a record is accepted for processing by SQL*Loader, a row is sent to Oracle8
for insertion. If Oracle determines that the row is valid, then the row is inserted
into the database. If not, the record is rejected, and SQL*Loader puts it in the bad
file. The row may be rejected, for example, because a key is not unique, because a
required field is null, or because the field contains invalid data for the Oracle
datatype.

The bad file is written in the same format as the datafile. So rejected data can be
loaded with the existing control file after necessary corrections are made.

Case 4 on page 4-14 is an example of the use of a bad file.

SQL*Loader Discards
As SQL*Loader executes, it may create a file called the discard file. This file is cre-
ated only when it is needed, and only if you have specified that a discard file
should be enabled (see “Specifying the Discard File” on page 5-21). The discard file
contains records that were filtered out of the load because they did not match any
record-selection criteria specified in the control file.

The discard file therefore contains records that were not inserted into any table in
the database. You can specify the maximum number of such records that the dis-
card file can accept. Data written to any database table is not written to the discard
file.

The discard file is written in the same format as the datafile. The discard data can
be loaded with the existing control file, after any necessary editing or correcting.

Case 4 on page 4-14 shows how the discard file is used. For more details, see “Speci-
fying the Discard File” on page 5-21.

Log File and Logging Information
When SQL*Loader begins execution, it creates a log file. If it cannot create a log file,
execution terminates. The log file contains a detailed summary of the load, includ-
ing a description of any errors that occurred during the load. For details on the
information contained in the log file, see Chapter 7, “SQL*Loader: Log File Refer-
ence”. All of the case studies in Chapter 4 also contain sample log files.
 SQL*Loader Concepts 3-15

Conventional Path Load versus Direct Path Load
Conventional Path Load versus Direct Path Load
SQL*Loader provides two methods to load data: Conventional Path, which uses a a
SQL INSERT statement with a bind array, and Direct Path, which loads data
directly into a database. These modes are discussed below and, more thoroughly,
in Chapter 8, “SQL*Loader: Conventional and Direct Path Loads”. The tables to be
loaded must already exist in the database, SQL*Loader never creates tables, it loads
existing tables. Tables may already contain data, or they may be empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privilege on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the table’s old data before load-
ing the new data in its place.

In addition to the above privileges, you must have write access to all labels you are
loading data into a Trusted Oracle database. See the Trusted Oracle7 Administrator’s
Guide.

Conventional Path
During conventional path loads, the input records are parsed according to the field
specifications, and each data field is copied to its corresponding bind array. When
the bind array is full (or there is no more data left to read), an array insert is exe-
cuted. For more information on conventional path loads, see “Data Loading Meth-
ods” on page 8-2. For information on the bind array, see “Determining the Size of
the Bind Array” on page 5-65.

There are no special requirements for tables being loaded via the conventional path.

Direct Path
A direct path load parses the input records according to the field specifications, con-
verts the input field data to the column datatype and builds a column array. The
column array is passed to a block formatter which creates data blocks in Oracle
database block format. The newly formatted database blocks are written directly to
the database bypassing most RDBMS processing. Direct path load is much faster
than conventional path load, but entails several restrictions. For more information
on the direct path, see “Data Loading Methods” on page 8-2.
3-16 Oracle8 Utilities

Partitioned Object Support
Parallel Direct Path
A parallel direct path load allows multiple direct path load sessions to concurrently
load the same data segments (allows intra-segment parallelism). Parallel Direct
Path is more restrictive than Direct Path. For more information on the parallel
direct path, see “Data Loading Methods” on page 8-2.

Partitioned Object Support
The Oracle8 SQL*Loader supports loading partitioned objects in the database. A
partitioned object in Oracle8 is a table or index consisting of partitions (pieces) that
have been grouped, typically by common logical attributes. For example, sales data
for the year 1997 might be partitioned by month. The data for each month is stored
in a separate partition of the sales table. Each partition is stored in a separate seg-
ment of the database and can have different physical attributes.

Oracle8 SQL*Loader Partitioned Object Support enables SQL*Loader to load the fol-
lowing:

■ A single partition of a partitioned table

■ All partitions of a partitioned table

■ Non-partitioned table

Oracle8 SQL*Loader supports partitioned objects in all three paths (modes):

■ Conventional Path: changed minimally from Oracle7, as mapping a row to a par-
tition is handled transparently by SQL.

■ Direct Path: changed significantly from Oracle7 to accommodate mapping rows
to partitions of tables, to support local indexes, and to support global indexes,
which can also be partitioned; direct path bypasses SQL and loads blocks
directly into the database.

■ Parallel Direct Path: changed from Oracle7 to include support for concurrent
loading of an individual partition and also a partitioned table; allows multiple
direct path load sessions to load the same segment or set of segments concur-
rently. Parallel direct path loads are used for intra-segment parallelism. Note
that inter-segment parallelism can be achieved by concurrent single partition
direct path loads with each load session loading a different partition of the
same table.
 SQL*Loader Concepts 3-17

Partitioned Object Support
3-18 Oracle8 Utilities

 SQL*Loader Case St
4

SQL*Loader Case Studies

The case studies in this chapter illustrate some of the features of SQL*Loader.
These case studies start simply and progress in complexity.

This chapter contains the following sections:

■ The Case Studies

■ Case Study Files

■ Tables Used in the Case Studies

■ References and Notes

■ Running the Case Study SQL Scripts

■ Case 1: Loading Variable-Length Data

■ Case 2: Loading Fixed-Format Fields

■ Case 3: Loading a Delimited, Free-Format File

■ Case 4: Loading Combined Physical Records

■ Case 5: Loading Data into Multiple Tables

■ Case 6: Loading Using the Direct Path Load Method

■ Case 7: Extracting Data from a Formatted Report

■ Case 8: Loading a Fixed Record Length Format File
udies 4-1

The Case Studies
The Case Studies
This chapter contains the following case studies:

Case 1: Loading Variable-Length Data Loads stream format records in which the fields
are delimited by commas and may be enclosed by quotation marks. The data is
found at the end of the control file.

Case 2: Loading Fixed-Format Fields: Loads a datafile with fixed-length fields, stream-
format records, all records the same length.

Case 3: Loading a Delimited, Free-Format File Loads data from stream format records
with delimited fields and sequence numbers. The data is found at the end of the
control file.

Case 4: Loading Combined Physical Records Combines multiple physical records into
one logical record corresponding to one database row

Case 5: Loading Data into Multiple Tables Loads data into multiple tables in one run

Case 6: Loading Using the Direct Path Load Method Loads data using the direct path
load method

Case 7: Extracting Data from a Formatted Report Extracts data from a formatted report

Case 8: Loading a Fixed Record Length Format File Loads a datafile using fixed record
length and explicitly defined field positions and datatypes.

Case Study Files
The distribution media for SQL*Loader contains files for each case:

■ control files (for example, ULCASE1.CTL)

■ data files (for example, ULCASE2.DAT)

■ setup files (for example, ULCASE3.SQL)

If the sample data for the case study is contained in the control file, then there will
be no .DAT file for that case.

If there are no special setup steps for a case study, there may be no .SQL file for
that case. Starting (setup) and ending (cleanup) scripts are denoted by an S or E
after the case number.
4-2 Oracle8 Utilities

Tables Used in the Case Studies
Table 4–1 lists the files associated with each case:

Additional Information: The actual names of the case study files are operating
system-dependent. See your Oracle operating system-specific documentation
for the exact names.

Tables Used in the Case Studies
The case studies are based upon the standard Oracle demonstration database tables
EMP and DEPT owned by SCOTT/TIGER. (In some of the case studies, additional
columns have been added.)

Contents of Table EMP
(empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2))

Table 4–1 Case Studies and Their Related Files

CASE .CTL .DAT .SQL

1 x x

2 x x

3 x x

4 x x x

5 x x x

6 x x x

7 x x x S, E

8 x x x
 SQL*Loader Case Studies 4-3

References and Notes
Contents of Table DEPT
(deptno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13))

References and Notes
The summary at the beginning of each case study contains page number references,
directing you to the sections of this guide that discuss the SQL*Loader feature
being demonstrated in more detail.

In the control file fragment and log file listing shown for each case study, the num-
bers that appear to the left are not actually in the file; they are keyed to the num-
bered notes following the listing. Do not use these numbers when you write your
control files.

Running the Case Study SQL Scripts
You should run the SQL scripts ULCASE1.SQL and ULCASE3.SQL through
ULCASE7.SQL to prepare and populate the tables. Note that there is no
ULCASE2.SQL as Case 2 is handled by ULCASE1.SQL.
4-4 Oracle8 Utilities

Case 1: Loading Variable-Length Data
Case 1: Loading Variable-Length Data
Case 1 demonstrates

■ A simple control file identifying one table and three columns to be loaded.
See “Including Data in the Control File with BEGINDATA” on page 5-15.

■ Including data to be loaded from the control file itself, so there is no separate
datafile. See “Including Data in the Control File with BEGINDATA” on
page 5-15.

■ Loading data in stream format, with both types of delimited fields — termi-
nated and enclosed. See “Delimited Fields” on page 5-64.

Control File
The control file is ULCASE1.CTL:

1) LOAD DATA
2) INFILE *
3) INTO TABLE dept
4) FIELDS TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’”’
5) (deptno, dname, loc)
6) BEGINDATA

12,RESEARCH,”SARATOGA”
10,”ACCOUNTING”,CLEVELAND
11,”ART”,SALEM
13,FINANCE,”BOSTON”
21,”SALES”,PHILA.
22,”SALES”,ROCHESTER
42,”INT’L”,”SAN FRAN”

Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. INFILE * specifies that the data is found in the control file and not in an exter-
nal file.

3. The INTO TABLE statement is required to identify the table to be loaded
(DEPT) into. By default, SQL*Loader requires the table to be empty before it
inserts any records.

4. FIELDS TERMINATED BY specifies that the data is terminated by commas, but
may also be enclosed by quotation marks. Datatypes for all fields default to
CHAR.
 SQL*Loader Case Studies 4-5

Case 1: Loading Variable-Length Data
5. Specifies that the names of columns to load are enclosed in parentheses.
Since no datatype is specified, the default is a character of length 255.

6. BEGINDATA specifies the beginning of the data.

Invoking SQL*Loader
To run this example, invoke SQL*Loader with the command:

sqlldr userid=scott/tiger control=ulcase1.ctl log=ulcase1.log

SQL*Loader loads the DEPT table and creates the log file.

Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader on your operating system, refer to your Oracle operating sys-
tem-specific documentation.

Log File
The following shows a portion of the log file:

Control File: ULCASE1.CTL
Data File: ULCASE1.DAT

Bad File: ULCASE1.BAD
Discard File: none specified

(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65336 bytes
Continuation: none specified
Path used: Conventional
Table DEPT, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
--------------- -------- --- ---- ---- ---------
1) DEPTNO FIRST * , O(”) CHARACTER

DNAME NEXT * , O(”) CHARACTER
2) LOC NEXT * WHT O(”) CHARACTER
Table DEPT:

7 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 49920 bytes(64 rows)
Space allocated for memory besides bind array: 76000 bytes
4-6 Oracle8 Utilities

Case 1: Loading Variable-Length Data
Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Notes:

1. Position and length for each field are determined for each record, based on
delimiters in the input file.

2. WHT signifies that field LOC is terminated by WHITESPACE. The notation
O(”) signifies optional enclosure by quotation marks.
 SQL*Loader Case Studies 4-7

Case 2: Loading Fixed-Format Fields
Case 2: Loading Fixed-Format Fields
Case 2 demonstrates

■ A separate datafile. See “Identifying Datafiles” on page 5-16.

■ Data conversions. See “Datatype Conversions” on page 5-50.

In this case, the field positions and datatypes are specified explicitly.

Control File
The control file is ULCASE2.CTL.

1) LOAD DATA
2) INFILE ’ulcase2.dat’
3) INTO TABLE emp
4) (empno POSITION(01:04) INTEGER EXTERNAL,

ename POSITION(06:15) CHAR,
job POSITION(17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL,
sal POSITION(32:39) DECIMAL EXTERNAL,
comm POSITION(41:48) DECIMAL EXTERNAL,

5) deptno POSITION(50:51) INTEGER EXTERNAL)

Notes:

1. The LOAD DATA statement is required at the beginning of the control file.

2. The name of the file containing data follows the keyword INFILE.

3. The INTO TABLE statement is required to identify the table to be loaded into.

4. Lines 4 and 5 identify a column name and the location of the data in the data-
file to be loaded into that column. EMPNO, ENAME, JOB, and so on are names
of columns in table EMP. The datatypes (INTEGER EXTERNAL, CHAR, DECI-
MAL EXTERNAL) identify the datatype of data fields in the file, not of corre-
sponding columns in the EMP table.

5. Note that the set of column specifications is enclosed in parentheses.
4-8 Oracle8 Utilities

Case 2: Loading Fixed-Format Fields
Datafile
Below are a few sample data lines from the file ULCASE2.DAT. Blank fields are set
to null automatically.

782 CLARK MANAGER 7839 2572.50 10
7839 KING PRESIDENT 5500.00 10
7934 MILLER CLERK 7782 920.00 10
7566 JONES MANAGER 7839 3123.75 20
7499 ALLEN SALESMAN 7698 1600.00 300.00 30
7654 MARTIN SALESMAN 7698 1312.50 1400.00 30

Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr userid=scott/tiger control=ulcase2.ctl log=ulcase2.log

EMP records loaded in this example contain department numbers. Unless the
DEPT table is loaded first, referential integrity checking rejects these records (if ref-
erential integrity constraints are enabled for the EMP table).

Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader on your operating system, refer to your Oracle operating sys-
tem-specific documentation.

Log File
The following shows a portion of the log file:

Control File: ULCASE2.CTL
Data File: ULCASE2.DAT

Bad File: ULCASE2.BAD
Discard File: none specified

(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65336 bytes
Continuation: none specified
Path used: Conventional
 SQL*Loader Case Studies 4-9

Case 2: Loading Fixed-Format Fields
Table EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

Column Name Position Len Term Encl Datatype
------------- --------- ---- ---- ---- --------

EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
SAL 32:39 8 CHARACTER
COMM 41:48 8 CHARACTER
DEPTNO 50:51 2 CHARACTER

Table EMP:
7 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array 4352 bytes(64 rows)
Space allocated for memory besides bind array: 37051 bytes
Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0
4-10 Oracle8 Utilities

Case 3: Loading a Delimited, Free-Format File
Case 3: Loading a Delimited, Free-Format File
Case 3 demonstrates

■ Loading data (enclosed and terminated) in stream format. See “Delimited
Fields” on page 5-64.

■ Loading dates using the datatype DATE. See “DATE” on page 5-58.

■ Using SEQUENCE numbers to generate unique keys for loaded data. See “Set-
ting a Column to a Unique Sequence Number” on page 5-48.

■ Using APPEND to indicate that the table need not be empty before inserting
new records. See “Loading into Empty and Non-Empty Tables” on page 5-25.

■ Using Comments in the control file set off by double dashes. See “Comments”
on page 5-11.

■ Overriding general specifications with declarations for individual fields. See
“Specifying Field Conditions” on page 5-37.

Control File
This control file loads the same table as in Case 2, but it loads three additional col-
umns (HIREDATE, PROJNO, LOADSEQ). The demonstration table EMP does not
have columns PROJNO and LOADSEQ. So if you want to test this control file, add
these columns to the EMP table with the command:

ALTER TABLE EMP ADD (PROJNO NUMBER, LOADSEQ NUMBER)

The data is in a different format than in Case 2. Some data is enclosed in quotation
marks, some is set off by commas, and the values for DEPTNO and PROJNO are
separated by a colon.

1) -- Variable-length, delimited and enclosed data format
LOAD DATA

2) INFILE *
3) APPEND

INTO TABLE emp
4) FIELDS TERMINATED BY ”,” OPTIONALLY ENCLOSED BY ’”’

(empno, ename, job, mgr,
5) DATE(20) ”DD-Month-YYYY”,

sal, comm, deptno CHAR TERMINATED BY ’:’,
projno,

6) loadseq SEQUENCE(MAX,1))
7) BEGINDATA
8) 7782, ”Clark”, ”Manager”, 7839, 09-June-1981, 2572.50,, 10:101
 SQL*Loader Case Studies 4-11

Case 3: Loading a Delimited, Free-Format File
7839, ”King”, ”President”, , 17-November-1981,5500.00,,10:102
7934, ”Miller”, ”Clerk”, 7782, 23-January-1982, 920.00,, 10:102
7566, ”Jones”, ”Manager”, 7839, 02-April-1981, 3123.75,, 20:101
7499, ”Allen”, ”Salesman”, 7698, 20-February-1981, 1600.00,
(same line continued) 300.00, 30:103
7654, ”Martin”, ”Salesman”, 7698, 28-September-1981, 1312.50,
(same line continued) 1400.00, 3:103
7658, ”Chan”, ”Analyst”, 7566, 03-May-1982, 3450,, 20:101

Notes:

1. Comments may appear anywhere in the command lines of the file, but they
should not appear in data. They are preceded with a double dash that may
appear anywhere on a line.

2. INFILE * specifies that the data is found at the end of the control file.

3. Specifies that the data can be loaded even if the table already contains rows.
That is, the table need not be empty.

4. The default terminator for the data fields is a comma, and some fields may be
enclosed by double quotation marks (”).

5. The data to be loaded into column HIREDATE appears in the format DD-
Month-YYYY. The length of the date field is a maximum of 20. If a length is not
specified, the length is a maximum of 20. If a length is not specified, then the
length depends on the length of the date mask.

6. The SEQUENCE function generates a unique value in the column LOADSEQ.
This function finds the current maximum value in column LOADSEQ and adds
the increment (1) to it to obtain the value for LOADSEQ for each row inserted.

7. BEGINDATA specifies the end of the control information and the beginning of
the data.

8. Although each physical record equals one logical record, the fields vary in
length so that some records are longer than others. Note also that several rows
have null values for COMM.

Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr userid=scott/tiger control=ulcase3.ctl log=ulcase3.log
4-12 Oracle8 Utilities

Case 3: Loading a Delimited, Free-Format File
Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader on your operating system, see your Oracle operating system-
specific documentation.

Log File
The following shows a portion of the log file:

Control File: ULCASE3.CTL
Data File: ULCASE3.DAT

Bad File: ULCASE3.BAD
Discard File: none specified

(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65336 bytes
Continuation: none specified
Path used: Conventional
Table EMP, loaded from every logical record.
Insert option in effect for this table: APPEND
Column Name Position Len Term Encl Datatype
------------- -------- --- ---- ---- ----------
EMPNO FIRST * , O(”) CHARACTER
ENAME NEXT * , O(”) CHARACTER
JOB NEXT * , O(”) CHARACTER
MGR NEXT * , O(”) CHARACTER
HIREDATE NEXT 20 , O(”) DATE DD-Month-YYYY
SAL NEXT * , O(”) CHARACTER
COMM NEXT * , O(”) CHARACTER
DEPTNO NEXT * : O(”) CHARACTER
PROJNO NEXT * , O(”) CHARACTER
LOADSEQ SEQUENCE (MAX, 1)
Table EMP:
7 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.
Space allocated for bind array: 63810 bytes(30 rows)
Space allocated for memory besides bind array: 94391 bytes
Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0
 SQL*Loader Case Studies 4-13

Case 4: Loading Combined Physical Records
Case 4: Loading Combined Physical Records
Case 4 demonstrates:

■ Combining multiple physical records to form one logical record with CONTIN-
UEIF; see “Assembling Logical Records from Physical Records” on page 5-29.

■ Inserting negative numbers.

■ Indicating with REPLACE that the table should be emptied before the new
data is inserted; see “Loading into Empty and Non-Empty Tables” on page 5-25.

■ Specifying a discard file in the control file using DISCARDFILE; see “Specify-
ing the Discard File” on page 5-21.

■ Specifying a maximum number of discards using DISCARDMAX; see “Specify-
ing the Discard File” on page 5-21.

■ Rejecting records due to duplicate values in a unique index or due to invalid
data values; see “Rejected Records” on page 5-20.

Control File
The control file is ULCASE4.CTL:

LOAD DATA
INFILE ’ulcase4.dat’

1) DISCARDFILE ’ulcase4.dsc’
2) DISCARDMAX 999
3) REPLACE
4) CONTINUEIF THIS (1) = ’*’

INTO TABLE emp
(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION(6:15) CHAR,
job POSITION(17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL,
sal POSITION(32:39) DECIMAL EXTERNAL,
comm POSITION(41:48) DECIMAL EXTERNAL,
deptno POSITION(50:51) INTEGER EXTERNAL,
hiredate POSITION(52:60) INTEGER EXTERNAL)

Notes:

1. DISCARDFILE specifies a discard file named ULCASE4.DSC.

2. DISCARDMAX specifies a maximum of 999 discards allowed before terminat-
ing the run (for all practical purposes, this allows all discards).
4-14 Oracle8 Utilities

Case 4: Loading Combined Physical Records
3. REPLACE specifies that if there is data in the table being loaded, then
SQL*Loader should delete that data before loading new data.

4. CONTINUEIF THIS specifies that if an asterisk is found in column 1 of the cur-
rent record, then the next physical record after that record should be appended
to it to from the logical record. Note that column 1 in each physical record
should then contain either an asterisk or a non-data value.

Data File
The datafile for this case, ULCASE4.DAT, is listed below. Note the asterisks in the
first position and, though not visible, a new line indicator is in position 20 (follow-
ing “MA”, “PR”, and so on). Note that CLARK’s commission is -10, and
SQL*Loader loads the value converting it to a negative number.

*7782 CLARK
MANAGER 7839 2572.50 -10 2512-NOV-85
*7839 KING
PRESIDENT 5500.00 2505-APR-83
*7934 MILLER
CLERK 7782 920.00 2508-MAY-80
*7566 JONES
MANAGER 7839 3123.75 2517-JUL-85
*7499 ALLEN
SALESMAN 7698 1600.00 300.00 25 3-JUN-84
*7654 MARTIN
SALESMAN 7698 1312.50 1400.00 2521-DEC-85
*7658 CHAN
ANALYST 7566 3450.00 2516-FEB-84
* CHEN
ANALYST 7566 3450.00 2516-FEB-84
*7658 CHIN
ANALYST 7566 3450.00 2516-FEB-84

Rejected Records
The last two records are rejected, given two assumptions. If there is a unique index
created on column EMPNO, then the record for CHIN will be rejected because his
EMPNO is identical to CHAN’s. If EMPNO is defined as NOT NULL, then CHEN’s
record will be rejected because it has no value for EMPNO.
 SQL*Loader Case Studies 4-15

Case 4: Loading Combined Physical Records
Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr userid=scott/tiger control=ulcase4.ctl log=ulcase4.log

Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader on your operating system, see your operating Oracle system-
specific documentation.

Log File
The following is a portion of the log file:

Control File: ULCASE4.CTL
Data File: ULCASE4.DAT

Bad File: ULCASE4.BAD
Discard File: ULCASE4.DSC

(Allow 999 discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65336 bytes
Continuation: 1:1 = 0X2a(character ’*’),

in current physical record
Path used: Conventional

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

Column Name Position Len Term Encl Datatype
------------- -------- --- ---- ----- ----------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
SAL 32:39 8 CHARACTER
COMM 41:48 8 CHARACTER
DEPTNO 50:51 2 CHARACTER
HIREDATE 52:60 9 CHARACTER

Record 8: Rejected - Error on table EMP, --EMPNO null
ORA-01400: mandatory (NOT NULL) column is missing or NULL during

insert
Record 9: Rejected - Error on table EMP. --EMPNO not unique
4-16 Oracle8 Utilities

Case 4: Loading Combined Physical Records
ORA-00001: unique constraint (SCOTT.EMPIX) violated
Table EMP:

7 Rows successfully loaded.
2 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 5120 bytes(64 rows)
Space allocated for memory besides bind array: 40195 bytes

Total logical records skipped: 0
Total logical records read: 9
Total logical records rejected: 2
Total logical records discarded: 0

Bad File
The bad file, shown below, lists records 8 and 9 for the reasons stated earlier. (The
discard file is not created.)

* CHEN ANALYST
7566 3450.00 2516-FEB-84

* CHIN ANALYST
7566 3450.00 2516-FEB-84
 SQL*Loader Case Studies 4-17

Case 5: Loading Data into Multiple Tables
Case 5: Loading Data into Multiple Tables
Case 5 demonstrates

■ Loading multiple tables. See “Loading Data into Multiple Tables” on page 5-45.

■ Using SQL*Loader to break down repeating groups in a flat file and load the
data into normalized tables — one file record may generate multiple database
rows

■ Deriving multiple logical records from each physical record. See “Using Multi-
ple INTO TABLE Statements” on page 5-43.

■ Using a WHEN clause. See “Choosing which Rows to Load” on page 5-34.

■ Loading the same field (EMPNO) into multiple tables.

Control File
The control file is ULCASE5.CTL.

-- Loads EMP records from first 23 characters
-- Creates and loads PROJ records for each PROJNO listed
-- for each employee
LOAD DATA
INFILE ’ulcase5.dat’
BADFILE ’ulcase5.bad’
DISCARDFILE ’ulcase5.dsc’

1) REPLACE
2) INTO TABLE emp

(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION(6:15) CHAR,
deptno POSITION(17:18) CHAR,
mgr POSITION(20:23) INTEGER EXTERNAL)

2) INTO TABLE proj
-- PROJ has two columns, both not null: EMPNO and PROJNO

3) WHEN projno != ’ ’
(empno POSITION(1:4) INTEGER EXTERNAL,

3) projno POSITION(25:27) INTEGER EXTERNAL) -- 1st proj
3) INTO TABLE proj
4) WHEN projno != ’ ’

(empno POSITION(1:4) INTEGER EXTERNAL,
4) projno POSITION(29:31 INTEGER EXTERNAL) -- 2nd proj

2) INTO TABLE proj
5) WHEN projno != ’ ’

(empno POSITION(1:4) INTEGER EXTERNAL,
4-18 Oracle8 Utilities

Case 5: Loading Data into Multiple Tables
5) projno POSITION(33:35) INTEGER EXTERNAL) -- 3rd proj

Notes:

1. REPLACE specifies that if there is data in the tables to be loaded (EMP and
PROJ), SQL*loader should delete the data before loading new rows.

2. Multiple INTO clauses load two tables, EMP and PROJ. The same set of records
is processed three times, using different combinations of columns each time to
load table PROJ.

3. WHEN loads only rows with non-blank project numbers. When PROJNO is
defined as columns 25...27, rows are inserted into PROJ only if there is a value
in those columns.

4. When PROJNO is defined as columns 29...31, rows are inserted into PROJ only
if there is a value in those columns.

5. When PROJNO is defined as columns 33...35, rows are inserted into PROJ only
if there is a value in those columns.

Data File
The following is datafile for Case 5:

1234 BAKER 10 9999 101 102 103
1234 JOKER 10 9999 777 888 999
2664 YOUNG 20 2893 425 abc 102
5321 OTOOLE 10 9999 321 55 40
2134 FARMER 20 4555 236 456
2414 LITTLE 20 5634 236 456 40
6542 LEE 10 4532 102 321 14
2849 EDDS xx 4555 294 40
4532 PERKINS 10 9999 40
1244 HUNT 11 3452 665 133 456
123 DOOLITTLE 12 9940 132
1453 MACDONALD 25 5532 200

Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr userid=scott/tiger control=ulcase5.ctl log=ulcase5.log
 SQL*Loader Case Studies 4-19

Case 5: Loading Data into Multiple Tables
Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader on your operating system, see your Oracle operating system-
specific documentation.

Log File
The following is a portion of the log file:

Control File: ULCASE5.CTL
Data File: ULCASE5.DAT

Bad File: ULCASE5.BAD
Discard File: ULCASE5.DSC

(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65336 bytes
Continuation: none specified
Path used: Conventional
Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE
Column Name Position Len Term Encl Datatype
------------- --------- --- ---- ---- ----------
EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
DEPTNO 17:18 2 CHARACTER
MGR 20:23 4 CHARACTER
Table PROJ, loaded when PROJNO != 0x202020(character ’ ’)
Insert option in effect for this table: REPLACE
Column Name Position Len Term Encl Datatype
----------- --------- --- ---- ---- ----------
EMPNO 1:4 4 CHARACTER
PROJNO 25:27 3 CHARACTER
Table PROJ, loaded when PROJNO != 0x202020(character ’ ’)
Insert option in effect for this table: REPLACE
Column Name Position Len Term Encl Datatype
----------- --------- --- ---- ---- ----------
EMPNO 1:4 4 CHARACTER
PROJNO 29:31 3 CHARACTER
Table PROJ, loaded when PROJNO != 0x202020(character ’ ’)
Insert option in effect for this table: REPLACE
Column Name Position Len Term Encl Datatype
------------ --------- --- ---- ---- ----------
EMPNO 1:4 4 CHARACTER
PROJNO 33:35 3 CHARACTER
4-20 Oracle8 Utilities

Case 5: Loading Data into Multiple Tables
1) Record 2: Rejected - Error on table EMP, column DEPTNO.
1) ORA-00001: unique constraint (SCOTT.EMPIX) violated
1) ORA-01722: invalid number
1) Record 8: Rejected - Error on table EMP, column DEPTNO.
1) ORA-01722: invalid number
1) Record 3: Rejected - Error on table PROJ, column PROJNO.
1) ORA-01722: invalid number

Table EMP:
2) 9 Rows successfully loaded.
2) 3 Rows not loaded due to data errors.
2) 0 Rows not loaded because all WHEN clauses were failed.
2) 0 Rows not loaded because all fields were null.

Table PROJ:
3) 7 Rows successfully loaded.
3) 2 Rows not loaded due to data errors.
3) 3 Rows not loaded because all WHEN clauses were failed.
3) 0 Rows not loaded because all fields were null.

Table PROJ:
4) 7 Rows successfully loaded.
4) 3 Rows not loaded due to data errors.
4) 2 Rows not loaded because all WHEN clauses were failed.
4) 0 Rows not loaded because all fields were null.

Table PROJ:
5) 6 Rows successfully loaded.
5) 3 Rows not loaded due to data errors.
5) 3 Rows not loaded because all WHEN clauses were failed.
5) 0 Rows not loaded because all fields were null.
Space allocated for bind array: 5120 bytes (64 rows)
Space allocated for memory besides bind array: 46763 bytes
Total logical records skipped: 0
Total logical records read: 12
Total logical records rejected: 3
Total logical records discarded: 0

Notes:

1. Errors are not encountered in the same order as the physical records due to
buffering (array batch). The bad file and discard file contain records in the
same order as they appear in the log file.

2. Of the 12 logical records for input, three rows were rejected (rows for JOKER,
YOUNG, and EDDS). No data was loaded for any of the rejected records.
 SQL*Loader Case Studies 4-21

Case 5: Loading Data into Multiple Tables
3. Nine records met the WHEN clause criteria, and two (JOKER and YOUNG)
were rejected due to data errors.

4. Ten records met the WHEN clause criteria, and three (JOKER, YOUNG, and
EDDS) were rejected due to data errors.

5. Nine records met the WHEN clause criteria, and three (JOKER, YOUNG, and
EDDS) were rejected due to data errors.

Loaded Tables
These are results of this execution of SQL*Loader:

SQL> SELECT empno, ename, mgr, deptno FROM emp;
EMPNO ENAME MGR DEPTNO
------ ------ ------ ------
1234 BAKER 9999 10
5321 OTOOLE 9999 10
2134 FARMER 4555 20
2414 LITTLE 5634 20
6542 LEE 4532 10
4532 PERKINS 9999 10
1244 HUNT 3452 11
123 DOOLITTLE 9940 12
1453 ALBERT 5532 25

SQL> SELECT * from PROJ order by EMPNO;

EMPNO PROJNO
------ ------
123 132
1234 101
1234 103
1234 102
1244 665
1244 456
1244 133
1453 200
2134 236
2134 456
2414 236
2414 456
2414 40
4532 40
5321 321
5321 40
4-22 Oracle8 Utilities

Case 5: Loading Data into Multiple Tables
5321 55
6542 102
6542 14
6542 321
 SQL*Loader Case Studies 4-23

Case 6: Loading Using the Direct Path Load Method
Case 6: Loading Using the Direct Path Load Method
This case study loads the EMP table using the direct path load method and concur-
rently builds all indexes. It illustrates the following functions:

■ Use of the direct path load method to load and index data. See Chapter 8,
“SQL*Loader: Conventional and Direct Path Loads”.

■ How to specify the indexes for which the data is pre-sorted. See “Pre-sorting
Data for Faster Indexing” on page 8-16.

■ Loading all-blank numeric fields as null. See “Loading All-Blank Fields” on
page 5-72.

■ The NULLIF clause. See “NULLIF Keyword” on page 5-71.

Note: Specify the name of the table into which you want to load data; other-
wise, you will see LDR-927. Specifying DIRECT=TRUE as a command-line
parameter is not an option when loading into a synonym for a table.

In this example, field positions and datatypes are specified explicitly.

Control File
The control file is ULCASE6.CTL.

LOAD DATA
INFILE ’ulcase6.dat’
INSERT
INTO TABLE emp

1) SORTED INDEXES (empix)
2) (empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS,

ename POSITION(06:15) CHAR,
job POSITION(17:25) CHAR,
mgr POSITION(27:30) INTEGER EXTERNAL NULLIF mgr=BLANKS,
sal POSITION(32:39) DECIMAL EXTERNAL NULLIF sal=BLANKS,
comm POSITION(41:48) DECIMAL EXTERNAL NULLIF comm=BLANKS,
deptno POSITION(50:51) INTEGER EXTERNAL NULLIF deptno=BLANKS)

Notes:

1. The SORTED INDEXES clause identifies indexes:presorting data:case studythe
indexes on which the data is sorted. This clause indicates that the datafile is
sorted on the columns in the EMPIX index. This clause allows SQL*Loader to
optimize index creation by eliminating the sort phase for this data when using
the direct path load method.
4-24 Oracle8 Utilities

Case 6: Loading Using the Direct Path Load Method
2. The NULLIF...BLANKS clause specifies that the column should be loaded as
NULL if the field in the datafile consists of all blanks. For more information,
refer to “Loading All-Blank Fields” on page 5-72.

Invoking SQL*Loader
Run the script ULCASE6.SQL as SCOTT/TIGER then enter the following at the
command line:

sqlldr scott/tiger ulcase6.ctl direct=true log=ulcase6.log

Additional Information: The command “sqlldr” is a UNIX-specific invocation.
To invoke SQL*Loader on your operating system, see your Oracle operating
system-specific documentation.

Log File
The following is a portion of the log file:

Control File: ULCASE6.CTL
Data File: ULCASE6.DAT

Bad File: ULCASE6.BAD
Discard File: none specified

(Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: Direct
Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
------------------------ --------- ----- ---- ---- --------

EMPNO 1:4 4 CHARACTER
ENAME 6:15 10 CHARACTER
JOB 17:25 9 CHARACTER
MGR 27:30 4 CHARACTER
SAL 32:39 8 CHARACTER
COMM 41:48 8 CHARACTER
DEPTNO 50:51 2 CHARACTER

Column EMPNO is NULL if EMPNO = BLANKS
Column MGR is NULL if MGR = BLANKS
Column SAL is NULL if SAL = BLANKS
 SQL*Loader Case Studies 4-25

Case 6: Loading Using the Direct Path Load Method
Column COMM is NULL if COMM = BLANKS
Column DEPTNO is NULL if DEPTNO = BLANKS

The following index(es) on table EMP were processed:
Index EMPIX was loaded.

Table EMP:
7 Rows successfully loaded.
0 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Bind array size not used in direct path.
Space allocated for memory besides bind array: 164342 bytes

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0
4-26 Oracle8 Utilities

Case 7: Extracting Data from a Formatted Report
Case 7: Extracting Data from a Formatted Report
In this case study, SQL*Loader’s string processing functions extract data from a for-
matted report. It illustrates the following functions:

■ Using SQL*Loader with an INSERT trigger (see the chapter on database trig-
gers in Oracle8 Application Developer’s Guide

■ Use of the SQL string to manipulate data; see “Applying SQL Operators to
Fields” on page 5-78.

■ Different initial and trailing delimiters; see “Specifying Delimiters” on
page 5-60.

■ Use of SYSDATE; see “Setting a Column to the Current Date” on page 5-47.

■ Use of the TRAILING NULLCOLS clause; see “TRAILING NULLCOLS” on
page 5-36.

■ Ambiguous field length warnings; see “Conflicting Native Datatype Field
Lengths” on page 5-57 and “Conflicting Character Datatype Field Lengths” on
page 5-63.

Note: This example creates a trigger that uses the last value of unspecified fields.

Data File
The following listing of the report shows the data to be loaded:

 Today’s Newly Hired Employees
Dept Job Manager MgrNo Emp Name EmpNo Salary (Comm)
---- -------- -------- ----- -------- ----- --------- ------
20 Salesman Blake 7698 Shepard 8061 $1,600.00 (3%)

Falstaff 8066 $1,250.00 (5%)
Major 8064 $1,250.00 (14%)

30 Clerk Scott 7788 Conrad 8062 $1,100.00
Ford 7369
DeSilva 8063 $800.00

Manager King 7839 Provo 8065 $2,975.00

Insert Trigger
In this case, a BEFORE INSERT trigger is required to fill in department number, job
name, and manager’s number when these fields are not present on a data line.
When values are present, they should be saved in a global variable. When values
are not present, the global variables are used.
 SQL*Loader Case Studies 4-27

Case 7: Extracting Data from a Formatted Report
The INSERT trigger and the package defining the global variables is:

CREATE OR REPLACE PACKAGE uldemo7 AS -- Global Package Variables
last_deptno NUMBER(2);
last_job VARCHAR2(9);
last_mgr NUMBER(4);
END uldemo7;

/
CREATE OR REPLACE TRIGGER uldemo7_emp_insert

BEFORE INSERT ON emp
FOR EACH ROW

BEGIN
IF :new.deptno IS NOT NULL THEN

uldemo7.last_deptno := :new.deptno; -- save value for later
ELSE

:new.deptno := uldemo7.last_deptno; -- use last valid value
END IF;
IF :new.job IS NOT NULL THEN

uldemo7.last_job := :new.job;
ELSE

:new.job := uldemo7.last_job;
END IF;
IF :new.mgr IS NOT NULL THEN

uldemo7.last_mgr := :new.mgr;
ELSE

:new.mgr := uldemo7.last_mgr;
END IF;

END;
/
Note: The phrase FOR EACH ROW is important. If it was not specified, the
INSERT trigger would only fire once for each array of inserts because SQL*Loader
uses the array interface.

Control File
The control file is ULCASE7.CTL.

LOAD DATA
INFILE ’ULCASE7.DAT’
APPEND
INTO TABLE emp

1) WHEN (57) = ’.’
2) TRAILING NULLCOLS
3) (hiredate SYSDATE,
4) deptno POSITION(1:2) INTEGER EXTERNAL(3)
5) NULLIF deptno=BLANKS,
4-28 Oracle8 Utilities

Case 7: Extracting Data from a Formatted Report
 job POSITION(7:14) CHAR TERMINATED BY WHITESPACE
6) NULLIF job=BLANKS ”UPPER(:job)”,
7) mgr POSITION(28:31) INTEGER EXTERNAL

 TERMINATED BY WHITESPACE, NULLIF mgr=BLANKS,
 ename POSITION(34:41) CHAR
 TERMINATED BY WHITESPACE ”UPPER(:ename)”,
 empno POSITION(45) INTEGER EXTERNAL
 TERMINATED BY WHITESPACE,
 sal POSITION(51) CHAR TERMINATED BY WHITESPACE

8) ”TO_NUMBER(:sal,’$99,999.99’)”,
9) comm INTEGER EXTERNAL ENCLOSED BY ’(’ AND ’%’

 ”:comm * 100”
)

Notes:

1. The decimal point in column 57 (the salary field) identifies a line with data on
it. All other lines in the report are discarded.

2. The TRAILING NULLCOLS clause causes SQL*Loader to treat any fields that
are missing at the end of a record as null. Because the commission field is not
present for every record, this clause says to load a null commission instead of
rejecting the record when only six fields are found instead of the expected
seven.

3. Employee’s hire date is filled in using the current system date.

4. This specification generates a warning message because the specified length
does not agree with the length determined by the field’s position. The specified
length (3) is used.

5. Because the report only shows department number, job, and manager when the
value changes, these fields may be blank. This control file causes them to be
loaded as null, and an RDBMS insert trigger fills in the last valid value.

6. The SQL string changes the job name to uppercase letters.

7. It is necessary to specify starting position here. If the job field and the manager
field were both blank, then the job field’s TERMINATED BY BLANKS clause
would cause SQL*Loader to scan forward to the employee name field. Without
the POSITION clause, the employee name field would be mistakenly inter-
preted as the manager field.

8. Here, the SQL string translates the field from a formatted character string into a
number. The numeric value takes less space and can be printed with a variety
of formatting options.
 SQL*Loader Case Studies 4-29

Case 7: Extracting Data from a Formatted Report
9. In this case, different initial and trailing delimiters pick the numeric value out
of a formatted field. The SQL string then converts the value to its stored form.

Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr scott/tiger ulcase7.ctl ulcase7.log

Log File
The following is a portion of the log file:

1) SQL*Loader-307: Warning: conflicting lengths 2 and 3 specified
for column EMP.DEPTNO.

 Control File: ulcase7.ctl
Data File: ulcase7.dat
Bad File: ulcase7.bad
Discard File: none specified

(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional
Table EMP, loaded when 57:57 = 0X2e(character ’.’)
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect
Column Name Position Len Term Encl Datatype
------------------- ---------- ----- ---- ---- -----------
DEPTNO 1:2 3 CHARACTER
JOB 7:14 8 WHT CHARACTER
MGR 28:31 4 WHT CHARACTER
ENAME 34:41 8 WHT CHARACTER
EMPNO NEXT * WHT CHARACTER
SAL 51 * WHT CHARACTER
COMM NEXT * (CHARACTER

%
HIREDATE SYSDATE
Column DEPTNO is NULL if DEPTNO = BLANKS
Column JOB is NULL if JOB = BLANKS
Column JOB had SQL string
”UPPER(:job)”
applied to it.
Column MGR is NULL if MGR = BLANKS
4-30 Oracle8 Utilities

Case 7: Extracting Data from a Formatted Report
Column ENAME had SQL string
”UPPER(:ename)”
applied to it.
Column SAL had SQL string
”TO_NUMBER(:sal,’$99,999.99’)”
applied to it.
Column COMM had SQL string
”:comm * 100”
applied to it.

2) Record 1: Discarded - failed all WHEN clauses.
Record 2: Discarded - failed all WHEN clauses.
Record 3: Discarded - failed all WHEN clauses.
Record 4: Discarded - failed all WHEN clauses.
Record 5: Discarded - failed all WHEN clauses.
Record 6: Discarded - failed all WHEN clauses.
Record 10: Discarded - failed all WHEN clauses.
Table EMP:

6 Rows successfully loaded.
0 Rows not loaded due to data errors.

2) 7 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Space allocated for bind array: 52480 bytes(64 rows)
Space allocated for memory besides bind array: 108185 bytes

Total logical records skipped: 0
Total logical records read: 13
Total logical records rejected: 0

2) Total logical records discarded: 7

Notes:

1. A warning is generated by the difference between the specified length and the
length derived from the position specification.

2. The 6 header lines at the top of the report are rejected, as is the blank separator
line in the middle.

Dropping the Insert Trigger and the Global-Variable Package
After running the example, use ULCASE7E.SQL to drop the insert trigger and glo-
bal-variable package.
 SQL*Loader Case Studies 4-31

Case 8: Loading a Fixed Record Length Format File
Case 8: Loading a Fixed Record Length Format File
Case 8 demonstrates

■ Loading using the fixed record length option.

■ Using the “SORTED INDEX” clause.

■ Partitioning of data. See Oracle8 Concepts for more information on partitioned
data concepts.

■ Explicitly defined field positions and datatypes.

Control File
The control file is ULCASE8.CTL. It loads the lineitem table with fixed length
records, partitioning the data according to shipdate. It also uses the “SORTED
INDEXES” clause for direct path performance.

LOAD DATA
1) INFILE ‘ulcase8.dat.dat’ “fix 129”

BADFILE ‘ulcase8.dat.bad’
TRUNCATE
INTO TABLE lineitem

2,3)SORTED INDEXES (l_ship_idx) PARTITION ship_q1
4) (l_orderkey position (1:6) char,

l_partkey position (7:11) char,
l_suppkey position (12:15) char,
l_linenumber position (16:16) char,
l_quantity position (17:18) char,
l_extendedprice position (19:26) char,
l_discount position (27:29) char,
l_tax position (30:32) char,
l_returnflag position (33:33) char,
l_linestatus position (34:34) char,
l_shipdate position (35:43) char,
l_commitdate position (44:52) char,
l_receiptdate position (53:61) char,
l_shipinstruct position (62:78) char,
l_shipmode position (79:85) char,
l_comment position (86:128) char)

Notes:

1. Specifies that each record in the datafile is of fixed length (129 characters in this
example). See “Input Data Formats” on page 3-6.
4-32 Oracle8 Utilities

Case 8: Loading a Fixed Record Length Format File
2. SORTED INDEXES allows SQL*Loader to optimize index creation by eliminat-
ing the sort phase for this data when using the direct path load method. See
“Index Options” on page 5-36.

3. Use of the PARTITION keyword to specify the loading of a specific partition.
In this example, only rows that meet the criteria for a first quarter ship date are
loaded with all other rows being rejected.

4. Identifies the column name and location of the data in the datafile to be loaded
into each column.

Table Creation
In order to partition the data the lineitem table is created using four (4) partitions
according to the shipment date:

create table lineitem
(l_orderkey number,
l_partkey number,
l_suppkey number,
l_linenumber number,
l_quantity number,
l_extendedprice number,
l_discount number,
l_tax number,
l_returnflag char,
l_linestatus char,
l_shipdate date,
l_commitdate date,
l_receiptdate date,
l_shipinstruct char(17),
l_shipmode char(7),
l_comment char(43))
partition by range (l_shipdate)
(
partition ship_q1 values less than (TO_DATE(‘01-APR-1996’, ‘DD-MON-YYYY’))
tablespace p01,
partition ship_q2 values less than (TO_DATE(‘01-JUL-1996’, ‘DD-MON-YYYY’))
tablespace p02,
partition ship_q3 values less than (TO_DATE(‘01-OCT-1996’, ‘DD-MON-YYYY’))
tablespace p03,
partition ship_q4 values less than (TO_DATE(‘01-JAN-1997’, ‘DD-MON-YYYY’))
tablespace p04
)

 SQL*Loader Case Studies 4-33

Case 8: Loading a Fixed Record Length Format File
Input Data File
The datafile for this case, ULCASE8.DAT, is listed below. Each record is 129 charac-
ters in length. Note that five(5) blanks precede each record in the file.

1 151978511724386.60 7.04.0NO09-SEP-6412-FEB-9622-MAR-96DELIVER IN
PERSONTRUCK iPBw4mMm7w7kQ zNPL i261OPP

1 2731 73223658958.28.09.06NO12-FEB-9628-FEB-9620-APR-96TAKE BACK
RETURN MAIL 5wM04SNyl0AnghCP2nx lAi
1 3370 3713 810210.96 .1.02NO29-MAR-9605-MAR-9631-JAN-96TAKE BACK RETURN
REG AIRSQC2C 5PNCy4mM

1 5214 46542831197.88.09.06NO21-APR-9630-MAR-9616-MAY
96NONE AIR Om0L65CSAwSj5k6k

1 6564 6763246897.92.07.02NO30-MAY-9607-FEB-9603-FEB-96DELIVER IN
PERSONMAIL CB0SnyOL PQ32B70wB75k 6Aw10m0wh

1 7403 160524 31329.6 .1.04NO30-JUN-9614-MAR-9601
APR-96NONE FOB C2gOQj OB6RLk1BS15 igN

2 8819 82012441659.44 0.08NO05-AUG-9609-FEB-9711-MAR-97COLLECT
COD AIR O52M70MRgRNnmm476mNm

3 9451 721230 41113.5.05.01AF05-SEP-9629-DEC-9318-FEB-94TAKE BACK
RETURN FOB 6wQnO0Llg6y

3 9717 1834440788.44.07.03RF09-NOV-9623-DEC-9315-FEB-94TAKE BACK
RETURN SHIP LhiA7wygz0k4g4zRhMLBAM

3 9844 1955 6 8066.64.04.01RF28-DEC-9615-DEC-9314-FEB-94TAKE BACK
RETURN REG AIR6nmBmjQkgiCyzCQBkxPPOx5j4hB 0lRywgniP7

Invoking SQL*Loader
Invoke SQL*Loader with a command such as:

sqlldr sqlldr/test control=ulcase8.ctl data=ulcase8.dat

Additional Information: The command “sqlldr” is a UNIX-specific invocation. To
invoke SQL*Loader, see the Oracle operating system-specific documentation.

Log File
The following shows a portion of the log file:

Control File: ULCASE8.CTL
Data File: ULCASE8.DAT
Bad File: ULCASE8.BAD
Discard File: none specified

(Allow all discards)
Number to load: ALL
Number to skip: 0
4-34 Oracle8 Utilities

Case 8: Loading a Fixed Record Length Format File
Errors allowed: 50
Bind array: Test mode - (O/S dependent) default bindsize
Continuation: none specified
Path used: Conventional
Table LINEITEM, partition ship_q1, loaded from every logical record.
Insert option in effect for this table: TRUNCATE

Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- --------------
L_ORDERKEY 1:6 6 CHARACTER
L_ORDERKEY 1:6 6 CHARACTER
L_PARTKEY 7:11 5 CHARACTER
L_SUPPKEY 12:15 4 CHARACTER
L_LINENUMBER 16:16 1 CHARACTER
L_QUANTITY 17:18 2 CHARACTER
L_EXTENDEDPRICE 19:26 8 CHARACTER
L_DISCOUNT 27:29 3 CHARACTER
L_TAX 30:32 3 CHARACTER
L_RETURNFLAG 33:33 1 CHARACTER
L_LINESTATUS 34:34 1 CHARACTER
L_SHIPDATE 35:43 9 CHARACTER
L_COMMITDATE 44:52 9 CHARACTER
L_RECEIPTDATE 53:61 9 CHARACTER
L_SHIPINSTRUCT 62:78 17 CHARACTER
L_SHIPMODE 79:85 7 CHARACTER
L_COMMENT 86:128 43 CHARACTER

Record 4: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Record 5: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Record 6: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Record 7: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Record 8: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Record 9: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition
 SQL*Loader Case Studies 4-35

Case 8: Loading a Fixed Record Length Format File
Record 10: Rejected - Error on table LINEITEM, partition ship_q1.
ORA-14401: inserted partition key is outside specified partition

Table LINEITEM, partition ship_q1:
3 Rows successfully loaded.
7 Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.

Total logical records skipped: 0
Total logical records read: 10
Total logical records rejected: 7
Total logical records discarded: 0
4-36 Oracle8 Utilities

 SQL*Loader Control File Refe
5

SQL*Loader Control File Reference

This chapter describes the SQL*Loader data definition language (DDL) used to
map data to Oracle format. If you are using Trusted Oracle, see also the Trusted
Oracle documentation for information about using the SQL*Loader in that environ-
ment.

This chapter contains the following sections:

■ Overview

■ Data Definition Language (DDL) Syntax

■ Expanded Clauses and Their Functionality
rence 5-1

Overview
Overview
The information in this chapter falls into the following main categories:

■ General Syntactical Information

■ Managing Files

■ Managing Data

The sections that belong to each category follow:

General Syntactical Information

■ data definition language syntax (on page 5-4)

■ adding comments (on page 5-11)

■ specifying command-line parameters (on page 5-11)

■ specifying RECOVERABLE and UNRECOVERABLE (on page 5-12)

■ specifying filenames and database objects (on page 5-12)

Managing Files

■ including data in the control file (on page 5-15)

■ identifying datafiles (on page 5-16)

■ Specifying READBUFFERS (on page 5-18)

■ specifying datafile format and buffering (on page 5-18)

■ specifying the bad file (on page 5-19)

■ rejected records (on page 5-20)

■ specifying the discard file (on page 5-21)

■ discarded records (on page 5-23)

■ handling different character encoding schemes (on page 5-24)

■ loading data for different countries (on page 5-24)

■ loading into non-empty database tables (on page 5-25)

■ continuing interrupted loads (on page 5-27)

■ assembling logical records from physical records (on page 5-29)
5-2 Oracle8 Utilities

Overview
Managing Data

■ loading logical records into tables (on page 5-33)

■ specifying field conditions (on page 5-37)

■ specifying columns and fields (on page 5-39)

■ specifying the position of a data field (on page 5-40)

■ using multiple INTO TABLE clauses (on page 5-43)

■ generating data (on page 5-46)

■ loading without files (on page 5-46)

■ specifying datatypes (on page 5-50)

■ loading data across different operating systems (on page 5-65)

■ determining bind array size (on page 5-65)

■ setting a column to null or zero (on page 5-71)

■ loading all-blank fields (on page 5-72)

■ trimming of blanks and tabs (on page 5-72)

■ preserving whitespace (on page 5-78)

■ applying SQL operators to fields (on page 5-78)
 SQL*Loader Control File Reference 5-3

Data Definition Language (DDL) Syntax
Data Definition Language (DDL) Syntax

Syntax Notation
For details of the notation used in the syntax diagrams in this Reference, see the PL/
SQL User’s Guide and Reference or the preface in the Oracle8 SQL Reference.

High-Level Syntax Diagrams
The following diagrams of DDL definitions are shown with certain clauses col-
lapsed (e.g. position_spec, into_table clause, etc.). The statements are expanded
and explained in more detail in later sections.

–– comments

OPTIONS (options)

UNRECOVERABLE

RECOVERABLE

LOAD

CONTINUE_LOAD DATA CHARACTERSET character_set_name

infile_clause
READBUFFERS n

INSERT

REPLACE
APPEND

concatenation_clause

TRUNCATE
5-4 Oracle8 Utilities

Data Definition Language (DDL) Syntax
PRESERVE BLANKS BEGINDATA

into_table_clause

INFILE

*INDDN

input_filename

“OS–dependent file–processing specifications string”

BADFILE bad_file_name

BDDN

DISCARDFILE DISCARDdiscard_file_name n

DISCARDDN DISCARDMAX

nCONCATENATE

CONTINUEIF

(n)

THIS

NEXT

()

pos_spec operator ’char_string’

X’hex_byte’

LAST ’char_string’

X’hex_byte’

operator

INTO TABLE

INSERT

REPLACE

TRUNCATE

APPEND

table-name

PARTITION (partition-name)

,

 SQL*Loader Control File Reference 5-5

Data Definition Language (DDL) Syntax
index_name()

INDEXES

SORTED

SINGLEROW

INSERT

REPLACE

APPEND

TRUNCATE

OPTIONS (FILE = database_file_name)

DISABLED_CONSTRAINTS

REENABLE

EXCEPTIONS tablename

field_condition

AND
WHEN

FIELDS

delimiter_spec

SKIPTRAILING

NULLCOLS

n

RECNUM

CONSTANT

SYSDATE

SEQUENCE

column_name

,

)(

column_spec

)

MAX

COUNT

, incr

n(

value

PIECEDPOSITION datatype_specpos_spec
5-6 Oracle8 Utilities

Expanded Clauses and Their Functionality
Expanded Clauses and Their Functionality

Position Specification
pos_spec

A position specification (pos_spec) gives the starting location for a field and, option-
ally, the ending location as well. A pos_spec is specified as follows:

The position must be surrounded by parentheses. The starting location may be
specified as a column number, as * (next column), or *+n (next column plus an off-
set). The start and end locations may be separated with either a colon (:) or a dash (-).

Field Condition
field_condition

A field condition compares a named field or an area of the record to some value.
When the condition evaluates to true, the specified function is performed. For
example, a true condition might cause the NULLIF function to insert a NULL data
value, or cause DEFAULTIF to insert a default value. The field_condition is specified
as follows:

field_condition field_conditionNULLIF DEFAULTIF

“sql_string”

–

: end

)start

*

(

+n

)(fieldname operator ’char_string’

pos_spec

BLANKS

X’hex_string’
 SQL*Loader Control File Reference 5-7

Expanded Clauses and Their Functionality
The char_string and hex_string can be enclosed in either single quotation marks or
double quotation marks. The hex_string is a string of hexadecimal digits, where
each pair of digits corresponds to one byte in the field. The BLANKS keyword
allows you to test a field to see if it consists entirely of blanks. It is necessary when
you are loading delimited data and you cannot predict the length of the field, or
when using a multi-byte character set that has multiple blanks.

There must not be any spaces between the operator and the operands on either side
of it. Thus,

(1)=’x’

is legal, while

(1) = ’x’

generates an error.

Column Name
column_name

The column name you specify in a field condition must be one of the columns
defined for the input record. It must be specified with double quotation marks if its
name is a reserved word. See “Specifying Filenames and Database Objects” on
page 5-12 for more details.

Datatype Specification
datatype_spec

The datatype_spec tells SQL*Loader how to interpret the field in the input record.
The syntax is as follows:
5-8 Oracle8 Utilities

Expanded Clauses and Their Functionality
SMALLINT

FLOAT

INTEGER

EXTERNAL

(length) delimiter_spec

ZONED (precision)

, scale

EXTERNAL

(length) delimiter_spec

DECIMAL (precision)

, scale

EXTERNAL

(length) delimiter_spec

BYTEINT

DOUBLE

(length)

EXTERNAL (graphic_char_length)

VARCHAR (maximum_length)

VARGRAPHIC

(length) delimiter_spec

CHAR

DATE

(length) ”mask” delimiter_spec

RAW

GRAPHIC
 SQL*Loader Control File Reference 5-9

Expanded Clauses and Their Functionality
Precision vs. Length
precision
length

The precision of a numeric field is the number of digits it contains. The length of a
numeric field is the number of byte positions on the record. The byte length of a
ZONED decimal field is the same as its precision. However, the byte length of a
(packed) DECIMAL field is (p+1)/2, rounded up, where p is the number’s preci-
sion, because packed numbers contain two digits (or digit and sign) per byte.

Date Mask
The date mask specifies the format of the date value. For more information, see the
DATE datatype on page 5-58.

Delimiter Specification
delimiter_spec

The delimiter_spec can specify a termination delimiter, enclosure delimiters, or a
combination of the two, as shown below:

For more information, see “Specifying Delimiters” on page 5-60.

enclosure_spec

termination_spec

OPTIONALLY

termination_spec enclosure_spec

WHITESPACETERMINATED

BY ’char’

X’hex_char’

’char’

X’hex_char’

termination_spec ::=

enclosure_spec ::=

ENCLOSED

BY

’char’

X’hex_char’ ’char’

X’hex_char’
AND
5-10 Oracle8 Utilities

Specifying Command-Line Parameters in the Control File
Comments
Comments can appear anywhere in the command section of the file, but they
should not appear in the data. Precede Comments with a double hyphen, which
may appear anywhere on a line. For example,

--This is a Comment

All text to the right of the double hyphen is ignored, until the end of the line.
Case 3 on page 4-11 contains an example in a control file.

Specifying Command-Line Parameters in the Control File
The OPTIONS statement is useful when you typically invoke a control file with the
same set of options, or when the number of arguments makes the command line
very long. The OPTION statement precedes the LOAD DATA statement.

OPTIONS
This keyword allows you to specify runtime arguments in the control file, rather
than on the command line. The following arguments can be specified with the
OPTIONS keyword. They are described in Chapter 6, “SQL*Loader Command-
Line Reference”.

SKIP = n
LOAD = n
ERRORS =n
ROWS = n
BINDSIZE = n
SILENT = {FEEDBACK | ERRORS | DISCARDS | ALL}
DIRECT = {TRUE | FALSE}
PARALLEL = {TRUE | FALSE}

For example:

OPTIONS (BINDSIZE=100000, SILENT=(ERRORS, FEEDBACK))

Values specified on the command line override values specified in the OPTIONS
statement of the control file. The OPTIONS keyword file establishes default values
that are easily changed from the command line.
 SQL*Loader Control File Reference 5-11

Specifying RECOVERABLE and UNRECOVERABLE
Specifying RECOVERABLE and UNRECOVERABLE
The following options apply to direct path loads:

Specifying Filenames and Database Objects
This section explains how to use quotation marks for specifying database objects
and filenames in the load control file. It also shows how the escape character is
used in quoted strings.

Database Object Names within Double Quotation Marks
SQL*Loader follows the SQL standard for specifying object names (for example,
table and column names): SQL and SQL*Loader reserved words must be specified
within double quotation marks. The reserved words most likely to be column
names are:

COUNT DATA DATE FORMAT
OPTIONS PART POSITION

So if you had an inventory system with columns named PART, COUNT, and
DATA, you would specify these column names within double quotation marks in
your SQL*Loader control file. For example:

INTO TABLE inventory
(partnum INTEGER,
”PART” CHAR(15),
”COUNT” INTEGER,
”DATA” VARCHAR2(30))

RECOVERABLE Loaded data is logged in the redo log. This option is the default
for direct path loads. All conventional loads are recoverable.

UNRECOVERABLE You can specify this option for a direct path load only. When
it is specified, loaded data is not logged which improves per-
formance. (Other changes to the database are still logged.)
For other performance improvements, see “Maximizing Perfor-
mance of Direct Path Loads” on page 8-15. Note that you cannot
specify this option for a conventional load. Note also that
UNRECOVERABLE is a command level option and is valid
only for the command. It must be specified for each command/
operation. It cannot be used with such Oracle8 features as parti-
tioned tables, indexes, etc.
5-12 Oracle8 Utilities

Specifying Filenames and Database Objects
See Appendix A, “SQL*Loader Reserved Words”, for a complete list of reserved
words.

You use double quotation marks if the object name contains special characters
other than those recognized by SQL ($, #, _), or if the name is case sensitive.

SQL String within Double Quotation Marks
You also specify the SQL string within double quotation marks. The SQL string
applies SQL operators to data fields. It is described in “Applying SQL Operators to
Fields” on page 5-78.

Filenames within Single Quotation Marks
On many operating systems, attempting to specify a complete file pathname pro-
duces an error, due to the use of special characters other than $, #, or _. Usually,
putting the pathname within single quotation marks avoids the error. Filenames
that use the backslash character, \, may require special treatment, as described in
the section, “Using a Backslash in Filenames” on page 5-14.

For example:

INFILE ’mydata.dat’
BADFILE ’mydata.bad’

Quotation Marks in Quoted Strings
SQL*Loader uses strings within double quotation marks and strings within single
quotation marks in the control file. Each type of string can appear within the other.

Backslash Escape Character
In DDL syntax only, you can place a double quotation mark inside a string delim-
ited by double quotation marks by preceding it with the escape character, \, when-
ever the escape character is allowed in the string. (The following section tells when
the escape character is allowed.) The same holds true for putting a single quotation
mark into a string delimited by single quotation marks. For example, a double quo-
tation mark is included in the following string which points to the
homedir\data”norm\myfile datafile by preceding it with \:

INFILE ’homedir\data\”norm\mydata’

To put the escape character itself into a string, enter it twice,
like this: \\
 SQL*Loader Control File Reference 5-13

Specifying Filenames and Database Objects
For example:

”so’\”far” or ’so\’”far’ is parsed as so’”far
”’so\\far’” or ’\’so\\far\’’ is parsed as ’so\far’
”so\\\\far” or ’so\\\\far’ is parsed as so\\far

Note: A double quote in the initial position cannot be escaped, therefore you
should avoid creating strings with an initial quote.

Using a Backslash in Filenames
This section is of interest only to users of PCs and other systems that use backslash
characters in file specifications. For all other systems, a backslash is always treated
as an escape character, as described in the preceding section.

Non-Portable Strings
There are two kinds of character strings in a SQL*Loader control file that are not
portable between operating systems: filename strings and file processing options
strings. When converting to a different operating system, these strings must gener-
ally be rewritten. They are the non-portable strings. All other strings in a
SQL*Loader control file are portable between operating systems.

Escaping the Backslash
If your operating system uses the backslash character to separate directories in a
pathname and if the version of Oracle running on your operating system imple-
ments the backslash escape character for filenames and other non-portable strings,
then you need to specify double backslashes in your pathnames and use single quo-
tation marks.

Additional Information: To find out if your version of Oracle implements the back-
slash escape character for filenames, see your Oracle operating system-specific doc-
umentation.

For example, to load a file named “topdir\mydir\mydata”, you must specify:

INFILE ’topdir\\mydir\\mydata’

Escape Character Sometimes Disallowed
The version of Oracle running on your operating system may not implement the
escape character for non-portable strings. When the escape character is disallowed,
a backslash is treated as a normal character, rather than as an escape character
(although it is still usable in all other strings). Then pathnames such as:
5-14 Oracle8 Utilities

Including Data in the Control File with BEGINDATA
INFILE ’topdir\mydir\myfile’

can be specified normally. Double backslashes are not needed.

Because the backslash is not recognized as an escape character, strings within
single quotation marks cannot be embedded inside another string delimited by
single quotation marks. This rule also holds for double quotation marks: A
string within double quotation marks cannot be embedded inside another string
delimited by double quotation marks.

Determining If the Escape Character is Allowed
As previously mentioned, you can learn if the backslash is used as an escape charac-
ter in non-portable strings by checking your operating-system-specific Oracle8 doc-
umentation. Another way is to specify “test\me” in the file processing options
string. Then check the log file. If the log file shows the file processing options string
as

”test\me”

then the backslash is not used as an escape character, and double backslashes are
not required for file specifications.

However, if the log file shows the file processing options string as:

”testme”

then the backslash is treated as an escape character, and double backslashes are
needed.

Including Data in the Control File with BEGINDATA
If your data is to be contained in the control file, it is placed at the end of the con-
trol specifications. You must place the BEGINDATA keyword before the first data
record to separate the data from your data definitions. The syntax is:

BEGINDATA

This keyword is used with the INFILE keyword, described in the next section. Case
1 on on page 4-5 contains an example.

If you omit BEGINDATA, SQL*Loader tries to interpret your data as control infor-
mation, and you receive an error message. If the data is in a separate file, reaching
the end of the control file signals that control information is complete, and BEGIN-
DATA should not be used.
 SQL*Loader Control File Reference 5-15

Identifying Datafiles
There should not be any spaces or other characters on the same line after the
BEGINDATA clause. Otherwise, the line containing BEGINDATA is interpreted as
the first line of data.

Do not put Comments after BEGINDATA—they are also interpreted as data.

Identifying Datafiles
To specify the datafile fully, use a filename keyword, optionally followed by a file-
processing options string. You may specify multiple files by using multiple INFILE
keywords. You can also specify the datafile from the command line, using the
DATA parameter described in “Command-Line Keywords” on page 6-3.

Naming the File
To specify the file containing the data to be loaded, use the INFILE or INDDN key-
word, followed by the filename and optional processing options string. A filename
specified on the command line overrides the first INFILE or INDDN keyword in
the control file. If no filename is specified, the filename defaults to the control file-
name with an extension or file type of DAT.

If the control file also contains the data to be loaded, specify a filename of “*”. This
specification works with the BEGINDATA keyword, described on on page 5-15.

where:

INFILE or INDDN (Use INDDN when DB2 compatibility is required.) This keyword
specifies that a datafile specification follows.

filename Name of the file containing the data.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See “Specifying Filenames and
Database Objects” on page 5-12.

* If your data is in the control file itself, use an asterisk instead of
the filename. If you have data in the control file as well as data-
files, you must specify the asterisk first in order for the data to be
read.

processing_options This is the file-processing options string. It specifies the datafile for-
mat. It also optimizes datafile reads. See “Specifying Datafile For-
mat and Buffering” on page 5-18.

INDDN

INFILE

processing_options*

filename
5-16 Oracle8 Utilities

Identifying Datafiles
Specifying Multiple Datafiles
To load data from multiple datafiles in one run of SQL*Loader, use an INFILE state-
ment for each datafile. Datafiles do not need the same file format, although the lay-
out of the records must be identical. For example, two files could be specified with
completely different file processing options strings, and a third could consist of
data in the control file.

For each datafile, you can also specify a discard file and a bad file. These files
should be declared after each datafile name. The following portion of a control file
specifies four files:

INFILE mydat1.dat BADFILE mydat1.bad DISCARDFILE mydat1.dis
INFILE mydat2.dat
INFILE mydat3.dat DISCARDFILE mydat3.dis
INFILE mydat4.dat DISCARDMAX 10 0

For the first datafile (MYDAT1.DAT), both a bad file and discard file are explicitly
named. So both files are created, if needed.

For the second datafile (MYDAT2.DAT), neither a bad file nor a discard file is speci-
fied. So only the bad file is created, if it is needed. If created, the bad file has a
default filename and extension. The discard file is not created, even if rows are dis-
carded.

For the third file (MYDAT3.DAT), the default bad file is created, if needed. A dis-
card file with the given name is also created, if it is needed.

For the fourth file (MYDAT4.DAT), the default bad file is created, if needed.
Because the DISCARDMAX option is used, SQL*Loader assumes that a discard file
is wanted and creates it with the default name (MYDAT4.DSC), if it is needed.

Note: Physical records from separate datafiles cannot be joined into one logical
record.

Examples of How to Specify a Datafile
In the first example, you specify that the data is contained in the control file itself:

INFILE *

In the next example, you specify that the data is contained in a file named WHIRL
with the default file extension or file type of DAT:

INFILE WHIRL
 SQL*Loader Control File Reference 5-17

Specifying READBUFFERS
The following example specifies the full path to a file:

INFILE ’c:/topdir/subdir/datafile.dat’

Note: Filenames that include spaces or punctuation marks should be enclosed
in single quotation marks. For more details on filename specification, see “Spec-
ifying Filenames and Database Objects” on page 5-12.

Specifying READBUFFERS
The READBUFFERS keyword control memory usage. This clause can be specified
for direct path loads only. For more information, “Maximizing Performance of
Direct Path Loads” on page 8-15.

Specifying Datafile Format and Buffering
You specify an operating-system-dependent file processing options string to control
file processing. You use this string to specify file format and buffering.

Additional Information: For details on the syntax of the file processing
options string, see your Oracle operating system-specific documentation.

File Processing Example
For example, suppose that your operating system has the following option-string
grammar:

where RECSIZE is the size of a fixed-length record, and BUFFERS is the number of
buffers to use for asynchronous I/O.

Note: This example is operating system-specific and may not work on your
operating system. For details on the syntax of the file processing options string
on your system, see your Oracle operating system-specific documentation.

To declare a file named MYDATA.DAT as a file that contains 80-byte records and
tell SQL*Loader to use eight I/O buffers with this syntax, you would use the fol-
lowing clause:

INFILE ’mydata.dat’ ”RECSIZE 80 BUFFERS 8”

n BUFFERSRESIZE n
5-18 Oracle8 Utilities

Specifying the Bad File
Note: This example uses the recommended convention of single quotation
marks for filenames and double quotation marks for everything else. See “Spec-
ifying Filenames and Database Objects” on page 5-12 for more details.

Specifying the Bad File
When SQL*Loader executes, it may create a file called a bad file or reject file where it
places records that were rejected because of formatting errors or because they
caused Oracle errors. The bad file is created according to the following rules:

■ A bad file is created only if one or more records are rejected.

■ If no records are rejected, then a bad file is not created. Note that in this case
you must also reinititialize the bad file.

■ If the bad file is created, it overwrites an existing file with the same name.

■ If a bad file is not created, then an existing file with the same name remains
intact.

Suggestion: If a file exists with the same name as the bad file that SQL*Loader may
create, delete or rename it before running SQL*Loader.

Additional Information: On some systems a new version of the file is created if a
file with the same name already exists. See your Oracle operating system-specific
documentation to find out if this is the case on your system.

To specify the name of this file, use the BADFILE or BADDN keyword, followed by
the filename. If you do not specify a name for the bad file, the name defaults to the
name of the datafile with an extension or file type of BAD. You can also specify the
bad file from the command line with the BAD parameter described in “Command-
Line Keywords” on page 6-3.

A filename specified on the command line is associated with the first INFILE or
INDDN clause in the control file, overriding any bad file that may have been speci-
fied as part of that clause.

The bad file is created in the same record and file format as the datafile so that the
data can be reloaded after corrections. The syntax is

BADDN

bad_file_nameBADFILE
 SQL*Loader Control File Reference 5-19

Rejected Records
where:

Examples of How to Specify a Bad File
In the following example, you specify a bad file with filename UGH and default file
extension or file type of BAD:

BADFILE UGH

In the next examples, you specify a bad file with filename BAD0001 and file exten-
sion or file type of REJ:

BADFILE BAD0001.REJ
BADFILE ’/REJECT_DIR/BAD0001.REJ’

Rejected Records
A record is rejected if it meets either of the following conditions:

■ Upon insertion the record causes an Oracle error (such as invalid data for a
given datatype).

■ SQL*Loader cannot determine if the data is acceptable. That is, it cannot deter-
mine if the record meets WHEN-clause criteria, as in the case of a field that is
missing its final delimiter.

If the data can be evaluated according to the WHEN-clause criteria (even with
unbalanced delimiters) then it is either inserted or rejected.

If a record is rejected on insert, then no part of that record is inserted into any table.
For example, if data in a record is to be inserted into multiple tables, and most of
the inserts succeed, but one insert fails; then all the inserts from that record are
rolled back. The record is then written to the bad file, where it can be corrected and
reloaded. Previous inserts from records without errors are not affected.

The log file indicates the Oracle error for each rejected record. Case 4 on on
page 4-14 has an example of rejected records.

BADFILE or
BADDN

(Use BADDN when DB2 compatibility is required.) This key-
word specifies that a filename for the badfile follows.

bad_filename Any valid filename specification for your platform.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See “Specifying Filenames
and Database Objects” on page 5-12.
5-20 Oracle8 Utilities

Specifying the Discard File
Integrity Constraints
All integrity constraints are honored for conventional path loads. On the direct
path, some constraints are unenforceable. See Chapter 8, “SQL*Loader: Conven-
tional and Direct Path Loads”, for more details.

Specifying the Discard File
As SQL*Loader executes, it may create a discard file for records that do not meet any
of the loading criteria. The records contained in this file are called discarded records.
Discarded records do not satisfy any of the WHEN clauses specified in the control
file. These records are different from rejected records. Discarded records do not nec-
essarily have any bad data. No insert is attempted on a discarded record.

The discard file is created according to the following rules:

■ A discard file is only created if a discard filename is specified and when one
or more records fail to satisfy all of the WHEN clauses specified in the con-
trol file. (Note that, if the discard file is created, it overwrites any existing
file with the same name.)

■ If no records are discarded, then a discard file is not created.

Suggestion: If a file exists with the same name as the discard file that
SQL*Loader may create, delete or rename it before running SQL*Loader.

To create a discard file, use any of the following options:

Note that you can request the discard file directly with a parameter specifying its
name, or indirectly by specifying the maximum number of discards.

Using a Control-File Definition
To specify the name of the file, use the DISCARDFILE or DISCARDDN (for
DB2-compatibility) keyword, followed by the filename.

In a Control File On the Command Line

DISCARDFILE filename DISCARD

DISCARDDN filename DISCARDMAX

DISCARDS

DISCARDMAX
 SQL*Loader Control File Reference 5-21

Specifying the Discard File
where:

The default filename is the name of the datafile, and the default file extension or
file type is DSC. A discard filename specified on the command line overrides one
specified in the control file. If a discard file with that name already exists, it is either
overwritten or a new version is created, depending on your operating system.

The discard file is created with the same record and file format as the datafile. So it
can easily be used for subsequent loads with the existing control file, after changing
the WHEN clauses or editing the data.

Examples of How to Specify a Discard File
In the first example, you specify a discard file with filename CIRCULAR and
default file extension or file type of DSC:

DISCARDFILE CIRCULAR

In this example, you specify a file extension or file type of MAY:

DISCARDFILE NOTAPPL.MAY

In the next example, you specify a full path to filename FORGET.ME:

DISCARDFILE ’/DISCARD_DIR/FORGET.ME’

DISCARDFILE or
DISCARDDN

(Use DISCARDDN when DB2 compatibility is required.) This
keyword specifies that a discard filename follows.

discard_filename Any valid filename specification for you platform.

Any spaces or punctuation marks in the filename must be
enclosed in single quotation marks. See “Specifying Filenames
and Database Objects” on page 5-12.

DISCARDDN

discard_file_nameDISCARDFILE

DISCARDMAX

DISCARDS n
5-22 Oracle8 Utilities

Discarded Records
Discarded Records
If there is no INTO TABLE keyword specified for a record, the record is discarded.
This situation occurs when every INTO TABLE keyword in the SQL*Loader control
file has a WHEN clause; and either the record fails to match any of them or all
fields are null.

No records are discarded if an INTO TABLE keyword is specified without a
WHEN clause. An attempt is made to insert every record into such a table. So
records may be rejected, but none are discarded.

“Case 4: Loading Combined Physical Records” on page 4-14 provides an example
of using a discard file.

Limiting the Number of Discards
You may limit the number of records to be discarded for each datafile with the
clause:

where n must be an integer. When the discard limit is reached, processing of that
datafile terminates and continues with the next datafile, if one exists.

You can specify a different number of discards for each datafile. Alternatively, if
the number of discards is only specified once, then the maximum number of dis-
cards is the same for all files.

If you specify a maximum number of discards, but no discard filename;
SQL*Loader creates a discard file with the default filename and file extension or file
type. “Case 4: Loading Combined Physical Records” on page 4-14 provides an
example.

Using a Command-Line Parameter
You can specify the discard file from the command line, with the parameter
DISCARDFILE described in “Command-Line Keywords” on page 6-3.

A filename specified on the command line goes with the first INFILE or INDDN
(DB2) clause in the control file, overriding any bad file that may have been speci-
fied as part of that clause.

DISCARDMAX

nDISCARD
 SQL*Loader Control File Reference 5-23

Handling Different Character Encoding Schemes
Handling Different Character Encoding Schemes
This section describes the features that allow SQL*Loader to operate with different
character encoding schemes (called character sets, or code pages). SQL*Loader uses
Oracle’s NLS (National Language Support) features to handle the different single-
byte and multi-byte character encoding schemes used on different computers and
in different countries.

Multi-Byte (Asian) Character Sets
Multi-byte character sets support Asian languages. Data can be loaded in multi-
byte format, and database objects (fields, tables, and so on) can be specified with
multi-byte characters. In the control file, Comments and object names may also use
multi-byte characters.

Input Character Conversion
SQL*Loader also has the capacity to convert data from the datafile character set to
the database character set, when they are different. When using the conventional
path, data is converted into the session character set specified by the NLS_LANG
parameter for that session. Then the data is loaded using SQL INSERT statements.
The session character set is the character set supported by your terminal.

During a direct path load, data converts directly into the database character set. As
a consequence, the direct path load method allows data in a character set that is not
supported by your terminal to be loaded.

When data conversion occurs, it is essential that the target character set contains a
representation of all characters that exist in the data. Otherwise, characters that
have no equivalent in the target character set are converted to a default character,
with consequent loss of data. When using the direct path, load method the data-
base character set should be a superset of, or equivalent to, the datafile character
sets. Similarly, when using the conventional path, the session character set should
be a superset of, or equivalent to, the datafile character sets.

The character set used in each input file is specified with the CHARACTERSET key-
word.

CHARACTERSET Keyword
The CHARACTERSET definition tells SQL*Loader what character set is used in
each datafile. Different datafiles can be specified with different character sets. Only
one character set can be specified for each datafile.
5-24 Oracle8 Utilities

Loading into Empty and Non-Empty Tables
Using the CHARACTERSET keyword causes character data to be automatically
converted when it is loaded into Oracle. Only CHAR, DATE, and numeric EXTER-
NAL fields are affected. If the CHARACTERSET keyword is not specified, then no
conversion occurs.

The syntax for this option is:

CHARACTERSETcharacter_set_spec

where character_set_spec is the acronym used by Oracle to refer to your particular
encoding scheme.

Additional Information: For more information on supported character sets,
code pages, and the NLS_LANG parameter, see the National Language Sup-
port section of the Oracle8 Reference.

Control File Characterset
The SQL*Loader control file itself is assumed to be in the character set specified for
your session by the NLS_LANG parameter. However, delimiters and comparison
clause values must be specified to match the character set in use in the datafile. To
ensure that the specifications are correct, it may be preferable to specify hexadeci-
mal strings, rather than character string values.

Any data included after the BEGINDATA statement is also assumed to be in the
character set specified for your session by the NLS_LANG parameter. Data that
uses a different character set must be in a separate file.

Loading into Empty and Non-Empty Tables
You can specify one of the following methods for loading tables:

This section describes those methods.

INSERT

REPLACE

APPEND

TRUNCATE
 SQL*Loader Control File Reference 5-25

Loading into Empty and Non-Empty Tables
How Non-Empty Tables are Affected
This section corresponds to the DB2 keyword RESUME; users of DB2 should also
refer to the description of RESUME in Appendix B, “DB2/DXT User Notes”. If the
tables you are loading already contain data, you have four choices for how
SQL*Loader proceeds:

Warning: When the REPLACE or TRUNCATE keyword is specified, the entire
table is replaced, not individual rows. After the rows are successfully deleted, a
commit is issued. You cannot recover the data that was in the table before the
load, unless it was saved with Export or a comparable utility.

The remainder of this section provides additional detail on these options.

INSERT
This is the default method. It requires the table to be empty before loading.
SQL*Loader terminates with an error if the table contains rows. “Case 1: Loading
Variable-Length Data” on page 4-5 provides an example.

APPEND
If data already exists in the table, SQL*Loader appends the new rows to it. If data
doesn’t already exist, the new rows are simply loaded. “Case 3: Loading a Delim-
ited, Free-Format File” on page 4-11 provides an example.

REPLACE
All rows in the table are deleted and the new data is loaded. The table must be in
your schema, or you must have DELETE privilege on the table. “Case 4: Loading
Combined Physical Records” on page 4-14 provides an example.

The row deletes cause any delete triggers defined on the table to fire. If DELETE
CASCADE has been specified for the table, then the cascaded deletes are carried
out, as well. For more information on cascaded deletes, see the “Data Integrity”
chapter of Oracle8 Concepts.

Updating Existing Rows
The REPLACE method is a table replacement, not a replacement of individual rows.
SQL*Loader does not update existing records, even if they have null columns. To
update existing rows, use the following procedure:

1. Load your data into a temporary table.

2. Use the SQL language UPDATE statement with correlated subqueries.
5-26 Oracle8 Utilities

Continuing an Interrupted Load
3. Drop the temporary table.

For more information, see the “UPDATE” statement in Oracle8 SQL Reference.

TRUNCATE
With this method, SQL*Loader uses the SQL TRUNCATE command to achieve the
best possible performance. For the TRUNCATE command to operate, the table’s ref-
erential integrity constraints must first be disabled. If they have not been disabled,
SQL*Loader returns an error.

Once the integrity constraints have been disabled, DELETE CASCADE is no longer
defined for the table. If the DELETE CASCADE functionality is needed, then the
contents of the table must be manually deleted before the load begins.

The table must be in your schema, or you must have the DELETE ANY TABLE
privilege.

Specifying One Method for All Tables
You specify one table-loading method that applies to all tables by placing the key-
word before any INTO TABLE clauses. This choice applies to any table that does
not have its own method. You can specify a table-loading method for a single table
by including the keyword in the INTO TABLE clause, as described in “Loading
Logical Records into Tables” on page 5-33.

Continuing an Interrupted Load
If SQL*Loader runs out of space for data rows or index entries, the load is discontin-
ued. (For example, the table might reach its maximum number of extents.) Discon-
tinued loads can be continued after more space is made available.

State of Tables and Indexes
When a load is discontinued, any data already loaded remains in the tables, and
the tables are left in a valid state. If the conventional path is used, all indexes are
left in a valid state.

If the direct path load method is used, any indexes that run out of space are left in
direct load state. They must be dropped before the load can continue. Other
indexes are valid provided no other errors occurred. (See “Indexes Left in Index
Unusable State” on page 8-11 for other reasons why an index might be left in direct
load state.)
 SQL*Loader Control File Reference 5-27

Continuing an Interrupted Load
Using the Log File
SQL*Loader’s log file tells you the state of the tables and indexes and the number
of logical records already read from the input datafile. Use this information to
resume the load where it left off.

Dropping Indexes
Before continuing a direct path load, inspect the SQL*Loader log file to make sure
that no indexes are in direct load state. Any indexes that are left in direct load state
must be dropped before continuing the load. The indexes can then be re-created
either before continuing or after the load completes.

Continuing Single Table Loads
To continue a discontinued direct or conventional path load involving only one
table, specify the number of logical records to skip with the command-line parame-
ter SKIP. If the SQL*Loader log file says that 345 records were previously read,
then the command to continue would look like this:

SQLLDR USERID=scott/tiger CONTROL=FAST1.CTL DIRECT=TRUE SKIP=345

Continuing Multiple Table Conventional Loads
It is not possible for multiple tables in a conventional path load to become unsyn-
chronized. So a multiple table conventional path load can also be continued with
the command-line parameter SKIP. Use the same procedure that you would use for
single-table loads, as described in the preceding paragraph.

Continuing Multiple Table Direct Loads
If SQL*Loader cannot finish a multiple-table direct path load, the number of logical
records processed could be different for each table. If so, the tables are not synchro-
nized and continuing the load is slightly more complex.

To continue a discontinued direct path load involving multiple tables, inspect the
SQL*Loader log file to find out how many records were loaded into each table. If
the numbers are the same, you can use the previously described simple continua-
tion.

CONTINUE_LOAD
If the numbers are different, use the CONTINUE_LOAD keyword and specify
SKIP at the table level, instead of at the load level. These statements exist to handle
unsynchronized interrupted loads.
5-28 Oracle8 Utilities

Assembling Logical Records from Physical Records
Instead of specifying:

LOAD DATA...

at the start of the control file, specify:

SKIP
Then, for each INTO TABLE clause, specify the number of logical records to skip
for that table using the SKIP keyword:

...
INTO TABLE emp
SKIP 2345
...
INTO TABLE dept
SKIP 514
...

Combining SKIP and CONTINUE_LOAD
The CONTINUE_LOAD keyword is only needed after a direct load failure because
multiple table loads cannot become unsynchronized when using the conventional
path.

If you specify CONTINUE_LOAD, you cannot use the command-line parameter
SKIP. You must use the table-level SKIP clause. If you specify LOAD, you can
optionally use the command-line parameter SKIP, but you cannot use the table-
level SKIP clause.

Assembling Logical Records from Physical Records
You can create one logical record from multiple physical records using one of the
following two clauses, depending on your data:

CONCATENATE
CONTINUEIF

CONCATENATE is appropriate in the simplest case, when SQL*Loader should
always add the same number of physical records to form one logical record.

DATA

CONTINUE_LOAD
 SQL*Loader Control File Reference 5-29

Assembling Logical Records from Physical Records
The syntax is:

CONCATENATEn

where n indicates the number of physical records to combine.

If the number of physical records to be continued varies, then CONTINUEIF must
be used. The keyword CONTINUEIF is followed by a condition that is evaluated
for each physical record, as it is read. For example, two records might be combined
if there were a pound sign (#) in character position 80 of the first record. If any
other character were there, the second record would not be added to the first. The
full syntax for CONTINUEIF adds even more flexibility:

where:

THIS If the condition is true in the current record, then the next physi-
cal record is read and concatenated to the current physical
record, continuing until the condition is false. If the condition is
false, then the current physical record becomes the last physical
record of the current logical record. THIS is the default.

NEXT If the condition is true in the next record, then the current physi-
cal record is concatenated to the current record, continuing until
the condition is false.

pos_spec Specifies the starting and ending column numbers in the physi-
cal record.

Column numbers start with 1. Either a hyphen or a colon is
acceptable (start-end or start:end).

If you omit end, the length of the continuation field is the length
of the byte string or character string. If you use end, and the
length of the resulting continuation field is not the same as that
of the byte string or the character string, the shorter one is pad-
ded. Character strings are padded with blanks, hexadecimal
strings with zeroes.

CONTINUEIF pos_spec_operator

LAST operator

THIS X'hex_string'

'char_string'

(

NEXT

)

X'hex_string'

'char_string'
5-30 Oracle8 Utilities

Assembling Logical Records from Physical Records
Note: The positions in the CONTINUEIF clause refer to positions in each physi-
cal record. This is the only time you refer to character positions in physical
records. All other references are to logical records.

For CONTINUEIF THIS and CONTINUEIF NEXT, the continuation field is
removed from all physical records before the logical record is assembled. This
allows data values to span the records with no extra characters (continuation char-
acters) in the middle. Two examples showing CONTINUEIF THIS and CONTIN-
UEIF NEXT follow:

CONTINUEIF THIS
CONTINUEIF NEXT
(1:2) = ’%%’ (1:2) =’%%’

Assume physical data records 12 characters long and that a period means a space:

%%aaaaaaaa......aaaaaaaa....
%%bbbbbbbb....%%bbbbbbbb....
..cccccccc....%%cccccccc....
%%dddddddddd....dddddddddd..
%%eeeeeeeeee..%%eeeeeeeeee..
..ffffffffff..%%ffffffffff..

LAST This test is similar to THIS but the test is always against the last
non-blank character. If the last non-blank character in the cur-
rent physical record meets the test, then the next physical record
is read and concatenated to the current physical record, continu-
ing until the condition is false. If the condition is false in the cur-
rent record, then the current physical record is the last physical
record of the current logical record.

operator The supported operators are equal and not equal.

For the equal operator, the field and comparison string must
match exactly for the condition to be true. For the not equal
operator, they may differ in any character.

char_string A string of characters to be compared to the continuation field
defined by start and end, according to the operator. The string
must be enclosed in double or single quotation marks. The com-
parison is made character by character, blank padding on the
right if necessary.

X’hex-string’ A string of bytes in hexadecimal format used in the same way
as the character string described above. X’1FB033 would repre-
sent the three bytes with values 1F, b), and 33 (hex).
 SQL*Loader Control File Reference 5-31

Assembling Logical Records from Physical Records
The logical records would be the same in each case:

aaaaaaaa....bbbbbbbb....cccccccc....
dddddddddd..eeeeeeeeee..ffffffffff..

Notes:

■ CONTINUEIF LAST differs from CONTINUEIF THIS and CONTINUEIF
NEXT. With CONTINUEIF LAST the continuation character is not removed
from the physical record. Instead, this character is included when the logical
record is assembled.

■ Trailing blanks in the physical records are part of the logical records.

Examples of How to Specify CONTINUEIF
In the first example, you specify that if the current physical record (record1) has an
asterisk in column 1. Then the next physical record (record2) should be appended
to it. If record2 also has an asterisk in column 1, then record3 is appended also.

If record2 does not have an asterisk in column 1, then it is still appended to
record1, but record3 begins a new logical record.

CONTINUEIF THIS (1) = ”*”

In the next example, you specify that if the current physical record (record1) has a
comma in the last non-blank data column. Then the next physical record (record2)
should be appended to it. If a record does not have a comma in the last column, it is
the last physical record of the current logical record.

CONTINUEIF LAST = ”,”

In the last example, you specify that if the next physical record (record2) has a “10”
in columns 7 and 8. Then it should be appended to the preceding physical record
(record1). If a record does not have a “10” in columns 7 and 8, then it begins a new
logical record.

CONTINUEIF NEXT (7:8) = ’10’

“Case 4: Loading Combined Physical Records” on page 4-14 provides an example
of the CONTINUEIF clause.
5-32 Oracle8 Utilities

Loading Logical Records into Tables
Loading Logical Records into Tables
This section describes the way in which you specify:

■ which tables you want to load

■ which records you want to load into them

■ default characteristics for the columns in those records

Specifying Table Names
The INTO TABLE keyword of the LOAD DATA statement allows you to identify
tables, fields, and datatypes. It defines the relationship between records in the data-
file and tables in the database. The specification of fields and datatypes is described
in later sections.

INTO TABLE
Among its many functions, the INTO TABLE keyword allows you to specify the
table into which you load data. To load multiple tables, you include one INTO
TABLE clause for each table you wish to load.

To begin an INTO TABLE clause, use the keywords INTO TABLE, followed by the
name of the Oracle table that is to receive the data.

The table must already exist. The table name should be enclosed in double quota-
tion marks if it is the same as any SQL or SQL*Loader keyword, if it contains any
special characters, or if it is case sensitive.

INTO TABLE SCOTT.”COMMENT”
INTO TABLE SCOTT.”Comment”
INTO TABLE SCOTT.”-COMMENT”

The user running SQL*Loader should have INSERT privileges on the table. Other-
wise, the table name should be prefixed by the username of the owner as follows:

INTO TABLE SOPHIA.EMP

INSERT

INTO TABLE

APPEND

REPLACE

TRUNCATE

OPTIONS (...)

tablename
 SQL*Loader Control File Reference 5-33

Loading Logical Records into Tables
Table-Specific Loading Method
The INTO TABLE clause may include a table-specific loading method (INSERT,
APPEND, REPLACE, or TRUNCATE) that applies only to that table. Specifying
one of these methods within the INTO TABLE clause overrides the global table-
loading method. The global table-loading method is INSERT, by default, unless a
different method was specified before any INTO TABLE clauses. For more informa-
tion on these options, see “Loading into Empty and Non-Empty Tables” on
page 5-25.

Table-Specific OPTIONS keyword
The OPTIONS keyword can be specified for individual tables in a parallel load. (It
is only valid for a parallel load.) For more information, see “Parallel Data Loading
Models” on page 8-25.

Choosing which Rows to Load
You can choose to load or discard a logical record by using the WHEN clause to
test a condition in the record.

The WHEN clause appears after the table name and is followed by one or more
field conditions.

For example, the following clause indicates that any record with the value “q” in
the fifth column position should be loaded:

WHEN (5) = ’q’

A WHEN clause can contain several comparisons provided each is preceded by
AND. Parentheses are optional, but should be used for clarity with multiple com-
parisons joined by AND. For example

WHEN (DEPTNO = ’10’) AND (JOB = ’SALES’)

WHEN field_condition

AND

)(’char_string’

X’hex_string’

BLANKS
pos_spec

field_condition ::=

columnname operator
5-34 Oracle8 Utilities

Loading Logical Records into Tables
To evaluate the WHEN clause, SQL*Loader first determines the values of all the
fields in the record. Then the WHEN clause is evaluated. A row is inserted into the
table only if the WHEN clause is true.

Field conditions are discussed in detail in “Specifying Field Conditions” on
page 5-37. “Case 5: Loading Data into Multiple Tables” on page 4-18 provides an
example of the WHEN clause.

Specifying Default Data Delimiters
If all data fields are terminated similarly in the datafile, you can use the FIELDS
clause to indicate the default delimiters. The syntax is:

You can override the delimiter for any given column by specifying it after the col-
umn name. “Case 3: Loading a Delimited, Free-Format File” on page 4-11 provides
an example. See “Specifying Delimiters” on page 5-60 for more information on
delimiter specification.

Handling Short Records with Missing Data
When the control file definition specifies more fields for a record than are present
in the record, SQL*Loader must determine whether the remaining (specified) col-
umns should be considered null or whether an error should be generated.

enclosure_spec

termination_spec

OPTIONALLY

termination_spec enclosure_spec

FIELDS

WHITESPACETERMINATED

BY

termination_spec ::=

’char’

X’hex_char’

enclosure_spec ::=

ENCLOSED

BY

’char’

X’hex_char’ ’char’

X’hex_char’
AND
 SQL*Loader Control File Reference 5-35

Index Options
If the control file definition explicitly states that a field’s starting position is beyond
the end of the logical record, then SQL*Loader always defines the field as null. If a
field is defined with a relative position (such as DNAME and LOC in the example
below), and the record ends before the field is found; then SQL*Loader could either
treat the field as null or generate an error. SQL*Loader uses the presence or absence
of the TRAILING NULLCOLS clause to determine the course of action.

TRAILING NULLCOLS
TRAILING NULLCOLS tells SQL*Loader to treat any relatively positioned col-
umns that are not present in the record as null columns.

For example, if the following data

10 Accounting

is read with the following control file

INTO TABLE dept
TRAILING NULLCOLS

(deptno CHAR TERMINATED BY ” ”,
dname CHAR TERMINATED BY WHITESPACE,
loc CHAR TERMINATED BY WHITESPACE

)

and the record ends after DNAME. The remaining LOC field is set to null. Without
the TRAILING NULLCOLS clause, an error would be generated due to missing
data.

“Case 7: Extracting Data from a Formatted Report” on page 4-27 provides an exam-
ple of TRAILING NULLCOLS.

Index Options
This section describes the SQL*Loader options that control how index entries are
created.

SORTED INDEXES Option
The SORTED INDEXES option applies to direct path loads. It tells SQL*Loader that
the incoming data has already been sorted on the specified indexes, allowing
SQL*Loader to optimize performance. Syntax for this feature is given in “High-
Level Syntax Diagrams” on page 5-4. Further details are in “SORTED INDEXES
Statement” on page 8-16.
5-36 Oracle8 Utilities

Specifying Field Conditions
SINGLEROW Option
The SINGLEROW option is intended for use during a direct path load with
APPEND on systems with limited memory, or when loading a small number of
rows into a large table. This option inserts each index entry directly into the index,
one row at a time.

By default, SQL*Loader does not use SINGLEROW when APPENDing rows to a
table. Instead, index entries are put into a separate, temporary storage area and
merged with the original index at the end of the load. This method achieves better
performance and produces an optimal index, but it requires extra storage space.
During the merge, the original index, the new index, and the space for new entries
all simultaneously occupy storage space.

With the SINGLEROW option, storage space is not required for new index entries
or for a new index. The resulting index may not be as optimal as a freshly sorted
one, but it takes less space to produce. It also takes more time, since additional
UNDO information is generated for each index insert. This option is suggested for
use when:

■ available storage is limited, or

■ the number of rows to be loaded is small compared to the size of the table (a
ratio of 1:20, or less, is recommended).

Specifying Field Conditions
A field condition is a statement about a field in a logical record that evaluates as
true or false. It is used in the NULLIF and DEFAULTIF clauses, as well as in the
WHEN clause.

A field condition is similar to the condition in the CONTINUEIF clause, with two
important differences. First, positions in the field condition refer to the logical
record, not to the physical record. Second, you may specify either a position in the
logical record or the name of a field that is being loaded.

)(

’char_string’

X’hex_string’

BLANKS

columnname

pos_spec
 SQL*Loader Control File Reference 5-37

Specifying Field Conditions
where:

Comparing Fields to BLANKS
The BLANKS keyword makes it possible to determine easily if a field of unknown
length is blank.

For example, use the following clause to load a blank field as null:

column_name ... NULLIF column_name =BLANKS

start Specifies the starting position of the comparison field in the logi-
cal record.

end Specifies the ending position of the comparison field in the logi-
cal record. Either start-end or start:end is acceptable, If you omit
end the length of the field is determined by the length of the
comparison string. If the lengths are different, the shorter field
is padded. Character strings are padded with blanks, hexadeci-
mal strings with zeroes.

column_name The name of a column in the database. If column_name is used
instead of start:end, the specification for that column defines the
comparison field. column_name must match exactly the name
of the column in the table’s database definition. Use quotes
around the column name if the name matches a SQL or
SQL*Loader keyword, contains special characters, or is of
mixed case. See “Specifying Filenames and Database Objects”
on page 5-12.

operator A comparison operator for either equal or not equal.

char_string A string of characters enclosed in single or double quotes that is
compared to the comparison field. If the comparison is true, the
current row is inserted into the table.

X’hex_string’ A byte string in hexadecimal format that is used in the same
way as char_string, described above.

BLANKS A keyword denoting an arbitrary number of blanks. See below.

pos_spec ::=

)(

:

–

end

start
5-38 Oracle8 Utilities

Specifying Columns and Fields
The BLANKS keyword only recognizes blanks, not tabs. It can be used in place of a
literal string in any field comparison. The condition is TRUE whenever the column
is entirely blank.

The BLANKS keyword also works for fixed-length fields. Using it is the same as
specifying an appropriately-sized literal string of blanks. For example, the follow-
ing specifications are equivalent:

fixed_field CHAR(2) NULLIF (fixed_field)=BLANKS
fixed_field CHAR(2) NULLIF (fixed_field)=” ”

Note: There can be more than one “blank” in a multi-byte character set. It is a good
idea to use the BLANKS keyword with these character sets instead of specifying a
string of blank characters. The character string will match only a specific sequence
of blank characters, while the BLANKS keyword will match combinations of differ-
ent blank characters. For more information on multi-byte character sets, see “Multi-
Byte (Asian) Character Sets” on page 5-24.

Comparing Fields to Literals
When a data field is compared to a shorter literal string, the string is padded for the
comparison; character strings are padded with blanks; for example:

NULLIF (1:4)=”_”

compares the data in position 1:4 with 4 blanks. If position 1:4 contains 4 blanks,
then the clause evaluates as true.

Hexadecimal strings are padded with hexadecimal zeroes. The clause

NULLIF (1:4)=X’FF’

compares position 1:4 to hex ’FF000000’.

Specifying Columns and Fields
You may load any number of a table’s columns. Columns defined in the database,
but not specified in the control file, are assigned null values (this is the proper way
to insert null values).

A column specification is the name of the column, followed by a specification for the
value to be put in that column. The list of columns is enclosed by parentheses and
separated with commas as follows:

(columnspec , columnspec , ...)
 SQL*Loader Control File Reference 5-39

Specifying the Position of a Data Field
Each column name must correspond to a column of the table named in the INTO
TABLE clause. A column name must be enclosed in quotation marks if it is a SQL
or SQL*Loader reserved word, contains special characters, or is case sensitive.

If the value is to be generated by SQL*Loader, the specification includes the key-
word RECNUM, the SEQUENCE function, or the keyword CONSTANT. See “Gen-
erating Data” on page 5-46.

If the column’s value is read from the datafile, the data field that contains the col-
umn’s value is specified. In this case, the column specification includes a column
name that identifies a column in the database table, and a field specification that
describes a field in a data record. The field specification includes position,
datatype, null restrictions, and defaults.

Specifying the Datatype of a Data Field
A field’s datatype specification tells SQL*Loader how to interpret the data in the
field. For example, a datatype of INTEGER specifies binary data, while INTEGER
EXTERNAL specifies character data that represents a number. A CHAR field, how-
ever, can contain any character data.

You may specify one datatype for each field; if unspecified, CHAR is assumed.

“Specifying Datatypes” on page 5-50 describes how SQL*Loader datatypes are con-
verted into Oracle datatypes and gives detailed information on each SQL*Loader’s
datatype.

Before the datatype is specified, the field’s position must be specified.

Specifying the Position of a Data Field
To load data from the datafile SQL*Loader must know a field’s location and its
length. To specify a field’s position in the logical record, use the POSITION key-
word in the column specification. The position may either be stated explicitly or rel-
ative to the preceding field. Arguments to POSITION must be enclosed in
parentheses, as follows:

)start

:

–

end

POSITION (

*

+n
5-40 Oracle8 Utilities

Specifying the Position of a Data Field
where:

You may omit POSITION entirely. If you do, the position specification for the data
field is the same as if POSITION(*) had been used.

For example

ENAME POSITION (1:20) CHAR
EMPNO POSITION (22-26) INTEGER EXTERNAL
ALLOW POSITION (*+2) INTEGER EXTERNAL TERMINATED BY ”/”

Column ENAME is character data in positions 1 through 20, followed by column
EMPNO, which is presumably numeric data in columns 22 through 27. Column
ALLOW is offset from the end of EMPNO by +2. So it starts in column 29 and
continues until a slash is encountered.

Using POSITION with Data Containing TABs
When you are determining field positions, be alert for TABs in the datafile. The fol-
lowing situation is highly likely when using SQL*Loader’s advanced SQL string
capabilities to load data from a formatted report:

■ You look at a printed copy of the report, carefully measuring all of the charac-
ter positions, and create your control file.

■ The load then fails with multiple “invalid number” and “missing field” errors.

start The starting column of the data field in the logical record. The
first character position in a logical record is 1.

end The ending position of the data field in the logical record. Either
start-end or start:end is acceptable. If you omit end, the
length of the field is derived from the datatype in the datafile.
Note that CHAR data specified without start or end is
assumed to be length 1. If it is impossible to derive a length
from the datatype, an error message is issued.

* Specifies that the data field follows immediately after the previ-
ous field. If you use * for the first data field in the control file,
that field is assumed to be at the beginning of the logical record.
When you use * to specify position, the length of the field is
derived from the datatype.

+n You can use an on offset, specified as +n, to offset the current
field from the previous field. A number of characters as speci-
fied by n are skipped before reading the value for the current
field.
 SQL*Loader Control File Reference 5-41

Specifying the Position of a Data Field
These kinds of errors occur when the data contains TABs. When printed, each TAB
expands to consume several columns on the paper. In the datafile, however, each
TAB is still only one character. As a result, when SQL*Loader reads the datafile, the
POSITION specifications are wrong.

To fix the problem, inspect the datafile for tabs and adjust the POSITION specifica-
tions, or else use delimited fields.

The use of delimiters to specify relative positioning of fields is discussed in
detail in “Specifying Delimiters” on page 5-60. Especially note how the delimiter
WHITESPACE can be used.

Using POSITION with Multiple Table Loads
In a multiple table load, you specify multiple INTO TABLE clauses. When you spec-
ify POSITION(*) for the first column of the first table, the position is calculated rela-
tive to the beginning of the logical record. When you specify POSITION(*) for the
first column of subsequent tables, the position is calculated relative to the last col-
umn of the last table loaded.

Thus, when a subsequent INTO TABLE clause begins, the position is not set to the
beginning of the logical record automatically. This allows multiple INTO TABLE
clauses to process different parts of the same physical record. For an example, see
the second example in “Extracting Multiple Logical Records” on page 5-43.

A logical record may contain data for one of two tables, but not both. In this case,
you would reset POSITION. Instead of omitting the position specification or using
POSITION(*+n) for the first field in the INTO TABLE clause, use POSITION(1) or
POSITION(n).

Some examples follow:

SITEID POSITION (*) SMALLINT
SITELOC POSITION (*) INTEGER

If these were the first two column specifications, SITEID would begin in column1,
and SITELOC would begin in the column immediately following.

ENAME POSITION (1:20) CHAR
EMPNO POSITION (22-26) INTEGER EXTERNAL
ALLOW POSITION (*+2) INTEGER EXTERNAL TERMINATED BY ”/”

Column ENAME is character data in positions 1 through 20, followed by column
EMPNO which is presumably numeric data in columns 22 through 26. Column
ALLOW is offset from the end of EMPNO by +2, so it starts in column 28 and con-
tinues until a slash is encountered.
5-42 Oracle8 Utilities

Using Multiple INTO TABLE Statements
Using Multiple INTO TABLE Statements
Multiple INTO TABLE statements allow you to:

■ load data into different tables

■ extract multiple logical records from a single input record

■ distinguish different input record formats

In the first case, it is common for the INTO TABLE statements to refer to the same
table. This section illustrates the different ways to use multiple INTO TABLE state-
ments and shows you how to use the POSITION keyword.

Note: A key point when using multiple INTO TABLE statements is that field scan-
ning continues from where it left off when a new INTO TABLE statement is processed.
The remainder of this section details important ways to make use of that behavior.
It also describes alternative ways using fixed field locations or the POSITION key-
word.

Extracting Multiple Logical Records
Some data storage and transfer media have fixed-length physical records. When
the data records are short, more than one can be stored in a single, physical record
to use the storage space efficiently.

In this example, SQL*Loader treats a single physical record in the input file as two
logical records and uses two INTO TABLE clauses to load the data into the EMP
table. For example, if the data looks like

1119 Smith 1120 Yvonne
1121 Albert 1130 Thomas

then the following control file extracts the logical records:

INTO TABLE emp
(empno POSITION(1:4) INTEGER EXTERNAL,
ename POSITION(6:15) CHAR)

INTO TABLE emp
(empno POSITION(17:20) INTEGER EXTERNAL,
ename POSITION(21:30) CHAR)
 SQL*Loader Control File Reference 5-43

Using Multiple INTO TABLE Statements
Relative Positioning
The same record could be loaded with a different specification. The following con-
trol file uses relative positioning instead of fixed positioning. It specifies that each
field is delimited by a single blank (“ ”), or with an undetermined number of
blanks and tabs (WHITESPACE):

INTO TABLE emp
(empno INTEGER EXTERNAL TERMINATED BY ” ”,
ename CHAR TERMINATED BY WHITESPACE)

INTO TABLE emp
(empno INTEGER EXTERNAL TERMINATED BY ” ”,
ename CHAR) TERMINATED BY WHITESPACE)

The important point in this example is that the second EMPNO field is found imme-
diately after the first ENAME, although it is in a separate INTO TABLE clause.
Field scanning does not start over from the beginning of the record for a new INTO
TABLE clause. Instead, scanning continues where it left off.

To force record scanning to start in a specific location, you use the POSITION key-
word. That mechanism is described next.

Distinguishing Different Input Record Formats
A single datafile might contain records in a variety of formats. Consider the follow-
ing data, in which EMP and DEPT records are intermixed:

1 50 Manufacturing — DEPT record
2 1119 Smith 50 — EMP record
2 1120 Snyder 50
1 60 Shipping
2 1121 Stevens 60

A record ID field distinguishes between the two formats. Department records have
a “1” in the first column, while employee records have a “2”. The following control
file uses exact positioning to load this data:

INTO TABLE dept
WHEN recid = 1
(recid POSITION(1:1) INTEGER EXTERNAL,
deptno POSITION(3:4) INTEGER EXTERNAL,
ename POSITION(8:21) CHAR)

INTO TABLE emp
WHEN recid <> 1
(recid POSITION(1:1) INTEGER EXTERNAL,
empno POSITION(3:6) INTEGER EXTERNAL,
5-44 Oracle8 Utilities

Using Multiple INTO TABLE Statements
ename POSITION(8:17) CHAR,
deptno POSITION(19:20) INTEGER EXTERNAL)

Relative Positioning
Again, the records in the previous example could also be loaded as delimited data.
In this case, however, it is necessary to use the POSITION keyword. The following
control file could be used:

INTO TABLE dept
WHEN recid = 1
(recid INTEGER EXTERNAL TERMINATED BY WHITESPACE,
deptno INTEGER EXTERNAL TERMINATED BY WHITESPACE,
dname CHAR TERMINATED BY WHITESPACE)

INTO TABLE emp
WHEN recid <> 1
(recid POSITION(1) INTEGER EXTERNAL TERMINATED BY ’ ’,
empno INTEGER EXTERNAL TERMINATED BY ’ ’
ename CHAR TERMINATED BY WHITESPACE,
deptno INTEGER EXTERNAL TERMINATED BY ’ ’)

The POSITION keyword in the second INTO TABLE clause is necessary to load
this data correctly. This keyword causes field scanning to start over at column 1
when checking for data that matches the second format. Without it, SQL*Loader
would look for the RECID field after DNAME.

Loading Data into Multiple Tables
By using the POSITION clause with multiple INTO TABLE clauses, data from a sin-
gle record can be loaded into multiple normalized tables. “Case 5: Loading Data
into Multiple Tables” on page 4-18 provides an example.

Summary
Multiple INTO TABLE clauses allow you to extract multiple logical records from a
single input record and recognize different record formats in the same file.

For delimited data, proper use of the POSITION keyword is essential for achieving
the expected results.

When the POSITION keyword is not used, multiple INTO TABLE clauses process
different parts of the same (delimited data) input record, allowing multiple tables
to be loaded from one record. When the POSITION keyword is used, multiple
INTO TABLE clauses can process the same record in different ways, allowing mul-
tiple formats to be recognized in one input file.
 SQL*Loader Control File Reference 5-45

Generating Data
Generating Data
The functions described in this section provide the means for SQL*Loader to gener-
ate the data stored in the database row, rather than reading it from a datafile. The
following functions are described:

■ CONSTANT

■ RECNUM

■ SYSDATE

■ SEQUENCE

Loading Data Without Files
It is possible to use SQL*Loader to generate data by specifying only sequences,
record numbers, system dates, and constants as field specifications.

SQL*Loader inserts as many rows as are specified by the LOAD keyword. The
LOAD keyword is required in this situation. The SKIP keyword is not permitted.

SQL*Loader is optimized for this case. Whenever SQL*Loader detects that only gen-
erated specifications are used, it ignores any specified datafile — no read I/O is per-
formed.

In addition, no memory is required for a bind array. If there are any WHEN clauses
in the control file, SQL*Loader assumes that data evaluation is necessary, and input
records are read.

Setting a Column to a Constant Value
This is the simplest form of generated data. It does not vary during the load, and it
does not vary between loads.

CONSTANT
To set a column to a constant value, use the keyword CONSTANT followed by a
value:

CONSTANT value

CONSTANT data is interpreted by SQL*Loader as character input. It is converted,
as necessary, to the database column type.
5-46 Oracle8 Utilities

Generating Data
You may enclose the value within quotation marks, and must do so if it contains
white space or reserved words. Be sure to specify a legal value for the target col-
umn. If the value is bad, every row is rejected.

Numeric values larger than 2**32 - 1 (4,294,967,295) must be enclosed in quotes.

Note: Do not use the CONSTANT keyword to set a column to null. To set a col-
umn to null, do not specify that column at all. Oracle automatically sets that col-
umn to null when loading the row. The combination of CONSTANT and a
value is a complete column specification.

Setting a Column to the Datafile Record Number
Use the RECNUM keyword after a column name to set that column to the number
of the logical record from which that row was loaded. Records are counted sequen-
tially from the beginning of the first datafile, starting with record 1. RECNUM is
incremented as each logical record is assembled. Thus it increments for records that
are discarded, skipped, rejected, or loaded. If you use the option SKIP=10, the first
record loaded has a RECNUM of 11.

RECNUM
The combination of column name and the RECNUM keyword is a complete col-
umn specification.

column_name RECNUM

Setting a Column to the Current Date
A column specified with SYSDATE gets the current system date, as defined by the
SQL language SYSDATE function. See the section “DATE Datatype” in Oracle8 SQL
Reference.

SYSDATE
The combination of column name and the SYSDATE keyword is a complete col-
umn specification.

column_name SYSDATE

The database column must be of type CHAR or DATE. If the column is of type
CHAR, then the date is loaded in the form ’dd-mon-yy.’ After the load, it can be
accessed only in that form. If the system date is loaded into a DATE column, then it
can be accessed in a variety of forms that include the time and the date.
 SQL*Loader Control File Reference 5-47

Generating Data
A new system date/time is used for each array of records inserted in a conven-
tional path load and for each block of records loaded during a direct path load.

Setting a Column to a Unique Sequence Number
The SEQUENCE keyword ensures a unique value for a particular column.
SEQUENCE increments for each record that is loaded or rejected. It does not incre-
ment for records that are discarded or skipped.

SEQUENCE
The combination of column name and the SEQUENCE function is a complete col-
umn specification.

where:

If a row is rejected (that is, it has a format error or causes an Oracle error), the gen-
erated sequence numbers are not reshuffled to mask this. If four rows are assigned
sequence numbers 10, 12, 14, and 16 in a particular column, and the row with 12 is
rejected; the three rows inserted are numbered 10, 14, and 16, not 10, 12, 14. This
allows the sequence of inserts to be preserved despite data errors. When you cor-
rect the rejected data and reinsert it, you can manually set the columns to agree
with the sequence.

columnname The name of the column in the database to which to assign the
sequence.

SEQUENCE Use the SEQUENCE keyword to specify the value for a column.

n Specifies the specific sequence number to begin with

COUNT The sequence starts with the number of rows already in the
table plus the increment.

MAX The sequence starts with the current maximum value for the col-
umn plus the increment.

increment The value that the sequence number is to increment after a
record is loaded or rejected

columnname

)

MAX

COUNT

, increment

n(
SEQUENCE
5-48 Oracle8 Utilities

Generating Data
“Case 3: Loading a Delimited, Free-Format File” on page 4-11 provides an example
the SEQUENCE function.

Generating Sequence Numbers for Multiple Tables
Because a unique sequence number is generated for each logical input record,
rather than for each table insert, the same sequence number can be used when
inserting data into multiple tables. This is frequently useful behavior.

Sometimes, you might want to generate different sequence numbers for each INTO
TABLE clause. For example, your data format might define three logical records in
every input record. In that case, you can use three INTO TABLE clauses, each of
which inserts a different part of the record into the same table. Note that, when
you use SEQUENCE(MAX), SQL*Loader will use the maximum from each table which
can lead to inconsistencies in sequence numbers.

To generate sequence numbers for these records, you must generate unique num-
bers for each of the three inserts. There is a simple technique to do so. Use the num-
ber of table-inserts per record as the sequence increment and start the sequence
numbers for each insert with successive numbers.

Example
Suppose you want to load the following department names into the DEPT table.
Each input record contains three department names, and you want to generate the
department numbers automatically.

Accounting Personnel Manufacturing
Shipping Purchasing Maintenance
...

You could use the following control file entries to generate unique department
numbers:

INTO TABLE dept
(deptno sequence(1, 3),
dname position(1:14) char)

INTO TABLE dept
(deptno sequence(2, 3),
dname position(16:29) char)

INTO TABLE dept
(deptno sequence(3, 3),
dname position(31:44) char)
 SQL*Loader Control File Reference 5-49

Specifying Datatypes
The first INTO TABLE clause generates department number 1, the second num-
ber 2, and the third number 3. They all use 3 as the sequence increment (the
number of department names in each record). This control file loads Accounting
as department number 1, Personnel as 2, and Manufacturing as 3.

The sequence numbers are then incremented for the next record, so Shipping loads
as 4, Purchasing as 5, and so on.

Specifying Datatypes
This section describes SQL*Loader’s datatypes and explains how they are con-
verted to Oracle datatypes.

Datatype Conversions
The datatype specifications in the control file tell SQL*Loader how to interpret the
information in the datafile. The server defines the datatypes for the columns in the
database. The link between these two is the column name specified in the control file.

SQL*Loader extracts data from a field in the input file, guided by the datatype spec-
ification in the control file. SQL*Loader then sends the field to the server to be
stored in the appropriate column (as part of an array of row inserts). The server
does any necessary data conversion to store the data in the proper internal format.
The section “Data Conversion and Datatype Specification” on page 3-10 contains
diagrams that illustrate these points.

The datatype of the data in the file does not necessarily have to be the same as the
datatype of the column in the Oracle table. Oracle automatically performs conver-
sions, but you need to ensure that the conversion makes sense and does not gener-
ate errors. For instance, when a datafile field with datatype CHAR is loaded into a
database column with datatype NUMBER, you must make sure that the contents of
the character field represent a valid number.

Note: SQL*Loader does not contain datatype specifications for Oracle internal
datatypes such as NUMBER or VARCHAR2. SQL*Loader’s datatypes describe
data that can be produced with text editors (character datatypes) and with stan-
dard programming languages (native datatypes). However, although
SQL*Loader does not recognize datatypes like NUMBER and VARCHAR2, any
data that Oracle is capable of converting may be loaded into these or other data-
base columns.
5-50 Oracle8 Utilities

Specifying Datatypes
Native Datatypes
Some datatypes consist entirely of binary data or contain binary data in their imple-
mentation. See “Binary versus Character Data” on page 3-9 for a discussion of
binary vs. character data. These non-character datatypes are the native datatypes:

Since these datatypes contain binary data, most of them do not readily transport
across operating systems. (See “Loading Data Across Different Operating Systems”
on page 5-65.) RAW data and GRAPHIC data is the exceptions. SQL*Loader does
not attempt to interpret these datatypes, but simply stores them “as is”.

Additional Information: Native datatypes cannot be specified with delimiters.
The size of the native datatypes INTEGER, SMALLINT, FLOAT, and DOUBLE
are determined by the host operating system. Their size is fixed — it cannot be
overridden in the control file. (Refer to your Oracle operating system-specific
documentation for more information.) The sizes of the other native datatypes
may be specified in the control file.

INTEGER
The data is a full-word binary integer (unsigned). If you specify start:end in the
POSITION clause, end is ignored. The length of the field is the length of a full-
word integer on your system. (Datatype LONG INT in C.) This length cannot be
overridden in the control file.

INTEGER

SMALLINT
The data is a half-word binary integer (unsigned). If you specify start:end in the
POSITION clause, end is ignored. The length of the field is a half-word integer is
on your system.

SMALLINT

INTEGER ZONED

SMALLINT VARCHAR

FLOAT GRAPHIC

DOUBLE GRAPHIC EXTERNAL

BYTEINT VARGRAPHIC

(packed) DECIMAL RAW
 SQL*Loader Control File Reference 5-51

Specifying Datatypes
Additional Information: This is the SHORT INT datatype in the C program-
ming language. One way to determine its length is to make a small control file
with no data and look at the resulting log file. This length cannot be overridden
in the control file. See your Oracle operating system-specific documentation for
details.

FLOAT
The data is a single-precision, floating-point, binary number. If you specify end in
the POSITION clause, it is ignored. The length of the field is the length of a single-
precision, floating-point binary number on your system. (Datatype FLOAT in C.)
This length cannot be overridden in the control file.

DOUBLE
The data is a double-precision, floating-point binary number. If you specify end in
the POSITION clause, it is ignored. The length of the field is the length of a double-
precision, floating-point binary number on your system. (Datatype DOUBLE or
LONG FLOAT in C.) This length cannot be overridden in the control file.

DOUBLE

BYTEINT
The decimal value of the binary representation of the byte is loaded. For example,
the input character x”1C” is loaded as 28. The length of a BYTEINT field is always
1 byte. If POSITION(start:end) is specified, end is ignored.

The syntax for this datatype is

BYTEINT

An example is

(column1 position(1) BYTEINT,
column2 BYTEINT,
...
)

ZONED
ZONED data is in zoned decimal format: a string of decimal digits, one per byte,
with the sign included in the last byte. (In COBOL, this is a SIGN TRAILING field.)
The length of this field is equal to the precision (number of digits) that you specify.

The syntax for this datatype is:
5-52 Oracle8 Utilities

Specifying Datatypes
where precision is the number of digits in the number, and scale (if given) is the
number of digits to the right of the (implied) decimal point. For example:

sal POSITION(32) ZONED(8),

specifies an 8-digit integer starting at position 32.

DECIMAL
DECIMAL data is in packed decimal format: two digits per byte, except for the last
byte which contains a digit and sign. DECIMAL fields allow the specification of an
implied decimal point, so fractional values can be represented.

The syntax for the this datatype is:

where:

For example,

sal DECIMAL (7,2)

would load a number equivalent to +12345.67. In the data record, this field would
take up 4 bytes. (The byte length of a DECIMAL field is equivalent to (N+1)/2,
rounded up, where N is the number of digits in the value, and one is added for the
sign.)

precision The number of digits in a value. The character length of the
field, as computed from digits, is (digits + 2/2) rounded up.

scale The scaling factor, or number of digits to the right of the deci-
mal point. The default is zero (indicating an integer). scale
may be greater than the number of digits but cannot be nega-
tive.

)

, scale

ZONED (precision

)

, scale

DECIMAL (precision
 SQL*Loader Control File Reference 5-53

Specifying Datatypes
RAW
The data is raw, binary data loaded “as is”. It does not undergo character set con-
version. If loaded into a RAW database column, it is not converted by Oracle. If it is
loaded into a CHAR column, Oracle converts it to hexadecimal. It cannot be loaded
into a DATE or number column.

The syntax for this datatype is

The length of this field is the number of bytes specified in the control file. This
length is limited only by the length of the target column in the database and by
memory resources.

GRAPHIC
The data is a string of double-byte characters (DBCS). Oracle does not support
DBCS, however SQL*Loader reads DBCS as single bytes. Like RAW data,
GRAPHIC fields are stored without modification in whichever column you specify.

The syntax for this datatype is:

For GRAPHIC and GRAPHIC EXTERNAL, specifying POSITION(start:end) gives
the exact location of the field in the logical record. If you specify the length after the
GRAPHIC (EXTERNAL) keyword, however, then you give the number of double-
byte graphic characters. That value is multiplied by 2 to find the length of the field
in bytes. If the number of graphic characters is specified, then any length derived
from POSITION is ignored.

GRAPHIC EXTERNAL
If the DBCS field is surrounded by shift-in and shift-out characters, use GRAPHIC
EXTERNAL. This is identical to GRAPHIC, except that the first and last characters
(the shift-in and shift-out) are not loaded.

(

RAW

length)

(graphic_char_length)

GRAPHIC
5-54 Oracle8 Utilities

Specifying Datatypes
The syntax for this datatype is:

where:

For example, let [] represent shift-in and shift-out characters, and let # represent
any double-byte character.

To describe ####, use ”POSITION(1:4) GRAPHIC” or ”POSITION(1) GRAPHIC(2)”.

To describe [####], use ”POSITION(1:6) GRAPHIC EXTERNAL” or ”POSITION(1)
GRAPHIC EXTERNAL(2)”.

VARGRAPHIC
The data is a varying-length, double-byte character string. It consists of a length sub-
field followed by a string of double-byte characters (DBCS).

Additional Information: The size of the length subfield is the size of the
SQL*Loader SMALLINT datatype on your system (C type SHORT INT). See
“SMALLINT” on page 5-51 for more information.

The length of the current field is given in the first two bytes. This length is a count
of graphic (double-byte) characters. So it is multiplied by two to determine the
number of bytes to read.

The syntax for this datatype is

A maximum length specified after the VARGRAPHIC keyword does not include
the size of the length subfield. The maximum length specifies the number of
graphic (double byte) characters. So it is also multiplied by two to determine the
maximum length of the field in bytes.

GRAPHIC Data is double-byte characters.

EXTERNAL First and last characters are ignored.

graphic_char_length Length in DBCS (see GRAPHIC above).

(graphic_char_length)

GRAPHIC EXTERNAL

(

VARGRAPHIC

maximum_length)
 SQL*Loader Control File Reference 5-55

Specifying Datatypes
The default maximum field length is 4Kb graphic characters, or 8 Kb
(2 * 4Kb). It is a good idea to specify a maximum length for such fields whenever
possible, to minimize memory requirements. See “Determining the Size of the Bind
Array” on page 5-65 for more details.

The POSITION clause, if used, gives the location of the length subfield, not of the
first graphic character. If you specify POSITION(start:end), the end location deter-
mines a maximum length for the field. Both start and end identify single-character
(byte) positions in the file. Start is subtracted from (end + 1) to give the length of the
field in bytes. If a maximum length is specified, it overrides any maximum length
calculated from POSITION.

If a VARGRAPHIC field is truncated by the end of the logical record before its full
length is read, a warning is issued. Because a VARCHAR field’s length is embed-
ded in every occurrence of the input data for that field, it is assumed to be accurate.

VARGRAPHIC data cannot be delimited.

VARCHAR
A VARCHAR field is a varying-length character string. It is considered a native
datatype, rather than a character datatype because it includes binary data (a
length). It consists of a length subfield followed by a character string of the given
length.

Additional Information: The size of the length subfield is the size of the
SQL*Loader SMALLINT datatype on your system (C type SHORT INT). See
“SMALLINT” on page 5-51 for more information.

The syntax for this datatype is:

A maximum length specified in the control file does not include the size of the
length subfield. If you specify the optional maximum length after the VARCHAR
keyword, then a buffer of that size is allocated for these fields.

The default buffer size is 4 Kb. Specifying the smallest maximum length that is
needed to load your data can minimize SQL*Loader’s memory requirements, espe-
cially if you have many VARCHAR fields. See “Determining the Size of the Bind
Array” on page 5-65 for more details.

(

VARCHAR

maximum_length)
5-56 Oracle8 Utilities

Specifying Datatypes
The POSITION clause, if used, gives the location of the length subfield, not of the
first text character. If you specify POSITION(start:end), the end location determines
a maximum length for the field. Start is subtracted from (end + 1) to give the length
of the field in bytes. If a maximum length is specified, it overrides any length calcu-
lated from POSITION.

If a VARCHAR field is truncated by the end of the logical record before its full
length is read, a warning is issued. Because a VARCHAR field’s length is embed-
ded in every occurrence of the input data for that field, it is assumed to be accurate.

VARCHAR data cannot be delimited.

Conflicting Native Datatype Field Lengths
There are several ways to specify a length for a field. If multiple lengths are speci-
fied and they conflict, then one of the lengths takes precedence. A warning is
issued when a conflict exists. The following rules determine which field length is
used:

1. The size of INTEGER, SMALLINT, FLOAT, and DOUBLE data is fixed. It is not
possible to specify a length for these datatypes in the control file. If starting and
ending positions are specified, the end position is ignored — only the start posi-
tion is used.

2. If the length specified (or precision) of a DECIMAL, ZONED, GRAPHIC,
GRAPHIC EXTERNAL, or RAW field conflicts with the size calculated from a
POSITION(start:end) specification, then the specified length (or precision) is
used.

3. If the maximum size specified for a VARCHAR or VARGRAPHIC field con-
flicts with the size calculated from a POSITION(start:end) specification, then the
specified maximum is used.

For example, if the native datatype INTEGER is 4 bytes long and the following field
specification is given:

column1 POSITION(1:6) INTEGER

then a warning is issued, and the proper length (4) is used. In this case, the log file
shows the actual length used under the heading “Len” in the column table:

Column Name Position Len Term Encl Datatype
----------------------- --------- ----- ---- ---- ---------
COLUMN1 1:6 4 INTEGER
 SQL*Loader Control File Reference 5-57

Specifying Datatypes
Character Datatypes
The character datatypes are CHAR, DATE, and the numeric EXTERNAL datatypes.
These fields can be delimited and can have lengths (or maximum lengths) specified
in the control file.

CHAR
The data field contains character data. The length is optional and is taken from the
POSITION specification if it is not present here. If present, this length overrides the
length in the POSITION specification. If no length is given, CHAR data is assumed
to have a length of 1. The syntax is:

A field of datatype CHAR may also be variable-length delimited or enclosed.
See “Specifying Delimiters” on page 5-60.

Attention: If the column in the database table is defined as LONG, you must explic-
itly specify a maximum length (maximum for a LONG is 2 gigabytes) either with a
length specifier on the CHAR keyword or with the POSITION keyword. This guar-
antees that a large enough buffer is allocated for the value and is necessary even if
the data is delimited or enclosed.

DATE
The data field contains character data that should be converted to an Oracle date
using the specified date mask. The syntax is:

For example:

LOAD DATA
INTO TABLE DATES (COL_A POSITION (1:15) DATE ”DD-Mon-YYYY”)
BEGINDATA
1-Jan-1991
1-Apr-1991 28-Feb-1991

(

CHAR

delimiter_speclength)

(

DATE

delimiter_spec”mask”length)
5-58 Oracle8 Utilities

Specifying Datatypes
Attention: Whitespace is ignored and dates are parsed from left to right unless
delimiters are present.

The length specification is optional, unless a varying-length date mask is specified.
In the example above, the date mask specifies a fixed-length date format of 11 char-
acters. SQL*Loader counts 11 characters in the mask, and therefore expects a maxi-
mum of 11 characters in the field, so the specification works properly. But, with a
specification such as

DATE ”Month dd, YYYY”

the date mask is 14 characters, while the maximum length of a field such as

September 30, 1991

is 18 characters. In this case, a length must be specified. Similarly, a length is
required for any Julian dates (date mask “J”)—a field length is required any time
the length of the date string could exceed the length of the mask (that is, the count
of characters in the mask).

If an explicit length is not specified, it can be derived from the POSITION clause. It
is a good idea to specify the length whenever you use a mask, unless you are abso-
lutely sure that the length of the data is less than, or equal to, the length of the
mask.

An explicit length specification, if present, overrides the length in the POSITION
clause. Either of these overrides the length derived from the mask. The mask may
be any valid Oracle date mask. If you omit the mask, the default Oracle date mask
of “dd-mon-yy” is used. The length must be enclosed in parentheses and the mask
in quotation marks. “Case 3: Loading a Delimited, Free-Format File” on page 4-11
provides an example of the DATE datatype.

A field of datatype DATE may also be specified with delimiters. For more informa-
tion, see “Specifying Delimiters” on page 5-60.

A date field that consists entirely of whitespace produces an error unless NULLIF
BLANKS is specified. For more information, see “Loading All-Blank Fields” on
page 5-72.

MLSLABEL
This Trusted Oracle datatype stores the Trusted Oracle’s internal representation of
labels generated by multilevel secure operating systems. Trusted Oracle uses labels
to control database access.
 SQL*Loader Control File Reference 5-59

Specifying Datatypes
You can define a column using the MLSLABEL datatype in Oracle8 for compatibil-
ity with Trusted Oracle applications, but NULL is the only valid value for the col-
umn in Oracle8.

Numeric External Datatypes
The numeric external datatypes are the numeric datatypes (INTEGER, FLOAT, DEC-
IMAL, and ZONED) specified with the EXTERNAL keyword with optional length
and delimiter specifications. These datatypes are the human-readable, character
form of numeric data. Numeric EXTERNAL may be specified with lengths and
delimiters, just like CHAR data. Length is optional, but if specified, overrides POSI-
TION.

The syntax for this datatype is:

Attention: The data is a number in character form, not binary representation.
So these datatypes are identical to CHAR and are treated identically, except for
the use of DEFAULTIF. If you want the default to be null, use CHAR; if you
want it to be zero, use EXTERNAL. See also “Setting a Column to Null or
Zero” on page 5-71 and “DEFAULTIF Clause” on page 5-71.

FLOAT EXTERNAL Data Values
FLOAT EXTERNAL data can be given in either scientific or regular notation. Both
”5.33” and ”533E-2” are valid representations of the same value.

Specifying Delimiters
The boundaries of CHAR, DATE, MLSLABEL, or numeric EXTERNAL fields may
also be marked by specific delimiter characters contained in the input data record.
You indicate how the field is delimited by using a delimiter specification after speci-
fying the datatype.

Delimited data can be TERMINATED or ENCLOSED.

ZONED

DECIMAL

INTEGER

FLOAT (

EXTERNAL

delimiter_speclength)
5-60 Oracle8 Utilities

Specifying Datatypes
TERMINATED Fields
TERMINATED fields are read from the starting position of the field up to, but not
including, the first occurrence of the delimiter character. If the terminator delimiter
is found in the first column position, the field is null.

TERMINATED BY WHITESPACE
If TERMINATED BY WHITESPACE is specified, data is read until the first occur-
rence of a whitespace character (space, tab, newline). Then the current position is
advanced until no more adjacent whitespace characters are found. This allows field
values to be delimited by varying amounts of whitespace.

Enclosed Fields
Enclosed fields are read by skipping whitespace until a non-whitespace character is
encountered. If that character is the delimiter, then data is read up to the second
delimiter. Any other character causes an error.

If two delimiter characters are encountered next to each other, a single occurrence
of the delimiter character is used in the data value. For example, ’DON’’T’ is stored
as DON’T. However, if the field consists of just two delimiter characters, its value is
null. You may specify a TERMINATED BY clause, an ENCLOSED BY clause, or
both. If both are used, the TERMINATED BY clause must come first. The syntax for
delimiter specifications is:

termination_spec

OPTIONALLY

enclosure_spec

termination_spec enclosure_spec

X’hex_byte’

TERMINATED WHITESPACE

’char’BY

X’hex_byte’

ENCLOSED

’char’BY

‘char‘

X’hex_byte’ AND
 SQL*Loader Control File Reference 5-61

Specifying Datatypes
where:

Here are some examples, with samples of the data they describe:

TERMINATED BY ’,’ a data string,
ENCLOSED BY ’”’”a data string”
TERMINATED BY ’,’ ENCLOSED BY ’”’”a data string”,
ENCLOSED BY ”(” AND ’)’(a data string)

Delimiter Marks in the Data
Sometimes the same punctuation mark that is a delimiter also needs to be included
in the data. To make that possible, two adjacent delimiter characters are interpreted
as a single occurrence of the character, and this character is included in the data.
For example, this data:

(The delimiters are left parentheses, (, and right parentheses,)).)

with this field specification:

ENCLOSED BY ”(” AND ”)”

puts the following string into the database:

TERMINATED Data is read until the first occurrence of a delimiter.

BY An optional keyword for readability.

WHITESPACE Delimiter is any whitespace character including linefeed, form-
feed, or carriage return. (Only used with TERMINATED, not
with ENCLOSED.)

OPTIONALLY Data can be enclosed by the specified character. If SQL*Loader
finds a first occurrence of the character, it reads the data value
until if finds the second occurrence. If the data is not enclosed,
the data is read as a terminated field. If you specify an optional
enclosure, you must specify a TERMINATED BY clause (either
locally in the field definition or globally in the FIELDS clause.

ENCLOSED The data will be found between two delimiters.

char The delimiter is the single character char.

X’hex_byte’ The delimiter is the single character that has the value specified
by hex_byte in the character encoding scheme such as X’1F’
(equivalent to 31 decimal). “X” must be uppercase.

AND This keyword specifies a trailing enclosure delimiter which may
be different from the initial enclosure delimiter. If the AND
clause is not present, then the initial and trailing delimiters are
assumed to be the same.
5-62 Oracle8 Utilities

Specifying Datatypes
The delimiters are left paren’s, (, and right paren’s,).

For this reason, problems can arise when adjacent fields use the same delimiters.
For example, the following specification:

field1 TERMINATED BY ”/”
field2 ENCLOSED by ”/”

the following data will be interpreted properly:

This is the first string/ /This is the second string/

But if field1 and field2 were adjacent, then the results would be incorrect, because

This is the first string//This is the second string/

would be interpreted as a single character string with a ”/” in the middle, and that
string would belong to field1.

Maximum Length of Delimited Data
The default maximum length of delimited data is 255 bytes. So delimited fields
can require significant amounts of storage for the bind array. A good policy is to
specify the smallest possible maximum value; see “Determining the Size of the
Bind Array” on page 5-65.

Loading Trailing Blanks with Delimiters
Trailing blanks can only be loaded with delimited datatypes. If a data field is nine
characters long and contains the value DANIELbbb, where bbb is three blanks, it is
loaded into Oracle as “DANIEL” if declared as CHAR(9). If you want the trailing
blanks, you could declare it as CHAR(9) TERMINATED BY ‘:’, and add a colon to
the datafile so that the field is DANIELbbb:. This field is loaded as “DANIEL ”,
with the trailing blanks. For more discussion on whitespace in fields, see “Trim-
ming Blanks and Tabs” on page 5-72.

Conflicting Character Datatype Field Lengths
A control file can specify multiple lengths for the character-data fields CHAR,
DATE, MLSLABEL, and numeric EXTERNAL. If conflicting lengths are specified,
one of the lengths takes precedence. A warning is also issued when a conflict exists.
This section explains which length is used.
 SQL*Loader Control File Reference 5-63

Specifying Datatypes
Predetermined Size Fields
If you specify a starting position and ending position for one of these fields, then
the length of the field is determined by these specifications. If you specify a length
as part of the datatype and do not give an ending position, the field has the given
length. If starting position, ending position, and length are all specified, and the
lengths differ; then the length given as part of the datatype specification is used for
the length of the field. For example, if

position(1:10) char(15)

is specified, then the length of the field is 15.

Delimited Fields
If a delimited field is specified with a length, or if a length can be calculated from
the starting and ending position, then that length is the maximum length of the
field. The actual length can vary up to that maximum, based on the presence of the
delimiter. If a starting and ending position are both specified for the field and if a
field length is specified in addition, then the specified length value overrides the
length calculated from the starting and ending position.

If the expected delimiter is absent and no maximum length has been specified, then
the end of record terminates the field. If TRAILING NULLCOLS is specified,
remaining fields are null. If either the delimiter or the end of record produce a field
that is longer than the specified maximum, SQL*Loader generates an error.

Date Field Masks
The length of a date field depends on the mask, if a mask is specified. The mask
provides a format pattern, telling SQL*Loader how to interpret the data in the
record. For example, if the mask is specified as:

”Month dd, yyyy”

then “May 3, 1991” would occupy 11 character positions in the record, while “Janu-
ary 31, 1992” would occupy 16.

If starting and ending positions are specified, however, then the length calculated
from the position specification overrides a length derived from the mask. A speci-
fied length such as “DATE (12)” overrides either of those. If the date field is also
specified with terminating or enclosing delimiters, then the length specified in the
control file is interpreted as a maximum length for the field.
5-64 Oracle8 Utilities

Determining the Size of the Bind Array
Loading Data Across Different Operating Systems
When a datafile is created on one operating system that is to be loaded under a dif-
ferent operating system, the data must be written in a form that the target system
can read. For example, if the source system has a native, floating-point representa-
tion that uses 16 bytes, and the target system’s floating-point numbers are 12 bytes;
then there is no way for the target system to directly read data generated on the
source system. One solution is to load data across a Net8 database link, taking
advantage of the automatic conversion of datatypes. This is the recommended
approach, whenever feasible.

In general, the problems of inter-operating system loads occur with the native
datatypes. Sometimes, it is possible to get around them by padding a field with
zeros to lengthen it, or reading only part of the field to shorten it. (For example,
when an 8-byte integer is to be read on a system that uses 6-byte integers, or vice
versa.) Frequently, however, problems of incompatible byte-ordering, or incompati-
ble implementations of the datatypes, make even this approach unworkable.

Without a Net8 database link, it is a good idea to use only the CHAR, DATE, and
NUMERIC EXTERNAL datatypes. Datafiles written in this manner are longer than
those written with native datatypes. They take more time to load, but they trans-
port most readily across operating systems. However, where incompatible byte-
ordering is an issue, special filters may still be required to reorder the data.

Determining the Size of the Bind Array
The determination of bind array size pertains to SQL*Loader’s conventional path
option. It does not apply to the direct path load method. Because a direct path load
formats database blocks directly, rather than using Oracle’s SQL interface, it does
not use a bind array.

SQL*Loader uses the SQL array-interface option to transfer data to the database.
Multiple rows are read at one time and stored in the bind array. When SQL*Loader
sends Oracle an INSERT command, the entire array is inserted at one time. After
the rows in the bind array are inserted, a COMMIT is issued.

Minimum Requirements
The bind array has to be large enough to contain a single row. If the maximum row
length exceeds the size of the bind array, as specified by the BINDSIZE parameter,
SQL*Loader generates an error. Otherwise, the bind array contains as many rows
as can fit within it, up to the limit set by the value of the ROWS parameter.
 SQL*Loader Control File Reference 5-65

Determining the Size of the Bind Array
The BINDSIZE and ROWS parameters are described in “Command-Line Key-
words” on page 6-3.

Although the entire bind array need not be in contiguous memory, the buffer for
each field in the bind array must occupy contiguous memory. If the operating sys-
tem cannot supply enough contiguous memory to store a field, SQL*Loader gener-
ates an error.

Performance Implications
To minimize the number of calls to Oracle and maximize performance, large bind
arrays are preferable. In general, you gain large improvements in performance with
each increase in the bind array size up to 100 rows. Increasing the bind array size
above 100 rows generally delivers more modest improvements in performance. So
the size (in bytes) of 100 rows is typically a good value to use. The remainder of
this section details the method for determining that size.

In general, any reasonably large size will permit SQL*Loader to operate effectively.
It is not usually necessary to perform the detailed calculations described in this sec-
tion. This section should be read when maximum performance is desired, or when
an explanation of memory usage is needed.

Specifying Number of Rows vs. Size of Bind Array
When you specify a bind array size using the command-line parameter BINDSIZE
(see “BINDSIZE (maximum size)” on page 6-3) or the OPTIONS clause in the con-
trol file (see “OPTIONS” on page 5-11), you impose an upper limit on the bind
array. The bind array never exceeds that maximum.

As part of its initialization, SQL*Loader determines the space required to load a sin-
gle row. If that size is too large to fit within the specified maximum, the load termi-
nates with an error.

SQL*Loader then multiplies that size by the number of rows for the load, whether
that value was specified with the command-line parameter ROWS (see “ROWS
(rows per commit)” on page 6-6) or the OPTIONS clause in the control file (see
“OPTIONS” on page 5-11). If that size fits within the bind array maximum, the load
continues—SQL*Loader does not try to expand the number of rows to reach the
maximum bind array size. If the number of rows and the maximum bind array size
are both specified, SQL*Loader always uses the smaller value for the bind array.

If the maximum bind array size is too small to accommodate the initial number of
rows, SQL*Loader uses a smaller number of rows that fits within the maximum.
5-66 Oracle8 Utilities

Determining the Size of the Bind Array
Calculations
The bind array’s size is equivalent to the number of rows it contains times the maxi-
mum length of each row. The maximum length of a row is equal to the sum of the
maximum field lengths, plus overhead.

bind array size = (number of rows) * (maximum row length)

where:

(maximum row length) = SUM(fixed field length s) +
SUM(maximum varying field lengths) +
SUM(overhead for varying length fields)

Many fields do not vary in size. These fixed-length fields are the same for each
loaded row. For those fields, the maximum length of the field is the field size, in
bytes, as described in “Specifying Datatypes” on page 5-50. There is no overhead
for these fields.

The fields that can vary in size from row to row are

VARCHAR VARGRAPHIC
CHAR DATE
numeric EXTERNAL

The maximum length of these datatypes is described in “Specifying Datatypes” on
page 5-50. The maximum lengths describe the number of bytes, or character posi-
tions, that the fields can occupy in the input data record. That length also describes
the amount of storage that each field occupies in the bind array, but the bind array
includes additional overhead for fields that can vary in size.

When the character datatypes (CHAR, DATE, and numeric EXTERNAL) are speci-
fied with delimiters, any lengths specified for these fields are maximum lengths.
When specified without delimiters, the size in the record is fixed, but the size of the
inserted field may still vary, due to whitespace trimming. So internally, these
datatypes are always treated as varying-length fields—even when they are fixed-
length fields.

A length indicator is included for each of these fields in the bind array. The space
reserved for the field in the bind array is large enough to hold the longest possible
value of the field. The length indicator gives the actual length of the field for each
row.
 SQL*Loader Control File Reference 5-67

Determining the Size of the Bind Array
In summary:

bind array size =
(number of rows) * (SUM(fixed field lengths)

+ SUM(maximum varying field lengths)
+ ((number of varying length fields)

* (size of length-indicator))
)

Determining the Size of the Length Indicator
On most systems, the size of the length indicator is two bytes. On a few systems, it
is three bytes. To determine its size, use the following control file:

OPTIONS (ROWS=1)
LOAD DATA
INFILE *
APPEND
INTO TABLE DEPT
(deptno POSITION(1:1) CHAR)
BEGINDATA
a

This control file “loads” a one-character field using a one-row bind array. No data
is actually loaded, due to the numeric conversion error that occurs when “a” is
loaded as a number. The bind array size shown in the log file, minus one (the
length of the character field) is the value of the length indicator.

Note: A similar technique can determine bind array size without doing any cal-
culations. Run your control file without any data and with ROWS=1 to deter-
mine the memory requirements for a single row of data. Multiply by the
number of rows you want in the bind array to get the bind array size.

Calculating the Size of Field Buffers
The following tables summarize the memory requirements for each datatype. “L”
is the length specified in the control file. “P” is precision. “S” is the size of the
length indicator. For more information on these values, see “Specifying Datatypes”
on page 5-50.
5-68 Oracle8 Utilities

Determining the Size of the Bind Array
Table 5–1 Invariant fields

Datatype Size

INTEGER

OS-dependent

SMALLINT

FLOAT

DOUBLE

Table 5–2 Non-graphic fields

Datatype Default Size Specified Size

(packed) DECIMAL None (P+1)/2, rounded up

ZONED None P

RAW None L

CHAR (no delimiters) 1

L+S

DATE (no delimiters) None

numeric EXTERNAL (no delimiters) None

MLSLABEL None

Table 5–3 Graphic fields

Datatype Default Size
Length Specified
with POSITION

Length Specified
with D ATATYPE

GRAPHIC None L 2*L

GRAPHIC
EXTERNAL

None L - 2 2*(L-2)

VARGRAPHIC 4Kb*2 L+S (2*L)+S
 SQL*Loader Control File Reference 5-69

Determining the Size of the Bind Array
Minimizing Memory Requirements for the Bind Array
Pay particular attention to the default sizes allocated for VARCHAR, VAR-
GRAPHIC, and the delimited forms of CHAR, DATE, and numeric EXTERNAL
fields. They can consume enormous amounts of memory—especially when multi-
plied by the number of rows in the bind array. It is best to specify the smallest pos-
sible maximum length for these fields. For example:

CHAR(10) TERMINATED BY ”,”

uses (10 + 2) * 64 = 768 bytes in the bind array, assuming that the length indicator is
two bytes long. However:

CHAR TERMINATED BY ”,”

uses (255 + 2) * 64 = 16,448 bytes, because the default maximum size for a delimited
field is 255. This can make a considerable difference in the number of rows that fit
into the bind array.

Multiple INTO TABLE Statements
When calculating a bind array size for a control file that has multiple INTO TABLE
statements, calculate as if the INTO TABLE statements were not present. Imagine
all of the fields listed in the control file as one, long data structure — that is, the for-
mat of a single row in the bind array.

If the same field in the data record is mentioned in multiple INTO TABLE clauses,
additional space in the bind array is required each time it is mentioned. So, it is
especially important to minimize the buffer allocations for fields like these.

Table 5–4 Variable-length fields

Datatype Default Size
Maximum Length
Specified (L)

VARCHAR 4Kb L+S

CHAR (delimited)
DATE (delimited)
numeric EXTERNAL (delimited) 255 L+S
5-70 Oracle8 Utilities

Setting a Column to Null or Zero
Generated Data
Generated data is produced by the SQL*Loader functions CONSTANT, RECNUM,
SYSDATE, and SEQUENCE. Such generated data does not require any space in the
bind array.

Setting a Column to Null or Zero
If you want all inserted values for a given column to be null, omit the column’s
specifications entirely. To set a column’s values conditionally to null based on a test
of some condition in the logical record, use the NULLIF clause; see “NULLIF Key-
word” on page 5-71. To set a numeric column to zero instead of NULL, use the
DEFAULTIF clause, described next.

DEFAULTIF Clause
Using DEFAULTIF on numeric data sets the column to zero when the specified
field condition is true. Using DEFAULTIF on character(CHAR or DATE) data
sets the column to null (compare with “Numeric External Datatypes” on
page 5-60). See also “Specifying Field Conditions” on page 5-37 for details on the
conditional tests.

DEFAULTIF field_condition

A column may have both a NULLIF clause and a DEFAULTIF clause, although this
often would be redundant.

Note: The same effects can be achieved with the SQL string and the DECODE
function. See “Applying SQL Operators to Fields” on page 5-78

NULLIF Keyword
Use the NULLIF keyword after the datatype and optional delimiter specification,
followed by a condition. The condition has the same format as that specified for a
WHEN clause. The column’s value is set to null if the condition is true. Otherwise,
the value remains unchanged.

NULLIF field_condition

The NULLIF clause may refer to the column that contains it, as in the following
example:

COLUMN1 POSITION(11:17) CHAR NULLIF (COLUMN1 = ”unknown”)
 SQL*Loader Control File Reference 5-71

Loading All-Blank Fields
This specification may be useful if you want certain data values to be replaced by
nulls. The value for a column is first determined from the datafile. It is then set to
null just before the insert takes place. “Case 6: Loading Using the Direct Path Load
Method” on page 4-24 provides examples of the NULLIF clause.

Note: The same effect can be achieved with the SQL string and the NVL func-
tion. See “Applying SQL Operators to Fields” on page 5-78.

Null Columns at the End of a Record
When the control file specifies more fields for a record than are present in the
record, SQL*Loader must determine whether the remaining (specified) columns
should be considered null or whether an error should be generated. The TRAIL-
ING NULLCOLS clause, described in “TRAILING NULLCOLS” on page 5-36,
explains how SQL*Loader proceeds in this case.

Loading All-Blank Fields
Totally blank fields for numeric or DATE fields cause the record to be rejected. To
load one of these fields as null, use the NULLIF clause with the BLANKS keyword,
as described in the section “Comparing Fields to BLANKS” on page 5-38. “Case 6:
Loading Using the Direct Path Load Method” on page 4-24 provides examples of
how to load all-blank fields as null with the NULLIF clause.

If an all-blank CHAR field is surrounded by enclosure delimiters, then the blanks
within the enclosures are loaded. Otherwise, the field is loaded as null. More
details on whitespace trimming in character fields are presented in the following
section.

Trimming Blanks and Tabs
Blanks and tabs constitute whitespace. Depending on how the field is specified,
whitespace at the start of a field (leading whitespace) and at the end of a field (trailing
whitespace) may, or may not be, included when the field is inserted into the data-
base. This section describes the way character data fields are recognized, and how
they are loaded. In particular, it describes the conditions under which whitespace is
trimmed from fields.

Note: Specifying PRESERVE BLANKS changes this behavior. See “Preserving
Whitespace” on page 5-78 for more information.
5-72 Oracle8 Utilities

Trimming Blanks and Tabs
Datatypes
The information in this section applies only to fields specified with one of the char-
acter-data datatypes:

■ CHAR datatype

■ DATE datatype

■ numeric EXTERNAL datatypes:

– INTEGER EXTERNAL

– FLOAT EXTERNAL

– (packed) DECIMAL EXTERNAL

– ZONED (decimal) EXTERNAL

VARCHAR Fields
Although VARCHAR fields also contain character data, these fields are never
trimmed. A VARCHAR field includes all whitespace that is part of the field in the
datafile.

Field Length Specifications
There are two ways to specify field length. If a field has a constant length that is
defined in the control file, then it has a predetermined size. If a field’s length is not
known in advance, but depends on indicators in the record, then the field is delim-
ited.

Predetermined Size Fields
Fields that have a predetermined size are specified with a starting position and end-
ing position, or with a length, as in the following examples:

loc POSITION(19:31)
loc CHAR(14)

In the second case, even though the field’s exact position is not specified, the field’s
length is predetermined.
 SQL*Loader Control File Reference 5-73

Trimming Blanks and Tabs
Delimited Fields
Delimiters are characters that demarcate field boundaries. Enclosure delimiters sur-
round a field, like the quotes in:

”__aa__”

where ”__” represents blanks or tabs. Termination delimiters signal the end of a
field, like the comma in:

__aa__,

Delimiters are specified with the control clauses TERMINATED BY and
ENCLOSED BY, as shown in the following examples:

loc POSITION(19) TERMINATED BY ”,”
loc POSITION(19) ENCLOSED BY ’”’
loc TERMINATED BY ”.” OPTIONALLY ENCLOSED BY ’|’

Combining Delimiters with Predetermined Size
If predetermined size is specified for a delimited field, and the delimiter is not
found within the boundaries indicated by the size specification; then an error is
generated. For example, if you specify:

loc POSITION(19:31) CHAR TERMINATED BY ”,”

and no comma is found between positions 19 and 31 of the input record, then the
record is rejected. If a comma is found, then it delimits the field.

Relative Positioning of Fields
When a starting position is not specified for a field, it begins immediately after the
end of the previous field. Figure 5–1 illustrates this situation when the previous
field has a predetermined size.

Figure 5–1 Relative Positioning After a Fixed Field

Field 1 CHAR(9)

a a a a b b b b ,

Field 2 TERMINATED BY ","
5-74 Oracle8 Utilities

Trimming Blanks and Tabs
If the previous field is terminated by a delimiter, then the next field begins immedi-
ately after the delimiter, as shown in Figure 5–2.

Figure 5–2 Relative Positioning After a Delimited Field

When a field is specified both with enclosure delimiters and a termination delim-
iter, then the next field starts after the termination delimiter, as shown in
Figure 5–3. If a non-whitespace character is found after the enclosure delimiter, but
before the terminator, then SQL*Loader generates an error.

Figure 5–3 Relative Positioning After Enclosure Delimiters

Leading Whitespace
In Figure 5–3, both fields are stored with leading whitespace. Fields do not include
leading whitespace in the following cases:

■ when the previous field is terminated by whitespace, and no starting position
is specified for the current field

■ when optional enclosure delimiters are specified for the field, and the enclo-
sure delimiters are not present

These cases are illustrated in the following sections.

Previous Field Terminated by Whitespace
If the previous field is TERMINATED BY WHITESPACE, then all the whitespace
after the field acts as the delimiter. The next field starts at the next non-whitespace
character. Figure 5–4 illustrates this case.

a a a a , b b b b ,

Field 2 TERMINATED BY ","Field 1 TERMINATED BY ","

" a a a a " , b b b b ,

Field 2 TERMINATED BY ","
Field 1 TERMINATED BY ","

ENCLOSED BY ' " '
 SQL*Loader Control File Reference 5-75

Trimming Blanks and Tabs
Figure 5–4 Fields Terminated by Whitespace

This situation occurs when the previous field is explicitly specified with the TERMI-
NATED BY WHITESPACE clause, as shown in the example. It also occurs when
you use the global FIELDS TERMINATED BY WHITESPACE clause.

Optional Enclosure Delimiters
Leading whitespace is also removed from a field when optional enclosure delimit-
ers are specified but not present.

Whenever optional enclosure delimiters are specified, SQL*Loader scans forward,
looking for the first delimiter. If none is found, then the first non-whitespace charac-
ter signals the start of the field. SQL*Loader skips over whitespace, eliminating it
from the field. This situation is shown in Figure 5–5.

Figure 5–5 Fields Terminated by Optional Enclosing Delimiters

Unlike the case when the previous field is TERMINATED BY WHITESPACE, this
specification removes leading whitespace even when a starting position is specified
for the current field.

Note: If enclosure delimiters are present, leading whitespace after the initial
enclosure delimiter is kept, but whitespace before this delimiter is discarded.
See the first quote in FIELD1, Figure 5–5.

Trailing Whitespace
Trailing whitespace is only trimmed from character-data fields that have a predeter-
mined size. It is always trimmed from those fields.

a a a a b b b b

Field 2 TERMINATED
BY WHITESPACE

Field 1 TERMINATED
BY WHITESPACE

" a a a a " , b b b b ,

Field 2 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY ' " '

Field 1 TERMINATED BY " , "
OPTIONALLY ENCLOSED BY, ' " '
5-76 Oracle8 Utilities

Trimming Blanks and Tabs
Enclosed Fields
If a field is enclosed, or terminated and enclosed, like the first field shown in
Figure 5–5, then any whitespace outside the enclosure delimiters is not part of the
field. Any whitespace between the enclosure delimiters belongs to the field,
whether it is leading or trailing whitespace.

Trimming Whitespace: Summary
Table 5–5 summarizes when and how whitespace is removed from input data fields
when PRESERVE BLANKS is not specified. See the following section, “Preserving
Whitespace” on page 5-78, for details on how to prevent trimming.

Table 5–5 Trim Table

Specification Data Result Leading
Whitespace
Present (1)

Trailing
Whitespace
Present (1)

Predetermined Size __aa__ __aa Y N

Terminated __aa__, __aa__ Y Y (2)

Enclosed “__aa__” __aa__ Y Y

Terminated and
Enclosed

“__aa__”
,

__aa__ Y Y

Optional Enclosure
(present)

“__aa__”
,

__aa__ Y Y

Optional
Enclosure
(absent)

__aa__, aa__ N Y

Previous Field
Terminated by
Whitespace

__aa__ aa (3) N (3)

(1) When an allow-blank field is trimmed, its value is null.

(2) Except for fields that are TERMINATED BY WHITESPACE

(3) Presence of trailing whitespace depends on the current field’s
 specification, as shown by the other entries in the table.
 SQL*Loader Control File Reference 5-77

Preserving Whitespace
Preserving Whitespace
To prevent whitespace trimming in all CHAR, DATE, and NUMERIC EXTERNAL
fields, you specify PRESERVE BLANKS in the control file. Whitespace trimming is
described in the previous section, “Trimming Blanks and Tabs” on page 5-72.

PRESERVE BLANKS Keyword
PRESERVE BLANKS retains leading whitespace when optional enclosure delimit-
ers are not present. It also leaves trailing whitespace intact when fields are specified
with a predetermined size. This keyword preserves tabs and blanks; for example, if
the field

__aa__,

(where underscores represent blanks) is loaded with the following control clause:

TERMINATED BY ’,’ OPTIONALLY ENCLOSED BY ’”’

then both the leading whitespace and the trailing whitespace are retained if
PRESERVE BLANKS is specified. Otherwise, the leading whitespace is trimmed.

Note: The word BLANKS is not optional. Both words must be specified.

Terminated by Whitespace
When the previous field is terminated by whitespace, then PRESERVE BLANKS
does not preserve the space at the beginning of the next field, unless that field is
specified with a POSITION clause that includes some of the whitespace. Otherwise,
SQL*Loader scans past all whitespace at the end of the previous field until it finds
a non-blank, non-tab character.

Applying SQL Operators to Fields
A wide variety of SQL operators may be applied to field data with the SQL string.
This string may contain any combination of SQL expressions that are recognized by
Oracle as valid for the VALUES clause of an INSERT statement. In general, any
SQL function that returns a single value may be used. See the section “Expres-
sions” in the “Operators, Functions, Expressions, Conditions chapter in the Oracle8
SQL Reference.

The column name and the name of the column in the SQL string must match
exactly, including the quotation marks, as in this example of specifying the control
file:
5-78 Oracle8 Utilities

Applying SQL Operators to Fields
LOAD DATA
INFILE *
APPEND INTO TABLE XXX
("LAST" position(1:7) char "UPPER(:\"LAST\)",

FIRST position(8:15) char "UPPER(:FIRST)"
)
BEGINDATA
Phil Locke
Jason Durbin

The SQL string must be enclosed in double quotation marks. In the example above,
LAST must be in quotation marks because it is a SQL*Loader keyword. FIRST is
not a SQL*Loader keyword and therefore does not require quotation marks. To
quote the column name in the SQL string, you must escape it.

The SQL string appears after any other specifications for a given column. It is evalu-
ated after any NULLIF or DEFAULTIF clauses, but before a DATE mask. It may
not be used on RECNUM, SEQUENCE, CONSTANT, or SYSDATE fields. If the
RDBMS does not recognize the string, the load terminates in error. If the string is
recognized, but causes a database error, the row that caused the error is rejected.

Referencing Fields
To refer to fields in the record, precede the field name with a colon (:). Field values
from the current record are substituted. The following examples illustrate refer-
ences to the current field:

field1 POSITION(1:6) CHAR ”LOWER(:field1)”
field1 CHAR TERMINATED BY ’,’

NULLIF ((1) = ’a’) DEFAULTIF ((1)= ’b’)
”RTRIM(:field1)”

field1 CHAR(7) ”TRANSLATE(:field1, ’:field1’, ’:1’)”

In the last example, only the :field1 that is not in single quotes is interpreted as a col-
umn name. For more information on the use of quotes inside quoted strings, see
“Specifying Filenames and Database Objects” on page 5-12.

field1 POSITION(1:4) INTEGER EXTERNAL
”decode(:field2, ’22’, ’34’, :field1)”
 SQL*Loader Control File Reference 5-79

Applying SQL Operators to Fields
Referencing Fields That Are SQL*Loader Keywords
Other fields in the same record can also be referenced, as in this example:

field1 POSITION(1:4) INTEGER EXTERNAL
"decode(:field2, ’22’, ’34’, :field1)”

Common Uses
Loading external data with an implied decimal point:

field1 POSITION(1:9) DECIMAL EXTERNAL(8) ”:field1/1000”

Truncating fields that could be too long:

field1 CHAR TERMINATED BY ”,” ”SUBSTR(:field1, 1, 10)”

Combinations of Operators
Multiple operators can also be combined, as in the following examples:

field1 POSITION(*+3) INTEGER EXTERNAL
”TRUNC(RPAD(:field1,6,’0’), -2)”

field1 POSITION(1:8) INTEGER EXTERNAL
”TRANSLATE(RTRIM(:field1),’N/A’, ’0’)”

field1 CHARACTER(10)
”NVL(LTRIM(RTRIM(:field1)), ’unknown’)”

Use with Date Mask
When used with a date mask, the date mask is evaluated after the SQL string. A
field specified as:

field1 DATE ’dd-mon-yy’ ”RTRIM(:field1)”

would be inserted as:

TO_DATE(RTRIM(<field1_value>), ’dd-mon-yyyy’)

Interpreting Formatted Fields
It is possible to use the TO_CHAR operator to store formatted dates and numbers.
For example:

field1 ... ”TO_CHAR(:field1, ’$09999.99’)”
5-80 Oracle8 Utilities

Applying SQL Operators to Fields
could store numeric input data in formatted form, where field1 is a character col-
umn in the database. This field would be stored with the formatting characters (dol-
lar sign, period, and so on) already in place.

You have even more flexibility, however, if you store such values as numeric quan-
tities or dates. You can then apply arithmetic functions to the values in the data-
base, and still select formatted values for your reports.

The SQL string is used in “Case 7: Extracting Data from a Formatted Report” on
page 4-27 to load data from a formatted report.
 SQL*Loader Control File Reference 5-81

Applying SQL Operators to Fields
5-82 Oracle8 Utilities

 SQL*Loader Command-Line Refe
6

SQL*Loader Command-Line Reference

This chapter shows you how to run SQL*Loader with command-line keywords. If
you need detailed information about the command-line keywords listed here,
see Chapter 5, “SQL*Loader Control File Reference”.

This chapter covers the following subjects:

■ SQL*Loader Command Line

■ Command-Line Keywords

■ Index Maintenance Options

■ Exit Codes for Inspection and Display
rence 6-1

SQL*Loader Command Line
SQL*Loader Command Line
You can invoke SQL*Loader from the command line using certain keywords.

Additional Information: The command to invoke SQL*Loader is operating sys-
tem-dependent. The following examples use the UNIX-based name, “sqlldr”.
See your Oracle operating system-specific documentation for the correct com-
mand for your system.

If you invoke SQL*Loader with no keywords, SQL*Loader displays a help screen
with the available keywords and default values. The following example shows
default values that are the same on all operating systems.

sqlldr
...
Valid Keywords:

userid — Oracle username/password
control — Control file name

log — Log file name
bad — Bad file name

data — Data file name
discard — Discard file name

discardmax — Number of discards to allow
(Default all)

skip — Number of logical records to skip
(Default 0)

load - Number of logical records to load
(Default all)

errors — Number of errors to allow
(Default 50)

rows — Number of rows in conventional path bind array
or between direct path data saves
(Default: Conventional Path 64, Direct path all)

bindsize — Size of conventional path bind array in bytes
(System-dependent default)

silent — Suppress messages during run
(header, feedback, errors, discards, partitions, all)

direct — Use direct path
(Default FALSE)

parfile — Parameter file: name of file that contains
parameter specifications

parallel - Perform parallel load
(Default FALSE)

file - File to allocate extents from
6-2 Oracle8 Utilities

Command-Line Keywords
Using Command-Line Keywords
Keywords are optionally separated by commas. They are entered in any order. Key-
words are followed by valid arguments.

For example:

SQLLDR CONTROL=foo.ctl, LOG=bar.log, BAD=baz.bad, DATA=etc.dat
USERID=scott/tiger, ERRORS=999, LOAD=2000, DISCARD=toss.dis,
DISCARDMAX=5

Specifying Keywords in the Control File
If the command line’s length exceeds the size of the maximum command line on
your system, you can put some of the command-line keywords in the control file,
using the control file keyword OPTIONS. See “OPTIONS” on page 5-11.

They can also be specified in a separate file specified by the keyword PARFILE
(see “PARFILE (parameter file)” on page 6-6). These alternative methods are useful
for keyword entries that seldom change. Keywords specified in this manner can
still be overridden from the command line.

Command-Line Keywords
This section describes each available SQL*Loader command-line keyword.

BAD (bad file)
BAD specifies the name of the bad file created by SQL*Loader to store records that
cause errors during insert or that are improperly formatted. If a filename is not
specified, the name of the control file is used by default with the .BAD extension.
This file has the same format as the input datafile, so it can be loaded by the same
control file after updates or corrections are made.

A bad file filename specified on the command line becomes the bad file associated
with the first INFILE statement in the control file. If the bad file filename was also
specified in the control file, the command-line value overrides it.

BINDSIZE (maximum size)
BINDSIZE specifies the maximum size (bytes) of the bind array. The size of the
bind array given by BINDSIZE overrides the default size (which is system depen-
dent) and any size determined by ROWS. The bind array is discussed on “Deter-
mining the Size of the Bind Array” on page 5-65.
 SQL*Loader Command-Line Reference 6-3

Command-Line Keywords
CONTROL (control file)
CONTROL specifies the name of the control file that describes how to load data. If
a file extension or file type is not specified, it defaults to CTL. If omitted,
SQL*Loader prompts you for the file name.

Note: If your control filename contains special characters, your operating
system will require that they be escaped. See your operating system docu-
mentation.

Note also that if your operating system uses backslashes in its filesystem
paths, you need to keep the following in mind:

■ a backslash followed by a non-backslash will be treated normally.

■ Two consecutive backslashes are treated as one backslash.

■ Three consecutive backslashes will be treated as two backslashes.

■ Placing the path in quotes will eliminate the need to escape multiple
backslashes. However, note that some operating systems require that
quotes themselves be escaped.

DATA (data file)
DATA specifies the name of the data file containing the data to be loaded. If a file-
name is not specified, the name of the control file is used by default. If you do not
specify a file extension or file type the default is .DAT.

DIRECT (data path)
DIRECT specifies the data path, that is, the load method to use, either conventional
path or direct path. TRUE specifies a direct path load. FALSE specifies a conven-
tional path load. The default is FALSE. Load methods are explained in Chapter 8,
“SQL*Loader: Conventional and Direct Path Loads”.

DISCARD (discard file)
DISCARD specifies a discard file (optional) to be created by SQL*Loader to store
records that are neither inserted into a table nor rejected. If a filename is not speci-
fied, it defaults to DSC. This file has the same format as the input datafile. So it can
be loaded by the same control file after appropriate updates or corrections are
made.
6-4 Oracle8 Utilities

Command-Line Keywords
A discard file filename specified on the command line becomes the discard file asso-
ciated with the first INFILE statement in the control file. If the discard file filename
is specified also in the control file, the command-line value overrides it.

DISCARDMAX (discards to disallow)
DISCARDMAX specifies the number of discard records that will terminate the
load. The default value is all discards are allowed. To stop on the first discarded
record, specify one (1).

ERRORS (errors to allow)
ERRORS specifies the maximum number of insert errors to allow. If the number of
errors exceeds the value of ERRORS parameter, SQL*Loader terminates the load.
The default is 50. To permit no errors at all, set ERRORS=0. To specify that all
errors be allowed, use a very high number.

On a single table load, SQL*Loader terminates the load when errors exceed this
error limit. Any data inserted up that point, however, is committed.

SQL*Loader maintains the consistency of records across all tables. Therefore, multi-
table loads do not terminate immediately if errors exceed the error limit. When
SQL*loader encounters the maximum number of errors for a multi-table load, it
continues to load rows to ensure that valid rows previously loaded into tables
are loaded into all tables and/or rejected rows filtered out of all tables.

In all cases, SQL*Loader writes erroneous records to the bad file.

FILE (file to load into)
FILE specifies the database file to allocate extents from. It is used only for parallel
loads. By varying the value of the FILE parameter for different SQL*Loader pro-
cesses, data can be loaded onto a system with minimal disk contention. For more
information, see “Parallel Data Loading Models” on page 8-25.

LOAD (records to load)
LOAD specifies the maximum number of logical records to load (after skipping the
specified number of records). By default all records are loaded. No error occurs if
fewer than the maximum number of records are found.
 SQL*Loader Command-Line Reference 6-5

Command-Line Keywords
LOG (log file)
LOG specifies the log file which SQL*Loader will create to store logging informa-
tion about the loading process. If a filename is not specified, the name of the control
file is used by default with the default extension (LOG).

PARFILE (parameter file)
PARFILE specifies the name of a file that contains commonly-used command-line
parameters. For example, the command line could read:

SQLLDR PARFILE=example.par

and the parameter file could have the following contents:

userid=scott/tiger
control=example.ctl
errors=9999
log=example.log

Note: Although it is not usually important, on some systems it may be neces-
sary to have no spaces around the equal sign (“=”) in the parameter specifica-
tions.

PARALLEL (parallel load)
PARALLEL specifies whether direct loads can operate in multiple concurrent ses-
sions to load data into the same table. For more information on PARALLEL loads,
see “Parallel Data Loading Models” on page 8-25.

ROWS (rows per commit)
Conventional path loads only: ROWS specifies the number of rows in the bind
array. The default is 64. (The bind array is discussed on “Determining the Size of
the Bind Array” on page 5-65.)

Direct path, loads only: ROWS identifies the number of rows you want to read
from the data file before a data save. The default is to save data once at the end of
the load. For more information, see “Data Saves” on page 8-12.

Because the direct load is optimized for performance, it uses buffers that are the
same size and format as the system’s I/O blocks. Only full buffers are written to
the database, so the value of ROWS is approximate.
6-6 Oracle8 Utilities

Command-Line Keywords
SILENT (feedback mode)
When SQL*Loader begins, a header message like the following appears on the
screen and is placed in the log file:

SQL*Loader: Production on Wed Feb 24 15:07:23...
Copyright (c) Oracle Corporation...

As SQL*Loader executes, you also see feedback messages on the screen, for exam-
ple:

Commit point reached - logical record count 20

SQL*Loader may also display data error messages like the following:

Record 4: Rejected - Error on table EMP
ORA-00001: unique constraint <name> violated

You can suppress these messages by specifying SILENT with an argument.

For example, you can suppress the header and feedback messages that normally
appear on the screen with the following command-line argument:

SILENT=(HEADER, FEEDBACK)

Use the appropriate keyword(s) to suppress one or more of the following:

HEADER Suppresses the SQL*Loader header messages that normally
appear on the screen. Header messages still appear in the log
file.

FEEDBACK Suppresses the “commit point reached” feedback messages that
normally appear on the screen.

ERRORS Suppresses the data error messages in the log file that occur
when a record generates an Oracle error that causes it to be writ-
ten to the bad file. A count of rejected records still appears.

DISCARDS Suppresses the messages in the log file for each record written to
the discard file.

PARTITIONS This new Oracle8 option for a direct load of a partitioned table
disables writing the per-partition statistics to the log file

ALL Implements all of the keywords.
 SQL*Loader Command-Line Reference 6-7

Index Maintenance Options
SKIP (records to skip)
SKIP specifies the number of logical records from the beginning of the file that
should not be loaded. By default, no records are skipped.

This parameter continues loads that have been interrupted for some reason. It is
used for all conventional loads, for single-table direct loads, and for multiple-table
direct loads when the same number of records were loaded into each table. It is not
used for multiple table direct loads when a different number of records were
loaded into each table. See “Continuing Multiple Table Conventional Loads” on
page 5-28 for more information.

USERID (username/password)
USERID is used to provide your Oracle username/password. If omitted, you are
prompted for it. If only a slash is used, USERID defaults to your operating system
logon. A Net8 database link can be used for a conventional path load into a remote
database. For more information about Net8, see the Net8 Administrator’s Guide For
more information about database links, see Oracle8 Distributed Database Systems.

Index Maintenance Options
Two new, Oracle8 index maintenance options are available (default FALSE):

■ SKIP_UNUSABLE_INDEXES={TRUE | FALSE}

■ SKIP_INDEX_MAINTENANCE={TRUE | FALSE}

SKIP_UNUSABLE_INDEXES
The SKIP_UNUSABLE_INDEXES option applies to both conventional and direct
path loads.

The SKIP_UNUSABLE_INDEXES=TRUE option allows SQL*Loader to load a table
with indexes that are in Index Unusable (IU) state prior to the beginning of the
load. Indexes that are not in IU state at load time will be maintained by
SQL*Loader. Indexes that are in IU state at load time will not be maintained but
will remain in IU state at load completion.

However, indexes that are UNIQUE and marked IU are not allowed to skip index
maintenance. This rule is enforced by DML operations, and enforced by the direct
path load to be consistent with DML.

Load behavior with SKIP_UNUSABLE_INDEXES=FALSE differs slightly between
conventional path loads and direct path loads:
6-8 Oracle8 Utilities

Exit Codes for Inspection and Display
■ On a conventional path load, records that are to be inserted will instead be
rejected if their insertions would require updating an index.

■ On a direct path load, the load terminates upon encountering a record that
would require index maintenance be done on an index that is in unusable state.

SKIP_INDEX_MAINTENANCE
SKIP_INDEX_MAINTENANCE={TRUE | FALSE} stops index maintenance for
direct path loads but does not apply to conventional path loads. It causes the index
partitions that would have had index keys added to them instead to be marked
Index Unusable because the index segment is inconsistent with respect to the data
it indexes. Index segments that are not affected by the load retain the Index Unus-
able state they had prior to the load.

The SKIP_INDEX_MAINTENANCE option:

■ applies to both local and global indexes.

■ can be used (with the PARALLEL option) to do parallel loads on an object that
has indexes.

■ can be used (with the PARTITION keyword on the INTO TABLE clause) to
do a single partition load to a table that has global indexes.

■ puts a list (in the SQL*Loader log file) of the indexes and index partitions
that the load set into Index Unusable state.

Exit Codes for Inspection and Display
Oracle8 SQL*Loader provides the results of a SQL*Loader run immediately
upon completion. Depending on the platform, as well as recording the results in
the log file, the SQL*Loader may report the outcome also in a process exit code.
This Oracle8 SQL*Loader functionality allows for checking the outcome of a
SQL*Loader invocation from the command line or script. The following load
results return the indicated exit codes:

Result Exit Code

All rows loaded successfully EX_SUCC

All/some rows rejected EX_WARN

All/some rows discarded EX_WARN

Discontinued load EX_WARN

Command line/syntax errors EX_FAIL
 SQL*Loader Command-Line Reference 6-9

Exit Codes for Inspection and Display
For UNIX the exit codes are as follows:

EX_SUCC0
EX_FAIL1
EX_WARN2
EX_FTL3

You can check the exit code from the shell to determine the outcome of a load.
For example, you could place the SQL*Loader command in a script and check
the exit code within the script:

#!/bin/sh
sqlldr scott/tiger control=ulcase1.ctl log=ulcase1.log
retcode= ècho $?̀
case "$retcode" in
0) echo "SQL*Loader execution successful" ;;
1) echo "SQL*Loader execution exited with EX_FAIL, see logfile" ;;
2) echo "SQL*Loader exectuion exited with EX_WARN, see logfile" ;;
3) echo "SQL*Loader execution encountered a fatal error" ;;
*) echo "unknown return code";;
esac

Oracle errors fatal to SQL*Loader EX_FAIL

OS related errors (like file open/close, malloc, etc.) EX_FTL

Result Exit Code
6-10 Oracle8 Utilities

 SQL*Loader: Log File Refe
7

SQL*Loader: Log File Reference

When SQL*Loader begins execution, it creates a log file. The log file contains a
detailed summary of the load.

Most of the log file entries will be records of successful SQL*Loader execution.
However, errors can also cause log file entries. For example, errors found during
parsing of the control file will appear in the log file.

This chapter describes the following log file entries:

■ Header Information

■ Global Information

■ Table Information

■ Datafile Information

■ Table Load Information

■ Summary Statistics
rence 7-1

Header Information
Header Information
The Header Section contains the following entries:

■ date of the run

■ software version number

For example:

SQL*Loader: Version 8.0.2.0.0 - Production on Mon Nov 26...
Copyright (c) Oracle Corporation...

Global Information
The Global Information Section contains the following entries:

■ names of all input/output files

■ echo of command-line arguments

■ continuation character specification

If the data is in the control file, then the data file is shown as “*”.

For example:

Control File: LOAD.CTL
Data File: LOAD.DAT
 Bad File: LOAD.BAD
 Discard File: LOAD.DSC

 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: 1:1 = ’*’, in current physical record
Path used: Conventional
7-2 Oracle8 Utilities

Table Information
Table Information
The Table Information Section provides the following entries for each table loaded:

■ table name

■ load conditions, if any. That is, whether all record were loaded or only those
meeting WHEN-clause criteria.

■ INSERT, APPEND, or REPLACE specification

■ the following column information:

■ if found in data file, the position, length, datatype, and delimiter

■ if specified, RECNUM, SEQUENCE, or CONSTANT

■ if specified, DEFAULTIF, or NULLIF

For example:

Table EMP, loaded from every logical record.
Insert option in effect for this table: REPLACE

 Column Name Position Len Term Encl Datatype
-------------------------------------- --- ---- ---- ---------
 EMPNO 1:4 4 CHARACTER
 ENAME 6:15 10 CHARACTER
 JOB 17:25 9 CHARACTER
 MGR 27:30 4 CHARACTER
 SAL 32:39 8 CHARACTER
 COMM 41:48 8 CHARACTER
 DEPTNO 50:51 2 CHARACTER

Column EMPNO is NULL if EMPNO = BLANKS
Column MGR is NULL if MGR = BLANKS
Column SAL is NULL if SAL = BLANKS
Column COMM is NULL if COMM = BLANKS
Column DEPTNO is NULL if DEPTNO = BLANKS
 SQL*Loader: Log File Reference 7-3

Datafile Information
Datafile Information
The Datafile Information Section appears only for datafiles with data errors, and
provides the following entries:

■ SQL*Loader/Oracle data records errors

■ records discarded

For example:

Record 2: Rejected - Error on table EMP.
ORA-00001: unique constraint < name> violated
Record 8: Rejected - Error on table EMP, column DEPTNO.
ORA-01722: invalid number
Record 3: Rejected - Error on table PROJ, column PROJNO.
ORA-01722: invalid number

Table Load Information
The Table Load Information Section provides the following entries for each table
that was loaded:

■ number of rows loaded

■ number of rows that qualified for loading but were rejected due to data errors

■ number of rows that were discarded because they met no WHEN-clause tests

■ number of rows whose relevant fields were all null

For example:

The following indexes on table EMP were processed:
Index EMPIX was left in Direct Load State due to
ORA-01452: cannot CREATE UNIQUE INDEX; duplicate keys found

Table EMP:
7 Rows successfully loaded.
2 Rows not loaded due to data errors.|
0 Rows not loaded because all WHEN clauses were failed.
0 Rows not loaded because all fields were null.
7-4 Oracle8 Utilities

Summary Statistics
Summary Statistics
The Summary Statistics Section displays the following data:

■ amount of space used:

■ for bind array (what was actually used, based on what was specified by
BINDSIZE)

■ for other overhead (always required, independent of BINDSIZE)

■ cumulative load statistics. That is, for all data files, the number of records that
were:

■ skipped

■ read

■ rejected

■ discarded

■ beginning/ending time of run

■ total elapsed time

■ total CPU time (includes all file I/O but may not include background Oracle
CPU time)

For example:

Space allocated for bind array: 65336 bytes (64 rows)
Space allocated for memory less bind array: 6470 bytes

Total logical records skipped: 0
Total logical records read: 7
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Mon Nov 26 10:46:53 1990
Run ended on Mon Nov 26 10:47:17 1990

Elapsed time was: 00:00:15.62
CPU time was: 00:00:07.76
 SQL*Loader: Log File Reference 7-5

Summary Statistics
Oracle8 Statistics Reporting to the Log
Oracle8 statistics reporting to the log file differs between different load types:

■ For conventional loads and direct loads of a non-partitioned table, statistics
reporting is unchanged from Oracle7.

■ For direct loads of a partitioned table, a per-partition statistics section will be
printed after the (Oracle7) table-level statistics section.

■ For a single partition load, the partition name will be included in the table-level
statistics section.

Statistics for Loading a Single Partition
■ The table column description includes the partition name.

■ Error messages include partition name.

■ Statistics listings include partition name.

Statistics for Loading a Table
■ Direct path load of a partitioned table reports per-partition statistics.

■ Conventional path load cannot report per-partition statistics.

■ For loading a non-partitioned table stats are unchanged from Oracle7.

For conventional loads and direct loads of a non-partitioned table, statistics report-
ing is unchanged from Oracle7.

If media recovery is not enabled, the load is not logged. That is, media recovery dis-
abled overrides the request for a logged operation.

New Command-line Option: silent=partitions|all
The command-line option, silent=partitions , disables output of the per-parti-
tion statistics section to the log file for direct loads of a partitioned table.

In Oracle8, the option silent=all includes the partitions flag and suppresses
the per-partition statistics.
7-6 Oracle8 Utilities

 SQL*Loader: Conventional and Direct Path L
8

SQL*Loader: Conventional and Direct Path

Loads

This chapter describes SQL*Loader’s conventional and direct path load methods.
The following topics are covered:

■ Data Loading Methods

■ Using Direct Path Load

■ Maximizing Performance of Direct Path Loads

■ Avoiding Index Maintenance

■ Direct Loads, Integrity Constraints, and Triggers

■ Parallel Data Loading Models

■ General Performance Improvement Hints

For an example of loading with using the direct path load method, see “Case 6:
Loading Using the Direct Path Load Method” on page 4-24. The other cases use the
conventional path load method.

Note: If you are using Trusted Oracle, see the Trusted Oracle documentation
for information about using SQL*Loader in that environment.
oads 8-1

Data Loading Methods
Data Loading Methods
SQL*Loader provides two methods for loading data:

■ Conventional Path Load

■ Direct Path Load

A conventional path load executes SQL INSERT statement(s) to populate table(s) in
an Oracle database. A direct path load eliminates much of the Oracle database over-
head by formatting Oracle data blocks and writing the data blocks directly to the
database files. A direct load, therefore, does not compete with other users for data-
base resources so it can usually load data at near disk speed. Certain consider-
ations, inherent to this method of access to database files, such as restrictions,
security and backup implications, are discussed in this chapter.

Conventional Path Load
Conventional path load (the default) uses the SQL INSERT statement and a bind
array buffer to load data into database tables. This method is used by all Oracle
tools and applications.

When SQL*Loader performs a conventional path load, it competes equally with all
other processes for buffer resources. This can slow the load significantly. Extra over-
head is added as SQL commands are generated, passed to Oracle, and executed.

Oracle looks for partially filled blocks and attempts to fill them on each insert.
Although appropriate during normal use, this can slow bulk loads dramatically.

Conventional Path Load of a Single Partition
By definition, a conventional path load uses SQL INSERT statements. During a con-
ventional path load of a single partition, SQL*Loader uses of partition-extended
syntax of the INSERT statement which has the following form:

INSERT INTO TABLE T partition (P) VALUES ...

The SQL layer of the ORACLE kernel determines if the row being inserted maps to
the specified partition. If the row does not map to the partition, the row is rejected,
and the loader log file records an appropriate error message.
8-2 Oracle8 Utilities

Data Loading Methods
When to Use a Conventional Path Load
If load speed is most important to you, you should use direct path load because it is
faster than conventional path. However, there are certain restrictions on direct path
loads that may require you to use a conventional path load. You should use the con-
ventional path in the following situations:

■ When accessing an indexed table concurrently with the load, or when applying
inserts or updates to a non-indexed table concurrently with the load.

To use a direct path load (excepting parallel loads), SQL*Loader must have
exclusive write access to the table and exclusive read-write access to any
indexes.

■ When loading data with SQL*Net across heterogeneous platforms.

You cannot load data using a direct path load over Net8 unless both systems
belong to the same family of computers, and both are using the same character
set. Even then, load performance can be significantly impaired by network
overhead.

■ When loading data into a clustered table.

A direct path load does not support loading of clustered tables.

■ When loading a relatively small number of rows into a large indexed table.

During a direct path load, the existing index is copied when it is merged with
the new index keys. If the existing index is very large and the number of new
keys is very small, then the index copy time can offset the time saved by a
direct path load.

■ When loading a relatively small number of rows into a large table with referen-
tial and column-check integrity constraints.

Because these constraints cannot be applied to rows loaded on the direct path,
they are disabled for the duration of the load. Then they are applied to the
whole table when the load completes. The costs could outweigh the savings for
a very large table and a small number of new rows.

■ When you want to apply SQL functions to data fields.

SQL functions are not available during a direct path load. For more informa-
tion on the SQL functions, see “Applying SQL Operators to Fields” on
page 5-78.
 SQL*Loader: Conventional and Direct Path Loads 8-3

Data Loading Methods
Direct Path Load
Instead of filling a bind array buffer and passing it to Oracle with a SQL INSERT
command, a direct path load parses the input data according to the description
given in the loader control file, converts the data for each input field to its corre-
sponding Oracle column datatype, and builds a column array structure (an array of
<length, data> pairs).

SQL*Loader then uses the column array structure to format Oracle data blocks and
build index keys. The newly formatted database blocks are then written directly to
the database (multiple blocks per I/O request using asynchronous writes if the host
platform supports asynchronous I/O).

Internally, multiple buffers are used for the formatted blocks. While one buffer is
being filled, one or more buffers are being written if asynchronous I/O is available
on the host platform. Overlapping computation with I/O increases load perfor-
mance.

Figure 8–1 shows how conventional and direct path loads perform database writes.
8-4 Oracle8 Utilities

Data Loading Methods
Figure 8–1 Database Writes on Direct Path and Conventional Path

RecordWrite Database
Block

SQL*Loader

Database

Oracle Server

Direct
Path

SQL*Loader

Conventional
Path

User Processes

Generate SQL
Commands

Generate SQL
Commands

SQL Command Processing

Space Management

Get new extents
Adjust high water mark

Find partial blocks
Fill partial blocks

Buffer Cache Management
- Manage queues
- Resolve contention Buffer cache

Read Database
Blocks

Write Database
Blocks
 SQL*Loader: Conventional and Direct Path Loads 8-5

Data Loading Methods
Direct Path Load of a Partitioned Table
When loading a partitioned table, SQL*Loader partitions the rows and maintains
indexes (which can also be partitioned). Note that a direct path load of a parti-
tioned table can be quite resource intensive for tables with many partitions.

Direct Path Load of a Single Partition
When loading a single partition of a partitioned table, SQL*Loader partitions the
rows and rejects any rows which do not map to the partition specified in the
SQL*Loader control file. Local index partitions which correspond to the data parti-
tion being loaded are maintained by SQL*Loader. Global indexes are not main-
tained on single partition direct path loads.

While loading a partition of a partitioned table, DML operations on, and direct
path loads of, other partitions in the table are allowed.

Although a direct path load minimizes database processing, several calls to the Ora-
cle server are required at the beginning and end of the load to initialize and finish
the load, respectively. Also, certain DML locks are required during load initializa-
tion, and are released when the load completes. Note also that during the load the
following operations occur: index keys are built and put into a sort, space manage-
ment routines are used to get new extents when needed and to adjust the high-water
mark for a data save point. The high-water mark is described in “Data Saves” on
page 8-12.

Advantages of a Direct Path Load
A direct path load is faster than the conventional path for the following reasons:

■ Partial blocks are not used, so no reads are needed to find them and fewer
writes are performed.

■ SQL*Loader need not execute any SQL INSERT commands therefore, process-
ing load on the Oracle database is reduced.

■ SQL*Loader does not use the bind-array buffer — formatted database blocks
are written directly.

■ A direct path load calls on Oracle to lock tables and indexes at the start of the
load and releases them when the load is finished. A conventional path load
calls Oracle once for each array of rows to process a SQL INSERT statement.

■ A direct path load uses multi-block asynchronous I/O for writes to the data-
base files.
8-6 Oracle8 Utilities

Data Loading Methods
■ During a direct path load, processes perform their own write I/O, instead of
using Oracle’s buffer cache minimizing contention with other Oracle users.

■ The sorted indexes option available during direct path loads allows you to pre-
sort data using high-performance sort routines that are native to your system
or installation.

■ When a table to be loaded is empty, the pre-sorting option eliminates the sort
and merge phases of index-building — the index is simply filled in as data
arrives.

■ Protection against instance failure does not require redo log file entries during
direct path loads. Therefore, no time is required to log the load when:

– Oracle is operating in NOARCHIVELOG mode

– the UNRECOVERABLE option of the load is set to Y

– the object being loaded has the NOLOG attribute set

See “Instance Recovery and Direct Path Loads” on page 8-13.

When to Use a Direct Path Load
If none of the above restrictions apply, you should use a direct path load when:

■ you have a large amount of data to load quickly. A direct path load can quickly
load and index large amounts of data. It can also load data into either an empty
or non-empty table,

■ you want to load data in PARALLEL for maximum performance. See “Parallel
Data Loading Models” on page 8-25.

■ you want to load data in a character set that cannot be supported in your cur-
rent session, or when the conventional conversion to the database character set
would cause errors.

Restrictions on Using Direct PATH LOADS
In addition to the general load conditions described in “Conventional Path Load
versus Direct Path Load” on page 3-16, the following conditions must be satisfied
to use the direct path load method:

■ Tables are not clustered.

■ Tables to be loaded do not have any active transactions pending.
 SQL*Loader: Conventional and Direct Path Loads 8-7

Data Loading Methods
To check for this condition, use the Enterprise Manager command MONITOR
TABLE to find the object ID for the table(s) you want to load. Then use the com-
mand MONITOR LOCK to see if there are any locks on the table.

■ You cannot have SQL strings in the control file.

Restrictions on a Direct Path Load of a Single Partition
In addition to the above listed restrictions, loading a single partition has the follow-
ing restrictions:

■ The table which the partition is a member of cannot have any global indexes
defined on it.

■ Enabled referential and check constraints on the table which the partition is a
member of are not allowed.

■ Enabled triggers are not allowed.

Integrity Constraints
All integrity constraints are enforced during direct path loads, although not neces-
sarily at the same time. NOT NULL constraints are enforced during the load.
Records that fail these constraints are rejected.

UNIQUE constraints are enforced both during and after the load. A record which
violates a UNIQUE constraint is not rejected (the record is not available in memory
when the constraint violation is detected.)

Integrity constraints that depend on other rows or tables, such as referential con-
straints, are disabled before the direct path load and must be re-enabled after-
wards. If REENABLE is specified, SQL*Loader can re-enable them automatically at
the end of the load. When the constraints are re-enabled, the entire table is checked.
Any rows that fail this check are reported in the specified error log. See the section
in this chapter called“Direct Loads, Integrity Constraints, and Triggers” on
page 8-20 .

Field Defaults on the Direct Path
DEFAULT column specifications defined in the database are not available when
loading on the direct path. Fields for which default values are desired must be spec-
ified with the DEFAULTIF clause, described on “DEFAULTIF Clause” on page 5-71.
If a DEFAULTIF clause is not specified, and the field is NULL, then a NULL value
is inserted into the database.
8-8 Oracle8 Utilities

Using Direct Path Load
Loading into Synonyms
You can load data into a synonym for a table during a the direct path load, but the
synonym must point directly to a table. It cannot be a synonym for a view or a syn-
onym for another synonym.

Exact Version Requirement
You can perform a SQL*Loader direct load only be for databases of the same ver-
sion. For example, you cannot do a SQL*Loader Version 7.1.2 direct path load to
load into a Oracle Version 7.1.3 database.

Using Direct Path Load
This section explains you how to use SQL*Loader’s direct path load.

Setting Up for Direct Path Loads
To prepare the database for direct path loads, you must run the setup script,
CATLDR.SQL to create the necessary views. You need only run this script once for
each database you plan to do direct loads to. This script can be run during database
installation if you know then that you will be doing direct loads.

Specifying a Direct Path Load
To start SQL*Loader in direct load mode, the parameter DIRECT must be set to
TRUE on the command line or in the parameter file, if used, in the format:

DIRECT=TRUE

See “Case 6: Loading Using the Direct Path Load Method” on page 4-24 for an
example.

Building Indexes
During a direct path load, performance is improved by using temporary storage.
After each block is formatted, the new index keys are put to a sort (temporary) seg-
ment. The old index and the new keys are merged at load finish time to create the
new index. The old index, sort (temporary) segment, and new index segment all
require storage until the merge is complete. Then the old index and temporary seg-
ment are removed.

Note that, during a conventional path load, every time a row is inserted the index
is updated. This method does not require temporary storage space, but it does add
processing time.
 SQL*Loader: Conventional and Direct Path Loads 8-9

Using Direct Path Load
The SINGLEROW Option
Performance on systems with limited memory can also be improved by using the
SINGLEROW option. For more information see “SINGLEROW Option” on
page 5-37.

Note: If, during a direct load, you have specified that the data is to be pre-
sorted and the existing index is empty, a temporary segment is not required,
and no merge occurs—the keys are put directly into the index. See “Maximiz-
ing Performance of Direct Path Loads” on page 8-15 for more information.

When multiple indexes are built, the temporary segments corresponding to each
index exist simultaneously, in addition to the old indexes. The new keys are then
merged with the old indexes, one index at a time. As each new index is created, the
old index and the corresponding temporary segment are removed.

Index Storage Requirements
The formula for calculating the amount of space needed for storing the index itself
can be found in the chapter(s) that describe managing database files” in the Oracle8
Administrator’s Guide. Remember that two indexes exist until the load is complete:
the old index and the new index.

Temporary Segment Storage Requirements
The amount of temporary segment space needed for storing the new index keys (in
bytes) can be estimated using the following formula:

1.3 * key_storage

where:

key_storage = (number_of_rows) *
 (10 + sum_of_column_sizes + number_of_columns)

The columns included in this formula are the columns in the index. There is one
length byte per column, and 10 bytes per row are used for a ROWID and additional
overhead.

The constant 1.3 reflects the average amount of extra space needed for sorting. This
value is appropriate for most randomly ordered data. If the data arrives in exactly
opposite order, twice the key-storage space is required for sorting, and the value of
this constant would be 2.0. That is the worst case.

If the data is fully sorted, only enough space to store the index entries is required,
and the value of this constant reduces to 1.0. See “Pre-sorting Data for Faster Index-
ing” on page 8-16 for more information.
8-10 Oracle8 Utilities

Using Direct Path Load
Indexes Left in Index Unusable State
SQL*Loader will leave indexes in Index Unusable state when the data segment being
loaded becomes more up-to-date than the index segments that index it.

Any SQL statement that tries to use an index that is in Index Unusable state returns
an error. The following conditions cause the direct path option to leave an index or
a partition of a partitioned index in Index Unusable state:

■ SQL*Loader runs out of space for the index, and cannot update the index.

■ The data is not in the order specified by the SORTED INDEXES clause.

■ There is an instance failure, or the Oracle shadow process fails while building
the index.

■ There are duplicate keys in a unique index.

■ Data save points are being used, and the load fails or is terminated via a key-
board interrupt after a data save point occurred.

To determine if an index is in Index Unusable state, you can execute a simple query:

SELECT INDEX_NAME, STATUS
 FROM USER_INDEXES
 WHERE TABLE_NAME = ’ tablename ’;

To determine if an index partition is in unusable state,

SELECT INDEX_NAME,
 PARTITION_NAME,
 STATUS FROM USER_IND_PARTITIONS
 WHERE STATUS != ’ VALID’;

If you are not the owner of the table, then search ALL_INDEXES or DBA_INDEXES
instead of USER_INDEXES. For partitioned indexes, search
ALL_IND_PARTITIONS and DBA_IND_PARTITIONS instead of
USER_IND_PARTITIONS.
 SQL*Loader: Conventional and Direct Path Loads 8-11

Using Direct Path Load
Data Saves
You can use data saves to protect against loss of data due to instance failure. All
data loaded up to the last data save is protected against instance failure To con-
tinue the load after an instance failure, determine how many rows from the input
file were processed before the failure, then use the SKIP option to skip those pro-
cessed rows.

If there were any indexes on the table, drop them before continuing the load, then
recreate them after the load. See “Recovery” on page 8-13 for more information on
media and instance failure.

Note: Indexes are not protected by a data save, because SQL*Loader does not build
indexes until after data loading completes. (The only time indexes are built during
the load is when pre-sorted data is loaded into an empty table — but these indexes
are also unprotected.)

Using the ROWS Parameter
The parameter ROWS determines when data saves occur during a direct path load.
The value you specify for ROWS is the number of rows you want SQL*Loader to
read from the input file before saving inserts in the database.

The number of rows you specify for a data save is an approximate number. Direct
loads always act on full data buffers that match the format of Oracle database
blocks. So, the actual number of data rows saved is rounded up to a multiple of the
number of rows in a database block.

SQL*Loader always reads the number of rows needed to fill a database block. Dis-
carded and rejected records are then removed, and the remaining records are
inserted into the database. So the actual number of rows inserted before a save is
the value you specify, rounded up to the number of rows in a database block,
minus the number of discarded and rejected records.

A data save is an expensive operation. The value for ROWS should be set high
enough so that a data save occurs once every 15 minutes or longer. The intent is to
provide an upper bound on the amount of work which is lost when an instance fail-
ure occurs during a long running direct path load. Setting the value of ROWS to a
small number will have an adverse affect on performance.

Data Save Versus Commit
In a conventional load, ROWS is the number of rows to read before a commit. A
direct load data save is similar to a conventional load commit, but it is not iden-
tical.
8-12 Oracle8 Utilities

Using Direct Path Load
The similarities are:

■ Data save will make the rows visible to other users

■ Rows cannot be rolled back after a data save

The major difference is that the indexes will be unusable (in Index Unusable state)
until the load completes.

Recovery
SQL *Loader provides full support for data recovery when using the direct path
option. There are two main types of recovery:

See Oracle8 Administrator’s Guide for more information about recovery.

Instance Recovery and Direct Path Loads
Because SQL*Loader writes directly to the database files, all rows inserted up to the
last data save will automatically be present in the database files if the instance is
restarted. Changes do not need to be recorded in the redo log file to make instance
recovery possible.

If an instance failure occurs, the indexes being built may be left in Index Unusable
state. Indexes which are Unusable must be re-built before using the table or parti-
tion. See “Indexes Left in Index Unusable State” on page 8-11 for more information
on how to determine if an index has been left in Index Unusable state.

Media Recovery and Direct Path Loads
If redo log file archiving is enabled (you are operating in ARCHIVELOG mode),
SQL*Loader logs loaded data when using the direct path, making media recovery
possible. If redo log archiving is not enabled (you are operating in NOAR-
CHIVELOG mode), then media recovery is not possible.

To recover a database file that was lost while it was being loaded, use the same
method that you use to recover data loaded with the conventional path:

1. Restore the most recent backup of the affected database file.

Media Recover Recovery from the loss of a database file. You must be operating
in ARCHIVELOG mode to recover after you lose a database file.

Instance Recovery Recover from a system failure in which in-memory data was
changed but lost due to the failure before it was written to disk.
Oracle can always recover from instance failures, even when
redo logs are not archived.
 SQL*Loader: Conventional and Direct Path Loads 8-13

Using Direct Path Load
2. Recover the tablespace using the RECOVER command. (See Oracle8 Backup and
Recovery Guide for more information on the RECOVER command.)

Loading LONG Data Fields
Data that is longer than SQL*Loader’s maximum buffer size can be loaded on the
direct path with either the PIECED option or by specifying the number of READ-
BUFFERS. This section describes those two options.

Loading Data as PIECED
The data can be loaded in sections with the pieced option if it is the last column of
the logical record. The syntax for this specification is given “High-Level Syntax Dia-
grams” on page 5-4.

Declaring a column as PIECED informs the direct path loader that the field may be
processed in pieces, one buffer at once.

The following restrictions apply when declaring a column as PIECED:

■ This option is only valid on the direct path.

■ Only one field per table may be PIECED.

■ The PIECED field must be the last field in the logical record.

■ The PIECED field may not be used in any WHEN, NULLIF, or DEFAULTIF
clauses.

■ The PIECED field’s region in the logical record must not overlap with any
other field’s region.

■ The PIECED corresponding database column may not be part of the index.

■ It may not be possible to load a rejected record from the bad file if it contains a
PIECED field.

For example, a PIECED filed could span 3 records. SQL*Loader loads the piece
from the first record and then reuses the buffer for the second buffer. After
loading the second piece, the buffer is reused for the third record. If an error is
then discovered, only the third record is placed in the bad file because the first
two records no longer exist in the buffer. As a result, the record in the bad file
would not be valid.
8-14 Oracle8 Utilities

Maximizing Performance of Direct Path Loads
Using the READBUFFERS Keyword
For data that is not divided into separate sections, or not in the last column, READ-
BUFFERS can be specified. With READBUFFERS a buffer transfer area can be allo-
cated that is large enough to hold the entire logical record at one time.

READBUFFERS specifies the number of buffers to use during a direct path load. (A
LONG can span multiple buffers.) The default value is four buffers. If the number
of read buffers is too small, the following error results:

ORA-02374 ... No more slots for read buffer queue

Note: Do not specify a value for READBUFFERS unless it becomes necessary,
as indicated by ORA-2374. Values of READBUFFERS that are larger than neces-
sary do not enhance performance. Instead, higher values unnecessarily
increase system overhead.

Maximizing Performance of Direct Path Loads
You can control the time and temporary storage used during direct path loads.

To minimize time:

■ Pre-allocate storage space.

■ Pre-sort the data.

■ Perform infrequent data saves.

■ Disable archiving of redo log files.

To minimize space:

■ When sorting data before the load, sort data on the index that requires the most
temporary storage space.

■ Avoid index maintenance during the load.

Pre-allocating Storage for Faster Loading
SQL*Loader automatically adds extents to the table if necessary, but this process
takes time. For faster loads into a new table, allocate the required extents when the
table is created.

To calculate the space required by a table, see the chapter(s) describing managing
database files in the Oracle8 Administrator’s Guide. Then use the INITIAL or MIN-
EXTENTS clause in the SQL command CREATE TABLE to allocate the required
space.
 SQL*Loader: Conventional and Direct Path Loads 8-15

Maximizing Performance of Direct Path Loads
Another approach is to size extents large enough so that extent allocation is infre-
quent.

Pre-sorting Data for Faster Indexing
You can improve the performance of direct path loads by pre-sorting your data on
indexed columns. Pre-sorting minimizes temporary storage requirements during
the load. Pre-sorting also allows you to take advantage of high-performance sorting
routines that are optimized for your operating system or application.

If the data is pre-sorted and the existing index is not empty, then pre-sorting mini-
mizes the amount of temporary segment space needed for the new keys. The sort
routine appends each new key to the key list. Instead of requiring extra space for
sorting, only space for the keys is needed. To calculate the amount of storage
needed, use a sort factor of 1.0 instead of 1.3. For more information on estimating
storage requirements, see “Temporary Segment Storage Requirements” on
page 8-10.

If pre-sorting is specified and the existing index is empty, then maximum efficiency
is achieved. The sort routines are completely bypassed, with the merge phase of
index creation. The new keys are simply inserted into the index. Instead of having a
temporary segment and new index existing simultaneously with the empty, old
index, only the new index exists. So, temporary storage is not required, and time is
saved.

SORTED INDEXES Statement
The SORTED INDEXES statement identifies the indexes on which the data is pre-
sorted. This statement is allowed only for direct path loads. See Chapter 5,
“SQL*Loader Control File Reference” for the syntax, and see“Case 6: Loading
Using the Direct Path Load Method” on page 4-24 for an example.

Generally, you specify only one index in the SORTED INDEXES statement because
data that is sorted for one index is not usually in the right order for another index.
When the data is in the same order for multiple indexes, however, all of the indexes
can be specified at once.

All indexes listed in the SORTED INDEXES statement must be created before you
start the direct path load.
8-16 Oracle8 Utilities

Maximizing Performance of Direct Path Loads
Unsorted Data
If you specify an index in the SORTED INDEXES statement, and the data is not
sorted for that index, then the index is left in Index Unusable state at the end of the
load. The data is present, but any attempt to use the index results in an error. Any
index which is left in Index Unusable state must be re-built after the load.

Multiple Column Indexes
If you specify a multiple-column index in the SORTED INDEXES statement, the
data should be sorted so that it is ordered first on the first column in the index, next
on the second column in the index, and so on.

For example, if the first column of the index is city, and the second column is last
name; then the data should be ordered by name within each city, as in the follow-
ing list:

Albuquerque Adams
Albuquerque Hartstein
Albuquerque Klein
... ...
Boston Andrews
Boston Bobrowski
Boston Heigham
... ...

Choosing the Best Sort Order
For the best overall performance of direct path loads, you should presort the data
based on the index that requires the most temporary segment space. For example, if
the primary key is one numeric column, and the secondary key consists of three
text columns, then you can minimize both sort time and storage requirements by
pre-sorting on the secondary key.

To determine the index that requires the most storage space, use the following pro-
cedure:

1. For each index, add up the widths of all columns in that index.

2. For a single-table load, pick the index with the largest overall width.

3. For each table in a multiple table load, identify the index with the largest, over-
all width for each table. If the same number of rows are to be loaded into each
table, then again pick the index with the largest overall width. Usually, the
same number of rows are loaded into each table.
 SQL*Loader: Conventional and Direct Path Loads 8-17

Maximizing Performance of Direct Path Loads
4. If a different number of rows are to be loaded into the indexed tables in a multi-
ple table load, then multiply the width of each index identified in step 3 by the
number of rows that are to be loaded into that index. Multiply the number of
rows to be loaded into each index by the width of that index and pick the index
with the largest result.

Infrequent Data Saves
Frequent data saves resulting from a small ROWS value adversely affect the perfor-
mance of a direct path load. Because direct path loads can be many times faster
than conventional loads, the value of ROWS should be considerably higher for a
direct load than it would be for a conventional load.

During a data save, loading stops until all of SQL*Loader’s buffers are successfully
written. You should select the largest value for ROWS that is consistent with safety.
It is a good idea to determine the average time to load a row by loading a few thou-
sand rows. Then you can use that value to select a good value for ROWS.

For example, if you can load 20,000 rows per minute, and you do not want to
repeat more than 10 minutes of work after an interruption, then set ROWS to be
200,000 (20,000 rows/minute * 10 minutes).

Minimizing Use of the Redo Log
One way to speed a direct load dramatically is to minimize use of the redo log.
There are three ways to do this. You can disable archiving, you can specify that the
load is UNRECOVERABLE, or you can set the NOLOG attribute of the objects
being loaded. This section discusses all methods.

Disable Archiving
If media recovery is disabled, direct path loads do not generate full image redo.

Specifying UNRECOVERABLE
Use UNRECOVERABLE to save time and space in the redo log file. An UNRECOV-
ERABLE load does not record loaded data in the redo log file, instead, it generates
invalidation redo. Note that UNRECOVERABLE applies to all objects loaded dur-
ing the load session (both data and index segments.)

Therefore, media recovery is disabled for the loaded table, although database
changes by other users may continue to be logged.

Note: Because the data load is not logged, you may want to make a backup of
the data after loading.
8-18 Oracle8 Utilities

Avoiding Index Maintenance
If media recovery becomes necessary on data that was loaded with the UNRECOV-
ERABLE phrase, the data blocks that were loaded are marked as logically cor-
rupted.

To recover the data, drop and re-create the data. It is a good idea to do backups
immediately after the load to preserve the otherwise unrecoverable data.

By default, a direct path load is RECOVERABLE. See “Data Definition Language
(DDL) Syntax” on page 5-4 for information on RECOVERABLE and UNRECOVER-
ABLE.

NOLOG Attribute
If a data or index segment has the NOLOG attribute set, then full image redo log-
ging is disabled for that segment (invalidation redo is generated.) Use of the
NOLOG attribute allows a finer degree of control over the objects which are not
logged.

Avoiding Index Maintenance
For both the conventional path and the direct path, SQL*Loader maintains all exist-
ing indexes for a table.

Index maintenance can be avoided by using one of the following methods:

■ Drop the indexes prior to the beginning of the load.

■ Mark selected indexes or index partitions as Index Unusable prior to the begin-
ning of the load and use the SKIP_UNUSABLE_INDEXES option.

■ Use the SKIP_INDEX_MAINTENANCE option (direct path only, use with cau-
tion.)

Avoiding index maintenance saves temporary storage while using the direct load
method. Avoiding index maintenance minimizes the amount of space required dur-
ing the load, for the following reasons:

■ You can build indexes one at a time, reducing the amount of sort (temporary)
segment space that would otherwise be needed for each index.

■ Only one index segment exists when an index is built, instead of the three seg-
ments that temporarily exist when the new keys are merged into the old index
to make the new index.
 SQL*Loader: Conventional and Direct Path Loads 8-19

Direct Loads, Integrity Constraints, and Triggers
Avoiding index maintenance is quite reasonable when the number of rows to be
loaded is large compared to the size of the table. But if relatively few rows are
added to a large table, then the time required to re-sort the indexes may be
excessive. In such cases, it is usually better to make use of the conventional
path, or use the SINGLEROW option.

Direct Loads, Integrity Constraints, and Triggers
With the conventional path, arrays of rows are inserted with standard SQL INSERT
statements — integrity constraints and insert triggers are automatically applied.
But when loading data with the direct path, some integrity constraints and all data-
base triggers are disabled. This section discusses the implications of using direct
path loads with respect to these features.

Integrity Constraints
During a direct path load, some integrity constraints are automatically disabled.
Others are not. For a description of the constraints, see the chapter(s) that describe
maintaining data integrity in the Oracle8 Application Developer’s Guide.

Enabled Constraints
The constraints that remain in force are:

■ not null

■ unique

■ primary keys (unique-constraints on not-null columns)

Not Null constraints are checked at column array build time. Any row that violates
this constraint is rejected. Unique constraints are verified when indexes are rebuilt
at the end of the load. The index will be left in Index Unusable state if a violation is
detected. See “Indexes Left in Index Unusable State” on page 8-11.

Disabled Constraints
The following constraints are disabled:

■ check constraints

■ referential constraints (foreign keys)
8-20 Oracle8 Utilities

Direct Loads, Integrity Constraints, and Triggers
Reenable Constraints
When the load completes, the integrity constraints will be re-enabled automatically
if the REENABLE clause is specified. The syntax for this clause is as follows:

The optional keyword DISABLED_CONSTRAINTS is provided for readability.
If the EXCEPTIONS clause is included, the table must already exist and, you
must be able to insert into it. This table contains the ROWIDs of all rows that
violated one of the integrity constraints. It also contains the name of the con-
straint that was violated. See Oracle8 SQL Reference for instructions on how to
create an exceptions table.

If the REENABLE clause is not used, then the constraints must be re-enabled manu-
ally. All rows in the table are verified then. If Oracle finds any errors in the new
data, error messages are produced. The names of violated constraints and the ROW-
IDs of the bad data are placed in an exceptions table, if one is specified. See
ENABLE in Oracle8 SQL Reference.

The SQL*Loader log file describes the constraints that were disabled, the ones that
were re-enabled and what error, if any, prevented re-enabling of each constraint. It
also contains the name of the exceptions table specified for each loaded table.

Attention: As long as bad data remains in the table, the integrity constraint can-
not be successfully re-enabled.

Suggestion: Because referential integrity must be reverified for the entire table,
performance may be improved by using the conventional path, instead of the
direct path, when a small number of rows are to be loaded into a very large
table.

Database Insert Triggers
Table insert triggers are also disabled when a direct path load begins. After the
rows are loaded and indexes rebuilt, any triggers that were disabled are automati-
cally re-enabled. The log file lists all triggers that were disabled for the load. There
should not be any errors re-enabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table
when they are enabled. As a result, insert triggers do not fire for any rows loaded
on the direct path. When using the direct path, the application must ensure that
any behavior associated with insert triggers is carried out for the new rows.

REENABLE

DISABLED_CONSTRAINTS EXCEPTIONS tablename
 SQL*Loader: Conventional and Direct Path Loads 8-21

Direct Loads, Integrity Constraints, and Triggers
Replacing Insert Triggers with Integrity Constraints
Applications commonly use insert triggers to implement integrity constraints. Most
of these application insert triggers are simple enough that they can be replaced
with Oracle’s automatic integrity constraints.

When Automatic Constraints Cannot Be Used
Sometimes an insert trigger cannot be replaced with Oracle’s automatic integrity
constraints. For example, if an integrity check is implemented with a table lookup
in an insert trigger, then automatic check constraints cannot be used, because the
automatic constraints can only reference constants and columns in the current row.
This section describes two methods for duplicating the effects of such a trigger.

Preparation
Before either method can be used, the table must be prepared. Use the following
general guidelines to prepare the table:

1. Before the load, add a one-character column to the table that marks rows as
“old data” or “new data”.

2. Let the value of null for this column signify “old data”, because null columns
do not take up space.

3. When loading, flag all loaded rows as “new data” with SQL*Loader’s CON-
STANT clause.

After following this procedure, all newly loaded rows are identified, making it pos-
sible to operate on the new data without affecting the old rows.

Using An Update Trigger
Generally, you can use a database update trigger to duplicate the effects of an
insert trigger. This method is the simplest. It can be used whenever the insert trig-
ger does not raise any exceptions.

1. Create an update trigger that duplicates the effects of the insert trigger.

Copy the trigger. Change all occurrences of “new.column_name” to
“old.column_name”.

2. Replace the current update trigger, if it exists, with the new one

3. Update the table, changing the “new data” flag to null, thereby firing the
update trigger

4. Restore the original update trigger, if there was one
8-22 Oracle8 Utilities

Direct Loads, Integrity Constraints, and Triggers
Note: Depending on the behavior of the trigger, it may be necessary to have
exclusive update access to the table during this operation, so that other users
do not inadvertently apply the trigger to rows they modify.

Duplicating the Effects of Exception Conditions
If the insert trigger can raise an exception, then more work is required to duplicate
its effects. Raising an exception would prevent the row from being inserted into the
table. To duplicate that effect with an update trigger, it is necessary to mark the
loaded row for deletion.

The “new data” column cannot be used for a delete flag, because an update trigger
cannot modify the column(s) that caused it to fire. So another column must be
added to the table. This column marks the row for deletion. A null value means the
row is valid. Whenever the insert trigger would raise an exception, the update trig-
ger can mark the row as invalid by setting a flag in the additional column.

Summary: When an insert trigger can raise an exception condition, its effects can
be duplicated by an update trigger, provided:

■ two columns (which are usually null) are added to the table

■ the table can be updated exclusively (if necessary)

Using a Stored Procedure
The following procedure always works, but it is more complex to implement. It can
be used when the insert trigger raises exceptions. It does not require a second addi-
tional column; and, because it does not replace the update trigger, and it can be
used without exclusive access to the table.

1. Create a stored procedure that duplicates the effects of the insert trigger. Fol-
low the general outline given below. (For implementation details, see PL/SQL
User’s Guide and Reference for more information about cursor management.)

■ declare a cursor for the table, selecting all the new rows

■ open it and fetch rows, one at a time, in a processing loop

■ perform the operations contained in the insert trigger

■ if the operations succeed, change the “new data” flag to null

■ if the operations fail, change the “new data” flag to “bad data”

2. Execute the stored procedure using an administration tool such as Server Man-
ager.
 SQL*Loader: Conventional and Direct Path Loads 8-23

Direct Loads, Integrity Constraints, and Triggers
3. After running the procedure, check the table for any rows marked “bad data”.

4. Update or remove the bad rows.

5. Re-enable the insert trigger.

Permanently Disabled Triggers & Constraints
SQL*Loader needs to acquire several locks on the table to be loaded to disable trig-
gers and constraints. If a competing process is enabling triggers or constraints at
the same time that SQL*Loader is trying to disable them for that table, then
SQL*Loader may not be able to acquire exclusive access to the table.

SQL*Loader attempts to handle this situation as gracefully as possible. It attempts
to re-enable disabled triggers and constraints before exiting. However, the same
table-locking problem that made it impossible for SQL*Loader to continue may
also have made it impossible for SQL*Loader to finish enabling triggers and con-
straints. In such cases, triggers and constraints will remain permanently disabled
until they are manually enabled.

Although such a situation is unlikely, it is possible. The best way to prevent it is to
make sure that no applications are running that could enable triggers or constraints
for the table, while the direct load is in progress.

If a direct load is aborted due to failure to acquire the proper locks, carefully check
the log. It will show every trigger and constraint that was disabled, and each
attempt to re-enable them. Any triggers or constraints that were not re-enabled by
SQL*Loader should be manually enabled with the ENABLE clause described in
Oracle8 SQL Reference.

Alternative: Concurrent Conventional Path Loads
If triggers or integrity constraints pose a problem, but you want faster loading, you
should consider using concurrent conventional path loads. That is, use multiple
load sessions executing concurrently on a multiple-CPU system. Split the input
datafiles into separate files on logical record boundaries, and then load each such
input datafile with a conventional path load session. The resulting load has the fol-
lowing attributes:

■ It is faster than a single conventional load on a multiple-CPU system, but prob-
ably not as fast as a direct load.

■ Triggers fire, integrity constraints are applied to the loaded rows, and indexes
are maintained via the standard DML execution logic.
8-24 Oracle8 Utilities

Parallel Data Loading Models
Parallel Data Loading Models
This section discusses three basic models of concurrency which can be used to mini-
mize the elapsed time required for data loading:

■ concurrent conventional path loads

■ inter-segment concurrency with direct path load method

■ intra-segment concurrency with direct path load method

Note: Parallel loading is available only with the Enterprise Edition. For more
information about the differences between Oracle8 and the Oracle8 Enterprise
Edition, see Getting to Know Oracle8 and the Oracle8 Enterprise Edition.

Concurrent Conventional Path Loads
Using multiple conventional path load sessions executing concurrently is discussed
in the previous section. This technique can be used to load the same or different
objects concurrently with no restrictions.

Inter-Segment Concurrency with Direct Path
Inter-segment concurrency can be used for concurrent loading of different objects.
This technique can be applied for concurrent direct path loading of different tables,
or to concurrent direct path loading of different partitions of the same table.

When direct path loading a single partition, the following items should be consid-
ered:

■ local indexes can be maintained by the load.

■ global indexes cannot be maintained by the load

■ referential integrity and check constraints must be disabled

■ triggers must be disabled

■ the input data should be partitioned (otherwise many records will be rejected
which adversely affects performance.)

Intra-Segment Concurrency with Direct Path
SQL*Loader permits multiple, concurrent sessions to perform a direct path load
into the same table, or into the same partition of a partitioned table. Multiple
SQL*Loader sessions improve the performance of a direct path load given the avail-
able resources on your system.
 SQL*Loader: Conventional and Direct Path Loads 8-25

Parallel Data Loading Models
This method of data loading is enabled by setting both the DIRECT and the PAR-
ALLEL option to TRUE, and is often referred to as a “parallel direct path load.”

It is important to realize that parallelism is user managed, setting the PARALLEL
option to TRUE only allows multiple concurrent direct path load sessions.

Restrictions on Parallel Direct Path Loads
The following restrictions are enforced on parallel direct path loads:

■ neither local or global indexes can be maintained by the load

■ referential integrity and check constraints must be disabled

■ triggers must be disabled

■ Rows can only be appended. REPLACE, TRUNCATE, and INSERT cannot be
used (this is due to the individual loads not being coordinated.) If you must
truncate a table before a parallel load, you must do it manually.

If a parallel direct path load is being applied to a single partition, it is best that the
data is pre-partitioned (otherwise the overhead of record rejection due to a parti-
tion mismatch slows down the load.)

Initiating Multiple SQL*Loader Sessions
Each SQL*Loader session takes a different datafile as input. In all sessions execut-
ing a direct load on the same table, you must set PARALLEL to TRUE. The syntax
is:

PARALLEL can be specified on the command line or in a parameter file. It can also
be specified in the control file with the OPTIONS clause.

For example, to invoke three SQL*Loader direct path load sessions on the same
table, you would execute the following commands at the operating system prompt:

SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD1.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD2.CTL DIRECT=TRUE PARALLEL=TRUE
SQLLOAD USERID=SCOTT/TIGER CONTROL=LOAD3.CTL DIRECT=TRUE PARALLEL=TRUE

The previous commands must be executed in separate sessions, or if permitted on
your operating system, as separate background jobs. Note the use of multiple con-

PARALLEL = FALSE

TRUE
8-26 Oracle8 Utilities

Parallel Data Loading Models
trol files. This allows you to be flexible in specifying the files to use for the direct
path load (see the example of one of the control files below).

Note: Indexes are not maintained during a parallel load. Any indexes must be
(re)created or rebuilt manually after the load completes. You can use the paral-
lel index creation or parallel index rebuild feature to speed the building of
large indexes after a parallel load.

When you perform a PARALLEL load, SQL*Loader creates temporary segments
for each concurrent session and then merges the segments upon completion. The
segment created from the merge is then added to the existing segment in the data-
base above the segment’s high water mark. The last extent used of each segment
for each loader session is trimmed of any free space before being combined with
the other extents of the SQL*Loader session.

Options Keywords for Parallel Direct Path Loads
When using parallel direct path loads, options are available for specifying
attributes of the temporary segment to be allocated by the loader.

Specifying Temporary Segments
It is recommended that each concurrent direct path load session use files located on
different disks to allow for the maximum I/O throughput. Using the FILE keyword
of the OPTIONS clause you can specify the filename of any valid datafile in the
tablespace of the object (table or partition) being loaded. The following example
illustrates a portion of one of the control files used for the SQL*Loader sessions in
the previous example:

LOAD DATA
INFILE ’load1.dat’
INSERT INTO TABLE emp
OPTIONS(FILE=’/dat/data1.dat’)
(empno POSITION(01:04) INTEGER EXTERNAL NULLIF empno=BLANKS
...

You can specify the database file from which the temporary segments are allocated
with the FILE keyword in the OPTIONS clause for each object (table or partition) in
the control file. You can also specify the FILE parameter on the command line of
each concurrent SQL*Loader session, but then it will globally apply to all objects
being loaded with that session.

Using the FILE Keyword The FILE keyword in Oracle8 has the following restrictions
for direct path parallel loads:
 SQL*Loader: Conventional and Direct Path Loads 8-27

General Performance Improvement Hints
1. For non-partitioned tables: the specified file must be in the tablespace of the
table being loaded

2. For partitioned tables, single partition load: the specified file must be in the
tablespace of the partition being loaded

3. For partitioned tables, full table load: the specified file must be in the
tablespace of all partitions being loaded that is, all partitions must be in the
same tablespace.

Using the STORAGE Keyword The STORAGE keyword can be used to specify the stor-
age attributes of the temporary segment(s) allocated for a parallel direct path load.
If the STORAGE keyword is not used, the storage attributes of the segment contain-
ing the object (table, partition) being loaded are used.

OPTIONS(STORAGE=(MINEXTENTS n1 MAXEXTENTS n2 INITIAL n3[K|M]
NEXT n4[K|M] PCTINCREASE n5)

For example, the following STORAGE clause could be used:

OPTIONS (STORAGE=(INITIAL 100M NEXT 100M PCTINCREASE 0))

The STORAGE keyword can only be used in the control file, and not on the com-
mand line. Use of the STORAGE keyword to specify anything other than
PCTINCREASE of 0, and INITIAL or NEXT values is strongly discouraged (and
may be silently ignored in the future.)

Enabling Constraints After a Parallel Direct Path Load
Constraints and triggers must be enabled manually after all data loading is com-
plete.

General Performance Improvement Hints
This section gives a few guidelines which can help to improve the performance of a
load. If you must use a certain feature to load your data, by all means do so. But if
you have control over the format of the data to be loaded, here are a few hints
which can be used to improve load performance:

1. Make logical record processing efficient:

■ use one-to-one mapping of physical records to logical records (avoid con-
tinueif, concatenate)

■ make it easy for the software to figure out physical record boundaries. Use
the file processing option string “FIX nnn” or “VAR”. If you use the default
8-28 Oracle8 Utilities

General Performance Improvement Hints
(stream mode) on most platforms (e.g. UNIX, NT) the loader has to scan
each physical record for the record terminator (newline character.)

2. Make field setting efficient. Field setting is the process of mapping “fields” in
the datafile to their corresponding columns in the table being loaded. The map-
ping function is controlled by the description of the fields in the control file.
Field setting (along with data conversion) is the biggest consumer of CPU
cycles for most loads.

■ avoid delimited fields; use positional fields. If you use delimited fields, the
loader must scan the input data to find the delimiters. If you use positional
fields, field setting becomes simple pointer arithmetic (very fast!)

■ Don’t trim whitespace if you don’t need to (use PRESERVE BLANKS.)

3. Make conversions efficient. There are several conversions that the loader does
for you, character set conversion and datatype conversions. Of course, the
quickest conversion is no conversion.

■ Avoid character set conversions if you can. The loader supports four char-
acter sets: a) client character set (NLS_LANG of the client sqlldr process);
b) datafile character set (usually the same as the client character set, but can
be different); c) server character set; and d) server national character set.
Performance is optimized if all character sets are the same. For direct path
loads, it is best if the datafile character set and the server character set are
the same. If the character sets are the same, character set conversion buffers
are not allocated.

■ Use single byte character sets if you can.

4. Use direct path loads.

5. Use “sorted indexes” clause.

6. Avoid unnecessary NULLIF and DEFAULTIF clauses. Each clause must be
evaluated on each column which has a clause associated with it for EVERY row
loaded.

7. Use parallel direct path loads and parallel index create when you can.
 SQL*Loader: Conventional and Direct Path Loads 8-29

General Performance Improvement Hints
8-30 Oracle8 Utilities

Part III

NLS Utilities

Part III explains how to use the NLS utilities:

■ The NLS Data Installation utility which helps you convert text-format
updates to NLS objects that you create or receive with a new Oracle distribu-
tion to binary format. It also aids you in merging these converted files into
the existing NLS object set.

■ The NLS Configuration utility which helps you configure your NLS boot
files so that only the NLS objects that you require will be loaded.

■ NLS Calendar utility which allows you to update existing NLS calendar
data with additional ruler eras (imperial calendars) or add deviation days
(lunar calendar).

 National Language Support U
9

National Language Support Utilities

This chapter describes three utilities:

■ NLS Data Installation Utility

■ NLS Configuration Utility

■ NLS Calendar Utility

For platform-specific details on the use of these utilities, please see your operating
system-specific Oracle documentation.
tilities 9-1

NLS Data Installation Utility
NLS Data Installation Utility

Overview
When you order an Oracle distribution set, a default set of NLS data objects is
included. Some NLS data objects are customizable. For example, starting with
Oracle8, you can extend Oracle’s character set definition files to add user-
defined characters. These NLS definition files must be converted into binary for-
mat and merged into the existing NLS object set. The NLS Data Installation Util-
ity described here will allow you to do this.

Along with the binary object files, a boot file is generated by the NLS Data Installa-
tion Utility. This boot file is used by the modules to identify and locate all the NLS
objects which it needs to load.

To facilitate boot file distribution and user configuration, three types of boot files
are defined:

Syntax
The NLS Data Installation Utility is invoked from the command line with the fol-
lowing syntax:

LXINST [ORANLS=pathname] [SYSDIR= pathname] [DESTDIR= pathname] [HELP=[yes | no]]
[WARNING=[0 | 1 | 2 | 3]]

Installation Boot File The boot file included as part of the distribution set.

System Boot File The boot file generated by the NLS Data Installation Utility
which loads the NLS objects. If the user already has an
installed system boot file, its contents can be merged with the
new system boot file during object generation.

User Boot File A boot file that contains a subset of the system boot file informa-
tion. See “NLS Configuration Utility” on page 9-16 for informa-
tion about how this file is generated.
9-2 Oracle8 Server Utilities

NLS Data Installation Utility
where

Return Codes
You may receive the following return codes upon executing LXINST:

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If
not specified, NLS Installation Utility uses the value in the envi-
ronment variable ORA_NLS33 (or the equivalent for your
operating system). If both are specified, the command line
parameter overrides the environment variable. If neither is
specified, the NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not speci-
fied, the NLS Installation Utility uses the directory specified in
the initialization file parameter ORANLS. If there is no existing
system boot file or the NLS Installation Utility is unable to find
the file, it will create a new file and copy it to the appropriate
directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory speci-
fied in the initialization file parameter ORANLS. Any system
boot file that exists in this directory will be overwritten so make
a backup first.

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS Instal-
lation Utility will be displayed.

[WARNING=
[0 | 1 | 2 | 3]]

If you specify "0", no warning messages are displayed. If you
specify "1", all messages for level 1 will be displayed. If you
specify "2", all messages for levels 2 and 1 will be displayed.
If you specify "3", all messages for levels 3, 2 and 1 will be dis-
played.

0 The generation of the binary boot and object files, and merge of
the installation and system boot files completed successfully.

1 Installation failed: the NLS Installation Utility will exit with an
error message that describes the problem.
 National Language Support Utilities 9-3

NLS Data Installation Utility
Usage
You use LXINST to install your customized character sets by completing the fol-
lowing tasks:

■ Create a text-format boot file (lx0boot.nlt) containing references to you new
data objects.

■ Data objects can be generated only if they are referenced in the boot file.

■ You can generate only character set object types

■ Create your new text-format data object files. See “Data Object File Names” on
page 9-8 for naming convention information.

Note: Your distribution set contains a character set definition demonstration
file that you can use as a reference or as a template. On unix-based systems,
this file is located in $ORACLE_HOME/demo/*.nlt

■ Invoke LXINST as described above (using the appropriate parameters) to
generate new binary data object files. These files will be generated in the
directory you specified in ORANLS.

■ LXINST also generates both a new installation boot file and system boot
file. If you have a previous NLS installation and want to merge the exist-
ing information with the new in the system boot file, copy the existing
system boot file into the directory you specified in SYSDIR. A new sys-
tem boot file containing the merged information is generated in the
directory specified in DESTDIR.

Attention: As always, you should have backups of any existing files you do not
want overwritten.

NLS Data Object Files
This section should be read by those who intend to create their own NLS data
objects. It details the formats, contents, and restrictions expected by the NLS Data
Installation Utility.

Character Set Definition Files
Character set information and encoding are defined in text files (with the suffix
".nlt"). Character set definition text files (*.nlt files) contain descriptions of a
character set and are specified in a user friendly format so that a database
administrator can modify or create a new character set easily. All characters are
defined in terms of Unicode 2.0 code points. That is, each character is defined as
a Unicode 2.0 character code value.
9-4 Oracle8 Server Utilities

NLS Data Installation Utility
Conversion between character sets is done by using Unicode as the intermediate
form. The following file is a customized character set template character set defini-
tion file format you can use in Oracle release 8.0.4:

Customized Character Set Definition File Format Template #

#The following is a template of an Oracle 8.0.4 customized character set
#definition file.
You may use this template to create a user defined character set or copy
and modify an existing one. The convention used for naming character
set definition (.nlt) files is in the format: lx2 dddd.nlt, where
dddd = 4 digit character set ID in hex
All letters in the definition file are case-insensitive.

Version number: specify the current loadable data version.
VERSION = <x.x.x.x.x>

The following is the body of the definition file
DEFINE character_set

In 8.0.4, we support a new feature called 'base_char_set'. It allows you
#to extend an existing character set based on an existing oracle supported
standard character set. Generally, you may only need to edit the
#following fields:

Name and Id of the character set are required for any character sets.

Character set name must be specified in a double quoted string.
Rules for choosing a character set name:
- Cannot use a character set name that is already in use. (Each
character set must be assigned a unique character set name).
- Must consist of single-byte ASCII or EBCDIC characters only
(single-byte
compiler character set).
- Cannot contain multibyte characters.
- Maximum length of 30 characters.
- Must start with an alphabetic character.
- Composed of alphanumeric characters only (e.g. no periods,
dashes, underscore characters allowed)
- The name is case-insensitive.
To register a unique character set name, send mail to
nlsreg@us.oracle.com.
 name = <text_string>
 National Language Support Utilities 9-5

NLS Data Installation Utility
Character set id is specified as an integer value.
Rules for choosing a character set ID:
- Cannot use a character set ID that is already in use. (Each
character
set must be assigned a unique character set ID.)
- Must be in the decimal range of 10000-20000
- Character set IDs must be registered with Oracle to receive a
uniquely assigned character set id number.
To register a unique character set id, send mail to nlsreg@us.oracle.com.
 id = <integer>

The "base_char_set" feature is in only since version 8.0.4. It allows
users to define the base character set in a new character set definition
file. The new character set will inherit all definitions from the base
character set, therefore, the user only needs to add the customized data
#into the new character set definition file.

The syntax of the base character set is:
base_char_set = <id> | <name>

- <id> or <name> should be a valid Oracle NLS character set id or
name.
Example is: base_char_set = "JA16EUC" or base_char_set = 830
base_char_set = <id> | <name>

If you use base_char_set feature, remember you need to copy your base
character set definition file (text or binary format) from $ORA_NLS33
into the working directory specified by $ORANLS so that the new character
set can inherit the definition from the base character set.
Example:
%cp $ORA_NLS33/lx2033e.nlt $ORANLS
or
%cp $ORA_NLS33/lx*33e.nlb $ORANLS

Character data is defined as a list of <char_value>:<unicode_value>
pairs. <char_value> is a hex number specifying the complete character
value in this character set (e.g. 0xa1b1), while <unicode_value> is a
16-bit hex number specifying its corresponding Unicode 2.0 character
value.
Alternatively, a range of characters can be specified with a corresponding
range of Unicode values. Each successive character in the
<start_char>-<end_char> range will be assigned to each successive
character in the <start_unicode>-<end_unicode> range. There must be
an equal number of characters in each range.
9-6 Oracle8 Server Utilities

NLS Data Installation Utility
User-defined characters must be assigned to characters in Unicode's
private use area, and in particular the range 0xe000 to 0xf4ff. The
remaining 1024 characters in the private use area are reserved for Oracle
private use.
If you already defined "base_char_set", you only need to add the
#customized character set mappings.
 character_data = {
<char_value>:<unicode_value>,
<start_char>-<end_char>:<start_unicode>-<end_unicode>,
...
 }

A character classification list is used to specify the type of characters.
Valid values:
UPPER LOWER DIGIT SPACE PUNCTUATION CONTROL
HEX_DIGIT LETTER PRINTABLE
You only need to add customized characters' classification if you defined
base_char_set.
classification = {
<char_value> = { UPPER, LOWER, DIGIT,
 SPACE, PUNCTUATION, CONTROL,
 HEX_DIGIT, LETTER, PRINTABLE },
...
 }

Lower-to-Upper case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its uppercase value in this character set. You may add
the customized case mapping only if needed.
 uppercase = {
<char_value>:<upper_char_value>,
<start_char>-<end_char>:<start_upper>-<end_upper>,
...
 }

Upper-to-Lower case character relationships are defined as pairs, where
the first specifies the value of a character in this character set and the
second specifies its lowercase value in this character set. You may add
the customized case mapping only if needed.
 lowercase = {
<char_value>:<lower_char_value>,
<start_char>-<end_char>:<start_lower>-<end_lower>,
...
 }
 National Language Support Utilities 9-7

NLS Data Installation Utility
There are a lot of other fields in Oracle character set definition file.
Presumably, you will only need above fields at most. However, you can
always refer to our UDC8.0.3 white paper to find out all the information
if you want to customization other fields or send email to
nlsinfo@us.oracle.com for information.

ENDDEFINE character_set

Object Types
Only character set object types are currently supported for customizing.

Object IDs
NLS data objects are uniquely identified by a numeric object ID. The ID may never
have a zero or negative value.

In general, you can define new objects as long as you specify the object ID within
the range 10000-20000.

Warning: When you want to create a new character set, you must register
with Oracle Corporation by sending email to nlsreg@us.oracle.com which
will ensure that your character set has a unique name and ID..

Object Names
Only a very restricted set of characters can be used in object names:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_- and <space>

Object names can only start with an alphabetic character. Language, territory and
character set names cannot contain an underscore character, but linguistic defini-
tion names can. There is no case distinction in object names, and the maximum size
of an object name is 30 bytes (excluding terminating null).

Data Object File Names
The system-independent object file name is constructed from the generic boot file
entry information:

lxtdddd

where

t 1 digit object type (hex).

dddd 4 digit object ID (hex).
9-8 Oracle8 Server Utilities

NLS Data Installation Utility
The installation boot file name is lx0BOOT; the system boot file name is
lx1BOOT; user boot files are named lx2BOOT. The file extension for text format
files is .nlt, for binary files, .nlb.

Examples:

Example of Character Set Customization
This section introduces you to the steps required to create a new character set
with an example. For this example, we will create a new character set based on
Oracle's JA16EUC character set and add a few user defined characters.

Step 1. Register a new Character Set Name and ID
In order to maintain unique character set names and ids, you should register the
character name with Oracle to receive a uniquely assigned character set id.
Requests for character set name and ID registration can be sent to:

nlsreg@us.oracle.com

Attention: If the character set name and ID are not unique, you could experi-
ence incompatibilities between character sets and potential loss of data.

Note the following restrictions on character set names:

■ you cannot use a character set name that is already in use. (Each character
set must be assigned a unique character set name)

■ the name must consist of single-byte ASCII or EBCDIC characters only (sin-
gle-byte compiler character set)

■ there is a maximum length of 30 characters

■ the name must start with an alphabetic character

■ the name must be composed of alphanumeric characters only (e.g. no peri-
ods, dashes, underscore characters allowed)

■ the name is case-insensitive

lx22711.nlt Text-format character set definition, ID=10001

lx0boot.nlt Text-format installation boot file

lx1boot.nlb Binary system boot file

lx22711.nlb Binary character set definition, ID=10001
 National Language Support Utilities 9-9

NLS Data Installation Utility
Rules for choosing a character set ID:

■ the ID cannot use a character set ID that is already in use (each character set
must be assigned a unique character set ID)

■ the ID must be in the decimal range of 10000-20000 (hexadecimal range of
0x2710-0x3a98)

If a character set is derived from an existing Oracle character set, we recom-
mend using the following character set naming convention:

<Oracle_character_set_name><organization_name>EXT<version>

Example:

If a company such as Sun Microsystems was adding user defined characters to
the JA16EUC character set, the following character set name might be appropri-
ate:

JA16EUCSUNWEXT1

where:

For this example and all further steps, we will use the character set ID 10000
(hex value 0x2710).

Step 2. Create a NLS Text Boot File
The NLS binary boot files indicate which NLS data objects will be loaded into
the database. Therefore, the binary boot file must be updated whenever a new
character set is created. To update the binary boot file, you must create an entry
for your new character set in a text boot file lx0boot.nlt first.

JA16EUC is the character set name defined by Oracle

SUNW represents the organization name (company stock trading
abbreviation for Sun Microsystems)

EXT specifies that this is an extension to the JA16EUC character
set

1 specifies the version
9-10 Oracle8 Server Utilities

NLS Data Installation Utility
NLS Boot File Format

The following is a template for an Oracle 8.0.3 NLS boot file.

Version number specifies the current loadable data version.
VERSION=<x.x.x.x.x>

List the character set names and ids that will be merged into the existing
system boot file using the $ORACLE_HOME/bin/lxinst utility.
#
CHARACTER_SET
<name> <id>
<name> <id>
...

Example:

Create a text boot file (lx0boot.nlt) in the working directory.

% vi /tmp/lx0boot.nlt

To add JA16EUCSUNWEXT1, set:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000

where version number is based on the Oracle 8.0.4 release. Refer to the version
number listed in the existing lx2*.nlt files for the latest version number.

Note that it is possible to list multiple user defined character sets in a single
lx0boot.nlt file. For example:

VERSION=2.1.0.0.0

CHARACTER_SET
"JA16EUCSUNWEXT1" 10000
"ZH16EUCSUNWEXT1" 10001
 National Language Support Utilities 9-11

NLS Data Installation Utility
Step 3. Create a Character Set Definition File (lx2 dddd .nlt)
The convention used for naming character set definition (.nlt) files is in the for-
mat: lx2dddd.nlt, where dddd = 4 digit Character Set ID in hex.

A few things to note when editing a character set definition file:

■ you can only extend (add characters to) an existing Oracle character set

■ you should not remap existing characters

■ all character mappings must be unique

■ one-to-many character mapping is not allowed

■ many-to-one character mapping is not allowed

■ new characters should be mapped into the Unicode private use range: e000-
f4ff. (Note that the actual Unicode 2.0 private use range is e000-f8ff, how-
ever, Oracle reserves f500-f8ff for it's own private use.)

■ no line can be longer than 80 characters in the character set definition file

Starting with Oracle release 8.0.4, there is a feature, 'BASE_CHAR_SET', that can
make customized character set support easier. Since you are extending an exist-
ing Oracle character set, the easiest thing to do is to use 'BASE_CHAR_SET' fea-
ture which causes the new character set to inherit all definitions from the base
character set and the user only need add user-specific customized character set
data.

Example:

Assume you are extending JA16EUC character set and have added some new
customized character set data to it.

Based on the character set ID of 10000 you specified in Step 1, name the new
character set definition file lx22710.nlt (based on the character set id hex value
of 0x2710).

This example uses /tmp as the working directory. Edit the new character defini-
tion file using your favorite editor.

% vi /tmp/lx22710.nlt
VERSION = 2.1.0.0.0

DEFINE character_set
 name = "JA16EUCSUNWEXT1"
 id = 10000
 base_char_set = 830
 character_data = {
9-12 Oracle8 Server Utilities

NLS Data Installation Utility
 0x9a41 : 0xe001,
 0x9a42 : 0xe002,
 }
 classification = {
 0x9a41 = { LETTER, LOWER },
 0x9a42 = { LETTER, UPPER },
 }
 uppercase = {
 0x9a41 : 0x9a42,
 }
 lowercase = {
 0x9a42 : 0x9a41,
 }
ENDDEFINE character_set
Refer to “Customized Character Set Definition File Format Template” on page 9-5
for more information about the format of the character set definition files. Mini-
mally you will need to set the character set name, character set Id and, base character set,
add customized character data and classification fields.

Step 4. Backup the NLS binary boot files
We recommend that you backup the NLS installation boot file (lx0boot.nlb) and
the NLS system boot file (lx1boot.nlb) in the $ORA_NLS33 directory prior to
generating and installing .nlb files.

% cd $ORA_NLS33
% cp lx0boot.nlb lx0boot.nlb.orig
% cp lx1boot.nlb lx1boot.nlb.orig

Step 5. Generate and install the .nlb files
Now you are ready to generate and install the new .nlb files. The .nlb files are
platform dependent, so you must make sure to regenerate them on each plat-
form and you must also install these files on both server and clients.

You use the LXINST utility to create both the binary character definition files
(lx2dddd.nlb) and update the NLS boot file (lx*boot.nlb).

Example:

The LXINST utility will make use of the existing system boot file. Therefore,
copy the existing binary system boot file into the directory specified by
SYSDIR. For this example, specify SYSDIR to the working directory (/tmp).

% cp lx1boot.nlb /tmp
 National Language Support Utilities 9-13

NLS Data Installation Utility
The new character set definition file (lx22710.nlt) and the text boot file contain-
ing the new character set entry (lx0boot.nlt) that you created in Step 2 & 3
should reside in the directory specified by ORANLS, for this example, specify it
to be /tmp. Also, since we define JA16EUC (Id 830 in hex value 033e) as
"BASE_CHAR_SET", the base definition file, text-format (lx2033e.nlt) or binary
format (lx*033e.nlb), should be in the directory ORANLS too, so that the new
character set can inherit all definition from it.

% cp lx2033e.nlt /tmp

or

% cp lx*033e.nlb /tmp

Use the LXINST utility to generate a binary character set definition file
(lx22710.nlb) in the directory specified by ORANLS and an updated binary boot
file (lx1boot.nlb) in the directory specified by DESTDIR. For this example,
define ORANLS, SYSDIR and DESTDIR all to be /tmp.

% $ORACLE_HOME/bin/lxinst oranls=/tmp sysdir=/tmp destdir=/tmp

Then, install the newly generated binary boot file (lx1boot.nlb) into the
ORA_NLS33 directory:

% cp /tmp/lx1boot.nlb $ORA_NLS33/lx1boot.nlb

Finally, install the new character set definition file lx2*.nlb into the ORA_NLS33
directory. If there is lx5*.nlb or lx6*.nlb or both, install them too:

% cp /tmp/lx22710.nlb $ORA_NLS33
% cp /tmp/lx52710.nlb $ORA_NLS33
% cp /tmp/lx62710.nlb $ORA_NLS33

Step 6. Repeat for Each Platform
You must repeat Step 5 on each hardware platform since the .nlb file is a plat-
form-specific binary. It must also be repeated for every system that must recog-
nize the new character set. Therefore, you should compile and install the new
.nlb files on both server and client machines.
9-14 Oracle8 Server Utilities

NLS Data Installation Utility
Step 7. Create the Database Using New Character Set
After installing the .nlb files you must shutdown and restart the database server
in order to initialize NLS data loading.

After bringing the database server back up, create the new database using the
newly created character set.

To use the new character set on the client side, simply exit the client (such as
Enterprise Manager or SQL*Plus) and reinvoke it after installing the .nlb files.
 National Language Support Utilities 9-15

NLS Configuration Utility
NLS Configuration Utility

Overview
At installation, all available NLS objects are stored and referenced in the system
boot file. This file is used to load the available NLS dam.

The NLS Configuration Utility allows you to configure your boot files such that
only the NLS objects that you require will be loaded. It does this by creating a
user boot file, which contains a subset of the system boot file. Data loading by
the kernel will then be performed according to the contents of this user boot file.

The NLS Configuration Utility allows you to configure a user boot file, either by
selecting NLS objects from the installed system boot file which will then be
included in a new user boot file, or by reading entries from an existing user boot
file and possibly removing one or more of them and saving the remaining
entries into a new user boot file. Note that you will not be allowed to actually
“edit” an existing boot file as it may be in use by either the RDBMS or some
other Oracle tool (that is, saving of boot file entries is never done to an existing
one).

You may also use the NLS Data Installation Utility to check the integrity of an
existing user boot file. This is necessary since the contents of existing NLS
objects may change over time, and the installation of a new system boot file may
cause user boot files to become out of date. Thus, a comparison function will
notify you when it finds that the file is out of date and will allow you to create a
new user boot file.

Syntax
The NLS Configuration Utility is invoked from the command line with the fol-
lowing syntax:

LXBCNF [ORANLS=pathname] [userbootdir= pathname] [DESTDIR= pathname]
[HELP=[yes |no]]
9-16 Oracle8 Server Utilities

NLS Configuration Utility
where:

Menus
When the NLS Configuration Utility is started you are presented with the fol-
lowing top-level menu:

■ File Menu

■ Edit Menu

■ Action Menu

■ Windows Menu

■ Help

ORANLS=pathname Specifies where to find the text-format boot and object files and
where to store the new binary-format boot and object files. If
not specified, NLS Installation Utility uses the value in the envi-
ronment variable ORA_NLS (or the equivalent for your operat-
ing system). If both are specified, the command line parameter
overrides the environment variable. If neither is specified, the
NLS Installation Utility will exit with an error.

SYSDIR=pathname Specifies where to find the existing system boot file. If not speci-
fied, the NLS Installation Utility uses the directory specified in
the initialization file parameter ORANLS. If there is no existing
system boot file or the NLS Installation Utility is unable to find
the file, it will create a new file and copy or move it to the appro-
priate directory.

DESTDIR=pathname Specifies where to put the new (merged) system boot file. If not
specified, the NLS Installation Utility uses the directory speci-
fied in the initialization file parameter ORANLS. Any system
boot file that exists in this directory will be overwritten so make
a backup first.

HELP=[yes | no] If "yes", a help message describing the syntax for the NLS Instal-
lation Utility will be displayed.
 National Language Support Utilities 9-17

NLS Configuration Utility
File Menu
The file menu contains choices pertaining to file operations. Options are:

Note: As long as the system boot file has not been opened and read, all
these menu items will remain “grayed out”. That is, you cannot build a
user boot file as long as there is no system boot file information available.

As soon as you select New to create a new user boot file, the following NLS
objects will be created in the new file by default:

If you choose to read the contents of an existing user boot file, the entries read
will be checked against the entries of the system boot file. If an entry is found
which does not exist in the system boot file, you will receive a warning, and the
entry will not be included.

Edit Menu
The Edit Menu contains choices for editing information that you enter in any of
the dialogs and/or windows of the NLS Configuration Utility.

Table 9–1 File Menu Options

Menu Item Options Description

System Boot
File

Open This will open the current system boot file.
Note that the Open menu item will be
“grayed out” as soon as a system Boot File
has been successfully read. Also note that you
cannot perform any other functions until you
have opened a system boot file.

User Boot File New Open a new user boot file.

Read Read the contents of an existing user boot file.

Save Save changes to the new user boot file.

Revert Undo the changes to the currently open user
boot file made since the last “Save.”

Choose Printer Not implemented in this release.

Page Setup Not implemented in this release.

Print Not implemented in this release.

Quit Exit from the file.
9-18 Oracle8 Server Utilities

NLS Configuration Utility
Action Menu
The Action Menu contains choices for performing operations on the user boot
file. Note that this menu is available only in the character mode NLS Configura-
tion Utility.

Windows Menu
The Windows Menu allows you to either activate certain windows or set the
focus to an already open window (the latter is meant for character-mode plat-
forms). Whenever a new window is opened, its name will be added to the Win-
dows Menu automatically.

Help Menu
This menu provides functions which allow the user to retrieve various levels of
help about the NLS Configuration Utility.

Copy Item Copies the selected item from the system boot file to the user
boot file.

Delete Item Deletes the selected item from the user boot file.

NLS Defaults Not implemented in this release.

About Shows version information for the NLS Configuration Utility.

Help System Not implemented in this release.
 National Language Support Utilities 9-19

NLS Calendar Utility
NLS Calendar Utility

Overview
A number of calendars besides Gregorian are supported. Although all of them are
defined with data linked directly into NLS, some of them may require the addition
of ruler eras (in the case of imperial calendars) or deviation days (in the case of
lunar calendars) in the future. In order to do this without waiting for a new release,
you can define the additional eras or deviation days in an external file, which is
then automatically loaded when executing the calendar functions.

The calendar data is first defined in a text-format definition file. This file must be
converted into binary format before it can be used. The Calendar Utility described
here allows you to do this.

Syntax
The Calendar Utility is invoked directly from the command line:

LXEGEN

There are no parameters.

Usage
The Calendar Utility takes as input a text-format definition file. The name of the file
and its location is hard-coded as a platform-dependent value. On UNIX platforms,
the file name is lxecal.nlb, and its location is $ORACLE_HOME/ocommon/nls. An
example calendar definition file is included in the distribution.

Note: The location of files is platform dependent. Please see your platform-specific
Oracle documentation for information about the location of files on your system.

The LXEGEN executable produces as output a binary file containing the calendar
data in the appropriate format. The name of the output file is also hard-coded as a
platform-dependent value; on UNIX the name would be lxecal.nlt were you to
define deviation days for the Arabic Hijirah calendar. The file will be generated in
the same directory as the text-format file, and an already-existing file will be over-
written.

Once the binary file has been generated, it will automatically be loaded during sys-
tem initialization. Do not move or rename the file, as it is expected to be found in
the same hard-coded name and location.
9-20 Oracle8 Server Utilities

Part IV

Offline Database Verification Utility

Part IV explains how to use the offline database verification utility, a command-
line utility that performs a physical data structure integrity check on an offline
database.

 Offline Database Verification U
10

Offline Database Verification Utility

This chapter describes how to use the off-line database verification utility,
DB_VERIFY. The chapter includes the following topics:

■ Functionality

■ Restrictions

■ Usage

■ Command-Line Syntax

■ Parameters

■ Server Manager Compatibility
tility 10-1

DB_VERIFY
DB_VERIFY
DB_VERIFY is an external command-line utility that performs a physical data struc-
ture integrity check on an offline database. It can be used against backup files and
online files (or pieces of files). You use DB_VERIFY primarily when you need to
insure that a backup database (or datafile) is valid before it is restored or as a diag-
nostic aid when you have encountered data corruption problems.

Because DB_VERIFY can be run against an offline database, integrity checks are sig-
nificantly faster.

Additional Information: The name and location of DB_VERIFY is dependent
on your operating system (for example, dbv on Sun/Sequent systems). See
your operating system-specific Oracle documentation for the location of
DB_VERIFY for your system.

Restrictions
DB_VERIFY checks are limited to cache managed blocks.

Syntax

FILE

END

START

BLOCKSIZE

FEEDBACK

LOGFILE

PARFILE

DB_VERIFY

HELP

filename

block_address

block_size

n

logfile_name

parfile_name

Y/N

block_address
10-2 Oracle8 Utilities

DB_VERIFY
Parameters

Enterprise Manager
Enterprise Manager can be used to perform the verification process as well. The
verification of the entire database or a tablespace will be managed by Enterprise
Manager in that it will invoke the verification process on each individual file.

For more information, see your Enterprise Manager documentation.

FILE The name of the database file to verify,

START The starting block address to verify. Specify block addresses in
Oracle blocks (as opposed to operating system blocks). If you do
not specify START, DB_VERIFY defaults to the first block in the
file.

END The ending block address to verify. If you do not specify END,
DB_VERIFY defaults to the last block in the file.

BLOCKSIZE BLOCKSIZE is required only if the file to be verified has a non-
2kb block size. If you do not specify BLOCKSIZE for non-2kb
files, you will see the error DBV-00103.

LOGFILE Specifies the file to which logging information should be writ-
ten. The default sends output to the terminal display.

FEEDBACK Specifying the keyword FEEDBACK causes DB_VERIFY to send
a progress display to the terminal in the form of a single dot "."
for n number of pages verified during the DB_VERIFY run. If
n = 0, there will be no progress display.

HELP Provides onscreen help.

PARFILE Specifies the name of the parameter file to use. You can store
various values for DB_VERIFY parameters in flat files allowing
you to have parameter files customized for specific types of
integrity checks and/or for different types of datafiles.
 Offline Database Verification Utility 10-3

DB_VERIFY
Sample DB_VERIFY Output
The following example shows how to get online help:

% dbv help=y

DBVERIFY: Release 7.3.1.0.0 - Wed Aug 2 09:14:36 1995

Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.

Keyword Description (Default)
--
FILE File to Verify (NONE)
START Start Block (First Block of File)
END End Block (Last Block of File)
BLOCKSIZE Logical Block Size (2048)
LOGFILE Output Log (NONE)

This is sample output of verification for the file, t_db1.f. The feedback parameter
has been given the value 100 to display one dot onscreen for every 100 pages pro-
cessed:

% dbv file=t_db1.f feedback=100

DBVERIFY: Release 7.3.1.0.0 - Wed Aug 2 09:15:04 1995

Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.

DBVERIFY - Verification starting : FILE = t_db1.f

..

....

DBVERIFY - Verification complete

Total Pages Examined : 9216
Total Pages Processed (Data) : 2044
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 733
Total Pages Failing (Index): 0
Total Pages Empty : 5686
Total Pages Marked Corrupt : 0

Total Pages Influx : 0
10-4 Oracle8 Utilities

 SQL*Loader Reserved W
A

SQL*Loader Reserved Words

This appendix lists the words reserved for use by the Oracle utilities. It also
explains how to avoid problems that can arise from using reserved words as names
for tables and columns, which normally should not be named using reserved
words.
ords A-1

Generally you should avoid naming your tables and columns using terms that are
reserved by any of the languages or utilities you are likely to use at your installa-
tion. Refer to the various language and reference manuals and to this appendix for
lists of reserved words.

Consult the Oracle8 SQL Reference for a list of words that are reserved by SQL.
Tables and columns that have these names must have these names specified in dou-
ble quotation marks.

When using SQL*Loader, you must follow the usual rules for naming tables and
columns. A table or column’s name cannot be a reserved word, a word having spe-
cial meaning for SQL*Loader. The following words must be enclosed in double
quotation marks to be used as a name for a table or column:

AND FLOAT RECOVERABLE

APPEND FORMAT REENABLE

BADFILE GENERATED REPLACE

BADDN GRAPHIC RESUME

BEGINDATA INDDN SEQUENCE

BLANKS INDEXES SINGLEROW

BLOCKSIZE INFILE SKIP

BY INSERT SMALLINT

BYTEINT INTEGER SORTDEVT

CHAR INTO SORTED

CHARACTERSET LAST SORTNUM

CONCATENATE LOAD SQL/DS

CONSTANT LOG STORAGE

CONTINUE_LOAD MAX STREAM

CONTINUEIF MLSLABEL SYSDATE

COUNT NEXT TABLE

DATA NO TERMINATED

DATE NULLCOLS THIS

DECIMAL NULLIF TRAILING

DEFAULTIF OPTIONALLY TRUNCATE

DELETE OPTIONS UNLOAD

DISABLED_CONSTRAINTS PARALLEL UNRECOVERABLE

DISCARDDN PART USING
A-2 Oracle8 Utilities

DISCARDFILE PARTITION VARCHAR

DISCARDMAX PIECED VARGRAPHIC

DISCARDS POSITION VARIABLE

DOUBLE PRESERVE WHEN

ENCLOSED RAW WHITESPACE

EXCEPTIONS READBUFFERS WORKDDN

EXTERNAL RECLEN YES

FIELDS RECNUM ZONED

FIXED RECORD
 SQL*Loader Reserved Words A-3

A-4 Oracle8 Utilities

 DB2/DXT User N
B

DB2/DXT User Notes

This appendix describes differences between SQL*Loader DDL syntax and DB2
Load Utility/DXT control file syntax. The topics discussed include:

■ SQL*Loader Extensions to the DB2 Load Utility

■ Using the DB2 RESUME Option

■ Inclusions for Compatibility

■ Restrictions

■ SQL*Loader Syntax with DB2-compatible Statements
otes B-1

SQL*Loader Extensions to the DB2 Load Utility
SQL*Loader Extensions to the DB2 Load Utility
SQL*Loader can use any DB2 Load Utility control file. SQL*Loader also offers
numerous extensions to the DB2 loader by supporting the following features:

■ The DATE datatype

■ The automatic generation of unique sequential keys

■ The ability to specify the record length explicitly

■ Loading data from multiple data files of different file types

■ Fixed-format, delimited-format, and variable-length records

■ The ability to treat a single physical record as multiple
logical records

■ The ability to combine multiple physical records into one logical record via
CONCATENATE, CONTINUEIF NEXT, and CONTINUEIF THIS (IBM sup-
ports only CONTINUEIF THIS)

■ More thorough error reporting

■ Bad file (DB2 stops on first error)

■ Control over the number of records to skip, the number to load, and the
number of errors to allow

■ ANDed WHEN clause

■ FIELDS clause for default field characteristics

■ Direct path loads

■ Parallel loads
B-2 Oracle8 Utilities

Inclusions for Compatibility
Using the DB2 RESUME Option
You can use the DB2 syntax for RESUME, but you may prefer to use
SQL*Loader’s equivalent keywords. See “Loading into Empty and Non-Empty
Tables” on page 5-25 for more details about the SQL*Loader options summarized
below.

A description of the DB2 syntax follows. If the tables you are loading already
contain data, you have three choices for the disposition of that data. Indicate
your choice using the RESUME clause. The argument to RESUME can be
enclosed in parentheses.

RESUME { YES | NO [REPLACE] }

where:

In SQL*Loader you can use one RESUME clause to apply to all loaded tables by
placing the RESUME clause before any INTO TABLE clauses. Alternatively, you
can specify your RESUME options on a table-by-table basis by putting a
RESUME clause after the INTO TABLE specification. The RESUME option fol-
lowing a table name will override one placed earlier in the file. The earlier
RESUME applies to all tables that do not have their own RESUME clause.

Inclusions for Compatibility
The IBM DB2 Load Utility contains certain elements that SQL*Loader does not
use. In DB2, sorted indexes are created using external files, and specifications
for these external files may be included in the load statement. For compatibility
with the DB2 loader, SQL*Loader parses these options, but ignores them if they
have no meaning for Oracle. The syntactical elements described below are
allowed, but ignored, by SQL*Loader.

Table B–1 DB2 Functions and Equivalent SQL*Loader Operations

DB2 SQL*Loader Options Result

RESUME NO or no
RESUME clause

INSERT Data loaded only if table is
empty. Otherwise an error is
returned.

RESUME YES APPEND New data is appended to
existing data in the table, if
any.

RESUME NO
REPLACE

REPLACE New data replaces existing
table data, if any.
 DB2/DXT User Notes B-3

Restrictions
LOG Statement
This statement is included for compatibility with DB2. It is parsed but ignored
by SQL*Loader. (This LOG option has nothing to do with the log file that
SQL*Loader writes.) DB2 uses the log file for error recovery, and it may or may
not be written.

SQL*Loader relies on Oracle’s automatic logging, which may or may not be
enabled as a warm start option.

[LOG { YES | NO }]

WORKDDN Statement
This statement is included for compatibility with DB2. It is parsed but ignored
by SQL*Loader. In DB2, this statement specifies a temporary file for sorting.

[WORKDDNfilename]

SORTDEVT and SORTNUM Statements
SORTDEVT and SORTNUM are included for compatibility with DB2. These
statements are parsed but ignored by SQL*Loader. In DB2, these statements
specify the number and type of temporary data sets for sorting.

[SORTDEVT device_type]
[SORTNUM n]

DISCARD Specification
Multiple file handling requires that the DISCARD clauses (DISCARDDN and
DISCARDS) be in a different place in the control file — next to the datafile speci-
fication. However, when loading a single DB2 compatible file, these clauses can
be in their old position — between the RESUME and RECLEN clauses. Note
that while DB2 Load Utility DISCARDS option zero (0) means no maximum
number of discards, for SQL*Loader, option zero means to stop on the first dis-
card.

Restrictions
Some aspects of the DB2 loader are not duplicated by SQL*Loader. For example,
SQL*Loader does not load data from SQL/DS files nor from DB2 UNLOAD
files. SQL*Loader gives an error upon encountering the DB2 Load Utility com-
mands described below.
B-4 Oracle8 Utilities

SQL*Loader Syntax with DB2-compatible Statements
FORMAT Statement
The DB2 FORMAT statement must not be present in a control file to be pro-
cessed by SQL*Loader. The DB2 loader will load DB2 UNLOAD format, SQL/
DS format, and DB2 Load Utility format files. SQL*Loader does not support
these formats. If this option is present in the command file, SQL*Loader will
stop with an error. (IBM does not document the format of these files, so
SQL*Loader cannot read them.)

FORMAT { UNLOAD | SQL/DS }

PART Statement
The PART statement is included for compatibility with DB2. There is no Oracle
concept that corresponds to a DB2 partitioned table.

In SQL*Loader, the entire table is read. A warning indicates that partitioned
tables are not supported, and that the entire table has been loaded.

[PART n]

SQL/DS Option
The option SQL/DS=tablename must not be used in the WHEN clause. SQL*Loader
does not support the SQL/DS internal format. So if the SQL/DS option appears in this
statement, SQL*Loader will terminate with an error.

DBCS Graphic Strings
Because Oracle does not support the double-byte character set (DBCS), graphic
strings of the form G’**’ are not permitted.

SQL*Loader Syntax with DB2-compatible Statements
In the following listing, DB2-compatible statements are in bold type:

OPTIONS (options)
{ LOAD | CONTINUE_LOAD } [DATA]
[CHARACTERSETcharacter_set_name]
[{ INFILE | INDDN } { filename | * }
[” OS-dependent file processing options string ”]
[{ BADFILE | BADDN } filename]
[{ DISCARDFILE | DISCARDDN } filename]
[{ DISCARDS | DISCARDMAX } n]]
[{ INFILE | INDDN }] ...
[APPEND | REPLACE | INSERT |
 DB2/DXT User Notes B-5

SQL*Loader Syntax with DB2-compatible Statements
RESUME [(] { YES | NO [REPLACE] } [)]]
[LOG { YES | NO }]
[WORKDDN filename]
[SORTDEVT device_type]
[SORTNUM n]
[{ CONCATENATE [(] n [)] |
CONTINUEIF { [THIS | NEXT]
[(] (start [{ : | - } end]) | LAST }
operator { ’ char_str ’ | X’ hex_str ’ } [)] }]
[PRESERVE BLANKS]
INTO TABLE tablename
[CHARACTERSETcharacter_set_name]
[SORTED [INDEXES] (index_name [, index_name ...])]
[PART n]
[APPEND | REPLACE | INSERT |
RESUME [(] { YES | NO [REPLACE] } [)]]
[REENABLE [DISABLED_CONSTRAINTS] [EXCEPTIONS table_name]]
[WHEN field_condition [AND field_condition ...]]
[FIELDS [delimiter_spec]]
[TRAILING [NULLCOLS]]
[SKIP n]
(. column_name
{ [RECNU
| SYSDATE | CONSTANT value
| SEQUENCE ({ n | MAX | COUNT } [, increment])
| [[POSITION ({ start [{:|-} end] | * [+ n] })]
[datatype_spec]
[NULLIF field_condition]
[DEFAULTIF field_condition]
[” sql string ”]]] }
[, column_name] ...)
[INTO TABLE] ... [BEGINDATA]
[BEGINDATA]
B-6 Oracle8 Utilities

Index

A
access privileges

Export, 1-3
Import, 2-12

advanced queue (AQ) tables
exporting, 1-49
importing, 2-61

aliases
directory

exporting, 1-47
importing, 2-60

ANALYZE
Import parameter, 2-19

APPEND keyword
SQL*Loader, 5-37

APPEND to table
example, 4-11
SQL*Loader, 5-26

AQ (advanced queue) tables
exporting, 1-49
importing, 2-61

arrays
committing after insert

Import, 2-20
exporting, 1-47
importing, 2-59

ASCII
fixed-format files

exporting, 1-3
ASCII character set

Import, 2-55

B
backslash (\)

escape character in quoted strings
SQL*Loader, 5-13

quoted filenames and
SQL*Loader, 5-14

backups
restoring dropped snapshots

Import, 2-51
BAD

SQL*Loader command-line parameter, 6-3
bad file

rejected records
SQL*Loader, 3-13

specifying
bad records, 6-3
SQL*Loader, 5-19

BADDN keyword
SQL*Loader, 5-19

BADFILE keyword
SQL*Loader, 5-19

base backup
Export, 1-37

base tables
incremental export and, 1-41

BEGINDATA
control file keyword

SQL*Loader, 5-15
BFILE columns

exporting, 1-47
bind array

determining size
SQL*Loader, 5-65
 Index-1

determining size of
SQL*Loader, 5-67

minimizing memory requirements
SQL*Loader, 5-70

minimum requirements
SQL*Loader, 5-65

no space required for generated data
SQL*Loader, 5-71

performance implications
SQL*Loader, 5-66

size with multiple INTO TABLE clauses
SQL*Loader, 5-70

specifying number of rows
conventional path load

SQL*Loader, 6-6
specifying size

SQL*Loader, 6-3
BINDSIZE

SQL*Loader command-line parameter, 6-3
BINDSIZE command-line parameter

SQL*Loader, 5-66
blanks

BLANKS keyword for field comparison
SQL*Loader, 5-7, 5-38

loading fields consisting of blanks
SQL*Loader, 5-72

preserving
SQL*Loader, 5-78

trailing
loading with delimiters

SQL*Loader, 5-63
trimming

SQL*Loader, 5-72
whitespace

SQL*Loader, 5-72
BLANKS keyword

SQL*Loader, 5-38
BUFFER

Export parameter, 1-13
direct path export, 1-34, 1-36

Import parameter, 2-19
buffers

calculating for export, 1-13
calculating for import, 2-19

space required by
LONG DATA

SQL*Loader, 5-58
VARCHAR data

SQL*Loader, 5-56
specifying with BINDSIZE parameter

SQL*Loader, 5-67
BYTEINT datatype, 5-51

specification
SQL*Loader, 5-8

SQL*Loader, 5-52

C
cached sequence numbers

Export, 1-46
case studies

SQL*Loader, 4-1
associated files, 4-3
file names, 4-3
preparing tables, 4-4

CATALOG.SQL
preparing database for Export, 1-6
preparing database for Import, 2-7

CATEXP7.SQL
preparing database for Export, 1-50

CATEXP.SQL
preparing database for Export, 1-6
preparing database for Import, 2-7

CATLDR.SQL
setup script

SQL*Loader, 8-9
CHAR columns

Version 6 export files, 2-63
CHAR datatype

delimited form
SQL*Loader, 5-60

reference
SQL*Loader, 5-58

specification
SQL*Loader, 5-9

trimming whitespace
SQL*Loader, 5-73

character datatypes
conflicting fields
Index-2

SQL*Loader, 5-63
character fields

datatypes
SQL*Loader, 5-58

delimiters
SQL*Loader, 5-60

determining length
SQL*Loader, 5-63

specified with delimiters
SQL*Loader, 5-58

character sets
conversion between

during Export/Import, 1-45, 2-55
SQL*Loader, 5-24

direct path export, 1-36, 1-45
eight-bit to seven-bit conversions

Export/Import, 1-46, 2-56
multi-byte

Export/Import, 1-46, 2-56
SQL*Loader, 5-24

NCHAR data
Export, 1-45

single-byte
Export/Import, 1-46, 2-55

Version 6 conversions
Import/Export, 2-56

character strings
as part of a field comparison

SQL*LOader, 5-7
padded

when shorter than field
SQL*Loader, 5-39

CHARACTERSET keyword
SQL*Loader, 5-24

CHARSET
Import parameter, 2-20

check constraints
Import, 2-48

clusters
Export, 1-42

columns
exporting LONG datatypes, 1-47
naming

SQL*Loader, 5-40
null columns at the end of a record

SQL*Loader, 5-72
reordering before Import, 2-15
setting to a constant value

SQL*Loader, 5-46
setting to a unique sequence number

SQL*Loader, 5-48
setting to datafile record number

SQL*Loader, 5-47
setting to null

SQL*Loader, 5-71
setting to null value

SQL*Loader, 5-47
setting to the current date

SQL*Loader, 5-47
setting value to zero

SQL*Loader, 5-71
specifiying as PIECED

SQL*Loader, 8-14
specifying

SQL*Loader, 5-39
combining partitions, 2-31
command-line parameters

description
SQL*Loader, 6-2

Export, 1-11
Import, 2-16
specifying defaults

SQL*Loader, 5-11
Comments

in Export parameter file, 1-10
in Import parameter file, 2-11
in SQL*Loader control file, 4-12

COMMIT
Import parameter, 2-20

complete exports, 1-37, 1-39
restrictions, 1-37
specifying, 1-17

completion messages
Export, 1-33

COMPRESS
Export parameter, 1-13, 2-53

COMPUTE option
STATISTICS Export parameter, 1-19

CONCATENATE keyword
SQL*Loader, 5-29
 Index-3

concurrent conventional path loads, 8-24
connect string

Net8, 1-44
CONSISTENT

Export parameter, 1-14
nested table and, 1-14
partitioned table and, 1-14

consolidating extents
Export parameter COMPRESS, 1-13

CONSTANT keyword
no space used in bind array

SQL*Loader, 5-71
SQL*Loader, 5-40, 5-46

CONSTRAINTS
Export parameter, 1-15

constraints
automatic

SQL*Loader, 8-22
check

Import, 2-48
direct path load, 8-20
disabling during a direct load, 8-20
disabling referential constraints

Import, 2-15
enabling after a direct load, 8-20
enforced on a direct load, 8-20
failed

Import, 2-48
load method

SQL*Loader, 8-8
not null

Import, 2-48
preventing Import errors due to uniqueness

constraints, 2-21
referential integrity

Import, 2-48
uniqueness

Import, 2-48
continuation fields

SQL*Loader, 3-9
CONTINUE_LOAD keyword

SQL*Loader, 5-29
CONTINUEIF keyword

example
SQL*Loader, 4-14

SQL*Loader, 5-29
continuing interrupted loads

SQL*Loader, 5-27
CONTROL

SQL*Loader command-line parameter, 6-4
control files

CONTROL
SQL*Loader command-line parameter, 6-4

creating
SQL*Loader, 3-3

data definition language syntax
SQL*Loader, 5-4

data definitions
basics

SQL*Loader, 3-3
definition

SQL*Loader, 3-3
editing

SQL*Loader, 3-3
field delimiters

SQL*Loader, 5-10
guidelines for creating

SQL*Loader, 3-4
location

SQL*Loader, 3-5
specifying data

SQL*Loader, 5-15
specifying discard file

SQL*Loader, 5-21
storing

SQL*Loader, 3-5
conventional path Export

compared to direct path Export, 1-33
conventional path loads

basics, 8-2
bind array

SQL*Loader, 5-66
compared to direct path loads, 8-7
using, 8-3

CREATE SESSION privilege
Export, 1-3
Import, 2-12

CREATE USER command
Import, 2-14

CTIME column
Index-4

SYS.INCEXP table, 1-43
cumulative exports, 1-37, 1-38

recording, 1-18
restrictions, 1-37
specifying, 1-17
SYS.INCFIL table, 1-44
SYS.INCVID table, 1-44

D
DATA

SQL*Loader command-line parameter, 6-4
data

binary versus character format
SQL*Loader, 3-9

delimiter marks in data
SQL*Loader, 5-62

distinguishing different input formats
SQL*Loader, 5-43

enclosed
SQL*Loader, 3-10

exporting, 1-19
formatted data

SQL*Loader, 4-27
generating unique values

SQL*Loader, 5-48
including in control files

SQL*Loader, 5-15
loading in sections

SQL*Loader, 8-14
loading into more than one table

SQL*Loader, 5-43
loading LONG

SQL*Loader, 5-58
loading without files

SQL*Loader, 5-46
mapping to Oracle format

SQL*Loader, 3-3
maximum length of delimited data

SQL*Loader, 5-63
methods of loading into tables

SQL*Loader, 5-25
moving between operating systems

SQL*Loader, 5-65
saving in a direct path load, 8-12

saving rows
SQL*Loader, 8-18

terminated
SQL*Loader, 3-10

unsorted
SQL*Loader, 8-17

values optimized for performance
SQL*Loader, 5-46

data conversion
description

SQL*Loader, 3-10
data definition language

basics
SQL*Loader, 3-3

BEGINDATA keyword, 5-15
BLANKS keyword

SQL*Loader, 5-38
CHARACTERSET keyword, 5-24
column_name

SQL*Loader, 5-8
CONCATENATE keyword, 5-29
CONSTANT keyword, 5-40, 5-46
CONTINUEIF keyword, 5-29
datatype_spec

SQL*Loader, 5-9
date mask

SQL*Loader, 5-10
DEFAULTIF keyword

SQL*Loader, 5-71
delimiter_spec

SQL*Loader, 5-10
description

SQL*Loader, 3-5
DISABLED_CONSTRAINTS keyword

SQL*Loader, 8-21
DISCARDDN keyword, 5-21
DISCARDMAX keyword

SQL*Loader, 5-23
example definition

SQL*Loader, 3-5
EXCEPTIONS keyword

SQL*Loader, 8-21
EXTERNAL keyword, 5-60
field_condition

SQL*Loader, 5-7
 Index-5

FILE keyword
SQL*Loader, 8-27

FLOAT keyword, 5-60
INDDN keyword, 5-16
INFILE keyword, 5-16
length

SQL*Loader, 5-10
loading data in sections

SQL*Loader, 8-14
NULLIF keyword

SQL*Loader, 5-71
parallel keyword

SQL*Loader, 8-26
pos_spec

SQL*Loader, 5-7
POSITION keyword, 5-40
precision

SQL*Loader, 5-10
RECNUM keyword, 5-40
REENABLE keyword

SQL*Loader, 8-21
reference

keywords and parameters
SQL*Loader, 5-1

SEQUENCE keyword, 5-48
syntax diagrams

expanded
SQL*Loader, 5-7

high-level
SQL*Loader, 5-4

syntax reference
SQL*Loader, 5-1

SYSDATE keyword, 5-47
TERMINATED keyword, 5-61
UNRECOVERABLE keyword

SQL*Loader, 8-18
WHITESPACE keyword, 5-61

data definition language (DDL), 3-3
data field

specifying the datatype
SQL*Loader, 5-40

data mapping
concepts

SQL*Loader, 3-3

data path loads
direct and conventional, 8-2

data recovery
direct path load

SQL*Loader, 8-13
database administrator (DBA)

privileges for export, 1-3
database objects

export privileges, 1-3
exporting LONG columns, 1-47
transferring across a network

Import, 2-50
databases

data structure changes
incremental export and, 1-41

full export, 1-16
full import, 2-23
importing into secondary

Import, 2-21
incremental export, 1-37
preparing for Export, 1-6
preparing for Import, 2-7
privileges for exporting, 1-3
privileges for importing, 2-11
reducing fragmentation via full export/

import, 2-47
reusing existing data files

Import, 2-21
datafiles

preventing overwrite during import, 2-21
reusing during import, 2-21
specifying

SQL*Loader, 5-16, 6-4
specifying buffering

SQL*Loader, 5-18
specifying format

SQL*Loader, 5-18
storage

SQL*Loader, 3-6
datatypes

BFILE
Export, 1-47

BYTEINT, 5-52
SQL*Loader, 5-8

CHAR, 5-58
Index-6

Import, 2-63
SQL*Loader, 5-9

conflicting character datatype fields, 5-63
converting

SQL*Loader, 3-10, 5-50
DATE, 5-58

determining length, 5-64
SQL*Loader, 5-9

DECIMAL, 5-53
SQL*Loader, 5-9

default
SQL*Loader, 5-40

determining character field lengths
SQL*Loader, 5-63

DOUBLE, 5-52
SQL*Loader, 5-8

FLOAT, 5-52
SQL*Loader, 5-8

GRAPHIC, 5-54
SQL*Loader, 5-9

GRAPHIC EXTERNAL, 5-54
INTEGER, 5-51

SQL*Loader, 5-8
LONG

Export, 1-47
Import, 2-61

MLSLABEL
Trusted Oracle7 Server, 5-59

native
conflicting length specifications

SQL*Loader, 5-57
inter-operating system transfer issues, 5-65
SQL*Loader, 3-9, 5-51

NUMBER
SQL*Loader, 5-50

numeric EXTERNAL, 5-60
trimming

SQL*Loader, 5-73
RAW, 5-54

SQL*Loader, 5-9
SMALLINT, 5-51

SQL*Loader, 5-8
specifications

SQL*Loader, 5-8

specifying
SQL*Loader, 5-50

specifying the datatype of a data field
SQL*Loader, 5-40

VARCHAR, 5-56
SQL*Loader, 5-9

VARCHAR2
Import, 2-63
SQL*Loader, 5-50

VARGRAPHIC, 5-55
SQL*Loader, 5-9

ZONED, 5-52
SQL*Loader, 5-9

DATE datatype
delimited form

SQL*Loader, 5-60
determining length

SQL*Loader, 5-64
mask

SQL*Loader, 5-64
specification

SQL*Loader, 5-9
SQL*Loader, 5-58
trimming whitespace

SQL*Loader, 5-73
date mask

SQL*Loader, 5-10
DB2 Load utility

use with SQL*Loader, 3-4
DB2 load utility, B-1

different placement of statements
DISCARDDDN, B-4
DISCARDS, B-4

restricted capabilities of SQL*Loader, B-4
RESUME keyword

SQL*Loader equivalents, 5-26
SQL*Loader compatibility

ignored statements, B-3
DBA role

EXP_FULL_DATABASE role, 1-7
DBCS (DB2 double-byte character set)

not supported by Oracle, B-5
DDL, 3-5

SQL*Loader data definition language, 3-3
DECIMAL datatype
 Index-7

(packed), 5-51
EXTERNAL format

SQL*Loader, 5-60
trimming whitespace

SQL*Loader, 5-73
length and precision

SQL*Loader, 5-10
specification

SQL*Loader, 5-9
SQL*Loader, 5-53

DEFAULT column values
Oracle Version 6 export files, 2-63

DEFAULTIF keyword
field condition

SQL*Loader, 5-37
SQL*Loader, 5-71

DELETE ANY TABLE privilege
SQL*Loader, 5-27

DELETE CASCADE
SQL*Loader, 5-26, 5-27

DELETE privilege
SQL*Loader, 5-26

delimited data
maximum length

SQL*Loader, 5-63
delimited fields

field length
SQL*Loader, 5-64

delimited files
exporting, 1-3

delimiter_spec
SQL*Loader, 5-10

delimiters
and SQL*Loader, 3-10
control files

SQL*Loader, 5-10
enclosure

SQL*Loader, 5-74
field specifications

SQL*Loader, 5-74
initial and trailing

case study, 4-27
loading trailing blanks

SQL*Loader, 5-63
marks in data

SQL*Loader, 5-62
optional enclosure

SQL*Loader, 5-74
specifying

SQL*Loader, 5-35, 5-60
termination

SQL*Loader, 5-74
DESTROY

Import parameter, 2-21
DIRECT

Export parameter, 1-15, 1-34
SQL*Loader command-line parameter, 6-4

direct path export, 1-33
BUFFER parameter, 1-36
character set and, 1-45
invoking, 1-34
performance, 1-36
RECORDLENGTH parameter, 1-36

direct path load
, 8-10
advantages, 8-6
case study, 4-24
choosing sort order

SQL*Loader, 8-17
compared to convetional path load, 8-7
conditions for use, 8-7
data saves, 8-12, 8-18
DIRECT

SQL*Loader command-line parameter, 6-4
DIRECT command line parameter

SQL*Loader, 8-9
DISABLED_CONSTRAINTS keyword, 8-21
disabling media protection

SQL*Loader, 8-18
dropping indexes, 8-19

to continue an interrupted load
SQL*Loader, 5-28

EXCEPTIONS keyword, 8-21
field defaults, 8-8
improper sorting

SQL*Loader, 8-17
indexes, 8-9
instance recovery, 8-13
loading into synonyms, 8-9
LONG data, 8-14
Index-8

media recovery, 8-13
partitioned load

SQL*Loader, 8-24
performance, 8-15
performance issues, 8-9
preallocating storage, 8-15
presorting data, 8-16
recovery, 8-13
REENABLE keyword, 8-21
referential integrity constraints, 8-20
ROWS command line parameter, 8-12
setting up, 8-9
specifying, 8-9
specifying number of rows to be read

SQL*Loader, 6-6
SQL*Loader data loading method, 3-16
table insert triggers, 8-21
temporary segment storage requirements, 8-10
triggers, 8-20
using, 8-7, 8-9
version requirements, 8-9

directory aliases
exporting, 1-47
importing, 2-60

DISABLED_CONSTRAINTS keyword
SQL*Loader, 8-21

DISCARD
SQL*Loader command-line parameter, 6-4

discard file
basics

SQL*Loader, 3-15
DISCARDDN keyword

different placement from DB2, B-4
SQL*Loader, 5-21

DISCARDFILE keyword
example, 4-14

DISCARDMAX keyword
example, 4-14
SQL*Loader, 5-23

DISCARDS control file clause
different placement from DB2, B-4

DISCARDS keyword
SQL*Loader, 5-23

DISCRDMAX keyword
SQL*Loader, 5-23

SQL*Loader, 5-21
discarded records

causes
SQL*Loader, 5-23

discard file
SQL*Loader, 5-21

limiting the number
SQL*Loader, 5-23

SQL*Loader, 3-13
DISCARDMAX

SQL*Loader command-line parameter, 6-5
DISCARDMAX keyword

discarded records
SQL*Loader, 5-23

discontinued loads
continuing

SQL*Loader, 5-27
DOUBLE datatype, 5-51

specification
SQL*Loader, 5-8

SQL*Loader, 5-52
dropped snapshots

Import, 2-51
dropping

indexes
to continue a direct path load

SQL*LOader, 5-28

E
EBCDIC character set

Import, 2-55
eight-bit character set support, 1-46, 2-56
enclosed fields

and SQL*Loader, 3-10
ENCLOSED BY control file clause

SQL*Loader, 5-10
specified with enclosure delimiters

SQL*Loader, 5-61
whitespace in

SQL*Loader, 5-77
enclosure delimiters

and SQL*Loader, 3-10
SQL*Loader, 5-74

error handling
 Index-9

Export, 1-32
Import, 2-48

error messages
caused by tab characters in data

SQL*Loader, 5-42
Export, 1-32
export log file, 1-17
fatal errors

Export, 1-33
generated by DB2 load utility, B-4
row errors during import, 2-48
warning errors

Export, 1-32
ERRORS

SQL*Loader command-line parameter, 6-5
errors

fatal
Export, 1-33
Import, 2-49

Import resource errors, 2-49
LONG data, 2-48
object creation

Import parameter IGNORE, 2-23
object creation errors, 2-49
warning

Export, 1-32
escape character

Export, 1-20
Import, 2-28
quoted strings

SQL*Loader, 5-13
ESTIMATE option

STATISTICS Export parameter, 1-19
EXCEPTIONS keyword

SQL*Loader, 8-21
EXP_FULL_DATABASE role, 1-16

assigning, 1-7
Export, 1-3
Import, 2-12

EXPDAT.DMP
Export output file, 1-16

EXPID column
SYS.INCEXP table, 1-43

Export
base backup, 1-37

BUFFER parameter, 1-13
CATALOG.SQL

preparing database for Export, 1-6
CATEXP7.SQL

preparing the database for Version 7
export, 1-50

CATEXP.SQL
preparing database for Export, 1-6

command line, 1-7
complete, 1-17, 1-37, 1-39

privileges, 1-37
restrictions, 1-37

COMPRESS parameter, 1-13
CONSISTENT parameter, 1-14
CONSTRAINTS parameter, 1-15
creating necessary privileges, 1-7
creating Version 7 export files, 1-49
cumulative, 1-17, 1-37, 1-38

privileges required, 1-37
restrictions, 1-37

data structures, 1-41
database optimizer statistics, 1-19
DIRECT parameter, 1-15
direct path, 1-33
displaying help message, 1-17
eight-bit vs. seven-bit character sets, 1-46
establishing export views, 1-6
examples, 1-22

full database mode, 1-22
partition-level, 1-27
table mode, 1-25
user mode, 1-24

exporting an entire database, 1-16
exporting indexes, 1-17
exporting sequence numbers, 1-46
exporting to another operating system

RECORDLENGTH parameter, 1-18, 2-26
FEEDBACK parameter, 1-16
FILE parameter, 1-16
full database mode

example, 1-22
FULL parameter, 1-16
GRANTS parameter, 1-16
HELP parameter, 1-17
incremental, 1-17, 1-37
Index-10

command syntax, 1-17
example, 1-42
privileges, 1-37
restrictions, 1-37
system tables, 1-43

INCTYPE parameter, 1-17
INDEXES parameter, 1-17
interactive method, 1-8, 1-29
invoking, 1-7
kinds of data exported, 1-41
last valid export

SYS.INCVID table, 1-44
log files

specifying, 1-17
LOG parameter, 1-17
logging error messages, 1-17
LONG columns, 1-47
message log file, 1-32
modes, 1-4
multi-byte character sets, 1-46
network issues, 1-44
NLS support, 1-46
NLS_LANG environment variable, 1-46
objects exported, 1-4
online help, 1-9
OWNER parameter, 1-17
parameter conflicts, 1-21
parameter file, 1-7, 1-10, 1-17

maximum size, 1-10
parameters, 1-11
PARFILE parameter, 1-7, 1-10, 1-17
POINT_IN_TIME_RECOVER, 1-18
preparing database, 1-6
previous versions, 1-49
RECORD parameter, 1-18
RECORDLENGTH parameter, 1-18
RECOVERY_TABLESPACES parameter, 1-19
redirecting output to a log file, 1-32
remote operation, 1-44
restrictions, 1-3
rollback segments, 1-42
ROWS parameter, 1-19
sequence numbers, 1-46
STATISTICS parameter, 1-19
storage requirements, 1-7

SYS.INCEXP table, 1-43
SYS.INCFIL table, 1-44
SYS.INCVID table, 1-44
table mode

example, 1-25
table name restrictions, 1-20
TABLES parameter, 1-19
tracking exported objects, 1-43
transferring export files across a network, 1-44
user access privileges, 1-3
user mode

examples, 1-24
specifying, 1-17

USER_SEGMENTS view, 1-7
USERID parameter, 1-21
using, 1-6
warning messages, 1-32

export file
displaying contents, 1-3
importing the entire file, 2-23
listing contents before importing, 2-27
reading, 1-3
specifying, 1-16

extent allocation
FILE

SQL*Loader command line parameter, 6-5
extents

consolidating into one extent
Export, 1-13

importing consolidated, 2-53
EXTERNAL datatypes

DECIMAL
SQL*Loader, 5-60

FLOAT
SQL*Loader, 5-60

GRAPHIC
SQL*Loader, 5-54

INTEGER, 5-60
numeric

determining length
SQL*Loader, 5-63

SQL*Loader, 5-60
trimming

SQL*Loader, 5-73
 Index-11

SQL*Loader, 3-9
ZONED

SQL*Loader, 5-60
external files

exporting, 1-47
EXTERNAL keyword

SQL*Loader, 5-60

F
fatal errors

Export, 1-33
Import, 2-48, 2-49

FEEDBACK
Export parameter, 1-16
Import parameter, 2-22

field conditions
specifying

SQL*Loader, 5-37
field length

specifications
SQL*Loader, 5-73

fields
and SQL*Loader, 3-10
character

data length
SQL*Loader, 5-63

comparing
SQL*Loader, 5-7

comparing to literals
SQL*Loader, 5-39

continuation
SQL*Loader, 3-9

DECIMAL EXTERNAL
trimming whitespace

SQL*Loader, 5-73
delimited

determining length
SQL*Loader, 5-64

specifications
SQL*Loader, 5-74

SQL*Loader, 5-60
enclosed

SQL*Loader, 5-61

FLOAT EXTERNAL
trimming whitespace

SQL*Loader, 5-73
INTEGER EXTERNAL

trimming whitespace
SQL*Loader, 5-73

length of
SQL*Loader, 5-10

loading all blanks
SQL*Loader, 5-72

location
SQL*Loader, 5-40

numeric and precision versus length
SQL*Loader, 5-10

numeric EXTERNAL
trimming whitespace

SQL*Loader, 5-73
precision

SQL*Loader, 5-10
predetermined size

length
SQL*Loader, 5-64

SQL*Loader, 5-73
relative positioning

SQL*Loader, 5-74
specification of position

SQL*Loader, 5-7
specified with a termination delimiter

SQL*Loader, 5-61
specified with enclosure delimiters

SQL*Loader, 3-10, 5-61
specifying

SQL*Loader, 5-39
specifying default delimiters

SQL*Loader, 5-35
terminated

SQL*Loader, 5-61
VARCHAR

never trimmed
SQL*Loader, 5-73

ZONED EXTERNAL
trimming whitespace

SQL*Loader, 5-73
Index-12

FIELDS clause
SQL*Loader, 5-35
terminated by whitespace

SQL*Loader, 5-76
FILE

Export parameter, 1-16
Import parameter, 2-22
keyword

SQL*Loader, 8-27
SQL*Loader command-line parameter, 6-5

FILE columns
Import, 2-60

filenames
bad file

SQL*Loader, 5-19
quotation marks

SQL*Loader, 5-13
specifying more than one

SQL*Loader, 5-17
SQL*Loader, 5-12

files
file processing options string

SQL*Loader, 5-18
logfile

SQL*Loader, 3-15
SQL*Loader

bad file, 3-13
discard file, 3-15

storage
SQL*Loader, 3-6

fixed format records
SQL*Loader, 3-6

fixed-format records
vs. variable

SQL*Loader, 3-6, 3-7
FLOAT datatype, 5-51

EXTERNAL format
SQL*Loader, 5-60
trimming whitespace

SQL*Loader, 5-73
specification

SQL*Loader, 5-8
SQL*Loader, 5-52

FLOAT EXTERNAL data values
SQL*Loader, 5-60

FLOAT keyword
SQL*Loader, 5-60

foreign function libraries
exporting, 1-47
importing, 2-60

FORMAT statement in DB2
not allowed by SQL*Loader, B-5

formats
and input records

SQL*Loader, 5-44
formatting errors

SQL*Loader, 5-19
fragmentation

reducing database fragmentation via full export/
import, 2-47

FROMUSER
Import parameter, 2-22

FTP
Export files, 1-44

FULL
Export parameter, 1-16
Import parameter, 2-23

full database mode
Import, 2-23

G
GRANTS

Export parameter, 1-16
Import parameter, 2-23

grants
exporting, 1-16
importing, 2-13, 2-23

GRAPHIC datatype, 5-51
EXTERNAL format

SQL*Loader, 5-54
specification

SQL*Loader, 5-9
SQL*Loader, 5-54

GRAPHIC EXTERNAL datatype, 5-51
 Index-13

H
HELP

Export parameter, 1-17
Import parameter, 2-23

help
Export, 1-9
Import, 2-10

hexadecimal strings
as part of a field comparison

SQL*Loader, 5-7
padded

when shorter than field
SQL*Loader, 5-39

I
IGNORE

Import parameter, 2-23
existing objects, 2-49
object identifiers and, 2-57

IMP_FULL_DATABASE role, 2-23
created by CATEXP.SQL, 2-7
Import, 2-12, 2-29

Import, 2-1
ANALYZE parameter, 2-19
backup files, 2-51
BUFFER parameter, 2-19
CATALOG.SQL

preparing the database, 2-7
CATEXP.SQL

preparing the database, 2-7
character set conversion, 1-45, 2-55
character sets, 2-55
CHARSET parameter, 2-20
COMMIT parameter, 2-20
committing after array insert, 2-20
compatibility, 2-5
complete export file, 2-43
consolidated extents, 2-53
controlling size of rollback segments, 2-21
conversion of Version 6 CHAR columns to

VARCHAR2, 2-63
creating an index-creation SQL script, 2-25
cumulative, 2-43

data files
reusing, 2-21

database
reusing existing data files, 2-21

DESTROY parameter, 2-21
disabling referential constraints, 2-15
displaying online help, 2-23
dropping a tablespace, 2-54
error handling, 2-48
errors importing database objects, 2-48
example session, 2-33
export COMPRESS parameter, 2-53
export file

importing the entire file, 2-23
listing contents before import, 2-27

failed integrity constraints, 2-48
fatal errors, 2-48, 2-49
FEEDBACK parameter, 2-22
FILE parameter, 2-22
FROMUSER parameter, 2-22
full database mode

specifying, 2-23
FULL parameter, 2-23
grants

specifying for import, 2-23
GRANTS parameter, 2-23
HELP parameter, 2-10, 2-23
IGNORE parameter, 2-23, 2-49
IMP_FULL_DATABASE role, 2-12
importing grants, 2-13, 2-23
importing objects into other schemas, 2-14
importing rows, 2-27
importing tables, 2-27
incremental, 2-43

specifying, 2-24
INCTYPE parameter, 2-24
INDEXES parameter, 2-25
INDEXFILE parameter, 2-25
INSERT errors, 2-48
interactive method, 2-41
into a secondary database, 2-21
invalid data, 2-48
invoking, 2-7
length of Oracle Version 6 export file DEFAULT

columns, 2-63
Index-14

log files
LOG parameter, 2-26

LONG columns, 2-61
manually ordering tables, 2-15
modes, 2-5
NLS considerations, 2-55
NLS_LANG environment variable, 2-56
object creation errors, 2-23
objects imported, 1-4
OPTIMAL storage parameter, 2-52
Oracle Version 6 integrity constraints, 2-63
parameter file, 2-11, 2-26
parameters, 2-16
PARFILE parameter, 2-26
POINT_IN_TIME_RECOVER parameter, 2-26
preparing the database, 2-7
privileges required, 2-11, 2-12
read-only tablespaces, 2-53
recompiling stored procedures, 2-60
RECORDLENGTH parameter, 2-26
records

specifying length, 2-26
reducing database fragmentation, 2-47
refresh error, 2-51
reorganizing tablespace during, 2-54
resource errors, 2-49
restrictions, 2-53
rows

specifying for import, 2-27
ROWS parameter, 2-27
schema objects, 2-12, 2-14
schemas

specifying for import, 2-22
sequences, 2-49
SHOW parameter, 1-3, 2-27
single-byte character sets, 2-55
SKIP_UNUSABLE_INDEXES parameter, 2-27
snapshot log, 2-50
snapshot master table, 2-51
snapshots, 2-50

restoring dropped, 2-51
specifying by user, 2-22
specifying index creation commands, 2-25
specifying the export file, 2-22
SQL*Net See Net8

statistics on imported data, 2-62
storage parameters

overriding, 2-53
stored functions, 2-60
stored packages, 2-60
stored procedures, 2-60
system objects, 2-14, 2-23
table objects

import order, 2-4
tables created before import, 2-15
TABLES parameter, 2-27
tablespaces, 2-21
TOUSER parameter, 2-29
transferring files across networks, 2-50
Trusted Oracle and, 2-2
unique indexes, 2-24
uniqueness constraints

preventing import errors, 2-21
user definitions, 2-14
user mode

specifying, 2-29
USERID parameter, 2-29
using Oracle Version 6 files, 2-63

incremental export, 1-37
backing up data, 1-42
command syntax, 1-17
data selected, 1-41
recording, 1-18
restrictions, 1-37
session example, 1-42
specifying, 1-17
SYS.INCFIL table, 1-44
SYS.INCVID table, 1-44

incremental import
parameter, 2-24
specifying, 2-24

INCTYPE
Export parameter, 1-17
Import parameter, 2-24

INDDN keyword
SQL*Loader, 5-16

index options
SINGLEROW keyword

SQL*Loader, 5-37
SORTED INDEXES
 Index-15

SQL*Loader, 5-36
Index Unusable state

indexes left in Index Unusable state, 8-11
INDEXES

Export parameter, 1-17
Import parameter, 2-25

indexes
creating manually, 2-25
direct path load

left in direct load state, 8-11
dropping

before continuing a direct path load
SQL*Loader, 5-28

SQL*Loader, 8-19
exporting, 1-17
importing, 2-25
index-creation commands

Import, 2-25
left direct load state

SQL*Loader, 8-17
multiple column

SQL*Loader, 8-17
presorting data

case study, 4-24
SQL*Loader, 8-16

skipping unusable, 2-27
SQL*Loader, 5-36
state after discontinued load

SQL*Loader, 5-27
unique, 2-24

INDEXFILE
Import parameter, 2-25

INFILE keyword
SQL*Loader, 5-16

INIT.ORA file
Export, 1-36

insert errors
Import, 2-48
specifying allowed number before termination

SQL*Loader, 6-5
INSERT into table

SQL*Loader, 5-26
INTEGER datatype, 5-51

EXTERNAL format, 5-60
trimming whitespace

SQL*Loader, 5-73
specification

SQL*Loader, 5-8
integrity constraints

failed on Import, 2-48
load method

SQL*Loader, 8-8
Oracle Version 6 export files, 2-63

interactive method
Export, 1-29
Import, 2-41

interrupted loads
continuing

SQL*Loader, 5-27
INTO TABLE clause

effect on bind array size
SQL*Loader, 5-70

INTO TABLE statement
column names

SQL*Loader, 5-40
discards

SQL*Loader, 5-23
multiple

SQL*Loader, 5-43
SQL*Loader, 5-33

invalid data
Import, 2-48

invalid objects
warning messages

during export, 1-32
invoking Export, 1-7

direct path, 1-34
invoking Import, 2-7
ITIME column

SYS.INCEXP table, 1-43

K
key values

generating
SQL*Loader, 5-48

key words, A-2
Index-16

L
language support

Export, 1-45
Import, 2-55

leading whitespace
definition

SQL*Loader, 5-72
trimming

SQL*Loader, 5-75
length

specifying record length for export, 1-18, 2-26
length indicator

determining size
SQL*loader, 5-68

length of a numeric field
SQL*Loader, 5-10

length subfield
VARCHAR DATA

SQL*Loader, 5-56
libraries

foreign function
exporting, 1-47
importing, 2-60

LOAD
SQL*Loader command-line parameter, 6-5

loading
combined physical records

SQL*Loader, 4-14
datafiles containing TABs

SQL*Loader, 5-41
delimited, free-format files, 4-11, 4-32
fixed-length data, 4-8
negative numbers

SQL*Loader, 4-14
variable-length data, 4-5

LOB data, 1-7
compression, 1-13
Export, 1-47

LOG
Export parameter, 1-17, 1-32
Import parameter, 2-26
SQL*Loader command-line parameter, 6-6

log file
specifying

SQL*Loader, 6-6
log files

after a discontinued load
SQL*Loader, 5-28

datafile information
SQL*Loader, 7-4

example, 4-25, 4-30
Export, 1-17, 1-32
global information

SQL*Loader, 7-2
header Information

SQL*Loader, 7-2
Import, 2-26
SQL*Loader, 3-15
summary statistics

SQL*Loader, 7-5
table information

SQL*Loader, 7-3
table load information

SQL*Loader, 7-4
logical records

consolidating multiple physical records into
SQL*Loader, 5-29

versus physical records
SQL*Loader, 3-9

LONG data
exporting, 1-47
importing, 2-61
loading

SQL*Loader, 5-58
loading with direct path load, 8-14
LONG FLOAT

C language datatype, 5-52
LXBCNF executable, 9-16
LXEGEN executable, 9-20
LXINST executable, 9-2

M
master table

snapshots
Import, 2-51

media protection
disabling for direct path loads

SQL*Loader, 8-18
 Index-17

media recovery
direct path load, 8-13

SQL*Loader, 8-13
memory

controlling usage
SQL*Loader, 5-18

merging partitions in a table, 2-7, 2-31
messages

Export, 1-32
Import, 2-47

migrating data across partitions, 2-31
missing data columns

SQL*Loader, 5-35
MLSLABEL datatype

SQL*Loader
Trusted Oracle7 Server, 5-59

mode
full database

Export, 1-16, 1-22
Import, 2-23

objects exported by each, 1-4
table

Export, 1-19, 1-25
Import, 2-27

user
Export, 1-17, 1-24

multi-byte character sets
blanks

SQL*Loader, 5-39
Export and Import issues, 1-46, 2-56
SQL*Loader, 5-24

multiple CPUs
SQL*Loader, 8-24

multiple table load
control file specification

SQL*Loader, 5-43
discontinued

SQL*Loader, 5-28
generating unique sequence numbers for

SQL*Loader, 5-49
multiple-column indexes

SQL*Loader, 8-17

N
NAME column

SYS.INCEXP table, 1-43
National Language Support

SQL*Loader, 5-24
National Language Support (NLS)

data object files, 9-4
Export, 1-45
Import, 2-20, 2-55
NLS Configuration Utility, 9-16
NLS Data Installation Utility, 9-2

native datatypes
and SQL*Loader, 5-51
binary versus character data

SQL*Loader, 3-9
conflicting length specifications

SQL*Loader, 5-57
delimiters

SQL*Loader, 5-51
inter-operating system transfer issues

SQL*Loader, 5-65
NCHAR data

Export, 1-45
Import, 2-57

negative numbers
loading

SQL*Loader, 4-14
nested tables

exporting, 1-49
consistency and, 1-14

importing, 2-58
networks

Export, 1-44
Import and, 2-50
transporting Export files across a network, 1-44

NLS
See National Language Support (NLS)

NLS Calendar Utility, 9-20
NLS Data Installation Utility, 9-2
NLS_LANG

environment variable
SQL*Loader, 5-24

NLS_LANG environment variable
Export, 1-46
Index-18

Import, 2-56
NONE option

STATISTICS Export parameter, 1-19
non-fatal errors

warning messages, 1-32
normalizing data during a load

SQL*Loader, 4-18
NOT NULL constraint

Import, 2-48
load method

SQL*Loader, 8-8
null columns

at end of record
SQL*Loader, 5-72

setting
SQL*Loader, 5-71

null data
missing columns at end of record

SQL*Loader, 5-35
unspecified columns

SQL*Loader, 5-39
NULLIF keyword

field condition
SQL*Loader, 5-37

SQL*Loader, 5-71, 5-72
NULLIF...BLANKS

case study, 4-25
NULLIF...BLANKS keyword

SQL*Loader, 5-38
NUMBER datatype

SQL*Loader, 5-50
numeric EXTERNAL datatypes

binary versus character data
SQL*Loader, 3-9

delimited form
SQL*Loader, 5-60

determining length
SQL*Loader, 5-63

SQL*Loader, 5-60
trimming

SQL*Loader, 5-73
trimming whitespace

SQL*Loader, 5-73

numeric fields
precision versus length

SQL*Loader, 5-10

O
object identifiers

Export, 1-48
Import, 2-57

object names
SQL*Loader, 5-12

object tables
Import, 2-58

object type definitions
exporting, 1-48
importing, 2-58

objects
considerations for Importing, 2-57
creation errors, 2-48, 2-49
identifiers, 2-57
ignoring existing objects during import, 2-23
import creation errors, 2-23
privileges, 2-12
restoring sets

Import, 2-43
online help

Export, 1-9
Import, 2-10

operating systems
moving data to different systems

SQL*Loader, 5-65
OPTIMAL storage parameter, 2-52
optimizing

direct path loads, 8-15
input file processing

SQL*Loader, 5-18
OPTIONALLY ENCLOSED BY

SQL*Loader, 5-10, 5-74
OPTIONS keyword

for parallel loads
SQL*Loader, 5-34

SQL*Loader, 5-11
Oracle Version 6

exporting database objects, 2-63
 Index-19

Oracle7
creating export files with, 1-50

ORANLS option, 9-2, 9-16
output file

specifying for Export, 1-16
OWNER

Export parameter, 1-17
OWNER# column

SYS.INCEXP table, 1-43

P
packed decimal data

SQL*Loader, 5-10
padding of literal strings

SQL*Loader, 5-39
PARALLEL

SQL*Loader command-line parameter, 6-6
PARALLEL keyword

SQL*Loader, 8-26
parallel loads

allocating extents
FILE
SQL*Loader command-line parameter, 6-5

PARALLEL
SQL*Loader command-line parameter, 6-6

parameter file
comments, 1-10, 2-28
Export, 1-10, 1-17
Import, 2-11, 2-26
maximum size

Export, 1-10
parameters

ANALYZE
Import, 2-19

BUFFER
Export, 1-13
Import, 2-19

CHARSET
Import, 2-20

COMMIT
Import, 2-20

COMPRESS, 1-13
conflicts between export parameters, 1-21

CONSTRAINTS
Export, 1-15

DESTROY
Import, 2-21

DIRECT
Export, 1-15

Export, 1-11
FEEDBACK

Export, 1-16
Import, 2-22

FILE
Export, 1-16
Import, 2-22

FROMUSER
Import, 2-22

FULL
Export, 1-16
Import, 2-23

GRANTS
Export, 1-16
Import, 2-23

HELP
Export, 1-17
Import, 2-23

IGNORE
Import, 2-23

INCTYPE
Export, 1-17
Import, 2-24

INDEXES
Export, 1-17
Import, 2-25

INDEXFILE
Import, 2-25

LOG, 1-32
Export, 1-17
Import, 2-26

OWNER
Export, 1-17

PARFILE
Export, 1-7, 1-17
Import, 2-26

POINT_IN_TIME_RECOVER
Export, 1-18
Import, 2-26
Index-20

RECORD
Export, 1-18

RECORDLENGTH
Export, 1-18
Import, 2-26

RECOVERY_TABLESPACES
Export, 1-19

ROWS
Export, 1-19
Import, 2-27

SHOW
Import, 2-27

SKIP_UNUSABLE_INDEXES
Import, 2-27

STATISTICS
Export, 1-19

TABLES
Export, 1-19
Import, 2-27

TOUSER
Import, 2-29

USERID
Export, 1-21
Import, 2-29

PARFILE
Export command-line option, 1-7, 1-10, 1-17
Import command-line option, 2-11, 2-26
SQL*Loader command-line parameter, 6-6

PART statement in DB2
not allowed by SQL*Loader, B-5

partitioned load
concurrent conventional path loads, 8-24
SQL*Loader, 8-24

partitioned table
export consistency and, 1-14
exporting, 1-6
importing, 2-6, 2-31, 2-33

partitioned tables in DB2
no Oracle equivalent, B-5

partition-level Export, 1-6
examples, 1-27

partition-level Import, 2-30
guidelines, 2-30
merging partitions, 2-31
reconfiguring partitions, 2-32

specifying, 1-19
passwords

hiding, 2-8
performance

direct path Export, 1-33, 1-36
direct path loads, 8-15
Import, 2-21
optimizing reading of data files

SQL*Loader, 5-18
partitioned load

SQL*Loader, 8-24
performance improvement

conventional path for small loads, 8-21
physical versus logical records

SQL*Loader, 3-9
PIECED keyword

SQL*Loader, 8-14
POINT_IN_TIME_RECOVER

Export parameter, 1-18
Import parameter, 2-26

POSITION keyword
specification of field position

SQL*Loader, 5-7
SQL*Loader, 5-40
tabs, 5-41
with multiple INTO TABLE clauses

SQL*Loader, 5-42, 5-45
precision of a numeric field versus length

SQL*Loader, 5-10
predetermined size fields

SQL*Loader, 5-73
preface

Send Us Your Comments, xix
prerequisites

SQL*Loader, 3-16
PRESERVE BLANKS keyword

SQL*Loader, 5-78
presorting data for a direct path load

case study, 4-24
primary keys

Import, 2-48
privileges

complete export, 1-37
creating for Export, 1-7
cumulative export, 1-37
 Index-21

DELETE
SQL*Loader, 5-26

DELETE ANY TABLE
SQL*Loader, 5-27

Export and, 1-3
granted to others, 2-13
Import, 2-11, 2-12
incremental export, 1-37
required for SQL*Loader, 3-16
See also grants, roles
SQL*Loader and Trusted Oracle7 Server, 3-16

Q
quotation marks

backslash
escape character
SQL*Loader, 5-13
in filenames
SQL*Loader, 5-14

filenames
SQL*Loader, 5-13

SQL string
SQL*Loader, 5-13

table names and, 1-20, 2-28
use with database object names

SQL*Loader, 5-12

R
RAW datatype, 5-51

specification
SQL*Loader, 5-9

SQL*Loader, 5-54
READBUFFERS keyword

SQL*Loader, 5-18, 8-15
read-consistent export, 1-14
read-only tablespaces

Import, 2-53
RECNUM keyword

no space used in bind array
SQL*Loader, 5-71

SQL*Loader, 5-40
use with SKIP

SQL*Loader, 5-47

recompiling
stored functions, procedures, and packages,

2-60
reconfiguring partitions, 2-32
RECORD

Export parameter, 1-18
RECORDLENGTH

Export parameter, 1-18
direct path export, 1-34, 1-36

Import parameter, 2-26
records

consolidating into a single logical record
SQL*Loader, 5-29

discarded
DISCARD
SQL*Loader command-line parameter, 6-4
DISCARDMAX
SQL*Loader command-line parameter, 6-5
SQL*Loader, 5-21

discarded by SQL*Loader, 3-13, 5-23
distinguishing different formats

SQL*Loader, 5-44
extracting multiple logical records

SQL*Loader, 5-43
fixed format

SQL*Loader, 3-6
null columns at end

SQL*Loader, 5-72
physical versus logical

SQL*Loader, 3-9
rejected

SQL*Loader, 5-19
rejected by Oracle

SQL*Loader, 3-15
rejected by SQL*Loader, 3-13
setting column to record number

SQL*Loader, 5-47
short

missing data columns
SQL*Loader, 5-35

skipping
SQL*Loader, 6-8

specifying how to load
LOAD
SQL*Loader command-line parameter, 6-5
Index-22

specifying length for export, 1-18, 2-26
specifying length for import, 2-26
stream format

SQL Loader, 3-8
SQL*Loader, 3-6

variable format
SQL*Loader, 3-8

RECOVERABLE keyword
SQL*Loader, 5-12

recovery
direct path load

SQL*Loader, 8-13
replacing rows, 5-26

RECOVERY_TABLESPACES parameter
Export, 1-19

redo log files
direct path load, 8-13
instance and media recovery

SQL*Loader, 8-13
saving space

direct path load, 8-18
REENABLE keyword

SQL*Loader, 8-21
REF data

exporting, 1-13
importing, 2-59

referential integrity constraints
disabling for import, 2-15
Import, 2-48
SQL*Loader, 8-20

refresh error
snapshots

Import, 2-51
reject file

specifying
SQL*Loader, 5-19

rejected records
SQL*Loader, 3-13, 5-19

relative field positioning
where a field starts

SQL*Loader, 5-74
with multiple INTO TABLE clauses

SQL*Loader, 5-44
remote operation

Export/Import, 1-44

REPLACE table
example, 4-14
to replace table during a load

SQL*LOader, 5-26
reserved words, A-2

SQL*Loader, A-2
resource errors

Import, 2-49
RESOURCE role, 2-12
restrictions

DB2 load utility, B-4
Export, 1-3
Import, 2-53
importing grants, 2-13
importing into another user’s schema, 2-14
importing into own schema, 2-12
table names in Export parameter file, 1-20
table names in Import parameter file, 2-28

RESUME
DB2 keyword

SQL*Loader equivalents, 5-26
roles

EXP_FULL_DATABASE, 1-3, 1-7
IMP_FULL_DATABASE, 2-7, 2-12, 2-23, 2-29
RESOURCE, 2-12

rollback segments
CONSISTENT Export parameter, 1-14
controlling size during import, 2-21
during loads

SQL*Loader, 5-20
Export, 1-42
Import, 2-53

row errors
Import, 2-48

ROWID
Import, 2-51

ROWS
command line parameter

SQL*Loader, 8-12
Export parameter, 1-19
Import parameter, 2-27
performance issues

SQL*Loader, 8-18
SQL*Loader command-line parameter, 6-6
 Index-23

rows
choosing which to load

SQL*Loader, 5-34
exporting, 1-19
specifying for import, 2-27
specifying number to insert before save

SQL*Loader, 8-12
updates to existing

SQL*Loader, 5-26

S
schemas

export privileges, 1-3
specifying for Export, 1-19
specifying for import, 2-22

scientific notation for FLOAT EXTERNAL, 5-60
script files

preparing database for Import, 2-7
running before Export, 1-6, 1-50

secondary database
importing, 2-21

segments
temporary

FILE keyword
SQL*Loader, 8-27

Send Us Your Comments
boilerplate, xix

SEQUENCE keyword
SQL*Loader, 5-48

sequence numbers
cached, 1-46
exporting, 1-46
for multiple tables

SQL*Loader, 5-49
generated by SEQUENCE clause

example, 4-11
SQL*Loader, 5-48

generated, not read
SQL*Loader, 5-40

no space used in bind array
SQL*Loader, 5-71

setting column to a unique number
SQL*Loader, 5-48

sequences, 2-49

exporting, 1-46
short records with missing data

SQL*Loader, 5-35
SHORTINT

C Language datatype, 5-52
SHOW

Import parameter, 1-3, 2-27
SILENT

SQL*Loader command-line parameter, 6-7
single table load

discontinued
SQL*Loader, 5-28

single-byte character sets
Import, 2-55

SINGLEROW
SQL*Loader, 5-37

SKIP
control file keyword

SQL*Loader, 5-66
effect on RECNUM specification

SQL*Loader, 5-47
SQL*Loader, 5-29
SQL*Loader command-line parameter, 6-8

SKIP_UNUSABLE_INDEXES parameter
Import, 2-27

SMALLINT datatype, 5-51
specification

SQL*Loader, 5-8
SQL*Loader, 5-51

snapshot log
Import, 2-51

snapshots
importing, 2-50
log

Import, 2-50
master table

Import, 2-51
restoring dropped

Import, 2-51
SORTED INDEXES

case study, 4-24
direct path loads

SQL*Loader, 5-36
SQL*Loader, 8-16

sorting
Index-24

multiple column indexes
SQL*Loader, 8-17

optimum sort order
SQL*Loader, 8-17

presorting in direct path load, 8-16
SORTED INDEXES statement

SQL*Loader, 8-16
special characters, A-2
SQL

key words, A-2
reserved words, A-2
special characters, A-2

SQL operators
applying to fields

SQL*Loader, 5-78
SQL string

applying SQL operators to fields
SQL*Loader, 5-78

example of, 4-27
quotation marks

SQL*Loader, 5-13
SQL*Loader

appending rows to tables, 5-26
BAD

command-line parameter, 6-3
bad file, 3-13
BADDN keyword, 5-19
BADFILE keyword, 5-19
basics, 3-2
bind arrays and performance, 5-66
BINDSIZE

command-line parameter, 6-3
BINDSIZE command-line parameter, 5-66
case studies, 4-1

associated files, 4-3
direct path load, 4-24
extracting data from a formatted report, 4-27
loading combined physical records, 4-14
loading data into multiple tables, 4-18
loading delimited, free-format files, 4-11,

4-32
loading fixed-length data, 4-8
loading variable-length data, 4-5
preparing tables, 4-4

choosing which rows to load, 5-34

command-line arguments, 6-3
command-line parameters, 6-2

summary, 6-2
CONCATENATE keyword, 5-29
concepts, 3-1
concurrent sessions, 8-26
CONTINUE_LOAD keyword, 5-29
CONTINUEIF keyword, 5-29
CONTROL

command-line parameter, 6-4
control file

creating, 3-3
controlling memory usage, 5-18
conventional path loads, 8-2
DATA

command-line parameter, 6-4
data conversion, 3-10
data definition language

expanded syntax diagrams, 5-7
high-level syntax diagrams, 5-4

data definition language (DDL), 3-5
data definition language syntax, 5-4
data mapping concepts, 3-3
datafiles

specifying, 5-16
datatype specifications, 3-10
DB2 load utility, B-1
DDL syntax reference, 5-1
delimiters, 3-10
DIRECT

command-line parameter, 6-4
DIRECT command line parameter, 8-9
DISCARD

command-line parameter, 6-4
discard file, 3-15
discarded records, 3-13
DISCARDFILE keyword, 5-21
DISCARDMAX

command-line parameter, 6-5
DISCARDMAX keyword, 5-23
DISCARDS keyword, 5-23
enclosed data, 3-10
ERRORS

command-line parameter, 6-5
errors caused by tabs, 5-41
 Index-25

example sessions, 4-1
exclusive access, 8-24
fields, 3-10
FILE

command-line parameter, 6-5
filenames, 5-12
index options, 5-36
INTO TABLE statement, 5-33
keywords and parameters

reference, 5-1
LOAD

command-line parameter, 6-5
load methods, 8-2
loading data

direct path method, 3-16
loading data without files, 5-46
loading LONG data, 5-58
LOG

command-line parameter, 6-6
log file

datafile information, 7-4
global information, 7-2
header information, 7-2
summary statistics, 7-5
table information, 7-3
table load information, 7-4

log file entries, 7-1
log files, 3-15
mapping data, 3-3
methods for loading data into tables, 5-25
methods of loading data, 3-16
multiple INTO TABLE statements, 5-43
National Language Support, 5-24
native datatype handling, 3-9
NULLIF...BLANKS clause

case study, 4-25
object names, 5-12
PARALLEL

command-line parameter, 6-6
parallel data loading, 8-25, 8-29
parallel loading, 8-26
PARFILE

command-line parameter, 6-6
READBUFFERS keyword, 5-18
rejected records, 3-13

replacing rows in tables, 5-26
required privileges, 3-16
reserved words, A-2
ROWS

command-line parameter, 6-6
rows

inserting into tables, 5-26
SILENT

command-line parameter, 6-7
SINGLEROW index keyword, 5-37
SKIP

command-line parameter, 6-8
SKIP keyword, 5-29
SORTED INDEXES

case study, 4-24
direct path loads, 5-36

specifying a single load method for all tables,
5-27

specifying columns, 5-39
specifying data format, 3-5
specifying data location, 3-5
specifying datatypes, 5-50
specifying field conditions, 5-37
specifying fields, 5-39
specifying more than one data file, 5-17
suppressing messages

SILENT, 6-7
terminated data, 3-10
updating rows, 5-27
USERID

command-line parameter, 6-8
SQL*Net See Net8
SQL/DS option (DB2 file format)

not supported by SQL*Loader, B-5
STATISTICS

Export parameter, 1-19
statistics

generating on imported data, 2-62
specifying for Export, 1-19

storage parameters, 2-52
estimating export requirements, 1-7
exporting tables, 1-13
OPTIMAL parameter, 2-52
overriding

Import, 2-53
Index-26

preallocating
direct path load, 8-15

temporary for a direct path load, 8-10
stored functions

importing, 2-60
stored packages

importing, 2-60
stored procedures

direct path load, 8-23
importing, 2-60

stream format records, 3-8
SQL*Loader, 3-6

string comparisons
SQL*Loader, 5-7, 5-39

synonyms
direct path load, 8-9
Export, 1-42

syntax
data definition language

SQL*Loader, 5-1
Export command, 1-7
Import command, 2-7

syntax diagrams
SQL*Loader

expanded, 5-7
high-level, 5-4

SYSDATE datatype
case study, 4-27
no space used in bind array

SQL*Loader, 5-71
SYSDATE keyword

SQL*Loader, 5-47
SYSDBA, 1-8, 1-29, 2-42
SYS.INCEXP table

Export, 1-43
SYS.INCFIL table

Export, 1-44
SYS.INCVID table

Export, 1-44
system objects

importing, 2-14, 2-23
system tables

incremental export, 1-43

T
table-level Export, 1-6
table-level Import, 2-30
table-mode Export

specifying, 1-19
table-mode Import

examples, 2-33
tables

advanced queue (AQ)
exporting, 1-49

advanced queue (AQ) importing, 2-61
appending rows to

SQL*Loader, 5-26
continuing a multiple table load

SQL*Loader, 5-28
continuing a single table load

SQL*Loader, 5-28
defining before Import, 2-15
definitions

creating before import, 2-15
exclusive access during direct path loads

SQL*Loader, 8-24
exporting

specifying, 1-19
importing, 2-27
insert triggers

direct path load
SQL*Loader, 8-21

inserting rows
SQL*Loader, 5-26

loading data into more than one table
SQL*Loader, 5-43

loading data into tables
SQL*Loader, 5-25

loading method
for individual tables
SQL*Loader, 5-34

maintaining consistency, 1-14
manually ordering for import, 2-15
master table

Import, 2-51
name restrictions

Export, 1-20
Import, 2-27
 Index-27

nested
exporting, 1-49
importing, 2-58

object import order, 2-4
partitioned, 1-6, 2-6, 2-30
partitioned in DB2

no Oracle equivalent, B-5
replacing rows in

SQL*Loader, 5-26
size

USER_SEGMENTS view, 1-7
specifying a single load method for all tables

SQL*Loader, 5-27
specifying table-mode Export, 1-19
system

incremental export, 1-43
truncating

SQL*Loader, 5-27
updating existing rows

SQL*Loader, 5-26
TABLES parameter

Export, 1-19
Import, 2-27

tablespaces
dropping during import, 2-54
Export, 1-42
pre-created, 2-21
read-only

Import, 2-53
reorganizing

Import, 2-54
tabs

loading data files and
SQL*Loader, 5-41

trimming
SQL*Loader, 5-72

whitespace
SQL*Loader, 5-72

temporary segments
FILE keyword

SQL*Loader, 8-27
not exported during backup, 1-42

temporary storage in a direct path load, 8-10
TERMINATED BY

SQL*Loader, 5-10, 5-61

WHITESPACE
SQL*Loader, 5-61, 5-75

with OPTIONALLY ENCLOSED BY
SQL*Loader, 5-74

terminated fields
specified with a delimiter

SQL*Loader, 5-61, 5-74
TOUSER

Import parameter, 2-29
trailing

whitespace
trimming
SQL*Loader, 5-76

trailing blanks
loading with delimiters

SQL*Loader, 5-63
TRAILING NULLCOLS

case study, 4-27
control file keyword

SQL*Loader, 5-36
triggers

, 8-22
database insert triggers

, 8-21
permanently disabled

, 8-24
update triggers

SQL*Loader, 8-22
trimming

summary
SQL*Loader, 5-77

trailing whitespace
SQL*Loader, 5-76

VARCHAR fields
SQL*Loader, 5-73

Trusted Oracle
migrating with export/import, 2-2

Trusted Oracle7 Server
privileges for SQL*Loader, 3-16

TYPE# column
SYS.INCEXP table, 1-43
Index-28

U
unique indexes

Import, 2-24
unique values

generating
SQL*Loader, 5-48

uniqueness constraints
Import, 2-48
preventing errors during import, 2-21

UNLOAD (DB2 file format)
not supported by SQL*Loader, B-5

UNRECOVERABLE keyword
SQL*Loader, 5-12, 8-18

unsorted data
direct path load

SQL*Loader, 8-17
updating rows in a table

SQL*Loader, 5-27
user definitions

importing, 2-14
USER_SEGMENTS view

Export and, 1-7
USERID

Export parameter, 1-21
Import parameter, 2-29
SQL*Loader command-line parameter, 6-8

user-mode Export
specifying, 1-17

user-mode Import
specifying, 2-29

V
VARCHAR datatype, 5-51

specification
SQL*Loader, 5-9

SQL*Loader, 5-56
trimming whitespace

SQL*Loader, 5-73
VARCHAR2 datatype, 2-63

SQL*Loader, 5-50

VARGRAPHIC datatype, 5-51
specification

SQL*Loader, 5-9
SQL*Loader, 5-55

variable format records
vs. fixed

SQL*Loader, 3-6
views

creating views necessary for Export, 1-7
Export, 1-42

W
warning messages, 1-32
WHEN clause

discards resulting from
SQL*Loader, 5-23

example, 4-18
field condition

SQL*Loader, 5-37
SQL*Loader, 5-34

whitespace
included in a field, or not

SQL*Loader, 5-75
leading

SQL*Loader, 5-72
preserving

SQL*Loader, 5-78
terminating a field with

SQL*Loader, 5-75
trailing, 5-72
trimming

SQL*Loader, 5-72
WHITESPACE

SQL*Loader, 5-10
WHITESPACE keyword

SQL*Loader, 5-61
 Index-29

Z
ZONED datatype, 5-51

EXTERNAL format
SQL*LOader, 5-60
trimming whitespace

SQL*Loader, 5-73
length versus precision

SQL*Loader, 5-10
specification

SQL*Loader, 5-9
SQL*Loader, 5-52
Index-30

	Contents
	Send Us Your Comments
	Preface
	1 Export
	What is the Export Utility?
	Reading the Contents of an Export File
	Access Privileges

	Export Modes
	Understanding Table-Level and Partition-Level Expo...

	Using Export
	Before Using Export
	Invoking Export
	Getting Online Help
	The Parameter File

	Export Parameters
	BUFFER
	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FULL
	GRANTS
	HELP
	INCTYPE
	INDEXES
	LOG
	OWNER
	PARFILE
	POINT_IN_TIME_RECOVER
	RECORD
	RECORDLENGTH
	RECOVERY_TABLESPACES
	ROWS
	STATISTICS
	TABLES
	USERID
	Parameter Interactions

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example Export Session Using Partition-Level Expor...

	Using the Interactive Method
	Restrictions

	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Fatal Error Messages
	Completion Messages

	Direct Path Export
	Invoking a Direct Path Export
	Character Set Conversion
	Performance Issues
	Restrictions

	Incremental, Cumulative, and Complete Exports
	Restrictions
	Base Backups
	Incremental Exports
	Cumulative Exports
	Complete Exports
	Benefits
	A Scenario
	Which Data Is Exported?
	Example Incremental Export Session
	System Tables

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Net8

	Character Set and NLS Considerations
	Character Set Conversion
	NCHAR Conversion During Export and Import
	Single-Byte Character Sets During Export and Impor...
	Multi-Byte Character Sets and Export and Import

	Considerations in Exporting Database Objects
	Exporting Sequences
	Exporting LONG Datatypes
	Exporting Foreign Function Libraries
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	Exporting Array Data
	Exporting Object Type Definitions
	Exporting Advanced Queue (AQ) Tables
	Exporting Nested Tables

	Using Different Versions of Export
	Using a Previous Version of Export
	Using a Higher Version Export

	Creating Oracle Release 7 Export Files from an Ora...
	Excluded Objects
	Exporting to Version 6

	2 Import
	What is the Import Utility?
	Table Objects: Order of Import
	Compatibility

	Import Modes
	Understanding Table-Level and Partition-Level Impo...

	Using Import
	Before Using Import
	Invoking Import
	Getting Online Help
	The Parameter File

	Privileges Required to Use Import
	Access Privileges
	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects
	User Privileges

	Importing into Existing Tables
	Manually Creating Tables before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Import Parameters
	ANALYZE
	BUFFER
	CHARSET
	COMMIT
	DESTROY
	FEEDBACK
	FILE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	INCTYPE
	INDEXES
	INDEXFILE
	LOG
	PARFILE
	POINT_IN_TIME_RECOVER
	RECORDLENGTH
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	TABLES
	TOUSER
	USERID

	Using Table-Level and Partition-Level Export and I...
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables
	Combining Multiple Partitions into One
	Reconfiguring Partitions

	Example Import Sessions
	Example Import of Selected Tables for a Specific U...
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Impor...

	Using the Interactive Method
	Importing Incremental, Cumulative, and Complete Ex...
	Restoring a Set of Objects
	Importing Object Types and Foreign Function Librar...

	Controlling Index Creation and Maintenance
	Index Creation and Maintenance Controls
	Delaying Index Creation

	Reducing Database Fragmentation
	Warning, Error, and Completion Messages
	Error Handling
	Row Errors
	Errors Importing Database Objects
	Fatal Errors

	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Net8

	Import and Snapshots
	Master Table
	Snapshot Log
	Snapshots

	Storage Parameters
	Read-Only Tablespaces
	Rollback Segments

	Dropping a Tablespace
	Reorganizing Tablespaces
	Character Set and NLS Considerations
	Character Set Conversion
	Import and Single-Byte Character Sets
	Import and Multi-Byte Character Sets

	Considerations for Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That C...
	Importing Nested Tables
	Importing REF Data
	Importing Array Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packag...
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing Views

	Generating Statistics on Imported Data
	Using Oracle7 Export Files
	Check Constraints on DATE Columns

	Using Oracle Version 6 Export Files
	CHAR columns
	Syntax of Integrity Constraints
	Status of Integrity Constraints
	Length of DEFAULT Column Values

	Using Oracle Version 5 Export Files

	3 SQL*Loader Concepts
	SQL*Loader Basics
	SQL*Loader Control File
	Control File Contents and Storage
	Data Definition Language (DDL)

	Input Data and Datafiles
	Input Data Formats

	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Discards

	Log File and Logging Information
	Conventional Path Load versus Direct Path Load
	Partitioned Object Support

	4 SQL*Loader Case Studies
	The Case Studies
	Case Study Files
	Tables Used in the Case Studies
	Contents of Table EMP
	Contents of Table DEPT

	References and Notes
	Running the Case Study SQL Scripts
	Case 1: Loading Variable-Length Data
	Control File
	Invoking SQL*Loader
	Log File

	Case 2: Loading Fixed-Format Fields
	Control File
	Datafile
	Invoking SQL*Loader
	Log File

	Case 3: Loading a Delimited, Free-Format File
	Control File
	Invoking SQL*Loader
	Log File

	Case 4: Loading Combined Physical Records
	Control File
	Data File
	Invoking SQL*Loader
	Log File
	Bad File

	Case 5: Loading Data into Multiple Tables
	Control File
	Data File
	Invoking SQL*Loader
	Log File
	Loaded Tables

	Case�6: Loading Using the Direct Path Load Method
	Control File
	Invoking SQL*Loader
	Log File

	Case 7: Extracting Data from a Formatted Report
	Data File
	Insert Trigger
	Control File
	Invoking SQL*Loader
	Log File
	Dropping the Insert Trigger and the Global-Variabl...

	Case 8: Loading a Fixed Record Length Format File
	Control File
	Table Creation
	Input Data File
	Invoking SQL*Loader
	Log File

	5 SQL*Loader Control File Reference
	Overview
	Data Definition Language (DDL) Syntax
	High-Level Syntax Diagrams

	Expanded Clauses and Their Functionality
	Position Specification pos_spec
	Field Condition field_condition
	Column Name column_name
	Datatype Specification datatype_spec
	Precision vs. Length precision length
	Date Mask
	Delimiter Specification delimiter_spec

	Comments
	Specifying Command-Line Parameters in the Control ...
	OPTIONS

	Specifying RECOVERABLE and UNRECOVERABLE
	Specifying Filenames and Database Objects
	Database Object Names within Double Quotation Mark...
	SQL String within Double Quotation Marks
	Filenames within Single Quotation Marks
	Quotation Marks in Quoted Strings
	Backslash Escape Character
	Using a Backslash in Filenames

	Including Data in the Control File with BEGINDATA
	Identifying Datafiles
	Naming the File
	Specifying Multiple Datafiles
	Examples of How to Specify a Datafile

	Specifying READBUFFERS
	Specifying Datafile Format and Buffering
	File Processing Example

	Specifying the Bad File
	Examples of How to Specify a Bad File

	Rejected Records
	Integrity Constraints

	Specifying the Discard File
	Using a Control-File Definition
	Examples of How to Specify a Discard File

	Discarded Records
	Limiting the Number of Discards

	Handling Different Character Encoding Schemes
	Multi-Byte (Asian) Character Sets
	Input Character Conversion

	Loading into Empty and Non-Empty Tables
	How Non-Empty Tables are Affected
	INSERT
	APPEND
	REPLACE
	TRUNCATE
	Specifying One Method for All Tables

	Continuing an Interrupted Load
	State of Tables and Indexes
	Using the Log File
	Dropping Indexes
	Continuing Single Table Loads
	Continuing Multiple Table Conventional Loads
	Continuing Multiple Table Direct Loads

	Assembling Logical Records from Physical Records
	Examples of How to Specify CONTINUEIF

	Loading Logical Records into Tables
	Specifying Table Names
	Table-Specific Loading Method
	Table-Specific OPTIONS keyword
	Choosing which Rows to Load
	Specifying Default Data Delimiters
	Handling Short Records with Missing Data

	Index Options
	SORTED INDEXES Option
	SINGLEROW Option

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Specifying Columns and Fields
	Specifying the Datatype of a Data Field

	Specifying the Position of a Data Field
	Using POSITION with Data Containing TABs
	Using POSITION with Multiple Table Loads

	Using Multiple INTO TABLE Statements
	Extracting Multiple Logical Records
	Distinguishing Different Input Record Formats
	Loading Data into Multiple Tables
	Summary

	Generating Data
	Loading Data Without Files
	Setting a Column to a Constant Value
	Setting a Column to the Datafile Record Number
	Setting a Column to the Current Date
	Setting a Column to a Unique Sequence Number
	Generating Sequence Numbers for Multiple Tables

	Specifying Datatypes
	Datatype Conversions
	Native Datatypes
	Character Datatypes
	Numeric External Datatypes
	Specifying Delimiters
	Conflicting Character Datatype Field Lengths

	Loading Data Across Different Operating Systems
	Determining the Size of the Bind Array
	Minimum Requirements
	Performance Implications
	Specifying Number of Rows vs. Size of Bind Array
	Calculations
	Minimizing Memory Requirements for the Bind Array
	Multiple INTO TABLE Statements
	Generated Data

	Setting a Column to Null or Zero
	DEFAULTIF Clause
	NULLIF Keyword
	Null Columns at the End of a Record

	Loading All-Blank Fields
	Trimming Blanks and Tabs
	Datatypes
	Field Length Specifications
	Relative Positioning of Fields
	Leading Whitespace
	Trailing Whitespace
	Enclosed Fields
	Trimming Whitespace: Summary

	Preserving Whitespace
	PRESERVE BLANKS Keyword

	Applying SQL Operators to Fields
	Referencing Fields
	Referencing Fields That Are SQL*Loader Keywords
	Common Uses
	Combinations of Operators
	Use with Date Mask
	Interpreting Formatted Fields

	6 SQL*Loader Command-Line Reference
	SQL*Loader Command Line
	Using Command-Line Keywords
	Specifying Keywords in the Control File

	Command-Line Keywords
	BAD (bad file)
	BINDSIZE (maximum size)
	CONTROL (control file)
	DATA (data file)
	DIRECT (data path)
	DISCARD (discard file)
	DISCARDMAX (discards to disallow)
	ERRORS (errors to allow)
	FILE (file to load into)
	LOAD (records to load)
	LOG (log file)
	PARFILE (parameter file)
	PARALLEL (parallel load)
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	USERID (username/password)

	Index Maintenance Options
	SKIP_UNUSABLE_INDEXES
	SKIP_INDEX_MAINTENANCE

	Exit Codes for Inspection and Display

	7 SQL*Loader: Log File Reference
	Header Information
	Global Information
	Table Information
	Datafile Information
	Table Load Information
	Summary Statistics
	Oracle8 Statistics Reporting to the Log

	8 SQL*Loader: Conventional and Direct Path Loads...
	Data Loading Methods
	Conventional Path Load
	Direct Path Load

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Indexes Left in Index Unusable State
	Data Saves
	Recovery
	Loading LONG Data Fields

	Maximizing Performance of Direct Path Loads
	Pre-allocating Storage for Faster Loading
	Pre-sorting Data for Faster Indexing
	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disable Archiving
	Specifying UNRECOVERABLE
	NOLOG Attribute

	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Database Insert Triggers
	Permanently Disabled Triggers & Constraints
	Alternative: Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Inter-Segment Concurrency with Direct Path
	Intra-Segment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Options Keywords for Parallel Direct Path Loads
	Enabling Constraints After a Parallel Direct Path ...

	General Performance Improvement Hints

	9 National Language Support Utilities
	NLS Data Installation Utility
	Overview
	Syntax
	Return Codes
	Usage
	NLS Data Object Files

	NLS Configuration Utility
	Overview
	Syntax
	Menus

	NLS Calendar Utility
	Overview
	Syntax
	Usage

	10 Offline Database Verification Utility
	DB_VERIFY
	Restrictions
	Syntax
	Enterprise Manager
	Sample DB_VERIFY Output

	A SQL*Loader Reserved Words
	B DB2/DXT User Notes
	SQL*Loader Extensions to the DB2 Load Utility
	Using the DB2 RESUME Option
	Inclusions for Compatibility
	LOG Statement
	WORKDDN Statement
	SORTDEVT and SORTNUM Statements
	DISCARD Specification

	Restrictions
	FORMAT Statement
	PART Statement
	SQL/DS Option
	DBCS Graphic Strings

	SQL*Loader Syntax with DB2-compatible Statements

	Index

