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Abstract

The main objective of this thesis is to describe the creativein imperfection data bank
and tools to process the data. Imperfections are irredidanf the shape of a thin-walled
shell, such as those used for rocket structures or silos.witgpthe imperfections is

very important as thin-walled shells are very sensitivemperfections. Even a small
deviation with respect to the perfect shell shape reducedtickling load significantly.

Rocket shells have been designed and built for many yeangiéal design procedure of
a shell is:

a. Define vehicle performance requirements.

b. Lay-out preliminary dimensions.

c. Determine loads and environments.

d. Select structural concept (e.g., wall construction aatienial).

e. Select design and safety factors, including shell bogkkinock-down factor that
accounts for the degrading affect of the geometric impéidas on the buckling
load.

Point of investigation in this thesis is the question if tm@&k-down factor can be opti-
mized. The current factor is too conservative for most ofghells. This is caused by
the fact that the knock-down factor, as can be found in the AAgport SP-8007 [1], is
based on old testdata. Shells have been tested for someedesad in many cases both
the buckling load and the imperfections have been measunddelft for instance many
reports including test data have been written, also in maimgrglaces such reports exist.
It is clear a lot of data exists, however this data is not fgaaliailable. It is stored in
different places, in different formats, sometimes even ocient storage devices which
are becoming increasingly difficult if not impossible to dassing modern devices.

As part of this research an imperfection data bank has besatext in which most of
the available measured data have been stored. These datialbadollected, analyzed,
and very often rewritten into the standard format used indag bank. An interface
has been written which enables users to have user friendsado the data bank. This
interface has been written as a web application, thus makaagessible via the Internet.
The data have also been protected against deletions or padttifis, by ensuring the
interface allows for read-only access.

The interface not only facilitates retrieving measurecadedm the data bank, it also
has many features to analyze sets of data. For example, lmoverd plots can be gener-
ated for all or user selected sets of tests. Furthermore, @ leffort has been put in the

Xiii
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analysis of the Fourier coefficients used in the represiemaif the imperfection fields.
Using the imperfection data bank allows the reproductioexigting reports of test results
using only a few mouse clicks.

It has also been shown that similar shells have similar ifegéons. It would be
very interesting which imperfection are caused by a cegaiaiuction process. The term
manufacturing signature was introduced by Starnes [2]ryepeoduction process will
yield a certain type of imperfections. In this thesis it hast shown that the imperfections
are not related to where a shell was produced. Using the stdtee art technology to
produce new shells the usage of the common design curveshédower bound curves
would yield a very conservative, too heavy, design. ThuhedHahese manufacturing
processes deserves its own lower bound. These improved hmw@ds were not derived,
however the usage of the imperfection data bank filled witificsent data could very
well assist in this. This is also one of the recommendatitmgerform many tests of new
shells and store them into the data bank.

The test equipment used for imperfection measurements authlle at the Uni-
versity of Technology in Delft will be described. The smatlénstallation Stonivoks is
capable of automatically measure the imperfections of kbedr cans. The medium
test setup Univimp is configured to measure shells with dien20, 360, and480 mm.
Other shell diameters are possible, however this requiredyction of new end rings.
The largest test facility Amivas is used to measure the ifegdons of full scale rocket
interstages or satellites. This equipment is flexible is #@nse that it only requires minor
modifications to measure a different type of shell. Amivas been used to measure the
imperfections of the VEGA interstage 1/2.

In the statistical analysis on sets of shells a distinctomade between input and
output statistics. Starting with the latter, it is possibdelook at average and standard
deviation of buckling loads. Using input statistics it issgble to calculate these parame-
ters on all of the Fourier coefficients separately. Usingiust significant Fourier terms
to generate an average imperfection field the buckling bebawf a shell is calculated.
Hilburger et al. [2] proposed an approach to use the averagerfection plus standard
deviation to predict the lower bound of a composite shemag some simplifications. It
has been shown that this theory cannot be used for isotrbpitss

As a general recommendation it should be noted that the nesem the buckling
behaviour of thin walled shells has to continue. The impeide data bank can be a tool
to be used together with the general shell design codes. ésisinas to be updated
with test results of both laboratory models as full scale el®d@dnd real space worthy
rockets. Especially the composite shells are still a migamni the data bank and therefore
need attention. As a final remark: the data bank is a livingrenment, it should keep
growing. Keeping it alive will be the best thing for lettinghe used by the structural
designers.



Samenvatting

Het hoofddoel van dit proefschrift is het maken van een irfgatie databank en gereed-
schap om de data te bewerken. Onder imperfectie wordt \ar&an vormonzuiverheid

van een dunwandige schaal zoals bijvoorbeeld een raketaotie of een graansilo. Het

is zeer belangrijk dat men weet hoe die imperfecties erait pmdat dunwandige schalen
hier heel gevoelig voor zijn. Een kleine afwijking ten ogtie van een perfecte schaal zal
de kniklast al significant laten dalen. Al vele jaren wordealeaketten gebouwd zonder
de imperfectie databank. Het ontwerpproces van een rage¢rals volgt uit:

a. Definiéren van de vereiste prestaties.
b. Opzet van de voorlopige dimensies.
c. Bepalen van de belastingen en randvoorwaarden.

d. Selectie van een concept voor de constructie (zoals dietstructie en het mate-
riaal).

d. Kies ontwerp en veiligheidsfactoren, inclusieflad@ck-dowrfactor voor het knik-
ken van de schaal die het verlagen van de kniklast door de gfeisohe imperfec-
ties in rekening brengt.

In dit proefschrift wordt gekeken of de knock-down factongapast kan worden. Het
probleem is namelijk dat deze factor in het algemeen veebtsearvatief is. De reden
hier voor is dat de knock-down factor zoals bijvoorbeeldeénNASA rapport SP-8007 [1]
gebruikt wordt, gebaseerd is op heel oude meetdata.

Er worden al decennia lang testen op schalen uitgevoerd stNameting van de
kniklast zijn ook de imperfecties van de schalen gemetemdlft is een hele serie rap-
porten met testdata geschreven, en ook op andere plaatdiéigéslaan. Het is duidelijk
dat er veel data bestaat, echter deze data is niet direcn&elijk. Het is opgeslagen op
verschillende plaatsen, in verschillende formats. Sonksrmmy op antieke opslagmedia
die moeilijk of soms helemaal niet leesbaar zijn.

In dit werk is een imperfectie-databank gebouwd waar méatdas opgeslagen. De
data is verzameld, geanalyseerd, en indien nodig omgesehraar het format gebruikt
in de imperfectie-databank. Er is een interface geschreeret voor de gebruikers
gemakkelijk maakt om toegang tot de databank te krijgen.eDeterface is geschreven
als een webapplicatie zodat de databank toegankelijk is1teanet. De databank is be-
schermd tegen onverhoopte modificaties of verwijderingem data omdat de interface
alleen een leesmogelijkheid heeft.

XV
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De interface maakt het niet alleen gemakkelijk om data uita@bank te halen, er
Zijn ook een aantal programmas ingebouwd om data te analyser kunnen zgriower
boundplots van de kniklasten van alle of een geselecteerd aaitalen geplot worden.
Bovendien is er veel aandacht besteed aan de Fourier céeféai die gebruikt worden
in de beschrijving van de imperfectie velden. Door gebraikiaken van de imperfectie-
databank kunnen bestaande rapporten met test resultateouelgy met enkele klikken
met de muis opnieuw gemaakt worden.

Gelijksoortige schalen hebben gelijksoortige impertexti Men zou graag de vorm
van de imperfecties willen weten die inherent zijn aan egrabkl productieproces. De
termmanufacturing signatureverd door Starnes [2] geintroduceerd: elk productie proces
zal een bepaald type imperfecties veroorzaken. In dit pobeift wordt aangetoond dat
deze imperfecties niet gerelateerd zijn aan wie de schambdaceerd heeft of waar dat
gebeurd is. Als de nieuwste technieken gebruikt worden oracti@len te produceren
zal het gebruik van de gebruikelijke ontwerpkrommes, dugosher boundkrommes,
een zeer conservatief ontwerp opleveren, en daarmee eewatr pntwerp. Voor elk
productie proces is daarom een specifiekger boundeen vereiste. Deze krommes zijn
hier niet afgeleid, de imperfectie-databank kan echtergebluikt worden als hulp bij het
opstellen er van. Een van de aanbevelingen is dan ook om mbgne®r test gegevens te
verzamelen en nieuwe tests uit te voeren en deze in de datsbaetten.

De test apparatuur voor imperfectie metingen op de Techaitmiversiteit in Delft
is beschreven. De kleinste installatie is Stonivoks. Dgaapat kan volledig automatisch
de imperfecties van bierblikjes opmeten. Het middelgr@ieaaaat Univimp is zodanig
geconfigureerd dat het schalen met een diamete24@rs60 en480 [mm] kan opmeten.
Andere diameters zijn mogelijk, maar vereisen de produeie nieuwe eindringen met
aangepaste diameter. De grootste testopstelling betreivas. Deze kan gebruikt wor-
den om de imperfecties van echte raketsecties of satelloggide meten. Dit apparaat is
heel flexibel: er zijn slechts kleine modificaties nodig vbet meten van verschillende
groottes van schalen. Met Amivas zijn de imperfecties gemean de VEGA tussensec-
tie 1/2.

In de statistische analyse van verzamelingen van schaledt wen onderscheid ge-
maakt tussen invoer en uitvoer statistiek. Om met de lagdbeginnen, het is bijvoor-
beeld mogelijk te kijken naar de gemiddelde waarde en dedatad deviatie van de
kniklasten. Met invoer statistiek is het mogelijk deze paeters te berekenen van alle
Fourier coefficienten apart. Gebruik makend van de gredtsurier coefficienten wordt
een gemiddeld imperfectie veld berekend. Van een schaalitiaatste imperfectie veld
wordt vervolgens de kniklast berekend. Hilburger et al.jegbben een benadering voor-
gesteld om de gemiddelde imperfectie plus standaard devegebruiken om dewer
boundte voorspellen, waarbij enkele vereenvoudigingen zijrrgigh In dit proefschrift
wordt aangetoond dat deze theorie niet geldt voor isotropalen.

Als algehele aanbeveling kan gesteld worden dat het onelenzaar het knikgedrag
van dunwandige schalen gecontinueerd dient te worden. [Perfectie databank kan
als een gereedschap samen met de algemene schaal ontvesrgebduikt worden. De
databank moet daarom steeds up to date gehouden worden wedtdm testgegevens
van laboratoriummodellen en modellen op volledig schaahsh gegevens van echte ge-
certificeerde raketten. De composietschalen zijn moméntegin de minderheid in de



CONTENTS XVil

databank en vereisen derhalve speciale aandacht. Totddadatabank is een levende
omgeving, het zal moeten blijven groeien. Hier zijn de cardie ontwerpers het meest
bij gebaat.
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Chapter 1

Introduction

1.1 The shell

The beer can was denied its original purpose in life. Befogot to the filling
station in the beer plant, it got removed from the machinea®buse in the
investigation of imperfection sensitivity of thin-wallskells. As it found out
what was going to happen, the beer can reconsidered what.tét dould not
taste the beer it had waited for for so long. However, this m@tsan unrealistic
thought. Serving as a container for some liquid, whilst reitlg able to drink,
and waiting for some person to come along and empty you amdgiethrown
out of the window if you were unlucky, or get recycled if yovent. No, one
had to look for new opportunities. What was this imperfat8ensitivity all
about? Thin-walled shells, that is me, it thought. Am | alamé¢his world
or are there more like me? Yes, | know lots of fellow beer cd&hsen some
vague far away families who prefer cola or orange juice e\Ruit.they are all
small like me. The can then found out that there are hugesshitiosaur tall
compared to him, but not extinct. They did not contain sikéf beer, or coke,
but very interesting sounding stuff like LOX or LH2. The cahrebt know what
kind of stuff this was, but realized this: these big brotheese about to fly to
the moon, to Mars or even maybe out of the solar system. No ldfledime,
no low mile coverage, no, just your ordinary Saturday evgrgetting sold,
getting drunk and getting thrown away. These guys reallytvgemewhere.
Now this was something to think about. The little can thotigditeven though
he could not fly into space, it would also mean a lot to him if tveld in some
way help his big friends to safely fly into the sky.

design procedure

Thin-walled stiffened or unstiffened, metallic or comgesshells are widely used struc-
tural elements in aeronautical and space applicationssé kguctures are often highly
sensitive to initial geometric imperfections and therefbave buckling loads much lower
than those computed for perfect structures. In this thésisemphasis lies on geomet-
ric imperfections of thin-walled shells. Other types of ienfections also exist such as
the thickness variation of shells, which is found for comifmshells. The layers in the

composite shells can

have overlaps locally resulting inrgelathickness. The geometric

1



Introduction

imperfections are also known as mid-surface imperfectidghese mid-surface imperfec-
tions are sometimes referred to as the traditional impades of a shell [3]. Another
important imperfection is the so-called boundary imperéet if the ends of the shell
show some irregularities, or if the end-rings in which thelihare mounted are not com-
pletely flat, the load on the shell is not a constant line |cBlde boundary imperfection
and the thickness variation are non-traditional imperters.

When a structural engineer designs a new light-weight &iradike a thin-walled
shell he is used to follow the guidelines as in the NASA re@®8007 [1]. A typical
design procedure used for the layout of such structures eanimmarized as follows:

a. Define vehicle performance requirements.

b. Lay-out preliminary dimensions.

c. Determine loads and environments.

d. Select structural concept (e.g., wall construction aatemal).

e. Select design and safety factors, including shell bagkkinock-down factor that
accounts for the degrading affect of the geometric impéidas on the buckling
load.

In this lower bound design philosophy the following buckliformula is used:

y
P, < — P 1.1
< zg fe (1.1)

where P, = allowable applied loadPc = lowest buckling load of the perfect structure;
~ = "knock-down” factor; andr'.S. = factor of safety.

The design requirements specify that the loads should rastezkthe limit loady Pc,
but a certain amount of reserve strength against completetstal failure is necessary.
In aerospace industry the allowable or ultimate loads avaletg the limit loads divided
by a factor of safety. In general the factor of safety .is. Notice also that the ultimate
loads should be carried by the structure without failure.

There is another way one can look at safety factors. Depgratinvho will be the users
of a structure the safety factor could be set to a differehtaza

Suppose one introduces three new kinds of safety facter$, 8., F.S.;, andF.S.7.
They account for the following:

F.S.c whereC stands for 'Chiel’. Chiel is the clever person, very acceratorker,
precise. If he builds something it is perfect. This paramestehosen asw.S.c = 0.97
since structure will carry more load than one would normadipect because of the fine
art work.

F.S.;, where L stands for 'Loes’. She will look at a structure and decidesinice
but it needs some colours, maybe we put stickers on it as ezltpy introducing extra
weight and eccentricities. The parameter is chosef'a&s;, = 1.1.

F.S.7 whereT stands for 'Tom’. This guy has a destructive principle. Hid@sophy
is that engineers probably put large safety factors on stres. So if a structure could
withstand a certain load, he would have no problem going nalmbve this load. This
parameter is chosen as.5. = 1.4.



1.2 Why are imperfections important for the design of shells

This thesis will not suggest a new setup of the usage and iaignof the factors of
safety, but will introduce new possibilities of increasitiig limit load by improving the
shell buckling knock-down factor.

Equation (1.1) provides a good lower bound for most test.d&tee shell, if so de-
signed, will be a safe design: it will be able to bear the altgoaximum load without
failing. It will probably be a very conservative design aldn most cases the initial im-
perfections in a shell are unknown. Therefore those imptdes cannot be taken into
account when solving the stability problem using an analgside. One could of course
measure those initial imperfections for each shell, thisawever a costly matter. Be-
sides that, in the design process, one will consider seeeralepts of a shell, which will
exist only on paper and the actual imperfection may not bevkndt would be conve-
nient if one had some idea on what the imperfections would lik@. The imperfections
might appear to have a random character, however, it wilHosve here that they can be
linked to manufacturing processes. Fortunately, thoswihgals and research institutes
involved in shell research often collect information abimuperfections.

For example, let us compare the measured imperfectionsmthells, the so-called
AS_2 from Caltech and KR1 from Technion. The first shell, 2Svas measured by
Singer, Arbocz and Babcock in 1969 in the California Insétaf Technology [4, 5]. The
second one, KR1 was measured by Abramovich, Ronith, Gruharad Singer in 1977 in
Israel at the Technion Israel Institute of Technology [6btBshells were manufactured
by different people, in different places. The manufactgpnocess was the same. Plots of
the initial imperfections are reproduced in Figure 1.1. Adtfsight the imperfections of
both shells look rather different. If one describes the irfgmions using Fourier series,
as will be explained further in Chapter 4, for each of thesallsta number of Fourier
coefficients can be calculated. In Figure 1.2 the circunmiggé variation of the half-
wave cosine Fourier representation is plotted for bothlsh€omparing both shells by
looking at the Fourier coefficients in this figure, it seenat thhe shells from Caltech have
been manufactured more accurately since the coefficieetsraaller than those of the
Technion shell. The sizes of the Fourier coefficients cpwoeasling to the circumferential
wave number where the axial half wave numbet 0 show a similar distribution, albeit
differing a factor of two.

The imperfection data of shells manufactured using the dabrécation process can
be used to create reliability functions. To do this a stottbasethod like the Monte Carlo
Method or the First Order Second Moment method may be useda Biven reliability
an analytical knock-down factoy, can be determined [3]. This, will replace~, the
known very conservative knock-down value from NASA SP80De parametek,, will
be called an improved knock-down factor.

1.2 Why are imperfections important for the design of
shells?
The design of cylindrical shells involves participationindividuals from different seg-

ments of the engineering world. In the first place there welibcustomer who is request-
ing a particular type of shell. Then the structural engingéircome up with a design,
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which in turn is built in the factory by the production peopléhe final product is returned
to the customer. This is the design process in a nutshell.

It is a well known fact that cylindrical shells are sensitteemperfections, reducing
their load carrying capability substantially [7, 8, 9]. Imetdesign process of a shell the
imperfections will not be known as the shell is still to be ¢uoed. Knowing the exact
imperfections of a shell would be the best solution for pradg the buckling load and
buckling mode of the shell. If one does not know the imperted, assumptions will
have to be made. Of course after the shell has been built sppiild be verified if the
assumptions were acceptable. Measuring the imperfeatibeach shell takes time, and
money. Even more if the assumptions were optimistic and boald start all over.

To take into account the influence of these imperfections,abmmon practice in in-
dustry to calculate the eigenmodes associated with theslomigenvalues of the shell [10].
If the imperfections in the structure resemble the eigenesamt a combinations of these
modes, the reduction in the buckling load will be the larg&$i. To calculate the buck-
ling behaviour of a shell where the imperfections are coreda¥ a set of eigenmodes
corresponding to the lowest eigenvalues, is a relativeaphoperation compared to the
use of the real imperfections obtained using expensiventesturthermore, if the eigen-
modes will be used as the assumed imperfection shape, ihatsds to be decided what
magnitude to choose. On the other hand, if the imperfectimnsot resemble the eigen-
modes, the calculated buckling load will be lower than thed ome, yielding a conserva-
tive and therefore heavy design.

Suppose the imperfections could be related to productiothoads, to the quality of
the processes. Choosing a certain production process,efigndengineer then knows
what the imperfections will look like. As an example one chimk of an interstage of
a rocket. The interstage is built up of say 6 curved panelsigd by offset lap splices.
Measuring the imperfections of this shell will definitelyosththe curved panels because
of the appearance of 6 circumferential waves.

1.3 Building an imperfection data bank

In the last decades a lot of imperfection measurements oAwhlled shells have been
performed. In the beginning of the t?Ocentury only the buckling load and buckling
modes were measured in tests [12, 13, 14, 15, 16, 17]. Theislataly available as
published papers containing tables with test data and ghapbs showing the buckled
shells. In the sixties Arbocz [18] started to measure theeirfgetions also. Along with the
published papers presenting the results, the data is aj#altli stored. In the following
years, in several countries, researchers measured inggierfe and buckling loads on
several types of shells [6, 19, 20, 21, 22, 23, 24, 25]. Theifiigative to the data bank
was started in 1979 by Arbocz and Abramovich with the repdine Initial Imperfection
Data Bank at the Delft University of Technology Part I’ [S¢libwed by Parts Il - VI [23,
24, 26, 27, 28]. These reports contain the data of testsechont at Caltech in the sixties
of the last century, and tests on ARIANE interstages produme Fokker. There are
much more experimental data consisting of buckling loadiamgkrfection data of shells
available, but these have been stored in many companies ranersities in different
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countries. Thus, it is hard to get an overview of all data,ahave access to them. It
would be very convenient if all data would be accessible tdesigners. Unfortunately,
this is not that easy because companies may have spent ailonafy on the tests, or data
might have restricted access because of security issusn(@etechnology!). After one
has succeeded in getting a set of test data, one will notatedifferent institutions use
different formats to store their data. Different units h&een used: in Europe the Sl units
are very common, in the United States many companies arastig Imperial Units.

In order to improve the knock-down factor in the lower bouadhiula for the buckling
load the influence of imperfections is subject of severaaesh programs [2, 3, 18, 29,
30, 31]. This has lead to the following research questions:

e Is it possible to collect all available data of thin-walldtelis and make them inter-
actively accessible to shell designers and researchers?

e Can a relation be found between the imperfections and theufaeturing process
of a shell?

e Can statistical analysis using the tools of the interfadh@®imperfection data bank
help in the design of the shells?

To answer the first research question, published papersioimg test results of shells
need to be collected. Next, datasets containing experaheiata should be gathered
from all over the world. Next, the data needs to be digitiZedeieded and stored in a
computer system. An obvious choice for the latter is theteyaeof a data bank. It is
the primary purpose of this thesis to develop an imperfediiata bank to store measured
imperfections to be made available to a world wide commuuiitgngineers. Along with
the data bank, tools to interrogate the data have been gmaekp that designers will be
more flexible in the design of new reliable shells similariie bnes included in the data
bank. Access to the data for shell designers and reseanvbekg in different countries
can be made possible by connecting the data bank to the éttern

1.4 Layout of the thesis

One of the reasons that the stability of axially loaded thalled shells has been the
subject of research for so many years, is the large discogpagtween the theoretically
buckling load and the experimentally found value, botheddn the imperfection data
bank. A workaround of this problem was the introduction of towerbound [1]. The
traditional lower bound design philosophy is described magter 2. Plots created by
the imperfection data bank are shown containing a lower dawmve and a collection
of experimental buckling data. In order to store the imperée measurements in a data
bank, one has to first come up with measurement procedurewithaccurately produce
the data desired. As part of this thesis a procedure wasa@eeland imperfections have
been measured using different measurement equipment.eshedquipment available at
the Faculty of Aerospace Engineering of the University ofAr@logy Delft is described
in Chapter 3. This chapter starts with a short overview ofttiséory of imperfection data
measurement. A generic test procedure for the imperfectieasurement is described.
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Also the measuring of the new VEGA launcher vehicle curseatider development by
ESA is described including the processing of the raw dataceQhe imperfections are
measured, the data has to be presented to the users of theatdétan a convenient
amd meaningful fashion. Several ways to represent impiofex have been described
in Chapter 4. As an example the Fourier coefficients of theeirfgation of the VEGA
interstage are determined. Subsequently these impenfieate compared with the ARI-
ANE interstage data measured some years earliers. Anglgdithe available data, and
executing a test has made it clear which data needs to belstotiee data bank. This has
lead to the design of the data bank in Chapter 5. The desidreoftperfection data bank
is described, starting with all its requirements. Also sde@hnical background is given.
The usage of the interface is demonstrated by showing hoettieve data from the data
bank of Arboczs favorite A-shell. This part of the chapteuicbbe a good starting point
for an engineer who is interested in using the data bank. Ta ¢hapters deal with
the application of the imperfection data bank for statedtanalysis. More precisely, the
statistical tools are discussed in Chapter 6. In Chaptee3ethools have been used on
the research of the buckling behaviour of a shell with avedaighperfection. In the last
chapter some general conclusions and recommendationsesenped.



Chapter 2

Lower Bound Design Philosophy

"I do not want to know, there-
fore 1 will not measure[32]

In Chapter 1 the necessity of measuring the imperfectioribinfwalled shells was dis-
cussed. Basically the lower bound theory is often used ifethe no imperfection data
available, and one lacks time and/or money to obtain themthigichapter the lower
bound theory will be explained. A difference is made betwesstropic, orthotropic
and anisotropic shells. Isotropic shells have been matwtzat from metal plates with
material properties which do not depend on the directionsoAthese shells are not
stiffened with either rings or axial stiffeners. The orttugtic shells are similar to the
isotropic shells, however, rings or axial stiffeners ortbate attached to the shell. Finally
anisotropic shells are composite materials assembled ofrdoar of layers. The material
properties depend of the direction. A unified lower boundction will be derived which
makes it possible to combine all test data in one chart.

2.1 Design of shells using a hand book

If one looks at the design of thin-walled shells, the one$aitnajor imperfection sensi-
tivity, structural engineers use buckling handbooks dytime design process. Typically
these handbooks specify the use of the classical bucklmguias, and then multiply the
load by a so-called knock-down factor, to obtain the loadelsthould be able to carry.

This method is an empirical approach based on historicaldi@s. Measured buckling
load data are reported by normalizing them with predictigingg the knock-down factor

associated with imperfections, i.e. the fraction of thessieal buckling load prediction.
The experimental buckling loads are plotted with respec¢h&radius to thickness ratio
(R/t) in Figure 2.1. On the horizontal axis the shell-wall slem#ssR /¢ is used since the

buckling stress of unstiffened shells increases lineaith wand decreases linearly with
R. On the vertical axis the normalized buckling loadwhich is defined as the ratio of
the experimental buckling load to the classical bucklirgdloThe classical or theoretical

9
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buckling load of a thin-walled cylindrical shell [33] is

FE
P,=0,42TRt = —— 27 ¢? (2.1)
3(1—v?)
where
FE t
Oy = ——— — (2.2)
3(1—12) R

and E' is the modulus of elasticity, and Poisson’s ratio. As can be noticed from Fig-
ure 2.1 the knock-down factor decreases with increasgifig The curved solid line in
the figure is the lower bound curve from which the knock-doactdr is determined. It
provides a good lower bound for most of the test data [34]. d&& in the plot show
a large scatter. If the buckling loads of the shells witfy = 800 tested by Weingarten
et al. [35] can be considered to show a normal distributiowiili be possible that new
shells produced using the same manufacturing process eitl § normalized buckling
load lower than the lower bound value.

On the other hand, some test results are grouped at a largacksof the lower bound
curve. If one still uses the corresponding knock-down faébo these type of shells,
the structure would be very safe, and therefore much tooyheBor shells to be used
as rocket parts this is an argument to improve the knock-diastor. The question to
answer is why do these shells perform much better than othéng plot?

Several different analytical expressions including stkedsknock-down factors to be
used in the design process of thin-walled shells are availdh the following part they
will be discussed for different types of shells, startinghnisotropic shells, continuing
with stiffened isotropic shells and finally anisotropic bé.e

2.2 |sotropic shells

The value calculated from the classical buckling load fdamn the previous section is a
theoretical value in that sense that in real life a shell walllapse at a much lower load.
Sometimes the critical stress is calculated using

t
oc=03E% (2.3)

which yields a buckling load of about 50% of the theoreticalre as in Eq. (2.2) . The
50% is a knock-down factor on the theoretical load indepahdéthe R/t ratio of the
shell. Kanemitsu and Nojima [38] proposed the following &tipn:

t 1.6 t 1.2
=9F|—= A6 E | — 2.4
ro=98(5) +o0ur(g) @4
This equation can also be written as

oc=9F (%)1'6 L 016E (%)1'2 (%)1'2 (2.5)
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Figure 2.2: Comparing different analytical knock-downdtions

This allows the function can be plotted for differeit R ratio’s as shown in Figure 2.2.
The buckling stress depends on befk and R/ L. Compared to Eq. (2.3) the knock-
down factor forR/t < 300 is much higher, yielding a larger allowable load.

Although an update is being working on, the shell design bao# still used by
NASA is the well known SP-8007 report [1]. According to thisport the buckling
stress for isotropic shells is calculated by

0Cc =7 0d (2.6)
where the knock-down factoris defined as

y=1-0.901(1—e?) (2.7)
and

1 |R
¢_16 t
To determine this formula, the test results were lumped authregard to production
manufacturing methods or the method of testing. The fornsalabe used up to B/t
ratio of 1500. Further one should be careful using this formula ifR exceed$, since no
experimental data of these types of shells were used tordeteithe empirical formula.
Notice further that in Eqg. (2.6) the knock-down valyevas multiplied by the classical
buckling stress as shown in Eq. (2.2). The latter formulaaiédvfor simply supported
boundary conditions. As the difference between rigoroustsms are obscured by the
effect of initial imperfections, this formula is used. E¢2.3) and (2.6) are also plotted
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Figure 2.3: NASA SP8007 and ECCS lower bound formulas ardyntege same

in Figure 2.2. The figure shows that the knock-down formutarfrSP-8007 yields the
largest buckling loads.

In Europe the commonly used handbook of the European Caowvefar Construc-
tional Steelwork, ECCS [39] uses a similar equafioifhis knock-down factor is a com-
bination of two equations:

v o= Lfor R/t < 212 (2.8)

J1+0.01%

0.70

’}/:—
\/0.1+0.01 £

These formulas are valid for cylinders that do not exceedithi¢

L |R
— <0. — 2.1
R_095 ; (2.10)

This limit is imposed to preclude the possibility of overgliler-like column buckling
interacting with shell buckling.

Comparing both definitions of the knock-down factors onlgwh a minor difference
as shown in Figure 2.3, which is quite obvious since bothofacbriginate from work
done by Weingarten et al. [34]. However, there is a majoredéfiice between the two
handbooks in the recommended procedure to be used. Whareasg the procedure
implemented in SP-8007 the use of the knock-down formulkeaaly ends the buckling

for R/t > 212 (2.9)

LECCS is using the parameteiin stead ofy
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_t

Figure 2.4: Imperfections

calculation, in the ECCS handbook the quality of the shahken into account. The im-

perfections of the shell are measured in a relatively crudamar. Using either a straight
rod or a circular template the imperfections should be ced@verywhere on the surface.
This is shown schematically in Figure 2.4. The length of the or template is related

to the size of the potential buckles. The ECCS proposalstagd the length of the rod

should be taken as

l, = 4VRt (2.11)

The rod should be held anywhere against the meridian. Whemattio of the largest
measured amplitude to the corresponding. does not exceed.01, the knock-down
factor~ given in Egs. (2.8) and (2.9) should be used!, léquals t00.02, the values of
~ are halved. When the ratio is in the interval1 — 0.02, linear interpolation between
~ and~/2 provides the knock-down factor to be applied. For valuegdathan(0.02
no recommendations are given, however it seems logical lavgitie such imperfections
should be disposed of.

Another major difference between SP8007 and the ECCS isttrmendations of
ECCS of using an extra safety factor ©f3 for axial compressed shells, on top of the
standardf’.S. = 1.5. Thus one can conclude ECCS is much more conservative than
SP8007.

Example: shell IW1-20

Shell IW1-20 is one of the over 30 beer cans investigated bycpand Jacobs [23]. The
thin-walled shell manufactured from steel has a lengthoof[mm], a radius of33 [mm]
and a thickness of approximatelyl [mm] yielding

1
R/t = 330. ando = — ? = 1.13537 (2.12)

Then the lower bound value is

y=1-0.901(1— e %) = 0.3885 (2.13)
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The lower bound buckling load for this shell now becomes
P,=~.P;=-31024N (2.14)
Comparing this to the experimentally found load
Pexp= —3890.0N (2.15)

one notices the lower bound value is conservative. Looktrajldhe buckling load data
of the beer cans of Dancy and Jacobs [23] as plotted in Figurét 2an be seen that
these values show a large spread, where the minimum budklathjis positioned on the
lower bound curve. Therefore, for the beer cans there is moiga&pending energy in the
improvement of the lower bound curve.

It is interesting to mention that in the design of the beerscatiher requirements ex-
ist which determine the wall thickness of the cans. In destrgpthe wall thickness any
further the can might be damaged by sharp finger nails. On therdhand, can manu-
facturers are interested in the loading capability of she&lhere certain imperfections are
put on the shell surface on purpose. Think of, for exampléossed company logos.

2.3 Orthotropic shells

Shells can be stiffened using axial stiffeners, rings ormlmoation of both. Let us con-
sider a thin-walled cylindrical shell, reinforced by clbsspaced circular rings attached
on the outside of the shell and with longitudinal stringettached on the inside, as il-
lustrated in Figure 2.5. If the stiffener spacing is smalbegh the stiffener effects are
smeared over the shell. Whether or not this yields satigfy@sults depends on the buck-
ling mode. As a rule of thumb at least 5 stringers or rings sthbe situated on one half
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wave of the buckling mode. If there are less, a discreteesigf theory should be used
instead since the smeared stiffener wall assumptions bec@oalid [40]. For the latter
theory the shells will be referred to as stiffened isotragiells.

For the smeared theory the cylinder is approximated by difias sheet whose orthotropic
bending and extensional properties include those of thioheal stiffening elements av-
eraged out over representative widths or areas. The sméearating stiffness per unit
width of the wall D, and D,, in z— andy— direction respectively, and the smeared ex-
tensional stiffness’s of the wall, and £, in z— andy— direction respectively are repre-
sented by

D,=D(1+ny), E.=C(1+m) (2.16)

Dy, =D(1+n0), E,=C(1+ u) (2.17)
in which

D Et? Et

- = _""
12(1 — v?)’ 1—v?
The terms, which are a function of the dimensions of the géis and rings, are:

Ely

= and Io; = I, + Ase? (2.18)
Moz = ng and Ip; = I, + A€’ (2.19)
= (1—V2)C%:E (2.20)
[y = (1—V2)C%:5 (2.22)

whered, andd,. are the stringer and ring spacing respectively, anahde, the eccentric-
ity of the stringer and the ring. The areas and the area mawdiertia of the stringers
are

AS = Cldl (222)
1
I, = Ecldi (2.23)

Similarly for the rings:

Ar = ngg (224)
1
I = e (2.25)

The contribution of the stringers and rings of the shell m¢hange of the critical buckling
load can be implemented in the knock-down formula by moduythe wall thickness of
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the shell. For orthotropic shells this lower bound formw@laimilar to the one for isotropic
shells:

Ys =1 —0.901(1 — e %) (2.26)

where

. 1 R *x 4 =Yy
¢S_29.8\/:* and "=\ % F,

where the adjusted wall thicknessis a function of the bending stiffness and the exten-
sional stiffness of the stiffened shell. Whereas for ispitshells the knock-down factor
was a function ofR /¢, for orthotropic shells it also depends on the number anel gfz
stiffeners which are implemented in the adjusted thickmess

The lower bound curve for the orthotropic shells is plottegether with experimental
data in Figure 2.6. On the vertical axis there is a differematiceable when comparing it
to Figure 2.1. In Figure 2.6 is the normalized load, where as a normalization term the
theoretical buckling load of a orthotropic shell is usedu3h

-]
-]

_ Pexp

(2.27)
Pt

where
I stf = AlkePe

Here A7, is the critical (lowest) eigenvalue of the linearized slipiequations using
membrane prebuckling [41]:

1 [ ADke (“_YQMJFOéi)z}
m — _ vy _|_ ) ’_ 228
Ckt 2 { O‘l% Oéz’VH,k,Z ( )
where
_ _ _ _ Rt /m\?2
o = Dol t Dl 4Dt o =i (7)
’7H,k,é - Hxxai + nyaiﬁg + [r[yyﬁzl (229)
_ ~ ~ - Rt /1\?
Toke = Quol+Quol® +Qudl B =0 ()

andP,, is the classical buckling load of a thin-walled cylindrisalell defined in Eq. (2.1).
The stiffness parameters and the wave number parameteestde®n defined in Ap-
pendix B. An interesting fact is the value af,, for isotropic shells, since for those
shellsA\#,, = 1, yielding a normalized buckling loae= \.
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Example: shell AS2

Shell AS 2 is one of three stringer stiffened shells investigated byo&z and Babcock
[4, 5]. The aluminium 6061-T6 shell has a lengthi8f.7 [mm], a radius ofl01.6 [mm]
and a wall thickness di.197 [mm]. Taken into account the properties of the 80 axial
stringers:

Ay =0.7987 [mm?]  d, = 8.0239 [mm]
I, = 0.015038 [nm?] e, = 0.3368 [mm]

(2.30)
using Poisson’s ratio = 0.3, the adjusted" is calculated using Egs. (2.16) - (2.26):

t* = 0.1091 [mm] (2.31)
yielding aR/t* ratio of

R/t* = 931.5908 (2.32)

Notice this value fot* is smaller than the actual wall thickness because of theitiefin

shown in Eg. (2.26). In section 2.5 a different thicknesd b introduced larger than
the actual wall thickness. This latter definition seems numevincing because of the
expected higher buckling load compared to an unstiffenedl $laving the same wall
thickness.

The lower bound value of the orthotropic shell is

vs =1—0.901(1 — e %) = 0.4238 (2.33)

using

1
= ——/ *=1.02
Os 708 R/t 02036

Although the value of* is almost twice as low as the wall thicknesshe knock-down
factor is higher than for a shell without stiffeners using #ame wall thickness, singe
is used in stead af. The lower bound buckling load for this shell:

Comparing this to the experimentally found load
Pexp= —3211.7 Ibs (2.35)

one notices the lower bound value is very conservative. d¢isn shows an update of the
knock-down parameters is needed.
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2.4 Anisotropic shells

Anisotropic shells are typically shells constructed outseVeral layers of a composite
material as shown in Figure 2.7. Each layer is a curved aemegt of unidirectional
fibers or woven fibers in a matrix. The fibers carry almost allbad whereas the function
of the matrix is to support and protect the fibers and to peddneans of distributing
load among and transmitting load between the fibers. Thesxteal stiffness termd,;
and the bending stiffneds;; are defined as

N

Aij = (Qij)k(zk_zk—1>
k=1
1 al 2 2 2

Bi; = §Z(Qij)k(zk—2k_1)
k=1
1M

D;; = gZ(Qij)k(zg_zg—l) (2.36)
k=1

where

Qi = Qi1c08"0+2(Q12 + 2Qe6) sin” § cos® O + Qg sin' 0

Q12 = (Qu1 + Qg — 4Qgs) sin O cos? § + Q12(sin § + cos* 0)

Q2 = Quisin® 0+ 2(Q1z + 2Qgs) sin? 0 cos? 6 + Qo cos* 0

Qs = (Qu — Q2 —2Qes) sinf cos® § + (Q12 — Q22 + 2Qgg) sin’ f cos 6

Q2 = (Qu — Q2 — 2Qss) sin’ 0 cos b + (Q12 — Q22 + 2Qgg) sin b cos®

Qes = (Q11 + Qa2 —2Q12 — 2Qss) sin® O cos® O + Qgs(sin® 0 + cos* §)  (2.37)

and the reduced stiffness

FE
Qu = 171
— V1221
o V12 b . vo1 B4
Q12 = =
1 —vporer 1 —vpav
E
Qun = 7
— V1221
Qos = G2 (2.38)

according to Jones [42]. He¥g, and E, are the Young’s moduli in thé and2 directions,
respectively, and;; is the Poisson’s ratio for transverse strain in ghdirection when
stressed in thé-direction. Further(, is the shear modulus in tHe— 2 plane.

For anisotropic shells the lower bound formula is chosenilamio those of the
isotropic shells and orthotropic shells:

Yo =1—0.901(1 — ) (2.39)

where

1 R
¢a = m \/; (240)
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and

D11D22
= = 2.41
A11A22 ( )

andt¢* is the adjusted wall thickness for anisotropic shells. dothat in the formula for
t* the extensional stiffness terms and the bending stiffrexssstare used as before in the
definition oft* in Eq. (2.26).

The lower bound curve for the anisotropic shells is plotte#igure 2.8 together with
experimental data. Similar to the plot with the experimengaults for the orthotropic
shells, the value o /t* is used on the horizontal axis, whereis the adjusted thickness
of the shell, which includes the effect of the composite mateOn the vertical axis one
can find the non-dimensional parametethe normalized load. As a normalization term
the theoretical buckling load of an anisotropic shell iscusEhus

P
==XP (2.42)
Pani
where
Pani = AmnrPel

Further),,,., is the critical (lowest) eigenvalue of the linearized sligbequations using
membrane prebuckling of the anisotropic shell [31]:

Ar = (T 4 Tap 4 L, T 2.43
mnt — ﬁ 1,m,mn + 2,p,n + TQ— + T2 ( . )
2 (Oém + Oép) 5,m,n 6,p,n
where
T X = T 5 = 2
lemﬂq’ - fyeD*ym,TL - ryOD*ymyn T4’p’n o ry%*ﬁnvn _'_ fy%*ﬁnvn + ap
T2,p,n = VE*,p,n + ryg?*,p,n T5,m,n = 75&*,m,n + ryg*,m,n (244)
_ - b 9 _ e _
T3,m,” - fy%*,m,n - V%*,m,n + oy, TG,P,TL - “Yix*,p,n - fy.?{*,p,n

The Coefﬁdent@i&*,m,n’ 72&*,m,n’ f?i}*,p,n’ ﬁz*,p,n’ ’7%*,m,n’ ﬁ%*,m,n’ ’7%*,;0,7” ’7%*,;0,7” ’78D*,m,n’

Yo mm» Vb pn @AY, are functions of the stiffness parametets, B;; and D;;.
Their definitions can be found in Appendix B. Both term% and ozf) are functions of
the geometry of the shell and the number of waves of the bougkiiode, also defined
in Appendix B. Notice that the eigenvalug,,,. depends on the wave numbersandn
and on Khot’s skewedness parametgr[43]. This skewedness parameter is introduced
in order to account for the possibility of bending-twistiogupling.

Example: shell AW-CYL-1-1

Shell AW-CYL-1-1 is one of five layered, composite graphefgexy cylinders investi-
gated by Waters [25]. The shell has a lengthl¢f[in], a radius 0f7.99945 [in] and a
thickness 010.039976 [in]. The shell has gotten 8 layers, lay-{tp45/0/90];, each ply
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has a thickness @f.004997 [in]. Then the stiffness terms in Eq. (2.36) can be calcadate
as

Ay = 0.326879.10° Dy = 39.8701
Agy = 0.326879.10° Dyy = 31.3826

(2.45)
Taken into account these properties the adjusted calculated using Eq. (2.41) as:
t+ = 0.0104026 [in] (2.46)
yielding aR/t™" ratio of
R/t* = 768.9850 (2.47)
Then the lower bound value is

Yo =1 —10.901(1 — e™%) = 0.35530 (2.48)

using

1
= — + =
b= 353 R/t = 0.93056

The lower bound buckling load for this shell:

P, = Ya-Pani = Ya-Amns P = —14629 los (2.49)
Comparing this to the experimentally found load

Pexp= —30164 Ibs (2.50)

Notice the lower bound value is very conservative for thislsiThe lower bound for the
other 4 shells in the group witR/¢™ about 400 is also conservative, however not a lot of
weight can be saved on these shell if the bound is improvedr&i2.8.

2.5 Unified lower bound curve

In the NASA report SP8007 [1] the functions for the lower bdwurves for isotropic
and orthotropic shells are not the same. The lower boundeclanvthe isotropic shell is
a function of R/t, whereas for the orthotropic shell it is a function®ft*, wheret* has

been defined as:

D,D
=4 ==Y 2.51

This definition has a disadvantage. If the stringer and rirggs of the shell are very
small, and the shell can be considered to act as an isotrbeil; the parametersy;, 72,
11 andyy defined in Egs. (2.18)-(2.21) will go to zero. The stiffnemsris simplify to

D, = D
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Substituting this result into Eq. (2.51) yields a thickness

N t

= 7 (2.52)
Using this formula fort* in the lower bound formula of the orthotropic shell shouldlgi
the equation of the isotropic shell, therefore in Eq. (2.2@pefficientl /29.8 in the ex-
pression forp, is used in stead of/16 in ¢ in EQ. (2.7).
Although the definition ot* in Eq. (2.51) is an elegant formula, it is reasonable that in
the limit where the stiffeners are negligibly small, theuesdgd thickness is

t" =t
In stead of the definition in Eq. (2.51) it is suggested to ipljtthis formula by+/12
yielding

— — | D.D
=y

which can be rewritten using Egs. (2.16) and (2.17) to

w o (T+m01) 4+ (14 702)
t ‘J T+ (L tm) | (259

A benefit is that the lower bound formula Eq. (2.7) can alsogeslfor the stiffened shell.
Similar to the stiffened shell, for anisotropic shells drmtdefinition fort™ as an
alternative to Eq. (2.41) will be used. Let

D11D22
v — /12t =12 & 2.
! ! Ay A (2.53)

which is in fact equal to the definition as used in Eq. (2.41)tiplied by v/12. For a
single layer of isotropic material with material propestie and and thickness the
stiffness terms are

Qu = Qu
Qn = Qx
and
E
Q1 = Qa2 = 1-.2 (2.56)
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then
An = Qula— ) = Quit/2 - (~1/2) = o)
An = Qula— ) = Qult/2 - (~1/2) = 2
Du = 13Qua = ) = 13Qu (/2 — (-1/2)") =
Dy = 1/3Qa(z} —23) = 1/3Qn ((t/2)* - (—t/2)*) :12(?7’5_3”2)

Substituting these equations into the formula for the adpisvall thickness, Eqg. (2.55):
=t (2.57)

Also for the anisotropic shells the lower bound formula E37§ can be used in the design
of a new shell.

Recall shell AS2 in the example on page 19 where the wall thickngds almost half
the actual wall thickness. Calculation of the unified thiegs yields

t =12 x 0.1091 = 0.3779 [mm] (2.58)

which is about twice the value of the wall thickness of thelw&his result seems more
appropriate.

In the following examples the unified lower bound theorem barused to generate
one plot containing the experimental results of shells wiilee walls consists of isotropic
material, possibly stiffened with axial stringers andiags, and walls built up using a set
of anisotropic layers.

Example: comparison of stiffened and unstiffened shells

The shells reported in [5] can now be plotted in a single lolaernd plot, which makes
it easier to compare different types of shells. The shellhéreport are the results of
imperfection surveys carried out at Caltech in the sixtiethe last century. The shells
consist of a set of copper electroplated shells (A-shetigkel electroplated shells (N-
shells), machined brass shells (B-shells), welded stesrdteel shells (ST-shells), stringer
stiffened aluminium shells (AS-shells), and finally ringfsned aluminium shells (AR-
shells). The results are plotted in Figure 2.9. Notice orvitéical axis the in the normal-
ization the factor\!” has been used. For orthotropic shells this will be replagedh,,
for anisotropic shells by,,,,..
The first thing which can be observed is the clustering of #ite.dThe shells within a set,
which have about the sanfe/t ratio, show a small spread of the buckling load. This is
important as this makes it realistic to move the lower boumne ipwards.

However, the ST-shells all collapsed before the load aasetiwith the lower bound
curve was reached. These shells were reported to have sHasticfpuckling [5]. The
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shells were cut from commercial, longitudinal welded, tygi®! stainless steel tubing.
As the fabrication process cannot be compared with the ulygfrocedure as followed
for the other shells, and the buckling behaviour is comptedédferent, they will not be
discussed any further.

The buckling loads in Figure 2.9 are all normalized. Redadlt tfor isotropic shells
the normalization factor

The normalized buckling load for the isotropic unstifferséells is lower than for the stiff-
ened orthotropic shells. The normalization facigt,, is calculated for a stiffened shell
with simply supported SS-3 boundary condition but the erfdh® shells are clamped
during the test, approaching CC-4. Because of this clampeddrry condition the cal-
culated buckling load will be lower than should be expecteelding a conservative re-
sult [40].

Notice the buckling load of the isotropic A-shells, B-skedhd N-shells seems to be in-
dependent of thé?/t ratio, despite of the definition of the knock-down factor. Nal
conclusion can be drawn because of the small number of tégiswhese sets.

2.6 Discussions and conclusion

In this chapter lower bound plots have been shown for isatreipells, orthotropic shells
and anisotropic shells. The lower bound curves plotted @se¢hfigures are empirical
equations used as a knock-down value to determine a saféirmitdad of a shell design.
Notice that the plots are similar: the empirical functions the lower bound curves of
the isotropic shells, orthotropic shells and anisotropiells are the same if the stiffness
parameters valid for isotropic shells are substituted ictheaf the three equations (2.7),
(2.26) and (2.39).

The lower bound curves originate from the NASA report SP8{I] and are based
on experimental data dated before 1968. More recent dag Ieeen plotted into these
figures. These newer shells manufactured using newer ptioduechniques will be de-
signed much more conservative than shells designed mamy gga, because the lower
bound curve has not been adjusted for modern technologyentherquality and repeata-
bility have been improved. Using the ECCS handbook [39],clwhs also based on the
experimental data used for SP-8007, is even more consaxgitice an extra safety factor
is recommended for axial compressed shells. Substantighiveavings can be achieved
if the lower bound theory is improved, which is possible i thffect of modern technol-
ogy is used in the theory.

The lower bound formula for isotropic shells is used up t®/& ratio of 2500. Notice
that the formula which can be used uplf@0 according to SP-8007 also yields smaller
buckling loads for the higheR /¢ values as shown in Figure 2.1!

The experimental buckling loads found for the beer cans shdavge spread. Since
the lowest buckling load is found on the lower bound curveréhs no profit in spending
energy in the improvement of the lower bound curve for thesesc
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The normalized buckling loads of some shells are higher th@&m the lower bound
plot for the orthotropic shells in Figure 2.6. Because thelting loads are normalized
using the theoretical buckling load of a orthotropic shethveimply supported boundary
conditions, this can be expected for shells tested with ptdrboundary conditions.

One should stay compatible with the lower bound curves deéfineSP-8007 [1], a
handbook of which the curves have been the basis for newer Ihaoks as well. There-
fore the lower bound curve for the anisotropic shells hasliesed on the curve for the
orthotropic shells. At the end of this chapter a unified lolweund curve has been pro-
posed which has the advantage that all data can be plotteteifigure. Furthermore, in
this new approach the adjusted thickness will be equal todlkthickness in the limit
case where the areas of the stringers and rings go to zero.
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Chapter 3

Imperfection Measurement Procedures

There are only a couple of plants in the world producing beansin the
amount of millions each day. To be more precise, the machehvetarts off
with a small cup, pushing this cup through 3 or 4 rings spitsaround 1000
cans each minute. Our beer can is not a unique species, hoitésenique in

that sense that a set of 30 was tested 25 years ago in the Fafulerospace
Engineering at Delft University of Technology by Dancy aadabs [23].

The normalized buckling loads of the circular cylindricaés shown in the lower bound
plots in Chapter 2, Figures 2.1, 2.6 and 2.8, have been mezhsising different mea-
surement equipment. This chapter starts with some histidb@ackground, followed by
a general description of the test procedure. After the dason of the test equipment
available at the Faculty of Aerospace Engineering of thevélsity of Technology Dellft,
the measurement of the VEGA interstage is described. Thasorement served several
purposes. New imperfection data of a thin-walled shell nfactured using state of the
art techniques can be added to the imperfection data bartkefimore the test acted as
an experience for the author in the process of setting upeiteejuipment, installing the
shell, performing the test, meanwhile solving unexpectretiems.

3.1 The history of imperfection measurements

Researchers started to measure the imperfections of talledwylinders in the 1960s. It
was then when Arbocz [44] built his well-known AS-2 shell,asared the imperfections
and loaded the shell up to the point where it collapsed. Kpiigoroved initial imperfec-
tions play a large role in the buckling behaviour of shelfshis calculations he assumed a
geometric imperfection shape and determined that it cagluifscantly reduce the buck-
ling load of the shell. Many years before Koiter and Arboazgieeers and researchers
were already interested in thin-walled shells. The thecaebuckling formula derived
by Timoshenko [33] is one of the early expressions used idigtiag the buckling load
of shells. Robertson [12], Esslinger [36], Weingarten [84¢ many others manufactured
their own shells and loaded them until failure. These tegievBomewhat unsatisfactory
in the sense that the theoretical buckling load as predlmyddmoshenko was hardly ever
reached. One could say that this was partly caused by thé&@gbroduction techniques

31
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were not as advanced as they are today, so near perfect ahisnot be manufactured,
also the test facilities may not have been 100% perfect rithe still this could not ex-
plain the sometimes dramatic difference between theoryeapdriment. Being practical,
engineers started using the so-called knock-down factorpikcally derived, this is the
factor which will be multiplied by the theoretical calcudatbuckling load to get the lower
bound load below which most of the shells will not fail.

3.2 Available shells

To measure imperfections first of all one needs shells. Thlesks are available at differ-

ent locations in different shapes depending on the type plicgiion that they are used
for. One can distinguish between three different categafehells. First at a research in-
stitute or university shells might be manufactured for timgke purpose of research. The
produced shells are measured inside out: every aspectad.ndbhe load carrying capa-
bility before failure or buckling is determined or the natlLirequency of the shells. The
collapse load will be predicted analytically, possibly lsing advanced FEM programs,
and verified by the real experiment. If a large number of shsltested, the reliability of

the shells can be established.

Secondly, a company develops a new cylinder, maybe a coimieaktage between
two stages of a rocket. Before launching it a number of testiskvill be measured. First
the weight of the structure is measured and the exact latatidhe centre of gravity.
Next the imperfections and finally the collapse load will ledtmined experimentally.

Third, and last, this same company will produce parts of &ebevhich is to be
launched. Researchers might get an opportunity to measeieiperfections before the
rocket is used to take one or more satellites into orbit. Obsiy the collapse load for
these last sets of shells will not be available, althoughgfirnbe possible to measure the
maximum loads during lift-off.

Full scale shells are very interesting, but are also the keaslable. This is not just a
money problem, it is also more practical to test smallerlsh&he test of a large number
of small shells can be performed relatively fast, does netlrte cost a lot of money, and
can still provide valuable information on the behaviour loé shells manufactured by a
certain production method. As an example a set of small ageetans, similar to the one
shown in Figure 3.1 will be described in the section 3.4.1aMeements on a full scale
model of the VEGA are discussed in section 3.5.

3.3 Test procedure

The description of the test procedure is schematically showFigure 3.2. After the
production phase, the measuring of the shell can start. fékk will be mounted in its
fixture. If possible the ends of the shell are connected toestd rings, which will be part
of the structure in its final setup. Without these rings thiéngss of the shell is rather
low and the shell would definitely change its shape slighthewit is moved from one
location to another. As the behaviour of the shell is strgmgfluenced by the shape and
magnitude of the imperfections mounting of these stiff einds is recommended. For
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Figure 3.1: An old version of a beer can

laboratory shells, different boundary condition configimas may exist. They will be
discussed when the test equipment is described.

When the imperfections are measured the data needs to bkechdbe data might
contain flaws which will need to be corrected. The flaws mighiriroduced because
of a variety of reasons. For example the sensor measurinigniperfections might have
jumped over a rivet, or maybe over a small cut in the shellsTiil cause a small non-
existing peak in the imperfection. Missing or incorrectalatill either be interpolated
using the neighbouring data points or substituted by sledamagic numbers’. These
numbers will be discussed in the description of the progrd&®BFIT in section 4.2.

This program is the next step in the test procedure. The lhegref the cylinder does
not need to be the same as the best-fitted cylinder. A manuédtarts by manufacturing
a shell of radius say.5 [m]. The manufacturing technique causes the shell not to be
exactly round or perfect. The difference between the martufad shell, and the desired
shell of radiusl.5 [m] depends on the fabrication method. This difference carden as
the manufacturing signature of a certain fabrication meétHa this thesis the difference
between the manufactured shell and a perfectly cylindshall is called the imperfection
of the shell. The best-fit shell is found by minimizing the enfections using a least
square method. This best-fit shell can have a mean radiuydf4a[m] and even have
a small conicity as well. Details are discussed in the neaptdr.

The imperfections could be stored as such, and as a mattacitiiey are stored in
the database as a datafile, but a more elegant way of desctiitam is the use of Fourier
coefficients, because analytical tools like MIUTAM [45] aANILISA [46], which cal-
culate the buckling load, assume sine and cosine seriegdatdformation of a shell, and
can use the Fourier coefficients in their calculations imiautediy.

The Fourier coefficients will show the dominant mode of theémection of a cylin-
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der, and provide an easy method of comparing different sheleach other. Different
representations of the imperfection using these Fourieffictents are described in Chap-
ter 4.

The measured data always needs to be checked. As alreadioneshbne should
correct flaws. The way to find out about errors in the data islbiting the imperfection
field. Any irregularities should be explained.

Standardization of the data is an important issue. This ésadrithe objectives of the
imperfection data bank project. There are as many data fsrasthere are engineers.
It is not just the usage of either millimeters or inches, alitph very expensive losses of
rockets have been the result of mixing up those differentsurAlso data can be stored
in hundreds of different formats. The geometry is storedie[mm] or [inch] in the
database. One could of course argue on the usage of justitS]-bowever, a lot of
experimental data is available in either [mm] or [inch], ahd manufacturer is using
dimensions like radius of [in], and length of8 [in] of a shell, the corresponding Sl
dimension are not really nice.

The final step in the test procedure depends on the purpoke pétticular shell. The
laboratory shells and full scale test shells will be loadadldailure, providing a value
for the collapse load and the failure mode. The shells whithbe part of a real rocket
will be launched. In theory the encountered stresses dani@dlight could be measured
yielding the stress distribution in the shell.

When all the data have been measured, checked, and possibdgted, they will
be entered into the data bank. The right to enter data shaulediricted. To ensure
the contents of the data bank will remain of a high qualityd an errors or deletion of
data will occur, only certified people should be authorizedpdate the data bank. More
information is found in the user manual in Appendix A.

After the data is entered into the data bank it will be avaddab all authorized struc-
tural engineers. The next section deals with differentegstipment used for measuring.

3.4 Measuring tools

Several methods have been and are still used to measure pleééttions of cylindrical

shells. Either the radial distance with respect to a refaeguerfect shell is used, or the
data just contain a set of x,y,z coordinates. At the Facultperospace Engineering
of Delft University of Technology, three testing machines/é been built, capable of
measuring cylindrical and/or conical shells of differeizes. They are listed in Table 3.1.

3.4.1 Stonivoks

STONIVOKS is an acronym for 'Statistisch ONderzoek naamigoed van Initiéle VOr-

monzuiverheden op de Kniklast van Schaalconstructiesti€dical research into the in-
fluence of initial deformations on the buckling load of skgll The primary objectives
of the test apparatus Stonivoks [47] is it should be able tasuee the imperfections of
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Testing machine Size of shells

Stonivoks small cylindrical shells
radius33 [mm], length100 [mm]
Univimp medium scale cylinders

radius of120, 180, and240 [mm],
length respectivel40, 360, and480 [mm]

Amivas large cylindrical or conical shells, like ARIANE 1Fr& EGA
radius1..2 [m], length1..3 [m]

Table 3.1: Imperfection measurement devices at the TU Delft

a small cylindrical shell. This has to be possible in bothoadled and loaded state. A
photograph of a small cylindrical shell in the test appasasushown in Figure 3.3.

Figure 3.3: Stonivoks

The choice of the shells to be measured during the developoie®tonivoks was
determined by the maximum allowable size of Stonivoksfiss it should be capable
of measuring the deformation of the shell under loading,tés¢ apparatus should fit in
the compression machine, also developed at the Faculty mispace Engineering of the
Technical University in Delft. Small cylinders normallyegas beer cans happened to be
the best choice instead of, for instance, electro-platedlsshke shell A-8 described in
Chapter 5.4. The latter have the advantage that they cand®ycfhape, any wall thick-
ness, but for larger number of shells they take too much tom@aduce. The beer cans
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all have the same shape but do have small imperfections. dbept display isotropic
material behaviour and have wall thickness that is not @misboth due to the production
process. The compressive collapse load is measured, aiig fir@post failure buckling
pattern has to be measured.

Special attention is given to the fact that the measuremanted should not influence
the behaviour of the shell. Details can be found in referdd@g however, one interest-
ing item will be discussed here. If the shell is loaded in bdigection it is possible to
measure the displacements perpendicular to the shellcguriehis is used to show how
the shell deforms before buckling occurs. During the measent the shell is rotated.
The shell is free to rotate in the test apparatus, howevethere will always be some
friction in the bearings, a torsional moment can be intraalin the shell, yielding shear
forces. These shear forces combined with the axial stresédwWave a significant effect
on the behaviour of the shells. In Stonivoks one of the enkisdigs a so-called core
width a membrane at the end as shown in Figure 3.4 as part mut8b&his membrane
is provided with a castellated rib, part number 19, at itseoetdge. The membrane is
mounted to the bottom end disk. The polar moment of inertithefcore with inner and
outer radius of; = 15 [mm] andr, = 22 [mm] respectively is calculated as:

m

L= (r3 = rf) = 288450 [mm1] (3.1)

and the polar moment of inertia of the thin-walled shell wididius of33 [mm] and a
thickness ofl [mm]:

I, = 2w r®t = 22580 [mm?] (3.2)

Therefore the torsional stiffness of the core is ol/2times as large as of the shell. This
means only a small part of the torsional moment which is useal/ercome the friction
in the bearings (part numbetd and15 in Figure 3.4 ) is carried by the shell. The effect
on the buckling behaviour is negligible.

The measurement procedure is fully automatic. Once irstale test will be con-
trolled by a computer which is triggered by small switcheke Tower disk (part number
22 in Figure 3.4) has at its outer rif)0 evenly spaced narrow slits. Installation of a small
lamp and a photo-cell triggers the AD converter to measQfedata points in circumfer-
ential direction.

The boundary conditions of the specimen need special attenThe cylinders are
inserted in the circular channels in the end disks, which valfilled with 'Cerrobend’.
This 'Cerrobend’ is a metal like material with a low meltiremperature. When solidified,
the boundary conditions of the cylinder can be considerathpkd. Also the membrane
connecting the core to the lower end plate is mounted usiegd®end’.

The imperfections of the shell are measured using a lindtag® displacement trans-
ducer (LVDT). This transducer makes contact with the slagit therefore applies a load,
very small though, perpendicular to the shell surface. Téfemhations caused by this
small load are negligible. Other options using non contambes like eddy current or ca-
pacitive sensors have a disadvantage of having a relatiagg sensor or coil diameter.
For an imperfection range & [mm], a sensor diameter of at leasfmm] is necessary.
The measured value will be an average of the value under tismgdherefore imperfec-
tions with small wave lengths will be ‘flattened’ out when trea used for measuring is
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Figure 3.4: Sectioned view showing the mechanism of Stdsiy47]
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too large. Optical measurements using laser are compliGaid too expensive, at least
when Stonivoks was first built.

When the imperfections are measured in circumferentiaation, the pick-up will
also move in axial direction at the same time, as the picksumounted on a support
which is moved up or down by means of a screw spindle. Theoadrtind rotational
movement are coupled such that one revolution of the spectoeesponds to a vertical
displacement of the pick-up df[mm]. This results in imperfections on a helix on the
shell surface. One will need a small program to calculatertigerfection pattern on a
regular mesh of axial and circumferential scans.

3.4.2 Univimp

UNIVIMP is an acronym for 'UNIverseel instrument voor hetdaden van initiéle IMPer-
fecties van schaalconstructies’ (Universal instrumentiie survey of initial imperfec-
tions of thin-walled shells). Univimp is an enlarged versaf Stonivoks. The principal
setup of the apparatus is rather similar to Stonivoks, algihahere are some differences.
The initial structural design of Univimp was done by profWy.D. Verduyn [47].

Univimp, shown in Figure 3.5, is designed for cylinders watdiameter o240, 360,
and 480 [mm] and a height of respectiveB40, 360, and480 [mm]. Other diameters
can be accommodated for, but need some additional striicturgponents like end rings,
core, and membrane springs. It can measure the initial ifeg@ons at zero axial com-
pressive load and also the development of the imperfectinder increasing compressive
load. The instrument can be adapted to 8h@ kN compression testing machine of the
Faculty of Aerospace Engineering of the Technical Unitgrsi Delft. Further it can
measure the nonlinear vibration behaviour of thin-wallglinclrical shells under chang-
ing axial load conditions.

Univimp consists of a rotating platform mounted on the bds#epof the apparatus,
and a column on which a carriage is going up and down and tohnthie imperfection
measurement transducer is mounted. The column is not plgriaight, therefore be-
fore the test it is calibrated using an accurately machieéefence beam. Unlike Stoni-
voks the movement of the carriage is not mechanically calpbethe rotation of the
shell. Therefore the measured data are supplied per cienamtial scan. Per scan 200
data points are read. The axial displacement of the carisagentrolled by the user, its
minimum step size i8.1 [mm].

The shell is put in two circular end disks. In those disks @wutar channel pro-
vides space for the shell. As for Stonivoks described inise@3.4.1 the channel will
be filled with Cerrobend. The end disk is mounted on the noggplatform which in turn
is mounted to the bottom of the apparatus, via a pair of axidl rdial bearings. To
remove any possible movement in the axial bearing, theyaaddd by means of disk
springs. One cannot avoid the fact that the centroid of tled Enot at the same location
of the rotation centre of the platform. To remove the resagltigid body motion, also the
displacement of the end-rings is measured.

The whole instrument can be controlled by hand or by compé&igdi documentation
is found in the literature [48]. In 1989 Mertens used Univifapthe measurement of the
buckling behaviour of three different sets of aluminiumlihg9].
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Figure 3.5: Univimp

3.4.3 Amivas

AMIVAS is an acronym for 'Automatisch Meetsysteem voor hephlen van de Initiéle
imperfecties VAn Schaalconstructies’ (Initial imperfiect survey instrumentation for thin-
walled shells). This device, shown in Figure 3.6, is muchdathan Stonivoks and Uni-
vimp. Because of its size it is not one apparatus but a setrts pdoich when combined
can perform the same function as the other test machinesptfar measuring deforma-
tion during loading of the shell. This is not possible and e&my caused by the fact that
the Faculty of Aerospace at Delft University of Technologyed not possess a compres-
sion machine big enough to test the size of shells Amivas czasore.

Amivas consists of three units:

¢ Rotation platform
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Figure 3.6: Amivas test equipment used for VEGA interstage

e Column
e Electronic equipment

Each of the units exists of multiple parts which need to bemasded at the test location.
It has been practice to drive to the location where the sha#i fuilt, and perform the
measurement on site. The shells which can be measured witve&iran have diameters
up to 4 meters, which are rather difficult to transport. Alsal@e shell producers do not
stand in line when it comes to facilitating researchers tosspilities of imperfection
measurements of full scale rocket parts it was decided toentiadx Amivas a portable
device. The setup is sketched in Figure 3.7.

The rotation platform consists of two wooden rings, boththuyp of four segments.
Between the two rings ball bearings are placed. The lowerigfixed to the platform, the
upper ring carries the shell. The rotation of the shell istoated by a set of rollers. Two
fixed rollers are placed on the outside of the shell, on thielétsvo spring-loaded rollers
are mounted. When the shell is rotated, the springs will keepollers on the shell lower
ring. The shell will therefore only rotate, the translatiohthe shell in the horizontal
plane during rotation will be small, however not negligibléhe motion of the shell is
determined by the shape of the ring and the rollers. To measis rigid body motion
a diametrically running steel beam is attached to the low@vden ring. In the middle
of the beam a support for four displacement transducersasepl. Four transducers are
placed in two pairs, with the centre lines of the pairs pedaiiar to each other.

The reference ring is mounted to a steel frame which is agtdéb the upper wooden
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Figure 3.7: Amivas test setup
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ring. The reference ring, its frame, the wooden ring and ttedl @re one rigid body. The
combination of the reference ring and the four transducexke® it possible to measure
the translations of the shell. As also the reference ring@igperfectly round, this ring was
calibrated. Using the data of the four transducers the tgidy motions are subtracted
from the shell imperfection measurements.

The adjustable column is a large, ovemeter long, bar, on which a carriage is at-
tached. It is connected to a heavy frame. The columns paosgigertical for cylindrical
shells, and it can be tilted to measure cones. The columnées ¢alibrated. The car-
riage is pulled upward by an electric motor. The scans willrbaxial direction starting
from the top to the bottom of the shell. The measuring de\s@liVDT mounted on the
carriage. During the measuring of the axial scan, the syst#intrigger every10 [mm].

The final unit is the control unit of the engine, and the equeptmecessary to read
the LVDT data, convert the analog to digital data and the aaterto store all the data.

3.5 VEGA - Europe’s small launcher

In September 2005 the opportunity arose to do some measoteime the very first full
scale model of the interstage 1/2 of the VEGA rocket. VEG/Ayvshin Figure 3.8 is cur-
rently developed as a co-operative project within the E@#viework. It will complement
the performance range offered by the ARIANE family of lauexshwith a capability for
smaller payloads. Dutch Space has designed interstagef 12 ¥ EGA. The conical
shell has a length dt138 [mm], the diameter of the bottom ring &)35.5 [mm]. The
cone angle of the shell ist.2°. It is built up of two parts bolted together. The lower part
consists of 8 segments, the upper part with the smaller saafijust 4 segments.

In the design phase the engineers took some imperfectibtmgacount, however these
were assumptions. As the value and pattern of the impeofegiplay an important role
in the stability of the shell, they were anxious to know wthret teal imperfections looked
like. An important question was: 'have we been too optimijstir too conservative’. A
yes answer to the first question costs a lot of money, and tsg¢bend imposes weight
penalty.

The equipment to use, Amivas, was used for measurementedkRIANE Il some
years ago. A number of modifications needed to be done. As gtargobecome ancient
in months, not years, the data acquisition needed an update wooden rings on which
the interstage needed to be positioned were produced. Asedefor actually measuring
the imperfection LVDTs are used. They are very accuratedbuteed to make contact
with the specimen. For the VEGA interstage 1/2 this is notgayoblem, as the wall
thickness 06.3 [mm] prevents the LVDTs to cause any extra imperfections.

3.5.1 Testsetup

The interstage is placed on a set of two rings which can rattgive to each other
enabling the shell to turn. Each ring is built up of four segiseyielding a ring where the
width of the segment i850 [mm] and the inner radius500 [mm]. As the shell is heavy a
large number of roller bearing&16 in total) were mounted. To minimize the friction of
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Figure 3.8: VEGA and its interstage 1/2 ( courtesy of Dutch&p)

the bearings on the wooden rings, a thin Trespa plate wasl gtune upper ring. Part of
the lower wooden ring with the roller bearings clearly visiis shown in Figure 3.9.

The shell is placed on the wooden disks carefully, tryingdotee it. As no special
equipment is used an offset of sayr 2 [mm] is normal. On the end ring of the shell
two sets of rollers, each set consisting of an inside and #&idriroller guide the shell
when it is rotated as shown in Figure 3.10. The location ofrttlers was already shown
in Figure 3.7 in Chapter 3.

The fabrication process almost guarantees a perfectlulairchape of the end ring.
After casting the ring, it is put in a lathe. Finally 284 spots the ring is milled to make
room for the bolts which are needed to connect the interstadbe first stage of the
VEGA. The bottom ring should be an almost perfect ring.

A column with the measuring devices, i.e. LVDTS, is connédte a tripod. Two
LVDTs measure the displacement of the end rings and one LVDVes up and down
over the test specimen as shown in the pictures assemblegurer3.11.

Because of the many holes in the interstage, the measuresnemiy automated partly,
As the LVDT needs to be lifted manually in the neighborhoodadfole. During the
measurement the tripod will not move. After measuring thst faxial scan, the shell
is rotated over a small angle, typical around 2 degrees. Whershell is rotated one
cannot avoid that the shell will also translate slightlydnese of some play in the system.
Although this translation will be small, it will be of the s&norder of magnitude as the
measured data. In the original test setup during the ARIANEasnrements a reference
ring with four displacement transducers was used as disdusssection 3.4.3. During
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: roller bearing

Figure 3.9: Wooden support ring with roller bearings

the VEGA measurement this ring was not installed. This saeede time during the test
setup, however, as will be shown later more analytical wankpared to the ARIANE
measurement was needed to correct the measured data. kxttsention it is shown how
the induced displacement of the shell during rotation whécbaused by the test setup,
can be eliminated using the measured data of the LVDTSs placé¢ke end rings.

The complete test setup with the VEGA interstage 1/2 in pmsis shown in Figure 3.12.

3.5.2 Phantom imperfections and play in the test setup

In the measurements of the ARIANE shells [50], an almostgoer@luminium disk was
placed in the middle of the top wooden disk, and fixed to the&kdiThe aluminium
disk was calibrated. When the shell was rotated, and so fhevbmden disk, also this
'perfect’ disk rotated. There were four LVDTs placed on therder of the disk. The
imperfection data of the shell were corrected for the tratish measured by these LVDTs
on the calibrated disk. If we assume that the bottom end simgthout imperfections, the
aluminium disk is not really needed. An advantage is a lesspbex test setup. Next it
will be shown that because the VEGA test lacks the calibrdigd the shell imperfections
will have to be corrected by looking at the behaviour of thé eng rotating under control
of the rollers.

An impression of the irregularities of the lower end ring ®o®n in Figure 3.13.
Actually the line shows the data measured by the LVDT on thestcend ring shown in
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Figure 3.10: Rollers guide the interstage

Fig. 3.11. Clearly noticeable are four circumferential fubves, and some small waves
added to it. As the end ring is precisely machined the smalesa@annot be part of the
imperfection and should be removed from the measured daesimall waves are caused
by a small translation of the shell in the horizontal planeshese of the play in the system
and show up in the measured imperfection data.

The correction of the measured data therefore involves tejss i.e. the play in the
test setup and the effect of the rollers. In order to corfeetnheasured end ring data, they
will be represented by means of a Fourier series using fullesai.e.

N
w(f) =t > (Agcoslf + Bysin ) (3.3)
(=1
Because the lower part of the VEGA interstage 1/2 is built @ eight segments, it
is expected that in the imperfection plot of the end ringhefgll waves will show up.
Therefore it is assumed that all wave numbers of nine andehigan be considered as
small waves originating from the translations of the shallinly rotation. Indeed if one
looks at Figure 3.14 it can be seen that if one selects eidihtifaumferential waves as
the separator between long and short waves, the short wavdsqe a small part of the
total imperfection as compared to the long waves. The Foooefficients responsible for
the small waves, i.edy, Ay, ... and By, By, ... are substituted into Eq. (3.3). The result
Is the equation for the play in the test setup and will be swdbéd from the measured data
of the shell first.

The effect of the rollers on the imperfection will be lookdcdhaxt. As the lower end
ring will be in constant contact with the roller, this willtoduce an error which needs
to be adjusted for. Let a local imperfectian, exist in the ring at rollerd, andwp at
roller B as is seen in Figure 3.15. Because of this imperfection thee®f the shell
will move to another location, yielding a displacement meead by the LVDT at poinC'.
This means that if an imperfection exist in the ring, it witlasv up in the measured data
when the point passes the LVDT, and it will also appear in @@ evhen it passes roller
A and rollerB. The latter displacements will be called phantom imperfest
Let the imperfection at poird’ be defined by

we = Esinmb (3.4)
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Figure 3.11: LVDTs on shell and lower end ring

then the imperfection at rollet can be written as
Wy = Esinm(0 + an)

and the imperfection at rolle®
wp = Esinm(f — ap)

wherea, andag are the angles between OA and OC and between OB and OC respec-
tively. For a perfect ring the angles, andag are equal to each other:

ap=ap=a (3.5)

As the changes in 4 anda i caused by the imperfections are only small, these angles are
assumed to be constant. The value of amagfer the VEGA test setup is

o =425° (3.6)
Looking at Figure 3.15 it can be observed that

a>+h? = (R+w,)? (3.7)

bV +h* = (R+wp)? (3.8)

The distance between the two rollers A and B is constant aperdés on the measurement
setup

Sap=a-+b (3.9)
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Figure 3.12: Test setup of the VEGA interstage 1/2 impeideaneasurement

and

- \2 - \2 2
- (R+1wa)? — (R+wp)* + d4p (3.10)
2048
Notice the imperfectiom is positive outward.

Next the angles., andaz are calculated using

b
and si =
Rtw, o oo =

(3.11)

sinay =
The imperfection at point’' is retrieved from the measured data from the LVDT yielding:

whereh can be solved from Eqg. (3.7) and the original height usingetipgation:

5 2
horig = JRQ — (%) (3.13)

Because of the guiding of the lower end ring of the shell byrdtlers, the measured data
of the ring will be different from the imperfection shape. iJleffect is only showing as
a resizing of the imperfections. The number of circumfeintave numbers as shown
in the measured data is not changed, meaning if there arduibwaves in the imperfec-
tions, the measured data will also show four waves, but thgnihade will be different.
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Figure 3.13: Measured data of end ring

Also no extra waves appear in the data. If one calculates tgnification of the waves
due to the roller mounting for each wave separately, it iseoled that some wave num-
bers are amplified whereas others are reduced. In Table & @#gnification factors for
the global imperfections are shown for all the larger wavenhars. Notice further the
table starts withn = 2, as them = 1 term is caused by the offset between the centre
of the shell and the rotation point of the test setup. Thiseadffvill be eliminated in the
best-fit step in the next section.

wave number magnification factor
-0.88179
-1.8257
-2.3357
-2.1439
-1.3510
-0.37371
0.27454

O~NO O WN

Table 3.2: Magnification factor of the Fourier coefficientdlze end ring imper-
fections

Applying the scale factors on the Fourier coefficients ofrtieasured data yields the
actual imperfection on the end ring. The results of the datans are shown in Fig-
ure 3.16. The continuous line are the points measured by\fba' L. whereas the dashed
line is the actual imperfection of the end ring. The small emadue to the play of the
setup have been subtracted from the original measured aadhthe long waves have
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Figure 3.14: Separation of the ring imperfection
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Figure 3.15: Phantom imperfections

been rescaled according to Table 3.2. Notice in this figueentieasured data have been
multiplied by (—1) because of the different sign compared to the imperfect@mmpar-
ing the imperfections to the measured data one can see ehapierfections are smaller:
the set of rollers increase the magnitude of the data.

The size of each wave number given by the value of the Founiedficients is printed
in Table 3.3, where the most significant Fourier coefficidrdge been highlighted. As
expected the ovalisation term, is one of them. Furthermore coefficieBt, for four
full circumferential waves is also expected as the uppergfahe VEGA interstage 1/2
consists of four segments. Finally a peculiar mode of seutiwives, expressed by the
term B is highlighted. This mode might be explained because atideae$the interstage
two large holes are positioned above each other.

As the wall thickness of the shell &3 [mm], from Figure 3.16 one can see that the
imperfections of the ring are smaller that% of the wall thickness.

In the determination of the Fourier coefficients it is assdriat all measured points
are equidistant. Some axial scans were measured at a sfsalitofavoid the LVDT pass
a number of rivets. This will only have a small effect on theafirnircumferential waves
and therefore do not cause a problem in the analysis of tigegmperfection where only
the large waves up to eight are used.

The corrections of the measured data for the end rings, stimgiof a contribution of
the phantom imperfections and the play in the test setup bega subtracted from the
measured data, yielding the imperfection pattern of therizngd As the end ring is rigidly
connected to the interstage, also the interstage will éspee the same displacements,
therefore the correction on the end ring need to be made oimtlestage as well. The
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Figure 3.16: Imperfections of the end ring
(= 1 2 3 4 5 6 7 8

tA, | 0.041434 0.18667 0.091176 -0.024564 -0.014070 -0.051933 0.040636 0.022484

tBy | -0.019722 0.022204 -0.034813 0.28124 0.053697 0.071078 0.16560 0.086654

Table 3.3: Fourier coefficients of the VEGA interstage 1i2doend ring

results are shown in Figure 3.17. It should be noted that theuat of analytical work
could have been reduced a lot if the reference ring with faspldcement transducers
was installed during the test of the shell.

3.6 Discussions and conclusion

The general procedure of measuring the geometric impeofesof cylindrical or conical
shells has been described. Details have been provided dahtke measuring devices
available at the Faculty of Aerospace Engineering of thenfimal University in Delft,
i.e. Stonivoks, Univimp and Amivas.

It is recommended to mount stiff end rings at both ends of tiedl $0 increase its
stiffness. Without these rings the stiffness of the shetaitber low and will therefore
change its shape slightly when it is moved from the locatidresg the imperfections
were measured to the pressure testing machine. This wosldt reto different measured
values for the imperfections because of the ovalisatiorhefdhell. The end rings will
prevent this. Incorrect or missing imperfection data atenpolated using the informa-
tion of neighbouring points. If this is not possible, thealate replaced by so-called
'magic numbers’. Those are large numbers recognized byranag such as for instance
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Figure 3.17: VEGA interstage 1/2 raw data

BESTFIT to identify missing data. The BESTFIT program cédoes the imperfections

with respect to a perfect shell, using a least square method.
Measurements were performed on the VEGA interstage 1/2 td3tesetup used was

a simplification of the test on an interstage of the ARIANE soyears earlier. This
simplification introduced so-called phantom imperfecti@aused by the guiding of the
set of rollers. A new technique was developed to eliminagse¢himperfections from the
measured data.

The work on the VEGA interstage showed that when the oppuytarises, one
should measure as much as possible. The data bank as wilsbesded in Chapter 5
has to contain the edited data such as the best-fitted ingierie, as well as all raw
data. The latter should be included in the data bank to betalpecess them when new

techniques become available.
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Chapter 4

Analyzing the Test Data

"How many boulders are lying on the moorlands of Drente,
probably pushed and pulled by prehistoric man for many years
half a meter each day ... Many years he has been busy, day in,
day out, during the night he was sleeping next to his stone”,
Beyond sleefbl]

After a set of shells has been built and its imperfectionsehHa®en measured, the shells
were loaded until they collapsed. Next the measured dath taekling loads and imper-
fection data can be stored into the data bank. Before dointhealata will be analyzed
carefully. Possible errors need to be corrected, furtheenadditional data related to the
shell geometry will be calculated. In this chapter an ov@mof this process will be given
and the necessary computer programs will be discussed.

4.1 Some background

In Chapter 2 the importance of knowing about the imperfexiof a thin-walled shell has
been described. The calculation of the buckling behaviesuggested to be performed
using a hierarchical approach [3]. This approach consistree levels of analysis so-
phistication. As a first level analysis simple programs mayused to investigate the
behaviour of perfect shells [31, 52]. The deformation inhbakial and circumferential
direction is described using goniometric functions. Insthé.evel-1 codes membrane
prebuckling is used. This is followed by more advanced drelyprograms where the
deformation in circumferential direction is still desaceith using goniometric functions,
but in axial direction the deformation is solved from thefeiéntial equations. In Level-
2 the boundary conditions and the effect of prebuckling de#dions are solved rigor-
ously [46]. Finally, as the highest fidelity analysis, thelgem is solved using a Finite
Element Program like ABAQUS [53], STAGS [54] or NASTRAN [55An important
aspect is the inclusion of effects of geometric imperfedion the buckling of a shell.
In the Level-2 codes it is possible to take the real impeidestinto account, however
because of the simplicity of the codes normally only a fewnigrthat is a few Fourier
coefficients can be used. When a Level-3 code is used, theerunhiberms depend on
the mesh refinement of the model. As a rule of thumb for propevergence five mesh
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points per half-wave of the characteristic buckling disglament should be used.

4.2 Best-fit of the shell

If a shell is mounted on the test equipment, a certain amoumisalignment cannot be
avoided as is shown in Figure 4.1 for a cylinder and a cone. CEmtre of the rotating
platform will probably not match precisely with the centrietioe shell. Furthermore the
rotating axes of the platform will not be exactly paralleltte centre axes of the shell.
Notice the sketches are exaggerated: one will try to keepffiset (X, Y;) of the shell
reference axeX'Y’Z’ to the axes of the test apparatiis”Z as small as possible. Also
the angles betwee#d’ and X andY given bye; ande, respectively, will be set very
small. The transducers measure the irregularities of tke# shrface. The measured data
should be corrected for the small misalignment of the sh#lls is done by the program
BESTFIT [56]. It calculates the best-fit shell by using thelmoel of least squares. Adding
the squares of all distances, including the misalignmerarpatersX,, Y, €1, €2, radius
R and cone angle., all defined in Figure 4.1, yields:

N

N
S = Zd? = Z<RZ — R)2 = f(Xl,}/i,gl,€2,O[C, R) (41)
=1

1=1

Minimizing S with respect to the unknown parametéfs, Y, ¢, 2, R anda,, Yyields
six nonlinear algebraic equations in six unknowns. The foat terms, i.e. X1, Y7, ¢,

ZA

Figure 4.1: Best-fit cylinder and cone reference axis

ande, tell us how the shell is installed in the test apparatus. Td@yot tell anything
on the quality of the shell. The latter two: radii’sand cone angle,. show the global
deviation of the product compared to the 'perfect’ shell.eTgrogram BESTFIT will
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calculate the imperfections with respect to the perfecli shilere this perfect shell does
not necessarily need to have the dimensions planned by twiper of the shell. Of
course the changes it anda, are likely to be small. An extended solution of the best-
fitting of conical shells is found in the thesis work of SebBR][

4.3 Fourier coefficients

The imperfection field of a thin-walled shell can be desdfilbsing different methods.
The easiest way is just use the imperfection data itself. ddia can be plotted showing
the irregularities with respect to a perfect shell. The d¢atabe exported and used as input
for a finite element code, giving the engineer the opponutatcalculate the collapse
load of this shell using the true imperfection data instela@noassumption such as a set
of eigenmodes.

It is also possible to find a polynomial function which fitsdabgh all the measured
data points. Having found such a polynomial yields the opputy to find values of
imperfection data in points not directly measured. This lbaruseful if for a finite ele-
ment calculation the chosen mesh uses different and pgssitre points than measured.
This should be done with care since the interpolated pomtseiween might not be as
expected.

Much more information can be distilled from the imperfeatidata if they are de-
scribed using a Fourier representation of the field. SineeRtburier representations use
sine and cosine functions the imperfections will be conthdé a set of waves in axial
and circumferential direction. Because buckling modesadse described as a number
of waves in both directions, and furthermore in analyticall$ like MIUTAM [45] and
ANILISA [46], sine and cosine series are used to assume tfardation of a shell, it
is a natural choice to use Fourier coefficients. The 2-dinograd Fourier coefficients de-
scribing the imperfection surface can be obtained by a aolndfmonic analysis. Several
representations have been used. They will be mentioneaingkt section, followed by
the selection of which one will be preferred. All Fourier fit@ents are calculated by the
code HARMONIC [56].

Researchers have been using the imperfections from thédata implementing the
imperfections using Karhunen-Loéve expansion instedeoofier coefficients [57, 58].
This is an efficient way to investigate shell buckling dueaindom geometrical imperfec-
tions, however, this representation is not used in the L2WdlUTAM [45] and ANIL-
ISA [46] codes mentioned above.

4.3.1 Half-wave cosine representation

The half-wave cosine representation involves two sets ohbaic componentsl,, and
Bye. The imperfection will be written as:

M T MoN kmx
w(z,d) =t Z Ajo cos A +1 Z Z cos A (Agecos O + Bygsintf)  (4.2)
i=0 k=0 (=1
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wherezx is the axial coordinate; = 0.. L andé the circumferential angleé} = 0 .. 2.
Note that for cylindrical shelld. is equal to the height of the shell whereas for conical
shells L is the slant shell length and the height of the cone, Figure 4.1. Notice that
the representation uses half-waves in axial direction,fblitwaves in circumferential
direction. The first term using,, is the so-called axisymmetric imperfection term since
it is independent of the circumferential angle. All Fourseefficients are dimensionless,
therefore multiplication with the wall-thicknegswill yield the value in [mm] or [in],
depending on the unit af

4.3.2 Half-wave sine representation

The half-wave sine representation uses sine waves in axeidtitn of the shell instead

of cosine waves.

M ITT MoN kmx

w(z,0) =1t Z Cio sin A +t Z Z sin A (Cyecosll + Dyysinb0)  (4.3)

i=1 k=1 (=1
The selection of this representation cannot satisfy thentary irregularities as the sine
will always yield zero on the boundaries. This may sound &ldefinite no to this repre-
sentation, but it is still used quite frequently. Analytitaols used for solving the buck-
ling problems are less complicated if one uses sine funsi@@assumed buckling modes.
Furthermore, the imperfections at the boundaries will by wenall as different parts of
cylindrical shells or cones need to be connected to each. dinally, the imperfection
measurements do not include points exactly on the bourgdafigerefore using sine in-
stead of cosine representation is not going to make a lotftdrdnce to the calculated
results of the numerical analysis of the shells.

4.3.3 Full-wave representation

Furthermore, the full-wave representation, involving thetermination of four sets of
harmonic componentS'

(x,0) =t Z Z cos Akg cos 00 + By sin (0)
k=0 (=0
NN 2k7r
+ t Z Z sin Ckg cos b0 + Dy, sinﬁ@) (4.4)
k=1 (=0

can represent the boundaries exactly, but one will négd By, Cy, and Dy,. The total
number of coefficients will be the same, but there does nohdede an advantage over
using half-wave cosine.

4.3.4 Alternate method

And the fourth representation, called the alternate mettiadh is actually a combination
of the first and second, i.e. the half-wave cosine and halfevgine representation:

M i M N o
w(zr,0) =1t Z Ao cos A +t Z Z sin A (Cyecosll + Dyysintf)  (4.5)

1=0 k=1 (=1
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This method was introduced to make use of the convenienyticellsolutions using
half wave sine functions, and adding a correction term fettbundary irregularity which
is axi-symmetric.

4.3.5 Preferred method

There are no real pros and cons for each method. The prefeln@de of the author is,
however, the use of half-wave cosine, as the representafitte boundaries are much
better than using half-wave sine representation. Usinigwale representation would
do the job as well, but has not been frequently used in theatilee, and does not have
any advantages over half-wave cosine. Also it is using By, Cy, and D,,, therefore
using half-wave cosine with onlyl,, and B;, is more elegant. The alternate method is
not preferred since it performs somewhat worse than halfeveasine because the extra
term with respect to the half-wave sine representation onlyects the boundaries axi-
symmetrically.

The effect of some of the Fourier coefficients has been meagiel®iin Figure 4.2.

Ago Ao1, By Aoz, Boa Aoz, Bos
radius excentricity ovalisation radius

Figure 4.2: Fourier coefficients linked to modes

The coefficient4,, in the half-wave cosine representation associated with

ITT Omx
cos — = cos — = 1.

L L

is a constant term, independent of the axial position or efdincumferential angle. It
implies a correction on the radius of the best-fit shell. Teoefficient should be very
small, preferably).0, since the best-fit routine BESTFIT of the previous sectiooutd
have eliminated this. An eccentricity of the shell is visilals a non zero value of the
Fourier coefficientsdy; and By;. These coefficients will be practically zero since the
eccentricity was removed by program BESTFIT when detenmngirthe offset distance
(X1, Y1). The coefficientdy, associated with

cos V0 = cos 20

is the ovalness of the shell. If the boundaries of the shelluastiffened and if the shell
is not stiff in the circumferential direction then by justvwag the shell lie on its side is
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the easiest way to deform in ovalisation. The right mostyseein Figure 4.2 shows the
effect of Ays.

Other terms identify certain aspects of a shell. For examptking at the measure-
ments performed on ARIANE shells in the eighties, they shaxgd values ofd,s and
Asg, both highlighted in bold-faced text in Table 4.1.

Ape

= 0 1 2 3 4 5 6 7 8
k=0|-0.00866 0.00036 -0.16224 -0.09161 0.07086 -0.03132 2695 0.00952 0.58020
k=1] 0.00761 -0.00152 -0.05315 -0.00540 0.01930 0.03725 -G®410.01537 -0.03440
k=21 0.25009 0.01847 0.03652 0.03498 -0.00424 -0.01499 0.02%B60492 -0.19456
k=31]-0.02831 0.02012 0.00275 0.06336 -0.03235 -0.01510 0®1an02479 -0.06445
k=4| 0.04806 0.01735 0.01696 -0.00004 -0.02750 0.01192 0.0171B@0266 -0.11414
k=5|-0.00741 -0.01123 -0.01207 -0.01835 0.03022 -0.026550/®H 0.00285 0.06890
k=6| 0.03304 0.00139 0.00851 0.00000 -0.00631 0.00994 -0.008260741 -0.06405
k=71]-0.01784 -0.00406 0.01093 0.01065 -0.01205 0.01006 0408100381 -0.01548

By

(= 0 1 2 3 4 5 6 7 8
k=10]0.00000 0.00471 0.03685 0.07711 0.07469 0.08175 -0.0357G2601 -0.10489
k=1]0.00000 0.00311 0.08659 -0.00259 0.00348 0.01652 0.034R08445 -0.06000
k =2]0.00000 -0.02869 0.01962 -0.03047 -0.05438 -0.02521 0DH45).02149 0.02041
k =3|0.00000 0.00402 0.03446 0.04404 0.00868 -0.04009 -0.0145@3591 0.02009
k =40.00000 -0.00197 0.00193 -0.00358 -0.01457 -0.02786 4390 0.02434 0.01541
k=5]0.00000 0.02314 0.00484 -0.01355 0.00170 0.04330 0.003D60474 -0.00215
k =6]0.00000 -0.00555 0.00706 0.00502 -0.01279 0.00003 0.002660353 0.02331
k =17]0.00000 -0.01486 0.01897 0.02070 0.00271 -0.02790 -0$H0I1X00831 0.00582

Table 4.1: Fourier coefficients ARIANE Il interstage 2-3,Ifhevave cosine
Fourier representation

What does it mean? Looking at the production of this shedl,shell is built up of eight
curved panel segments, these eight segments are conneaadh others longitudinal
edges or seams. This cannot be done without influencing teelbwyeometry of the
shell and is also the reason shell manufacturers do notHi&edrm imperfections that
much. They prefer the term manufacturing signature. Thishei discussed in more de-
tail in Chapter 5.4. Figure 4.3 shows the plot of the imperéecof this shell, where the
influence of the eight segments are clearly visible.

4.4 Check validity of data

The Fourier coefficients of all four representations disewkin the previous section are
calculated using the program HARMONIC. One of the input fdéshis program is the
best-fitted imperfection field from program BESTFIT. Do theefficients represent the
imperfection correctly? For example, if only the largeseffizients are taken into ac-
count, the dominant modes of the imperfection field will shtnowever, the smaller
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Figure 4.3: ARIANE Il interstage 2-3, raw data

waves will have disappeared. For this purpose two routires bheen written, RECOM-
PUTE [56] and DELTACHECK [56]. RECOMPUTE will, as its nameesdy suggests,
recompute the imperfection pattern using Eqgs. (4.2) - (4l16}he recomputed pattern

as calculated by RECOMPUTE corresponds with the best-fateghe, one can assume

the coefficients are correct. Because comparing a large eunfbhumbers is a difficult
(and boring) task, DELTACHECK has been written. It will skgmt the two imperfec-
tion data sets from each other. The result should be equarm ZThis mode can be
plotted using the same plotting tool as for BESTFIT and REGQME. Apart from the

plot DELTACHECK yields a numeric indication of the differees beween best-fitted and

recomputed shape. If only Fourier coefficient$).01 were selected DELTACHECK will

compute:

Average anplitude of absolute differences : 0.00295
St andard devi ati on of absolute differences : 0.00277

Average anplitude of actual shell inperfections: 0.02325
Percentage rati o of absolute differences
to actual inperfections: 12.68227

Setting the truncation limit smaller to 0.001 will improve the recomputed shape:

Average anplitude of absolute differences : 0.00085
St andard devi ati on of absolute differences : 0.00100

Average anplitude of actual shell inperfections: 0.02325
Percentage rati o of absolute differences
to actual inperfections: 3.66458
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at the cost of many more Fourier coefficients. In Figure 4etrésults of the veri-
fication are plotted. The plot at the top shows the best-fiteell, the plots at the left
are the recomputed fields and on the right the difference dsmtvthe recomputed and the
best-fitted data.

Notice that one needs to recalculate the half-wave cosie#icents to verify thed’s
andB'’s, and recalculate the half-wave sine coefficients to yehéC’s andD’s. As pre-
viously mentioned, using the half-wave sine represemniatioe cannot get the boundary
conditions correct. Therefore, the DELTACHECK output véllow non zero values at
the boundaries.

Once the Fourier coefficients have been obtained, it is alssiple to recompute the
imperfection field yielding an approximate shape at any pofrthe shell, not just on
the measured grid. This is useful when one likes to use theifegtions in a Finite
Element calculation where the nodal points lie on a mesh vtitfers from the mesh of
the measured data points.

4.4.1 Best-fit of VEGA

Although the shell and the measuring equipment are cayefukitioned, it cannot be
avoided that the centre of the shell does not precisely aenweith the rotation centre of
the test setup, or that the beam with the LVDTSs for the shetlarfection measurement
might not be exactly parallel to the shell surface. The BES ffogram as was described
in section 4.2 will remove these small offsets. The resglpfot of the imperfection of
the VEGA interstage is shown in Figure 4.5.

In Table 4.2 the Fourier coefficients of the half-wave codtoairier representation
are listed. The bold numbers show the larger value of thei€paooefficients associated
with two, four and eight circumferential full waves. Two fulaves correspond to the
ovalness of the shell. The interstage is made up of two pahtslower part is assembled
using eight curved panels whereas the upper part considisuofcurved panels. As
it turns out both four and eight full waves are visible in tineperfection pattern. The
value of these large coefficients does not exceed 5% of thetiekness, which is a
significant improvement over the values measured some yegron the ARIANE I
rockets where the largest coefficients were almost 60% ofvléthickness as can be
seen from Table 4.1.

4.5 Discussions and conclusion

In this chapter it has been shown how the test results argoneted. A brief introduc-
tion was given to the hierarchical approach as a way to sobaklimg problems [3].
After the unavoidable misalignment of the shell in the testufies has been removed
using the program BESTFIT, the geometric imperfectionsdescribed using Fourier
series using program HARMONIC. The accuracy of the coefiiisies checked by the
programs RECOMPUTE and DELTACHECK. Programs HARMONIC, REMPUTE
and DELTACHECK will be on the requirements list of the intaré to the imperfection
data bank. It is shown that using half wave cosine repregentthe imperfections are
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Figure 4.4: Shell IW1-20: check on validity of the Fourieefftccients
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Figure 4.5: VEGA interstage 1/2 best-fitted data

described in the most accurate way. The value of the Fouoefficients indicate some
features of the shell. The ovalness of a shell representedebgoefficient4, is also a
measure of overall stiffness of the shell. If a shell is setitd using a set of axial stiffeners
or circumferential rings this is also seen by looking at thesefficients. The values of the
Fourier coefficients, and which of them are the most impartenes is part of the man-
ufacturing signature of a production process. This sigmatlso includes information
relating to the material used, and the production equipment
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A

! = 0 1 2 3 4 5 6 7 8
k=0]-0.00196 -0.00143 0.00473 0.01564 0.01081 0.00830 0.013¥p@0213 -0.01027
k=1]| 0.00163 -0.00121 0.02045 0.01412 -0.00702 0.00266 -0D09KBO0088 -0.00192
k= 0.00032 -0.00042 0.00445 -0.00805 -0.00937 -0.00922 9®4€0-0.00362 0.01930
k=23]| 0.00664 -0.00289 0.01460 -0.00374 -0.01272 -0.00309 @®061.00180 -0.00206
k=4]| 0.00103 -0.00554 0.00391 -0.00371 -0.00327 -0.00164 @G2»010.00038 -0.00782
k=>5| 0.00086 -0.00558 0.00342 -0.00239 0.00102 -0.00001 0®010.00112 -0.00047
k=61]-0.00025 -0.00241 0.00220 -0.00185 0.00071 0.00135 O0DOEGDO0063 -0.00156
k =171-0.00200 -0.00124 0.00102 0.00044 0.00175 0.00029 -090OABOO0O0O3 0.00359

By

! = 0 1 2 3 4 5 6 7 8
k =01]0.00000 -0.00169 0.03927 0.01109 -0.04635 0.00150 0.00000 -0.015780.03105
k=1]0.00000 -0.00155 0.02493 0.01346 0.01359 0.00511 -0.003000493 0.01968
k=2]0.00000 0.01407 -0.01969 -0.00525 0.01491 0.00605 -0®041.00333 -0.00162
k =3|0.00000 -0.00107 -0.00853 -0.00469 0.00140 0.00481 0DO@BO0160 -0.01143
k =4]0.00000 0.00440 -0.00731 -0.00484 0.00188 0.00009 -0®OARO0058 0.00110
k= 0.00000 -0.00020 -0.00205 -0.00385 0.00148 -0.00045 @#4€03.00071 0.00165
k =6]0.00000 -0.00183 -0.00129 -0.00156 0.00067 -0.00063 OD02.00069 0.00191
k ="710.00000 -0.00105 -0.00048 -0.00249 -0.00122 -0.00111 02®0-0.00012 -0.00126

Table 4.2: Fourier coefficients VEGA interstage 1/2, hali&vaosine Fourier rep-

resentation
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Chapter 5

Imperfection Data Bank

Every test has to get a name. One can let the engineer tesinghtell think
of an interesting name. Having seen a lot of tests, enginesve thought of
names like A-1, AR-1, SN-5, or sometimes scancll. The naessIome-
thing definitely, but could have been chosen more originaftrea Should we
think of the test Catharina-05 letting our wife know thereriere in life than
cylindrical shells, or Claudius-I1X to show the world we knabout the Ro-
mans too? The point is names thought of by engineers are fpiein

5.1 Whatis an Imperfection Data Bank?

The last three words in this title will be explained. FirsData Bank is actually a storage
system containing data in an organized way. The term is argyn®f database [59].
These data are commonly stored digitally on large compytems.

Commercial banks, the ones sitting on piles of money, areub@gs of these data
banks. They store all possible information about theirrdise in addition to the money
they have stored in their accounts (or more correctly howmmmuoney they still owe to the
bank). Family of the banks are insurance companies. Thel vedher similar to banks.
Store as much data as possible on everything a person cakdahiand then some more,
all with the objective of helping us live a relaxing risk fiee, at the same time making
lots of money. Their money that is. Governmental agencabgrésing companies, you
name it, everyone wants to get as much information as pessioid store it in their
computers. The latter is not actually right of course: oneslmot store the data in a
computer, but on hard disks, and tape units, CD’s, DVD's etc.

Secondly: the imperfections. The accessibility of the infguion data and the buck-
ling data of the measured thin-walled shells to the engimeeoor. Everywhere these
data are stored in some way or another, also in Delft. As raead in the introduction
chapter a paper version of the data bank was started in 1928dmcz and Abramovich
with the report 'The Initial Imperfection Data Bank at theld&niversity of Technology
Part I [5], followed by Parts Il - VI [23, 24, 26, 27, 28]. At Ténion, the Israel Institute
of Technology, reports containing test results were preduaising a similar layout as
the Delft versions [6, 19, 20, 21, 22]. However, in this dag age data should be avail-

67
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able in an electronic format. Therefore, all these data beéllavailable in the electronic
imperfection data bank.

This chapter will first discuss the design of the imperfetiiata bank, followed by a
description of the user interface to the data bank. The d&oun starts with an overview
of the requirements. At the end of the chapter the impedactiata bank is used to
investigate the relation between manufacturing procemseésmperfection patterns.

5.2 Requirements

Every piece of data that can be collected about a test affikdea thin-walled shell, either
prior to, during, or even after a test can be stored in the datk. Test data normally
consist of large amounts of information. Prior to a test cane measure the imperfections
of the shell, the thickness variations, or the boundary nigetion. The latter are the
irregularities of the ends of the shell. During the test theedl will be measured, yielding a
buckling load when the shells collapses. During the loadiftipe shell it is also possible
to measure the growth of the imperfection. If strain gaug@gehbeen attached to the
surface of the shell the strain at different points will b@wm. Further the end-shortening
during loading can be measured. After a test the deformat@onbe measured to gather
information on the plastic deformation of the shell. Tegtiaerers commonly collect only
a subset of this information. Given enough time the impéidas can almost always be
measured, but obviously a buckling load is only found forolabory models, or limited
full-scale testing during the final stages of design verifawatesting.

Even on things that a test engineer agrees with other peopt®itecting, they will
produce different data. An engineer in the US may work withoakee jar, height 3.5
inches and a radius of 4 inches, big enough to store 32 ouicé®oolate chip cookies,
whereas a French colleague may describe the same thinglimetérs and kilos using
his own beautiful language.

The functional requirements of the imperfection data banrekdivided into two sep-
arate lists. The first list of requirements deals with theadadnk itself, the second list
shows the requirements of the user interface to the data bank
The requirements of the imperfection data bank can be spd@s follows: the data bank
should

1. contain geometrical data of the shell

2. contain material properties of the shell

3. contain production method and the location where thd slze manufactured
4

. contain geometric imperfections, both as deviations waspect to a perfect shell,
and in terms of Fourier coefficients

o

contain axial buckling load
6. store information of test location and experimentator

7. contain information on the test setup and test procedure
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8. be accessible simultaneously by multiple users
9. store data either in Sl or in Imperial units
10. use a standard query language like SQL
The interface to the imperfecton data bank yields the pdigito:
11. select individual tests
12. select sets of tests using user specified constraints
13. provide the user with a way to view the data both as textgmaphically

14. select a set of Fourier coefficients using constraintin@ and/or wave number
range

15. enable the user to download data to be used in other seftike finite element
codes, statistical programs, etc.

16. enable the user to analyze the data statistically.
17. download test data

Notice that uploading of new data is not implemented in therface. Some tools for
uploading new data are available for users with administraghts only, as is briefly
discussed in Appendix C.3.

5.3 Data bank design

The general idea of a Relational Database Management SYRIeBMS) is the data are
stored in an orderly manner [59]. The access to the data ys aad fast. The same data
should not be saved in multiple places. Each table condistsiamber of records, each
record contains one or more fields. The fields contain therimétion. The data bank
uses the freeware program MySQL [60]. It is known to be ondefiest available, using
the standard SQL language [61], and available on many diffesperating systems. In
the imperfection database in each record there is one pyifitedd. This primary field
identifies the record, it should have a unique value. Theuayé all the tables in the
database is shown in Figure 5.1.

The main table in the imperfection database is given the reonece Some of the
fields in this table are linked to fields in other tables, tharsing a kind of a tree contain-
ing all information of the test. In Appendix C the layout isséained in detail. The first
table in the data bank, called talsieurcecontains a fieldcodetest with the name of the
test. This has to be a unique name, therefore it differs from given to the test by the
experimentalist originally. Of course the original namgoaheeds to be stored so the user
can verify the data bank contents with the reference coimigithe test report. The data
have been saved in a standard format, although for pracgaabns buckling loads will be
available both in Newton [N] and Pounds [Ibs], and the geoyriatmillimeters [mm] and
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investigator source bfdata buckdata inbuckdata
code_invest code_test i ! code_test H—H code_test s code_in_buck
invest_name int_test xbar code_type_load sigma_epsilon_infq
t_date ybar type_load temp_info
reference code_invest ETAl t_bc sigma_0
code_ref % code_ref ETA2 obser_buck_load epsilon_0
type —H code_shell bf_rad_top Remarks n
author code_proc bf_cone_ang lamm sigma_y
ref_where code_t_inst lambda_CkI epsilon_y
booktitle bool_imp impdata K S|ng1a_pr0p
number bc?o!_buck code_test L - epsilon_prop
pages original_name imp_dim_type code_in_buck H
month nr_ax_int
year measured nr_circ_int loadtype lamlayer
address I start_ax_dir +H code_type_load -+ lam_lay_id
institution info : — -
- rad_pick_up loaddescription unique_code
filename bool_bf ell
; data :
shellid kalbarc walltype e22
code_shell ks?Zbarc code_walltype gl2
shell_type rawdata ksilbars descr nul2
fabr_tech code_test ksi2bars material_type lay_thick
prep_tech dirname kmin iso E lay_orient
geo_dim_type cfile kmax iso_nu
load_dim_type ffile Imin — -
. . ortho_E11 stringers
ang_dim_type fileck Imax ortho E22
- = stringer_id
shell_rad_bot filesk shell_|_har_an ortho_G12 pe—
shell_rad_top fileak ortho nui2 =
cone_ang filewk am I; - Str_eccen_pos_|
" 1y str_mom_inert
shell_| code_fourier fourier lam nr lavers
wall_thick _nr_fay str_tors_const
— code_fourier stringer_id str_shape
code_walltype : k nr_stringers —
tinst =
L code_t_inst ! str_spacing
calculateddata inst_name acoeff fing_d rings
code_shell location booeff nr_rmg-s ring_id
rovert country ceoeff r_spacing r ar;a
dcoeff —
loverr fu rth_er tables: r_eccen_pos_in
batdorf tegproc :‘:fﬂl: r_mom_inert
P_classical —H code_proc userid r_tors_const
rovertstar instrumentation $user_deltafile r_shape
rovertuni t_procedure Suser_recompute =

$user_selected
$user_userstat

Figure 5.1: Imperfection data bank table setup
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inches [in]. Note that S.1. is the preferred unit, but as afatesigners still work and think

in the Imperial System of Measurements, the latter is alggemented. Imperfections
of cylindrical shells, stored in tablfile, are defined as the small differences between the
real shell and a perfect shell. These are the so-calleditadl imperfections. Alterna-
tive imperfections are the thickness variations of shal&l boundary imperfections. The
latter play an important role in the buckling behaviour asveh by Arbocz [62]. Notice
that in the current setup of the database structure, it catagotests on cylinders and
cones. Both can have stringers and rings, the material céobepic like most metals,

or anisotropic.

The data related to the tests on shells have been storedlimpeefection Data Bank.
Using the user interface of the data bank, discussed in tkteseetion, the shell designer
will have access to most of the shell data. Some of the datavemfor example the data
measured during the experiment before any adjusting, redidm or filtering has been
performed on them, cannot be accessed directly, but areoptre data bank. This data
are stored in so-called binary cans: records within the bat& capable of storing any
data from ordinary ASCII files up to compressed graphicahdadt some new insights
appear, and there is a need to redo some of the calculatiotie ariginal data, this will
be possible. The original data are saved in taé@asuredand is using the same primary
key (codetest) as base tabkource

In using the data bank sometimes things can go wrong. Peaplenake mistakes
by entering wrong data, or manipulate the data incorreetlsp technically things can
go wrong as well. Disks may crash, power may go down at the gvtone. There-
fore precautions are necessary: backup systems, storatpgaobn computers in differ-
ent locations, maybe even in different countries. The neaiahce issue is discussed in
Appendix C. Access to the data bank is controlled via a ugerface, which will be
described later in this chapter.

5.4 Interface to the Data Bank

A digital data bank has been created and a lot of data is sioiedlests were performed
on small beer cans, cookie jars, and also full scale shelsiahe or Martin Marietta just
to name a few. A lot of data is known, and after they have beegladd as described in
Chapter 4 they were stored in the data bank. Next, one likbate access to these data.
The user interface provides a convenient way to access tadrdéhe imperfection data
bank, without a need to know about the database structutbedinowledge of how to
retrieve data from the database directly.

Basically, the interface provides the ability to accesstést data of shells individually,
or to access sets of shells. The latter provides an opptyttmiook at the data of shells
which satisfy a number of selection criteria. One could haveok at all the shells with
a certain radiugk or find out which shells have been tested at certain locatiérnarge
number of selection criteria is available. The main goaldlesting a set of shells is the
possibility to perform some statistical analysis on the tesults. A practical question
could be: "What is the average buckling load for a certairetgp shells, manufactured
using some production method?”.
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When selecting an individual test, one is able to retrieVeatia known of this test. One
can select the imperfection data which in turn may be usedimita element code. The
next session will introduce the interface by showing itsiahiuse, secondly, it will show
how it can be used to investigate the manufacturing sigaatof several shells. The
description of the user interface can be found in Appendix A.

The interface to the database containing data on a large séfferent tests is web
based. It has been written in HTML [63], and PHP [64]. HTML s @&bbreviation of
Hypertext Markup Language. It is the language understooallithe web browsers and
is used to define the built up of a web page. PHP is a recursianam that stands
for: PHP: Hypertext Preprocessor. As its name already @xqlé will generate HTML
output. It has been used in the interface because of its éedtares like the built-in
interface commands to the MySQL [60] data bank. When largiutations need to be
done, use is made of Fortran code.

5.5 Initial use of the imperfection data bank

The first question for the imperfection data bank was: "Coydd please retrieve the

Fourier coefficients for shell A8?”. This question cannotsog@plied to the interface of

the imperfection data bank exactly like this. The reasoroistimat the interface does not
understand this grammar, but a question like this one cae heany answers, it needs to
be more detailed. Shell A8 is very well known to members ofrdsearch group where

the data bank was created. It refers to one of the 7 shellso&rfig 18, 44] measured in

the sixties.

Suppose the user wants to get the Fourier coefficients reqtiag the mode in the best
way, looking at both the middle of the shell and at the bouedarthen they need to

specify which Fourier coefficients, i.e. the ones for thd-adve cosine representation or
the half-wave sine representation. Next the method ofrggttiese coefficients from the
data bank will be described.

5.5.1 Geometric imperfection of a copper shell

In the late sixties Arbocz and Babcock did research on thexetif general imperfections
on the buckling of cylindrical shells [18]. They producedeaiss of seamless electro-
formed copper shells. The shells were electroformed ontibvarainted wax man-
drel [65]. It was felt that the size of the initial imperfemtis would be minimal. Today
the same technique is used in the production of X-ray opfiicghe nickel mirror shells.
Special attention is required as stress-induced distestare likely to occur. Indeed, all
shells produced had initial imperfections that were gretitan the wall thicknesses of
the shells. In Table 5.1 the geometric and material propedf shell A-8 are listed. The
values in the table can easily be read from the data bank giathrface. When the in-
terface has been started via an arbitrary web browser sweitte test of shell A-8, the
computer screen will look like the one in Figure 5.2. Firs tiptionSingle testhas been
selected in the left frame, followed by the selection of tp&éan Arbocz_02in the right
frame. In the middle frame all the table names of the data bamkhown. The values for
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R L t E v
[Mm] [in] [mm] [in] [mm] [in] [GPa] [psi]
101.6 4.0 203.2 8.0 0.1153 0.00464 104.80 15.2%10° 0.3

Table 5.1: Geometry and material data of shell A-8

) Imperfection Databank of the Delft University of Technology - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help delicio.us

i s E 2 |
Imperfection  Testof shell: Arbocz_0 Database E
Investigator(s): J. Arbocz , C.D. Babeock

SOURCE |  SHELLID | CALCULATEDDATA |

'WALLTYPE LAMLAYER

Source

STRINGERS
RINGS

Export TEQPROC
Datasheet e
Multiple tests
Reset REFERENCE
INVESTIGATOR |
IMPDATA | RAWDATA | FOURIER
BUCKDATA

Figure 5.2: Shell A8 has been selected

the geometry (radiug, lengthL, and thickness) are printed on the screen after selecting
tableshellid in the middle frame, the material properties are printedragtlecting table
walltype. The data in Table 5.1 are printed in two different units. Ha tatabank either
[mm] or [in] resp. [GPa] or [psi] are listed as given bij fieldtey geadim _type in table
shellid. Notice that the tables entriéggmlayer, stringers andrings are not printed in
boxes. This means these tables are not active: the shealtiepsc, it has no stringers and
no rings and does not contain composite material.

It is possible to view the imperfections graphically by stileg Plot in the left frame in
Figure 5.2. Details on the plotting are found in Appendix Aelimperfections w.r.t. to
the best-fitted shell are drawn in Figure 5.3. Clearly onesmmthe maximum value of
the imperfection is of the order of three times the wall time&s.

5.5.2 Fourier coefficients

The number of Fourier coefficients in the database is a fanatf the number of mea-
sured points. If say00 data points in axial direction are measured, only half thisiber

of 50 in this case, Fourier coefficients can be calculated. Moralevgause so-called
high frequency throwback. This is also known from signabtiyeused by Nyquist [66],
who stated that there is an upper limit on the frequency atlwiiou can get meaning-
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Figure 5.3: Shell A8: best-fitted

ful information about the periodicity in the data. As withyaanalog-to-digital process,
low sampling rates translate into aliasing, or even worsgplaude ambiguity or false-
ness. The Nyquist frequency rule is that we must choose alsapnipequency such that
it is equal to or at least twice the highest frequency in tigaai. In terms of the imper-
fections: the number of meaningful Fourier coefficients exmally half the number of
data points. For nicely machined isotropic shells one doea@ed a lot of coefficients for
the circumferential mode. If a shell is stiffened with axséiffeners, it is recommended
to measure a number of circumferential data points at leéishé&s the number of axial
stiffeners. The Fourier coefficients representing the irfgméion shape are selected by
clicking on thefourier button in Figure 5.2. Immediately a menu will appear in thghti
frame shown in Figure 5.4. The user can specify which coefiis will be shown in the
middle frame after selection. They can also specify whicthefcoefficients will be part
of the coefficients to be used if the imperfection field will fleeomputed. The latter set
can be larger or smaller than the one shown in the middle windionally, a truncation
value can be specified: all values in the selected rangerlttiga this value will be se-
lected.

Inspecting the coefficients in Table 5.2 on page 77, someagldiiaracteristics of the
shell can be noticed. Unstiffened shells have a very lovingss perpendicular to the
surface. It only takes a very small load to turn them into dlski¢h an oval cross sec-
tion. The coefficients connected tos 272/ L will be relatively large in this case, as is
shown in the table where the corresponding terms have begnighited. If shells are
built up of different segments, also the number of segmeautsbe found in the size of
the coefficients. Shell A-8 is a seamless electroformed akdias been said. Apart from
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) Imperfection Databank of the Delft University of Technology - Moilla Firefox

Fle Edit View History Bookmarks Tools Help delicio.us

Imperfection  Test of shell: Arbocz_02
Datal Investigator(s): 1. Arbocz , C.D. Babcock map options
SOURCE SHELLID | CALCULATEDDATA |
Single test . )
> ; Half-wave cosine ~|
ie WALLTYPE
N LAMLAYER show L =0 .
. k= 20
ot STRINGERS s K -
et R selectL=0 L[50
Export TEQPROC select K =0 ..Js0
. Fourier coefficients >= [0.001
TINST Show MAP
Multiple tests
Reset REFERENCE
INVESTIGATOR |
IMPDATA | RAWDATA | FOURIER
BUCKDATA

Figure 5.4: Shell A8 selection of the Fourier coefficients

possible ovalness of the shell, only local imperfectionshsas dents, are to be expected.
To describe these local imperfections one will need a lotadfiicients for an accurate
representation of the shell surface. If the imperfectiamsreeeded in analytical calcula-
tions like the Level-2 codes mentioned in Chapter 4, usellsuae only a few dominant
coefficients. For use in Finite Element or Finite Differerm®les there is no limit to
the number of coefficients which can be selected. The rectedpmperfection fields
are plotted in Figure 5.5 for different selection of Fourseefficients. In the interface
of the imperfection database different selection critar@ possible. One could choose
ranges of wave numbers, minimum values of the coefficiens @smbination of both.

In Figure 5.5 the Fourier coefficients larger than> 0.1, w > 0.01 andw > 0.001,
respectively, are chosen. In the pictures on the left themguuted field is shown, in the
pictures on the right, the difference between the recontpiiééd and the best-fitted shell
is shown. The best representation only would show straigés! Notice that the lines are
almost straight forv > 0.001. This implies that the mode is almost exact like the best-
fitted shell. Forw > 0.1 it is clearly seen from the recomputed field that one reallydse

more terms. Ovalisation of the shell can also clearly be $een the two full waves in
circumferential direction.

5.5.3 Graphical representation of Fourier coefficients

The values of the Fourier coefficients as functions of cirferential and axial wave num-
bers are shown in Figures 5.6 and 5.7. The plots are gendyatibe interface. Presented
in this form the coefficients of shells manufactured usiniedent production methods
can be much easier compared than by just looking at the nienbethe plots both the
circular wave numbers for fixed value of axial half wave numbér, and the axial half

wave numbe# for fixed value of circular wave numbersare plotted on the horizontal
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Ape

{ = 0 1 2 3 4 5 6 7 8
k=0]| 0.00000 -0.00291-0.61293 0.06579 0.12823 -0.03738 0.08555 -0.14014 0.00746
k=1]| 0.65340 0.02836 0.79678 -0.24353 0.13436 0.00560 0.03323 -0.01343 -0.04575
k= 0.10331 0.02640 0.00675 -0.02749 -0.05508 -0.03041 0012501475 0.02263
k=3-0.06961 -0.01958 0.09254 -0.04047 0.00706 -0.01977 23®0 0.00333 0.00778
k=41-0.19973 -0.04791 -0.00991 0.00000 -0.00434 -0.01483 4290-0.00262 0.01096
k=5-0.16368 -0.07061 0.03163 -0.00296 0.01638 -0.00183 G®040.00381 0.00503
k=6]-0.07869 -0.03596 0.00000 0.01401 0.00830 0.00000 0.001D@OOOO0 0.00148
k=17]-0.00922 -0.01876 0.01971 0.00429 0.01322 0.00629 0.00@D00383 0.00000

By

{= 0 1 2 3 4 5 6 7 8
k=0]0.00000 0.00215 0.23852 -0.04254 0.02283 0.02541 0.09693 -0.02364 -0.04622
k=1]0.00000 0.01792-0.28615 0.11422 -0.15234 0.01871 -0.08382 0.04931 -0.03428
k=2]0.00000 0.04329 0.06365 0.04916 0.01017 -0.02260 -0.051601426 -0.00462
k =3]0.00000 -0.01494 -0.02114 0.02284 -0.02483 0.00000 -0®310.00000 0.00558
k =40.00000 -0.01054 -0.02865 0.00206 -0.00589 -0.00512 S5B41-0.00535 -0.00346
k =5|0.00000 -0.02342 -0.05384 -0.00880 -0.01200 0.00716 O0®MOM.00000 -0.00193
k =6|0.00000 -0.03179 -0.03340 -0.01734 -0.00365 0.00348 3080-0.00111 0.00000
k =17]0.00000 -0.02170 -0.02535 -0.01014 -0.00760 0.00621 6®010.00152 -0.00214

Table 5.2: Fourier coefficients of shell A8, half wave codto@irier representation

axis. On the vertical axis the imperfection is plotted as

é =/ A%+ By, (5.1)

Using this equation the maximum imperfection for a certgin/) combination is cal-
culated. When looking for manufacturing signatures onelade look at some specific
properties of the plots. Note that in the plots showing tHiedint circumferential wave
numbers the valué = 0 represents the axial variation of the axisymmetric Foumregr
resentation. The ovalisation of the shell is expressed byevmamber/ = 2. From the
figure it is clear that ovalisation is the largest contribatin the imperfection. As the
ovalisation term is relative large for both= 0 andk = 1 the shell shows some ovalisa-
tion only at one end.

Furthermore it can be noticed that the contribution of tirgdawave numbers is negli-
gible for increasing wave numbers. This holds for both aaiadl circumferential wave
numbers.

5.6 Manufacturing signature

Imperfection is a negative word, for some people. Talk tortfamager of a car manufac-
turing plant for instance, he does not want to know about ifiegéresults. Even worse,
the imperfection sizes commonly measured on the produdtsisrdocument are hardly
visible. So why imperfect! The term imperfect refers to trehaviour of thin-walled
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shells. These shells are imperfect in the most common sgnsatbre. Timoshenko de-
rived theoretical formulas which predict buckling load8]3however ordinary shells do
not know mister Timoshenko. They will fail at loads 50% of taculated one if they are
not quite circular after all. Every production techniqudlueave its trails, or signature
on a product. Since we would like to stay friends with the picitbn people recently the
term imperfect shells has been replaced by the term manuifiagtsignatures [2]. This
seems to satisfy those people, but still shells remain vemgisive to the imperfections.
Already in Chapter 1 two shells manufactured in differemaltions by different peo-
ple, but using the same production technique were compateske shells were produced
in laboratories. It is interesting to know what the effectidferent production procedures
will be on full-scale shells. In [29] Arbocz and Hol compatée characteristic imperfec-
tion distributions of laboratory scale shells and fulldecshells. The imperfection data of
the shells they used are stored in the imperfection data. brkresults of the laboratory
scale shells Caltech A3 and Technion KR1 are shown in Figures 1.1 and 1.2 in Chap-
ter 1.
The first of the full-scale shells (945.8 [mm] radius, 0.6861] wall thickness and 2743.2
[mm] length) was tested by Horton [67] at the Georgia Ingtitnf Technology. It was as-
sembled from six identical longitudinal panels. On thedest was reinforced using 312
Z-shape stringers and on the outside by means of heavy roteeaket-shape frames lo-
cated 3.175 [mm] from each shell end. Also seven Z-shapellgggmaced rings were
riveted on the outside. The measured imperfections are sioWwigure 5.8.
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Figure 5.8: Measured initial shape of Horton’s shell HO-1

The next full-scale shell was tested at Fokker Hoogeveeln B@ure 4.3 shows the three-
dimensional plot of the ARIANE interstage II/lll shell AR2I3 This shell with radius of
1300 [mm], wall thickness 1.2 [mm] and length 2730 [mm] issasbled out of 8 identical
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longitudinal curved panels. Adjacent panels are jointeatbset lap splices and one of
the 120 equally spaced hat-shape stringers is riveted dl@ngint line on the outside.
Two precision-machined end-rings are attached on the dmitsihe accuracy of these
rings is important as the interstage needs to be connectati¢o ARIANE components,
manufactured in other countries. Finally, on the inside ocae find five equally spaced
bracket-shape rings.

The Fourier coefficients of the half-wave sine represenatif the two shells are com-
pared in Figure 5.9. Notice the peeks o= 6 and/ = 8 circumferential waves for
Hortons shell and the ARIANE interstage, respectively. SEhpeeks are caused by the
usage of six and eight longitudinal panels. Also notice titeobroundness term= 2 for
Hortons shell is of the same order as the peek-at6. This out of roundness component
is significantly smaller for the ARIANE interstage for whiatcurately machined rigid
end rings have been used. The results show that the significamier coefficients of a
certain manufacturing process can easily be identified fi&mince in value of the signif-
icant terms can, however exist, relating to the quality cardf the production process,
as was clear for the Caltech ABand Technion KR1 shells in Chapter 1.

5.7 Discussions and conclusion

Data banks can contain all kind of information, in huge amsumhe object of this work
is to store all known test data of thin-walled shells into diaga bank which can be used
by all shell designers. All available test data can be storexdthe data bank. Only part
of it will be accessible using the interface, however, whendome reason one needs
the other data as well, access to these data can be provitlecadvantage of having all
data in the data bank is that none of the data will get losti@eitally when systems get
upgraded. Furthermore, the data bank should not remaireisdme status as of today. It
should be a living data bank. Therefore the setup of the ¢ablsuch that it can easily be
extended to contain more and different data.

The open source database management program MySQL has hesendor the
imperfection data bank, which satisfies the last requirdrioehe data bank. MySQL has
proved to work very fast for our application. The program ief the most frequently
used worldwide. An other advantage it can be connectedé¢oriat programs quite easily.

The web-based user interface to the imperfection data bmakconvenient way to
access test data. Subject of the first data retrieval of tipeifaction data bank was the
copper electroplated shell A8. It has been shown how thefatie can be used to retrieve
the Fourier coefficients or a subset of them. The graphigaksentation of the Fourier
coefficients is a nice way of presenting the signature of aufaaturing process, the so-
called manufacturing signature. The influence of the nunolbeelected coefficients on
the recomputed imperfection field has been discussed. Mdbeaequirements for the
imperfection data bank, set in section 5.2 have been satisfthey can be seen as entries
in the tables in the data bank setup shown in Figure 5.1. Thesadility by multiple
users simultaneously is accomplished by letting the useerze part of some of the table
names, i.e $user.deltafile, $userrecompute, $user.selectedand$useruserstat The
requirements for the interface will be discussed in the cbzapter.
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Figure 5.9: Circumferential variation of the half-waveeifourier representation



Chapter 6

Statistics of Selected Shells

"Don’t ask what it means, but rather how it
is used”,Ludwig Wittgenstein (1889-1951)

In the statistical analysis of thin-walled cylindrical #setwo properties will be studied.
The buckling load of the shell has been plotted in the lowerlabplots in Chapter 2.
It is interesting to know the distribution of the bucklingalds of similar shells. As the
buckling load can be considered to be some kind of output @fstiell, in this chapter
the analysis of the buckling loads will be referred to as atfgtatistics. In the first
part of the chapter the research is focused on the questihre ibuckling load can be
considered normally distributed, lognormally distribditer perhaps more resembles a
Weibull distribution. If one knows how the buckling load istlibuted, then more can be
said about the probability that the buckling load will be Ewthan the lowerbound as in
for example Figure 2.1.

In the second part the Fourier coefficients used in the reptation of the imperfection
pattern of the shell will be analyzed. As the imperfecticay major role in the buckling
behaviour of the shell, they can be considered as an inputisobehaviour. As such
the Fourier coefficients will be called input parameters] #re statistical analysis input
statistics. The chapter concludes with a recommendatioa éistribution of the Fourier
coefficients.

6.1 Statistics on buckling loads

Selecting a set of shells can be done by specifying somereamtst One could for ex-
ample search for some sets of isotropic metal shells, amd i lower bound curve with
the experimentally found buckling loads in a figure. The hssshown in Figure 6.1 are
the experimental buckling loads of two completely diffeéreats of shells. The A-shells
were manufactured and tested by Arbocz and Babcock at @gbéahe beer cans mea-
sured by Dancy and Jacobs in Delft [23], in the data bank kresviW-shells, were taken
from a production machine. The first shells therefore aredatory shells, in fact they
were manufactured using the electroforming technique redeethe the second set were a
result of a deep drawn process in a beverage can producton d@he resulting buckling
loads speak for themself: the A-shells are performing muatteb than the knock-down

83
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Figure 6.1: Buckling loads of the A-shells and the beer caokiding lower bound curve

value. The lowest value of the buckling load in the set of therlcans however, is on
the lower bound curve. In other words: in the calculation leé buckling load using
the knock-down factor of the lower bound theory, the cali®dasalue for the A-shells is
very conservative, i.e. the A-shells perform much bettérergas the buckling load of the
'worst’ beer can matches exactly with the lower bound.

In the following part the statistical options in the intex¢ato the imperfection data bank
will be discussed, both the theory and the application ohitselected shell data. The
background of the lower bound theory already has been disdus Chapter 2.

6.1.1 Histogram

The distribution of the buckling loads of a selected set @llshcan be drawn in a his-
togram. The buckling loads will be ordered according tortheagnitude. The range of
the buckling loads, i.e. minimum buckling load to maximuntkling load, is divided
into a set of equally sized parts. The buckling loads in athefparts are counted, and the
total number per part are stored in so-called bins, whera éshidefined as the number of
buckling loads ranging from a minimum to a maximum value. Bhevalues are plotted
and result into a histogram. The default number of bins initberface is set td0. Se-
lecting the number of bins will of course change the shapd®histogram. As a matter
of fact in statistical analysis the amount of bins increasgiis the number of samples. A
value of 5 to 20 bins is normally satisfactory. For larger m@mof samples the amount
of bins is set to,/n wheren is the number of observations. To yield a meaningful plot,
the number of observations in the largest bin should be at fege. Two histograms of
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Beer cans

test A test A test A test A

iwl-16 0.3819| iwl-26 0.4996| iwl-34 0.5860| iwl-43 0.4796
iwl-17 0.4420) iwl-27 0.5209| iwl-36 0.5547| iwl-44 0.5297
iwl-18 0.5635| iwl-28 0.5309| iwl-37 0.4445| iwl-45 0.4996
iwl-19 0.5648| iwl-29 0.5622| iwl-38 0.5259| iwl-46 0.4195
iwl-20 0.4871] iwl-30 0.5585| iw1-39 0.5009| iwl-47 0.4395
iwl-21 0.5021| iwl-31 0.5597| iwl-40 0.5109| iw1-48 0.4295
iwl-22 0.4783| iwl-32 0.5021] iwl-41 0.5046| iwl-49 0.4358
iwl-23 0.5635| iwl-33 0.5046| iwl-42 0.4783| iwl-50 0.4921
iwl-24 0.5347

A-shells
test A test A test A test A
A7 0.5901| A9 0.7270| A12 0.6669| A14 0.6745
A8 0.6632| A10 0.5645| A13 0.6171

Table 6.1: Buckling data of all the beer cans [23] and A-sh&]

the buckling loads of the beer cans are plotted using tweifft bin sizes as shown in
Figure 6.2. According to common practice [68], the numbebiofs should be chosen
as+v/33 = 5.7 therefore in the top picture six bins are chosen. The optiomalwidth
following Scott [69] is calculated using

357
T opl/s

(6.1)

in which n is the number of observations aBdEq. 6.4) the sample standard deviation.
This yields a bin width equal t0.054 and therefore four bins to be used in the histogram.
The bottom picture in Figure 6.2 using 12 bins, looks quiféedent than the picture on
the top. Here it seems there are relatively more shells whigher buckling load. The
values of the buckling data are listed in Table 6.1. Supposselected set consists of two
different sets of shells, like the ones used in Figure 6.% rEsult is drawn in Figure 6.3
in which one can see the distribution contains two peaks, hichvall seven A-shells
account for the higher buckling loads. Choosing less bims, {/n suggests six bins,
would mask this, one would only see one peak, disguisingkeatl better performance
of the A-shells.

Since this is not acceptible, other means of looking at tha dee necessary. In the next
sections statistical distributions will be drawn into thistbgrams. Furthermore, some
tools to test if these distributions can be used are disdusse

6.1.2 Normal distribution

The most widely used model for the distribution of a randomalae is a normal distri-
bution [68]. Although the number of test results is rathew,ln this section it will be
checked if the buckling load can be considered as a normdbrarvariable.
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Figure 6.2: Effect of bin size on histogram
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Figure 6.3: Histogram of A-shells and beer cans

The general formula for the probability density functiontloé normal distribution is de-

fined as [70]:
1 /o — p\?
(5 )] (6:2)

where the location parameteris the mean of the distribution and the scale parameter
o is the standard deviation of the distribution. These patarseare calculated from the
sample data using the well known formulas:

f(@) = —— exp

= e
o\ 2T

S, (6.3)

6:[ ! i(xi—mﬂ% (6.4)

The calculated: and@ are also called the sample mean and the sample standard devia
tion respectively. This definition differs slightly fromehpopulation standard deviation
defined as:

2

o— [%g (s — u)ﬂ (6.5)

The latter definition tends to underestimate the standarctien when used for a sample,
whereas it can be proven that dividing by — 1) in Eq. (6.4) the bias is corrected for
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i+ o | 68% of data
1+ 20 | 95% of data
i =£ 30 | 99% of data

Table 6.2: Amount of data contained in selection

exactly [68]. The importance of the spread is clear from &ahR which shows how
many of the sample data are expected to appear in a certatvaht The smaller the
spread, the more reliable is an expectation of the buckbad| The average and standard
deviation for the selected beer cans as calculated by tlggramoESTIMATE are listed in
Table 6.3. The latter program is built into the interface eTitobability density function
of the normal distribution is drawn in Figure 6.2. Notice thistribution has been scaled
to match it with the histogram: the enclosed area of the brstm equals to the one of the
normal distribution. One drawback of the normal distributhas to be mentioned here.
Although the probability density function, see Eq. (6.8¢bmes very small fok < 0.3,

it will never be zero. Thus, in theory, it is possible that soshells will buckle for\ < 0,
being a tensile load.

beer cans A-shells

Parameters of the normal distribution
mean 0.50265E+00 0.64333E+00
st.dev.o 0.49625E-01 0.55765E-01

Parameters of the lognormal distribution

meanu -0.66579E+00 -0.24221E+01
st.dev.o 0.99080E-01 0.68523E+00
thresholdr -0.13618E-01 0.53849E+00

Parameters of the Weibull distribution
case C a
shapen 0.21323E+01 0.22819E+01
scalej 0.13137E+00 0.12391E+00
thresholdr 0.38180E+00 0.53366E+00

Table 6.3: Estimated Parameters for the buckling load

6.1.3 Lognormal distribution

Although a lot of measured data in life are normally disttdaly data can be distributed
differently. The lognormal model is known to match manyde#l degradation processes.
Suppose the data would be lognormally distributed, theigémeral formula for the prob-
ability density function is defined as [70]:

f@) = — e [—1 (Mﬂ > a

(x —a)ov2m 2 o
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= 0, elsewhere (6.6)

Consider that the difference of the normal distributioniability density function to the
lognormal probability density function is not only the rapément of: by In(z) but also
an additionak factor in1/((z — «) o+/27) due to the change of variables framo In(x).
The natural logarithm of the buckling loads distributionns the threshold parameter

is normally distributed with meap and standard deviatiom. The mean and standard
deviation of the natural logarithm of the buckling loads &m®e the shape and scale pa-
rameters of the lognormal variate, the buckling loads [7The threshold parameter
causes a shift of the distribution. Below this parameterdiséribution function is not
defined since the natural logarithm is not defined for negatrguments. The maximum
likelihood equations for the lognormal distribution areeg by [72]:

= %ﬁ: In(z; — @) (6.7)
[ L
U:{n—l;l[ln(%_a)_u]} (6.8)

@ -nin 5t

i=1 (Ilfi — @) i=1 (Ilfi — @)

— 0 (6.9)

Notice Egs. (6.7) and (6.8) are similar to the Eqs. (6.3) @4d)(for the average and the
standard deviation using the normal distribution. Since ldgnormal distribution has
three parameter§y, 77 and@) an extra equation is necessary to solve them. Eg. (6.9)
will be solved to yield the threshold parameter Eliminating7z anda by substituting
Egs. (6.7) and (6.8) into Eq. (6.9) yields:

P { ! ilﬁ(xi—a)—%im(@—a)

i—1 (.TZ — @) n — 1i=1

n

1 " NG In (z; — @)

Y E} e @] } e T 610
Eq. (6.10) can be solved yielding the threshold parantetdihe value ofx must be less
than the minimum value of the data points sihcer; — @) in Eq. (6.8) is only defined for
x; > a. Oncea has been determineft,ands can be calculated. For the set of beer cans
the calculated threshold valueds= —0.013618. Figure 6.4 shows the lognormal line
plotted in the histogram. The difference between lognoamdinormal is only minimal in
this case. The statistical values are listed in Table 61%eall values of are larger than
zero, a two parameter lognormal distribution which one géten the threshold value
is set to zero would also suffice. One would however lack sammg capability.

6.1.4 Weibull distribution

The Weibull distribution is often used to model the time Uf#tilure of a physical sys-
tem [68]. It is used in systems which fail through the wealiegt of many competing
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Figure 6.4: Lognormal distribution in histogram of the beans

processes. The distribution function of the three-paraméteibull distribution is given
by [70]:

f(x):ﬁ< 3 ) expl—( 3 )],x>a (6.11)

The parametem is the shape parameter. For different values:ahe distribution func-
tion has a completely different shape. For= 3.6 the Weibull distribution has a shape
which is similar to the normal distribution. The parametes the scale parameter. The
threshold parameter causes a shift of the distribution function. Below this paeter
the distribution function is not defined.

The maximum likelihood equations for the three-parameteidl! distribution are given
by [73]:

1 Y (z—a)"In(z; —a) 1& _
1 L SN In (g —a) = 6.12
L S S ) =0 (6.12)
m-1g 1 P(r )t
— =0 6.13
m ; (z; — @) iy (z —a)™ ¢4

Notice that these equations contain the unknown threshualdshape parametersand
m. The scale parametgrin Eq. (6.11) can be estimated by:

3=

3=

i (i — @)ﬂ (6.14)
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Solutions ofm and 3 can be found by solving Egs. (6.12) to (6.14) for fixed valugs o
a. If the solutions of the two equations are equal, a solutioiime maximum likelihood
equations can exist. Lockhart and Stephens [73] distilnghi®e cases.

A There are two solutions far, the minimum of these two solutions gives the maxi-
mum likelihood solution.

B There is no solution fo&, the maximum likelihood estimator in this case is the data
point with the smallest valuex().

C There is one solution faw, but this is not the maximum likelihood solution because
the corresponding shape parameteis negative. For the Weibull fit both the scale
parametep? and the shape parametarshould be positive.

These 3 cases have been worked out by Harte [74] in his mastsistin which he fol-
lowed the approach by Lockhart et al. [73]. The Weibull disttion of the buckling loads
of the beer cans is plotted in the histogram shown in Figuse Bae distribution is a case
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Figure 6.5: Weibull distribution in histogram of the beensa

C type. Exactly which case it is, is a matter of the solutiorthnd. When the type is
determined, the three parameters are solved and the Welistiilbution is known. As
can be read in the next section of the goodness-of-fit tdatsettests proceed the same
way for the 3 different cases A, B and C.

6.1.5 Goodness-of-fit tests

Several distributions have been discussed. How will onenkii@ set of data shows a
normal distribution? One way is to look at the graphs. One @ampare the normal
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distribution line drawn with a histogram. This will definiygemake a good starting point,
several tests have been developed for this analysis. Theyaal with an assumption,
called the null hypothesis. The null hypothesis says tha éganormally distributed.
Doing some calculations will yield a number, which can be pared with the data in a
table.

The null hypothesis is often the reverse of what the invasticactually expects, it
is put forward to allow the data to contradict it. An intereg example is the probable
harmful effect of drinking alcohol when driving a car. Thellfwypothesis states the
alcohol does not have any influence on the driver of a car. iyyothesis will either be
rejected or accepted.

If something is statistically significant it still does noave to be true. Therefore,
another option would be to do two separate studies. If bats t@eld the same result,
that is the hypotheses is statistically significant, it isk@bly true. Normally one does
not have time or money to do two separate tests. What one ei#l dsing the split halves
technique [75]. The sampled data are arbitrarily divideo imvo sets. In the statistical
analysis both sets will be investigated. The split halvebrneue is not used in this work
because of the small sample sizes.

Some well known goodness-of-fit tests are
[ J X2

e Kolmogorov-Smirnov

e Anderson-Darling

Thex2-test [76] is applied to binned data, therefore it will yiglifferent results when
the bin size is altered. Also one will need a sufficiently &asample size. Because the
number of tests of shells is normally low, thétest is not a good test for the shell design.
However, they? distribution will be used later on when calculating the cdefice interval
of the standard deviation of the data (Chapter 6.1.6).

The Kolmogorov-Smirnov [70] test can also be used to dedidsample comes from
a population with a specific distribution. It is based on thepeical distribution function

E(n) =n(i)/n (6.15)

wheren(i) is the number of points less than and thez; are ordered from smallest to
largest value and is the sample size. This is a step function that increasdghwat the
value of each ordered data point. The Kolmogorov-Smirnstisebased on the maximum
distance between the empirical distribution function areldtatistical distribution which
is being tested. A disadvantage of this test is that it tendsetmore sensitive near the
centre of the distribution than at the tails. Furthermoreas another serious limitation
as the distribution needs to be fully specified. That is, & kbcation, scale and shape
parameters are estimated from the sample data, the criéigeln of the test is no longer
valid.

In this work the goodness-of-fit test of Anderson-Darlin@][i5 used. This test gives
more weight to the tales of the distribution. If the test iplagd to small samples, one
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needs to multiply the Anderson-Darling statistié by a factor, depending on the sample
size. The Anderson-Darling test also has a disadvantageglgahat the critical values
depend on the specific distribution that is being tested.Arwerson-Darling4? statistic

is defined by

A% = —n — %Z (20 — 1) Inz; + (2n+ 1 —2i)In (1 — 2)] (6.16)
i=1

Herez; is the value of the cumulative distribution function fof, andn the sample size.
The values of; depend on the estimated parameters of the distribution. fGineulas
are shown on the next pages for each of the different digtabs. The obtained value
of A? can be compared with the critical values, which depend omyhe of distribution,
the parameter estimation method and on the values of esiihshtape parameters. If the
value of A2 exceeds the value of a critical point for a significance levglthen the null
hypothesis is rejected at level, where the null hypothesisHs defined as:

"The data follow a specified distribution”

In plain English this means: Suppose one wants to test if pkaisinormally distributed.
As one will never be 100% sure, one will first determine howesume needs to be. Often
hypothesis are tested for a significance level of 5%. In Té&bleone will look up the
value ofa, = 0.05. If the obtained value ofi? is equal or larger than the critical value
at thisa, the hypothesis is rejected, meaning the data is not noyrdatributed. If one
would set the probability level to 90% the result could wedlthe opposite: the data is
normally distributed. However, in the latter case the cleapicheing wrong about this is
larger.

Which probability percentage is used very much depends @&t thle data represent [77].
Consider two cases very much apart:

a A beauty company has developed a new product which shalldeghe number
of wrinkles in the skin. It has tested the product on a seteset of people. It
was shown that it helped to smooth the skin. Their null hygseh stated that the
product would not work, being the opposite of what they edgaed he significance
a, they used wa8.20. The hypotheses was rejected, thus the product helps. The
commercial was to show some women smiling and claiming italagth the help
of the new product.

b A study on the height of the dikes in the Netherlands wasigedkclt showed that
when the water gets very high, the dikes might flood. Thisddoappen ones in a
100 years, where the next time it happens might be next year.

What will people do? They will buy the new cream, and comglaihe government for
not doing anything on the dikes. This is peculiar becausg Wik probably never need
to swim and will get wrinkles all over.

Three distributions types of the Anderson-Darling tesésiarplemented in the inter-
face , i.e. the normal, lognormal and the Weibull distribuati
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o Normal distribution

First the data in the sample are transformed into a standardaily distributed set
of data using

w, = SR (6.17)

wherez anda are the maximum likelihood parameters which are normallieda
the average and standard deviation of the data respectiViey cumulative distri-
bution function forw; is

R
=) = /_OO 3 dy (6.18)

Next the A? statistic can be calculated using Eq. (6.16). Because ofitjta num-
ber of points will be used!? has to be modified using (see [70]):

A2 = A (1.0 +0.75/n + 2.25/n2) (6.19)

wheren is the sample size. In the following for the modified Anderdarling
parameter the variabld? will also be used. The value of? can now be compared
with the critical values listed in Table 6.4 [70]. If the valwf the test statistic
exceeds the percentage point at levekhe hypothesis is rejected at level. As

as 0.500 0.250 0.150 0.100 0.050 0.025 0.010 0.005
A%* 0.341 0.470 0.561 0.631 0.752 0.873 1.035 1.159

Table 6.4: Critical values aft? for the normal and lognormal distribution

an example the distribution of the buckling loaaf the A-shells and the beer cans
will be analyzed using Eq. (6.16). The Anderson-Darling fesnormality yields

a statisticA? = 0.5044 for the beer cans and? = 0.2680 for the A-shells (Table
6.5). For a significance level of 5% the critical value of thatistic is A% = 0.752

as read from Table 6.4 looking at, = 0.05. The conclusion at this level is that
both sets of shells show a normally distributed bucklinglloa

Lognormal distribution

The lognormal distribution can easily be transformed to nbemal distribution.
The lognormal distribution has no shape parameters ancehetie parameters are
estimated by the method of maximum likelihood, the critipaints of A2 for the
normal distribution can also be used for the lognormal tiatron.

For the lognormal distribution first the parametgrss anda have to be estimated
using the method of maximum likelihood (Egs. (6.7), (6.8) #6.9) ). The data
will then be transformed using:

w = 2@ =3 ] (6.20)

[
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beer cans A-shells

normal distribution

A? 0.50438E+00 0.26804E+00
o 0.15000E+00 0.50000E+00
lognormal distribution

A? 0.62982E+00 0.43884E+00
Qg 0.10000E+00 0.25000E+00
Weibull distribution

A? 0.14510E+01 0.29567E+00
o 0.00000E+00 0.50000E+00

Table 6.5: Goodness-of-fit: Anderson - Darling test

The rest of the42-test for the lognormal distribution is completely idetito the
A?-test for the normal distribution. Can the buckling datataf beer cans and the
A-shells be considered to have a lognormal distribution& ddculated Anderson-
Darling statistics of the lognormal distribution are foummdTable 6.5. The table
shows the corresponding significance lemglof both sets, the beer cans and A-
shells, i.e.A? = 0.62982 and A? = (0.43884, respectively. For a significance level
of 5% both sets can be considered to originate from a lognlatis@ibution. Recall
one would have to reject this hypothesis if thé would be larger than.752 (see
Table 6.4).

e Weibull distribution

The cumulative distribution function far; for the Weibull distribution can be cal-
culated as follows:

2z =1—exp [— <xi%a>m] (6.21)

wherew, # andm have been determined in section 6.1.4. The valuel®otan

be compared with the critical values given in Table 6.6 [7Rjese critical values
depend on the value of the shape paran@teFor values of which are smaller
than2.0 (1/m > 0.5) the last line of the table should be used. The table can lk use
with good accuracy for sample size> 10.

Checking the significance level using the Weibull distribotis somewhat more
work, since it depends on the value of the shape parameteth&deer cans the
shape parameter equalsito= 2.1323, therefore in Table 6.6 one will use the row
for 1/m = 0.4700 yielding a critical value for the significance level of 5% .4t =
0.742. Notice that this value is found by linear interpolation bétl /m = 0.45
and0.50 values. This means that the buckling loads are not dis&#tbatcording

a Weibull distribution. Similarly, the A-shells are haviagshape parametetr =
2.2819 yielding anA? = 0.727 and therefore the A-shells are distributed according
to Weibull.
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oy = 0.500 0.250 0.150 0.100 0.050 0.025 0.010 0.005
1/m=0.00 0.292 0.395 0.467 0.522 0.617 0.711 0.836 0.931
1/m=0.05 0.295 0.399 0.471 0.527 0.623 0.719 0.845 0.941
1/m=0.10 0.298 0.403 0.476 0.534 0.631 0.728 0.856 0.954
1/m=0.15 0.301 0.408 0.483 0.541 0.640 0.738 0.869 0.969
1/m=0.20 0.305 0.414 0.490 0.549 0.650 0.751 0.885 0.986
1/m=0.25 0.309 0.421 0.498 0.559 0.662 0.765 0.902 1.007
1/m=0.30 0.314 0.429 0.508 0.570 0.676 0.782 0.923 1.030
1/m=0.35 0.320 0.438 0.519 0.583 0.692 0.802 0.947 1.057
1/m=0.40 0.327 0.448 0.532 0.598 0.711 0.824 0.974 1.089
1/m=0.45 0.334 0.469 0.547 0.615 0.732 0.850 1.006 1.125
1/m=0.50 0.342 0.472 0.563 0.636 0.757 0.879 1.043 1.167

Table 6.6: Critical values forA? for the Weibull distribution

It can be concluded that for a significance level of 5% the Alisltan originate from all
three different distributions, i.e. a normal, a lognormatiaa Weibull distribution. For
small sample sizes this is not unusual. The beer cans oy albrmal and lognormal
assumptions for the distribution of the buckling loads.

6.1.6 Confidence level

It has been shown in section 6.1.5 that it is reasonable tnasshat the buckling load
for the beer cans and the A-shells are normally distributéolw sure can one be of the
value of the average buckling load and the standard dewiatiohis load? Since only a
small amount of test data is available, the confidence Ieuvbleodata needs to be looked
at. In engineering practice a confidence level of 95% denased

vy = 0.95 (6.22)

is normally used. According to [77] the one-sided confiddegel of the average buckling
load can be calculated using

P e S YV (6.23)

where

t“/&n—l

is the Student’s variable for a confidence level @00 x ~, per cent and a sample size
Using the sample average and standard deviation for thedaeer calculated above the
confidence interval with a confidence level= 0.95 is calculated as

W= pn = p— to.95,325/\/§
= 0.50265 — 0.01462 = 0.48803 (6.24)

This result has to be interpreted as follows. If many moreselséer cans would be tested,
and out of the test results one would randomly select a ceramber of samples, 95%
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of these samples should yield a mean value alfoi&s03.

Only 33 shells were tested. Suppose more data would be blailsay 100, or maybe
even 500, how would the quality of the statistic data impfolsing Eq. (6.23) the lower
bound of the averages are:

oo = 0.49441
tso0 = 0.49899 (6.25)

where it is assumed that the sample average would remaimthe.s

Maybe the variation of the test data around this average re mgportant. The stan-
dard deviation, which is the square root of the variatiorl, mé discussed next. Using the
same confidence level ef = 0.95, a two-sided interval can be calculated using [77]:

. 1/2 1 1/2
{ 2(n—) } agas{ 2<”—> } > (6.26)
Xi(14+s)/2],(n—1) X[(1-75)/2),(n—1)

whereyx? , _, is the value of the(-squared variable with — 1 degrees of freedom below
which a proportion of the(f,,n_l distribution lies. Then the two-sided 95% confidence
interval for the standard deviationis calculated as:

(33 — 1)/X(2).975,32]1/2 < o <[(33- 1)/X3.025,32]1/2
32/50.73]"* < o < [32/19.03]'/*
0.039412 < o < 0.064347 (6.27)
Notice that tables and formulae for the andy?— distributions can also be found in [77].
If more data would be available the statistical results imibrove. The standard variation

for sample size of. = 100, andn = 500 yields 95% confidence intervals of the standard
variation of

0.043377 < 0190 < 0.057317
0.046683 < o509 < 0.052852 (6.28)

One can conclude that the confidence interval gets small@nd¢oeasingn, but remains
rather large. As for the size of the standard variation camgb#o the sample average, it
also has a large value. The buckling data of the beer cansftiiershow a large spread.
To be realistic: the buckling load was not a specific requaetof the beer cans.

6.1.7 Reliability function

The reliability of a thin-walled shell is defined as the prbitity that a random buckling
load A is greater or equal to some specified valie

R(N) =P(A>)) (6.29)
An equivalent formula for the reliability [78, 79] is:

R(\) =1-P(A< ) (6.30)
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where A and A are normalized using the classical buckling load formulaslagwn in
Eq. (2.2). For the specified value afone can use the lower bound formula Eq. (2.6)
from NASA SP8007 report [1].

The experimental reliability data are calculated as folow

1. The experimental buckling loads are sorted from the lowethe highest value.

2. Ateach specific experimental buckling loadhe relative number of buckling loads
which are lower thar is calculated.

In the case of the beer cans the lowest valueXfor 0.3819 for beer can IW1-
16 as shown in Table 6.1. At values lower tHaB819, there are no experimental
buckling loads, and therefore betwegn= 0.0 and A = 0.3819, the reliability is
1.0. The reliability atA = 0.3819 becomes:

1 1
R(A=0.3819)=10—-—-=1.0——= =0.970 (6.31)
n 33

The next buckling load occurs at= 0.4195 (beer can IW1-46). At = 0.4195
the total number of tests with buckling loads lower than arado0.4195 is two.
Then the reliability at\ = 0.4195 is calculated as:

2 2
R(A=10.4195)=10——-=1.0— — =0.939 (6.32)
n 33

This procedure is carried out for each buckling load.
3. The experimental reliability data are plotted in Figuré.6

Next the reliability curves are calculated for three disitions types, i.e. the normal,
lognormal and the Weibull distribution.
e Normal distribution

The reliability function is calculated using the probatyildensity functionf(x),
Eq. (6.2):

R()) :1—/A f(x)dx:% —erf<)\_u> (6.33)

oo o

where the error function eff) is defined by [80]:

erf(x) = \/% /0z exp(—%yz)dy (6.34)

Notice that in computer subroutines the error function tewflefined in a different
way, hamely:

erf'(x) = % /Ox exp(—y?)dy (6.35)
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The relation between €rf) and erf(x) is as follows:

erf(x) = % erf* <%> (6.36)

In Chapter 2 the lower bound of the buckling load for the besrscwas calculated
in Eq. (2.13). Substituting the lower bound= 0.3885 into the reliability function
for normally distributed buckling loads, Eqg. (6.33), yisid

A—p

g

1
R(A=0.3885) = 5 —erf < ) = 0.989 (6.37)

usingu = 0.50265 ando = 0.049625 for the average and standard deviation re-
spectively (Table 6.3). The lower bound value and the cpording reliability are
also plotted in Figure 6.6. The histogram in Figure 6.6 shawstical region. As
has been discussed in the previous section on the Confidewele there is still a
small chance that the buckling loadis smaller thar0).3885. These experimental
data can be found in the critical area.

Lognormal distribution

Similar to the normal distribution the reliability functids calculated using Eq. (6.6)
which is the probability density function for a lognormaskttibution. Since the
function is not defined below the threshold valu¢he reliability function is split
into two parts:

for N <a

1 <
1—fcﬁf(x)dx:%—erf(%) for A>a

RO =

ROV (6.38)

The parameterg and o are calculated using the measured buckling data as de-
scribed in section 6.1.3, Egs. (6.7) and (6.8). Furthermeres calculated using
Eq. (6.10). The results are listed in Table 6.3. Substit.iire average, the standard
deviation and the threshold parameters into the religifilibhction yields

R()\ = 0.3885) = % — erf (M) — 0.993 (6.39)

Notice that this value is higher than the reliability cakield for the normal distri-
bution in Eqg. (6.37).

Weibull distribution

The probability density function for a Weibull distributias shown in Eq. (6.11).
Like in the lognormal distribution the function is not defithbelow the threshold
valuea. The reliability function is:

for A<«
(6.40)
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where the maximum likelihood parameters can once more bedals described in
section 6.1.4. Substituting the parameters for the shapée and threshold found in
Table 6.3 into the reliability equation for the Weibull disution Eq. (6.40) yields:

_ (Q _ O‘)>m1 = 0.998 (6.41)

R(\ = 0.3885) = exp 5

Also this value is higher than the reliability calculated floe normal distribution in
Eq. (6.37).

Comparing the calculated reliabilities for the normal, hogmal and Weibull distribu-
tions, the values are lying close to each other. The Weibsitidution yields the largest
reliability, followed by the lognormal. The normal distution gives the smallest reliabil-
ity. In Figure 6.6 the reliability is shown as a critical aiedahe histogram. The histogram
and reliability plots for the lognormal and Weibull distutions are very similar to the
ones for the normal distribution, the critical areas are &asv smaller. To be on the safe
side, the normal distribution has to be used.

6.2 Statistics on Fourier coefficients

In the previous section the distribution of the bucklingdeavas investigated. The imper-
fections also show a variation when looking at the diffeiglls. It has been made clear
that the plotting of the Fourier coefficients like for instanFigure 5.6 depends on the
manufacturing process. In this section attention will bl pa the spread of the Fourier
coefficients of isotropic shells.

The imperfections are described using Fourier series. dhesponding Fourier co-
efficients can be subdivided into groups of coefficients. fitst group consists of the
A(k,?) and B(k, ¢) coefficients wheré = 0, which describe the imperfection waves in-
dependent of the circumferential coordinate. These araximymmetric imperfections.
Next a set of coefficients is selected connected to waveperntient of the axial coor-
dinate. Then the number of axial half-wake= 0. Finally the remaining combinations
of axial and circumferential waves which depend on bothlada circumferential coor-
dinates. In this study the largest values of each of the tbe¢ewill be selected. Those
values will be averaged and the standard variation andlarggarameters needed for the
probability density functions will be calculated.

6.2.1 Histogram and statistical distributions

The imperfection data of the beer cans and the A-shellsstesdlin Tables 6.7 and 6.8. In
these tables the half-wave cosine representation of therfieqtion discussed in Chapter 4
using A, and By, is used. The coefficients have been combined to one paragsteh

that
E(k,0) = \/ A, + B, (6.42)
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beer cans

shell

£(0,2)

£(0,5)

£(3,0)

£(1,2)

IW1-16
IW1-17
IW1-18
IW1-19
IW1-20
IW1-21
IW1-22
IW1-23
IW1-24
IW1-26
IW1-27
IW1-28
IW1-29
IW1-30
IW1-31
IW1-32
IW1-33
IW1-34
IW1-36
IW1-37
IW1-38
IW1-39
IW1-40
IW1-41
IW1-42
IW1-43
IW1-44
IW1-45
IW1-46
IW1-47
IW1-48
IW1-49
IW1-50

0.12934
0.29053
0.05976
0.13488
0.16568
0.15999
0.46163
0.19306
0.17195
0.15036
0.32914
0.05261
0.42164
0.09763
0.08995
0.26793
0.43424
0.12088
0.18910
0.44944
0.13932
0.11987
0.59596
0.27019
0.15238
0.24484
0.09393
0.05896
0.29052
0.18604
0.26253
0.15234
0.05806

0.03158
0.04597
0.05170
0.11193
0.07951
0.10340
0.10820
0.06310
0.09141
0.06036
0.10144
0.04896
0.07910
0.16125
0.09725
0.10843
0.11470
0.08468
0.14302
0.15734
0.04556
0.15181
0.07266
0.12827
0.03100
0.03356
0.02653
0.18770
0.11563
0.09042
0.05479
0.18568
0.09928

0.04079
0.05323
0.03580
0.03359
0.04162
0.00773
0.05169
0.04002
0.04411
0.05274
0.09405
0.05623
0.08541
0.03695
0.07599
0.06757
0.02394
0.02984
0.02291
0.05953
0.05686
0.06017
0.04566
0.03434
0.08018
0.07617
0.09198
0.08090
0.08048
0.07620
0.06263
0.04971
0.07160

0.12512
0.14642
0.02919
0.01090
0.15371
0.03517
0.17276
0.10834
0.04616
0.22692
0.12171
0.03654
0.02541
0.13596
0.02955
0.17497
0.09110
0.07912
0.07986
0.15540
0.01813
0.02449
0.08179
0.04483
0.05619
0.11301
0.07308
0.16080
0.15731
0.12676
0.12392
0.09823
0.09659

Table 6.7: Fourier data of all the beer cans [23]
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number

number

A-shells

shell

£(0,2)

£(6,0)

£(1,2)

A7

A8

A9
Al0
Al2
Al3
Al4

0.45950
0.65770
0.47654
0.09736
0.29657
0.69239
0.38961

0.03126
0.07869
0.03474
0.01866
0.00623
0.00470
0.03488

0.56232
0.84661
0.46976
0.28573
0.48517
0.42340
0.39819

Table 6.8: Fourier data of all the A-shells [5]
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In Figure 6.7 the histograms of the Fourier coefficients fierlbeer cans have been plotted
for four selected coefficients. The lognormal or normal ritisition lines for(0, 2) and
(3,0) look convincing, also fo(0, 5) Weibull seems to work fine, except for the bin on
the far right side. The coefficients ¢f, 2), however, seem to be distributed randomly
without any focus on one solution. It should be noted thatlik&ibution lines also allow
negative values fof, which is of course not possible.

The calculated statistical parameters for the two setsotfapic shells are collected in the
Tables 6.9 and 6.10. From Table 6.9 one can read that theasthddviation calculated
for (1,2) of the beer can is equal @055734, about 60% of the average value. This
explains its behaviour. No figures of the histograms of theh&lls were drawn as they
made not much sense having a sample size of only seven shells.

6.2.2 Goodness-of-fit tests

Performing the Anderson-Darling tests on the data of théssbiee notices that the critical
significance levet of the Weibull distribution is equal or larger thard5 for all selected
Fourier coefficients of the beer cans, and for coefficiénd) of the A-shells. This means
that with a probability of 95% all those Fourier coefficiehve a distribution according
to Weibull, as all the calculated? values are smaller than the ones listeddoe 0.05
in Table 6.6 using the appropriate values fgrn. Recall thatm is the shape parameter
which is shown in Table 6.9. As an example the first coefficadrihe beer can is looked
at. From Table 6.10 the value of the Anderson-Darling isiee&d, A2 = 0.55785. As
the shape parameter for this coefficient equalsite= 1.0262 from Table 6.9, the crit-
ical value of the Anderson-Darling for a significance levelDd5 is 0.757 (Table 6.6).
Therefore the hypothesis for Weibull is accepted.

For the normal and lognormal distribution the behaviour oftbsets differ. The A-

shells do look a bit more like normally distributed wherelas beer cans show both be-
haviour depending on the selected Fourier coefficientsicldhat these results appear to
show a trend but one will definitely need more results, thabdse test data, to confirm
these trends.
In Chapter 7 the average Fourier coefficients and standasdtoen of the imperfections
have been used to calculate the buckling behaviour of theeliss It is assumed that
all the coefficients are normally distributed, thereforee @mould keep in mind this is a
somewhat crude assumption.

6.3 Discussions and conclusion

In this chapter it has been shown that the buckling loadselbéer cans can be considered
normally distributed. Although according to the Anderdoarling Goodness-of-Fit test
the data can also be assumed to behave like a lognormal orlulMaistribution, their
critical regions are smaller. To be on the save side, the abdistribution is therefore pre-
ferred. The sample size 8B beer cans is statistically large enough for design purposes
Actually one of the lowest buckling loads was just below tbeédr bound value using
the formulas from NASA SP-8007. One can conclude that theetdvound theory can



6.3 Discussions and conclusion 105

Beer cans
(k,0) (0,2) (0,5) (3,0) (1,2)
Parameters of the normal distribution
meanu 0.21196E+00 0.92915E-01 0.55170E-01 0.95741E-01
st.dev.o 0.13544E+00 0.44571E-01 0.21616E-01 0.55734E-01
Parameters of the lognormal distribution
meang -0.18846E+01 -0.22774E+01 -0.20571E+01 -0.20134E+01
st.dev.o 0.74023E+00 0.42348E+00 0.17181E+00 0.41566E+00
thresholdr 0.18056E-01  -0.18472E-01 -0.74451E-01 -0.48787E-01
Parameters of the Weibull distribution
case C a a a
shapen 0.10262E+01 0.15905E+01 0.35440E+01 0.16296E+01
scale 0.16087E+00 0.78907E-01 0.74660E-01  0.10121E+00
thresholdr 0.52510E-01 0.21820E-01  -0.11954E-01 0.47776E-02
A-shells
(k, 0) (0,2) (6,0) (1,2)
Parameters of the normal distribution
meanu 0.43853E+00 0.29880E-01  0.49588E+00
st.dev.o 0.20547E+00 0.25007E-01 0.17663E+00
Parameters of the lognormal distribution
meany -0.18311E+01 -0.43160E+01 -0.15298E+01
st.dev.o 0.22694E+01 0.15509E+01 0.73631E+00
thresholdr 0.96363E-01  0.37000E-02  0.23040E+00
Parameters of the Weibull distribution
case C C C
shapen 0.78367E+00 0.73181E+00 0.75735E+00
scales 0.32266E+00 0.21974E-01 0.19265E+00
thresholdy 0.97263E-01  0.46000E-02  0.28563E+00

Table 6.9: Estimated Parameters of the Fourier coefficiesitey /A2, + BZ,
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Beer cans
(k,0) (0,2) (0,5) (3,0) (1,2)
normal distribution
A? 0.12947E+01 0.36867E+00 0.25983E+00 0.45500E+00
o 0.00000E+00 0.25000E+00 0.50000E+00 0.25000E+00
lognormal distribution
A? 0.33060E+00 0.37840E+00 0.25739E+00 0.69826E+00
Qg 0.50000E+00 0.25000E+00 0.50000E+00 0.50000E-01
Weibull distribution
A? 0.55785E+00 0.35580E+00 0.25645E+00 0.62403E+00
o 0.15000E-00 0.25000E+00 0.50000E+00 0.10000E+00
A-shells
(k, 0) (0,2) (6,0) (1,2)
A? 0.23698E+00 0.52035E+00 0.50557E+00
Qg 0.50000E+00 0.15000E+00 0.15000E+00
lognormal distribution
A? 0.15214E+01 0.57348E+00 0.36871E+00
o 0.00000E+00 0.10000E+00 0.25000E+00
Weibull distribution
A? 0.13295E+01 0.52772E+00 0.95163E+00
Qg 0.00000E+00 0.15000E+00 0.10000E-01

Table 6.10: Goodness-of-fit: Anderson - Darling test of tbarker coefficients

usingy/ A2, + B2,
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be used for the beer cans, and does not yield a very conserddsign. Moreover, the
buckling loads of the in general liquid containing beer catisbe a bit higher because
of the internal pressure.

Regarding the A-shells it is recommended to build and tesemsbells. Recall that
one of the goals was to improve the lowerbound curve. Thedopessible buckling load
given by the lowerbound should always be lower than the raeklng load. Although
the A-shells suggest the lowerbound coupled to their maruifiag process could be
modified, more tests should be performed to be safe. One ha&gjoin mind that a shell
designer will normally build only a few shells. He has to rely the lowerbound curve
belonging to a certain manufacturing process. The imptdieclata bank has to be filled
with as much test data as possible, for all manufacturinggsses used in industry. Then
it is possible to use the imperfection data bank to improeddwer bound curve.

Statistical analysis has also been performed on the Focwiefficients. The coeffi-
cients were divided into three separate groups. One grdafeckto axisymmetric im-
perfections, and one group independent of the axial coatdirFinally, a group with the
remaining coefficients was left. From all of these groups onéwo significant terms
were chosen. The tests showed that the data can be considé@dormally distributed,
lognormally distributed or distributed according to Weibost of the time. There is no
real winner. It is therefore recommended to perform mortstes isotropic shells.

Almost all of the requirements for the interface of the infpetion data bank have
been satisfied. Tests have been selected using the namesmfaktigators as constraint.
The Fourier coefficients used in the description of the irfgaions were averaged. Sta-
tistical programs have been used from within the interfacanalyze the data, such as the
generation of histograms and reliability plots, as welltzes éxecution of a goodness-of-
fit program like the Anderson-Darling test. In the next cleaptperfection data will be
downloaded and used in the finite difference program STAGE [5
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Chapter 7

Imperfection Data Bank Based Shell
Buckling Design Criteria 1

"The great tragedy of Science: the slaying of a beautifuldtip
esis by an ugly fact"Thomas Henry Huxley (1825-1895)

To investigate the buckling behaviour of a cylindrical $legle can use a statistical ap-
proach. Starnes and Hilburger published several papershwhdicated that when mea-
sured geometric imperfections, thickness variations, aaduniform loading was in-
cluded, the buckling load and buckling response of a shellbmpredicted with good
accuracy and thus can form the foundation of an analysisebakell buckling knock-
down factor approach [81, 82, 83]. Hilburger et al. [2] prepd an approach to use the
average imperfection plus standard deviation to predetidiver bound of a composite
shells, using some simplifications. They showed in theirepdipat if one measures the
imperfections of a set of shells, then calculates the aessiad standard deviation of these
imperfections and uses this information for nonlinear bngkload calculations, the ex-
perimental buckling load is somewhere between the caledlatickling of a shell having
an imperfection of the average shell minus standard deviatnd the average shell plus
standard deviation. The importance of this result is thatgithis technique one can es-
tablish a lower bound on the buckling load which depends emihnufacturing process.
This way one can use a less conservative knock-down factmrapared to the one in the
famous NASA SP8007 report [1], which is still commonly usedlbwer bound knock-
down factors in shell design. In the NASA report the manuféng process is not taken
into account. The design criteria in the report are very eovetive, therefore using the
technique described in this report will generate a signiiegeight saving while main-
taining a high reliability.

Hilburger et al. investigated composite shells. In thisptBacopper electroplated shells
will be looked at. The imperfection data of a set of thin-wadltylinders having the same
geometry, and manufactured using the same process wasvegtrirom the data bank.
The imperfections were averaged, and the standard deviaig calculated. Next a the-
oretical model of a shell, having the same properties ashbkssn the set, was chosen.

IPresented at the Third International Conference on StralkcEngineering, Mechanics and Computa-
tion in Cape Town, South Africa, 10-12 September 2007
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As the imperfections of this shell, the average imperfecptus and minus the standard
deviation were selected. The shell was analysed using #grarbhical high-fidelity ap-
proach as suggested by Arbocz [84]. The results of the hididedity analysis at the end
of this chapter were obtained using the Finite Differencd €8TAGS [54].

The experimental buckling loads and the lower bound curva fasction of the radius
over thickness ratio of the A-shells have already beengyiatt Figure 6.1. Notice that if
one will use the lower bound curve in the design, one will beywenservative.

7.1 Selection of the shells

The cylindrical shells used in this paper were tested maaysyago by Arbocz and Bab-
cock [85]. The shells were fabricated by electroforming axwnandrels. About an inch
thick layer of wax was first cast on water cooled mandrels. Whar was painted using a
silver paint thinned with Toluene. Next the plating was matiout in a Copper Fluoborate
bath. The process is relatively slow as the thickness of tiedl will increase by 0,001
inch each 20 minutes only. When the desired thickness wahedathe shell still on
the mandrel was rinsed thoroughly. The shell was removed tfee mandrel simply by
melting out the wax. A detailed description of the manufdotyprocess can be found in
Arbocz et al. [85] and also in the thesis of Babcock [65]. ®abll shows the properties
of the shells. The table shows the length A, which stands for the length used in the

R Lya t mesh
Arbocz01 A7 1016 177.8 0.114 49x15
Arbocz02 A8 101.6 177.8 0.1179 49x15
Arbocz03 A9 1016 177.8 0.1153 49x15
Arbocz04 Al10 101.6 171.45 0.1204 49x15
Arbocz05 Al12 101.6 209.55 0.1204 49x31
Arbocz06 A13 101.6 171.45 0.1128 49x29
Arbocz07 Al14 101.6 171.45 0.1110 49x29

Table 7.1: Properties of set isotropic copper electroplateslls

HarmonicAnalysis. This value is always a bit smaller than the lengtthefshells as the
imperfections cannot be measured exactly at the bound&esall shells 49 data points

in circumferential directions are used. In axial directiéor the last three shells almost
twice as much data is available.

7.2 Fourier representation of the imperfections

During the manufacturing process imperfections cannotogad. This holds for pro-

duction shells, as well as shells produced in a laboratarys dahe case with the shells
in this chapter. Different functional representationssesis discussed in Chapter 4. For
accurate reproduction of the measured initial imperfetione must use the half-wave



7.3 Alignment of the shells 111

/

,////\/w
f«'
w/t 0 I//;/l x

0 T T ~—F ‘9 = y/R
0 90 wm 360

~

Figure 7.1: Best-fit of shell A-7

cosine representation.Thus the imperfections are destab

N N mmx

w(z,0) =t > > cos 7 (A cosnb + By, sinnf) (7.1)

m=0 n=1

In Figures 7.1 - 7.7 the imperfections of the shells in Tahlke &e plotted using a
semi 3D method. As can be seen the imperfections are similadifferent. The order
of magnitude of the imperfections for all shells is maximair@es the wall thickness.
The plots are generated by the interface to the imperfectaia bank as first described
by de Vries [86]. As can be seen in the plots the number of mredspoints in axial
direction for the last three shells is doubled. Increasimgnumber of points will im-
prove the description of the imperfection when Fourieresgare used, as the maximum
number of coefficients which can be used are only half of tha gaints. If one would
calculate more, non-zero coefficients would be produceaigghg to higher non-existing
deformation modes. This phenomenon is called high frequtdrowback.

7.3 Alignment of the shells

Each wave is built up of sine and cosine functions. Shellsngggxactly the same im-
perfection, but rotated over a certain angle would yieldedént Fourier coefficients and
would seem to have a different imperfection. Before one ede the average of the
Fourier coefficients of a set of shells, the shells need tdigeed, since one cannot de-
termine the exact starting point of the imperfection measwnts. Thin-walled isotropic
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Figure 7.3: Best-fit of shell A-9
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shells, thus shells without any form of axial stiffeners imigs in circumferential direc-
tion have a low stiffness. Ovalisation of these shells cadlizde avoided, therefore the
deformation shape with 2 full waves in circumferential diren will often be the most
visible one. Alignment should take place using this ovéiisa In the alignment pro-
cess the shell will be rotated such that the Fourier coefftcig0, 2) will get a maximum
value andB(0, 2) will be zero. Notice that since the ovalisation contains [Rviiaves in
circumferential direction, the alignment needs one extp.sRotating the shell over 180
degrees would yield an exact copy of the ovalisation modd,aso for all of the even
modes. The odd modes however, represented by the tafhms), A(0,5) and so on,
would change in sign after rotation. Therefore in the aligminprocess the coefficients
A(0, 3) of all tests in the selected set should have a negative vAlxisymmetric terms
do not change when rotating the original of the shell whiabfisourse obvious.

Similar to Chryssanthopoulos [30] the half wave cosineespntation using Fourier
coefficients, Eq. (7.1), can be written as

N N
w(z,0) =1t > > &uncos ?(sin 10 + Oumn) (7.2)

m=0 n=1
Both sets are equivalent. The relation between the FouoefficientsA,,, , B,., and

Amn - gmn sin ¢mn

an = §mnCOS¢mn (73)
and
Sindy,, = . Amn
VA2, + B,
Cos¢mn — L (74)
VA2, + B,
or
Amn
¢mn - tan_l (75)
Since
VAZ, 4 B2, = e, sin? g + €2, 082 Brun

you can compare the imperfections of shells within a setautmeed to align the shells,
using either,,,, or as used in our referenc%@%m + B2, . In Figure 7.8 one can easily

see this will yield a unique value for the phase shift,. The term,/(A4%, + B%,) is inde-
pendent of the rotations, however, one cannot use this ¢aatibn to recalculate the exact
imperfection field. The reason is that by introducing an peleency of the rotation, the
starting point of each individual wave is eliminated. As mabitrary imperfection, built
up of a large number of smaller and larger waves each of theses\starts at a differ-
ent location. Thus recalculating of the exact starting fieldot possible, eliminating the
possibility of checking the accuracy of the recomputed shap
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Figure 7.8: Relation betweet),,, and Fourier coefficients

7.4 Statistical analysis

If the Fourier coefficients of the imperfection field are aged, the recomputed field can
be found plotted in Figure 7.9. After aligning the shells bgximizing the ovalisation
term A(0, 2), the Fourier coefficients are again averaged. Using thesmge values a
imperfection pattern is recomputed, as shown in Figure.7Th@ latter is more realistic,
as the dominating deformation mode being the ovalisatioth@fshells now is aligned,
and averaging will not yield a phantom mode. Notice howekat Figures 7.9 and 7.10
both look quite reasonable. The average imperfections shemvaller imperfection size,
which is to be expected. Next the standard deviation of thpeifiection is calculated. Fig-
ures 7.11 and 7.12 show the average imperfection minus aisdhubk standard deviation.
The generated imperfections are of the same order of maigés the real imperfections.
The calculated buckling load using the latter imperfedishould be close to the value
found in the experiment. This will be discussed in the negt&m.

7.5 Buckling analysis using STAGS

Following the approach of Hilburger et al. [2] the effectssefzen different imperfection
shapes on the response of shell A-8 were investigated. f&jadlgi the effects of a shell
with the mean imperfection shape, denoted/gyand a shell with the mean imperfection
shape plus one standard deviation, denotedby- oy were investigated using a STAGS-
A model with 79708 DOF’s, Arbocz et al. [87]. The boundary ditions were fully
clamped(u = ug,v = w = w, = 0). As can be seen from the results shown in Table 7.2
the predicted numerical buckling loads where no boundaperiections were taken into
account were significantly higher than the experimentakbng load of shell A-8, even
if one used a model with the mean imperfection shape plus taralard deviations. This
result may have been expected since Arbocz and Starnesi8&Esl that for this type of
shells the boundary imperfections cannot be neglectedhelin paper the irregularities of
the contact surface of the end rings which were used to mberghells were published.
These measured boundary imperfections are decomposea ame-dimensional Fourier
series

_ (1 N
uy = Up(y) = §h{ =ag + Y _(an cos nd 4+ by, sin ng) (7.7)
h0 T 2 R R
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no align aligned no align
no boundary imp  boundary imp included
(€, = 0.058)
(Ibs) (Ibs) (Ibs)
average imp -1010.2 -1015.2 -617.4
+ std dev -1004.2 -999.3
+ 2 std dev -916.3  -900.9
experimental -825.9

buckling load shell A-8

Table 7.2: STAGS-A results of buckling analysis compareeigerimental buckling load
of shell A-8

In the calculated buckling load printed in the last colummTable 7.2 the boundary im-
perfections are taken into account. Notice that the caledlaalue is lower than the
experimental value.

In Table 7.3 the results of STAGS-A analysis of all the 7 Alshis shown. In the cal-

culation for each shell both the mid-surface imperfectiaasvell as the boundary im-
perfections were taken into account. From the table one caaolgde that the calculated

Pc.g  Ps(§,=0.058) ~Pc.a Pexp
gwimpc + gwimpb

(Ibs) (Ibs) (bs)  (Ibs)
A7 -930.8 5452 2215 -682.6
A-8 -1009.0 -595.8 2452 -825.9
A9  -929.0 -553.0 223.0 -837.4
A-10 -1037.6 -659.7 2552 -718.7
A-12 -1059.6 -683.3 -260.7 -866.2
A-13  -906.6 -533.4 2149 -698.9
A-14 -914.8 -516.3 2150 -774.0

Table 7.3: Comparison of simulated buckling loads versgpegrental buckling loads.

valuesPs are always lower than the experimental buckling lo&dsp, and are a major
improvement of the calculated load if one compares them thiéhlower bound value,
i.e. vPc_q Where Pc_y is the classical buckling load for a perfect shell with cladp
boundaries and is the lower bound value. The new value for the buckling Isaalways
about twice as high as the very conservative lowerbouncevaihd still on the safe side!

7.6 Discussions and conclusion

In this chapter data from the imperfection data bank has lbegieved using the user
interface. The data is used in the finite difference code SJAGcalculate the buckling
load of shells with these imperfections. It has been showh tking the average mid-
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surface imperfections and the boundary imperfections @mecalculate a buckling load
which is lower than the experimental load. Neglecting therztary imperfections as done
by Hilburger et al. does not yield satisfactory results far topper A-shells manufactured
using an electroplating technique. It does proof once ntwaehuckling analysis of thin-
walled cylindrical shells represents a real challenge amhot be done using a standard
solution method.



Chapter 8

Conclusions and Recommendations

In this work test data of a lot of thin-walled cylindrical dlseand cones, varying in ge-
ometry and having different material properties, from sgineers all over the world,
recent and ancient data, have been collected and storedrmpanfection data bank. Ex-
perienced engineers normally use the eigenmodes of theashah assumption for the
imperfections in their Finite Element Calculations. If yh@ould know the real imper-
fections, measured on shells manufactured using the saineigeie, the new shell could
be designed less conservative, and would consequently bl hghter. The imperfec-
tion data bank provides these data. As a matter of fact tleefatte of the data bank is
programmed such that the data bank is accessible using cefesrpd web browser. An-
swering the first research question in Chapter 1 it is indeessiple to collect all available
data of thin-walled shells and make them interactively asit@e to shell designers and
researchers.

The three test setups for imperfection measurements géaiat the Faculty of Aero-
space Engineering of the University of Technology Delftédnaeen described: Stonivoks,
Univimp and Amivas. The first two capable of measuring veryabrbeer cans, and
medium sized shells respectively, have the capability tasuee the imperfection during
loading of the structure. Amivas used for full scale rockettp cannot do this. It can,
however, easily be adjusted to measure cones with any cajie. aleasurements were
performed on the VEGA interstage 1/2 using Amivas. The tetpgsused was a simplifi-
cation of the test on an interstage of the ARIANE some yeaigeearl his simplification
introduced so-called phantom imperfections caused by uidirgy of the set of rollers. A
new technique was developed to eliminate these imperfecfrom the measured data. It
is recommended that experimentalists pay special atresgtiing up the test equipment,
trying to measure as much as possible.

A relation can be found between the imperfections and theufaaturing process of
a shell. The values of the Fourier coefficients of the funttescribing the imperfections
indicate some details of the shell. The ovalness of a slwllexample, represented by
the coefficientd, is a measure of overall stiffness of the shell. Very oftenijrerstage
of a rocket is manufactured by assembling a set of curvedtiatigal panels. The num-
ber of curved panels in a shell is visible in the Fourier coedfits, because the Fourier
coefficients associated with the same number of full cirareritial waves as the number
of curved panels are large with respect to the other Foudefficients. The existence of
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certain imperfections patterns can thus be linked to a privolo method and is called the
manufacturing signature of the shell. This signature aistudes information relating to
the production equipment and the material used, howeveaesudts have been shown as
more data should be available. Some manufacturing techaighow a small scatter in
buckling loads and can be rewarded by a modified knock-dowtofaSmall shells like
the beer cans need to be redesigned if one want to improveuthkitng behaviour. This
can be an interesting topic if the market asks for new typesaog, as for example cans
with die-printed brand logos.

It has been shown that the data bank can be of help in obtaammgnproved knock-
down factor when one takes into account newer shells prabwitd improved manufac-
turing techniques. Statistical analysis using the toolthefinterface of the imperfection
data bank can assist during the design of shells. Using thage geometric imperfec-
tions and the boundary imperfections one can calculate klingdoad which is lower
than the experimental load. Neglecting the boundary inga¢idns as done by Hilburger
et al. [2] does not yield satisfactory results for the coppeahells manufactured using an
electroplating technique. It does proof once more that loglanalysis of thin-walled
cylindrical shells represents a real challenge and caredbine using a standard solution
method.

The imperfection data bank should be a ’living documentbtter shell data become
available, the data bank can also be extended with extragatome reprogramming
of the data bank interface will be necessary though. Somegdiave been created to
store all raw data. When new data analysis methods beconieldeat will be possible
to start with the original data. As the current content balbjcexists of isotropic and
orthotropic shells, the input of composite shells shoutitiee some attention. Of course
composite shells is just a start. The new advanced matenesan think of are smart
materials. What will be the influence on the buckling behavid one will use Shape
Memory Alloy composites, or implement piezo electric metks? When looking at the
postbuckling behaviour, the use of self-healing materiay nvell become a new research
topic. Therefore the data bank should not be left in its curstate. It should be a living
data bank. Living in the sense of growing, not just in sizeddsib in possibilities.
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Appendix A

Interface Imperfection Data Bank
User Manual

A.1 Introduction

The data bank contains lots of test data. The interface i®latdoaccess the data. It
provides single retrieval tools, search options as wellredydical programs capable of
doing statistical calculations. The philosophy behindititerface is that it should be user
friendly, easy to use and easy to maintain. It should run fherént platforms. Use is
made of 'clever’ buttons. The buttons know about the histafryuser commands, thus
reducing the number of selections one has to make when mgeattertain output. Note
that on a cell phone where the reduction of buttons is a mdj@otive, in general there is
a menu button which controls the many different functionsadh button. The difference
between the interface and the cell phone is that since thairbetton is left out, the
interface will automatically assign the appropriate fumies to the different buttons.

A.2 System requirements
e System unit: any computer capable of communicating withitbernet will do as
long as the Internet browser is capable of working with skeddrames (Explorer
5, Opera 6, Firefox 1, Mozilla, Netscape, ...) .

e Memory: 256 Mb of RAM. Calculating power is not required snmost of the
work is performed within the system hosting the interface tre data bank.

e Disk drives: 1 Gb disk, used to store retrieved data, geadnalots and maps.
¢ Internal/External Drives, USB: convenient but not essenti

e Display: color, 17 inch.

e Graphical Adapter: minimal024 x 748 pixels
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e Network card: the interface is accessible via the intrarféihce the amount of
information per page is kept low and no moving pictures amashthe average
network speed will be sufficient.

A.3 Getting started with the interface

Start your Internet browser and enter the web address ohteéace in the address bar
of your browser. The start-up screen will look like the sorg®t shown in Figure A.1

) login frame - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help

Welcome to the imperfection database
Technical University Delft
Faculty of Aerospace Engineering

Aerospace Structures group

Enter your userid:
Enter your password:

Figure A.1: Login screen of the interface of the imperfectitata bank

Notice your screen may look differently if you use an altéiwrebrowser. In the screen
dumps shown in this Appendix only the bar containing tiie Edit ... and so on com-

mands is shown. Entering your user data confirming wiblgin will bring up the base

screen of the interface shown in Figure A.2. The user logasspord as well as web
address of the interface are obtainable via the author.

A.4 Single or multiple test option

Investigation of test data can be done on a single test or @b af $ests. The user can
choose both of these in the beginning of a session. Duringssiageit is possible to

move from the chosen option to the other. Often this will rpputomatically when for

instance in a series of selected tests, an individual tdsbeviooked at in detail.

Next theSingle testandMultiple tests and their sub options will be discussed. Notice
that thePlot andPrint options are not discussed as separate items, as they olywiouss
their names suggests, and secondly, they behave diffegoabrding to what is printed in
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Hle Edit View History Bookmarks TIools Help

Imperfection
Database

Figure A.2: Initial screen

the mid frame Plot will create a picture of an imperfection field, or a graphicaérview
of the Fourier coefficients, which is to be plotted in the nidfiame depends on the
previous commands given in the interface program. Phat command will send the
contents in the middle window to a plot file. One can use thedsted plot commands to
send this file to the printer. Also the file itself, being a posipt plot file, can directly be
used in a report, papers etc.

A.4.1 Single test

Of each test data is stored in the data bank. There is infesman the type of shell, such
as the geometry data like radius, length and thickness. Timger stiffened shells also
have information on the shape of the stiffeners as well avahges of the moments of
inertia and the torsional stiffness. Material data is slaxe well: modulus of elasticity,
Poisson’s ratio for isotropic material or the number of layef composite shells. All
the data can be viewed as well as exported to be used in usemasefcodes or reports.
Furthermore, information on the production process is diesd. This might sometimes
be just a short description, however, also the reports ircivthe tests are described are
listed.

Means of viewing the data are divided into text and graphicals. Geometrical data
is available in table notation, imperfection shapes arevshio different kinds of plots.
Fourier coefficients can be viewed in tables or in graphshénrtext section some exam-
ples will be shown.

Click on Single testto get a list of all the tests stored in the database. The stibnsp
View Records Recompute Plot, Print, Export andDatasheetappear as shown in Fig-
ure A.3.

e View records
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Database
Single test Source

Recompute
Plot

Print

Abramovich_KR2

Abramovich KR3
Multiple tests

Abramovich_KR4
Reset "

Abramovich_ST3
Abramovich_ST4

Arbocz_01

Arbocz 02

Arbocz 03

Arhoer 04

Figure A.3: Listing of the tests in the right frame of the sare

Selection ofView records in the left frame will show a listing of all available
tests in the right frameView records will be automatically selected when starting
Single testfor the first time. If the user knows the name of a test, he wilb8 to
this test using the scroll bar. If the name is still unknowsgarch option is found
under Multiple Tests described in the next section. Clickloatest name in the
right frame will show a block diagram in the middle frame, g A.4. Each block
is actually the name of a record or table in the database.
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Imperfection ~ Test of shell: Arbocz_01 Database D
Datal Investigator(s): J. Arbocz , C.D. Babcock
SOURCE |  SHELLID | CALCULATEDDATA |
Single test
Source
View records
WALLTYPE LAMLAYER
Recompute
Plot SIRINGERS, Abramovich _ABS
Print RINGS Abramovich_AB6
Export TEQPROC Abramovich_KR1
Datasheet TINST
Multiple tests
Reset REFERENCE
INVESTIGATOR ;
Abramovich SN2
IMPDATA | RAWDATA | FOURIER
Abramovich_SN3
BUCKDATA
Abramovich_ST3
Abramovich ST4
Arhocz 0l]
Arbocz_02
Arbocz_03
Arhocr 04

Figure A.4: Test Arboc®1 has been selected
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Table SOURCE, Figure A.5, contains some basic data of the shell. The field
codetestis a primary field. For the data bank this is the most importdanti-

fier. This is the main pointer to a test. It is used in severales whereas other
primary fields only appear in maximal two tables. Most estrispeak for them-
selves. Appendix C shows the layout of the database and gharation of all the
tables and fields.
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| 5
Imperfection WALLTYPE AMLAYER — |
Database
STRINGERS o
Single test RINGS | Source
View records TEQPROC
TINST

Plot

Print REFERENCE

Export
INVESTIGATOR |
Datasheet —

Multiple tests IMPDATA | RAWDATA | FOURIER

Reset
BUCKDATA

code_test Arbocz_01
int_test 1

Date of the test 19680000
code_invest 15
code_ref 15
code_shell AT
code_proc Arboczproc
code_t_inst cal
Database contains imperfection data y

Database contains buckling data y

original_name Arbocz_01

Figure A.5: Contents of the tab®OURCE

Table CALCULATEDDATA contains a number of fields of often used parameters
in shell analysis. Click on the buttddALCULATEDDATA will show the contents
of this table as shown in Figure A.6.

WhenPIot is clicked in the left frame one can choose what imperfedield needs
to be plotted. Here it defaults to the best-fitted field, FegA:7. Other options
are the raw data, possible recomputed or deltacheck datzhw¥ill be discussed
later. Either semi 3-dimensional plots can be generateatoco plots, or one can
look at axial or circumferential scans separately, seer€igu8, Figure A.9 and
Figure A.10 respectively.

If the tableFOURIER is selected, in the right window a menu appears where selec-
tion criteria can be entered, Figure A.11. Here the half wangne representation

of the imperfection is selected, yielding coefficiedts andB;;. Only values larger
than0.01 are selected. CliclShow mapwill retrieve the selected Fourier coeffi-
cients from the imperfection data bank and print them in the frame as shown

in Figure A.11. The difference betwe&how and Selectis the first option only
controls which of the values dt and L are shown in the middle frame whereas the
second specifies the values which will be used in subseqaéntlations.

Click onPlot will produce a graphical plot of the Fourier coefficients Higs. A.12

and A.13 selected axial half wave numbers are plotted versagmferential full
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Plot

Print
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Datasheet
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Multiple tests
Reset REFERENCE
INVESTIGATOR

IMPDATA | RAWDATA | FOURIER

BUCKDATA

Imperfection ~ Test of shell: Arbocz_01
Investigator(s): 1. Arbocz , C.D. Babcock
Database Eptor(s)
SOURCE |  SHELLID | CALCULATEDDATA |
Single test

LAMLAYER

STRINGERS
RINGS

Abramovich KR6
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Abramovich_SN2
Abramovich_SN3
Abramovich_SN4
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batdorf 3564.9123
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Datasheet
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Multiple tests
Reset REFERENCE
INVESTIGATOR

IMPDATA | RAWDATA | FOURIER

BUCKDATA

Imperfecﬁon Test of shell: Arbocz_01 Plotting of the imperfection field
Datal Investigator(s): J. Arbocz , C.D. Babcock code = Arbocz_01
[ Bestfitted data |
SOURCE SHELLID CALCULATEDDATA

Single test | | I load: | no load ~|

View records & 3D plot

SN TERUNER WALLTYPE LAMLAYER plo

Recompute ¥ confiour.

Plot STRINGERS  wcial

Frint RINGS € circumferential

PLOT

code_shell A7

rovert 8912281
loverr  2.0000
badorf  3564.9123
P_classical 5145.1814
rovertstar 3087.3046

Figure A.7: Plotting of the imperfection field

waves and selected circumferential full waves are plottdws axial half wave

numbers.

Do these Fourier coefficients represent the real impedaatiell enough? The next

option is created to check this.

e Recompute

Once the Fourier coefficients have been selected, the ieqierh field can be re-
calculated using the Recompute option. SelecRegomputewill open an option
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Figure A.8: Contour plot of the imperfection field
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Figure A.9: Axial scan of the imperfection field

frame, Figure A.14.

The imperfection field can be recomputed for the same datdgpas measured dur-
ing the test, using optiomnumber of points in axial and circumferential direction

from databaseor it can be recomputed for a nodes used in an ABAQUS model.
For the latter also the ABAQUS node file needs to be suppli¢kdennput field left

of Browse HereBrowsecan be used to browse the user file system. The format of
a typical ABAQUS node file is shown below:
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Imperfection | .
bestfitted data Imperfection field belonging to code_test = Arbocz_01 ot views
Database P Eng = = P
Single test Number of circumferential scans : 15 circumferential scan number: h

Number of points per scan : 49
View records

p “ no- 4 FLIP LEFT -
Recompute 3.5
Pl W Positive Inward =]
ot
Print i scale with Factor il
2.5 [ cutof value 5
Export [
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Figure A.10: Circumferential scan of the imperfection field
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Single test Imax = 20
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Recompute
5 Akl show K = A
Plot
Print select L =0 .50
i
- =[ 40
- 1= 0 1 2 3 4 5 6 7 8 select K -
k=0 001760 -0.39149 -0.45552 0.09847 0.18981 0.10614 -0.04412 Fourier coefficients >=
Datasheet lr
Muliiole tests k=l 006689 -0.44606 -0.05179 0.05401 0.07750 0.01781 -0.04536 -0.04437 Shuw i
Reset k=2 -0.016450.02094 0.02068 0.02352 001088 0.02733 et
k=3 001764 -0.04268 -0.01022 001243 -0.02141
k=4 004029
B
kl
1= o0 1 2 3 4 s 6 7 8
k=0 -0.24057 0.15478 0.50990 0.13189 -0.16474 -0.07655
k=1 -0.34239 0.03618 0.12846 0.14277 0.03540 0.07567
k=2 -0.01478 -0.02075 -D.02555 -0.04234
k=3 001124 -0.03835-0.01187 0.01276 0.02787 0.01273 0.01286
k=4 0.01439

Figure A.11: Selected Fourier coefficients of half-waveicesepresentation

abrh wnN Bk

. 330000E+02

. 315339E+02

. 272659E+02

. 205752E+02

. 120563E+02
etc.

ecNoNeoNoNe

0. 000000E+00
0. 972692E+01
0. 185896E+02
0. 258004E+02
0. 307188E+02

0. 000000E+00
0. 000000E+00
0. 000000E+00
0. 0O00000E+00
0. 0O00000E+00

The first column is the node number. This number is followedh®/z, y and z
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Figure A.12: Selected Fourier coefficients of half-waveigegepresentation, selected

axial half wave numbers versus circumferential full waves
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Figure A.13: Selected Fourier coefficients of half-waveigegepresentation, selected

circumferential full waves versus axial half wave numbers

coordinate of this node. Notide:, y) refer to positions in circumferential direction
andz is the axial coordinate. Because the imperfections are elfas variations
in the local radius of the shell, the:, y) will be transformed into a cylindrical
coordinate system. The calculated imperfections will &leqiven as changes in

the radius. A typical output file looks like:

1,-0.12900E-02
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Figure A.14: Selection of Recompute opens an option frame

2,-0.13961E-02
3,-0.13442E-02
4,-0.48139E-03
5, 0.13288E-02
etc.

The option to align shell will modify all Fourier coefficiensuch thaB3 (0, 2) equals
zero. The rotation achieved by this operation is only usefaén working with
multiple shells and does therefore not have any influencengukar shells.

Note the optiorDeltacheckwhich can calculate the difference between the recom-
puted imperfection field and the best-fitted imperfectiotdfidUsing deltacheck
one can check the correspondence between the field by loakitige calculated
difference both numerically as graphically. The numerieallts are shown in Fig-
ure A.15. The graphical output is printed in Figure A.16. (&irthe plotted lines
are almost horizontal and equal to zero, the recomputedriege®ns match the
best-fitted value very well, meaning the selected Fouriedenand Fourier coeffi-
cients represent the shell and can therefore be used irefurtticulations. Notice
the deltacheckprogram cannot be used when imperfections are calculatedeon
nodes of an ABAQUS model, since those nodal point coordiaié not match
with the best-fitted data in almost all cases.

Export

The interface is capable of sending data shown in the middidaw to a text file
using theExport command. This file can be either a plain text file, or even piart o
an input deck for ABAQUS. Also Fourier coefficients to be régdSTAGS can be
exported in the correct format.
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Figure A.15: Calculation of the difference between reclamd and best-fitted imperfec-

tion in numbers
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Figure A.16: Plot of the difference between recalculated laest-fitted imperfection

Exporting Fourier coefficients The importance of including imperfections in the
cylinder model is well-known. As it seems very probable tingperfection shape
which are affine to the eigenmodes of a shell will play a mapte in the buckling
behaviour, often the eigenmodes corresponding to the blagskling loads are

calculated. The eigenmodes are placed on the cylinderg @sieasonable scale
factor. Two questions which arise immediately are:
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— What scale factor should be used for each of the eigenmodes?
— How do the eigenmodes compare to the real imperfections?

Stability analysis of thin-walled cylindrical shells is tha simple plug and play
subject. The experience of the structural engineer playisnaortant role: should
the maximum amplitude of the eigenmodes be half a wall tréskpor maybe one
wall thickness? Also it is known that a combination of two plad modes will
return a lower buckling load than both modes acting sepigrfg8].

If the opportunity exists, it is therefore preferable to tisereal imperfections. The
stability behaviour might not be so dramatic as the finitenglet calculations with

the eigenmodes corresponding to the lowest eigenvalueseXjported coefficients
first need to be selected by viewing them, after choosing thei€r button. Next

click on Export will show the screen shown in Figure A.17.
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Figure A.17: Export options for shell imperfections

Exporting imperfection shapeln the previous section the benefit of using the real
imperfections already have been discussed. Sometimeskasetd have the im-
perfections as deviations from the perfect cylinder indteba set of Fourier coef-
ficients. If the Fourier coefficients to be used are known tmgerfection field on
an arbitrary nodal mesh can be calculated. The interfaceszahan ABAQUS [53]
nodal file. It will start the RECOMPUTE program which will intn calculate the
imperfections in each of the nodes of the ABAQUS model.

Datasheet

This option will list the contents of all tables in the midaWendow. It will generate
a relatively long list of data, the top of which is shown in &g A.18. For the
tables containing the imperfections and the Fourier caefits only the first data
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are printed. Using thBrint in the left window will produce a LaTeX file containing
the tables in tabular format.
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recti |
Imperfection SGHHeE Database li
Datal
code_test Arbocz_01
Single test int_test 1 | Source
View records Date of the test 19680000
e code_invest 15
code_ref 15
Plot
code_shell AT
code_proc Arboczproc]
o i Codoiit st cal Abramovich_KR2
— Database contains imperfection dataly Abramovich_KR3
Multiple tests . N
Hotipe Ry, Database contains buckling data |y Abramovich_KR+4
Reset
e original_name Arbocz_01 Ab ich_KR5
SHELLID

code_shell AT

shell_type  |unstiffened isotropic Copper electroplated cylinder

fabr_tech shell is electroplated by making the mandrell theanode in a electric bath|
prep_tech see ref,

geo_dim_type [mm

load _dim_type|N
Abram

Abramovich_ST2
Abramovich_ST3
h_ST4

ang_dim_type [radians
shell_rad_bot |101.6000
shell_rad_top |101.6000

cone_ang
shell_| [203.2000
wall_thick 0.1140

Figure A.18: Top of the table listing of shell Arbad¥l

A.4.2 Multiple tests

Choosing the Multiple tests option yields a subset of conusaihe commands contain
selection commands, some statistical programs and thdatduplot, print and export
button.

e Constraint

One can select a number of tests on shells based on certaitiselcriteria, or
constraints, Figure A.19. One can select shells tested laytaic person, select a
test location, having a specified range of the radius, ousadver thickness ratio.
The figure shows all criteria which can be selected. The fipagebeen edited such
that all constraints are showed in the middle window. Notit the format of the
date contains eight digits:

19711216

This specifies a test performed on thdM& December in the year 1971. If the test
date is not known exactly the date will be specified as:

19710000

The selected set retrieved after clicki@gntinue can either be stored as a new set
or appended to an existing set.
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m rom (] Abra
Print shell radius of bottomn (mm) Abramoy
Export shell radius of top (mm)
Reset cone angle (degree)
shell length (mm)
wall-thickness (mm)
Rt
L/R
B atdorf Z-parameter
Test date
Lambda
Buckling stress/ Yiekd stress
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stringers e &
o yéd both Arboez_11
12
W e - & Arbocz_12
Arbocz_13
Arbocz_14
continue
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Figure A.19: Specifying constraints in selecting a set @fish

e Show selected tests

In the right window all sets of selected shells are showns fiassible to view the
tests within a set or remove a selection from the selectesj Begure A.20. If a

certain set is selected, a click on one of the tests in thistie overview of all the

records as seen in the Single test menu appear. Selecteddaedbe removed from
the selection list using the delete button.

Lower bound

The lower bound plots of all isotropic, orthotropic and anispic shells shown
in Chapter 2 are generated using tt@ver bound option. One can print all the
buckling loads from the data bank in one plot, however, itrisfgrred to first set
some constraints and plot the buckling load into the pigheregroup, Figure A.21.
The lower bound mentioned in the right frame originate frdra NASA SP-8007
report [1]. The formulas for the lower bound lines are liststEqgs. (2.6), (2.26) and
(2.39) in Chapter 2. The minimum and maximum values foritlaedy coordinate
set the limits for the horizontal and vertical axes respetyi The commandPlot
will save the lower bound plot as a postscript file on the ukeral machine.

e Fourier average
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Figure A.20: Selected sets of tests
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Figure A.21: Test data for axially compressed isotropidlshe

Using this option one can calculate the average imperfectdhe selected shells.

The menu appearing in the right window looks pretty much thme as the one
appearing when pressing Fourier in the Single test menu.reTisea difference
however, one can select if the shells need to be aligned dd¢ifier calculation of
the averages and the standard deviation. The aligning afhibls is discussed in
Chapter 7. In short it means that in the alignment processtik# will be rotated
such that the Fourier coefficiert(0, 2) will get a maximum value an& (0, 2) will
be zero. Furthermore one can select to print the averageedidbrier coefficients,
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Figure A.22 or the standard coefficients of the Fourier coieffits, Figure A.23.
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Figure A.22: Average of the Fourier coefficients of the Adihe
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Figure A.23: Standard deviation of the Fourier coefficieaftthe A-shells

The commandExport will save the Fourier coefficients. If export to Stags is se-
lected, the average Fourier coefficients will be saved ag avfiich can be included

in a Stags-A input deck. It is also possible to add or subtrectstandard deviation
to the the average coefficients. The results are stored onsies local machine,
Figure A.24. Wherplot is clicked first one needs to specify if a three-dimensional
plot is desired or a plot of an axial or circumferential schext in the right frame
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Figure A.24: Export average Fourier coefficients to a Stagsput deck

one needs to select if for the recomputing of the imperfectield the average
Fourier coefficients will be used or the average Fourierficiehts with a fraction
of the standard deviation added or subtracted to it, FiguibAAfter clicking on
Continue Figure A.26 is shown, which is the result of the progr&acompute

which was run in the background.
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Figure A.25: Selection of plotting recomputed imperfeotiging average or average plus

or minus standard deviation of the Fourier coefficients
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Figure A.26: Plot of recomputed imperfection using averagerier coefficients

e Histogram

This option is used to generate a histogram of either the lmgkoads of a se-
lection or of the Fourier coefficients, Figure A.27. In thestbgram one can print
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Imperfection Select what to plot
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© Fourier coefficients

Single test Continue

Multiple tests

Constraint

Figure A.27: Choose between histogram of buckling loadsoarrier coefficients

normal, lognormal, Weibull or truncated normal distritmstilines. As an example
the histogram of the buckling load of the isotropic shell®dez 01 to Arbocz07

is printed. The number of intervals can be selected, it defao 10. If the number
of shells in a selection set is small, it is difficult to constrsatisfactory distribution
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lines. The parameters needed to construct the varioushdistm lines are easily
calculated by clicking on the 'show stat parms’ button. |gdime values in Fig A.29
the normal line distribution printed in Fig A.28 is found.istpossible to calculate
the validity that a distribution is according to a certairs@sption. For this the
Anderson-Darling test has been constructed, see sectlob. 6The results of this
test, shown in Fig A.30, one can generate by clicking on thhgoodness of fit

test
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Figure A.28: Histogram of the buckling loads of the seledeshells

o Reliability

From the histogram a reliability plot can be constructedckdhg on theReliabil-
ity first will open a window on the right side where the differemgtdbutions of
the buckling load can be selected, Figure A.31. Neamntinue will produce the
actual reliability plot in the mid frame, Figure A.32. Hefeetcontinuous line is the
reliability if the buckling loads of the selected shells tims case the A-shells, are
normally distributed. The plus signs show the actual noized|buckling loads of
the A-shells, their values found on the horizontal axis. fitpere shows the normal
distribution assumption cannot be used since more shdlpse than statistically
expected: the measured values should lie on or above thiébdigin line.
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Figure A.29: Statistical parameters of the buckling loafithe selected A-shells related
to the histogram
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Figure A.30: Anderson-Darling test results of the bucklingds of the selected A-shells
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Figure A.31: Reliability: selection of different distribans for the buckling load of the

selected A-shells
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Appendix B

Definition of the Stiffener Parameters

Definition of the stiffener parameters used in Eq.(2.30);[41

CcC =

~

= 1410 — B+ p)bix
= 24+, + 1, + Pr(Gixe + Gxa)

~

= 1+4+n0— LB+ p1)Cx2
= (1-v)B01+ m)

A= lﬁ(l — ) ”]
(1- V2)6A(1 + p12)
VBXl%

—B (1 + p2)x1 + (1 + 1) x2] %

.~ 2c
V5X27

3(1—v?)

and the following parameters are used

To1
To2
Tty
Tta

G

dsD
d,D
GJ,
dsD
GJ,
d,D
EA.e,
dsD

and 101 = I, + Aseg

and 102 = 1, +AT€72”
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EA.e,
G = iD
o= (-
= (-3
X1 = (1—1/2)6%“;68
X2 = (1—1/2)%67,
ﬁA _ 1

L+ ) (14 p2) —v2

The torsional stiffness can be calculated using
J, = Bed for e > dy
J, = ﬁdlcf for di > ¢

J, = ﬁCng for Cy > dy
J, = 6d20§ for dy > o
where
256 >

1
Z Z m2n2[(b/a)?m? + n?]

m=1,3,5 n=1,3,5

Definition of the coefficients used in Eq.(2.44) [31]

2 2
> _(pmn Rt o _ 2Rt (1
O = (mL + RTK) 2 Bn=mn"5 (R)
2 T _n Rt

ap_(mL RTK) 2

Varmn = Ay, + (247, + Agg)ag 57 + A, 53,

YA mm = 2A%602 B, + 2A% 00 32

Virpn = Azza + (247, + Afg) oy B + AL S,
Varpm = 26a36n + 245500,

”_V%*,m,n = B;lam + (Bikl + B22 - 2356)041znﬁi + Bﬁﬁi
VB mn = (2356 - Bgl)a%ﬁn + (QBTG - Béz)amﬁi
VB pm = Bglai + (B, + B3, — 2BEG)Q§BZ + B0,
Ve pn = (2835 — B&)O‘Zﬂn + (2Bjs — BE&E)O‘pﬂZ
Voemm = Diic, +2(Diy + 2Dgs)a, 6% + D3y 3,
Vbemmm = 4Di60, 00 + 4D50 6,

”_Yf)*,p,n = DEO‘; + Q(DE + QDEG)%%@% + D§2ﬁﬁ
YDrpm = 41_){6@;’,5” + 4Djs00, 32

(Rivello [89], page 197)
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where
Al = BtA; B}, = (2¢/t)B}; ; D;; = (4¢*/Et*) Dy (B.37)

and
(AT =[A7"]; [B"] = ~[A7"][B] ; [D*] = [D] - [B][A™'][B] (B.38)

The coefficients in the matriced|, [B] and[D] have been defined in Eq. (2.36).
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Appendix C

Layout of the Imperfection Data Bank

The data bank contains two sets of tables. The first set eceniiaiormation on the tests
and on the shells. The second set consists of data storeagdairsession behind the
interface to the imperfection data bank.

C.1 Tables containing information on the shells

The data in the database is stored in several tables, eatdiriog information of a shell
which has some direct relation. Following the tables willdigcussed in detalil.

The main table is callesburce The primary identifier in the table is the field cathest.
Often the value of this field is the original test name. Somes different tests have the
same name, then one has to choose another name since trdetasier has to have a
unique name. Using database terminology: the field dedeis a primary key. An extra
field has been created to store the original test name, ild.'dieginal_name’.

In the record links to other tables are seen. Field ced¢ is found in six tables.
These could have been combined into one large table, howemey tests contain either
buckling data or imperfection data. Putting them into sefstables saves storage if the
data does not exist. The fields bdoip and boalbuck are logicals, with values either 'y’
or 'n’. They refer to the tablesnpdata andbuckdata. If set to 'y’ these tables exist, and
data for the test is available.

Field codeshell links to tableshellid, codeproc links to tabletegproc, codet_inst
to tabletinst and coderef to tablereference Finally codeinvest links to tabldinst. In
tableshellid the geometrical data of the shell is stored. In theory thetdccbe several
tests, thus a series of recordsSourceall linking to the same record i&hellid This
would either mean a set of similar shells would have beenywred, all having the same
specifications (however the wall thicknesses would cdstaiot be the same for each
shell, leading to an extra entry in tlsbellid table), or a series of tests could have been
performed on the same shell. The latter case does not exis¢ idata bank either since
all buckling behaviour of the shells in the data bank havenshplastic deformation, an
inreversible process. The table has been linked to tablitype via key codewalltype.

In Walltypemore details are found on the shell wall. Information on thetenal is
stored here, as well as details on the stiffening of the siéle number of stringers in
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axial direction, the number of rings, also details on the posites used if any. The table
links to stringers, rings, lamlayer if necessary.

Several methods have been and are still used to measurepbdéattions of cylindri-
cal shells. Either the distance with respect to a refereeckegt shell is used, or the data
just contain a set of x,y,z coordinates. The data in the @datls stored using the first
method. As most published figures of imperfection data sitbesmperfections relative
to the wall-thickness, the data is stored dimensionless.

The imperfection data are stored in 3 different ways, i.eraas data, as best-fitted
data and as Fourier coefficients used in the descriptionenintiperfections using a half-
wave cosine or a half-wave sine representation. The mehsmgerfection data before
the best-fit routine has been applied to them are called thelata. The raw data already
have been corrected for wrong data points, further missaigtp at the location of access
panels or other holes are substituted for by so-called 'magmbers’. The 'magic num-
ber mostly is taken as 99.999 being much larger than thed@tal. Next to the geometric
and material data also some shell parameters are storepigcabpart of the database.
These parameters like for instance ¢ ratio, theL /R ratio and the modified Batdorf
Z-parameter are often used to place the shell in a family dissh@®ne can use the pa-
rameters to select sets of shells from the data banknpaata andrawdata information
on the test setup of the measurements are stored. The meakieeself are stored in
tablecfile (rawdata) andfile (best-fitted data). The Fourier coefficients connectedéo th
best-fitted data are found faurier refered to by field codéourier. Tablebfdata contains
some results of the program BESTFIT. These data will not leel iy any of the codes
available for the designer. It shows, however, some restittse best-fit routine, yielding
some information on the quality of the test setup.

The buckling load is defined as the maximum load the shellpaloke to carry before
it collapses. After collapse the shell will deform signifitly and cannot perform the task
it has been designed for. Using this definition only one bingkload exists. Sometimes
it can happen that during the loading of the shell some logekles appear, which do not
affect the load carrying capability. One should make a nbthis, however, the load will
be increased until complete failure. The measured bucktiag will be stored in table
buckdata using N or Ib depending on the convention used. The dimenssed for a
specific shell is stored in tabhellid.

In tableinbuckdata data can be stored on the material behaviour. At the moment th
information here saved is not used.

A very useful table for the data bank interface#@culateddata For each shell some
often needed parameters are stored. They are used for lowmailplots for instance.
Some tables hardly need any explanatiowestigator contains the names of the people
who performed the testeqproc describes the instrumentation usémhdtype contains
information on different types of loadings. tmst information is stored on where test
was done and ineferencea link to the literature is stored. Notice that the names ef th
fields in thereferencetable are similar to the parameters used in the biblograplyes
of LaTeX [90] documents.
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C.2 Tables containing information on a session

The next set of tables is used by the data bank interface, tanel temporary data of
the work session of the interface. Basic information on theges of Fourier coeffi-
cients to use, or also recomputed imperfection field of a enahell. The information

is also kept after logging out of the system. The latter igegoonvenient since one can
restart a session without loss of data. Currently 4 useegabxist. i.e.$user.deltafile,
$userrecompute, $user selectedand$user userstat Notice that the username is part
of the name of these table. Tahigerid contains all users allowed to access the data bank.

C.3 Maintenance

The maintenance of test data is an important matter. It isobiiee reasons for creating
the imperfection database. Already mentioned was the sitiity of the data for en-
gineers without digging into piles of old paper, outdateuets or just inaccessible data.
Maintenance of the database means keeping the data agalbtbie time, fixing possible
errors and extending it. No special tools have been writterciiecking the correctness
of the data or the consistancy of the data

The user manual of the interface to the data bank is listedopefdix A. Structural
engineers will have access to the data bank via this interfety. To modify data and
enter new data, some special tools have been written whech@ressible to users with
administrator rights only. Apart from this tools it is ofteonvenient to update the data
bank using the generic SQL queries.

The reason for using MySQL [61] has also been a maintenasge.ist is available on
a lot of different computer platforms, further the data candomped in human readable
form. This means that if in time the software would get outdatupgrading should be
possible.

The data bank content and the interface is automaticallkuygeed each day. The
data on the computer is protected against any intrudersglimputer viruses or unau-
thorized people by means of the most recent firewalls.

C.4 Example

In 1975 Rosen and Singer [21] performed a number of expetisramnintegrally stiffened
cylindrical shells. A sample of tableuckdata for the first shell is shown in Table C.1.
The shell referred to as 'Singétosen01’ (field: codetest) in the data bank, was axially
compressed (fields: codgpe.load, typeload). The shell collapsed when a load of al-
most26500 Newton (field: obsebuckload) was applied. The buckling pattern showed
1 (K) half-wave in axial direction and 8 (L) full waves in cumferential direction. No
extra information was available as to yield stress or teipee to name a view which
can be specified in tabiabuckdata, therefore the last entry (field: code_buck) is left
blank. Further the load is also stored in non-dimension@hfasing\ and \}%,,. Notice
that the labeflambda” is used in the table instead afbecause no Greek letters are al-
lowed as label names in the data bank. The first terng equal to the experimental load
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Field Value

codetest SingerRosen01
codetypeload 1

typeload axial compression
t_bc Clamped; C4
obserbuckload 26477.955
lambda 1.4790
lambdaCkl 1.6173

K 1

L 8

codein_buck

Table C.1: Tablduckdata of stringer stiffened shell [21]

divided by the classical buckling load for isotropic shellsng membrane prebuckling,
EqQ. (2.2). Since stringers and rings normally will incretfse buckling load and improve
the buckling behaviour, this is normalized once more using the calculated lowest eigen-
value \%,, of the linearized stability equations of the stiffened §h8ince for isotropic
shellsA\%,, = 1.0, the same table for storage of buckling data can be useddtojsc,
orthotropic and anisotropic shells.



Appendix D

Report of testdatafile on test Arbocz02

All data available on a specific experiment is stored in thelgiase. The information
is divided into parts, stored in a number of tables. The austef database for the test
performed by Arbocz in 1968 is printed in this appendix. Titeiface to the imperfection
database also has an option to print this. Of each test ahdgtasan be printed.

Report of testdatafile on test Arba€2

source
codetest Arbocz02
int_test 2
Date of the test 19680000
codeinvest 15
coderef 15
codeshell A8
codeproc Arboczproc
codet_inst cal
Database contains imperfecy
tion data
Database contains bucklingy
data
original.name A-8

161



162

Report of testdatafile on test Arba€2

shellid

codeshell A8
shelltype unstiffened isotropic Copper electroplated cylinder
fabr_tech shell is electroplated by making the mandrell the amode elec-
tric bath
preptech see ref.
geadim_type mm
load dim_type N
angdim_type radians
shellLrad bot 101.6000
shellrad.top 101.6000
coneang
shelll 203.2000
wall_thick 0.1179
codewalltype wa2
teqgproc
codeproc Arboczproc
instrumentation see ref.
Test procedure see ref.

investigator

codeinvest
Investigator(s)

15
J. Arbocz , C.D. Babcock

reference
coderef 15
type Technical Report
author Arbocz J. and Abramovich H.
Title The initial imperfection data bank at the Delft Unigéy of Tech-
nology, Part I.
booktitle
number LR-290
pages
month
year 1979
address Delft, The Netherlands
institution Faculty of Aerospace Engineering, Delft Unsigy of Technol-

ogy
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walltype impdata
codewalltype \(va2 . codetest Arbocz02
descr isotropic imo_dim.tvoe
materialtype  copper Ar %)Lint_ yp 49
iso E 104800.0000 nr_circ int 15
s . 8‘3388 startaxdir  0.0000
’ rad_pick_up 0.0000
ortho.E22 0.0000 bool bf N
ortho G12 0.0000 ksi1barc 0.0000
ortho.nul2 0.0000 ksi2barc 0.0000
:Zm-'riyl-;d e 0 ksi1bars 0.0000
nnriay ksi2bars 0.0000
stringerid Kmin 0
nr_stringers 0 Kkmax 0
str_spacing 0.0000 Imin 0
fing.id Imax 0
nr_rings 0
r_spacing 0.0000 shelll_haran 177.8000
calculateddata
tinst codeshell A8
. rovert 861.7472
icnosdtita_llrrrlset Cgrlslltech loverr 2.0000
. batdorf 3446.9890
focjrt]'ton EassaAde”a P_classical 5539.7152
y - rovertstar 2985.1800
rovertuni 861.7472
lamlayer stringers rngs
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Report of testdatafile on test Arba€2

rawdata
codetest Arbocz02
dirname Caltech/A-8
cfile a8c
ffile asf
fileck a8hc
filesk a8hs
fileak
filewk
codefourier 8

buckdata
codetest Arbocz02
codetypeload 1
type_load axial compression
t_bc SS-3
obserbuckload 3673.7800
Remarks
lambda 0.6632
lambdaCkl 1.0000
K
L

codein_buck
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Amivas
Automatisch Meetsysteem voor het bepalen van de Initigferfecties VAn Schaal-
constructies (Initial imperfection survey instrumentatfor thin-walled shells). 36,
40, 52,121

ARIANE
Europe’s large launcher, capability for larger payloads8,86, 43—45, 53, 60, 64,
80, 81,121

BESTFIT
Program which calculates the best fitted shell from a datagtbtthe measured
imperfections. 33, 52, 56, 59-61, 63, 64

Cumulative distribution function
A function of a continuous random variable which yields thelgability that the
variable takes a value less than or equal to x. 93-95

DELTACHECK
Program which subtracts the recalculated imperfectior fadl a shell from the
original best fitted shell. The result is used to check thalitglof the recalculated
imperfection field. 60, 61, 63, 64, 140

Export
Export data to a file on the local computer. File will contampierfection data,
Fourier coefficients, or overview of the data stored for ac#petest. 140

Fortran
Formula Translator: The computer language used by engineserd already in the
sixties ( Fortran 1V) and probably will be used in the next alges (Fortran 90/95
... 2020). 72

Geometric imperfections
Deviation of the mid-surface of a thin-walled shell withpest to a perfect cylinder
orcone. 1, 52, 55, 64, 68, 122
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HARMONIC
Program which calculates the Fourier coefficients usedérturier series describ-
ing the measured imperfections. 57, 60, 64

HTML
Hypertext Markup Language. 72

Karhunen-Loéeve
Karhunen-Loeve expansion is used to implement impedastin shell buckling
analysis. 57

LVDT
Linear Voltage Displacement Transducer. 37, 43—46, 48549,

Magic numbers
Numbers which replace missing or incorrect data in the irffigotion data if inter-
polation will not be possible. 33, 52, 158

Manufacturing signature
Imperfections in a shell which are specific for a producticetimod. 33, 60, 77, 80,
122

Multiple tests
Selection of a number of tests. 132

MySQL
Open source database software, originally developed ind8menow owned by
Sun Microsystems. 69, 72, 81, 159

Phantom imperfections
Deviations in the measured imperfections caused by theaga&lof the shell using
rollers. 46, 52, 53, 121

PHP
Hypertext Preprocessor. 72

Probability density function
A function of a continuous random variable which can be irdégg to obtain the
probability that the random variable takes a value in a givéerval. 87-89, 98,
100, 101

RDBMS
Relational Database Management System. 69

RECOMPUTE
Program which recalculates the imperfection field of a siighg a selected number
of Fourier coefficients. 60, 61, 64, 136, 142
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Single test
Selection of a single test. 132

SQL
Structured Query language, language used in data banksefmirdy, querying,
modifying and controlling data. 69, 159

STAGS
STructural Analysis of General Shells: program which i®ided for analysis of
shell structures. 107, 109, 119, 140

Stonivoks
Statistisch ONderzoek naar de invloed van Initiele VOrmovierheden op de Knik-
last van Schaalconstructies (Statistical research irgartfluence of initial defor-
mations on the buckling load of shells). 35-37, 39, 52, 121

Trespa
A flat panel based on thermosetting resins, homogeneouslfpreed with wood
fibres and manufactured under high pressure and temperdture

Univimp
UNIverseel instrument voor het bepalen van initiele IMBeties van schaalcon-
structies (Universal instrument for the survey of initiaperfections of thin-walled
shells). 36, 39, 52, 121

VEGA
Europe’s small launcher, which complements the perforreaange offered by the
ARIANE family of launchers with a capability for smaller papds. 8, 32, 36,
43-47,51, 53, 63
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