

CodeWarrior®

Targeting Embedded
PowerPC

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the most recent information.

Revised: 991129-CIB

Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors.
All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric Blvd., Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support cw_emb_support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe Goto: Metrowerks

Table of Contents
1 Introduction 11

Read the Release Notes! 11
Solaris: Host-Specific Information. 12
About This Book . 12
Where to Go from Here 15
Technical Support. 18
Metrowerks Year 2000 Compliance 19

2 Getting Started 21
System Requirements 21
Installing CodeWarrior for Embedded PowerPC 24
CodeWarrior Compiler Architecture. 25
Development Tools for Embedded PowerPC 25

CodeWarrior IDE. 26
CodeWarrior Compiler for Embedded PowerPC 26
CodeWarrior Assembler for Embedded PowerPC. 27
CodeWarrior Linker for Embedded PowerPC 27
CodeWarrior Debugger for Embedded PowerPC 28
MetroTRK. 28
Metrowerks Standard Libraries 29

The Development Process with CodeWarrior 29
Makefiles . 30
Editing Code . 31
Compiling. 31
Linking . 31
Debugging . 32
Viewing Preprocessor Output 32

3 Creating a Project for Embedded PowerPC 33
Types of Projects . 33
Project Stationery . 33

Creating a Project 34
Project Stationery Targets 37

Working with a Project 38
Targeting Embedded PowerPC PPC–3

4 Target Settings for Embedded PowerPC 63
Target Settings Overview 63
Settings Panels to Optimize Code 65
Settings Panels for Embedded PowerPC 66

Target Settings . 67
EPPC Target . 70
EPPC Assembler . 75
Global Optimizations 78
EPPC Processor . 79
EPPC Disassembler 87
EPPC Linker . 90
EPPC Target Settings 101
Remote Debugging Options 114
EPPC Exceptions 116
Connection Settings 118

5 Debugging for Embedded PowerPC 123
Supported Debugging Methods 123
Setting Up for Remote Debugging 126

Configuring Your Embedded PowerPC Board 127
Connecting with a Debug Monitor 127
Connecting with CodeTAP 132
Connecting with PowerTAP 136
Connecting with Wiggler, Hummingbird, or Raven BDM . . 140
Connecting with Raven COP. 142
Connecting with Abatron BDI2000 143

Special Debugger Features for Embedded PowerPC 147
Displaying Registers 147
EPPC Menu . 150
AMC Data and Instruction Cache Windows 152

Register Details Window 155
Using MetroTRK . 157

MetroTRK Overview 157
MetroTRK Baud Rates 158
MetroTRK Memory Configuration 158
PPC–4 Targeting Embedded PowerPC

Using MetroTRK for Debugging. 162
Debugging ELF Files 162

Customizing the Default XML Project File 163
Debugging an ELF File 164
ELF File Debugging: Additional Considerations 165

6 C and C++ for Embedded PowerPC 167
Integer Formats . 168

Embedded PowerPC Integer Formats 169
Embedded PowerPC Floating-Point Formats 170
AltiVec Vector Data Formats 170

Data Addressing. 171
Calling Conventions 174
Register Variables . 174
Register Coloring Optimization 175
Generating Code for Specific Processors 177
Pragmas . 177

force_active. 179
function_align . 179
incompatible_return_small_structs 180
incompatible_sfpe_double_params 180
interrupt . 180
pack . 181
pooled_data . 182
section . 183

Linker Issues for Embedded PowerPC 189
Linker Generated Symbols 190
Deadstripping Unused Code and Data 191
Link Order . 192
Linker Command Files 192

__attribute__ ((aligned(?))) 203
Variable Declaration Examples 203
Struct Definition Examples 204
Typedef Declaration Examples 204
Struct Member Examples 205
Targeting Embedded PowerPC PPC–5

7 Libraries and Runtime Code for Embedded PowerPC 207
MSL for Embedded PowerPC 207

Using MSL for Embedded PowerPC 208
Using Console I/O for Embedded PowerPC 209
Allocating Memory and Heaps for Embedded PowerPC. . . 212

Runtime Libraries for Embedded PowerPC 212
Board Initialization Code 214

8 Inline Assembler for Embedded PowerPC 215
Working With Assembly 216

Assembler Syntax for Embedded PowerPC 216
Special Embedded PowerPC Instructions 220
Support for AltiVec Instructions 220
Creating Labels for Embedded PowerPC Assembly 221
Using Comments in Embedded PowerPC Assembly 221
Using the Preprocessor in Embedded PowerPC Assembly . . 222
Using Local Variables and Arguments. 222
Creating a Stack Frame in Embedded PowerPC Assembly . . 223
Specifying Operands in Embedded PowerPC Assembly . . . 224

Assembler Directives 230
entry . 230
fralloc. . 231
frfree . 231
machine. . 232
nofralloc . 234
opword . . 234

Intrinsic Functions . 234
Low-Level Processor Synchronization. 235
Floating-Point Functions 236
Byte-Reversing Functions 236
Setting the Floating-Point Environment 237
Manipulating the Contents of a Variable or Register. 237
Data Cache Manipulation 238
Math Functions . 239
Buffer Manipulation 240
PPC–6 Targeting Embedded PowerPC

AltiVec Intrinsics Support 240

9 Troubleshooting for Embedded PowerPC 243
No Communications with Target Board. 243
Downloading Code Fails or Crash When Code Runs 244
Debugger Window Does Not Appear. 245
Common Error Warnings for CodeTAP and PowerTAP 245
Targeting BDM Devices FAQ 246

10 Using a CodeTAP Debugging Device 249
CodeTAP Highlights 250
CodeTAP Technical Support. 251
CodeTAP Requirements 252
Target Settings for CodeTAP 252
Setting Up the CodeTAP Emulator 254
Updating the CodeTAP Firmware 255
Debugging Using CodeTAP 255
Resetting the Processor 255

11 Using the PowerTAP 6xx/7xx Debugging Device 257
PowerTAP Highlights 258
PowerTAP Technical Support 259
PowerTAP Requirements 260
Target Settings for PowerTAP 260
Setting Up the PowerTAP Emulator 262
Updating the PowerTAP Firmware. 263
Resetting the Processor 263
Operational Notes . 264

Recoverable Interrupts 264
Interrupts and the Machine Status Save/Restore Registers . 265

A Flash Programmer 267
What You See . 267

Console . 268
Status and Errors 268
Help. 269
Targeting Embedded PowerPC PPC–7

Preferences . 270
Using the Flash Programmer 273

Initialize the Programmer 274
Specify a Flash Image 274
Send the Flash Image 274

Command File Syntax 275
Write Register Commands 275
Read, Write and Save Memory Commands 277
Loop Commands. 282
Action Commands 284
Wait and Abort Commands 284
Print Commands 285
Miscellaneous Commands 286

B Debug Initialization Files 289
Using Debug Initialization Files 289

Creating Stand-alone Code 290
Initializing Memory 290
Enabling Debug Support 291
Creating a Debug Initialization File 291
Disabling the Software Watchdog Timer 293
Using Emulator Operational Settings 293

Proper Use of Debug Initialization Files 294
Debug Initialization File Commands 294

Debug Initialization File Command Syntax 296
CodeTAP Commands 296
PowerTAP Commands 297
Macraigor Wiggler Commands. 298
Abatron BDI2000 Commands 299
AMCMemReadDelayCycles 299
AMCMemWriteDelayCycles 300
AMCMemWriteVerify 300
AMCRegWriteVerify 300
AMCTargetInterfaceClockFreq 301
AMCTargetSerializeInstExec 301
PPC–8 Targeting Embedded PowerPC

AMCTargetShowInstCycles. 301
initregs . 302
polltime . 302
setMMRBaseAddr. 303
sleep. 303
writedcr . 304
writemem.b . 304
writemem.l . 304
writemem.w . 305
writemmr . 305
writereg . 306
writespr . 306
writeupma . 307
writeupmb . 307

C JTAG Configuration Files 309
Generating JTAG Configuration Files 309

D Memory Configuration Files 313
Command Syntax . 313
Memory Configuration File Commands 314

reservedchar . 314
range . 314
reserved . 315

E Tested Jumper and Dipswitch Settings 317
Cogent CMA102 with CMA 278 Daughtercard. 318
IBM 403 EVB . 319
Motorola MPC 505/509 EVB 319
Motorola 555 ETAS 320
Motorola Excimer 603e 321
Motorola Yellowknife X4 603/750 321
Motorola MPC 8xx ADS 322
Motorola MPC 8xx MBX 323
Motorola MPC 8xx FADS 324
Embedded Planet RPX Lite 8xx 325
Targeting Embedded PowerPC PPC–9

Motorola Maximer 7400 326
Motorola Sandpoint 8240 326
Motorola MPC 8260 VADS 327
Phytec miniMODUL-PPC 505/509 328

F Command-Line Tool Options 329
Embedded PowerPC Project Options 329
Embedded PowerPC Options 331
Embedded PowerPC Disassembler Options 333

Index 337
PPC–10 Targeting Embedded PowerPC

1
Introduction
This manual shows you how to install and use CodeWarrior to de-
velop software for Embedded PowerPC systems.

This chapter provides an introduction to the manual and CodeWar-
rior for Embedded PowerPC, it contains the following sections:

• Read the Release Notes!

• Solaris: Host-Specific Information

• About This Book

• Where to Go from Here

• Metrowerks Year 2000 Compliance

Read the Release Notes!
Before you use CodeWarrior or a particular tool, you should read
the release notes. They contain important last-minute information
about new features, and technical issues or incompatibilities that
may not be included in the documentation.

The release notes directory is always included as part of a standard
CodeWarrior installation. You can also find them on the CodeWar-
rior for Embedded PowerPC CD, in the Release Notes folder.
Targeting Embedded PowerPC PPC–11

Introduction

Solaris: Host-Specific Information

Solaris: Host-Specific Information
The Solaris hosted tools are functionally equivalent to the Windows
hosted tools, with the following minor differences:

• No Wiggler or Hummingbird support—because the opera-
tion of the Macraigor Systems’ Wiggler depends on the paral-
lel port on PC compatibles.

• Connection Settings panel changes—The Port option in the
Connection Settings panel uses Unix communication port
conventions.

• Different baud rates apply for MetroTRK when running So-
laris 5.1. See “MetroTRK Baud Rates” on page 158 for a table
of baud rates.

• The flash utility, PPCComUtil, has not been ported to Solaris;
therefore flashing that does not use project stationeries that
include a Burn ROM target must be done on a Windows
computer.

When using Solaris, MetroTRK projects that use PowerTAP
(from Applied Microsystems Corporation, Inc.) can self-
flash. However, MetroTRK projects that use Wiggler do not
self-flash for Solaris. Because PPCComUtil is not available for
Solaris, you must use a Windows computer to flash Me-
troTRK projects that use Wiggler.

• All file path names are shown in DOS format. Solaris path
names are identical to the DOS path, except a forward slash
should replace the back slash.

About This Book
CodeWarrior is a multi-host, multi-language, multi-target develop-
ment environment. Most features of CodeWarrior apply no matter
what platform target you are programming for. However, each tar-
get has its own unique features. This manual describes those unique
features to programming for Embedded PowerPC.

General features of CodeWarrior are described in other manuals.
For a complete understanding of CodeWarrior, you must refer to
PPC–12 Targeting Embedded PowerPC

Introduction

About This Book

both the generic documentation and the documentation that is spe-
cific to your particular platform target, such as this manual.

The documentation is organized so that various chapters in this
manual are extensions of particular generic manuals, as shown in
Table 1.1. For a complete discussion of a particular subject, you may
need to look in both the generic manual and the corresponding
chapter in this Targeting manual.

Table 1.1 CodeWarrior documentation architecture

For example, to completely understand the C/C++ compiler, you
need to know the information in the C Compilers Reference (which
covers the C/C++ front-end compiler) and the information in the C
and C++ for Embedded PowerPC chapter in this manual, which
covers the back-end compiler that generates target-specific code.

Table 1.2 lists every chapter in this manual, and describes the infor-
mation contained in each.

Table 1.2 Contents of chapters

This chapter... Extends...

Target Settings for Embedded PowerPC IDE User Guide

Debugging for Embedded PowerPC IDE User Guide

C and C++ for Embedded PowerPC C Compilers Reference

Libraries and Runtime Code for Embed-
ded PowerPC

MSL C Reference
MSL C++ Reference

Inline Assembler for Embedded Pow-
erPC

Assembler Guide

Chapter Description

Introduction This chapter.

Getting Started Installation and setup instructions
and an overview of CodeWarrior.
Targeting Embedded PowerPC PPC–13

Introduction

About This Book

Creating a Project for Em-
bedded PowerPC

The kinds of projects you can build
and how to build them.

Target Settings for Embed-
ded PowerPC

How to control the compiler, linker,
and debugger for this platform tar-
get.

Debugging for Embedded
PowerPC

Includes details on debugger setup
for embedded systems.

C and C++ for Embedded
PowerPC

Details of the back-end compiler for
Embedded PowerPC development.

Libraries and Runtime
Code for Embedded Pow-
erPC

Libraries provided with CodeWar-
rior for this platform target.

Inline Assembler for Em-
bedded PowerPC

Describes support for inline assem-
bly language programming built
into the CodeWarrior compilers.

Troubleshooting for Em-
bedded PowerPC

Troubleshooting information spe-
cific to this platform target.

Using a CodeTAP Debug-
ging Device

Information relevant to using a Co-
deTAP debugging device with
CodeWarrior.

Using the PowerTAP 6xx/
7xx Debugging Device

Information relevant to using a
PowerTAP debugging device with
CodeWarrior.

Flash Programmer How to use the Embedded Pow-
erPC utility to burn flash images to
your embedded PowerPC board.

Debug Initialization Files Discusses debug initialization files
and the commands that you can use
in the files, including command syn-
tax.

JTAG Configuration Files Discusses JTAG files and how to
clone them.

Chapter Description
PPC–14 Targeting Embedded PowerPC

Introduction

Where to Go from Here

Where to Go from Here
All the manuals mentioned here are available as part of the
CodeWarrior documentation included with your product.

If you are new to CodeWarrior:

• Look for the CodeWarrior core tutorials in the CodeWar-
rior Documentation directory.

• Read “Development Tools for Embedded PowerPC” on page
25.

For everyone:

• For general information about the CodeWarrior IDE and de-
bugger, see the IDE User Guide.

• For information specific to the C/C++ front-end compiler,
see the C Compilers Reference.

• For information on Metrowerks’ standard C/C++ libraries,
see the MSL C Reference and the MSL C++ Reference.

• For general information on MetroTRK and how to customize
MetroTRK to work with additional target boards, see Me-
troTRK Reference.

Memory Configuration
Files

Discusses the memory configuration
file commands, including com-
mand syntax.

Tested Jumper and
Dipswitch Settings

Provides tested jumper and
dipswitch settings for a number of
supported target boards.

Command-Line Tool Op-
tions

Describes the command-line tool
options that are specific to
CodeWarrior for Embedded Pow-
erPC.

Chapter Description
Targeting Embedded PowerPC PPC–15

Introduction
Where to Go from Here
For general information on Embedded PowerPC programming:

To learn more about the Embedded PowerPC Application Binary
Interface (PowerPC EABI), refer to the following documents:

• System V Application Binary Interface, Third Edition, published
by UNIX System Laboratories, 1994 (ISBN 0-13-100439-5).

• System V Application Binary Interface, PowerPC Processor Sup-
plement, published by Sun Microsystems and IBM (1995) and
available on the World Wide Web at the following address:

http://www.mot.com/SPS/ADC/pps/download/8XX/
SVR4abippc.pdf

NOTE: The pages of the preceding PDF file are in reverse order.

• PowerPC Embedded Binary Interface, 32-Bit Implementation.,
published by Motorola, Inc., and available on the World
Wide Web at the following address:

http://www.mot.com/SPS/ADC/pps/download/8XX/
ppceabi.pdf

The PowerPC EABI specifies data structure alignment, calling con-
ventions, and other information about how high-level languages
can be implemented on a Embedded PowerPC processor. Code gen-
erated by CodeWarrior for Embedded PowerPC conforms to the
PowerPC EABI.

The PowerPC EABI also specifies the object and symbol file format.
It specifies ELF (Executable and Linker Format) as the output file
format and DWARF (Debug With Arbitrary Record Formats) as the
symbol file format. For more information about those file formats,
you should read the following documents:

• Executable and Linker Format, Version 1.1, published by UNIX
System Laboratories.

• DWARF Debugging Information Format, Revision: Version 1.1.0,
published by UNIX International, Programming Languages
SIG, October 6, 1992, and available on the World Wide Web
at the following address:

http://www.esofta.com/pdfs/dwarf.v1.1.0.pdf
PPC–16 Targeting Embedded PowerPC

Introduction
Where to Go from Here
• DWARF Debugging Information Format, Revision: Version 2.0.0,
Industry Review Draft, published by UNIX International,
Programming Languages SIG, July 27, 1993.

For information on Applied Microsytems Corporation’s
CodeTAP and PowerTAP:

• Emulator Installation Guide, CodeTAP for the Motorola
MPC8XX, published by AMC (Applied Microsystems Corpo-
ration).

• Emulator Installation Guide, PowerTAP for PowerPC Processors,
published by AMC.

For information on AltiVecTM:

To learn more about AltiVec, see:

• AltiVec Technology Programming Interface Manual, published
by Motorola, Inc., and available on the World Wide Web at
the following address:

http://www.mot.com/SPS/PowerPC/teksupport/
teklibrary/manuals/altivecpim.pdf

• AltiVec Technology Programming Environments Manual, pub-
lished by Motorola, Inc., and available on the World Wide
Web at the following address:

http://www.mot.com/SPS/PowerPC/teksupport/
teklibrary/manuals/altivec_pem.pdf

• PowerPC Advance Information MPC7400 RISC Microproces-
sor Technical Summary, published by Motorola, Inc., and
available on the World Wide Web at the following address:

http://www.mot.com/SPS/PowerPC/teksupport/
teklibrary/techsum/7400ts.pdf
Targeting Embedded PowerPC PPC–17

Introduction
Technical Support
Technical Support
If you are having problems installing or using a Metrowerks prod-
uct, contact Metrowerks Technical Support.

There are several ways you can contact Technical Support, Table 1.3
lists your technical support options.

Table 1.3 Technical Support options

To assist Technical Support in answering your question, please use

{CodeWarrior Directory}\Release_Notes\email_Tech_Question_Form.txt

when submitting a support question.

Contacting the Documentation team

At Metrowerks, our goal is to deliver the highest quality software
and documentation. To achieve this goal, we need your feedback.
Please send any errors, omissions, suggestions, or general com-
ments about CodeWarrior documentation to:

wordwarrior@metrowerks.com

E-mail cw_emb_support@metrowerks.com

Telephone (512) 873-4700

Newsgroup comp.sys.mac.programmer.codewarrior

World Wide Web http://www.metrowerks.com/support/embedded

Compuserve Go: Metrowerks
PPC–18 Targeting Embedded PowerPC

Introduction
Metrowerks Year 2000 Compliance
Metrowerks Year 2000 Compliance
The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system.

Metrowerks directs you to the relevant statements of Microsoft Cor-
poration, Sun Microsystems, Inc., Apple Computer, Inc., and other
host or target operating systems relating to the Year 2000 Compli-
ance of their operating systems. Except as expressly described
above, the Products, in themselves, do not process date data and
therefore do not implicate Year 2000 Compliance issues.

For additional information, visit:
http://www.metrowerks.com/about/y2k.html
Targeting Embedded PowerPC PPC–19

Introduction
Metrowerks Year 2000 Compliance
PPC–20 Targeting Embedded PowerPC

2
Getting Started
This chapter gives you the information you need to install
CodeWarrior. For new CodeWarrior users, this chapter provides a
brief overview of the CodeWarrior development environment.

This chapter includes the following topics:

• System Requirements

• Installing CodeWarrior for Embedded PowerPC

• CodeWarrior Compiler Architecture

• Development Tools for Embedded PowerPC

• The Development Process with CodeWarrior

System Requirements
Currently, the host platforms available for programming Embedded
PowerPC systems with CodeWarrior are Windows 32-bit operating
systems and Solaris.

Windows Requirements

• A personal computer with a Pentium or higher processor,
with a CD-ROM drive to install CodeWarrior software, docu-
mentation, and examples.

• Microsoft Windows 95, Windows 98, or Windows NT 4.0 op-
erating system.

• A minimum of 32 MB of RAM.

Solaris

• A Sparc-based machine with the following system software
and hardware:

– Solaris 2.5.1 or later

– Motif 1.2 or later (CDE recommended)
Targeting Embedded PowerPC PPC–21

Getting Started
System Requirements
– X11-R5 display server

• A minimum of 64 MB of RAM.

• 80 MB free hard disk space.

• A CD-ROM drive to install CodeWarrior software, documen-
tation, and examples.

Target board requirements

A target board from one of the following manufacturers is recom-
mended:

Cogent Computer Systems, Inc.

– Cogent CMA102 with CMA 278 Daughtercard

IBM

• IBM 403 EVB

Motorola

• Motorola MPC 505/509 EVB

• Motorola 555 ETAS

• Motorola Excimer 603e

• Motorola Yellowknife X4 603/750

• Motorola MPC 8xx ADS

• Motorola MPC 8xx MBX

• Motorola MPC 8xx FADS

• Motorola Maximer 7400

• Motorola Sandpoint 8240

• Motorola MPC 8260 VADS

Embedded Planet

• Embedded Planet RPX Lite 8xx

Phytec

• Phytec miniMODUL-PPC 505/509
PPC–22 Targeting Embedded PowerPC

Getting Started
System Requirements
Additional Requirements

• If you are debugging with MetroTRK, you need a serial cable
to connect your host system with the embedded target. (For
more information, see “MetroTRK” on page 28.)

• If you are debugging using the Macraigor Wiggler, a parallel
cable should be included with your package.

• If you are debugging using an AMC (Applied Microsystems
Corporation) CodeTAP or PowerTAP debugging device, you
need an Ethernet cable.

NOTE: If you are using a CodeTAP or PowerTAP device, see
“Using a CodeTAP Debugging Device” on page 249 or “Using the
PowerTAP 6xx/7xx Debugging Device” on page 257.

Some of the support code included with CodeWarrior is specific to
the kind of board being targeted. These portions of code are imple-
mented for certain reference hardware configurations. If you are not
using a supported reference configuration, this code may not work
correctly on your platform target. For this reason, this product in-
cludes all such code in source form so that you can customize the
code to work with your hardware.

WARNING! If you are not using a supported reference configu-
ration, the support code included with CodeWarrior may not work
correctly on your platform target.

The following support code makes board-specific assumptions:

• MetroTRK

For more information, see “Using MetroTRK” on page 157.

• Debug initialization files

For more information, see “Debug Initialization Files” on
page 289.

• Console I/O under standard C and C++ libraries
Targeting Embedded PowerPC PPC–23

Getting Started
Installing CodeWarrior for Embedded PowerPC
For more information, see “Using Console I/O for Embed-
ded PowerPC” on page 209.

• Stand-alone application startup code

For more information, see “Board Initialization Code” on
page 214.

Contact a hardware vendor for more information about using a
PowerPC processor in your embedded circuit design.

Installing CodeWarrior for Embedded PowerPC
Your first step toward developing software for your platform target
is to install the CodeWarrior tools. (If you have already installed the
software, you can skip ahead to CodeWarrior Compiler Architec-
ture.) The tools include a variety of components such as the IDE, de-
bugger, plug-in compilers and linkers, standard libraries, runtime
libraries and headers, and all necessary documentation.

The CodeWarrior Installer automatically copies all necessary com-
ponents to the correct locations. It is strongly recommended that you
use the CodeWarrior Installer to ensure that you have all the re-
quired files. If you have questions regarding installer options, read
the installer on-screen instructions.

To start the Installer:

1. Double-click the drive on the desktop that holds the CodeWarrior
CD.

When you do, a dialog box appears with a button titled Launch
CodeWarrior Setup.

2. Press the Launch CodeWarrior Setup button.

If for some reason you do not see this dialog, double-click the
setup.exe file located at the root level of the CD.
PPC–24 Targeting Embedded PowerPC

Getting Started
CodeWarrior Compiler Architecture
CodeWarrior Compiler Architecture
A proprietary multi-language, multi-target compiler architecture is
at the heart of CodeWarrior. Front-end language compilers generate
a memory-resident, unambiguous, language-independent interme-
diate representation (IR) of syntactically correct source code. Back-
end compilers generate code from the IR for specific platform tar-
gets. The CodeWarrior IDE manages the whole process.

As a result of this architecture, the same front-end compiler is used
in support of multiple back-end build targets. In some cases, the
same back-end compiler can generate code from a variety of lan-
guages.

All compilers are built as plug-in modules. The interface between
the IDE and compilers and linkers is public, so third parties can
create compilers that work with CodeWarrior.

Once the compiler generates object code, the plug-in linker gener-
ates the final executable. Some build targets have multiple linkers
available to support different object code formats.

Development Tools for Embedded PowerPC
Programming for Embedded PowerPC is much like programming
for any other target in CodeWarrior. If you have never used
CodeWarrior before, the tools you will need to become familiar with
are:

• CodeWarrior IDE

• CodeWarrior Compiler for Embedded PowerPC

• CodeWarrior Assembler for Embedded PowerPC

• CodeWarrior Linker for Embedded PowerPC

• CodeWarrior Debugger for Embedded PowerPC

• MetroTRK

• Metrowerks Standard Libraries
Targeting Embedded PowerPC PPC–25

Getting Started
Development Tools for Embedded PowerPC
If you are an experienced CodeWarrior user, this is the same IDE
and debugger that you have been using all along. You will, how-
ever, need to become familiar with the Embedded PowerPC run-
time software environment.

CodeWarrior IDE

The CodeWarrior IDE is the application that allows you to write
your executable. It controls the project manager, the source code ed-
itor, the class browser, the compilers and linkers, and the debugger.

The CodeWarrior project manager may be new to those more famil-
iar with command-line development tools. All files related to your
project are organized in the project manager. This allows you to see
your project at a glance, and eases the organization of and naviga-
tion between your source code files.

For more information about how the CodeWarrior IDE compares to
a command-line environment, see “The Development Process with
CodeWarrior” on page 29. That short section discusses how various
parts of the IDE implement the classic features of a command-line
development system based on makefiles.

The CodeWarrior IDE has an extensible architecture that uses plug-
in compilers and linkers to target various operating systems and mi-
croprocessors. The CodeWarrior CD includes a C/C++ compiler for
the Embedded PowerPC family of processors. Other CodeWarrior
packages include C, C++, Pascal, and Java compilers for Mac OS,
Win32, and other platforms.

For more information about the CodeWarrior IDE, you should read
the IDE User Guide.

CodeWarrior Compiler for Embedded PowerPC

The CodeWarrior compiler for Embedded PowerPC is an ANSI
compliant C/C++ compiler. This compiler is based on the same
compiler architecture that is used in all of the CodeWarrior C/C++
compilers. When used with the CodeWarrior linker for Embedded
PPC–26 Targeting Embedded PowerPC

Getting Started
Development Tools for Embedded PowerPC
PowerPC, you can generate Embedded PowerPC applications that
conform to the PowerPC EABI.

For more information about the CodeWarrior C/C++ language im-
plementation, you should read the C Compilers Reference. For infor-
mation on the Embedded PowerPC back-end compiler, see “Set-
tings Panels for Embedded PowerPC” on page 66, and “C and C++
for Embedded PowerPC” on page 167.

CodeWarrior Assembler for Embedded
PowerPC

The CodeWarrior assembler for Embedded PowerPC is a stand-
alone assembler that has an easy-to-use syntax. This is the same syn-
tax used by assemblers for other platform targets supported by
CodeWarrior, such as M•Core and DSP.

For more information about the CodeWarrior assembler, see the As-
sembler Guide.

In addition, the C/C++ compiler supports inline assembly for Em-
bedded PowerPC development. See “Inline Assembler for Embed-
ded PowerPC” on page 215.

CodeWarrior Linker for Embedded PowerPC

The CodeWarrior linker for Embedded PowerPC is an ELF linker.
This linker allows you to create code using absolute addressing. It
also allows you to create multiple user-defined sections. In addition,
you can generate an S-record output file for your application.

For more information about the linker, see “EPPC Linker” on page
90.
Targeting Embedded PowerPC PPC–27

Getting Started
Development Tools for Embedded PowerPC
CodeWarrior Debugger for Embedded
PowerPC

The CodeWarrior debugger controls the execution of your program
and allows you to see what is happening internally as your program
runs. You use the debugger to find problems in your program.

The debugger can execute your program one statement at a time,
and suspend execution when control reaches a specified point.
When the debugger stops a program, you can view the chain of
function calls, examine and change the values of variables, and in-
spect the contents of registers.

For general information about the debugger, including all of its
common features and its visual interface, you should read the IDE
User Guide.

The CodeWarrior debugger for Embedded PowerPC debugs soft-
ware as it is running on the target board. It communicates with the
target board through a monitor program, such as MetroTRK, or
through a hardware protocol, such as BDM or JTAG. Hardware pro-
tocols require additional hardware to communicate with the target
board, such as a Macraigor Systems Inc. Wiggler or an AMC Code-
TAP or PowerTAP device.

NOTE: For more information on supported debugging methods
and the target boards with which you can use them, see “Sup-
ported Debugging Methods” on page 123.

MetroTRK

MetroTRK is a highly-modular, reusable debugging kernel that re-
sides on the target board and communicates with the debugger.
CodeWarrior provides you with the MetroTRK source code so that
you can customize MetroTRK to work with additional target
boards.

For more information about MetroTRK, see “Using MetroTRK” on
page 157 and MetroTRK Reference.
PPC–28 Targeting Embedded PowerPC

Getting Started
The Development Process with CodeWarrior
Metrowerks Standard Libraries

The Metrowerks Standard Libraries (MSL) are standard C and C++
libraries for use in developing applications for Embedded PowerPC.
The libraries are ANSI compliant, and all of the source for the librar-
ies is provided for you to use in your projects. These are the same li-
braries that are used for all CodeWarrior build targets, but they
have been customized and the runtime has been adapted for use in
Embedded PowerPC development.

For more information about MSL, see MSL C Reference and MSL C++
Reference. To learn how MSL has been adapted for use in Embedded
PowerPC applications, see “MSL for Embedded PowerPC” on page
207.

The Development Process with CodeWarrior
While working with CodeWarrior, you will proceed through the de-
velopment stages familiar to all programmers: writing code, compil-
ing and linking, and debugging. See the IDE User Guide for:

• Complete information on tasks such as editing, compiling,
and linking

• Basic information on debugging

NOTE: To debug for this hardware platform, see both the IDE
User Guide and this manual. This manual contains debugging in-
formation that is specific to this hardware platform.

The difference between CodeWarrior and traditional command line
environments is how the software (in this case the IDE) helps you
manage your work more effectively. If you are unfamiliar with an
integrated environment in general, or with CodeWarrior in particu-
lar, you may find the topics in this section helpful. Each topic dis-
cusses how one component of the CodeWarrior tools relates to a tra-
ditional command-line environment.
Targeting Embedded PowerPC PPC–29

Getting Started
The Development Process with CodeWarrior
Read these topics to find out how using the CodeWarrior IDE dif-
fers from command-line programming:

• Makefiles—the IDE uses a project to control source file de-
pendencies and the settings for compilers and linkers

• Editing Code—an overview of source code editing in the IDE

• Compiling—how the IDE performs compile operations

• Linking—how the IDE performs linking operations

• Debugging—how to debug a program from the IDE

• Viewing Preprocessor Output—A tip on debugging prepro-
cessor directives

Makefiles

The CodeWarrior IDE project is analogous to a makefile. Because
you can have multiple build targets in the same project, the project
is analogous to a collection of makefiles. For example, you can have
one project that has both a debug version and a release version of
your code. You can build one or the other, or both as you wish. In
CodeWarrior, these different builds within a single project are
called “build targets.”

The IDE uses the project manager window to list all the files in the
project. Among the kinds of files in a project are source code files
and libraries.

You can add or remove files easily. You can assign files to one or
more different build targets within the project, so files common to
multiple targets can be managed simply.

The IDE manages all the interdependencies between files automati-
cally and tracks which files have been changed since the last build.
When you rebuild, only those files that have changed are recom-
piled.

The IDE also stores the settings for compiler and linker options for
each build target. You can modify these settings using the IDE, or
with #pragma statements in your code.
PPC–30 Targeting Embedded PowerPC

Getting Started
The Development Process with CodeWarrior
Editing Code

The CodeWarrior IDE has an integral text editor designed for pro-
grammers. It handles text files in MS-DOS/Windows, UNIX, and
Mac OS formats.

To edit a source code file, or any other editable file that is in a
project, double-click the file name in the project window to open the
file.

The editor window has excellent navigational features that allow
you to switch between related files, locate any particular function,
mark any location within a file, or go to a specific line of code.

Compiling

To compile a source code file, it must be among the files that are
part of the current build target. If it is, you simply select it in the
project window and choose Compile from the Project menu.

To compile all the files in the current build target that have been
modified since they were last compiled, choose Bring Up To Date in
the Project menu.

In UNIX and other command-line environments, object code com-
piled from a source code file is stored in a binary file (a “.o” or “.obj”
file). The CodeWarrior IDE stores and manages object files transpar-
ently.

Linking

Linking object code into a final binary file is easy: use the Make
command in the Project menu. The Make command brings the ac-
tive project up-to-date, then links the resulting object code into a
final output file.

You control the linker through the IDE. There is no need to specify a
list of object files. The project manager tracks all the object files auto-
matically. You can use the project manager to specify link order as
well.
Targeting Embedded PowerPC PPC–31

Getting Started
The Development Process with CodeWarrior
Use the EPPC Target settings panel to set the name of the final out-
put file.

Debugging

To tell the compiler and linker to generate debugging information
for all items in your project, make sure Enable Debugger is selected
in the Project menu.

If you want to only generate debug information on a file-by-file ba-
sis, click in the debug column for that file. The Debug column is lo-
cated in the project window, to the right of the Data column.

When you are ready to debug your project, choose Debug from the
Project menu.

For more information on debugging, refer to the IDE User Guide. For
information specific to Embedded PowerPC debugging, see “De-
bugging for Embedded PowerPC” on page 123.

Viewing Preprocessor Output

To view preprocessor output, select the file in the project window
and choose Preprocess from the Project menu. A new window ap-
pears that shows you what your file looks like after going through
the preprocessor.

You can use this feature to track down bugs caused by macro ex-
pansion or other subtleties of the preprocessor.
PPC–32 Targeting Embedded PowerPC

3
Creating a Project
for Embedded
PowerPC
This chapter gives an overview of the steps required to create, com-
pile, and link code that runs on Embedded PowerPC embedded sys-
tems.

This chapter includes the following topics:

• Types of Projects—the different kinds of projects you can
build with CodeWarrior

• Project Stationery—how to quickly create a project from tem-
plates and use provided project stationery targets to flash
your program to ROM

• Working with a Project—how to run and debug a project

Types of Projects
All Embedded PowerPC projects generate binary files in the ELF
format. You can create three different kinds of projects: application
projects, library projects, and partial linking projects.

The only difference between the application projects and library
projects is that an application project has associated stack and heap
sizes; a library does not. A partial linking project allows you to gen-
erate an output file that the linker can use as input.

Project Stationery
CodeWarrior provides project stationery for Embedded PowerPC
projects. Project stationery are templates that describe pre-built
Targeting Embedded PowerPC PPC–33

Creating a Project for Embedded PowerPC
Project Stationery
projects; complete with source code files, libraries, and appropriate
compiler and linker settings.

Project stationery helps you get started very quickly. When you cre-
ate a project based on stationery, the stationery is duplicated and be-
comes the basis of your new project.

This section contains the following topics:

• Creating a Project

• Project Stationery Targets

Creating a Project

To create a project from project stationery:

1. Choose File > New.

The New window appears (Figure 3.1).

Figure 3.1 New window
PPC–34 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Project Stationery
2. On the Project tab, highlight PowerPC EABI Stationery.

3. Type a name in the Project name field.

The name you type appears in the Location field as the default di-
rectory location for your project.

4. To change the directory location for your project, type a different
location in the Location field.

Alternatively, you can click Set, specify a new directory location in
the Create New Project window, and click Save, which returns you
to the New window. (Figure 3.2 shows an example of the Create
New Project window in which the drive location has been changed
from the C: drive to the E: drive.) The New window reflects your
newly chosen directory location.

Figure 3.2 Create New Project window

5. On the Project tab of the New window, highlight PowerPC EABI
Stationery again.
Targeting Embedded PowerPC PPC–35

Creating a Project for Embedded PowerPC
Project Stationery
6. Click OK.

The New Project window appears (Figure 3.3).

Figure 3.3 New Project window

7. Select the stationery for your target processor and programming
language and click OK.

CodeWarrior creates a project using the stationery you selected.

Most stationery projects contain source files that are placeholders
only. You must replace them with your own files. See “Modify the
project contents.” on page 41.

You also can create customized project stationery by saving a project
into the Stationery folder. For more information, see IDE User
Guide.
PPC–36 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Project Stationery
Project Stationery Targets

The CodeWarrior stationeries provide multiple targets with differ-
ent purposes. Using the project stationery, you can add your own
code to an existing stationery project, quickly set up the code so that
it is appropriate to place in ROM, and burn the code into ROM.

The available targets follow:

• Debug Version

This target is set by default when you create the project. This
target includes only the user code and the standard and runt-
ime libraries. This target does not perform any hardware ini-
tialization or set up any exception vectors. You can continue
using only this target until you need ISRs or to ROM your
code.

• ROM Version

This target makes your code ROMable. This target builds an
image for ROM that includes all exception vectors, a sample
ISR, and the hardware initialization. You can use the S-
record that this target generates with any standard flash pro-
grammer to burn your program into ROM, or you can use
the third target (Flash to ROM version) to burn your program
into ROM.

• Burn ROM

This target burns your program image to ROM. This target
includes a small amount of code that programs the flash. The
linker creates a RAM buffer that includes the image to flash
followed by the flash code. Download this ELF file with the
debugger and run.

If CodeWarrior successfully flashed the image, the program
stops on the label copy_successful. If flashing the image
was not successful, the program stops on the label
copy_failed.

NOTE: Using the Flash to ROM target to flash your programs to
ROM is substantially faster than using the flash programmer.
Targeting Embedded PowerPC PPC–37

Creating a Project for Embedded PowerPC
Working with a Project
Working with a Project
This section provides step-by-step instructions for developing typi-
cal Embedded PowerPC projects.

NOTE: For more information on creating, debugging, and work-
ing with projects, see IDE User Guide. This manual discusses al-
ternate ways of performing various operations, describes the
Codewarrior user interface, and discusses many other topics such
as touching files, file synchronization, and details of the build pro-
cess.

CodeWarrior displays build errors and warnings in the Errors &
Warnings window. For information on specific error messages,
see Error Reference, which is available online.

This example discusses how to:

1. Create a project.

2. Modify the project contents.

3. Modify source files.

4. View target settings.

5. Build the project.

6. Run and debug your code.

7. Set a breakpoint.

8. Set a watchpoint.

9. Show registers.

10.Run, stop, and step through code.

11.Stop program execution.

To work with the example project:

1. Create a project.

To create a project from project stationery:

a. Launch CodeWarrior.
PPC–38 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
b. Choose File > New.

The New window appears (Figure 3.4).

Figure 3.4 New window

c. On the Project tab, highlight PowerPC EABI Stationery.

d. Type a name in the Project name field.

The Location field contains the default directory location for
your project.
Targeting Embedded PowerPC PPC–39

Creating a Project for Embedded PowerPC
Working with a Project
e. Click OK to accept the default directory location for your
project.

The New Project window appears (Figure 3.5).

Figure 3.5 New Project window

f. Select the project stationery.

Select the project stationery for the target board and language
that you are using and click OK.
PPC–40 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
The Project window appears (Figure 3.6).

Figure 3.6 Project window

The Project window is the central location from which you con-
trol development. In the Project window, you can perform many
operations, including adding or removing source files and li-
braries, compiling code, and generating debugging information.

2. Modify the project contents.

To add files:

• Choose Project > Add Files.
Targeting Embedded PowerPC PPC–41

Creating a Project for Embedded PowerPC
Working with a Project
• Choose Project > Add Window to add an active editor win-
dow. (Use this command when you create a new file and de-
cide to add it to the active project.)

• Drag files from the desktop or folder into the project.

To remove files, select the file or files in the Project window and
press the Delete key.

NOTE: Do not delete files from this project. If you do so, the
project may not build and execute correctly.

3. Modify source files.

Use the editor to modify the content of a source code file. To open a
file for editing, double-click the file name in the Project window, or
select the file and press Enter. The Editor window appears (Figure
3.7).
PPC–42 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
Figure 3.7 Editor window

After you open the file, you can use all the editor features to work
with your code.

You also can use a third-party editor to create and edit your code, as
long as it saves the file as plain text. If you use a third-party editor,
there may be times when the IDE is not aware of the fact that a
source file has changed since the most recent build.

4. View target settings.

A CodeWarrior project can contain one or more build targets. A
build target contains all build-specific information, including:

• Information required to identify the files that belong to a par-
ticular build

• Compiler and linker settings for the build
Targeting Embedded PowerPC PPC–43

Creating a Project for Embedded PowerPC
Working with a Project
• Output information for the build

Each build target has associated target settings. To view and modify
target settings, ensure that your preferred build target is the cur-
rently selected build target.

The Project window (Figure 3.8) shows the current build target.

Figure 3.8 The Project window and current build target

TIP: To change the current build target for the currently selected
Project window, choose Project > Set Default Target > Target,
where Target is the name of the target that you are specifying as
the current build target.
PPC–44 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
When the Project window shows the correct current build target,
choose Edit > Target Settings, where Target is the name of the cur-
rent build target. The Target Settings window appears (Figure 3.9).

Figure 3.9 The Target Settings window

TIP: To quickly open the settings for a build target, go to the Tar-
gets view in the Project window and double-click the relevant build
target. Using this method, you can open the settings for two or
more build targets simultaneously.

The Target Settings window groups all possible options into a series
of panels. The list of panels appears on the left side of the dialog
Targeting Embedded PowerPC PPC–45

Creating a Project for Embedded PowerPC
Working with a Project
box. When you select a panel, the options in that panel appear on
the right side of the dialog box.

Different panels affect:

• Settings related to all build targets

• Settings that are specific to a particular build target (includ-
ing settings that affect code generation and linker output)

• Settings related to a particular programming language

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66.

5. Build the project.

Choose Project > Enable Debugger to inform the compiler and
linker to generate debug information appropriate for all files in your
build target. If you compile without generating debug information,
you must recompile before you can debug.

Choose Project > Make to compile and link the code for the current
build target.

6. Run and debug your code.

After you enable debugging and make the project, choose Project >
Debug to run with the debugger.
PPC–46 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
A Stack Crawl window (Figure 3.10) appears.

Figure 3.10 Stack Crawl Window

TIP: You also can debug a project by clicking the Run/Debug
button (the arrow icon) in the Project window.

For more information, see “Debugging for Embedded PowerPC” on
page 123.
Targeting Embedded PowerPC PPC–47

Creating a Project for Embedded PowerPC
Working with a Project
7. Set a breakpoint.

In the Stack Crawl window, scroll the code to the main() function
and click the gray dash in the Breakpoint column, next to the first
line of code in the main() function. A red marker appears (Figure
3.11).

Figure 3.11 Stack Crawl window after setting a breakpoint

TIP: You also can set a breakpoint by clicking in the Breakpoint
column of the Editor window next to a valid line of code.

You successfully set a breakpoint. Keep the Stack Crawl window
open to set a watchpoint.
PPC–48 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
8. Set a watchpoint.

a. Kill the program by choosing Debug > Kill.

b. In main.c, declare a global variable and assign a value to the
variable (Figure 3.12).

Figure 3.12 main.c after declaring a global variable

c. Save main.c by choosing File > Save.

d. Rebuild your project.

Choose Project > Debug to rebuild your project and run it again.
Targeting Embedded PowerPC PPC–49

Creating a Project for Embedded PowerPC
Working with a Project
The Stack Crawl window (Figure 3.13) lists the global variable
that you added.

Figure 3.13 Stack Crawl window listing new global variable
PPC–50 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
e. Choose Window > Watchpoints Window.

The Watchpoints window appears (Figure 3.14).

Figure 3.14 Empty Watchpoints window

f. Choose Window > Global Variables Window.

The Global Variables window appears (Figure 3.15).

Figure 3.15 Global Variables window
Targeting Embedded PowerPC PPC–51

Creating a Project for Embedded PowerPC
Working with a Project
g. Select main.c from the File pane in the Global Variables win-
dow.

A list of variables appears in the Variables pane of the Global
Variables window (Figure 3.15).

h. Select the global variable that you declared in main.c from
the list in the Variables pane.

i. Choose Debug > Set Watchpoint.

Information about this variable appears in the Watchpoints win-
dow (Figure 3.16).

Figure 3.16 Variable information displayed in Watchpoints window

You successfully set a watchpoint. Watchpoints trigger accord-
ing to any condition you specify (in the Condition field of the
Watchpoints window) and the type you selected during debug-
ger configuration.
PPC–52 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
j. Choose Project > Run.

A message appears indicating that CodeWarrior hit the watch-
point that you set (Figure 3.17).

Figure 3.17 Watchpoint message window

k. Click OK to close the message window.

9. Show registers.

Choose Window > Registers Window. The resulting cascading
menu displays a variable list of register options, depending on your
target processor. Choose a register from the menu; CodeWarrior
displays an information window for the register you choose. For ex-
ample, Figure 3.18 shows a GPR register window.
Targeting Embedded PowerPC PPC–53

Creating a Project for Embedded PowerPC
Working with a Project
Figure 3.18 GPR register window

NOTE: When you work with your own projects, the registers in-
cluded in the Register Window menu differ depending on the tar-
get processor and board that you are using.

10. Run, stop, and step through code.

The toolbar of the Stack Crawl window (Figure 3.19) contains sev-
eral buttons that function the same way as the execution commands
in the Project and Debug menus: Run, Stop, Kill, Step Over, Step
Into, and Step Out.
PPC–54 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
Figure 3.19 Control buttons in the Stack Crawl window

NOTE: CodeWarrior enables the Stop button, located between
Run/Debug and Kill, only after the program begins running. De-
pending on the size and complexity of the program, you may not
Targeting Embedded PowerPC PPC–55

Creating a Project for Embedded PowerPC
Working with a Project
see the Stop button become available. In that case, you must use
the Kill button to stop executing the program.

11. Stop program execution.

a. Remove the breakpoint that you previously set.

Click the red marker next to main() to remove the breakpoint.

b. Set a breakpoint on __init_data().

Double-click __start in the Stack pane of the Stack Crawl
window. CodeWarrior displays the source code for the
__start routine in an Editor window (Figure 3.20).

Figure 3.20 __start.c file
PPC–56 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
Choose __init_data from the Routine pop-up menu (Figure 3.21)
to display __init_data().

Figure 3.21 Choosing the __init_data function
Targeting Embedded PowerPC PPC–57

Creating a Project for Embedded PowerPC
Working with a Project
Set a breakpoint at the line containing __init_data (Figure
3.22).

Figure 3.22 Editor window after setting breakpoint on __init_data()

c. Click the Kill button.

Kill stops current execution and exits the debugger, ending the
current debug session.
PPC–58 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
d. Click the Run/Debug button in the Project window.

The program stops at the breakpoint that you set on
__init_data() (Figure 3.23).

Figure 3.23 Program stopped at breakpoint set on __init_data

If the code displayed in the Stack Crawl window were your star-
tup code, you could step forward from the breakpoint to begin
debugging __init_data(). Click the Run/Debug button to
execute __init_data() and break at main().
Targeting Embedded PowerPC PPC–59

Creating a Project for Embedded PowerPC
Working with a Project
NOTE: To disable the break-at-main feature, deselect the Stop
at temp breakpoint on application launch checkbox on the De-
bugger Settings panel (Figure 3.24) of the Target Settings window.
By default, the temporary breakpoint is main().

Figure 3.24 Debugger Settings panel
PPC–60 Targeting Embedded PowerPC

Creating a Project for Embedded PowerPC
Working with a Project
e. Click the Run/Debug button to begin executing the program
again.

A message appears indicating that a system call exception oc-
curred (Figure 3.25).

Figure 3.25 System call message window

f. Click OK to close the message window.

g. Click the Run/Debug button again.

The program begins executing an infinite loop.

h. Click the Stop button to see where you are in the program.

From this point, you either can continue executing the program
(by running or stepping through it) or you can kill it.
Targeting Embedded PowerPC PPC–61

Creating a Project for Embedded PowerPC
Working with a Project
PPC–62 Targeting Embedded PowerPC

4
Target Settings for
Embedded PowerPC
This chapter discusses the settings panels that affect code genera-
tion for Embedded PowerPC development. By modifying the set-
tings on a panel you control the behavior of the compiler, linker,
and debugger.

Specific details about how the compiler and linker work for Embed-
ded PowerPC development, such as compiler pragmas, linker sym-
bols and so forth, is found in “C and C++ for Embedded PowerPC”
on page 167.

The sections in this chapter are:

• Target Settings Overview

• Settings Panels to Optimize Code

• Settings Panels for Embedded PowerPC

Target Settings Overview
Each build target in a CodeWarrior project has its own settings.
These settings control a variety of features such as compiler options,
linker output, error and warning messages, and remote debugging
options. You modify these settings through the Target Settings win-
dow.

NOTE: For more information, see IDE User Guide.

In brief, you control the compiler, linker, and debugger behavior for
a particular build target by modifying settings in the appropriate
settings panels in the Target Settings window. To open any settings
Targeting Embedded PowerPC PPC–63

Target Sett ings for Embedded PowerPC
Target Settings Overview
panel, choose Edit > Target Settings, where Target is the current
build target in the CodeWarrior project. Alternatively, go to the Tar-
get view of the Project window and double-click the relevant build
target.

When you do, the Target Settings window appears, as shown in Fig-
ure 4.1.

Figure 4.1 Target Settings window

Select the panel you wish to see from the hierarchical list of panels
on the left side of the window. When you do, that panel appears.
You can then modify the settings to suit your needs.

When you modify the settings on a panel, you can restore the previ-
ous values by using the Revert Panel button at the bottom of the
window. To restore the settings to the factory defaults, use the Fac-
tory Settings button at the bottom of the panel.
PPC–64 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels to Optimize Code
TIP: Use project stationery when you create a new project. The
stationery has all settings in all panels set to reasonable or default
values. You can create your own stationery file with your preferred
settings. Modify a new project to suit your needs; then save the
new project in the stationery folder. For more information, see IDE
User Guide and “Project Stationery” on page 33.

Settings Panels to Optimize Code
You can choose code optimizations in the following settings panels:
the Global Optimizations settings panel and the EPPC Processor set-
tings panel.

The Global Optimizations panel performs a number of optimiza-
tions that apply to all CodeWarrior products, depending on which
optimization level you choose (from 0 to 4). (For more information,
see “Global Optimizations” on page 78.)

The EPPC Processor settings panel also contains several settings
that you can select to perform Embedded PowerPC-specific optimi-
zations:

• Make Strings Read Only

• Pool Data

• Use Common Section

• Use LMW & STMW

• Use FMADD & FMSUB

• Instruction Scheduling

• Peephole Optimization

NOTE: For more information, see “EPPC Processor” on page
79.
Targeting Embedded PowerPC PPC–65

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Select the best combination of optimization settings for your appli-
cation in both the Global Optimizations settings panel and the EPPC
Processor panel.

Settings Panels for Embedded PowerPC
This section discusses the purpose and effect of each setting in the
panels specific to Embedded PowerPC development. These panels
are:

• Target Settings

• EPPC Target

• EPPC Assembler

• Global Optimizations

• EPPC Processor

• EPPC Disassembler

• EPPC Linker

• EPPC Target Settings

• Remote Debugging Options

• EPPC Exceptions

• Connection Settings

Settings panels of more general interest are discussed in other
CodeWarrior manuals. Table 4.1 lists several panels and where you
can find information about them.

Table 4.1 Where to find information on other settings panels

Panel Manual

Access Paths IDE User Guide

Build Extras IDE User Guide

Custom Keywords IDE User Guide

Debugger Settings IDE User Guide
PPC–66 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Target Settings

The Target Settings window contains a Target Settings panel. The
window and the panel are not the same. The window displays all
panels, one at a time. The Target Settings panel is one of those pan-
els.

The Target Settings panel, shown in Figure 4.2, is perhaps the most
important panel in CodeWarrior. This is the panel where you pick
your target. When you select a linker in the Target Settings panel,
you specify the target operating system and/or processor. The other
panels listed in the Target Settings window change to reflect your
choice.

Because the linker choice affects the visibility of other related pan-
els, you must set your target first before you can specify other tar-
get-specific options like compiler and linker settings.

File Mappings IDE User Guide

C/C++ Language C Compilers Reference

C/C++ Warnings C Compilers Reference

Panel Manual
Targeting Embedded PowerPC PPC–67

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.2 Target Settings panel

NOTE: The Target Settings panel is not the same as the EPPC
Target panel. You specify the build target in the Target Settings
panel. You set other target-specific options in the EPPC Target
panel.

The items in this panel are:

Target Name

Use the Target Name text field to set or change the name of a build
target. When you use the Targets view in the Project window, you
will see the name that you have set.

Target Name Linker

Pre-Linker Post-Linker

Output Directory Save Project Entries Using Relative Paths
PPC–68 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
The name you set here is not the name of your final output file. It is
the name you assign to the build target for your personal use. The
name of the final output file is set in the EPPC Target panel.

Linker

Choose a linker from the items listed in the Linker pop-up menu.
For Embedded PowerPC, use Embedded PPC Linker.

Pre-Linker

Some build targets have pre-linkers that perform work on object
code before it is linked. There is no pre-linker for Embedded Pow-
erPC development.

Post-Linker

Some build targets have post-linkers that perform additional work
(such as object code format conversion) on the final executable.
There is no post linker for Embedded PowerPC development.

Output Directory

This is the directory where your final linked output file will be
placed. The default location is the directory that contains your
project file. Click the Choose button to specify another directory.

Save Project Entries Using Relative Paths

To add two or more files with the same name to a project, select this
option. When this option is off, each project entry must have a
unique name.

When this option is selected, the IDE includes information about the
path used to access the file as well as the file name when it stores in-
formation about the file. When searching for a file, the IDE com-
bines Access Path settings with the path settings it includes for each
project entry.

When this option is off, the IDE only records information about the
file name of each project entry. When searching for a file, the IDE
only uses Access Paths.
Targeting Embedded PowerPC PPC–69

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
EPPC Target

The EPPC Target panel, shown in Figure 4.3, is where you specify
the name and configuration of your final output file.

Figure 4.3 EPPC Target settings panel (Application setting)

The items in this panel are:

Project Type File Name

Byte Ordering Disable CW Extensions

Code Model Small Data

Small Data2 Heap Size (k)

Stack Size (k) Optimize Partial Link

Deadstrip Unused Symbols Require Resolved Symbols
PPC–70 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Project Type

The Project Type pull-down menu determines the kind of project
you are creating. The options available are:

• Application

• Library

• Partial Link—allows you to generate a relocatable output file
that a dynamic linker or loader can use as input

The option you choose in this pop-up menu also controls the visibil-
ity of other items in this panel. If you choose Library or Partial
Link, the Heap Size (k) and Stack Size (k) items disappear from this
panel because they are not relevant. Also, if you choose Partial
Link, the items Optimize Partial Link, Deadstrip Unused Symbols,
and Require Resolved Symbols appear in the panel.

File Name

The File Name edit field specifies the name of the debuggable exe-
cutable or library you create. By convention, application names
should end with the extension “.elf”, and library names should
end with the extension “.a”. When the output name of an applica-
tion ends in “.elf” or “.ELF”, the extension is stripped before the
“.mot” and “.MAP” extensions are added (if you have selected the
appropriate switches for generating S-Records and Map files in the
EPPC Linker panel).

Byte Ordering

The Byte Ordering radio button controls whether the code and data
generated is stored in little endian or big endian format. In big en-
dian format, the most significant byte comes first (B3, B2, B1, B0). In
little endian format, the bytes are organized with the least signifi-
cant byte first (B0, B1, B2, B3). See documentation for the PowerPC
processor for details on setting the byte order mode.
Targeting Embedded PowerPC PPC–71

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Disable CW Extensions

The Disable CW Extensions checkbox disables CodeWarrior fea-
tures that may be incompatible if you are exporting code libraries
from CodeWarrior to other compilers/linkers.

CodeWarrior currently supports one extension: storing alignment
information in the st_other field of each symbol.

If Disable CW Extensions is checked:

• The st_other field is always set to 0.

Some non-CodeWarrior linkers require that this field have
the value 0.

• The CodeWarrior linker cannot deadstrip files.

To deadstrip, the linker requires that alignment information
be stored in each st_other field.

NOTE: The Disable CW Extensions option in the Project set-
tings panel is for developers creating C libraries for use with third-
party linkers. Not all third-party linkers require this option; you may
need to try both settings. This applies to C libraries only. Assembly
files do not need the option; and C++ libraries are not portable to
other linkers. Disable CW Extensions is not usually used when
building a CW linked application since it may result in a larger ap-
plication.

Code Model

The Code Model pull-down menu determines the addressing mode
for the generated executable. The only code model currently sup-
ported is absolute addressing. Position independent code is not sup-
ported at the time of this writing.

Small Data

The Small Data edit field controls the threshold size (in bytes) for
an item considered by the linker to be small data. The linker stores
PPC–72 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
small data items in the Small Data address space. This space has
faster access than the regular data address space.

Read/write data items whose byte size is less than or equal to the
value in the Small Data edit field are considered to be small data.

Small Data2

The Small Data2 edit field controls the threshold size (in bytes) for
an item considered by the linker to be “small data.” The linker
stores read-only small data items in the Small Data2 address space.
This space (which is similar to the Small Data address space, but
separate) has faster access than the regular data address space.

Read-only items whose byte size is less than or equal to the value in
the Small Data2 edit field are considered to be small data.

Heap Size (k)

The Heap Size edit field controls the amount of RAM allocated for
the heap. The value that you enter is in kilobytes. The heap is used if
your program calls malloc or new. This field is not applicable
when building a library project; heaps are associated only with ap-
plications.

See also “Heap Address” on page 93.

Stack Size (k)

The Stack Size edit field controls the amount of RAM allocated for
the stack. The value you enter is in kilobytes. This field is not appli-
cable when building a library project; stacks are associated only
with applications.

See also “Stack Address” on page 94.

NOTE: You can allocate stack and heap space based on the
amount of memory that you have on your target hardware. If you
allocate more memory for the heap and/or stack than you have
available RAM, your program will not run correctly.
Targeting Embedded PowerPC PPC–73

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Optimize Partial Link

Select the Optimize Partial Link checkbox to directly download the
output of your partial link. When this option is enabled, the linker is
instructed to do the following:

• Allow the project to use a linker command file. This is impor-
tant so that all of the diverse sections can be merged into ei-
ther .text, .data or .bss. If you do not let a linker com-
mand file merge them for you, the chances are good that the
debugger will not be able to show you source code properly.

• Allow optional deadstripping. This is recommended. The
project must have at least one entry point for the linker to
know to deadstrip.

• Collect all of the static constructors and destructors in a simi-
lar way to the tool munch.

NOTE: It is very important that you don't use munch yourself
since the linker needs to put the C++ exception handling initializa-
tion as the first constructor. If you see munch in your makefile, it is
your clue that you need an optimized build.

• Change common symbols to .bss symbols. This allows you
to examine the variable in the debugger.

• Allow a special type of partial link that has no unresolved
symbols. This is the same as the Diab linker's -r2 command
line argument.

NOTE: This feature is not applicable to VxWorks.

When this checkbox is cleared, the output file remains as if you
passed the -r argument on the command line.

Deadstrip Unused Symbols

When Deadstrip Unused Symbols is selected, the linker is in-
structed to deadstrip any symbols that are not used. This option
makes your program smaller by stripping the symbols not refer-
PPC–74 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
enced by the main entry point or extra entry points in the FORCE-
ACTIVE linker command file directive.

Require Resolved Symbols

When Require Resolved Symbols is selected, the linker is in-
structed to require that all symbols in your partial link to be re-
solved. If any symbols are not present in one of the source files or li-
braries in your project, an error is triggered.

NOTE: Some real-time operating systems require that there be
no unresolved symbols in the partial link file. In this case, it is use-
ful to enable this option.

EPPC Assembler

The EPPC Assembler panel determines the format used for the as-
sembly source files, and the code generated by the EPPC assembler.
Figure 4.4 shows the EPPC Assembler panel.
Targeting Embedded PowerPC PPC–75

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.4 EPPC Assembler panel

NOTE: If you used a previous version of this panel, you may
have noticed that the Processor region has disappeared. The pro-
cessor settings for the assembler are now specified in the EPPC
Processor settings panel, using the Processor pull-down menu.

The items in this panel are:

• Source Format

• Generate Listing File

• Prefix File
PPC–76 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Source Format

The Source Format checkboxes define certain syntax options for the
assembly language source files. For more information on the assem-
bly language syntax for the Embedded PowerPC assembler, read
the manual Assembler Reference.

The following list describes the Source Format checkboxes:

• Labels Must End With ‘:’

Select this checkbox to specify that labels must end with a
colon (:).

• Directives Begin With ‘.’

Select this checkbox to specify that directives must begin
with a period (.).

• Case Sensitive Identifiers

Select this checkbox to specify that identifiers are case sensi-
tive.

• Allow Space In Operand Field

Select this checkbox to specify that spaces are allowed in op-
erand fields.

• GNU Compatible Syntax

Select this checkbox to indicate that your application uses
GNU-compatible assembly syntax.

Generate Listing File

A listing file contains file source along with line numbers, relocation
information, and macro expansions.

The Generate Listing File checkbox determines whether a listing file
is generated by the assembler when the source files in the project are
assembled.

Prefix File

The Prefix File edit field defines a prefix file that is automatically in-
cluded in all assembly files in the project. This field allows you to in-
Targeting Embedded PowerPC PPC–77

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
clude common definitions without including the file in every source
file.

Global Optimizations

The Global Optimizations settings panel is shown in Figure 4.5.

This panel instructs the compiler to rearrange its object code to pro-
duce smaller and faster-executing object code. Some optimizations
remove redundant operations in a program. Other optimizations
analyze how an item is used in a program and attempt to reduce the
effect of that item on the performance of the program.

Figure 4.5 Global Optimizations settings panel

All optimizations rearrange object code without affecting the logical
sequence of execution. In other words, an unoptimized program
and its optimized counterpart produce the same results.

The levels range from 0 to 4, and the higher the number, the more
the code is optimized.
PPC–78 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
• Level 0 performs global register allocation (register coloring)
only for temporary values. No additional optimizations are
performed.

NOTE: To avoid ambiguity when debugging, set Optimization
Level to 0, which causes the compiler to use register coloring only
for compiler-generated (temporary) variables. For more informa-
tion, see “Register Coloring Optimization” on page 175.

• Level 1 performs dead code elimination and global register
allocation.

• Level 2 performs the optimizations found in Level 1 plus
common subexpression elimination and copy propagation.
Level 2 is best for most code.

• Level 3 performs the optimizations found in Level 2, plus
moving invariant expressions out of loops (also called Code
Motion), strength reduction of induction variables, copy
propagation, and loop transformation. Level 3 is best for
code with many loops.

• Level 4 performs the optimizations in Level 3, including per-
forming some of them a second time for even greater code ef-
ficiency. Level 4 can provide the best optimization for your
code, but it will take more time to compile than with the
other settings.

This option corresponds to #pragma global_optimizer and
#pragma optimization_level.

NOTE: Use compiler optimizations only after debugging your
software. Using a debugger on an optimized program may affect
the source code view that the debugger shows.

EPPC Processor

The EPPC Processor settings panel, shown in Figure 4.6, controls
processor-dependent code-generation settings.
Targeting Embedded PowerPC PPC–79

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.6 EPPC Processor settings panel

The items in this panel are:

Struct Alignment Function Alignment

Processor Floating-point options

AltiVec Programming Model Generate VRSAVE Instructions

Make Strings Read Only Pool Data

Use Common Section Use LMW & STMW

Use FMADD & FMSUB Instruction Scheduling

Peephole Optimization Profiler Information
PPC–80 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Struct Alignment

The Struct Alignment pull-down menu is not used for generating
embedded PowerPC code. You should keep the setting at PowerPC.

WARNING! If you choose another setting for Struct Alignment,
your code may not work correctly.

Function Alignment

If your board has hardware capable of fetching multiple instruc-
tions at a time, you may achieve slightly better performance by
aligning functions to the width of the fetch. With the Function
Alignment pop-up menu, you can select alignments from 4 (the de-
fault) to 128 bytes.

This option corresponds to #pragma function_align. See the
definition “function_align” on page 179 for further information on
the use of this pragma.

NOTE: The st_other field of the .symtab (ELF) entries has
been overloaded to ensure that dead-stripping functions will not in-
terfere with the alignment you have chosen. This may result in
code that is incompatible with some third-party linkers. To elimi-
nate this overloading (for those developers who need to export
CodeWarrior archives), see “Disable CW Extensions” on page 72.

Processor

The Processor pop-up menu specifies the targeted processor.
Choose Generic if the processor you are working with is not listed
on this menu or you want to generate code that runs on any Pow-
erPC processor. Choosing Generic allows the use of the core in-
structions for the 603, 604, 740, and 750 processors and all optional
instructions.
Targeting Embedded PowerPC PPC–81

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Selecting a particular target processor has the following results:

• Instruction scheduling: If the Instruction Scheduling check-
box (also in the EPPC Processor panel) is selected, the proces-
sor selection will help determine how scheduling optimiza-
tions are made.

For more information on instruction scheduling optimiza-
tion, see “Instruction Scheduling” on page 86.

• Preprocessor symbol generation: A preprocessor symbol is
defined based on your target processor. It is equivalent to the
following definition, where number is the three-digit number
of the PowerPC processor being targeted:

#define __PPCnumber__ 1

For the PowerPC 821 processor, for instance, the symbol
would be __PPC821__. If you pick Generic, no such symbol
is generated.

• Floating-point support: The checkboxes for None (no floating
point), Software and Hardware are available for all proces-
sors, even those processors without a floating-point unit. If
your RTOS does not support handling a floating-point excep-
tion, you should select None or Software. When Hardware is
not selected, Use FMADD & FMSUB is disabled.

Floating-point options

This set of radio buttons determines how floating-point operations
in your code are handled. Each option is described below.

WARNING! To specify how the compiler should handle floating-
point operations for your project, you need to do two things:
choose a floating-point radio button in this preference panel, and
include the corresponding runtime library in your project.

For example, if you click the None radio button, you also need to
include the library Runtime.PPCEABI.N.a in your project.

See “Runtime Libraries for Embedded PowerPC” on page 212 for
further information on these libraries.
PPC–82 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
None If this option is selected, floating-point operations are not
allowed.

Software If this option is selected, floating-point operations are
emulated in software. The calls generated by using floating-point
emulation are defined in the C runtime library. If you are using
floating-point emulation, you must include the appropriate C runt-
ime file in your project. For information on the C runtime, see
“Runtime Libraries for Embedded PowerPC” on page 212.

WARNING! Enabling software emulation without including the
appropriate C runtime library will result in linker errors.

Hardware If this option is selected, floating-point operations are
performed in hardware. This option should not be selected if you
are targeting hardware without floating-point support.

AltiVec Programming Model

Select the AltiVec Programming Model checkbox to indicate that
your program uses the AltiVec programming model, which defines
several extensions to the PowerPC ABI, including:

• Vector data types

• New keywords (vector, __vector, pixel, __pixel,
bool)

• AltiVec alignment issues

For more information, see AltiVec Technology Programming Interface
Manual (available from Motorola, Inc.) and “Where to Go from
Here” on page 15.

Generate VRSAVE Instructions

After you select the AltiVec Programming Model checkbox,
CodeWarrior enables the Generate VRSAVE Instructions check-
box.

The VRSAVE register indicates to the operating system which vec-
tor registers to save and reload when a context switch happens. The
Targeting Embedded PowerPC PPC–83

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
bits of the VRSAVE register that correspond to the number of each
affected vector register are set to 1.

NOTE: The Generate VRSAVE Instructions checkbox applies
only when developing for a real-time operating system that sup-
ports AltiVec.

When a function call happens, the value of the VRSAVE register is
saved as a part of the stack frame called the vrsave word. In addi-
tion, the function saves the values of any non-volatile vector regis-
ters in the stack frame as well, in an area called the vector register
save area, before changing the values in any of those registers.

Selecting the Generate VRSAVE Instructions checkbox tells
CodeWarrior to generate instructions to save and restore these vec-
tor-register-related values.

For more information, see AltiVec Technology Programming Interface
Manual (available from Motorola, Inc.) and “Where to Go from
Here” on page 15.

Make Strings Read Only

The Make Strings Read Only option determines where to store
string constants. If this option is off, the compiler stores string con-
stants in the data section of the ELF file. If this option is on, the com-
piler stores string constants in the read-only “.rodata” section.

The Make Strings Read Only option corresponds to #pragma
readonly_strings. The default setting for this option is off.

Pool Data

The Pool Data option organizes some of the data in the large data
sections of .data, .bss, and .rodata so that the program can
access it more quickly. This option only affects data that is actually
defined in the current source file; it does not affect external declara-
tions or any small data. The linker is normally aggressive in strip-
ping unused data and functions from your C and C++ files in your
PPC–84 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
project. However, the linker cannot strip any large data that has
been pooled.

If your program uses tentative data, you will get a warning that you
need to force the tentative data into the common section. For more
information, see “Use Common Section” on page 85.

Use Common Section

The Use Common Section checkbox determines whether the com-
piler places global uninitialized data in the common section. This
section is similar to a FORTRAN Common Block. If the linker finds
two or more variables with the same name and at least one of them
is in a common section, those variables share the same storage ad-
dress. When the switch is off, two variables with the same name
generate a link error. The compiler never places small data, pooled
data, or variables declared static in the common section.

The section pragma provides fine control over which symbols the
compiler includes in the common section. For more information, see
“section” on page 183 for more information.

To have the desired effect, this option must be enabled during the
definition of the data, as well as during the declaration of the data.
Common section data is converted to use the .bss section at link
time. The linker supports common section data in libraries even if
the switch is disabled at the project level.

WARNING! You must initialize all common variables in each
source file that uses those variables, otherwise you will get unex-
pected results.

TIP: We recommend that you develop with this setting off. When
you have your program debugged, look at the data for especially
large variables that are used in only one file. Change those vari-
able names so that they are the same, and make sure that you ini-
tialize them before you use them. You can then turn the switch on.
Targeting Embedded PowerPC PPC–85

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Use LMW & STMW

LMW (Load Multiple Word) and STMW (Store Multiple Word) are
PowerPC instructions that load and store a group of registers to
memory all in a single instruction. If the Use LMW & STMW option
is selected, the compiler sometimes uses these instructions to store
and restore volatile registers in the prologue and epilogue of a func-
tion.

Code that uses the LMW and STMW instructions is usually faster
and always smaller than code that does not.

NOTE: When building little-endian code, the compiler never
uses LMW and STMW instructions, even if you select this option.
These instructions can cause problems in little-endian implemen-
tations.

Consult the PowerPC™ Microprocessor Family: The Programming En-
vironments by Motorola and IBM for more specific details about
LMW and STMW efficiency issues.

Use FMADD & FMSUB

When this option is checked, floating-point operations are per-
formed in hardware. In addition, the FMADD and FMSUB instruc-
tions are generated to speed up operation.

Selecting this option corresponds to setting #pragma
fp_contract in source code.

NOTE: This option can only be used on boards that have hard-
ware-based floating-point support.

Instruction Scheduling

If the Instruction Scheduling checkbox is enabled, scheduling of in-
structions is optimized for the specific processor you are targeting
PPC–86 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
(determined by which processor is selected in the Processor pop-up
menu.)

NOTE: Enabling the Instruction Scheduling checkbox can
make source-level debugging more difficult (because the source
code may not correspond exactly to the underlying instructions
being run.) It is sometimes helpful to turn this option off when de-
bugging, and then turn it on once you have finished the bulk of
your debugging.

Peephole Optimization

The Peephole Optimization checkbox controls whether the com-
piler performs “peephole” optimizations, which are small local opti-
mizations that eliminate some compare instructions and improve
branch sequences.

This option corresponds to #pragma peephole. By default, this
option is off.

Profiler Information

Select the Profiler Information checkbox to tell CodeWarrior to
generate special object code during runtime to collect information
for a code profiler.

This option corresponds to #pragma profile.

EPPC Disassembler

The EPPC Disassembler settings panel, shown in Figure 4.7, is
where you control the information displayed when you choose
Project > Disassemble in the IDE.

See the “Compiling and Linking” chapter of the IDE User Guide for
general information about the Disassemble command.
Targeting Embedded PowerPC PPC–87

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.7 EPPC Disassembler settings panel

The items in this panel are:

Show Headers

The Show Headers checkbox determines whether or not the assem-
bled file lists any ELF header information in the disassembled out-
put.

Show Headers Show Symbol Table

Show Code Modules Use Extended Mnemonics

Only Show Operands and
Mnemonics

Show Data Modules

Disassemble Exception Tables Show DWARF Info

Relocate DWARF Info Verbose Info
PPC–88 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Show Symbol Table

The Show Symbol Table checkbox determines whether the disas-
sembler lists the symbol table for the module that was disassem-
bled.

Show Code Modules

The Show Code Modules checkbox determines whether the disas-
sembler outputs the ELF code sections for the module that was dis-
assembled.

Use Extended Mnemonics

The Use Extended Mnemonics checkbox determines whether the
disassembler lists the extended mnemonics for each instruction for
the module that was disassembled.

Only Show Operands and Mnemonics

The Only Show Operands and Mnemonics checkbox determines
whether the disassembler lists the offset for any functions in the
module that was disassembled.

Show Data Modules

The Show Data Modules checkbox determines whether the disas-
sembler outputs any ELF data sections (such as .rodata and
.bss) for the module that was disassembled.

Disassemble Exception Tables

The Disassemble Exception Tables checkbox determines whether
the disassembler outputs any C++ exception tables for the module
that was disassembled.

Show DWARF Info

 Show DWARF Info informs the disassembler to include DWARF
symbol information in the disassembled output.
Targeting Embedded PowerPC PPC–89

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Relocate DWARF Info

The Relocate DWARF Info checkbox relocates object and function
addresses in the DWARF information.

Verbose Info

The Verbose Info checkbox tells the disassembler to show addi-
tional information about certain types of information in the ELF file.
For the .symtab section some of the descriptive constants are
shown with their numeric equivalents. .line, .debug, extab and
extabindex sections are also shown with an unstructured hex
dump.

EPPC Linker

The EPPC Linker panel, shown in Figure 4.8, is where you control
settings related to linking your object code into final form, be it exe-
cutable, library, or other type of code.
PPC–90 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.8 EPPC Linker panel

These items in this panel are:

Generate DWARF Info Use Full Path Names

Generate Link Map List Unused Objects

Suppress Warning Messages Heap Address

Stack Address Generate S-Record File

Max Length EOL Character

Use Linker Command File Code Address

Data Address Small Data

Small Data2 Generate ROM Image
Targeting Embedded PowerPC PPC–91

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Generate DWARF Info

The Generate DWARF Info checkbox controls whether the linker
generates debugging information. When this setting is on, the linker
generates debugging information. The debugger information is in-
cluded within the linked ELF file. This setting does not generate a
separate file. When this setting is off the linker does not generate de-
bugging information.

When you choose the Enable Debugger item in the CodeWarrior
Project menu, CodeWarrior turns this item on for you.

Use Full Path Names

The Use Full Path Names checkbox controls how the linker in-
cludes path information for source files. When this setting is on, the
linker includes path names within the linked ELF file (see the note
below). When this setting is off, the linker uses only the file names.

NOTE: To avoid problems with path names, turn off Use Full
Path Names when building and debugging on different machines
or platforms.

The Use Full Path Names checkbox is available only when you se-
lect Generate DWARF Info.

Generate Link Map

Enable the Generate Link Map checkbox to tell the linker to gener-
ate a link map.

The linker adds the extension .MAP to the file name specified in the
EPPC Target settings panel (see the edit field called File Name). The
file is saved in the same folder as the CodeWarrior project file.

RAM Buffer Address ROM Image Address

Entry Point
PPC–92 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
The link map shows which file provided the definition for every ob-
ject and function in the output file. It also displays the address given
to each object and function, a memory map of where each section
will reside in memory and the value of each linker generated sym-
bol. Although the linker aggressively strips unused code and data
when the relocatable file is compiled with the CodeWarrior com-
piler, it never deadstrips assembler relocatables or relocatables built
with other compilers. If a relocatable was not built with the
CodeWarrior C/C++ compiler, the link map lists all the unused but
unstripped symbols. You can use that information to remove the
symbols from the source and rebuild the relocatable in order to
make your final process image smaller.

List Unused Objects

Enable the List Unused Objects checkbox to tell the linker to in-
clude unused objects in the link map.

Typically this item is off. However, you may want to turn it on in
certain cases. For example, you may discover that an object you ex-
pect to be used is not in use.

Suppress Warning Messages

Enable the Suppress Warning Messages checkbox to tell the linker
to display warnings in the CodeWarrior message window.

In typical usage, this setting is on.

Heap Address

The Heap Address edit field specifies the location in memory where
the program heap resides. The heap is used if your program calls
malloc or new.

If you wish to specify a specific heap address, enable the checkbox
and type an address in the edit field. You must specify the address
in hexadecimal notation. The address you specify is the bottom of
the heap. The address will be aligned up to the nearest 8-byte
boundary, if necessary. The top of the heap will be Heap Size (k)
kilobytes above the Heap Address (Heap Size (k) is found in the
Targeting Embedded PowerPC PPC–93

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
EPPC Target panel.) The possible addresses depend on your target
hardware platform and how the memory is mapped. The heap must
reside in RAM.

If you disable the checkbox, the top of the heap will equal the bot-
tom of the stack. In other words:

_stack_end = _stack_addr - (Stack Size (k) * 1024);
_heap_end = _stack_end;
_heap_addr = _heap_end - (Heap Size (k) * 1024);

The MSL allocation routines do not require that you have a heap
below the stack. You can set the Heap Address to any place in RAM
that does not overlap with other sections. The MSL also allows you
to have multiple memory pools, which can increase the total size of
the heap. Please see the “Allocating Memory and Heaps for Embed-
ded PowerPC” on page 212 for how you initialize multiple memory
pools.

You can disable Heap Address if your code does not make use of a
heap. If you are using MSL, your program may implicitly use a
heap.

NOTE: If there is not enough free space available in your pro-
gram, malloc returns zero.

TIP: If you do not call malloc or new, consider setting Heap
Size (k) to 0 to maximize the memory available for code, data, and
the stack.

Stack Address

The Stack Address edit field specifies the location in memory where
the program stack resides.

If you wish to specify a specific stack address, enable the checkbox
and type an address in the edit field. You must specify the address
PPC–94 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
in hexadecimal notation. The address you specify is the top of the
stack and grows down the number of kilobytes you specify in the
Stack Size (k) edit field in the EPPC Target panel. The address will
be aligned up to the nearest 8-byte boundary, if necessary. The pos-
sible addresses depend on your target hardware platform and how
the memory is mapped. The stack must reside in RAM.

NOTE: Alternatively, you can specify the stack address by spec-
ifying a value for the symbol _stack_addr in a linker command
file. For more information, see “Linker Command Files” on page
192.

If you disable the checkbox, the linker uses the address
0x003DFFF0. This default address is suitable for the 8xx evaluation
boards, but may not be suitable for boards with less RAM. For other
boards, please see the stationery projects for examples with suitable
addresses.

NOTE: Since the stack grows downward, it is common to place
the stack as high as possible. If you have a board that has Me-
troTRK installed, this monitor puts its data in high memory. The
default (factory) stack address reflects the memory requirements
of MetroTRK and places the stack address at 0x003DFFF0. Me-
troTRK also uses memory from 0x00000100 to 0x00002000 for
exception vectors.

Generate S-Record File

The Generate S-Record File checkbox determines whether the
linker generates an S-Record file based on the application object im-
age. This file will have the same name as the executable file, but
with a .mot extension. The linker generates S3 type S-Records.

Max Length

The Max Length edit field specifies the maximum length of the S-
record generated by the linker. This field is only available if the
Targeting Embedded PowerPC PPC–95

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Generates S-Record File item is checked. The maximum value al-
lowed for an S-Record length is 256 bytes.

NOTE: Most programs that load applications onto embedded
systems have a maximum length allowed for the S-Records. The
CodeWarrior debugger can handle S-Records of 256 bytes long. If
you are using something other than the CodeWarrior debugger to
load your embedded application, you need to find out what the
maximum allowed length is.

EOL Character

The EOL Character pop-up menu defines the end-of-line character
for the S-record file. This field is only available if the Generates S-
Record File item is checked. The end of line characters are:

• <cr> <lf> for DOS

• <lf> for Unix

• <cr> for Mac

Use Linker Command File

The Use Linker Command File checkbox allows you to choose be-
tween specifying segment addresses in a linker command file, or di-
rectly in the settings panel using the segment address edit fields.

When the checkbox is enabled, the fields for Code Address, Data
Address, Small Data, and Small Data2 are dimmed, even if values
are specified there. The linker expects a linker command file and if it
doesn't find one, an error occurs.

NOTE: If you have a linker command file in your project and the
Use Linker Command File checkbox is deselected, the linker ig-
nores the file.
PPC–96 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Code Address

The Code Address edit field specifies the location in memory where
the executable code resides.

If you wish to specify a specific code address, enable the checkbox
and type an address in the edit field. You must specify the address
in hexadecimal notation. The possible addresses depend on your
target hardware platform and how the memory is mapped.

If you disable the checkbox, the default code address will be
0x00010000. This default address is suitable for the 8xx evaluation
boards, but may not be suitable for boards with less RAM.For other
boards, please see the stationery projects for examples with suitable
addresses.

NOTE: To enter a hexadecimal address, use the format
0x12345678, (where the address is the 8 digits following the
character “x”).

Data Address

The Data Address edit field specifies the location in memory where
the global data of the program resides.

If you wish to specify a specific data address, enable the checkbox
and type an address in the edit field. You must specify the address
in hexadecimal notation. The possible addresses depend on your
target hardware platform and how the memory is mapped. Data
must reside in RAM.

If you disable the checkbox, the linker calculates the data address to
begin immediately following the read-only code and data (.text,
.rodata, extab and extabindex).

Small Data

The Small Data edit field specifies the location in memory where
the small data section resides. For more information about the small
data section, see “Small Data” on page 72.
Targeting Embedded PowerPC PPC–97

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
If you wish to specify a specific small data address, enable the
checkbox and type an address in the edit field. You must specify the
address in hexadecimal notation (using a format of 0x12345678).
The possible addresses depend on your target hardware platform
and how the memory is mapped. All types of data must reside in
RAM.

If you disable the checkbox, the linker calculates the small data ad-
dress to begin immediately following the .data section.

Small Data2

The Small Data2 edit field specifies the location in memory where
the small data2 section resides. For more information about the
small data section, see “Small Data2” on page 73.

If you wish to specify a specific small data2 address, enable the
checkbox and type an address in the edit field. You must specify the
address in hexadecimal notation. The possible addresses depend on
your target hardware platform and how the memory is mapped. All
types of data must reside in RAM.

If you disable the checkbox, the linker calculates the small data2 ad-
dress to begin immediately following the .sbss section.

NOTE: If the linker discovers that any of the sections, heap, or
stack overlap, it issues a warning. You should fix the address
problem and re-link your program.

Generate ROM Image

The Generate ROM Image checkbox allows you to create a ROM
image at link time by specifying the RAM Buffer Address and ROM
Image Address.

NOTE: A ROM image is defined as a file suitable for flashing to
ROM.
PPC–98 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
RAM Buffer Address

The RAM Buffer Address edit field is used to prepare your pro-
gram to be flashed into ROM. It specifies the address in RAM that
will be used as a buffer for the flash image programmer.

Enter an address value in this field to load all code and data into
consecutive addresses in ROM. Your application is responsible for
copying data, exception vectors, and possibly even code into their
executing addresses.

The CodeWarrior flash programmer does not use a separate RAM
buffer for flashing. If you are using the CodeWarrior flash program-
mer, you need to ensure that the RAM Buffer Address equals the
ROM Image Address.

NOTE: Using the Flash to ROM target to flash your programs to
ROM is substantially faster than using the flash programmer. For
more information, see “Project Stationery Targets” on page 37.

If you are not using the CodeWarrior flash programmer, some ROM
flash programs, such as MPC8BUG for 821, expect to find your pro-
gram in a RAM buffer in memory. This buffer address is different
from where you want your program to execute. You enter the exe-
cuting addresses for the different sections in the edit fields Code
Address, Data Address, Small Data, and Small Data2.

For example, MPC8BUG expects a RAM Buffer Address of
0x02800000. MPC8BUG makes a copy of your program starting at
address 0xFFE00000. If 0xFFE00000 is where you want your
.text section then you would put 0xFFE00000 as the Code Ad-
dress. If you specify a different Code Address, you need to copy the
code to that address from 0xFFE00000. You will find linker-gener-
ated symbols for all ROM addresses and executing addresses for the
sections to assist in copying them.
Targeting Embedded PowerPC PPC–99

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
See the file:

{CodeWarrior Directory}\PowerPC_EABI_Support\Runtime\Inc\
__ppc_eabi_linker.h

for an explanation of linker generated symbols created for ROM ad-
dresses.

NOTE: Not all flash programs require that a buffer address be
specified. For example, MPC8BUG requires a buffer but the
CodeWarrior Flash Programmer does not. If you don't need a
buffer, it is very important that you set the buffer address to be
identical to the ROM Image Address.

ROM Image Address

The ROM Image Address edit field allows you to specify the ad-
dress where you want your program to load in ROM.

NOTE: In previous versions of CodeWarrior for Embedded Pow-
erPC (Release 2 and earlier), you were required to enter the
image address in the Code Address edit field. Now, the Code Ad-
dress and ROM Image Address fields can be different; therefore,
you can copy the text section to RAM.

Entry Point

The Entry Point edit field specifies the function that the linker uses
first when the program launches. This is the starting point of the
program.

The default __start function is bootstrap or glue code that sets up
the PowerPC EABI environment before your code executes. This
function is in the __start.c file. The final task performed by
__start is to call your main() function.
PPC–100 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
EPPC Target Settings

The EPPC Target Settings panel, shown in Figure 4.9, selects the
debug agent and controls how the debugger uses it to interact with
the target board. This section discusses each item in this panel.

Figure 4.9 EPPC Target Settings panel (AMC CodeTAP setting options)

There are several configurations for this panel, each associated with
one of the debug agents selected in the Protocol field:

• An AMC (Applied Microsystems Corporation) CodeTAP or
PowerTAP debugging device

• A Macraigor Systems Inc. Wiggler

• SDS Monitor

• Abatron BDI
Targeting Embedded PowerPC PPC–101

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
• MetroTRK

Depending on which option you choose from the Protocol menu,
various items shown in Table 4.2 on page 102 appear in the panel.
Because of the variable appearance of this panel, Table 4.2 lists the
options in alphabetic order. The option descriptions in this section
are also in alphabetic order.

Table 4.2 EPPC Target Settings panel options

Arguments Breakpoint Type

Connection Device

Entry Point Force shell download on con-
nect

FPU Buffer Address Initialization File

Interface Clock Frequency IP Address

Kill User Threads on Exit? Log Connection Commands

Mem Read Delay Mem Write Delay

Options Parallel Port

Poll time [ms] Priority

Protocol Reset On Connect

Serialize instruction execution Show Inst Cycles

Speed Stack Size

Target OS Target Processor

Target Server Name Unload Module on Exit?

Use Initialization File Verify memory writes

Watchpoint Type
PPC–102 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Arguments

This field is used to enter up to ten argument values for the
taskSpawn() function.

Below are a few helpful hints for using this option:

• It is not necessary to enter any or all arguments. If no values
are entered, the debugger assumes a value of zero for each
argument.

• Each argument is an integer value, and must be separated by
a space to be recognized by the debugger.

Breakpoint Type

Choose how to set a breakpoint using the options on the Breakpoint
Type pop-up menu:

• Software — breakpoint written to target memory, which is
then removed when the breakpoint triggers. The breakpoint
can be set only in writable memory.

• Hardware — breakpoint registers on the target processor are
used.

• Auto — debugger decides which is the best method to set the
breakpoint.

The default setting is Auto.

NOTE: PowerTAP permits only one type of breakpoint to be ac-
tive at a time. You can choose either one hardware breakpoint or
up to 1024 software breakpoints.

Connection

Select Serial or TCP/IP from the Connection menu to indicate the
type of connection to use.

NOTE: The Connection menu applies only to the Abatron BDI
protocol.
Targeting Embedded PowerPC PPC–103

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Device

This menu allows you to select a Macraigor Systems hardware-
based debugging device. The choices include:

• Raven (BDM or COP, depending on which device you are us-
ing)

• Hummingbird

• Wiggler

NOTE: The Device option is not available within the Solaris
hosted tools because the Wiggler protocol, which uses a parallel
PC, is not available for Solaris.

Entry Point

Enter the entry point name in this edit field. The entry point is the
function used as the entry point when the initial task is spawned.

Force shell download on connect

Select the Force shell download on connect checkbox to force the
shell program to download again to the CodeTAP or PowerTAP de-
vice.

FPU Buffer Address

NOTE: This option is for Macraigor devices and Motorola 505/
509 or 555 processors only.

This edit field allows you to specify a starting address of a scratch
space, used to read in the FPU registers. The space is 8 bytes long
and must be located in valid RAM.

The scratch space is used to read, save, and later restore the FPU
registers. This means that the FPU Buffer Address can be in the mid-
dle of your code or data if you need it to be.
PPC–104 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Initialization File

Use the Initialization File field to specify your debug initialization
file, which configures your target board for BDM or JTAG when the
debugger establishes communications with the target hardware.
You can use the Browse button to browse your hard drive to locate
the initialization file. The file you select allows you to set memory
and registers for your target. You also can edit text in this field by
clicking in the field and typing.

NOTE: Selecting a debug initialization file is mandatory for all
BDM targets.

The following directory contains several debug initialization files:

Windows {CodeWarrior Directory}\PowerPC_EABI_Support
\Initialization_Files\

Solaris {CodeWarrior Directory}/PowerPC_EABI_Support
/Initialization_Files/

NOTE: The Config.FAQ.txt file, which answers common
questions about initialization files, also resides in the preceding di-
rectory.

Although these files apply to several reference board configura-
tions, you can modify the debug initialization file as needed. For ex-
ample, if you are using a supported reference board and change
your hardware configuration (specifically your memory configura-
tion), you may have to modify the debug initialization file. The file
contains a description of the file format.

NOTE: The main purpose of debug initialization files is to down-
load a program to the target board. Place other initializations in the
start-up code.
Targeting Embedded PowerPC PPC–105

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
For more information, see “Debug Initialization Files” on page 289.

Interface Clock Frequency

The Interface Clock Frequency pop-up menu sets the clock fre-
quency for the BDM of the MPC8xx and the JTAG of the 60x.

Interface Clock Frequency is also a command in debug initializa-
tion files. The debug initialization file commands overwrite values
set in this panel. For more information, see “AMCTargetInterface-
ClockFreq” on page 301.

IP Address

This option allows you to specify the IP address of the board where
your code will be downloaded.

Kill User Threads on Exit?

Select this checkbox to kill any threads that are spawned by your
application when the debugger disconnects from the board.

Log Connection Commands

Select the Log Connection Commands checkbox to enable the Log
Connection Commands window. The Log Connection Commands
window displays communications between the debugger and Me-
troTRK. You can save the contents of the Log Connection Com-
mands window to a file.

NOTE: It is useful to enable Log Connection Commands when
porting MetroTRK.

Mem Read Delay

The Mem Read Delay field defines the number of additional pro-
cessor cycles to allow for memory reads.

Mem Read Delay is also a command in debug initialization files.
The debug initialization file commands overwrite values set in this
PPC–106 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
panel. For more information, see “AMCMemReadDelayCycles” on
page 299.

Mem Write Delay

The Mem Write Delay field defines the number of additional pro-
cessor cycles necessary for memory writes.

Mem Write Delay is also a command in debug initialization files.
The debug initialization file commands overwrite values set in this
panel. For more information, see “AMCMemWriteDelayCycles” on
page 300.

Options

The debugger spawns one task per application. The VxWorks OS al-
lows you to specify various task options that affect the manner in
which the task is spawned. These options take effect before debug-
ging begins.

For example, to set the task options VX_FP_TASK and
VX_NO_STACK_FILL, enter the hex values and separate them with
the decimal value 264 (a logical OR in decimal format).

0x8 264 0x100

If you do not want to use any options, simply enter zero (0).

See Targeting VxWorks for details on the VxWorks options that can
be used with the CodeWarrior debugger.

Parallel Port

Use the Parallel Port menu to select the parallel port to use to com-
municate with the BDM emulator. The choices are LPT1, LPT2,
LPT3, LPT4.

Poll time [ms]

The Poll time [ms] field controls the time in milliseconds between
emulator polls.
Targeting Embedded PowerPC PPC–107

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Poll time [ms] is also a command in debug initialization files. The
debug initialization file commands overwrite values set in this
panel. For more information, see “polltime” on page 302.

Priority

To assign a priority to the initial debug task in VxWorks, enter an
integer from 0 to 255 in the Priority edit field. A priority of 0 is the
highest you can assign, while a priority of 255 is the lowest.

NOTE: The name of the initial debug task is specified in the
Entry Point edit field.

Protocol

The Protocol pop-up menu selects both the type of interface and the
type of debug agent: hardware debug interface or monitor. Specific
options are:

• AMC CodeTAP

Selecting AMC CodeTAP configures the debugger to com-
municate with the target processor using a CodeTAP device
connected to the BDM port of the target board.

• MSI Wiggler

Selecting MSI Wiggler configures the debugger to communi-
cate with the target processor using a Macraigor System Inc.
Wiggler connected to the BDM port of the target board.

NOTE: The MSI Wiggler option is not available for Solaris-
hosted development.

• AMC PowerTAP

Selecting AMC PowerTAP configures the debugger to com-
municate with the target processor using a PowerTAP device
connected to the JTAG interface of the target board.
PPC–108 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
• MetroTRK

Selecting MetroTRK configures the debugger to communi-
cate with MetroTRK. For more information, see “Connecting
with a Debug Monitor” on page 127 and “Using MetroTRK”
on page 157.

• SDS Monitor

Selecting SDS Monitor configures the debugger to communi-
cate with the SDS Monitor debug monitor. For more informa-
tion, see “Connecting with a Debug Monitor” on page 127.

• Target Server

Selecting Target Server configures the debugger to commu-
nicate with the target processor using the VxWorks operating
system. If you want to do task-level debugging, choose this
protocol.

• Abatron BDI

Selecting Abatron BDI configures the debugger to communi-
cate with the target processor using an Abatron BDI2000 de-
bugging device.

For information on properly connecting the target board to the
debug agent using the selected protocol, see the following items:

• “Setting Up for Remote Debugging” on page 126

• “Using a CodeTAP Debugging Device” on page 249

• “Using the PowerTAP 6xx/7xx Debugging Device” on page
257

• Emulator Installation Guide (supplied with the CodeTAP or
PowerTAP device)

Reset On Connect

Select the Reset On Connect checkbox to cause CodeWarrior to
issue a reset to the target board before executing the debug initial-
ization file.

Serialize instruction execution

The MPC8XX core has multiple execution units, which allows in-
structions to be executed concurrently. When you select the Serial-
Targeting Embedded PowerPC PPC–109

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
ize instruction execution checkbox, this option sets the MPC8XX
ICTRL register bit 29, which forces the MPC8XX to serialize its in-
struction execution.

Serialize instruction execution is also a command in debug initial-
ization files. The debug initialization file commands overwrite val-
ues set in this panel. For more information, see “AMCTargetSerial-
izeInstExec” on page 301 for additional information on this
command.

For information about the serialization of the MPC8XX core, see
MPC860 User’s Manual (available from Motorola).

NOTE: You cannot enable this option and Show Inst Cycles set
to All at the same time. According to the MPC860 User’s Manual,
this is an incorrect combination for the ICTRL bits (29:31).

Show Inst Cycles

The Show Inst Cycles option allows you to control the instruction
fetch show cycles. Specifically, it sets or clears bits 30 and 31 of the
ICTRL register. For information on Show Cycles and the ICTRL reg-
ister, see MPC860 User’s Manual (available from Motorola).

The choices include:

• None—No show cycles are performed.

• Indirect—All indirect change of flow.

• Flow—All change of flow (direct and indirect).

• All—All fetch cycles.

Speed

If you selected Wiggler as the Device, this edit field is where you
enter a software delay value from 1 to 64,000. Almost universally,
entering 1 works the best. According to Macraigor Systems (MSI),
you should never need to enter a number greater than 200.
PPC–110 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
For other Devices, you can use values from 1 to 8. The following for-
mula can be used to calculate the speed used for the Hummingbird
device:

Speed = 8 / Board Mhz

For example, an 8MHz board uses a Speed of 1. A 4Mhz board uses
a speed of 2.

Stack Size

The Stack Size is the size of the application's initial task stack, in
bytes.

Target OS

To debug a board with a target OS, click this pop-up menu and se-
lect the operating system loaded on your board. If your board has
no target operating system, click the menu and select Bareboard.

Target Processor

Use the Target Processor pull-down menu to specify the processor
on your emulator or target board.

Table 4.3 lists the PowerPC target processors that are available and
the debugging protocols supported for each.

Table 4.3 Debugging protocols for PowerPC target processors

Processor Type Debugging Protocol

Generic no FPU1 Any protocol

Generic with FPU1 Any protocol

505/509 MSI Wiggler2, MetroTRK, Abatron BDI

555 MSI Wiggler2, Serial MetroTRK, Aba-
tron BDI

603 AMC PowerTAP, MetroTRK, Raven
COP
Targeting Embedded PowerPC PPC–111

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Target Server Name

Target Server Name is the name of the registered target server you
want to connect to.

Unload Module on Exit?

Enable Unload Module on Exit? to unload the application module
from the target once your application exits the debugger.

Each time your debug your application, the module is downloaded
to your board. If you want to free up memory on your board, you
can enable this checkbox to delete the module from memory on exit.
If you prefer to leave the module on the board when you're finished
debugging, disable this checkbox.

Use Initialization File

Select the Use Initialization File checkbox to indicate that your
project uses a debug initialization file. For more information, see
“Initialization File” on page 105.

740/750 AMC PowerTAP, MetroTRK

821/860 AMC CodeTAP, MSI Wiggler2, Me-
troTRK, Abatron BDI

7400 AMC PowerTAP, MetroTRK

8240 AMC PowerTAP, MSI Wiggler2

8260 AMC PowerTAP, MetroTRK, Raven
COP

403 MSI Wiggler2

1. CodeWarrior includes generic processors as an option so that you can use a non-
standard processor with the CodeWarrior tools. To debug a target board with a ge-
neric processor, you must customize MetroTRK to work with the board. For more
information, see MetroTRK Reference.

2. The MSI Wiggler option is available for Windows-hosted development only.

Processor Type Debugging Protocol
PPC–112 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Verify memory writes

The Verify memory writes checkbox enables or disables memory
read-after-write verification.

Verify memory writes is also a command in debug initialization
files. The debug initialization file commands overwrite values set in
this panel. For more information, see “AMCMemWriteVerify” on
page 300.

Watchpoint Type

Use the Watchpoint Type pop-up menu on the EPPC Target Set-
tings panel to set watchpoints and conditional watchpoints.

The type you select determines why the debugger stops. There are
four options to choose from:

• Data — stops only when the data at the watchpoint address
changes. Internal processing of the Data watchpoint may af-
fect target performance if the expression is accessed fre-
quently.

• Read — stops on any read access of the watchpoint address

• Write — stops on any write access of the watchpoint address

• Read/Write — stops on any read or write access of the watch-
point address

NOTE: Watchpoints, also called access breakpoints, are avail-
able only for PowerTAP 7xx or CodeTAP 8xx. You cannot set
watchpoints for PowerTAP6xx or PowerTAP 82xx.
Targeting Embedded PowerPC PPC–113

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Remote Debugging Options

The Remote Debugging Options panel, shown in Figure 4.10, al-
lows you to choose the type of code or data to download or verify
on initial or successive runs.

Figure 4.10 Remote Debugging Options panel

The panel contains two regions:

• Program Download Options

• Memory Configuration Options

Program Download Options

There are four Section Types listed in the Program Download Op-
tions section of this panel:
PPC–114 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
• Executable—the executable code and text sections of the pro-
gram.

• Constant Data—the constant data sections of the program.

• Initialized Data—the initialized data sections of the program.

• Uninitialized Data—the uninitialized data sections of the
program that are usually initialized by the runtime code in-
cluded with CodeWarrior.

NOTE: You do not need to download uninitialized data if you are
using Metrowerks runtime code.

There are four checkboxes to the right of each of these section types:

• Initial Launch, Download

• Initial Launch, Verify

• Successive Runs, Download

• Successive Runs, Verify

By selecting the appropriate combination of checkboxes, you choose
whether to download and/or verify sections on initial and/or suc-
cessive runs. This panel allows you to verify that any or all sections
of program are making it to the target processor successfully, or that
they have not been modified by runaway code or the program stack.
For example, once you download a text section you might never
need to download it again, but you may want to verify that it still
exists.

Memory Configuration Options

In the Memory Configuration Options section, there is a checkbox
labeled Use Memory Configuration File. The Use Memory Config-
uration File option defines the legally accessible areas of memory
for your specific board. Select this checkbox if you want to use a
memory configuration file, and click Browse to find and select the
file.
Targeting Embedded PowerPC PPC–115

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
If you are using a memory configuration file and you try to read
from an illegal address, the debugger fills the memory buffer with a
reserved character (defined in the memory configuration file).

If you try to write to an illegal address, the write command is ig-
nored and fails.

For more information, see “Memory Configuration Files” on page
313.

EPPC Exceptions

The EPPC Exceptions settings panel, shown in Figure 4.11, lists all
the exceptions that the debugger is able to catch. If you want the de-
bugger to catch all the exceptions, you should select the checkboxes
of all the options in this panel. However, if you prefer to handle
some of the exceptions, leave the checkboxes of those exceptions un-
selected.

NOTE: The EPPC Exceptions panel is available only for pro-
cessors that use BDM as the debugging protocol, with the excep-
tion of the IBM 403 evaluation board.

Four exceptions affect the ability of the debugger to control the tar-
get processor. To ensure the debugger performs properly, always
select the following exceptions:

• 0x00800000 Program — for software breakpoints on some
boards

• 0x00020000 Trace — for single stepping

• 0x00004000 Software Emulation — for software breakpoints
on some boards

• 0x00000001 Development Port — for halting target processor.
PPC–116 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Figure 4.11 EPPC Exceptions panel
Targeting Embedded PowerPC PPC–117

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Connection Settings

The Connection Settings panel, shown in Figure 4.12, allows you to
set the primary and secondary serial port options.

Figure 4.12 Connection Settings panel (Windows)

View Connection Type

You can use the View Connection Type menu to specify your set-
tings for connecting to your board.

• When you select View Serial Settings, the Primary and Sec-
ondary Serial Port Options are shown.

You can use a serial connection for all debugging protocols.

• When you select View TCP/IP Settings, the TCP/IP Options
are shown.
PPC–118 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
You can use TCP/IP only for the CodeTAP and PowerTAP
emulators.

Primary and Secondary Serial Port Options

The settings for the Primary Serial Port include:

• Port

• Rate

• Data Bits

• Log Serial Data to Log Window

• Parity

• Stop bits

• Flow Control

• Use Global Connection Settings

Port

The Port pull-down menu selects the serial port on your computer
that the debugger uses to communicate with the target hardware.

Windows The options are COM1, COM2, COM3, and COM4.

Solaris The options are /dev/term/a and /dev/term/b.

Rate

The Rate pull-down menu selects the serial baud rate for communi-
cating with the target hardware.

Table 4.4 lists the default baud rate that MetroTRK uses to commu-
nicate with each target board. These baud rates are the fastest that
work with the hardware.
Targeting Embedded PowerPC PPC–119

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Table 4.4 MetroTRK default baud rates for target boards

If you change the baud rate in the MetroTRK source code, you also
must change the baud rate in the debugger. For more information
on MetroTRK, see “Using MetroTRK” on page 157.

Data Bits

The Data Bits pull-down menu selects the number of data bits per
character. The default value is 8.

Log Serial Data to Log Window

This option currently is unsupported.

Parity

Use the Parity pull-down menu to select whether you want an odd
parity bit, an even parity bit, or none. The default value is none.

Embedded PowerPC Board Solaris 2.6+ and
Windows Baud
Rates (bps)

Solaris 2.5.1 Baud
Rates (bps)

Cogent CMA102 with CMA 278 Daugh-
tercard

115200 38400

Motorola MPC 505/509 EVB 38400 38400

Motorola 555 ETAS 115200 38400

Motorola Excimer 603e 115200 38400

Motorola Yellowknife X4 603/750 115200 38400

Motorola MPC 8xx ADS 115200 38400

Motorola MPC 8xx MBX 115200 38400

Motorola MPC 8xx FADS 115200 38400

Motorola Maximer 7400 115200 38400

Motorola MPC 8260 VADS 115200 38400

Phytec miniMODUL-PPC 505/509 19200 19200
PPC–120 Targeting Embedded PowerPC

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
Stop bits

The Stop Bits pull-down menu selects the number of stop bits per
character. The default value is 1.

Flow Control

Use the Flow Control pull-down menu to select whether you want
hardware flow control, software flow control, or none. The default
value is none.

NOTE: All versions of MetroTRK included in this package have
no flow control enabled. The only exception to this rule is the Me-
troTRK built for the Cogent boards, which have hardware flow con-
trol enabled by default.

TCP/IP Options

The settings available when you select View TCP/IP Settings from
the View Connection Type menu follow:

• Host Name

• Use Global Connection Settings

Host Name

Enter the host name of your CodeTAP or PowerTAP device in this
field.

CodeTAP and PowerTAP use high-speed, networked Ethernet com-
munications. For instructions on assigning a host name, an IP ad-
dress, and configuring Ethernet communications, see the Emulator
Installation Guide supplied with the CodeTAP or PowerTAP.

Use Global Connection Settings

When enabled, this option overrides all settings for the primary se-
rial port with settings in the Global Connection Settings panel (to
see this panel, select Edit > Preferences > Debugger > Global Con-
nection Settings.)

For more information, see IDE User Guide.
Targeting Embedded PowerPC PPC–121

Target Sett ings for Embedded PowerPC
Settings Panels for Embedded PowerPC
PPC–122 Targeting Embedded PowerPC

5
Debugging for
Embedded PowerPC
This chapter discusses how to use the CodeWarrior tools for debug-
ging Embedded PowerPC code. It covers those aspects of debug-
ging that are specific to the Embedded PowerPC platform. See the
IDE User Guide for more general information on the debugger.

This chapter contains the following topics:

• Supported Debugging Methods

• Setting Up for Remote Debugging

• Special Debugger Features for Embedded PowerPC

• Register Details Window

• Using MetroTRK

• Debugging ELF Files

Supported Debugging Methods
With CodeWarrior for Embedded PowerPC, you can use a variety
of methods to debug your applications:

• Debug monitors (MetroTRK and SDS Monitor) that run on
the target board and communicate with the debugger using a
serial cable connection.

• Various hardware debugging devices that facilitate commu-
nication between the debugger and your target board.

• Target server (useful when debugging programs for Vx-
Works). For more information, see Targeting VxWorks for
PowerPC.
Targeting Embedded PowerPC PPC–123

Debugging for Embedded PowerPC
Supported Debugging Methods
Table 5.1 lists the supported debugging devices.

Table 5.1 Supported debugging devices

Table 5.2 lists the currently supported target boards and the sup-
ported debugging methods for each board.

Table 5.2 Supported debugging methods for target boards

Manufacturer Debugging Device Connection Type

Applied Microsystems Corporation CodeTAP BDM

PowerTAP JTAG

Macraigor Systems, Inc. Wiggler BDM

Hummingbird BDM

Raven BDM
(555 and 8xx processors)

BDM

Raven COP
(6xx and 82xx processors)

JTAG/COP

Abatron AG Abatron BDI2000 BDM

Embedded PowerPC Board Supported Debugging Methods

Cogent CMA102 with CMA 278 Daughtercard PowerTAP, MetroTRK

IBM 403 EVB MSI Wiggler

Motorola MPC 505/509 EVB MSI Wiggler, MetroTRK, Abatron
BDI

Motorola 555 ETAS Raven BDM, Hummingbird, MSI
Wiggler, MetroTRK, Abatron BDI

Motorola Excimer 603e Raven COP, PowerTAP, MetroTRK

Motorola Yellowknife X4 603/750 Raven COP, PowerTAP, MetroTRK
PPC–124 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Supported Debugging Methods
NOTE: The MSI Wiggler option is available for Windows-hosted
development only.

Motorola MPC 8xx ADS Raven BDM, CodeTAP, Humming-
bird, MSI Wiggler, Target Server,
MetroTRK, Abatron BDI

Motorola MPC 8xx MBX Raven BDM, CodeTAP, Humming-
bird, MSI Wiggler, Target Server,
MetroTRK, Abatron BDI

Motorola MPC 8xx FADS Raven BDM, CodeTAP, Humming-
bird, MSI Wiggler, Target Server,
MetroTRK, Abatron BDI

Embedded Planet RPX Lite 8xx Raven BDM, CodeTAP, Humming-
bird, MSI Wiggler, Abatron BDI

Motorola Maximer 7400 PowerTAP, MetroTRK

Motorola Sandpoint 8240 Raven COP, PowerTAP

Motorola MPC 8260 VADS Raven COP, PowerTAP, MetroTRK

Phytec miniMODUL-PPC 505/509 MSI Wiggler, MetroTRK, Abatron
BDI

Embedded PowerPC Board Supported Debugging Methods
Targeting Embedded PowerPC PPC–125

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
Setting Up for Remote Debugging
This section discusses the hardware you need to develop applica-
tions for Embedded PowerPC and how to connect it to your com-
puter.

You can use CodeWarrior for Embedded PowerPC with several
types of development boards. The development board usually has a
serial, BDM, JTAG, or COP port.

Depending on the target board and the other hardware available to
you, you can debug using one of the following methods:

• A debug monitor (such as MetroTRK or SDS Monitor)
through a serial connection

• A debugging device that connects to the target board using
BDM (a CodeTAP device, a Wiggler, a Hummingbird, a
Raven BDM, or an Abatron BDI2000)

• A debugging device that connects to the target board using
JTAG (a PowerTAP device)

• A debugging device that connects to the target board using
COP (a Raven COP)

NOTE: For more information, see “Supported Debugging Meth-
ods” on page 123.

This section contains the following topics:

• Configuring Your Embedded PowerPC Board

• Connecting with a Debug Monitor

• Connecting with CodeTAP

• Connecting with PowerTAP

• Connecting with Wiggler, Hummingbird, or Raven BDM

• Connecting with Raven COP

• Connecting with Abatron BDI2000
PPC–126 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
NOTE: For information about debugging with the AMC (Applied
Microsystems Corporation) CodeTAP device, see “Using a Code-
TAP Debugging Device” on page 249.

For information about debugging with the AMC PowerTAP device,
see “Using the PowerTAP 6xx/7xx Debugging Device” on page
257.

Configuring Your Embedded PowerPC Board

Tested jumper and dipswitch settings are available for a number of
supported target boards. Before using a target board with
CodeWarrior, set the appropriate jumper or dipswitch settings for
the target board. For more information, see “Tested Jumper and
Dipswitch Settings” on page 317.

Connecting with a Debug Monitor

This section presents high-level steps for connecting with a debug
monitor using a serial port.

The type of serial cable connection that you can use depends on
your target board. Table 5.3 lists the type of serial cable connection
required for various embedded PowerPC target boards.

Table 5.3 Serial cable connection type for target boards

Embedded PowerPC Board Serial Cable Connection Type

Cogent CMA102 with CMA 278 Daughtercard Use the equipment and cable sup-
plied with the board.

Motorola MPC 505/509 EVB Straight serial

Motorola 555 ETAS Null modem

Motorola Excimer 603e Null modem

Motorola Yellowknife X4 603/750 Null modem

Motorola MPC 8xx ADS Straight serial
Targeting Embedded PowerPC PPC–127

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
NOTE: CodeWarrior supports the SDS Monitor and MetroTRK
debug monitors. For more information, see “Using MetroTRK” on
page 157.

To connect to your target board using a debug monitor:

1. Ensure that your target board has a debug monitor.

If your debug monitor has not been previously installed on the tar-
get board, burn the debug monitor to ROM or use another method,
such as the flash programmer, to place MetroTRK or another debug
monitor in flash memory.

Depending on the board you are using, you can use a MetroTRK
project provided by this product to place MetroTRK in flash mem-
ory. The following boards have self-flashable MetroTRK project tar-
gets:

• Motorola MPC 505/509 EVB

• Motorola 555 ETAS

• Motorola Excimer 603e

• Motorola Yellowknife X4 603/750

• Motorola MPC 8xx ADS

• Motorola MPC 8xx MBX

Motorola MPC 8xx MBX Null modem

Motorola MPC 8xx FADS Straight serial

Embedded Planet RPX Lite 8xx Use the equipment and cable sup-
plied with the board.

Motorola Maximer 7400 Null modem

Motorola Sandpoint 8240 Null modem

Motorola MPC 8260 VADS Straight serial

Phytec miniMODUL-PPC 505/509 Straight serial

Embedded PowerPC Board Serial Cable Connection Type
PPC–128 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
• Motorola MPC 8xx FADS

• Motorola MPC 8260 VADS

• Phytec miniMODUL-PPC 505/509

The following boards do not have self-flashable MetroTRK project
targets; consequently, you must use the flash programmer or an-
other method to place MetroTRK in flash memory or ROM when
using these boards:

• Cogent CMA102 with CMA 278 Daughtercard

• Motorola Maximer 7400

For more information, see “Flash Programmer” on page 267.

2. Check whether the debug monitor is in flash memory or ROM.

To check whether the debug monitor is in flash memory or ROM:

a. Connect the serial cable to the target board.

b. Use a terminal emulation program to verify that the serial
connection is working.

Set the baud rate in the terminal emulation program to the cor-
rect baud rate and set the serial port to 8 data bits, one stop bit,
and no parity. (For more information on MetroTRK baud rates,
see Table 4.4 on page 120.)

c. Reset the target board.

For MetroTRK, when you reset the target board, the terminal
emulation program displays a message that provides the version
of the program and several strings that describe MetroTRK.

For SDS Monitor, when you reset the target board, the terminal
emulation program repeatedly displays the following charac-
ters:

@#

If the terminal emulation program does not display the previ-
ously described message or characters or you have trouble com-
municating with the debugger, see “No Communications with
Target Board” on page 243.
Targeting Embedded PowerPC PPC–129

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
3. If you plan to use console I/O, ensure that your project contains
appropriate libraries for console I/O.

Ensure that your project includes the MSL library and the UART
driver library. If needed, add the libraries and rebuild the project. In
addition, you must have a free serial port (besides the serial port
that connects the target board with the host machine) and be run-
ning a terminal emulation program.

4. On the EPPC Target Settings panel (Figure 5.1), select SDS Moni-
tor or MetroTRK from the Protocol menu.

Figure 5.1 EPPC Target Setting panel with MetroTRK selected

For more information, see “Protocol” on page 108.
PPC–130 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
5. On the Connection Settings panel (Figure 5.2), select View Serial
Settings from the View Connection Type menu.

Figure 5.2 Connection Settings panel with View TPC/IP Settings selected

For more information, see “Connection Settings” on page 118.

6. On the Connection Settings panel, select the appropriate baud
rate for the debug monitor that you are using from the Rate menu.

For more information on MetroTRK baud rates, see Table 4.4 on
page 120.

NOTE: The documentation that accompanied your SDS Monitor
may provide baud rate information for that debug monitor.
Targeting Embedded PowerPC PPC–131

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
Connecting with CodeTAP

You can use a CodeTAP device to connect your target board to your
network so that you can debug programs on the target board across
the network. (For more information, see “Using a CodeTAP Debug-
ging Device” on page 249.)

To connect your CodeTAP device to your network and target board:

1. Assemble the CodeTAP components and configure the system for
network communication.

For more information, see Emulator Installation Guide (available from
AMC).

2. Plug the BDM cable into the BDM port on the board.

Ensure that the BDM connector is inserted correctly. Align the red
stripe with pin 1 of the BDM port.

3. On the Build Extras settings panel (Figure 5.3), select the Activate
Browser checkbox.

Figure 5.3 Build Extras settings panel
PPC–132 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
4. On the EPPC Target settings panel (Figure 5.4), select Application
from the Project Type menu.

Figure 5.4 EPPC Target settings panel with Application selected

5. On the EPPC Processor settings panel (Figure 5.5), select the pro-
cessor for which you are developing from the Processor menu.

Figure 5.5 EPPC Processor panel with processor selected for CodeTAP
Targeting Embedded PowerPC PPC–133

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
6. Display the EPPC Target Settings panel (Figure 5.6) and select
several settings as described by the following steps.

Figure 5.6 EPPC Target Settings panel with AMC CodeTAP selected

a. From the Target Processor menu, select the processor for
which you are developing.

b. From the Protocol menu, select AMC CodeTAP.

c. If you are using a debug initialization file, select the Use Ini-
tialization file checkbox and type the name of the file in the
Initialization File field.

d. Select the Reset on Connect checkbox or, if you prefer to
not always reset the target board when you launch the de-
bugger, reset the target board.
PPC–134 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
e. From the Breakpoint Type menu, select Auto.

For more information, see “Breakpoint Type” on page 103.

f. From the Watchpoint Type menu, select the type of watch-
points to use (Data, Read, Write, or Read/Write).

For more information, see “Watchpoint Type” on page 113.

g. From the Interface Clock Frequency menu, select the clock
frequency for the BDM.

For more information, see “Interface Clock Frequency” on page
106.

h. From the Show Inst Cycles menu, select which show cycles
are performed (All, Flow, Indirect, or All).

For more information, see “Show Inst Cycles” on page 110.

7. Display the Connection Settings panel (Figure 5.7) and select set-
tings as described by the following steps.

Figure 5.7 Connection Settings panel with View TCP/IP Settings selected

a. From the View Connection Settings menu, select View TCP/
IP settings.

b. In the Host Name field, type the host name that you as-
signed to the CodeTAP device during emulator setup.

For more information, see Emulator Installation Guide, which is
available from AMC. This document describes how to establish
Ethernet communications, assign host names and IP addresses,
and update the network databases.
Targeting Embedded PowerPC PPC–135

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
8. Select any other needed target settings for your project.

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66. After selecting any other needed target settings,
you can download and execute your code.

Connecting with PowerTAP

You can use a PowerTAP device to connect your target board to
your network so that you can debug programs on the target board
across the network. (For more information, see “Using the Power-
TAP 6xx/7xx Debugging Device” on page 257.)

To connect your PowerTAP device to your network and target
board:

1. Assemble the PowerTAP components and configure the system
for network communication.

For more information, see Emulator Installation Guide (available from
AMC).

2. Plug the JTAG cable into the JTAG port on the board.

3. On the Build Extras settings panel (Figure 5.8), select the Activate
Browser checkbox.

Figure 5.8 Build Extras settings panel
PPC–136 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
4. On the EPPC Target settings panel (Figure 5.9), select Application
from the Project Type menu.

Figure 5.9 EPPC Target settings panel with Application selected

5. On the EPPC Processor settings panel (Figure 5.10), select the pro-
cessor for which you are developing from the Processor menu.

Figure 5.10 EPPC Processor panel with processor selected for PowerTAP
Targeting Embedded PowerPC PPC–137

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
6. Display the EPPC Target Settings panel (Figure 5.11) and select
several settings as described by the following steps.

Figure 5.11 EPPC Target Settings panel with AMC PowerTAP selected

a. From the Target Processor menu, select the processor for
which you are developing.

b. From the Protocol menu, select AMC PowerTAP.

c. If you are using a debug initialization file, select the Use Ini-
tialization file checkbox and type the name of the file in the
Initialization File field.

d. Select the Reset on Connect checkbox or, if you prefer to
not always reset the target board when you launch the de-
bugger, reset the target board.
PPC–138 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
e. From the Breakpoint Type menu, select Auto.

For more information, see “Breakpoint Type” on page 103.

f. From the Watchpoint Type menu, select the type of watch-
points to use (Data, Read, Write, or Read/Write).

For more information, see “Watchpoint Type” on page 113.

g. From the Interface Clock Frequency, select the clock fre-
quency for the BDM.

For more information, see “Interface Clock Frequency” on page
106.

7. Display the Connection Settings panel (Figure 5.12) and select set-
tings as described by the following steps.

Figure 5.12 Connection Settings panel with View TC/IP Settings selected

a. From the View Connection Settings menu, select View TCP/
IP settings.

b. In the Host Name field, type the host name that you as-
signed to the PowerTAP device during emulator setup.

For more information, see Emulator Installation Guide, which is
available from AMC. This document describes how to establish
Ethernet communications, assign host names and IP addresses,
and update the network databases.
Targeting Embedded PowerPC PPC–139

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
8. Select any other needed target settings for your project.

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66. After selecting any other needed target settings,
you can download and execute your code.

Connecting with Wiggler, Hummingbird, or
Raven BDM

To connect your host machine and target board:

1. Connect the BDM interface box (Wiggler, Hummingbird, or
Raven BDM) to the parallel port on your host machine.

Ensure that the parallel cable is a true parallel cable with all the pins
running straight through.

2. Plug in the BDM interface box so that it has power.

3. Plug the BDM cable into the BDM port on the board.

Ensure that the BDM connector is inserted correctly. Align the red
stripe with pin 1 of the BDM port.
PPC–140 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
4. Display the EPPC Target Settings panel (Figure 5.13) and select
several settings as described by the following steps.

Figure 5.13 EPPC Target Settings panel with MSI Wiggler selected

a. From the Target Processor menu, select the processor for
which you are developing.

b. From the Protocol menu, select MSI Wiggler.

c. If you are using a debug initialization file, select the Use Ini-
tialization file checkbox and type the name of the file in the
Initialization File field.

d. From the Parallel Port menu, select the parallel port to
which you connected your parallel cable.

e. From the Device menu, select the debugging device that
you are using (Raven, Hummingbird, or Wiggler).
Targeting Embedded PowerPC PPC–141

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
5. Select any other needed target settings for your project.

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66. After selecting any other needed target settings,
you can download and execute your code.

Connecting with Raven COP

To connect your host machine and target board:

1. Connect the Raven COP to the parallel port on your host machine.

2. Plug in the Raven COP so that it has power.

3. Plug the COP cable into the COP port on the board.

4. Display the EPPC Target Settings panel (Figure 5.14) and select
several settings as described by the following steps.

Figure 5.14 EPPC Target Settings panel for Raven COP
PPC–142 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
a. From the Target Processor menu, select the processor for
which you are developing.

a. From the Protocol menu, select MSI Wiggler.

b. If you are using a debug initialization file, select the Use Ini-
tialization file checkbox and type the name of the file in the
Initialization File field.

c. From the Parallel Port menu, select the parallel port to
which you connected your parallel cable.

d. From the Device menu, select Raven.

5. Select any other needed target settings for your project.

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66. After selecting any other needed target settings,
you can download and execute your code.

Connecting with Abatron BDI2000

To connect your host machine and target board:

1. Connect the Abatron BDI2000 device with the serial port on your
host machine using a serial cable, or connect the Abatron BDI2000
device to your network using an Ethernet cable.

2. Plug in the Abatron BDI2000 device so that it has power.

3. Plug the BDM cable into the BDM port on the board.

Ensure that the BDM connector is inserted correctly. Align the red
stripe with pin 1 of the BDM port.
Targeting Embedded PowerPC PPC–143

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
4. Display the EPPC Target Settings panel (Figure 5.15) and select
several settings as described by the following steps.

Figure 5.15 EPPC Target Settings panel with Abatron BDI selected

a. From the Target Processor menu, select the processor for
which you are developing.

b. From the Protocol menu, select Abatron BDI.

c. If you are using a debug initialization file, select the Use Ini-
tialization file checkbox and type the name of the file in the
Initialization File field.

d. Select the Reset on Connect checkbox or, if you prefer to
not always reset the target board when you launch the de-
bugger, reset the target board.

e. If you used a serial cable to connect the Abatron BDI2000 to
your host machine, select Serial from the Connection menu.
PPC–144 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
If you used an Ethernet cable to connect the Abatron
BDI2000 to your network, select TCP/IP from the Connection
menu.

5. If you selected Serial from the Connection menu, display the Con-
nection Settings panel (Figure 5.16) and select settings as de-
scribed by the following steps. Otherwise, go to step 6.

Figure 5.16 Connection Settings panel with View Serial Settings selected

a. From the View Connection Settings menu, select View Se-
rial Settings.

b. Set the serial port options for the serial port that you are us-
ing.

For more information, see “Primary and Secondary Serial Port
Options” on page 119.

c. Go to step 7.
Targeting Embedded PowerPC PPC–145

Debugging for Embedded PowerPC
Setting Up for Remote Debugging
6. If you selected TCP/IP from the Connection menu, display the
Connection Settings panel (Figure 5.17) and select settings as de-
scribed by the following steps.

Figure 5.17 Connection Settings panel with View TC/IP Settings selected

a. From the View Connection Settings menu, select View TCP/
IP Settings.

b. In the Host Name field, type the host name that you as-
signed to the Abatron BDI2000 when you configured the de-
vice.

7. Select any other needed target settings for your project.

For more information, see “Settings Panels for Embedded Pow-
erPC” on page 66. After selecting any other needed target settings,
you can download and execute your code.
PPC–146 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
Special Debugger Features for Embedded
PowerPC

This section discusses debugger features that are not found in the
IDE User Guide. These are features that are unique to this platform
target and enhance the debugger especially for Embedded PowerPC
development.

The special features include:

• Displaying Registers

• EPPC Menu

• AMC Data and Instruction Cache Windows

Displaying Registers

To display registers, select Window > Registers Window. Registers
Window is a cascading menu that shows the register types available
for your target processor and board.

Your target processor and board determine which registers are
available to display. Some of the most common available registers
follow:

• General purpose registers (GPR on the Register Window
menu)

• Special purpose registers (SPR on the Register Window
menu)

• Floating point registers (FPU on the Register Window menu)
Targeting Embedded PowerPC PPC–147

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
NOTE: CodeWarrior provides choices to display only the regis-
ters that apply to your target processor and board.

The SPR window displays various groupings of special purpose
registers supported by the PowerPC architecture. Just as in the GPR
window, you can edit these values directly by typing into the value
field.

NOTE: You cannot edit the register values that have read-only
access.

For specific information about the use of each special purpose regis-
ter, see the PowerPC Microprocessor Family: The Programming Environ-
ment for 32-bit Microprocessors. Publishing information about this
book can be found in “Where to Go from Here” on page 15.
PPC–148 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
If you are developing for AltiVec, you also can display the vector
registers by selecting Window > Registers Window > VR. Figure
5.18 shows the VR window.

Figure 5.18 VR window
Targeting Embedded PowerPC PPC–149

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
EPPC Menu

When you use the debugger with CodeWarrior for Embedded Pow-
erPC, the debugger has a menu that is unique to this product. To see
the menu, select Debug > EPPC.

The EPPC menu contains the following menu options:

• Set Stack Depth

• Change IMMR

• Soft Reset

• Hard Reset

• Watchpoint Type

• Breakpoint Type

Set Stack Depth

Select the Set Stack Depth menu option to set the depth of the stack
to read and display. Showing all levels of calls when you are exam-
ining function calls several levels deep can sometimes make step-
ping through code more time-consuming. Therefore, you can use
this menu option to reduce the depth of calls that CodeWarrior dis-
plays.

Change IMMR

Select the Change IMMR menu option to set the IMMR address
when debugging for the 8260 processor.

NOTE: The Change IMMR menu option is available only after
you select 8260 as the target processor.

Soft Reset

Select the Soft Reset menu option to send a soft reset signal to the
target processor.
PPC–150 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
NOTE: The Soft Reset menu option is not available when using
MetroTRK or SDS Monitor.

Hard Reset

Select the Hard Reset menu option to send a hard reset signal to the
target processor.

NOTE: The Hard Reset menu option is not available when using
MetroTRK or SDS Monitor.

Watchpoint Type

Select the Watchpoint Type menu option to indicate the type of
watchpoint to set from among the following menu options:

• Data

A watchpoint occurs when your program writes to memory
at the watch address and the value of the data at that address
changes.

• Read

A watchpoint occurs when your program reads from mem-
ory at the watch address.

• Write

A watchpoint occurs when your program writes to memory
at the watch address.

• Read/Write

A watchpoint occurs when your program accesses memory
at the watch address.

NOTE: The Watchpoint Type menu option is available only
when using an AMC CodeTAP or PowerTAP device or an Abatron
BDI 2000 device.
Targeting Embedded PowerPC PPC–151

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
Breakpoint Type

Select the Breakpoint Type menu option to indicate the type of
breakpoint to set from among the following menu options:

• Software

CodeWarrior writes the breakpoint to target memory, which
is then removed when the breakpoint triggers. The break-
point can be set only in writable memory.

• Hardware

Selecting the Hardware menu option sets a processor-depen-
dent breakpoint. Hardware breakpoints use registers.

• Auto

Selecting the Auto menu option causes CodeWarrior to try to
set a software breakpoint and, if that fails, to try to set a hard-
ware breakpoint.

AMC Data and Instruction Cache Windows

PowerPC processors have two separate N-way set associative
caches. One cache is for instructions; the other cache is for data. The
instruction and data caches are located on the processor and are
called primary or level 1 (L1) caches.

The size and design of the caches vary by processor, as shown by
the following list:

• The 603e has 16K, four-way set associative caches.

• The 860 has 4K, two-way set associative caches.

• The 740/750 has 32K, 8-way set associative caches.

The AMC Tools menu in the CodeWarrior menu bar provides ac-
cess to two powerful debugging enhancements: the L1 Data Cache
window and the L1 Instruction Cache window.

To open either window:

1. Click Debug > AMC Tools.

2. Select either L1 Data Cache or L1 Instruction Cache.
PPC–152 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
Use the resulting window to examine and debug the contents of the
data or instruction cache of the processor. You can use the controls
to enable, lock, or invalidate the cache.

Figure 5.19 shows an example of an L1 Instruction Cache window.

Figure 5.19 AMC L1 Instruction Cache Display

Both AMC cache displays show the following items:

• Cache line number

• Address tag

• Cache way

• Valid bit

• LRU (least recently used) designator

Figure 5.20 shows the buttons in the L1 Instruction Cache window.
Targeting Embedded PowerPC PPC–153

Debugging for Embedded PowerPC
Special Debugger Features for Embedded PowerPC
Figure 5.20 Buttons in the L1 Instruction Cache window

The cache display can be filtered by cache way or by valid bit. In the
Instruction Cache window, you also can disassemble (show assem-
bly language instructions for) the valid cache lines.

NOTE: You must enable the cache to be able to collect valid
cache lines.

The cache windows have their own help system. To learn how to
use the windows, view the context-sensitive help associated with
the GUI (graphical user interface) elements, and call up the stan-
dard help system.

To invoke help for the cache window, click the Help menu in the
menu bar of the cache window. Alternatively, you can click the
What’s This icon and then click again on the GUI item for which
you need help.
PPC–154 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Register Details Window
Register Details Window
Select Window > Register Details Window to view the Register De-
tails window (Figure 5.21).

Figure 5.21 Initial Register Details window

You can use the Register Details window to view different PowerPC
registers. After CodeWarrior displays the Register Details window,
type the name of the register description file in the Description File
field to display the applicable register and its values. (Alternatively,
you can use the Browse button to find the register description file.)

Figure 5.22 shows the Register Details Window displaying the MSR
register.
Targeting Embedded PowerPC PPC–155

Debugging for Embedded PowerPC
Register Details Window
Figure 5.22 Register Details window showing the MSR register

You can change the format in which CodeWarrior displays the reg-
ister using the Format menu. In addition, when you click on differ-
ent bit fields of the displayed register, CodeWarrior displays an ap-
propriate description, depending on which bit or group of bits you
choose. You also can change the text information that CodeWarrior
displays by using the Text View menu.

NOTE: For more information, see IDE User Guide.
PPC–156 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Using MetroTRK
Using MetroTRK
This section briefly describes MetroTRK and provides information
related to using MetroTRK with this product.

This section contains the following topics:

• MetroTRK Overview

• MetroTRK Baud Rates

• MetroTRK Memory Configuration

• Using MetroTRK for Debugging

For more information, refer to MetroTRK Reference, “Connecting
with a Debug Monitor” on page 127, and the release notes for Me-
troTRK included on the CodeWarrior CD.

MetroTRK Overview

MetroTRK is a software debug monitor for use with the debugger.
MetroTRK resides on the target board with the program you are de-
bugging to provide debug services to the host debugger. MetroTRK
connects with the host computer through a serial port.

You use MetroTRK to download and debug applications built with
CodeWarrior for Embedded PowerPC.

CodeWarrior installs the source code for MetroTRK, as well as ROM
images and project files for several pre-configured builds of Me-
troTRK. If you are using a board other than the supported boards,
you may need to customize the MetroTRK source code for your
board configuration. For more information, see MetroTRK Reference.

You can use MetroTRK on both little- and big-endian machines be-
cause MetroTRK is endian-neutral. The CodeWarrior debugger is
also endian-neutral and works with MetroTRK regardless of the en-
dian nature of the build target.

To modify a version of MetroTRK, find an existing MetroTRK
project for your supported target board. You either can make a copy
of the project (and its associated source files) or you can directly edit
Targeting Embedded PowerPC PPC–157

Debugging for Embedded PowerPC
Using MetroTRK
the originals. If you edit the originals, you always can revert back to
the original version on your CodeWarrior CD.

MetroTRK Baud Rates

Table 4.4 on page 120 lists the default MetroTRK baud rates for the
boards currently supported by CodeWarrior for Embedded Pow-
erPC.

For information on modifying the default baud rate (data transmis-
sion rate) for MetroTRK, see MetroTRK Reference.

MetroTRK Memory Configuration

This section discusses the default memory locations of the Me-
troTRK code and data sections and of your target application.

This section contains the following topics:

• Locations of MetroTRK RAM sections

• MetroTRK memory map

Locations of MetroTRK RAM sections

Several MetroTRK RAM sections exist. You can reconfigure some of
the MetroTRK RAM sections.

This section contains the following topics:

• Exception vectors

• Data and code sections

• The stack

Exception vectors

For a ROM-based MetroTRK, the MetroTRK initialization process
copies the exception vectors from ROM to RAM.

NOTE: For the MPC 555 ETAS board, the exception vectors re-
main in ROM.
PPC–158 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Using MetroTRK
The location of the exception vectors in RAM is a set characteristic
of the processor. For PowerPC, the exception vector must start at
0x000100 (which is in low memory) and spans 7936 bytes to end at
0x002000.

NOTE: Do not change the location of the exception vectors be-
cause the processor expects the exception vectors to reside at the
set location.

Data and code sections

The standard configuration for MetroTRK uses approximately 29KB
of code space as well as 8KB of data space.

In the default implementation of MetroTRK used with most sup-
ported target boards, which is ROM-based, no MetroTRK code sec-
tion exists in RAM because the code executes directly from ROM.
However, for some PowerPC target boards, some MetroTRK code
does reside in RAM, usually for one of the following reasons:

• Executing from ROM is slow enough to limit the MetroTRK
data transmission rate (baud rate).

• For the 603e and 7xx processors, the main exception handler
must reside in cacheable memory if the instruction cache is
enabled. On some boards the ROM is not cacheable; conse-
quently, the main exception handler must reside in RAM if
the instruction cache is enabled.

RAM does contain a MetroTRK data section. For example, on the
Motorola 8xx ADS and Motorola 8xx MBX boards, the MetroTRK
data section starts, by default, at the address 0x3F8000 and ends at
the address 0x3FA000. (For more information, see “MetroTRK
memory map” on page 160.)

You can change the location of the data and code sections in your
MetroTRK project using one of the following methods:

• By modifying settings in the EPPC Linker target settings
panel

• By modifying values in the linker command file (the file in
your project that has the extension .lcf)
Targeting Embedded PowerPC PPC–159

Debugging for Embedded PowerPC
Using MetroTRK
NOTE: To use a linker command file, you must select the Use
Linker Command File checkbox on the EPPC Linker target set-
tings panel.

The stack

In the default implementation, the MetroTRK stack resides in high
memory and grows downward. The default implementation of Me-
troTRK requires a maximum of 8KB of stack space.

For example, on the Motorola 8xx ADS and Motorola 8xx MBX
boards, the MetroTRK stack resides between the address 0x3F6000
and 0x3F8000. (For more information, see “MetroTRK memory
map” on page 160.

You can change the location of the stack section by modifying set-
tings on the EPPC Linker target settings panel and rebuilding the
MetroTRK project.

MetroTRK memory map

Figure 5.23 shows a sample map of RAM memory sections as con-
figured when running MetroTRK with a sample target application
on the Motorola 8xx MBX boards.
PPC–160 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Using MetroTRK
Figure 5.23 MetroTRK memory map (Motorola 8xx MBX board)
Targeting Embedded PowerPC PPC–161

Debugging for Embedded PowerPC
Debugging ELF Files
Using MetroTRK for Debugging

To use MetroTRK for debugging, you must load it on your target
board in system ROM. (See “RAM Buffer Address” on page 99 for
details about setting the location of the code to be flashed into
ROM.)

MetroTRK can communicate over serial port A or serial port B, de-
pending on how the software was built. Ensure that you connect
your serial cable to the correct port for the version of MetroTRK that
you are using.

After you load MetroTRK on the target board, you can use the de-
bugger to upload and debug your application if the debugger is set
to use MetroTRK.

NOTE: Before using MetroTRK with hardware other than the
supported reference boards, see MetroTRK Reference.

Debugging ELF Files
You can use the CodeWarrior debugger to debug an ELF file that
you previously created and compiled in a different environment
than CodeWarrior. Before you open the ELF file for debugging, you
must examine some IDE preferences and change them if needed. In
addition, you must customize the default XML project file with ap-
propriate target settings. CodeWarrior uses the XML file to create a
project with the same target settings for any ELF file that you open
to debug.

This section contains the following topics:

• Customizing the Default XML Project File

• Debugging an ELF File

• ELF File Debugging: Additional Considerations
PPC–162 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Debugging ELF Files
Customizing the Default XML Project File

When you debug an ELF file, CodeWarrior uses the following de-
fault XML project file to create a CodeWarrior project for the ELF
file:

CodeWarrior_dir\plugins\support\
EPPC_Default_Project.XML

You must import the default XML project file, which creates a new
project, adjust the target settings of the new project, and export the
changed project back to the original default XML project file.
CodeWarrior then uses the changed XML file to create projects for
any ELF files that you open to debug.

NOTE: If you customize the default XML project file for a particu-
lar target board or debugging setup and then decide to customize
it again for a different target board or debugging setup, CodeWar-
rior overwrites the existing EPPC_Default_Project.XML file. If
you want to preserve the file that you originally customized for
later use, rename it or save it in another directory.

To customize the default XML project file:

1. Import the default XML project file.

Select File > Import Project. Navigate to the location of
EPPC_Default_Project.XML, which is found in the following
directory, and click OK:

CodeWarrior_dir\plugins\support\
EPPC_Default_Project.XML

CodeWarrior displays a new project based on
EPPC_Default_Project.XML.

2. Change the target settings of the new project.

Select Edit > Target Settings to display the Target Settings window,
where you can change any needed target settings of the new project
as needed for your target board and any debugging devices you are
Targeting Embedded PowerPC PPC–163

Debugging for Embedded PowerPC
Debugging ELF Files
using. For more information, see “Target Settings for Embedded
PowerPC” on page 63.

3. Export the new project with its changed target settings.

Export the new project back to the original default XML project file
(EPPC_Default_Project.XML) by selecting File > Export Project
and saving the new XML file over the old one.

NOTE: When you export the XML file, navigate to the following
directory, where CodeWarrior will save the new XML file over the
old one:

CodeWarrior_dir\plugins\suppport

The new EPPC_Default_Project.XML file reflects any target set-
tings changes that you made. Any projects that CodeWarrior creates
when you open an ELF file to debug use those target settings.

Debugging an ELF File

If you have not already done so, you must prepare before debug-
ging an ELF file for the first time. For more information, see “De-
bugging an ELF File” on page 164.

To debug an ELF file:

1. Drag the ELF file (with symbolics) to the IDE.

CodeWarrior creates a new project using the previously customized
default XML project file. (For more information, see “Customizing
the Default XML Project File” on page 163.) CodeWarrior bases the
name of the new project on the name of the ELF file. For example, an
ELF file named Foo.ELF results in a project named Foo.mcp.

The symbolics in the ELF file specify the files in the project and their
paths. Therefore, the ELF file must include the full path to the files.

NOTE: The DWARF information in the ELF file does not contain
full path names for assembly (.s) files; therefore CodeWarrior can-
not find them when creating the project (indicated by a log win-
PPC–164 Targeting Embedded PowerPC

Debugging for Embedded PowerPC
Debugging ELF Files
dow). However, when you debug the project, CodeWarrior finds
and uses the assembly files if the files reside in a directory that is
an access path in the project. If not, you can add the directory to
the project, after which CodeWarrior finds the directory whenever
you open the project. (You can add access paths for any other
missing files to the project as well.)

2. (Optional) Check whether the target settings in the new project
are satisfactory.

For more information, see “Target Settings for Embedded Pow-
erPC” on page 63.

3. Enable the debugger.

Select Project > Enable Debugger.

4. Begin debugging.

Select Project > Debug. Your project begins running with the de-
bugger.

NOTE: For more information on debugging, see IDE User Guide.

After debugging, the ELF file you imported is unlocked. If you
choose to build your project in CodeWarrior (rather than using an-
other compiler), you can select Project > Make to build the project,
and CodeWarrior saves the new ELF file over the original one.

ELF File Debugging: Additional Considerations

This section, which discusses information that is useful when de-
bugging ELF files, contains the following topics:

• Deleting old access paths from an ELF-created project

• Removing files from an ELF-created project

• Recreating an ELF-created project
Targeting Embedded PowerPC PPC–165

Debugging for Embedded PowerPC
Debugging ELF Files
Deleting old access paths from an ELF-created project

After you create a project to allow debugging an ELF file, you can
delete old access paths that no longer apply to the ELF file using the
following methods:

• Manually remove the access paths from the project in the Ac-
cess Paths target settings panel.

• Delete the existing project for the ELF file and recreate it by
dragging the ELF file to the IDE.

Removing files from an ELF-created project

After you create a project to allow debugging an ELF file, you may
later delete one or more files from the ELF. However, if you open
the project again after rebuilding the ELF, CodeWarrior does not au-
tomatically remove the deleted files from the corresponding project.
For the project to include only the current files, you must manually
delete the files that no longer apply to the ELF from the project.

Recreating an ELF-created project

To recreate a project that you previously created from an ELF file:

1. Close the project if it is open.

2. Delete the project file.

The project file has the file extension .mcp and resides in the same
directory as the ELF file.

3. Drag the ELF file to the IDE.

CodeWarrior opens a new project based on the ELF file.
PPC–166 Targeting Embedded PowerPC

6
C and C++ for
Embedded PowerPC
This chapter describes the Metrowerks back-end compiler and
linker for Embedded PowerPC.

The back-end of the compiler refers to the module that actually gen-
erates code for the target processor. Front-end refers to the module
that parses and interprets the source code.

The sections in this chapter are:

• Integer Formats

• Data Addressing

• Calling Conventions

• Register Variables

• Register Coloring Optimization

• Generating Code for Specific Processors

• Pragmas

• Linker Issues for Embedded PowerPC

• __attribute__ ((aligned(?)))

For more information about code generation issues in other
CodeWarrior manuals, see Table 6.1.

This chapter contains references to K&R §A. This refers to Appendix
A, “Reference Manual,” of The C Programming Language, Second Edi-
tion (Prentice Hall) by Kernighan and Ritchie. These references
show you where to look for more information on the topics in the
corresponding sections.
Targeting Embedded PowerPC PPC–167

C and C++ for Embedded PowerPC
Integer Formats
Table 6.1 lists other useful compiler and linker documentation.

Table 6.1 Other compiler and linker documentation

Integer Formats
This section describes how the CodeWarrior C/C++ compilers im-
plement integer and floating-point types for Embedded PowerPC
processors. You also can read limits.h for more information on
integer types, and float.h for more information on floating-point
types. The altivec.h file provides more information on AltiVec
vector data formats.

The topics in this section are:

• Embedded PowerPC Integer Formats

• Embedded PowerPC Floating-Point Formats

• AltiVec Vector Data Formats

For this topic Refer to

How CodeWarrior implements
the C/C++ language

C Compilers Reference

Using C/C++ Language and
C/C++ Warnings settings pan-
els

C Compilers Reference, “Setting
C/C++ Compiler Options”
chapter

Controlling the size of C++
code

C Compilers Reference, “C++ and
Embedded Systems” chapter

Using compiler pragmas C Compilers Reference, “Pragmas
and Symbols” chapter

Initiating a build, controlling
which files are compiled, han-
dling error reports

IDE User Guide, “Compiling
and Linking” chapter

Information about a particular
error

Error Reference, which is avail-
able online

Embedded PowerPC assembler Assembler Guide
PPC–168 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Integer Formats
Embedded PowerPC Integer Formats

Table 6.2 shows the size and range of the integer types for the Em-
bedded PowerPC compiler.

Table 6.2 PowerPC Integer Types

For this type Option setting Size is and its range is

bool n/a 8 bits true or false

char Use Unsigned Chars
is off (see language
preferences panel in
the “C Compilers
Guide.”)

8 bits -128 to 127

Use Unsigned Chars
is on

8 bits 0 to 255

signed char n/a 8 bits -128 to 127

unsigned char n/a 8 bits 0 to 255

short n/a 16 bits -32,768 to 32,767

unsigned
short

n/a 16 bits 0 to 65,535

int n/a 32 bits -2,147,483,648 to
2,147,483,647

unsigned int n/a 32 bits 0 to 4,294,967,295

long n/a 32 bits -2,147,483,648 to
2,147,483,647

unsigned long n/a 32 bits 0 to 4,294,967,295

long long n/a 64 bits -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

unsigned long
long

n/a 64 bits 0 to
18,446,744,073,709,551,615
Targeting Embedded PowerPC PPC–169

C and C++ for Embedded PowerPC
Integer Formats
Embedded PowerPC Floating-Point Formats

Table 6.3 shows the sizes and ranges of the floating point types for
the embedded PowerPC compiler.

Table 6.3 PowerPC floating point types

AltiVec Vector Data Formats

There are 11 new vector data types for use in writing AltiVec-
specific code, shown in Table 6.4. All the types are a constant size,
128 bits or 16 bytes. This is due to the AltiVec programming model,
which is optimized for quantities of this size.

Table 6.4 AltiVec Vector Data Types

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38

short double 64 bits 2.22507e-308 to 1.79769e+308

double 64 bits 2.22507e-308 to 1.79769e+308

long double 64 bits 2.22507e-308 to 1.79769e+308

Vector Data Type Size
(bytes)

Contents Possible
Values

vector unsigned char 16 16 unsigned
char

0 to 255

vector signed char 16 16 signed char -128 to 127

vector bool char 16 16 unsigned
char

0 = false, 1 =
true

vector unsigned
short [int]

16 8 unsigned
short

0 to 65535

vector signed short
[int]

16 8 signed short -32768 to
32767

vector bool short
[int]

16 8 unsigned
short

0 = false, 1 =
true
PPC–170 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Data Addressing
In the table, the [int] portion of the Vector Data Type is optional.

There are two additional keywords besides pixel and vector,
__pixel and __vector. These keywords can be used in C or C++
code.

bool is not a reserved word in C unless it is used as an AltiVec
vector data type.

For more information, see AltiVec Technology Programming Interface
Manual (available from Motorola) and “Where to Go from Here” on
page 15.

Data Addressing
You can increase the speed of your application by selecting different
EPPC Processor and EPPC Target settings that affect what the com-
piler does with data fetches.

In absolute addressing the compiler normally generates two instruc-
tions to fetch the address of a variable. For example:

int foo;
int foobar;
void bar()

vector unsigned long
[int]

16 4 unsigned int 0 to 232 - 1

vector signed long
[int]

16 4 signed int -231 to 231-1

vector bool long [int] 16 4 unsigned int 0 = false, 1 =
true

vector float 16 4 float any IEEE-754
value

vector pixel 16 8 unsigned
short

1/5/5/5 pixel

Vector Data Type Size
(bytes)

Contents Possible
Values
Targeting Embedded PowerPC PPC–171

C and C++ for Embedded PowerPC
Data Addressing
{
 foo = 1;
 foobar = 2;
}

becomes something like:

li r3,1
lis r4,foo@ha <-- load the high 16 bits into r4
addi r4,r4,foo@l <-- add the low 16 bits to r4
stw r3,0(r4) <-- 4 instructions to assign 1 to foo
li r5,2
lis r6,foobar@ha <-- load the high 16 bits into r6
addi r6,r6,foobar@l <-- add the low 16 bits to r6
stw r5,0(r6) <-- 4 instructions to assign 1 to foobar

However, each variable access takes two instructions and a total of
four bytes to make a simple assignment. If we set the small data
threshold in the EPPC Target panel to be at least the size of an int,
we can fetch the variables with one instruction.

li r3,1
stw r3,foo <-- 2 instructions to assign 1 to foo
li r4,2
stw r4,foobar <-- 2 instructions to assign 2 to foobar

Because small data sections are limited in size you might not be able
to put all of your application data into the small data and small
data2 sections. We recommend that you make the threshold as high
as possible until the linker reports that you have exceeded the size
of the section.

If you do exceed the available small data space, consider using
pooled data. The disadvantage of this method is that the linker can-
not deadstrip unused pooled data.

Before you enable the Pool Data option on the EPPC Processor
panel, you need to:

1. Select Generate Link Map and List Unused Objects on the
EPPC Linker panel.
PPC–172 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Data Addressing
2. Examine the map for data objects that are reported unused.

3. Delete or comment out those definitions in your source.

4. Enable Pool Data.

To see the results of pooled data, the following example has a zero
small data threshold.

lis r3,...bss.0@ha <-- this is foo@ha
addi r3,r3,...bss.0@l <-- this is foo@l; (r3 now points to the
 top of the data section)
li r0,1
stw r0,0(r3)
li r0,2
stw r0,4(r3) <-- foobar is at offset 4 in the data section

When pooled data is implemented, the first used variable of either
the .data, .bss or .rodata section gets a two-instruction fetch of
the first variable in that section. Subsequent fetches in that function
use the register containing the already-loaded section address with
a calculated offset.

TIP: You can access small data in assembly files with the two-in-
struction fetch used with large data, because any data on your
board can be accessed as if it were large data. The opposite is not
true; large data can never be accessed with small data relocations
(the linker will issue an error if you try to do so). Extern declara-
tions of empty arrays (e.g., extern int foo [];) are always
treated as if they were large data. If you know that the size of the
array fits into a small data section, specify the size in the brackets.

If you are interested in more details about small data sections,
please refer to System V Application Binary Interface: PowerPC Proces-
sor Supplement andPowerPC Embedded Application Binary Interface,
which are referenced in the section “Where to Go from Here” on
page 15.
Targeting Embedded PowerPC PPC–173

C and C++ for Embedded PowerPC
Calling Conventions
Calling Conventions
See the following materials for a description of the PowerPC EABI
calling conventions:

• System V Application Binary Interface, Third Edition, published
by UNIX System Laboratories, 1994 (ISBN 0-13-100439-5).

• System V Application Binary Interface, PowerPC Processor Sup-
plement, published by Sun Microsystems and IBM, 1995

Register Variables
 The PowerPC back-end compiler automatically allocates local vari-
ables and parameters to registers based on to how frequently they
are used and how many registers are available. If you are optimiz-
ing for speed, the compiler gives preference to variables used in
loops.

The Embedded PowerPC back-end compiler also gives preference
to variables declared to be register, but does not automatically
assign them to registers. For example, the compiler is more likely to
PPC–174 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Register Coloring Optimization
place a variable from an inner loop in a register than a variable de-
clared register. See also, K&R, §A4.1, §A8.1

For information on which registers the compiler can use for register
variables, see the following documents:

• System V Application Binary Interface, Third Edition, published
by UNIX System Laboratories, 1994 (ISBN 0-13-100439-5)

• System V Application Binary Interface, PowerPC Processor Sup-
plement, published by Sun Microsystems and IBM, 1995

• PowerPC Embedded Binary Interface, 32-Bit Implementation. This
document can be obtained at:

 ftp://ftp.linuxppc.org/linuxppc/docs/EABI_Version_1.0.ps

Register Coloring Optimization
The PowerPC back-end compiler can perform a register optimiza-
tion called register coloring. In this optimization, the compiler lets
two or more variables share a register; it assigns different variables
or parameters to the same register if you do not use the variables at
the same time. In Listing 6.1, the compiler could place i and j in the
same register:

Listing 6.1 Register coloring example

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { OurFunc(j); }

However, if a line like the one below appears anywhere in the func-
tion, the compiler recognizes that you are using i and j at the same
time and places them in different registers:

int k = i + j;
Targeting Embedded PowerPC PPC–175

C and C++ for Embedded PowerPC
Register Coloring Optimization
By default, the PowerPC compiler performs register coloring.

If the value of Optimization Level on the Global Optimizations
panel is 1 or more, the compiler assigns all variables that fit into reg-
isters to virtual registers. The compiler then maps the virtual regis-
ters into physical registers using register coloring. As previously
stated, this method allows two virtual registers that have disjoint
lifetimes to both exist in the same physical register.

NOTE: For more information, see “Global Optimizations” on
page 78.

When debugging a project, the variables sharing a register may ap-
pear ambiguous. In Listing 6.1 on page 175, i and j would always
have the same value. When i changes, j changes in the same way.
When j changes, i changes in the same way.

To avoid confusion while debugging, set Optimization Level to 0 on
the Global Optimizations panel. This setting causes the compiler to
allocate user-defined variables only to physical registers or place
them on the stack. The compiler still uses register coloring to allo-
cate compiler-generated variables.

Alternatively, you can declare the variables you want to watch as
volatile.

NOTE: The Optimization Level option on the Global Optimiza-
tions panel corresponds to the global_optimizer pragma. For
more information, see C Compilers Reference.
PPC–176 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Generating Code for Specific Processors
Generating Code for Specific Processors
This section describes how to use the CodeWarrior compiler to gen-
erate code for specific processors within the PowerPC family.

You can specify a processor in the Processor pop-up list of the EPPC
Processor panel. This allows you to generate code targeted for that
processor. Code targeted for one processor may not run efficiently
on other PowerPC processors—although it will run correctly. To ef-
ficiently run your code on multiple PowerPC processors, select Ge-
neric from the pop-up list.

For a full discussion of this panel, see “EPPC Processor” on page 79.

Pragmas
This section lists pragmas supported for PowerPC development and
explains additional pragmas for Embedded PowerPC development.

Table 6.5 lists the pragmas supported for PowerPC development.
Refer to the C Compilers Reference for documentation on how to de-
termine and modify the state of the compiler using pragmas, and
pragma syntax.
Targeting Embedded PowerPC PPC–177

C and C++ for Embedded PowerPC
Pragmas
Table 6.5 Pragmas for PowerPC Development

align align_array_members

ANSI_strict ARM_conform

auto_inline bool

check_header_flags cplusplus

cpp_extensions dont_inline

dont_reuse_strings enumsalwaysints

exceptions extended_errorcheck

fp_contract global_optimizer

ignore_oldstyle longlong

longlong_enums mark

once only_std_keywords

optimize_for_size peephole

pop precompile_target

push readonly_strings

require_prototypes RTTI

scheduling static_inlines

syspath_once trigraphs

unsigned_char unused

warning_errors warn_emptydecl

warn_extracomma warn_hidevirtual

warn_illpragma warn_implicitconv

warn_possunwant warn_unusedarg

warn_unusedvar wchar_type
PPC–178 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Pragmas
Table 6.6 lists additional pragmas available only for Embedded
PowerPC (ELF/DWARF) development.

Table 6.6 Pragmas for Embedded PowerPC Development

force_active
#pragma force_active on|off|reset

This pragma inhibits the linker from dead-stripping any variables
or functions defined while the option is in effect. It should be used
for interrupt routines and any other data structures which are not
directly referenced from the entry-point of the program, but which
must be linked into the executable program for correct operation.

NOTE: #pragma force_active can't be used with uninitial-
ized variables because of language restrictions with tentative ob-
jects. Also, if auto-inlining and deferred inlining are on the com-
piler shuffles functions around and will, at the time of this writing,
lose the force_active information.

function_align
#pragma function_align 4 | 8 | 16 | 32 | 64 |
128

If your board has hardware capable of fetching multiple instruc-
tions at a time, you may achieve better performance by aligning
functions to the width of the fetch.

With the pragma function_align, you can select alignments
from 4 (the default) to 128 bytes.

force_active function_align

incompatible_return_small_structs incompatible_sfpe_double_params

interrupt pack

pooled_data section
Targeting Embedded PowerPC PPC–179

C and C++ for Embedded PowerPC
Pragmas
This pragma corresponds to Function Alignment pop-up menu in
the EPPC Processor settings panel. See “Function Alignment” on
page 81 for information on how to specify function alignment
through the settings panel.

incompatible_return_small_structs
#pragma incompatible_return_small_structs
on|off|reset

This pragma makes CodeWarrior-built object files conformant to
GCC.

The PowerPC EABI states that software floating point double pa-
rameters always begin on an odd register. In other words, if you
have a function

void foo (long a, double b)

a is passed in register R3, and b is passed in registers R5 and R6 (ef-
fectively skipping R4). GCC doesn't skip registers when doubles are
passed (although it does skip them for long longs).

incompatible_sfpe_double_params
#pragma incompatible_sfpe_double_params
on|off|reset

This pragma makes CodeWarrior-built object files conformant to
GCC.

The CodeWarrior Linker checks to see if you are including objects in
your project that have incompatible EABI settings. If you do, a
warning is issued.

interrupt
#pragma interrupt [SRR DAR DSISR enable] on |
off | reset

This pragma allows you to create interrupt handlers in C and C++.
For example,
PPC–180 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Pragmas
#pragma interrupt on
void MyHandler(void)
{

my_real_handler();
}
#pragma interrupt off

Using the interrupt pragma saves all used volatile general purpose
registers, as well as the CTR, XER LR and condition fields. Then
these registers and condition fields are restored before the RTI. You
can optionally set certain special purpose registers (such as SRR0
and SRR1, DAR, DSISR) as well as re-enable interrupts while in the
handler.

pack
#pragma pack(n)

Where n is one of the following integer values: 1, 2, 4, 8, or
16.

This pragma creates data that is not aligned according to the EABI.
The EABI alignment provides the best alignment for performance.

Not all processors support misaligned accesses which could cause a
crash or incorrect results. Even on processors which don't crash,
your performance will suffer since the processor has code to handle
the misalignments for you. You may have better performance if you
treat the packed structure as a byte stream and pack and unpack
them yourself a byte at a time.

If your structure has bitfields and the PowerPC alignment does not
give you as small a structure as you would like, double-check that
you are specifying the smallest integer size for your bitfields.

For example,

typedef struct foo {
unsigned a: 1;
unsigned b: 1;
Targeting Embedded PowerPC PPC–181

C and C++ for Embedded PowerPC
Pragmas
unsigned c: 1;
} foo;

would be smaller if rewritten as

typedef struct foo {
unsigned char a: 1;
unsigned char b: 1;
unsigned char c: 1;

} foo;
// unsigned without a integer type means unsigned int

NOTE: Pragma pack is implemented somewhat differently by
most compiler vendors, especially with bitfields. If you need porta-
blity, you are probably better off using shifts and masks instead of
bitfields.

pooled_data
#pragma pooled_data on | off | reset

This pragma changes the state of pooled data.

NOTE: Pooled data is only saves code when more than two vari-
ables from the same section are used in a specific function. If
pooled data is selected, the linker only pools the data if it saves
code. This feature has the added benefit of typically reducing the
data size and allowing deadstripping of unpooled sections.
PPC–182 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Pragmas
section
#pragma section [objecttype | permission] [iname]
[uname] [data_mode=datamode] [code_mode=codemode]

This sophisticated and powerful pragma lets you arrange compiled
object code into predefined sections and sections you define. This
topic is organized into these parts:

• Parameters

• Section access permissions

• Predefined sections and default sections

• Forms for #pragma section

• Forcing individual objects into specific sections

• Using #pragma section with #pragma push and #pragma
pop

Parameters

The optional objecttype parameter specifies where types of object
data are stored. It may be one or more of the following values:

• code_type—executable object code

• data_type—non-constant data of a size greater than the
size specified in the small data threshold option in the Pow-
erPC EABI Project settings panel

• sdata_type—non-constant data of a size less than or equal
to the size specified in the small data threshold option in the
PowerPC EABI Project settings panel

• const_type—constant data of a size greater than the size
specified in the small const data threshold option in the Pow-
erPC EABI Project settings panel

• sconst_type—constant data of a size less than or equal to
the size specified in the small const data threshold option in
the PowerPC EABI Project settings panel

• all_types—all code and data

Specify one or more of these object types without quotes and sepa-
rated by spaces.
Targeting Embedded PowerPC PPC–183

C and C++ for Embedded PowerPC
Pragmas
CodeWarrior C/C++ generates some of its own data, such as excep-
tion and static initializer objects, which are not affected by #pragma
section.

NOTE: CodeWarrior C/C++ uses the initial setting of the Make
Strings ReadOnly option in the PowerPC EABI Processor settings
panel to classify character strings. If Make Strings ReadOnly is on,
character strings are stored in the same section as data of type
const_type. If Make Strings ReadOnly is off, strings are stored
in the same section as data for data_type.

The optional permission parameter specifies access permission. It
may be one or more of these values:

• R—read only permission

• W—write permission

• X—execute permission

For information on access permission, see “Section access permis-
sions” on page 186. Specify one or more of these permissions in any
order, without quotes, and no spaces.

The optional iname parameter is a quoted name that specifies the
name of the section where the compiler stores initialized objects.
Variables that are initialized at the time they are defined, functions,
and character strings are examples of initialized objects. The iname
parameter may be of the form “.abs.xxxxxxxx” where xxxxxxxx
is an 8-digit hexadecimal number specifying the address of the sec-
tion.

The optional uname parameter is a quoted name that specifies the
name of the section where the compiler stores uninitialized objects.
This parameter is required for sections that have data objects. The
uname parameter may be a unique name or it may be the name of
any previous iname or uname section. If the uname section is also an
iname section then uninitialized data will be stored in the same sec-
tion as initialized objects.
PPC–184 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Pragmas
The special uname COMM specifies that uninitialized data will be
stored in the common section. The linker will put all common sec-
tion data into the “.bss” section. When the Use Common Section
option is on in the PowerPC EABI Processor panel, COMM is the de-
fault uname for the “.data” section. When the Use Common Sec-
tion option is off, “.bss” is the default name of “.data” section.

The uname parameter may be changed. For example, you may want
most uninitialized data to go into the “.bss” section while specific
variables be stored in the COMM section. Listing 6.2 shows an exam-
ple of specifying that specific uninitialized variables be stored in the
COMM section.

Listing 6.2 Storing uninitialized data in the COMM section

// the Use Common Section option is off
#pragma push // save the current state
#pragma section ".data" "COMM"
int foo;
int bar;
#pragma pop // restore the previous state

You may not use any of the object types, data modes, or code modes
as the names of sections. Also, you may not use pre-defined section
names in the PowerPC EABI for your own section names.

The optional data_mode=datamode parameter tells the compiler
what kind of addressing mode to use for referring to data objects for
a section.

The permissible addressing modes for datamode are:

• near_abs—objects must be within the range -65,536 bytes to
65,536 bytes (16 bits on each side)

• far_abs—objects must be within the first 32 bits of RAM

• sda_rel—objects must be within a 32K range of the linker-
defined small data base address

The sda_rel addressing mode may only be used with the
“.sdata”, “.sbss”, “.sdata2”, “.sbss2”,
“.EMB.PPC.sdata0”, and “.EMB.PPC.sbss0” sections.
Targeting Embedded PowerPC PPC–185

C and C++ for Embedded PowerPC
Pragmas
The default addressing mode for large data sections is far_abs.
The default addressing mode for the predefined small data sections
is sda_rel.

Specify one of these addressing modes without quotes.

The optional code_mode=codemode parameter tells the compiler
what kind of addressing mode to use for referring to executable rou-
tines for a section.

The permissible addressing modes for codemode are:

• pc_rel—routines must be within plus or minus 24 bits of
where it is called from

• near_abs—routines must be within the first 24 bits of RAM

• far_abs—routines must be within the first 32 bits of RAM

The default addressing mode for executable code sections is
pc_rel.

Specify one of these addressing modes without quotes.

NOTE: All sections have a data addressing mode
(data_mode=datamode) and a code addressing mode
(code_mode=codemode). Although the CodeWarrior C/C++ com-
piler for PowerPC embedded allows you to store executable code
in data sections and data in executable code sections, this prac-
tice is not encouraged.

Section access permissions

When you define a section using #pragma section, its default ac-
cess permission is read only. If you change the current section for a
particular object type, the compiler adjusts the access permission to
allow the storage of objects of that type while continuing to allow
objects of previously-allowed object types. Associating code_type
to a section adds execute permission to that section. Associating
data_type, sdata_type, or sconst_type to a section adds
write permission to that section.
PPC–186 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Pragmas
Occasionally you might create a section without making it the cur-
rent section for an object type. You might do so to force an object
into a section with the __declspec keyword. In this case, the com-
piler automatically updates the access permission for that section to
allow the object to be stored in the section, then issue a warning. To
avoid such a warning, make sure to give the section the proper ac-
cess permissions before storing object code or data into it. As with
associating an object type to a section, passing a specific permission
adds to the permissions that a section already has.

NOTE: Associating an object type with a section sets the appro-
priate access permissions for you.

Predefined sections and default sections

The predefined sections set with an object type become the default
section for that type. After assigning a non-standard section to an
object type, you may revert to the default section with one of the
forms in “Forms for #pragma section” on page 188.

The compiler predefines the sections in Listing 6.3.

Listing 6.3 Predefined sections

#pragma section code_type ".text" data_mode=far_abs code_mode=pc_rel
#pragma section data_type ".data" ".bss" data_mode=far_abs code_mode=pc_rel
#pragma section const_type ".rodata" ".rodata" data_mode=far_abs code_mode=pc_rel
#pragma section sdata_type ".sdata" ".sbss" data_mode=sda_rel code_mode=pc_rel
#pragma section sconst_type ".sdata2" ".sbss2" data_mode=sda_rel code_mode=pc_rel
#pragma section ".EMB.PPC.sdata0" ".EMB.PPC.sbss0" data_mode=sda_rel code_mode=pc_rel
#pragma section RX ".init" ".init" data_mode=far_abs code_mode=pc_rel

NOTE: The .EMB.PPC.sdata0 and .EMB.PPC.sbss0 sec-
tions are predefined as an alternative to the sdata_type object
type. The .init section is also predefined, but it is not a default
section. The .init section is used for startup code.
Targeting Embedded PowerPC PPC–187

C and C++ for Embedded PowerPC
Pragmas
Forms for #pragma section

This pragma has these principal forms:

#pragma section ".name1"

This form simply creates a section called .name1 if it does not al-
ready exist. With this form, the compiler does not store objects in
the section without an appropriate, subsequent #pragma section
statement or an item defined with the __declspec keyword. If
only one section name is specified, it is considered the name of the
initialized object section, iname. If the section is already declared,
you may also optionally specify the uninitialized object section, un-
ame. If you know that the section must have read and write permis-
sion, use #pragma section RW .name1 instead, especially if you
use the __declspec keyword.

#pragma section objecttype ".name2"

With the addition of one or more object types, the compiler stores
objects of the types specified in the section .name2. If .name2 does not
exist, the compiler creates it with the appropriate access permis-
sions. If only one section name is specified, it is considered the name
of the initialized object section, iname. If the section is already de-
clared, you may also optionally specify the uninitialized object sec-
tion, uname

#pragma section objecttype

When there is no iname parameter, the compiler resets the section
for the object types specified to the default section. For information
on predefined sections, see “Predefined sections and default sec-
tions” on page 187. Resetting the section for an object type does not
reset its addressing modes. You must reset them.

When declaring or setting sections, you also can add an uninitial-
ized section to a section that did not have one originally by specify-
ing a uname parameter. The corresponding uninitialized section of
an initialized section may be the same.
PPC–188 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Forcing individual objects into specific sections

You may store a specific object of an object type into a section other
than the current section for that type without changing the current
section. Use the __declspec keyword with the name of the target
section and put it next to the extern declaration or static definition of
the item you want to store in the section. Listing 6.4 shows exam-
ples.

Listing 6.4 Using __declspec to force objects into specific sections

__declspec(section ".data") extern int myVar;
#pragma section "constants"
__declspec(section "constants") const int myConst = 0x12345678;

Using #pragma section with #pragma push and #pragma pop

You can use this pragma with #pragma push and #pragma pop
to ease complex or frequent changes to sections settings. See Listing
6.2 for an example.

NOTE: The pop pragma does not restore any changes to the ac-
cess permissions of sections that exist before or after the corre-
sponding push pragma.

Linker Issues for Embedded PowerPC
This section discusses the background information on the Embed-
ded PowerPC linker and how it works. The topics in this section are:

• Linker Generated Symbols

• Deadstripping Unused Code and Data

• Link Order

• Linker Command Files
Targeting Embedded PowerPC PPC–189

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Linker Generated Symbols

You can find a complete list of the linker generated symbols in ei-
ther the C include file __ppc_eabi_linker.h or the assembly in-
clude file __ppc_eabi_linker.i. The CodeWarrior linker auto-
matically generates symbols for the start address, the end address
(the first byte after the last byte of the section), and the start address
for the section if it will be burned into ROM. With a few exceptions,
all CodeWarrior linker-generated symbols are immediate 32 bit val-
ues. (For more information, see “Exceptions” on page 190.)

If, in your source file, addresses are declared as follows

unsigned char _f_text[];

you can treat _f_text just like a C variable even though it is a 32-
bit immediate value.

unsigned int textsize = _e_text - _f_text;

The linker generated symbols in versions prior to CodeWarrior for
Embedded PowerPC Release 3 have different names. If you have
source that depends on the older names that you can't change, you
will need to link with something similar to the default .lcf file.
That linker command file has aliases to all of the older symbol
names.

If you do have to have linker symbols that are not addresses, you
can access them from C, see Listing 6.5.

Listing 6.5 How to access linker symbols that are not addresses

unsigned int size = (unsigned int)&_text_size;

Exceptions Beginning with CodeWarrior for Embedded PowerPC Release 3, the
linker generates three new symbols:

• __sinit

• __rom_copy_info
PPC–190 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
• __bss_init_info

__sinit no longer exists as a function in __start.c and is
wholly constructed by the linker.

__rom_copy_info is an array of a structure that contains all of the
necessary information about all initialized sections to copy them
from rom to ram.

__bss_init_info is a similar array that contains all of the infor-
mation necessary to initialize all of the bss-type sections. Please see
__init_data in __start.c.

These three symbols are actually not 32-bit immediates but are vari-
ables with storage. You access themjust like C variables. The startup
code now automatically handles initializing all bss type sections
and moves all necessary sections from ROM to RAM, even for user
defined sections.

Deadstripping Unused Code and Data

The Embedded PowerPC linker deadstrips unused code and data
only from files compiled by the CodeWarrior C/C++ compiler. As-
sembler relocatable files and C/C++ object files built by other com-
pilers are never deadstripped. Deadstripping is particularly useful
for C++ programs. Libraries (archives) built with the CodeWarrior
C/C++ compiler only contribute the used objects to the linked pro-
gram. If a library has assembly or other C/C++ compiler built files,
only those files that have at least one referenced object contribute to
the linked program. Completely unreferenced object files are al-
ways ignored.

When the Pool Data option is enabled on the EPPC Processor panel,
the pooled data is not stripped. However, all small data and code is
still subject to deadstripping.

There are, however, situations where there are symbols that you
don't want dead-stripped even though they are never used. See
“Linker Command Files” on page 192 for information on how to do
this.
Targeting Embedded PowerPC PPC–191

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Link Order

Link order is generally specified in the Link Order view of the
Project window. For general information on setting link order, see
the IDE User Guide.

Regardless of the link order specified in the Link Order view of the
Project window, the Embedded PowerPC linker always processes
C/C++, assembler source files, and object files (.o) before it pro-
cesses archive files (.a), which are treated as libraries. Therefore, if a
source file defines a symbol, the linker uses that definition in prefer-
ence to a definition in a library.

One exception exists. The linker uses a global symbol defined in a li-
brary in preference to a source file definition of a weak symbol. You
can create a weak symbol with #pragma overload. See
__ppc_eabi_init.c or __ppc_eabi_init.cpp for examples.

The Embedded PowerPC linker ignores executable files that are in
the project. You may find it convenient to keep the executable there
so that you can disassemble it. If a build is successful, the file will
show up in the project as out of date (there will be a check mark in
the touch column on the left side of the project window) because it
is a new file. If a build is unsuccessful, the IDE will not be able to
find the executable file and will stop the build with an appropriate
message.

Linker Command Files

Linker command files are an alternative way of specifying segment
addresses. The other method of specifying segment addresses is by
entering values manually in the Segment Addresses area of the
EPPC Linker settings panel.

Only one linker command file is supported per target in a project.
The linker command file must end in the .lcf extension.

The topics in this section include:

• Setting up CodeWarrior IDE to accept LCF files

• Linker Command File Directives
PPC–192 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Setting up CodeWarrior IDE to accept LCF files

If you have an existing project, it won't recognize the .lcf format,
and won't let you add it to the project. You need to create a file map-
ping.

To add the .lcf file mapping to your project:

1. Select Edit > Target Settings.

Where Target is the name of the current build target.

2. Select the File Mappings panel.

3. In the File Type edit field, enter TEXT, and in the Exten-
sion edit field, enter .lcf .

4. Click the Compiler pop-up menu and select None. Click the
Add button to save your settings.

Now, when you add a .lcf file to your project, the compiler recog-
nizes the file as a linker command file.

Linker Command File Directives

The CodeWarrior PPC EABI linker supports the directives listed be-
low:

• EXCLUDEFILES

• FORCEACTIVE

• FORCEFILES

• GROUP

• INCLUDEDWARF

• MEMORY

• SECTIONS

• SHORTEN_NAMES_FOR_TOR_101

NOTE: You can only use one SECTIONS, MEMORY,
FORCEACTIVE, and FORCEFILES directive per linker command
file.
Targeting Embedded PowerPC PPC–193

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
EXCLUDEFILES

The EXCLUDEFILES directive is for partial link projects only. It
makes your partial link file smaller. It is of the form:

EXCLUDEFILES { executablename.extension }

In the following example,

EXCLUDEFILES { kernel.elf }

kernel.elf is added to your project. The linker does not add any
section from kernel.elf to your project. However, it does delete
any weak symbol from your partial link that also exists in ker-
nel.elf. Weak symbols can come from templates or out-of-line in-
line functions.

EXCLUDEFILES can be used independently of INCLUDEDWARF.
Unlike INCLUDEDWARF, EXCLUDEFILES can take any number of
executable files.

FORCEACTIVE

The directives FORCEACTIVE and FORCEFILES give you more con-
trol over symbols that you don't want dead-stripped. FORCEAC-
TIVE is of the form

FORCEACTIVE { symbol1 symbol2 ... }

Use FORCEACTIVE with a list of symbols that you do not want to be
dead-stripped.

FORCEFILES

Use FORCEFILES to list source files, archives or archive members
that you don't want dead-stripped. All objects in each of the files are
included in the executable. It is of the form:

FORCEFILES { source.o object.o archive.a(member.o) ... }

NOTE: If you want to use FORCEFILES with the source file
main.c, type
PPC–194 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
FORCEFILES {main.o}

The FORCEFILES directive does not recognize the file extension
.c. If you use the extension .o the linker will look for your source
file.

If you only have a few symbols that you do not want deadstripped,
use FORCEACTIVE.

GROUP

The GROUP directive lets you organize the linker command file. It is
of the form:

GROUP <address_modifiers> :{ <section_spec> ... }

Please see the topic SECTIONS for the description of the compo-
nents.

Listing 6.6 Example 1

SECTIONS {
GROUP BIND(0x00010000) : {

.text : {}

.rodata : {*(.rodata) *(extab) *(extabindex)}
}
GROUP BIND(0x2000) : {

.data : {}

.bss : {}

.sdata BIND(0x3500) : {}

.sbss : {}

.sdata2 : {}

.sbss2 : {}
}
GROUP BIND(0xffff8000) : {

.PPC.EMB.sdata0 : {}

.PPC.EMB.sbss0 : {}
}

}

Targeting Embedded PowerPC PPC–195

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Example 1 shows that each group starts at a specified address. If no
address_modifiers were present, it would start following the previ-
ous section or group. All sections in a group follow contiguously
unless there is an address_modifier for that output_spec. You nor-
mally wouldn't have an address_modifier for an output_spec
within a group, though.

Listing 6.7 Example 2

MEMORY {
text : origin = 0x00010000
data : org = 0x00002000 len = 0x3000
page0 : o = 0xffff8000, l = 0x8000

}

SECTIONS {
GROUP : {

.text : {}

.rodata : {*(.rodata) *(extab) *(extabindex)}
} > text
GROUP : {

.data : {}

.bss : {}

.sdata BIND(0x3500) : {}

.sbss : {}

.sdata2 : {}

.sbss2 : {}
} > data
GROUP : {

.PPC.EMB.sdata0 : {}

.PPC.EMB.sbss0 : {}
} > page0

}

PPC–196 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
INCLUDEDWARF

The INCLUDEDDWARF directive allows you to source level debug
code in the kernel while debugging your application. It is of the
form:

INCLUDEDDWARF { executablename.extension }

In the following example,

INCLUDEDDWARF { kernel.elf }

kernel.elf is added to your project. The linker adds only the
.debug and .line sections of kernel.elf to your application.
This allows you to source level debug code in the kernel while de-
bugging your application.

You are limited to one executable file when using this directive. If
you need to process more than one executable, add this directive to
another file.

MEMORY

A MEMORY directive is of the form:

MEMORY : { <memory_spec> ... }

where memory_spec is

<symbolic name> : origin = num, length = num

origin may be abbreviated as org or o. length may be abbrevi-
ated as len or l. If you don't specify length, the memory_spec is
allowed to be as big as necessary. In all cases, the linker will warn
you if sections overlap. The length is useful if you want to avoid
overlapping an RTOS or exception vectors that might not be a part
of your image.

You specify that a output_spec or a GROUP goes into a
memory_spec with the “>” symbol.
Targeting Embedded PowerPC PPC–197

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
Example 2 showed the MEMORY directive added to Example 1. The
results of both examples are identical.

SECTIONS

A SECTIONS directive has the following form.

SECTIONS { <section_spec> ... }

where section_spec is

<output_spec> (<input_type>) <address_modifiers> :
{ <input_spec> ... }

output_spec is the section name for the output section.

input_type is one of TEXT, DATA, BSS, CONST and MIXED. CODE
is also supported as a synonym of TEXT. One input_type is per-
mitted and must be enclosed in (). If an input_type is present,
only input sections of that type are added to the section. MIXED
means that the section contains code and data (RWX). The
input_type restricts the access permission that are acceptable for
the output section, but they also restrict whether initialized content
or uninitialized content can go into the output section.

Table 6.7 Types of input for input_type

address_modifiers are for specifying the address of an output
section.

Name Access Permissions Status

TEXT RX Initialized

DATA RW Initialized

BSS RW Uninitialized

CONST R Initialized

MIXED RWX Initialized
PPC–198 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
The psuedo functions ADDR(), SIZEOF(), NEXT(), BIND(), and
ALIGN() are supported.

TIP: Other compiler vendors also support ways that you can
specify the ROM Load address with the address_modifiers.
With CodeWarrior, this information is specified in the EPPC Linker
settings panel. You may also simply specify an address with BIND.

ADDR() takes previously defined output_spec or memory_spec
enclosed in () and returns its address.

SIZEOF() takes previously defined output_spec or
memory_spec enclosed in () and returns its size.

ALIGN() takes a number and aligns the output_spec to that
alignment.

NEXT() is similar to ALIGN. It returns the next unallocated memory
address.

BIND() can take a numerical address or a combination of the above
psuedo functions.

input_spec can be empty or a file name, a file name with a section
name, the wildcard'*' with a section name singly or in combination.

When input_spec is empty, as in

.text : {}

all .text sections in all files in the project that aren't more specifi-
cally mentioned in another input_spec are added to that
output_spec.

A file name by itself means that all sections will go into the
output_spec.

A file name with a section name means that the specified section
will go into the output_spec.
Targeting Embedded PowerPC PPC–199

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
A “*” with a section name means that the specified section in all
files will go into the output_spec.

In all cases, the input_spec is subject to input_type. For exam-
ple,

.text (TEXT) : { foo.c }

means that only sections of type TEXT in file foo.c will be added.

In all cases, if there is more that one input_spec that fits an input
file, the more specific input_spec gets the file.

If an archive name is used instead of source file name, all referenced
members of that archive are searched. You can further specify a
member with foo.a(foobar.c). The linker doesn't support grep.
If listing just the source file name is ambiguous, enter the full path.

Listing 6.8 Example 3

SECTIONS {
.init : {}
.text BIND(0x00010000) : {}
.rodata : {}
extab : {}
extabindex : {}
.data BIND(ADDR(.rodata) + SIZEOF(.rodata)) ALIGN(0x100) : {}
.sdata : {}
.sbss : {}
.sdata2 : {}
.sbss2 : {}
.bss : {}
.PPC.EMB.sdata0 BIND(0xffff8000) : {}
.PPC.EMB.sbss0 : {}

}

Example 3 shows how you might specify a SECTIONS directive
without a MEMORY directive. The .text section starts at
0x00010000 and contains all sections named .text in all input
files. .rodata starts just after the .text section. It is aligned on the
PPC–200 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
largest alignment found in the input files. The input files are the
read only sections (.rodata) found in all files. The .data section
starts at the sum of the starting address of .rodata plus the size of
.rodata. The resulting address is aligned on a 0x100 boundary. It
contains all sections of .data in all files. The .data through .bss
sections follows after the .data section. The .EMB.PPC.sdata0
starts at 0xffff8000 and the .EMB.PPC.sbss0 follows it.

NOTE: extab and extabindex must be located in separate
sections.

SHORTEN_NAMES_FOR_TOR_101

The directive SHORTEN_NAMES_FOR_TOR_101 instructs the linker
to shorten long template names for the benefit of the WindRiver®
Sytems Target Server. To use this directive, simply add it to the
linker command file on a line by itself.

SHORTEN_NAMES_FOR_TOR_101

WindRiver Systems Tornado Version 1.0.1 (and earlier) does not
support long template names as generated for the MSL C++ library,
so the template names must be shortened if you want to use them
with these versions of the WindRiver Sytems Target Server.

Miscellaneous features

• Memory Gaps

• Symbols

Memory Gaps

You can create gaps in memory by performing alignment calcula-
tions such as

. = (. + 0x20) & ~0x20;

This kind of calculation can occur between output_specs, be-
tween input_specs, or even in address_modifiers. “.” re-
fers to the current address. You may assign the . to a specific unal-
located address or just do alignment as the example shows. The gap
Targeting Embedded PowerPC PPC–201

C and C++ for Embedded PowerPC
Linker Issues for Embedded PowerPC
is filled by default with 0, in the case of an alignment (but not with
ALIGN()).

You can specify an alternate fill with = <short_value>, as in

.text : { . = (. + 0x20) & ~0x20; *(.text) } = 0xAB > text

short_value is 2 bytes long. Note that the fill pattern comes be-
fore the memory_spec. You can add a fill to a GROUP or to an indi-
vidual output_spec section. Fills can't be added between BSS type
sections. All calculations must end in a “;”.

Symbols

You can create symbols that you can use in your program by assign-
ing a symbol to some value in your linker command file.

.text : { _foo_start = .; *(.text) _foo_end = .;} > text

In the example above, the linker generates the symbols
_foo_start and _foo_end as 32 bit values that you can access in
your source files. _foo_start is the address of the first byte of the
.text section and __foo_end is the first byte after the last byte of
the .text section.

You can use any of the psuedo functions in the
address_modifiers in a calculation.

The CodeWarrior linker automatically generates symbols for the
start address, the end address (the first byte after the last byte of the
section), and the start address for the section if it will be burned into
ROM. For a section .foo, we create _f_foo, _e_foo, and
_f_foo_rom. In all cases, any “.” in the name is replaced with a
“_”. Addresses begin with a “_f”, addresses after the last byte in
section begin with a “_e”, and ROM addresses end in a “_rom”.
See the header file __ppc_eabi_linker.h for further details.

All user defined sections follow the preceding pattern. However,
you can override one or more of the symbols that the linker gener-
ates by defining the symbol in the linker command file.
PPC–202 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
__attribute__ ((aligned(?)))
NOTE: BSS sections do not have a ROM symbol.

__attribute__ ((aligned(?)))
You can use __attribute__ ((aligned(?))) in several situa-
tions:

• Variable declarations

• Struct, union, or class definitions

• Typedef declarations

• Struct, union, or class members

NOTE: Substitute any power of 2 up to 4096 for the question
mark (?).

This section contains the following topics:

• Variable Declaration Examples

• Struct Definition Examples

• Typedef Declaration Examples

• Struct Member Examples

Variable Declaration Examples

This section shows variable declarations that use __attribute__
((aligned(?))).

Example 1

The following variable declaration aligns V1 on a 16-byte boundary:

int V1[4] __attribute__ ((aligned (16)));

Example 2

The following variable declaration aligns V2 on a 2-byte boundary:

 int V2[4] __attribute__ ((aligned (2)));
Targeting Embedded PowerPC PPC–203

C and C++ for Embedded PowerPC
__attribute__ ((aligned(?)))
Struct Definition Examples

This section shows struct definitions that use __attribute__
((aligned(?))).

Example 1

The following struct definition aligns all definitions of struct S1
on an 8-byte boundary:

struct S1 { short f[3]; }
 __attribute__ ((aligned (8)));
struct S1 s1;

Example 2

The following struct definition aligns all definitions of struct S2
on a 4-byte boundary:

struct S2 { short f[3]; }
 __attribute__ ((aligned (1)));
struct S2 s2;

NOTE: You must specify a minimum alignment of at least 4
bytes for structs; specifying a lower number for the alignment of a
struct causes alignment exceptions.

Typedef Declaration Examples

This section shows typedef declarations that use __attribute__
((aligned(?))).

Example 1

The following typedef declaration aligns all definitions of T1 on an
8-byte boundary:

typedef int T1 __attribute__ ((aligned (8)));
T1 t1;
PPC–204 Targeting Embedded PowerPC

C and C++ for Embedded PowerPC
__attribute__ ((aligned(?)))
Example 2

The following typedef declaration aligns all definitions of T2 on an
1-byte boundary:

typedef int T2 __attribute__ ((aligned (1)));
T2 t2;

Struct Member Examples

This section shows struct member definitions that use
__attribute__ ((aligned(?))).

Example 1

The following struct member definition aligns all definitions of
struct S3 on an 8-byte boundary, where a is at offset 0 and b is at
offset 8:

struct S3 {
 char a;
 int b __attribute__ ((aligned (8)));
};
struct S3 s3;

Example 2

The following struct member definition aligns all definitions of
struct S4 on a 4-byte boundary, where a is at offset 0 and b is at
offset 4:

struct S4 {
 char a;
 int b __attribute__ ((aligned (2)));
};
struct S4 s4;

NOTE: Specifying __attribute__ ((aligned (2))) does
not affect the alignment of S4 because 2 is less than the natural
alignment of int.
Targeting Embedded PowerPC PPC–205

C and C++ for Embedded PowerPC
__attribute__ ((aligned(?)))
PPC–206 Targeting Embedded PowerPC

7
Libraries and
Runtime Code for
Embedded PowerPC
CodeWarrior provides a variety of libraries for use with the
CodeWarrior development environment. They include ANSI-
standard libraries for C and C++, as well as runtime libraries and
other code. This chapter discusses how to use these libraries for Em-
bedded PowerPC development.

With respect to the Metrowerks Standard Libraries (MSL) for C and
C++, this chapter is an extension of the MSL C Reference and the
MSL C++ Reference. Consult those manuals for general details on the
standard libraries and their functions.

The sections in this chapter are:

• MSL for Embedded PowerPC

• Runtime Libraries for Embedded PowerPC

• Board Initialization Code

MSL for Embedded PowerPC
This section describes the Metrowerks Standard Libraries (MSL)
that have been modified for use with Embedded PowerPC.
CodeWarrior for Embedded PowerPC includes the source and
project files for MSL so that you can modify the libraries if neces-
sary.
Targeting Embedded PowerPC PPC–207

Libraries and Runtime Code for Embedded PowerPC
MSL for Embedded PowerPC
The topics in this section are:

• Using MSL for Embedded PowerPC

• Using Console I/O for Embedded PowerPC

• Allocating Memory and Heaps for Embedded PowerPC

Using MSL for Embedded PowerPC

CodeWarrior for Embedded PowerPC includes a version of the
Metrowerks Standard Libraries (MSL). MSL is a complete C and
C++ library you can use in your embedded projects. All of the
sources necessary to build MSL are included in CodeWarrior for
Embedded PowerPC, along with the project files for different con-
figurations of MSL. If you already have a version of CodeWarrior
installed on your computer, the CodeWarrior installer will include
the new files needed for building versions of MSL for Embedded
PowerPC.

To use MSL, you must use a version of the runtime libraries dis-
cussed in “Runtime Libraries for Embedded PowerPC” on page 212.
You should not have to modify any of the source files included with
MSL. If you have to make changes based on your memory configu-
ration, you should make the changes to the runtime libraries.

Console I/O

MSL for Embedded PowerPC supports console I/O through the se-
rial port on the MPC8xx ADS or MBX boards, as well as the
MPC5xx EVB board. The standard C library I/O is supported, in-
cluding stdio, stderr, and stdin. All functions that do not re-
quire disk I/O are supported in this version of MSL. The memory
functions malloc() and free() are also supported. For important
information about how to use serial I/O in your programs, see “Us-
ing Console I/O for Embedded PowerPC” on page 209.

Using alternate C/C++ libraries

You may be able to use another standard C library with CodeWar-
rior for Embedded PowerPC. You should check the files stdarg.h
in both libraries. The CodeWarrior Embedded PowerPC C/C++
compiler will only generate correct variable-argument functions
PPC–208 Targeting Embedded PowerPC

Libraries and Runtime Code for Embedded PowerPC
MSL for Embedded PowerPC
with the header file supplied with the MSL. You may find that other
implementations are also compatible. You may also need to modify
the runtime to support a different standard C library. In any event,
you must include __va_arg.c.

Other C++ libraries will not be compatible.

Using MSL with an embedded operating system (OS)

If you are working with any kind of embedded OS, you may need to
customize MSL to work properly with the OS. There is a document
that addresses these issues: “Using Console I/O for Embedded
PowerPC” on page 209.

Using Console I/O for Embedded PowerPC

There are a few special considerations when using console I/O with
the MSL C or C++ libraries. In order for the console I/O to function,
a special serial I/O library must be built into the project. In addition,
the hardware must be initialized properly to work with this library.
These issues are discussed in the following two topics:

• Including UART libraries

• Configuring the board for console I/O (MPC 8xx only)

Including UART libraries

In order for the C or C++ libraries to handle console I/O, a special
serial driver library must be included in your project. The particular
library you use will depend on the board you are using and the se-
rial port that you want to communicate through. Table 7.1 indicates
the file you must include based on your setup. You can find all files
listed in this table in the Bin folder of the following directories:

{CodeWarrior directory}\PowerPC_EABI_Tools\MetroTRK\Transport
\ppc\{Board directory}\Bin\
Targeting Embedded PowerPC PPC–209

Libraries and Runtime Code for Embedded PowerPC
MSL for Embedded PowerPC
Table 7.1 Serial I/O libraries

Board Filename

Cogent CMA102 with CMA 278
Daughtercard

UARTA_COGENT_CMA102.a
UARTB_COGENT_CMA102.a

IBM 403 EVB Not available

Motorola MPC 505/509 EVB UARTA_MOT_5XX_EVB.a
UARTB_MOT_5XX_EVB.a

Motorola 555 ETAS UART1_MOT_555_ETAS.a

Motorola Excimer 603e UARTA_MAX_EXCIMER.a
UARTB_MAX_EXCIMER.a

Motorola Yellowknife X4 603/750 UARTA_YK_SP.a
UARTB_YK_SP.a

Motorola MPC 8xx ADS (24 MHz) UART1_MOT_8XX_ADS.a
UART2_MOT_8XX_ADS.a

Motorola MPC 8xx MBX (40MHz) UART1_MOT_8XX_MBX_40.a
UART2_MOT_8XX_MBX_40.a

Motorola MPC 8xx MBX (50MHz) UART1_MOT_8XX_MBX_50.a
UART2_MOT_8XX_MBX_50.a

Motorola MPC 8xx FADS (24MHz) UART1_MOT_8XX_ADS.a
UART2_MOT_8XX_ADS.a
(uses the MPC ADS 24Mhz
libraries)

Embedded Planet RPX Lite 8xx UART1_RPX_LITE_8xx.a

Motorola Maximer 7400 UARTA_MAX_EXCIMER.a
UARTB_MAX_EXCIMER.a

Motorola Sandpoint 8240 UARTA_YK_SP.a
UARTB_YK_SP.a

Motorola MPC 8260 VADS UART1_MOT_8260_VADS.a
UART2_MOT_8260_VADS.a

Phytec miniMODUL-PPC 505/509 UART_PHYTEC_5XX.a
PPC–210 Targeting Embedded PowerPC

Libraries and Runtime Code for Embedded PowerPC
MSL for Embedded PowerPC
If your MBX board is not running at the Processor Speed specified
in Table 7.1, you need to modify one of these libraries to work with
your hardware. When making changes, it is important to add a
baud-rate divisor table tailored to your processor speed. CodeWar-
rior projects (the files ending in .mcp) are used to modify and build
new versions of the library. The projects are located at this path:

{CodeWarrior directory}\PowerPC_EABI_Tools\MetroTRK\Transport
\ppc\{Board directory}

Configuring the board for console I/O (MPC 8xx only)

If you are using either the 821 or 860 processor, the serial libraries
used to implement console I/O depend on the processor running at
a certain speed. The libraries included with CodeWarrior expect this
speed to be either 24 MHz, 40 MHz, or 50 MHz. There are several
ways you can ensure that your board is running at a speed compati-
ble with the serial I/O library:

• Run under MetroTRK.

MetroTRK for the ADS board attempts to initialize the pro-
cessor to run at 24 MHz. MetroTRK for the MBX board at-
tempts to initialize it to 40 MHz or 50 MHz, whichever is ap-
propriate for the board. For more information on MetroTRK,
see “Using MetroTRK” on page 157.

• Use an initialization file specific to your platform target.

Depending on your target board, use an initialization file
(ending in .asm) in the directory

{CodeWarrior directory}\PowerPC_EABI_Support\Runtime\Src\

• If you are not using one of these boards, you must have a
custom initialization routine to set the processor to the right
speed.

• Use a custom initialization routine.

If you use a custom initialization routine, make sure the pro-
cessor speed is set to either 24 MHz, 40 MHz, or 50 MHz, de-
pending on which board you are using.

• Modify the serial library source code.
Targeting Embedded PowerPC PPC–211

Libraries and Runtime Code for Embedded PowerPC
Runtime Libraries for Embedded PowerPC
Modify the baud rate divisors to match the operating speed
of your board. For information about building new serial I/O
libraries, see “Including UART libraries” on page 209.

Allocating Memory and Heaps for Embedded
PowerPC

The heap you specify in the Heap Address field in the EPPC Linker
panel is the default heap. The default heap needs no initialization.
The code responsible for memory management is only linked into
your code if you call malloc or new.

You may find that you do not have enough contiguous space avail-
able for your needs. In that case you can initialize multiple memory
pools to form a large heap.

You create each memory pool with a call to init_alloc(). You
can find an example of this call in __ppc_eabi_init.c and
__ppc_eabi_init.cpp. You do not need to initialize the memory
pool for the default heap.

Please see Heap Address and Stack Address in “EPPC Linker” on
page 90 for more information.

Runtime Libraries for Embedded PowerPC
For any C or C++ project, you must include one of following runt-
ime libraries in your project:

• Runtime.PPCEABI.N.a or Run_EC++.PPCEABI.N.a
(No floating point support)

• Runtime.PPCEABI.H.a or Run_EC++.PPCEABI.H.a
(Hardware floating point operations)

• Runtime.PPCEABI.S.a or Run_EC++.PPCEABI.S.a
(Software emulation of floating-point operations)

These files are located in the directory

{CodeWarrior}\PowerPC_EABI_Support\Runtime\Lib\
PPC–212 Targeting Embedded PowerPC

Libraries and Runtime Code for Embedded PowerPC
Runtime Libraries for Embedded PowerPC
In addition, you must include one of the following source files,
which contains hooks from the runtime that you can customize if
necessary. One kind of customizing is special board initialization.
See “Board Initialization Code” on page 214 for details on this. See
the actual source file for other kinds of customizations possible.

• __ppc_eabi_init.c (for C projects)

• __ppc_eabi_init.cpp (for C++ projects)

CodeWarrior for Embedded PowerPC includes the source and
project files for the runtime libraries so that you can modify them if
necessary. All the files are within the directory

{CodeWarrior}\PowerPC_EABI_Support\Runtime\Src\

The runtime library project files are located at

{CodeWarrior}\PowerPC_EABI_Support\Runtime\Project\

The project names are Runtime.PPCEABI.mcp and
Run_EC++.PPCEABI.mcp. Each project file has unique targets for
each of the configurations of the runtime library.

For more information on how to customize the runtime library for
use with your project, you should carefully read the comments in
the source files, as well as any release notes for the runtime library.

NOTE: The C and C++ runtime libraries do not initialize hard-
ware. They assume that you will be loading and running the pro-
grams with the Metrowerks debugger. When your program is
ready to run as a stand-alone application, you must add the nec-
essary hardware initialization. See “Board Initialization Code” on
page 214 for details.
Targeting Embedded PowerPC PPC–213

Libraries and Runtime Code for Embedded PowerPC
Board Initialization Code
Board Initialization Code
Metrowerks CodeWarrior comes with several basic assembly-lan-
guage hardware initialization routines that you may want to use in
your program. When you are debugging, it is not necessary to in-
clude this code, since the debugger or debug kernel already per-
forms the same board initializations.

If your code is running stand-alone (without the debugger), you
may want to include the board initialization file. These files are lo-
cated at the path below, and use the extension .asm.

{CodeWarrior directory}\PowerPC_EABI_Support\Runtime\Src\

These files are included in source form, so you are free to modify
them to work with other boards or hardware configurations.

Each of these files includes a function called usr_init(). This is
the function you will call to run the hardware initialization code. In
the normal case, this would be put into the __init_hardware()
function in either the ppc_eabi_init.c or
ppc_eabi_init.cpp file. In fact, the default
__init_hardware() function has a call into usr_init(), but it
is commented out. Uncommenting this call will cause your program
to perform the included hardware initializations.
PPC–214 Targeting Embedded PowerPC

8
Inline Assembler for
Embedded PowerPC
This chapter describes support for inline assembly-language built
into the CodeWarrior compilers.

This chapter does not discuss the stand-alone assembler available
for Embedded PowerPC. For information on the stand-alone assem-
bler, see the Assembler Guide.

This chapter does not document all the instructions available in Em-
bedded PowerPC assembly language. For information on Embed-
ded PowerPC assembly language instructions, see PowerPC Micro-
processor Family: The Programming Environment for 32-Bit
Microprocessors, published by Motorola.

You can find this and other useful published information on the
World Wide Web at the following address:

http://motorola.com/SPS/PowerPC/teksupport/
teklibrary/index.html

This chapter contains the following topics:

• Working With Assembly

• Assembler Directives

• Intrinsic Functions
Targeting Embedded PowerPC PPC–215

Inl ine Assembler for Embedded PowerPC
Working With Assembly
Working With Assembly
This section describes how to use the built-in support for assembly
language programming included in the CodeWarrior compiler, in-
cluding assembler syntax.

This section contains the following topics:

• Assembler Syntax for Embedded PowerPC

• Special Embedded PowerPC Instructions

• Creating Labels for Embedded PowerPC Assembly

• Using Comments in Embedded PowerPC Assembly

• Using the Preprocessor in Embedded PowerPC Assembly

• Using Local Variables and Arguments

• Creating a Stack Frame in Embedded PowerPC Assembly

• Specifying Operands in Embedded PowerPC Assembly

Assembler Syntax for Embedded PowerPC

To specify that a block of code in your file should be interpreted as
assembly language, use the asm keyword.

NOTE: To ensure that the C/C++ compiler recognizes the asm
keyword, you must turn off the ANSI Keywords Only option in the
C/C++ Language panel. This panel and its options are fully de-
scribed in the C Compilers Reference.

The assembly instructions are the standard Embedded PowerPC in-
struction mnemonics. For information on Embedded PowerPC as-
sembly language instructions, see PowerPC Microprocessor Family:
The Programming Environment for 32-Bit Microprocessors, published
by Motorola (serial number MPCFPE32B/AD).

For instructions specific to the 5xx series of processors, see MPC500
Family RCPU Reference Manual, published by Motorola (serial num-
ber RCPURM/AD).
PPC–216 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
For instructions specific to the 8xx series of processors, see MPC821
Data Book, published by Motorola (serial number MPC821UM/AD).

There are two ways to use assembly language with the
CodeWarrior compilers.

First, you can write code to specify that an entire function is in
assembly language. This is called function-level assembly language.
Alternatively, assembly statement blocks within a function are also
supported. In other words, you can write code that is both in
function-level assembly language and statement-level assembly
language.

TIP: To enter a few lines of assembly language code within a
single function, you can use the support for intrinsics included in
the compiler. Intrinsics are an alternative to using asm statements
within functions. For more information, see “Intrinsic Functions” on
page 234.

Function-level assembly code for PowerPC uses the following
syntax:

asm {function definition }

For example:

asm long MyFunc(void) // OK, an assembly function
{
 . . . // assembly instructions

blr // must end with blr instruction
}

However, the following statement-level code is also permitted:

long MyFunc (void)
{

Targeting Embedded PowerPC PPC–217

Inl ine Assembler for Embedded PowerPC
Working With Assembly
 asm {. . .} // function assembly statement blocks are now
supported
}

NOTE: Assembly language functions are never optimized, re-
gardless of compiler settings.

Statement-level assembler syntax has the following form:

asm { one or more instructions }

You can use an asm statement wherever a code statement is
allowed.

NOTE Functions that contain an asm block are only partially optimized, as
CodeWarrior optimizes the function, but the optimizer skips any asm
blocks of code.

The built-in assembler uses all the standard PowerPC assembler
instructions. It accepts some additional directives described in
“Assembler Directives” on page 230. If you use the machine
directive, you can also use instructions that are available only in
certain versions of the PowerPC. For more information, see
“machine” on page 232.

Keep these tips in mind as you write assembly functions:

• All statements must follow this syntax:

[LocalLabel:] (instruction | directive) [operands]

Each instruction must end with a newline or a semicolon (;).
• Hex constants must be in C-style, not Pascal-style. For example:

li r3, 0xABCDEF // OK
li r3, $ABCDEF // ERROR
PPC–218 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
• Assembler directives, instructions, and registers are case-
sensitive and must be in lowercase. For example, the following
two statements are different:

add r2,r3,r4 // OK
ADD R2,R3,R4 // ERROR

• Every assembly function must end in an blr statement. The
compiler does not add one for you. For example:

asm void f(void)
{
 add r2,r3,r4
} // SEMANTIC ERROR: No blr statement

asm void g(void)
{
 add r2,r3,r4
 blr // OK
}

Listing 8.1 shows an example of an assembly function.

Listing 8.1 Creating an assembly function

asm void mystrcpy(char *tostr, char *fromstr)
{
 addi tostr,tostr,-1
 addi fromstr,fromstr,-1
@1 lbzu r5,1(fromstr)
 cmpwi r5,0
 stbu r5,1(tostr)
 bne @1
 blr
}

Targeting Embedded PowerPC PPC–219

Inl ine Assembler for Embedded PowerPC
Working With Assembly
Special Embedded PowerPC Instructions

To set the branch prediction (y) bit for those branch instructions that
can use it, use + or -. For example:

@1 bne+ @2 // Predicts branch taken
@2 bne- @1 // Predicts branch not taken

Most integer instructions have four different forms:

• normal.

• record, which sets register cr0 to whether the result is less,
than, equal to, or greater than zero. This form ends in a peri-
od (“.”).

• overflow, which sets the SO and OV bits in the XER if the re-
sult overflows. This form ends in the letter “o”.

• overflow and record, which sets both registers. This form
ends in “o.”.

add r3,r4,r5 // Normal add
add. r3,r4,r5 // Add with record: sets cr0
addo r3,r4,r5 // Add with overflow:sets XER
addo. r3,r4,r5 // Add with overflow and record: sets cr0 and XER

Some instructions only have a record form (with a period). Make
sure to include the period always:

andi. r3,r4,7 // '.' is not optional here
andis. r3,r4,7 // Or here
stwcx. r3,r4,r5 // Or here

Support for AltiVec Instructions

The full set of AltiVec assembly instructions is now supported in
your inline assembly code. For more information, see AltiVec
Technology Programming Interface Manual (available from Motorola,
Inc.) and “Where to Go from Here” on page 15.
PPC–220 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
NOTE: You would have to specify the machine altivec direc-
tive or its equivalent, refer to “machine” on page 232 for more in-
formation.

You can also use intrinsics in your code, refer to “Intrinsic
Functions” on page 234 for more information on this topic.

Creating Labels for Embedded PowerPC
Assembly

A label can be any identifier that you have not already declared as a
local variable. The name may start with @, so these are legal names:
foo, @foo, and @1. Only labels that do not start with @ need to end
in a colon. For example:

asm void foo(void)
{
x1: add r3,r4,r5 // OK, has colon
@x2: add r6,r7,r8 // OK, has both @ and colon
x3 add r9,r10,r11 // ERROR, Needs colon
@x4 add r12,r13,r14 // OK, starts with @
}

NOTE: The first statement in an assembly function cannot be a
label that starts with an at sign character (@).

Using Comments in Embedded PowerPC
Assembly

You cannot begin comments with a pound sign (#) because the pre-
processor uses the pound sign. However, you can use C and C++
comments. For example:

add r3,r4,r5 # ERROR
add r3,r4,r5 // OK
add r3,r4,r5 /* OK */
Targeting Embedded PowerPC PPC–221

Inl ine Assembler for Embedded PowerPC
Working With Assembly
Using the Preprocessor in Embedded
PowerPC Assembly

You can use all preprocessor features, such as comments and mac-
ros, in the assembler. However, you must end each assembly state-
ment with a semicolon (;) because the preprocessor ignores new
lines. For example:

#define remainder(x,y,z) \
divw z,x,y; \
mullw z,z,y; \
subf z,z,x

asm void newPointlessMath(void)
{

remainder(r3,r4,r5)
blr

}

Using Local Variables and Arguments

To refer to a memory location, you can use the name of a local vari-
able or argument.

NOTE: You can refer to local variables by name even if a func-
tion does not contain the fralloc directive. For more information,
see “Creating a Stack Frame in Embedded PowerPC Assembly”
on page 223.

The rule for assigning arguments to registers or memory depends
on whether the function has a stack frame. If function has a stack
frame, the inline assembler assigns:

• scalar arguments declared register to r14-r31

• floating-point arguments declared register to fp14-fp31

• other arguments to memory locations

• scalar locals declared register to r14-r31
PPC–222 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
• floating-point locals declared register to fp14-fp31

• other locals to memory locations

If function has no stack frame, the inline assembler assigns:

• arguments that are declared register and passed in regis-
ters to the appropriate register

• other arguments to memory locations

• all locals to memory locations

NOTE: Some opcodes expect registers, and others expect ob-
jects. For example, if you use no fralloc with parameters, you may
run into difficulties.

For more information on Embedded PowerPC register conventions
and argument-passing conventions, see “C and C++ for Embedded
PowerPC” on page 167.

Creating a Stack Frame in Embedded PowerPC
Assembly

You need to create a stack frame for a function when the function
performs the following actions:

• calls other functions

• uses more than 224 bytes of local variables

• declares local register variables

The easiest way to create a stack frame is to use the fralloc direc-
tive at the beginning of your function and the frfree directive just
before the blr statement. The directive fralloc automatically al-
locates (while ffree automatically de-allocates) memory for local
variables, and saves and restores the register contents.

asm void foo ()
{
 fralloc
 // Your code here
Targeting Embedded PowerPC PPC–223

Inl ine Assembler for Embedded PowerPC
Working With Assembly
 frfree
 blr
}

The fralloc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. The stack frame is an area for storing parameters used by the
assembly code. By default, the compiler creates a 32-byte parameter
area for you to pass variables into your assembly language
functions. If your assembly-language routine calls any function that
takes more than 32 bytes of parameters, you must specify a larger
amount. In PowerPC, function arguments are passed using
registers. In the case of integer values, registers r3-r10 are used.
Local variables are where the parameters will be stored that the
registers will point to.

As an example, if you pass 4 long integers to your assembly
function, this would consume 16 bytes of the parameter area.

Specifying Operands in Embedded PowerPC
Assembly

This section describes how to specify the operands for assembly lan-
guage instructions. This section contain the following topics:

• Using register variables and memory variables

• Using registers

• Using labels

• Using variable names as memory locations

• Using immediate operands

Using register variables and memory variables

When you use variable names as operands, the syntax you should
use depends on whether the variable is declared with or without the
register keyword. For example, some instructions like addi require
register operands. Any place that a register operand is normally
used, you can use a register variable. The inline assembler does
PPC–224 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
allow you to make a shortcut by using locals and arguments not de-
clared register in certain instructions.

Listing 8.2 Using register variables and memory variables

asm void foo(register int *a)
{

int b;
fralloc
lwz r4,a // ERROR; you must fully express the

 // operand of register variables
lwz r4,0(a) // OK
lwz r4,b // OK; the inline assembler will allow you

 // to take this shortcut
lwz r4,0(b) // ERROR
frfree
blr

}

Using registers

For a register operand, you must use one of the register names of
the appropriate kind for the instruction. The register names are
case-sensitive. You also can use a symbolic name for an argument or
local variable that was assigned to a register.

The general registers are RTOC, SP, r0 to r31, and gpr0 to gpr31.
The floating-point registers are fp0 to fp31 and f0 to f31. The
condition registers are cr0 to cr7.

Using labels

For a label operand, you can use the name of a label. For long
branches (such as b and bl instructions) you can also use function
names. For bla and la instructions, use absolute addresses.

For other branches, you must use the name of a label. For example:

b @3 // OK: Branch to local label
b foo // OK: Branch to external function foo
bl @3 // OK: Call local label
Targeting Embedded PowerPC PPC–225

Inl ine Assembler for Embedded PowerPC
Working With Assembly
bl foo // OK: Call external function foo
bne foo // ERROR: Short branch outside function

NOTE: Local labels declared in other functions are not allowed.

Using variable names as memory locations

Whenever an instruction requires a memory location (such as a load
instruction, a store instruction, or la), you can use a local or global
variable name. You can modify local variable names with struct
member references, class member references, array subscripts, or
constant displacements. For example, all of the following are valid
local variable references:

asm void foo(void)
{

long myVar;
long myArray[1];
Rect myRectArray[3];

lwz r3,myVar(SP) // load myVar into r3
la r3,myVar(SP) // load address of myVar into r3
lwz r3,myRect.top
lwz r3,myArray[2](SP)
lwz r3,myRectArray[2].top
lbz r3,myRectArray[2].top+1(SP)
blr

}

You also can use a register variable that is a pointer to a struct or
class to access a member of the struct. For example:

void foo(void)
{

register Rect *p;
asm {

lwz r3,p->top;
PPC–226 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
}
}

You can use the @hiword and @loword directives to access parts of
a variable defined long long:

long long gTheLongLong = 5;

asm void Foo(void);
asm void Foo(void)
{

fralloc

lwz r5, gTheLongLong@hiword // the upper word of gTheLongLong
lwz r6, gTheLongLong@loword // the lower word of gTheLongLong

frfree
blr

}

Using immediate operands

For an immediate operand, you can use an integer or enum con-
stant, sizeof expression, and any constant expression using any of
the C dyadic and monadic arithmetic operators. These expressions
follow the same precedence and associativity rules as normal C ex-
pressions. The inline assembler carries out all arithmetic with 32-bit
signed integers.

An immediate operand can also be a reference to a member of a
struct or class type. You can use any struct or class name from a
typedef statement, followed by any number of member referenc-
es. This evaluates to the offset of the member from the start of the
struct. For example:

lwz r4,Rect.top(r3)
addi r6,r6,Rect.left
Targeting Embedded PowerPC PPC–227

Inl ine Assembler for Embedded PowerPC
Working With Assembly
As a side note, this line:

la rD,d(rA)

is the same as this line:

addi rD,rA,d

You also can use the top or bottom half-word of an immediate word
value as an immediate operand. To do this, use one of the @ modifi-
ers, as illustrated below:

long gTheLong;

asm void foo(void)
{

fralloc

ori r6, gTheLong@ha //upper halfword of address of "gTheLong"
ori r7, gTheLong@h //upper halfword of address of "gTheLong"
addi r7, gTheLong@l //lower halfword of address of "gTheLong"

frfree
blr

}

The following example shows the preferred technique:

long gTheLong;
asm void foo(void)
{

fralloc
lwzr7,gTheLong(RTOC)
frfree
blr

}

PPC–228 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Working With Assembly
However, the access patterns are:

lisx,var@ha
lax,var@l(x)

or

lisx,var@h
orix,x,var@l

In this example, la is the simplified form of addi to load an
address. las is like la but shifted. Refer to the Motorola PowerPC
manuals for more information.

Using @ha is preferred since you can write:

lisx,var@ha
lwzv,var@l(x)

which you can't do with @h because it requires that you use the ori
instruction.

This is the simplified form to accessing globals:

void foo(void)
{

register long *addr = &gTheLong;

asm {
.... use addr for r7

}
}

Targeting Embedded PowerPC PPC–229

Inl ine Assembler for Embedded PowerPC
Assembler Directives
Assembler Directives
This section describes some special assembler directives that the
Embedded PowerPC built-in assembler accepts. They are:

• entry

• fralloc

• frfree

• machine

• nofralloc

• opword

entry
entry [extern | static] name

Embedded PowerPC assembler directive that defines an entry point
into the current function. Use the extern qualifier to declare a glo-
bal entry point and use the static qualifier to declare a local entry
point. If you leave out the qualifier, extern is assumed.

Listing 8.3 Using the entry directive

void __save_fpr_15(void);
void __save_fpr_16(void);
asm void __save_fpr_14(void)
{
 stfd fp14,-144(SP)
 entry __save_fpr_15
 stfd fp15,-136(SP)
 entry __save_fpr_16
 stfd fp16,-128(SP)
 // ...
}

PPC–230 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Assembler Directives
fralloc
fralloc [number]

Embedded PowerPC assembler directive that creates a stack frame
for a function and reserves registers for your local register variables.
You need to create a stack frame for a function if the function per-
forms the following actions:

• Calls other functions, or

• Uses more than 224 bytes of local variables

• Declares local registers

You can avoid using fralloc when using non-volatile registers as
long as you save the registers.

For more information, see “Creating a Stack Frame in Embedded
PowerPC Assembly” on page 223.

The fralloc directive has an optional argument number which lets
you specify the size in bytes of the parameter area of the stack
frame. By default, the compiler creates a 32-byte parameter area. If
your assembly-language routine calls any function that takes more
than 32 bytes of parameters, you must specify a larger amount.

frfree
frfree

Embedded PowerPC assembler directive that frees the stack frame
and restores the registers that fralloc reserved. For more infor-
mation, see “Creating a Stack Frame in Embedded PowerPC Assem-
bly” on page 223.

NOTE: The frfree directive does not generate a blr instruc-
tion. You must include one explicitly.
Targeting Embedded PowerPC PPC–231

Inl ine Assembler for Embedded PowerPC
Assembler Directives
machine
machine number

Embedded PowerPC assembler directive that specifies which CPU
the assembly code is for. The number must be one of the following:

If you use generic, CodeWarrior supports the core instructions for
the 603, 604, 740, and 750 processors. In addition, CodeWarrior sup-
ports all optional instructions.

If you use all, CodeWarrior supports all core and optional instruc-
tions for all Embedded PowerPC processors.

If you do not use the machine directive, the compiler uses the set-
ting you selected for the Processor pop-up menu on the EPPC Pro-
cessor panel.

For example:

machine altivec

This enables the assembler AltiVec instructions. The following
statement has the same effect:

 #pragma altivec_codegen on

401 403 505 509

555 601 602 603

604 740 750 801

821 823 850 860

7400 8240 8260 PPC603e

PPC604e PPC403GA PPC403GB PPC403GC

PPC403GCX all generic altivec
PPC–232 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Assembler Directives
If you use 603, you also can use the following instructions:

If you use 740 or 750, you can use the following instructions:

If you use 821, 823, or 860, you can also use the following instruc-
tions:

NOTE: If you are using the 850 processor, use the number 860
with the machine directive. Both processors use the same in-
struction set.

dcbf dcbi dcbst dcbt dcbtst

dcbz eciwx ecowx fres fres.

frsqrte frsqrte. fsel fsel. mfsr

mfsrin mftb mftbu mtsr mtsrin

mttbl mttbu stfiwx tlbie tlbld

tlbli tlbsync

dcbf dcbi dcbst dcbt dcbtst

dcbz eciwx ecowx fres fres.

frsqrte frsqrte. fsel fsel. mfsr

mfsrin mftb mftbu mtsr mtsrin

mttbl mttbu stfiwx tlbie tlbsync

dcbf dcbi dcbst dcbt

dcbtst dcbz eciwx ecowx

mfsr mfsrin mftb mftbu

mtsr mtsrin mttbl mttbu

tlbia tlbie tlbsync
Targeting Embedded PowerPC PPC–233

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
nofralloc

You can use the nofralloc directive so that an inline assembly
function does not build a stack frame. When you use nofralloc, if
you have locals, parameters or make function calls, you are respon-
sible for creating and deleting your own stack frame. Please see the
file __start.c (in the folder listed below) for an example of the
use of nofralloc.

{CodeWarrior Directory}\PowerPC_EABI_Support\Runtime\Src\

opword

The opword directive is supported by the inline assembler. For ex-
ample, the line “opword 0x7C0802A6” is equivalent to “mflr
r0”. No error checking is done on the value of the opword; the in-
struction is simply copied into the executable.

Intrinsic Functions
This section discusses support for intrinsic functions in the
CodeWarrior compilers. Support for intrinsic functions is not part of
the ANSI C or C++ standards. They are an extension provided by
the CodeWarrior compilers.

Intrinsic functions are a mechanism you can use to get assembly lan-
guage into your source code.

There is an intrinsic function for several common processor opcodes
(instructions). Rather than using inline assembly syntax and speci-
fying the opcode in an asm block, you call the intrinsic function that
matches the opcode.

When the compiler encounters the intrinsic function call in your
source code, it does not actually make a function call. The compiler
substitutes the assembly instruction that matches your function call.
As a result, no function call occurs in the final object code. The final
code is the assembly language instructions that correspond to the
intrinsic functions.
PPC–234 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
TIP: You can use intrinsic functions or the asm keyword to add a
few lines of assembly code within a function. If you want to write
an entire function in assembly, you can use the inline assembler.
See “Working With Assembly” on page 216.

For information on Embedded PowerPC assembly language in-
structions, see PowerPC Microprocessor Family: The Programming En-
vironment for 32-Bit Microprocessors, published by Motorola.

See also: “Working With Assembly” on page 216.

The topics in this section are:

• Low-Level Processor Synchronization

• Floating-Point Functions

• Byte-Reversing Functions

• Setting the Floating-Point Environment

• Manipulating the Contents of a Variable or Register

• Data Cache Manipulation

• Math Functions

• Buffer Manipulation

• AltiVec Intrinsics Support

Low-Level Processor Synchronization

These functions perform low-level processor synchronization.

void __eieio(void) /* Enforce In-Order Execution of I/O */

void __sync(void) /* Synchronize */

void __isync(void) /* Instruction Synchronize */

For more information on these functions, see the instructions eie-
io, sync, and isync in PowerPC Microprocessor Family: The Pro-
gramming Environments by Motorola.
Targeting Embedded PowerPC PPC–235

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
Floating-Point Functions

These functions generate inline instructions that take the absolute
value of a number.

These functions are not available if the None option is set in the
EPPC Processor preference panel. See “EPPC Processor” on page 79
for details.

int __abs(int); /* Absolute value of an integer */

float __fabs(float); /* Absolute value of a float */

float __fnabs(float); /* Negative absolute value of a float */

long __labs(long); /* Absolute value of a long int */

Byte-Reversing Functions

These functions generate inline instructions that can dramatically
speed up certain code sequences, especially byte-reversal opera-
tions.

int __lhbrx(void *, int); /* Load halfword byte — reverse index
*/

int __lwbrx(void *, int); /* Load word byte — reverse index */

void __sthbrx(unsigned short, void *, int);
 /* Store halfword byte — reverse index */

void __stwbrx(unsigned int, void *, int);
 /* Store word byte — reverse indexed */

However, these intrinsics are now created as having side effects and
will never be optimized away.
PPC–236 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
Setting the Floating-Point Environment

This function lets you change the Floating Point Status and Control
Register (FPSCR). It sets the FPSCR to its argument and returns the
original value of the FPSCR.

These functions are not available if the None option is set in the
EPPC Processor preference panel. See “EPPC Processor” on page 79
for details.

float __setflm(float);

This example shows how to set and restore the FPSCR:

double old_fpscr;
oldfpscr = __setflm(0.0); /* Clear all flag/exception/mode bits
 and save the original settings */

/* Peform some floating point operations */

__setflm(old_fpscr); /* Restore the FPSCR */

Manipulating the Contents of a Variable or
Register

These functions rotate the contents of a variable to the left.

int __rlwinm(int, int, int, int);
 /* Rotate Left Word Immediate, then AND with Mask */

int __rlwnm(int, int, int, int);
 /* Rotate Left Word, then AND with Mask */

int __rlwimi(int, int, int, int, int);
 /* Rotate Left Word Immediate then Mask Insert */

The first argument to __rlwimi is usually overwritten. However, if
the first parameter is a local variable allocated to a register, it is both
an input and output parameter. For this reason, this intrinsic should
Targeting Embedded PowerPC PPC–237

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
always be written to put the result in the same variable as the first
parameter as shown here:

ra = __rlwimi(ra, rs, sh, mb, me);

You can count the leading zeros in a register with the following
intrinsic:

int __cntlzw(int); /* Count leading zeros in a integer */

TIP: You can use inline assembly for a complete assembly lan-
guage function, as well as individual assembly language state-
ments. See “Working With Assembly” on page 216.

Data Cache Manipulation

The intrinsics shown in Table 8.1 map directly to PowerPC
assembly instructions.

Table 8.1 Data Cache Intrinsics

Intrinsic Prototype PowerPC
Instruction

void __dcbf(void *, int); dcbf

void __dcbt(void *, int); dcbt

void __dcbst(void *, int); dcbst

void __dcbtst(void *, int); dcbtst

void __dcbz(void *, int); dcbz
PPC–238 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
Math Functions

The intrinsics shown in Table 8.2 map directly to PowerPC
assembly instructions.

Table 8.2 Math Intrinsics

Intrinsic Prototype PowerPC
Instruction

int __mulhw(int, int); mulhw

uint __mulhwu(uint, uint); mulhwu

double __fmadd(double, double,
double);

fmadd

double __fmsub(double, double,
double);

fmsub

double __fnmadd(double, double,
double);

fnmadd

double __fnmsub(double, double,
double);

fnmsub

float __fmadds(float, float, float); fmadds

float __fmsubs(float, float, float); fmsubs

float __fnmadds(float, float,
float);

fnmadds

float __fnmsubs(float, float,
float);

fnmsubs

double __mffs(void); mffs

float __fabsf(float); fabsf

float __fnabsf(float); fnabsf
Targeting Embedded PowerPC PPC–239

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
Buffer Manipulation

Some intrinsics allow control over areas of memory, so you can
manipulate memory blocks.

void *__alloca(ulong);

__alloca implements alloca() in the compiler.

char *__strcpy(char *, const char *);

__strcpy() detects copies of constant size and calls __memcpy().
This intrinsic requires that a __strcpy function be implemented
because if the string is not a constant it will call __strcpy to do the
copy.

void *__memcpy(void *, const void *, size_t);

__memcpy() provides access to the block move in the code
generator to do the block move inline.

AltiVec Intrinsics Support

You can use all the available AltiVec intrinsics in your code. You
will find a list of these in the relevant Motorola documentation at
this URL on the world-wide web:

http://www.mot.com/SPS/PowerPC/teksupport/
teklibrary/manuals/altivec_pem.pdf

A table of these intrinsics is shown here as Table 8.3 and Table 8.4
for reference.

Table 8.3 AltiVec Generic and Specific Intrinsics

vec_abs vec_abss vec_add vec_addc

vec_adds vec_and vec_andc vec_avg

vec_ceil vec_cmpb vec_cmpeq vec_cmpge
PPC–240 Targeting Embedded PowerPC

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
Table 8.4 AltiVec Predicates

vec_cmpgt vec_cmple vec_cmplt vec_ctf

vec_sums vec_trunc vec_unpackh vec_unpackl

vec_xor

vec_all_eq vec_all_ge vec_all_gt vec_all_in

vec_all_le vec_all_lt vec_all_nan vec_all_ne

vec_all_nga vec_all_ngt vec_all_nle vec_all_nlt

vec_all_numeric vec_any_eq vec_any_ge vec_any_gt

vec_any_le vec_any_lt vec_any_na
n

vec_any_ne

vec_any_nge vec_any_ngt vec_any_nle vec_any_nlt

vec_any_numerics vec_any_out
Targeting Embedded PowerPC PPC–241

Inl ine Assembler for Embedded PowerPC
Intrinsic Functions
PPC–242 Targeting Embedded PowerPC

9
Troubleshooting for
Embedded PowerPC
This chapter discusses common problems encountered when using
Embedded PowerPC, and possible solutions. It also includes an-
swers to frequently asked questions about BDM devices.

The sections are:

• No Communications with Target Board

• Downloading Code Fails or Crash When Code Runs

• Debugger Window Does Not Appear

• Common Error Warnings for CodeTAP and PowerTAP

• Targeting BDM Devices FAQ

If you read this chapter and are still having technical problems,
please contact technical support. See “Technical Support” on page
18 for information on the various methods of receiving technical
support.

No Communications with Target Board
If you are unable to establish communications with the target hard-
ware, check the following:

• Verify that the cable (serial or parallel) is connected to your
computer.

• If you are using MetroTRK: If MetroTRK is loaded onto your
MPC8xx ADS board, the LED labeled “RS232 Port 1” should
be lit up. If it is not, MetroTRK is not functioning properly. If
you have rebuilt MetroTRK to use Port 2, the “RS232 Port 2”
LED should be lit instead. There is no equivalent indicator on
the MBX board or MPC5xx EVB board.
Targeting Embedded PowerPC PPC–243

Troubleshooting for Embedded PowerPC
Downloading Code Fails or Crash When Code Runs
• If you are using the serial port to communicate with the
board, you should make sure that the serial cable you are
using is the right type. If you are using an MPC8xx ADS or
MPC5xx EVB board, you need to use a straight-through cable
(pins 2 and 3 straight through.) If you are using an MPC8xx
MBX board, you should be using a null-modem cable (pins 2
and 3 reversed.) In general, if the RS232 connector on your
target board is male, you will use a null-modem cable; if it is
female, you will use a straight-through cable.

• Verify that the cable (either serial or BDM) is correctly con-
nected to the target hardware.

• If you are using the BDM emulator, verify that the cable from
the computer is correctly connected to the BDM emulator.
For more information, see “Setting Up for Remote Debug-
ging” on page 126.

• Verify that all of your settings in the debugger preference
panel are correct.

If none of those suggestions corrects the problem, try to establish
communications with the board by using another program. You can
use a terminal emulation program to connect with the serial port, or
you can use the MPC8BUG debugger (supplied by Motorola with
the MPC8xx ADS board) to connect with the BDM port.

If you believe your connections are correct, see “Connecting with a
Debug Monitor” on page 127. This section explains what you
should see when you reset MetroTRK.

Downloading Code Fails or Crash When Code
Runs

If you are unable to download code to the target hardware or you
cannot run your program, check the following:

• Verify that the communications to the target hardware are
working correctly, as described in “No Communications
with Target Board” on page 243.

• If you are concerned that your application is not working
correctly, you should use one of the samples provided with
PPC–244 Targeting Embedded PowerPC

Troubleshooting for Embedded PowerPC
Debugger Window Does Not Appear
CodeWarrior for Embedded PowerPC to verify that your
connection to the board is properly established.

Debugger Window Does Not Appear
If the debugger window does not appear after you launch a process,
try the following:

• Enable the verification of all program sections in the Remote
Debugging Options settings panel. This allows you to verify
that your program writes to memory correctly.

• Verify that the linker is generating code in valid memory
space for your target.

• Verify that your Stack Pointer is in valid RAM and that it will
not overwrite your program.

Common Error Warnings for CodeTAP and
PowerTAP

Following are some errors you might encounter when using Code-
TAP or PowerTAP, and possible solutions:

• “Could not connect to hostname”

• “The memory at address 0xnnnnnnnn has changed during
emulation. Breakpoints. . .”

• “Access breakpoints are not supported for this processor”

“Could not connect to hostname”

This message indicates that a communications problem exists or
that the emulator that you are attempting to connect to is currently
in use.

To correct the problem:

1. Check the Ethernet communications.

To learn how to check the Ethernet communications, see Emulator
Installation Guide, available from AMC (Applied Microsystems Cor-
poration).
Targeting Embedded PowerPC PPC–245

Troubleshooting for Embedded PowerPC
Targeting BDM Devices FAQ
2. If you still receive this message, reset the emulator.

To learn how to reset the emulator, see Emulator Installation Guide,
available from AMC.

3. After resetting the emulator, check the Ethernet communications
again.

“The memory at address 0xnnnnnnnn has changed during
emulation. Breakpoints. . .”

Indicates that memory in which breakpoints have set has changed.
The emulator must remove the breakpoints to avoid corrupting
memory.

“Access breakpoints are not supported for this processor”

Watchpoints, also called access breakpoints, are available only for
PowerTAP 7xx or CodeTAP 8xx. You cannot set watchpoints for
PowerTAP 6xx or PowerTAP 82xx.

Targeting BDM Devices FAQ
This section lists some common problems you may encounter when
targeting a BDM device using CodeWarrior:

• Debugger window doesn't appear after launching process
using a BDM target

• Watchpoints are not working using a BDM target

• Hardware breakpoints are not working using a BDM target

Debugger window doesn't appear after launching process
using a BDM target

If the debugger window does not appear after you launch a process
using a BDM target, enable all exceptions in the EPPC Exceptions
settings panel. This catches exceptions that occur before your pro-
gram reaches the first breakpoint.
PPC–246 Targeting Embedded PowerPC

Troubleshooting for Embedded PowerPC
Targeting BDM Devices FAQ
Watchpoints are not working using a BDM target

If watchpoints are not working when using a BDM target, enable
the Data Breakpoint exceptions in the EPPC Exceptions panel.

Hardware breakpoints are not working using a BDM target

If hardware breakpoints are not working when using a BDM target,
enable the Instruction Breakpoint exceptions in the EPPC Excep-
tions panel.
Targeting Embedded PowerPC PPC–247

Troubleshooting for Embedded PowerPC
Targeting BDM Devices FAQ
PPC–248 Targeting Embedded PowerPC

10
Using a CodeTAP
Debugging Device
Using an AMC (Applied Microsystems Corporation) CodeTAP de-
bugging device, you can control and debug software running on a
target board with minimal intrusion to the operation of the target
board. The CodeTAP device provides advanced emulation technol-
ogy that combines with the CodeWarrior debugger so that you can
work efficiently in the same environment throughout the entire de-
velopment cycle.

This chapter provides information for using the CodeTAP device
with CodeWarrior for Embedded PowerPC.

This chapter contains the following topics:

• CodeTAP Highlights

• CodeTAP Technical Support

• CodeTAP Requirements

• Target Settings for CodeTAP

• Setting Up the CodeTAP Emulator

• Updating the CodeTAP Firmware

• Resetting the Processor
Targeting Embedded PowerPC PPC–249

Using a CodeTAP Debugging Device
CodeTAP Highlights
CodeTAP Highlights
The CodeTAP device provides the following hardware-assisted de-
bugging features:

• Optimal performance:

– Split-second single-step execution

– Up to 2 MB-per-minute code download time from the Co-
deTAP device to the target board

• Debug code in ROM and RAM

• Run to breakpoints in ROM or RAM

• Crash-proof control of the processor:

– Obtain and modify register contents.

– Display and modify memory.

– Control instruction execution.

– Run/stop/step/reset.

– Examine and debug the contents of the data or instruction
cache of the processor. (For more information, see “AMC
Data and Instruction Cache Windows” on page 152.)

• Powerful C/C++ symbolic debugger with integrated inter-
face to all subsystems of the CodeTAP device

• Built-in TCP/IP Ethernet communications for remote debug-
ging
PPC–250 Targeting Embedded PowerPC

Using a CodeTAP Debugging Device
CodeTAP Technical Support
CodeTAP Technical Support
AMC provides first-line technical support for all CodeTAP systems
equipped with CodeWarrior. Contact AMC for technical assistance
with both the CodeTAP device and the CodeWarrior IDE using the
resources shown in Table 10.1.

Table 10.1 CodeTAP device technical support contact information

When you contact AMC, provide the following information:

• Your name and contact information

• Your company name

• The Applied System Identifier (ASI) number printed on a
label located on the underside of the CodeTAP device

• Your CodeWarrior version number

• A description of the problem or error messages

• The exact sequence of actions leading to the problem

Phone 800 ASK-4AMC (800 275-4262)

Email support@amc.com

Web http://www.amc.com/support.html
Targeting Embedded PowerPC PPC–251

Using a CodeTAP Debugging Device
CodeTAP Requirements
CodeTAP Requirements
To use the CodeTAP device with CodeWarrior, you must:

1. Complete the emulator installation described in Emulator In-
stallation Guide, available from AMC.

2. Install CodeWarrior as described in “Installing CodeWarrior
for Embedded PowerPC” on page 24.

The hardware requirements for debugging with a CodeTAP device
follow:

• An evaluation board (see “Target board requirements” on
page 22).

• Two power supplies: one for your target board and the one
supplied with the CodeTAP

• A CodeTAP device

Target Settings for CodeTAP
CodeWarrior for Embedded PowerPC provides project stationery
that you can use to create projects. The project stationery settings
are already set to reasonable default values. For more information,
see “Project Stationery” on page 33.

You also can open and view a sample project in the following direc-
tory:

Windows {CodeWarrior
directory}\CodeWarrior_Examples\CDemon\CDemon.mcp

Solaris {CodeWarrior directory}/CodeWarrior_Examples/CDemon/
CDemon.mcp

Table 10.2 lists the most common build target settings for develop-
ing and debugging with a CodeTAP device. For more information,
see “Settings Panels for Embedded PowerPC” on page 66 and “Con-
necting with CodeTAP” on page 132.
PPC–252 Targeting Embedded PowerPC

Using a CodeTAP Debugging Device
Target Settings for CodeTAP
Table 10.2 Target settings for CodeTAP

Panel Name Setting Value

Build Extras (see IDE
User Guide)

Activate Browser checkbox Selected.

EPPC Target “Project Type” on page 71 Application.

EPPC Processor “Processor” on page 81 Your processor.

EPPC Target Settings1 “Target Processor” on page 111 Your processor.

“Protocol” on page 108 AMC CodeTAP.

“Breakpoint Type” on page 103 Auto2.

“Watchpoint Type” on page 113 Data, Read, Write, or
Read/Write.

“Use Initialization File” on page
112

Select when using a
debug initialization
file.

“Initialization File” on page 105 When using a debug
initialization file, type
the file name in this
field.

“Interface Clock Frequency” on
page 106

Select the clock fre-
quency for the BDM.

“Show Inst Cycles” on page 110 None, Indirect, Flow,
or All.

Connection Settings “View Connection Type” on page
118

View TCP/IP Settings.

“Host Name” on page 121 The host name you as-
signed to the Code-
TAP device during em-
ulator setup3.

1. You can define values for some settings on the EPPC Target Settings panel on the panel or in debug initializa-
tion files. If you use debug initialization file commands to define the values, the commands overwrite any val-
ues previously set on the panel. For more information, see “Debug Initialization Files” on page 289.
Targeting Embedded PowerPC PPC–253

Using a CodeTAP Debugging Device
Setting Up the CodeTAP Emulator
NOTE: Watchpoints are available only when using CodeTAP
8xx systems.

Setting Up the CodeTAP Emulator
To set up the CodeTAP emulator:

1. Establish communications between the host machine where the
debugger is running and the CodeTAP device.

For more information, see Emulator Installation Guide (available from
AMC).

2. Connect to the target board.

To learn how to establish a connection with the target, see “Con-
necting to a Target” in Emulator Installation Guide (available from
AMC).

NOTE: You can check for any AMC application notes at:

http://www.amc.com

You optionally can use a debug initialization file to perform initial
configuration of the target processor, target system, and CodeTAP
device. For more information, see “Debug Initialization Files” on
page 289.

2. The Auto option manages breakpoint resources most effectively. Software breakpoints apply only to code lo-
cated in RAM. Hardware breakpoints use the on-chip breakpoints of the processor. You can set hardware
breakpoints in RAM or ROM.

3. For more information, see Emulator Installation Guide, which is available from AMC. This document de-
scribes how to establish Ethernet communications, assign host names and IP addresses, and update the network
databases.
PPC–254 Targeting Embedded PowerPC

Using a CodeTAP Debugging Device
Updating the CodeTAP Firmware
Updating the CodeTAP Firmware
The CodeTAP device stores its core software in flash memory on the
target board. This core software may change when AMC updates
the debugger software or adds new features to the CodeTAP device.
The release letter shipped with the AMC products states whether
you must update the core software.

For core software update procedures, see the “CodeTAP Core Soft-
ware” appendix in Emulator Installation Guide (available from AMC).

Debugging Using CodeTAP
When you launch a debug session while using CodeTAP, reset is as-
serted to the target system, resetting the processor. If you chose to
use a debug initialization file, the CodeTAP is initialized, and any
parameters in the initialization file are passed to the target and the
emulator. The project is loaded into target memory, and runs to
main (if the Stop at temp breakpoint on application launch check-
box is selected in the Debugger Settings panel and main was speci-
fied as the default breakpoint).

Resetting the Processor
When using a CodeTAP device, you can reset the target processor
using the following methods:

• Soft Reset

A Soft Reset asserts the SRESET* line to the target processor.
To choose Soft Reset, select Debug > Reset.

• Hard Reset

A Hard Reset asserts the HRESET* line to the target proces-
sor. To choose Hard Reset, select Debug > Hard Reset.

After a Hard Reset, the debug initialization file is processed
again. If the debug initialization file contains register initial-
ization commands, the processor registers and controllers
can be set up for your target system.
Targeting Embedded PowerPC PPC–255

Using a CodeTAP Debugging Device
Resetting the Processor
Under certain conditions, you may find these reset commands use-
ful, but you must understand how to progress from the reset state to
the point where you can resume application execution. For more in-
formation on reset operations, see the user manual for your target
processor.
PPC–256 Targeting Embedded PowerPC

11
Using the PowerTAP
6xx/7xx Debugging
Device
Using the AMC (Applied Microsystems Corporation) PowerTAP
debugging device, you can control and debug software running on
your MPC6xx and 7xx embedded system. The PowerTAP device
provides advanced emulation technology that combines with the
CodeWarrior debugger so that you can work efficiently in the same
environment throughout the entire development cycle.

This chapter provides information for using the AMC PowerTAP
6xx/7xx with CodeWarrior.

This chapter contains the following topics:

• PowerTAP Highlights

• PowerTAP Technical Support

• PowerTAP Requirements

• Target Settings for PowerTAP

• Setting Up the PowerTAP Emulator

• Updating the PowerTAP Firmware

• Resetting the Processor

• Operational Notes
Targeting Embedded PowerPC PPC–257

Using the PowerTAP 6xx/7xx Debugging Device
PowerTAP Highlights
PowerTAP Highlights
PowerTAP provides the following hardware-assisted debugging
features:

• Optimal performance:

– Split-second single-step execution

– Up to 2 MB-per-minute code download time from Power-
TAP to target

• Control and debug software running on a target board, with
minimal intrusion to the operation of the target board

• Crash-proof control of the processor for all speed grades and
variants supported by the Common Onchip Processor (COP)
of the PowerPC:

– Obtain and modify register contents.

– Display and modify memory.

– Control instruction execution.

– Run/stop/step/reset.

– Examine and debug the contents of the data or instruction
cache of the processor. (For more information, see “AMC
Data and Instruction Cache Windows” on page 152.)

• Rapid deployment of COP drivers for new processors or
mask revisions

• Powerful C/C++ symbolic debugger with integrated inter-
face to all subsystems of PowerTAP

• Quiescent Acknowledge, QACK, tied low for simple target
connection for 603E and EC603E processors; eliminates tying
QACK low on target

• Telnet access to the serial port of the target board; interact
with serial target port over the network

• Trigger in/trigger out for synchronization with external de-
vices
PPC–258 Targeting Embedded PowerPC

Using the PowerTAP 6xx/7xx Debugging Device
PowerTAP Technical Support
PowerTAP Technical Support
AMC provides first-line technical support for all PowerTAP sys-
tems equipped with CodeWarrior. Contact AMC for technical assis-
tance with both the PowerTAP device and the CodeWarrior IDE
using the resources shown in Table 11.1.

Table 11.1 PowerTAP device technical support contact information

When you contact AMC, provide the following information:

• Your name and contact information

• Your company name

• The Applied System Identifier (ASI) number printed on a
label located on the underside of the PowerTAP

• Your CodeWarrior version number

• A description of the problem or error messages

• The exact sequence of actions leading to the problem

Phone 800 ASK-4AMC (800 275-4262)

Email support@amc.com

Web http://www.amc.com/support.html
Targeting Embedded PowerPC PPC–259

Using the PowerTAP 6xx/7xx Debugging Device
PowerTAP Requirements
PowerTAP Requirements
To use a PowerTAP device with CodeWarrior, you must:

1. Complete the emulator installation described in Emulator In-
stallation Guide (available from AMC).

2. Install CodeWarrior as described in “Installing CodeWarrior
for Embedded PowerPC” on page 24.

The hardware requirements for debugging with a PowerTAP device
follow:

• A PowerPC 6xx, 7xx or 82xx target board with a JTAG port

• Two power supplies: one for your target board and the one
supplied with PowerTAP

• A PowerTAP device

Target Settings for PowerTAP
CodeWarrior for Embedded PowerPC provides project stationery
that you can use to create projects. The project stationery settings
are already set to reasonable default values. For more information,
see “Project Stationery” on page 33.

You also can open and view a sample project in the following direc-
tory:

Windows {CodeWarrior
directory}\CodeWarrior_Examples\CDemon\CDemon.mcp

Solaris {CodeWarrior directory}/CodeWarrior_Examples/CDemon/
CDemon.mcp

Table 11.2 lists the most common build target settings for develop-
ing and debugging with a PowerTAP device. For more information,
see “Settings Panels for Embedded PowerPC” on page 66 and “Con-
necting with PowerTAP” on page 136.
PPC–260 Targeting Embedded PowerPC

Using the PowerTAP 6xx/7xx Debugging Device
Target Settings for PowerTAP
Table 11.2 Target settings for PowerTAP

Panel Name Setting Value

Build Extras (see IDE User
Guide)

Activate Browser checkbox Selected.

EPPC Target “Project Type” on page 71 Application.

EPPC Processor “Processor” on page 81 Your processor.

EPPC Target Settings1 “Target Processor” on page
111

Your processor.

“Protocol” on page 108 AMC PowerTAP.

“Breakpoint Type” on page
103

Auto2.

“Watchpoint Type” on page
113

Data, Read, Write, or
Read/Write.

“Use Initialization File” on
page 112

Select when using a
debug initialization
file.

“Initialization File” on page
105

When using a debug
initialization file, type
the file name in this
field.

“Interface Clock Frequency”
on page 106

Select the clock fre-
quency for the JTAG.

Connection Settings “View Connection Type” on
page 118

View TCP/IP Settings

“Host Name” on page 121 The host name you as-
signed to the Power-
TAP device during em-
ulator setup3

1. You can define values for some settings on the EPPC Target Settings panel on the panel or in debug initializa-
tion files. If you use debug initialization file commands to define the values, the commands overwrite any val-
ues previously set on the panel. For more information, see “Debug Initialization Files” on page 289.
Targeting Embedded PowerPC PPC–261

Using the PowerTAP 6xx/7xx Debugging Device
Setting Up the PowerTAP Emulator
NOTE: Another setting that is available on the EPPC Target Set-
tings panel is Watchpoint Type. (For more information, see
“Watchpoint Type” on page 113.) Watchpoints are available only
when using PowerTAP 7xx systems.

Setting Up the PowerTAP Emulator
To set up the PowerTAP emulator:

1. Establish communications between the host machine where the
debugger is running and the PowerTAP device.

For more information, see Emulator Installation Guide (available from
AMC).

2. Connect to the target board.

To learn how to establish connection with the target, see “Connect-
ing to a Target” Emulator Installation Guide (available from AMC).

NOTE: If you are using an evaluation board, see “Debugging for
Embedded PowerPC” on page 123. You can check for any AMC
application notes at:

http://www.amc.com

2. The Auto option manages breakpoint resources most effectively. Software breakpoints apply only to code lo-
cated in RAM. Hardware breakpoints use the on-chip breakpoints of the processor. You can set hardware
breakpoints in RAM or ROM.

3. For more information, see Emulator Installation Guide, which is available from AMC. This document de-
scribes how to establish Ethernet communications, assign host names and IP addresses, and update the network
databases.
PPC–262 Targeting Embedded PowerPC

Using the PowerTAP 6xx/7xx Debugging Device
Updating the PowerTAP Firmware
Updating the PowerTAP Firmware
The PowerTAP device stores its core software in flash memory on
the target board. This core software may change when AMC up-
dates the debugger software or adds new features to the PowerTAP
device. The release letter shipped with the AMC products states
whether you must update the core software.

For core software update procedures, see the “PowerTAP Core Soft-
ware” appendix in Emulator Installation Guide (available from AMC).

Resetting the Processor
When using a PowerTAP device, you can reset the target processor
using the following methods:

• Soft Reset

WARNING! At the time of this writing, Soft Reset does not work
for some PowerTAP targets.

A Soft Reset asserts the SRESET* line to the target processor.
To choose Soft Reset, select Debug > Reset.

• Hard Reset

A Hard Reset asserts the HRESET* line to the target proces-
sor. To choose Hard Reset, select Debug > Hard Reset.

After a Hard Reset, the debug initialization file is processed
again. If the debug initialization file contains register initial-
ization commands, the processor registers and controllers
can be set up for your target system.

Under certain conditions, you may find these reset commands use-
ful, but you must understand how to progress from the reset state to
the point where you can resume application execution. For more in-
formation on reset operations, see the user manual for your target
processor.
Targeting Embedded PowerPC PPC–263

Using the PowerTAP 6xx/7xx Debugging Device
Operational Notes
Operational Notes
This section contains notes on operational characteristics and re-
quirements when using PowerTAP with CodeWarrior to debug
your target system.

Recoverable Interrupts

The MPC8xx, MPC60x, and MPC7xx families have a bit in the ma-
chine state register (MSR) called the recoverable interrupt bit
(MSRRI). The MSRRI indicates whether the interrupt is restartable.
If this bit is not set, the target CPU may not respond to breakpoints.
To the processor, a normal, maskable break looks just like any other
interrupt/exception.

For example, to set a breakpoint at the beginning of an interrupt ser-
vice routine, you must ensure that the recoverable interrupts are en-
abled and that the machine status save/restore registers (SSR0/
SSR1) are correctly written.

To handle exceptions, your interrupt service routine must do the
following:

1. Save the SSR0 and SSR1 registers to memory.

2. Set the MSRRI bit.

3. Execute any exception processing.

4. Clear the MSRRI bit.

5. Restore the SSR0 and SSR1 registers.

6. Execute the rfi system call.

For more information on recoverable interrupts, see the “Excep-
tions” chapter of the appropriate Motorola User’s Manual.
PPC–264 Targeting Embedded PowerPC

Using the PowerTAP 6xx/7xx Debugging Device
Operational Notes
Interrupts and the Machine Status Save/
Restore Registers

When debugging interrupt service routines, avoid certain actions
near code that accesses the SRR0 and SRR1 registers.

Placing the CPU into debug mode is just another interrupt. For ex-
ample: your code is in an interrupt epilogue and has just placed the
return address into SRR0 when a breakpoint occurs. The breakpoint
causes the IP for the address of the breakpoint to be written to SRR0,
destroying your original return address. Stepping through code that
accesses SRR0 and SRR1 exhibits the same problem.

To avoid this problem, always set your breakpoints before or after
code that accesses SRR0 and SRR1, and never step through such
code. For example, you can set your breakpoint anywhere after the
interrupt prologue but before the epilogue.

Instructions that involve the SRR0 and SRR1 registers are “MTSPR
SRR0/1,RX”, “MFSPR RX,SRR0/1”, and RFI.
Targeting Embedded PowerPC PPC–265

Using the PowerTAP 6xx/7xx Debugging Device
Operational Notes
PPC–266 Targeting Embedded PowerPC

A
Flash Programmer
This appendix explains how to use the Embedded PowerPC utility
to burn flash images to your embedded PowerPC board.

NOTE: Using the Flash to ROM target to flash your programs to
ROM is substantially faster than using the flash programmer. For
more information, see “Project Stationery Targets” on page 37.

The Embedded PowerPC utility is located at the directory:

{CodeWarrior directory}\Bin\PPCComUtil.exe

This appendix contains the following sections:

• What You See

• Using the Flash Programmer

• Command File Syntax

NOTE: The Flash Programmer cannot be used with the AMC
(Applied Microsystems Corporation) CodeTAP or PowerTAP de-
bugging devices.

What You See
There are three windows available in PPCComUtil.exe:

• Console

• Status and Errors

• Help
Targeting Embedded PowerPC PPC–267

Flash Programmer
What You See
and one preference panel:

• Preferences

Console

The Console window, shown in Figure A.1, displays all of the input
commands, the output of the commands (such as the output of re-
admem), and the contents of internal registers.

Figure A.1 Console window

Status and Errors

The Status and Errors window, shown in Figure A.2, shows the sta-
tus of the communications link between the computer and the Pow-
erPC board. This window displays the error messages for the board
PPC–268 Targeting Embedded PowerPC

Flash Programmer
What You See
and information regarding the progress and status of BDM connec-
tions.

Figure A.2 Status and Errors window

Help

The Help window, shown in Figure A.3, is essentially a context-sen-
sitive help window, providing information and suggestions on how
Targeting Embedded PowerPC PPC–269

Flash Programmer
What You See
to solve any communication or download problems you might
have.

Figure A.3 Help window

General instructions on how to use PPCComUtil are displayed at
the top of the window. Click the left and right arrows to browse the
instructions.

Preferences

Choose Preferences from the Edit menu to see the PPCComUtil
preferences panel (Figure A.4).
PPC–270 Targeting Embedded PowerPC

Flash Programmer
What You See
Figure A.4 PPCComUtil Preferences panel

This is where you specify the BDM settings for the connection be-
tween your computer and the board.

The options in this panel include:

• BDM Port

• Log Output

• Log Output

• Flash Program Command File

BDM Port

The BDM Port pop-up menu selects the port that your computer
uses to communicate with the BDM emulator. The connection
choice is:
Targeting Embedded PowerPC PPC–271

Flash Programmer
What You See
• Parallel

Log Output

When Log Output is enabled, all output is written to a log file.

Reset Command File

The Reset Command File field allows you to select your debug ini-
tialization file. The debug initialization file allows you to set up the
memory configuration and system registers for your target board.
The Change button allows you to browse your hard drive to specify
a settings file.

When you select Run Reset Command File from the BDM menu,
this file is executed.

NOTE: It is useful to use PPCComUtil to debug your debug ini-
tialization file before using it with the debugger.

WARNING! To make sure your program runs as you intended,
use the debug initialization file only to set up the processor for
reading and writing memory. If you use the debug initialization file
to set up the UART, TCP/IP, or any other on-board peripheral, un-
derstand that the debug initialization file setup happens only once
(when the debug initialization file is sent the first time).

To make sure your processor is configured correctly each time,
use the initialization code of your program to set up the board
rather than the debug initialization file.

Flash Program Command File

To select your flash program command file, click Change and select
the file from your hard drive.
PPC–272 Targeting Embedded PowerPC

Flash Programmer
Using the Flash Programmer
This product provides flash program command files for the default
flash memory from AMD with part number AM29F040 found in the
8xx and 5xx evaluation boards from Motorola. The command files:

• Flash505.txt

• FlashADS_8xx.txt

• FlashMBX_8xx.txt

are located here:

{CodeWarrior directory}\PowerPC_EABI_Support\Flash\

NOTE: CodeWarrior for Embedded PowerPC does not provide
flash program command files for the many varieties of flash mem-
ory available. See the documentation that came with your flash
memory for information on how to write flash programming algo-
rithms.

Using the Flash Programmer
When sending a flash image to the board, there are three things you
need to do:

• Initialize the Programmer

• Specify a Flash Image

• Send the Flash Image
Targeting Embedded PowerPC PPC–273

Flash Programmer
Using the Flash Programmer
Initialize the Programmer

Choose Run Reset from the BDM menu to initialize the flash. PPC-
ComUtil will execute the BDM initialization file that is specified in
the Reset Command File preferences. A BDM initialization file is a
batch file of commands to be sent and run on the board once the
files are specified in preference panel. Metrowerks has provided
these files in the directory:

{CodeWarrior directory}\PowerPC_EABI_Support\Config\

To specify a BDM initialization file for downloading, choose Prefer-
ences from the Edit menu, and click the Change button under the
heading Reset Command File. When the Open dialog box appears,
find the initialization file from your hard drive, and click OK.

Specify a Flash Image

To specify a flash image for downloading, choose Preferences from
the Edit menu, and click the Change button under the heading
Flash Programming Command File. When the Open dialog box ap-
pears, find the flash image file from your hard drive, and click OK.

See “Flash Program Command File” on page 272 for a list of the
sample flash command files. If you are not using one of the Motor-
ola development boards, you must write a custom flash command
file.

Send the Flash Image

To send the flash image, choose Program Flash from the BDM
menu. When the Open dialog box appears, specify the S-Record file
to be sent. After you click OK, a flash image is made, and your flash
is programmed.

NOTE: You must enable the checkbox Generate S-Record File
and Generate ROM Image in the EPPC Linker settings panel to
generate a ROM-able S-record file. You must also have the cor-
PPC–274 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
rect addresses for your ROM memory entered in the RAM Buffer
Address and ROM Image Address edit fields.

Command File Syntax
This section describes the command set of the flash programmer.
This language is for writing initialization files and can be used in
conjunction with the Console window to help you debug.

The types of commands available include:

• Write Register Commands

• Read, Write and Save Memory Commands

• Loop Commands

• Action Commands

• Wait and Abort Commands

• Print Commands

• Miscellaneous Commands

Write Register Commands

The write register commands include:

• writereg

• writespr

writereg

Description Writes a value to the specified register.

Usage writereg <registerName> <value>

<registerName> can be one of following:

• MSR—Machine State Register

• CR—Condition Register

• PC—Program Counter
Targeting Embedded PowerPC PPC–275

Flash Programmer
Command File Syntax
• Rxx—General Registers, where xx is a decimal from 0-31

• SPRxxxx—Special Purpose Registers, where xxxx is a
decimal from 0-1023

<value> is a hex, octal, or decimal value

Examples

writereg MSR 0x00001002
writereg CR 0x00000000
writereg SPR638 0x02200000

writespr

Description Writes the value to the SPR (Special Purpose Registers) using the
number regNumber.

Same as writereg SPRxxxx, but allows you to enter the SPR
number in other bases, such as hex, octal, or decimal.

Usage writespr <regNumber> <value>

<regNumber> is a hex, octal, or decimal SPR number (0-1023)

<value> is a hex, octal, or decimal value

Examples

writespr 638 0x02200000
writespr 0x800 0x00000000
PPC–276 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
Read, Write and Save Memory Commands

The read, write and save memory commands include:

• writemem

• readmem

• storeIREG

• loadIREG

• Load Internal Register Immediate

writemem

Description Allows you to write a byte, word, or long to memory.

Usage writemem.[b|w|l] <address> <value>

<address> is the hex, octal, or decimal destination address

<value> is the hex, octal, or decimal value to write at the destina-
tion address

Examples

writemem.l 0x00010000 0x00112233
writemem.w 0x00010001 0x12ac
writemem.b 2345 255

readmem

Description Reads a certain number of bytes from memory.

Usage readmem <address> <NumberOfBytes>

Command Description

writemem.b write a byte to memory

writemem.w write a word to memory (2 bytes)

writemem.l write a long to memory (4 bytes)
Targeting Embedded PowerPC PPC–277

Flash Programmer
Command File Syntax
<address> is the hex, octal, or decimal address you want to read
from

Examples Shows memory with the following display:

storeIREG

There are two kinds of storeIREG (Store Internal Register) com-
mands. The first kind has the following:

Description Store the value of the specified internal register to the specified
memory location.

Usage storeIREG.[b|w|l] <REG> <Memory Addr>

This command doesn't need to be inside startProgramLoop and
endProgramLoop block.

This command will also work if it is entered in the command line.

Examples These commands will store the value of IREG0 to memory addr at
0x10000:

Command Memory display

readmem 0x10000 16 00010000: 61626364 65666768 abcdefgh
00000008: 30313233 34353637 01234567

readmem 0x10000 1 00010000: 61..............a.......

readmem 0x10001 1 00010001: ..62............b......

readmem 0x100001 4 00010001: ..62636465.......bcde...

readmem 0x10002 4 00010002: 63646566......cdef..

readmem 0x10002 10 00010002: 636465666768..cdefgh
00000008: 30313233........0123....
PPC–278 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
storeIREG.b IREG0 0x10000
storeIREG.w IREG0 0x10000
storeIREG.l IREG0 0x10000

NOTE: The least significant byte of the register will be stored in
the specified address.

storeIREG

The second storeIREG command has the following:

Description Store the value of the specified internal register x to the memory lo-
cation that is pointed by IREGy.

Usage storeIREG.[b|w|l] <IREGx> <IREGy>

This command doesn't need to be inside startProgramLoop and
endProgramLoop block.

This command will also work if it is entered in the command line.

Example For the examples below, IREG0 contains 0x11223344 and IREG1
contains 0x00010000.

(1) storeIREG.b IREG0 IREG1
(2) storeIREG.w IREG0 IREG1
(3) storeIREG.l IREG0 IREG1

(1) This command will store 0x44 to address 0x00010000.

(2) This command will store 0x33 to address 0x00010000 and store
0x44 to address 0x00010001.

(3) This command will store 0x11 to address 0x00010000, 0x22 to ad-
dress 0x00010001, 0x33 to address 0x00010002. and 0x44 to address
0x00010003.
Targeting Embedded PowerPC PPC–279

Flash Programmer
Command File Syntax
NOTE: The least significant byte of the register will be stored in
the specified addr.

loadIREG

There are two kinds of loadIREG (Load Internal Register) com-
mands. The first kind has the following:

Description Load the content of the specified memory to the specified internal
register.

Usage loadIREG.[b|w|l] <IREGx> <address>

Examples The following is an example of memory layout:

(1) 0000FFFC - 0000FFFF: 0x11223344
(2) 00010000 - 00010003: 0xAABBCCDD
(3) 00010004 - 00010007: 0x44556677

(1) loadIREG.b IREG0 0x10000

IREG0 contains 0x000000AA

(2) loadIREG.w IREG0 0x10000

IREG0 contains 0x0000AABB

(3) loadIREG.l IREG0 0x10000

IREG0 contains 0xAABBCCDD

loadIREG

The second kind of loadIREG command has the following:

Description Load the content of the specified memory that is pointed to by
IREGy to the specified internal register.

Usage loadIREG.[b|w|l] <IREGx> <IREGy>
PPC–280 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
This command doesn't need to be inside startProgramLoop and
endProgramLoop block.

This command will also work if it is entered in the command line.

Examples The following is an example of memory layout:

(1) 0000FFFC - 0000FFFF: 0x11223344
(2) 00010000 - 00010003: 0xAABBCCDD
(3) 00010004 - 00010007: 0x44556677

(1) loadIREG.b IREG0 IREG1

IREG0 will contain 0x000000AA

(2) loadIREG.w IREG0 IREG1

IREG0 will contain 0x0000AABB

(3) loadIREG.l IREG0 IREG1

IREG0 will contain 0xAABBCCDD

(IREG1 = 0x00010000)

Load Internal Register Immediate

Description This BDM command will write the given data to the given IREG.

Usage writeIREG <Internal Register Number> <Immediate
value>

Example

writeIREG IREG0 0x11

NOTE: Load Internal Register Immediate doesn't have to be in-
side startProgramLoop and endProgramLoop block to get the ad-
dress.
Targeting Embedded PowerPC PPC–281

Flash Programmer
Command File Syntax
Loop Commands

The commands startProgramLoop, endProgramLoop, and untilVer-
ifyData are used to program any memory location that falls between
the startAddr and endAddr, and will program
numBytesPerLoop at per loop.

startProgramLoop

Description Specifies the start of the program loop.

Usage startProgramLoop <startAddr> <endAddr>
<numBytesPerLoop>

<startAddr> is the beginning of the address range to be pro-
grammed.

<endAddr> is the end of the address range to be programmed in
the loop.

<numBytesPerLoop> is how many bytes are programmed at a
time in the loop when the writeData command is called.

endProgramLoop

Description Specifies the end of the program loop. All of the instructions be-
tween startProgramLoop and endProgramLoop are executed
until there is no more data in the S-Record file to process.The in-
structions in the loop are executed only for addresses that are be-
tween startAddr and endAddr

Usage endProgramLoop

writeData

Description Writes data numBytesPerLoop at a time

Usage writedata
PPC–282 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
untilVerifyData

Description Waits for the data written in writeData to verify.

Usage untilVerifyData

Listing 0.1 Loop Commands Example

startProgramLoop 0xFFE000000x FFFFFFFF4

writemem.l 0xFFE15554 0xAAAAAAAA
writemem.l 0xFFE0AAA8 0x55555555(do something in the loop)
writemem.l 0xFFE15554 0xA0A0A0A0
writeData; Write numBytesPerLoop bytes of data to the flash
untilVerifyData; Wait until data verifies

endProgramLoop

 Current Address

Description This BDM command will store the current address of the program
loop into the specified internal register 0-31.

Usage currAddr <IREG>

Example

currAddr IREG0

NOTE: This command must be inside the program loop.
Targeting Embedded PowerPC PPC–283

Flash Programmer
Command File Syntax
Action Commands

and, or, xor, not

Description Bitwise logical AND, OR,XOR, and NOT functions that can be used on
internal registers and memory locations. The first argument
(IREGd) is the destination internal register. The second argument
(IREGs1) is the first source internal register. The third argument
can be an internal register (IREGs2), or the memory address (me-
mAddr) of a 32 bit value.

Usage and IREGa IREGs [memAddr]
or IREGa IREGs [memAddr
xor IREGa IREGs [memAddr]
not IREGa [memAddr]

and IREGa IREGx IREGy
or IREGa IREGx IREGy
xor IREGa IREGs IREGy
not IREGa IREGs

Wait and Abort Commands

abortEqual

Abort the current config file if an internal register is equal to the
specified value. The first argument (IREGx) is an internal register.
The second argument can be an internal register (IREGy), or the
memory address (memAddr) of a 32 bit value.

abortNotEqual

Abort the current config file if an internal register is not equal to the
specified value. The first argument (IREGx) is an internal register.
The second argument can be an internal register (IREGy), or the
memory address (memAddr) of a 32 bit value.

Usage
PPC–284 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
abortEqual IREGx [memAddr]
//abort if IREGx = the content of [memAddr]

abortNotEqual IREGx [memAddr]
//abort if IREGx != the content of [memAddr]

abortEqual IREGx IREGy
//abort if IREGx = IREGy

abortNotEqual IREGx IREGy
//abort if IREGx != IREGy

untilEqual

Description Waits until two values are the same before continuing with program
execution. If thereis a corresponding DO statement, execution will
shift to the statement following the DO statement. The first argument
(IREGx) is an internal register. The second argument can be an inter-
nal register (IREGy), or the memory address (memAddr) of a 32 bit
value. The third argument (maxNumTimes) is optional and is the
max number of times the loop is toe executed. If the third argument
is not entered, the loop will execute infinitely.

Usage [do]
untilEqual IREGx memAddr [maxNumTimes]

[do]
untilEqual IREGx IREGy [maxNumTimes]

Print Commands

IREG

Description Displays the contents of the internal registers of PPCComUtil.

Internal registers can be used as storage for values that can be read
from the target. There are 32 registers (IREG0-IREG31). These reg-
isters can be used with the commands and, or, xor, not, abortEqual,
and untilEqual. They are intended to provide programming type
Targeting Embedded PowerPC PPC–285

Flash Programmer
Command File Syntax
control for programming the flash by enabling you to write small
flash programming programs. The first argument (startReg) is
optional and indicates the register from which to start displaying.
The second argument (stopReg) is optional and indicates what the
last register to display is. The command is used for interactive and
config file debugging purposes.

Usage IREG <regNumber>

IREG <startReg> <stopReg>

load IREGx <immdValue>

Examples

IREG // Displays IREG0 to IREG31
IREG 22 // Displays IREG22 only
IREG 1 9 // Displays IREG01 and IREG9

Miscellaneous Commands

Sleep

Description This BDM command will cause PPCComUtil to suspend the execu-
tion of the current thread for a specified interval, which is in milli-
seconds.

Usage sleep <interval>

This command doesn't have to be inside startProgramLoop and
endProgramLoop block.

Example This command will cause PPCComUtil to suspend the execution for
5000 milliseconds:

sleep 5000
PPC–286 Targeting Embedded PowerPC

Flash Programmer
Command File Syntax
NOTE: The Sleep command is very useful when waiting is nec-
essary for a device to finish a particular operation. For example,
flash chip AM29F040 takes about 10 seconds to finish erasing.
Targeting Embedded PowerPC PPC–287

Flash Programmer
Command File Syntax
PPC–288 Targeting Embedded PowerPC

B
Debug Initialization
Files
A debug initialization file contains a set of commands that initialize
the target board to write the program to memory when it is
launched by the debugger. This chapter explains how you can use
debug initialization files with the:

• Applied Microsystems Corporation (AMC) PowerTAP de-
bugging device

• AMC CodeTAP debugging device

• Macraigor Systems Inc. Wiggler, Hummingbird, or Raven
debugging devices

• Abatron BDI2000

This appendix contains the following topics:

• Using Debug Initialization Files

• Proper Use of Debug Initialization Files

• Debug Initialization File Commands

Using Debug Initialization Files
A debug initialization file is a command file processed during
Debug launch and each time Hard Reset is selected in the Debug
menu. A debug initialization file can perform several functions:

• Initialize registers and memory in targets that do not yet
have initialization code in ROM.

• Configure exception handling, watchdogs timers, and so on,
to support emulation.

• Set PowerTAP or CodeTAP variables to control PowerTAP
or CodeTAP operation during debugging.
Targeting Embedded PowerPC PPC–289

Debug Init ial ization Files
Using Debug Initialization Files
You can specify the debug initialization file name in the EPPC Tar-
get Settings panel. In addition, you can define values for emulator
commands in this panel. For more information, see “EPPC Target
Settings” on page 101.

NOTE: Debug initialization file commands overwrite values set
on the EPPC Target Settings panel.

This section contains the following topics:

• Creating Stand-alone Code

• Initializing Memory

• Enabling Debug Support

• Creating a Debug Initialization File

• Disabling the Software Watchdog Timer

• Using Emulator Operational Settings

Creating Stand-alone Code

Add initializations other than memory or exception setup to the
init_hardware function in the Embedded PowerPC startup code
or your own start routine. By doing so, you ensure that initialization
occurs even when your program is run without a debugging device
(such as the CodeTAP, PowerTAP, or Wiggler devices). Create your
startup code so that, after debugging is completed, the code initial-
izes the memory management unit to set up the memory correctly
when you run your program.

Initializing Memory

The most common use of debug initialization files is to configure
the essential set of memory control registers so that memory opera-
tions, including downloads, are possible. This is useful if your tar-
get system or evaluation board does not yet have initialization code
in target ROM. However, this method can also be used to override
existing initialization following reset.
PPC–290 Targeting Embedded PowerPC

Debug Init ial ization Files
Using Debug Initialization Files
When you create this section of the file, you typically mirror the val-
ues that the processor chip-select, pin-assignment, or other memory
control registers would have after you run your initialization code.
The set of registers that must be configured varies by processor. See
your data book and the sample files in:

{CodeWarrior directory}\CodeWarrior\PowerPC_EABI_Support\Config

Sample files are specific to processor, debug agents (such as the Co-
deTAP device, PowerTAP device, or Wiggler) and, in some cases,
evaluation board. Use them as templates for your own version.

Enabling Debug Support

Some PowerPC processors must be configured to allow the Code-
TAP or PowerTAP devices to take control of certain processor func-
tions. For example, if the recoverable interrupt bit is not set in the
MSR, certain breakpoints may not work. Likewise, the MPC8xx
watchdog timer enable bit must be cleared after reset to prevent a
timeout every four seconds.

See the sample files for what to consider.

Creating a Debug Initialization File

The following procedure uses MPC8xx as an example because Co-
deTAP 8xx requires a debug initialization file that contains register
information for proper operation following reset.

NOTE: For more information, see “Debug Initialization File Com-
mands” on page 294.

To create a debug initialization file that contains a registers section:

1. Use your data book to determine what your chip-select and pin-
assignment registers should be following initialization.

2. Edit a copy of the appropriate “init.txt” file as plain (ASCII) text
with any text editor or word processor.
Targeting Embedded PowerPC PPC–291

Debug Init ial ization Files
Using Debug Initialization Files
3. Define each register on a separate line to apply the correct values
for your target.

Choose the registers and values appropriate for your system. To
add comments, begin a line with the pound sign (#).

CodeTAP MPC8xx Initialization File

Customize for a specific target

Turn off the MPC8xx internal

software watchdog timer

writemmr 0x0004 0xFFFFFF80 # SYPCR

Set the Recoverable Interrupt

so that maskable breaks work

writereg msr 0x42

Set up DRAM

writeupma 0x01 0xffffcc24

writeupma 0x02 0xffffcc24

 . . .

writeupma 0x3f 0xffffffff

Set Chip Select Registers

 etc.

4. Save the file as plain ASCII text with a descriptive name.

5. Open your project in CodeWarrior.

6. Bring up the Target Settings window and select the EPPC Target
Settings panel.

7. Enter the path and file name of the debug initialization file in the
Initialization File field of this panel, and click Save.
PPC–292 Targeting Embedded PowerPC

Debug Init ial ization Files
Using Debug Initialization Files
Disabling the Software Watchdog Timer

When debugging, you must disable the Software Watchdog Timer
(SWT). Otherwise, the SWT times out and the target resets anytime
the target is halted for more than four seconds. Clear the software
watchdog enable bit (SWE) in the system protection control register
(SYPCR) to disable the timer.

NOTE: You can disable the SWT only for the MPC8xx.

Using Emulator Operational Settings

The CodeTAP and PowerTAP devices both provide variables for
configuration of key operations such as:

• enabling read-after-write memory

• enabling register verify

• enabling the interface clock frequency

Each variable is implemented as a command with arguments. For
example, to specify that the speed of the JTAG or BDM interface
clock is 10 MHz, enter the following as a line in the file:

AMCTargetInterfaceClockFreq 10000000

For more information, see “Debug Initialization File Commands”
on page 294.
Targeting Embedded PowerPC PPC–293

Debug Init ial ization Files
Proper Use of Debug Initialization Files
Proper Use of Debug Initialization Files
Use a debug initialization file to initialize memory setup only. If you
choose to use the file for additional initialization, such as initializing
on-board peripherals or setup ports, these actions will not occur
during normal execution, such as running the program after it is
burned to ROM. The peripherals will not get initialized because the
program will not use the debug initialization file to run. Conse-
quently, the program may fail to execute properly.

Instead, add initializations other than memory setup to the
init_hardware function in the Metrowerks Embedded PowerPC
startup code.

Debug Initialization File Commands
This section discusses debug initialization file commands, includ-
ing:

• Debug initialization file command syntax

• The commands that apply to each debugging device

• Descriptions and examples of individual commands

NOTE: You can define the values for some debug initialization
file commands in the EPPC Target Settings panel. The values
defined in debug initialization files overwrite those set in the panel.

Each section that discusses an individual command lists:

• The command name

• A brief description of the command

• Command usage (syntax)

• Command examples

• Any important notes about the command
PPC–294 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
For more information on specific debug initialization files, refer to
text files in the following directory:

{CodeWarrior directory}\CodeWarrior\PowerPC_EABI_Support\Config

This section contains the following topics:

• Debug Initialization File Command Syntax

• CodeTAP Commands

• PowerTAP Commands

• Macraigor Wiggler Commands

• Abatron BDI2000 Commands

• AMCMemReadDelayCycles

• AMCMemWriteDelayCycles

• AMCMemWriteVerify

• AMCRegWriteVerify

• AMCTargetInterfaceClockFreq

• AMCTargetSerializeInstExec

• AMCTargetShowInstCycles

• initregs

• polltime

• setMMRBaseAddr

• writedcr

• writemem.b

• writemem.l

• writemem.w

• writemmr

• writereg

• writespr

• writeupma

• writeupmb
Targeting Embedded PowerPC PPC–295

Debug Init ial ization Files
Debug Initialization File Commands
Debug Initialization File Command Syntax

The following list shows the rules for the syntax of debug initializa-
tion file commands:

• Any white spaces and tabs are ignored.

• Character case is ignored in all commands.

• You can enter a number in hex, octal, or decimal:

– Hex - preceded by 0x (0x00002222 0xA 0xCAfeBeaD)

– Oct - preceded by 0 (0123 0456)

– Dec - starts with 1-9 (12 126 823643)

• Comments start with a “;” or “#”, and continue to the end of
the line.

CodeTAP Commands

Table B.1 lists the debug initialization file commands supported for
the CodeTAP device, the page number where you can read the de-
scription of the command, and any applicable settings information
for each command.

Table B.1 Debug initialization file commands for CodeTAP

Commands AMC CodeTAP 8xx Settings

“AMCMemWriteVerify” on page 300 Settings: 0,1

“AMCRegWriteVerify” on page 300 Settings: 0,1

“AMCTargetInterfaceClockFreq” on page 301 Settings:
7340000;
3670000;
1830000;
100000;
10000;
1000

“AMCTargetSerializeInstExec” on page 301 Settings: 0,1
PPC–296 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
PowerTAP Commands

Table B.2 lists the debug initialization file commands supported for
the PowerTAP device, the page number where you can read the de-
scription of the command, and any applicable settings information
for each command.

Table B.2 Debug initialization file commands for PowerTAP

“AMCTargetShowInstCycles” on page 301 Settings:
0=All;
1=Change of Flow;
2=Indirect Change of Flow;
3=None

“polltime” on page 302 Settings: 1-20

“sleep” on page 303 None

“writemem.b” on page 304 None

“writemem.l” on page 304 None

“writemem.w” on page 305 None

“writemmr” on page 305 None

“writeupma” on page 307 None

“writeupmb” on page 307 None

“writereg” on page 306 None

“writespr” on page 306 None

Commands AMC CodeTAP 8xx Settings

Commands AMC PowerTAP Settings

“AMCMemReadDelayCycles” on page 299 Settings: 0, 1-0xfe00

“AMCMemWriteDelayCycles” on page 300 Settings: 0, 1-0xfe00

“AMCMemWriteVerify” on page 300 Settings: 0,1
Targeting Embedded PowerPC PPC–297

Debug Init ial ization Files
Debug Initialization File Commands
Macraigor Wiggler Commands

The following list shows the debug initialization file commands
supported for the Macraigor Wiggler, Hummingbird, and Raven
devices when used with 5xx and 8xx processors and the page num-
ber where you can read the description of the command:

• “polltime” on page 302

• “setMMRBaseAddr” on page 303

• “sleep” on page 303

• “writedcr” on page 304

• “writemem.b” on page 304

“AMCRegWriteVerify” on page 300 Settings: 0,1

“AMCTargetInterfaceClockFreq” on page 301 Settings:
10000000;
5000000;
1000000;
100000;
10000

“initregs” on page 302 None

“polltime” on page 302 Settings: 1-20

“setMMRBaseAddr” on page 303 None

“sleep” on page 303 None

“writemem.b” on page 304 None

“writemem.l” on page 304 None

“writemem.w” on page 305 None

“writemmr” on page 305 None

“writereg” on page 306 None

“writespr” on page 306 None

Commands AMC PowerTAP Settings
PPC–298 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
• “writemem.l” on page 304

• “writemem.w” on page 305

• “writemmr” on page 305

• “writereg” on page 306

• “writespr” on page 306

Abatron BDI2000 Commands

The following list shows the debug initialization file commands
supported for the Abatron BDI2000, the page number where you
can read the description of the command, and any applicable set-
tings information for each command:

• “writemem.b” on page 304

• “writemem.l” on page 304

• “writemem.w” on page 305

• “writemmr” on page 305

• “writereg” on page 306

• “writespr” on page 306

• “writeupma” on page 307

• “writeupmb” on page 307

AMCMemReadDelayCycles

Description Defines the number of additional processor cycles to allow for mem-
ory reads.

Usage AMCMemReadDelayCycles <#>

Example

AMCMemReadDelayCycles 350
Targeting Embedded PowerPC PPC–299

Debug Init ial ization Files
Debug Initialization File Commands
AMCMemWriteDelayCycles

Description Defines the number of additional processor cycles necessary for
memory writes.

Usage AMCMemWriteDelayCycles <#>

Example

AMCMemWriteDelayCycles 350

AMCMemWriteVerify

Description Enables or disables memory read-after-write verification.

Usage AMCMemWriteVerify <off>, AMCMemWriteVerify <on>

Example

AMCMemWriteVerify 0 #turn off memory verification
AMCMemWriteVerify 1 #turn on memory verification

AMCRegWriteVerify

Description Causes the emulator to perform a register verification after writing.

Usage AMCRegWriteVerify <off>, AMCRegWriteVerify <on>

Example

AMCRegWriteVerify 0 #Turn verify off
AMCRegWriteVerify 1 #Turn verify on
PPC–300 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
AMCTargetInterfaceClockFreq

Description Clock frequency for the BDM of the MPC8xx and the JTAG of the
60x.

Usage AMCTargetInterfaceClockFreq <#>

Example

AMCTargetInterfaceClockFreq 3670000

AMCTargetSerializeInstExec

Description Forces the MPC8xx to serialize its instruction execution.

Usage AMCTargetSerializeInstExec <off>,

AMCTargetSerializeInstExec <on>

Example

AMCTargetSerializeInstExec 0 #Turn off
AMCTargetSerializeInstExec 1 #Turn on

WARNING! You cannot have AMCTargetSerializeInstExec set to
“0” and AMCTargetShowInstCycles set to “All” at the same time.

AMCTargetShowInstCycles

Description Configures the MPC8xx show cycles.

Usage AMCTargetShowInstCycles #

Example

AMCTargetShowInstCycles 0 # All
AMCTargetShowInstCycles 1 # Change in Flow
Targeting Embedded PowerPC PPC–301

Debug Init ial ization Files
Debug Initialization File Commands
AMCTargetShowInstCycles 2 # All indirect change in flow
AMCTargetShowInstCycles 3 # None

initregs

Description Enables a special feature on the PowerTAP device so that the Pow-
erTAP remembers the instructions contained in the debug initializa-
tion file. Consequently, the plug-in does not parse and execute the
debug initialization file every time a hard reset is done on the Pow-
erTAP device.

Instead the PowerTAP device executes this list of instructions auto-
matically when a hard reset occurs. If the debug initialization file is
modified, the plug-in modifies the initregs data on the PowerTAP
device once, after which the PowerTAP device uses the new set of
instructions on the next hard reset. Hard resets usually occur when
the process is about to be loaded and launched or if “Hard reset and
Run” is selected in the launch options.

Usage initregs <ON/OFF>

Example

initregs ON
initregs OFF

polltime

Description Controls the time in milliseconds between emulator polls.

Usage polltime <#>

Example

polltime 500 #poll emulator twice a second (500ms)
PPC–302 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
NOTE: If you are using a CodeTap or PowerTap device, be
careful when setting polltime to a low value because you can cre-
ate a lot of network traffic.

setMMRBaseAddr

Description The debugger needs to know where the base address of the memory
mapped registers is on the Power QUICC II since this register is
memory mapped itself. This command must be in all debug initial-
ization files for the Power QUICC II processors. This command in-
forms the debugger plug-in of the base address, which allows you
to send any writemmr commands from the debug initialization file,
as well as read the memory mapped registers for the register views.

NOTE: The setMMRBaseAddr command works only with target
boards that use the 8260 processor.

Usage setMMRBaseAddr <value>

value—the base address for the memory mapped registers

Example

setMMRBaseAddr 0x0f00000

sleep

Description Causes the processor to wait the specified number of milliseconds
before continuing to the next command.

Usage sleep <value>

Example

sleep(10) # sleep for 10 milliseconds
Targeting Embedded PowerPC PPC–303

Debug Init ial ization Files
Debug Initialization File Commands
writedcr

Description Allows writing to the 403 DCR registers using the applicable DCRN
number.

NOTE: The writedcr command applies only to target boards with
the 403 processor.

Usage writedcr <dcr_register_number> <value>

Example

writedcr 128 0xFF180242;BR0

writemem.b

Description Writes data to a memory location using a byte as the size of the
write.

Usage writemem.b <address> <value>

address—the hex, octal, or decimal address in memory to modify

value—the hex, octal, or decimal value to write at the address

Example

writemem.b 0x0001FF00 0xFF # Write 1 byte to memory

writemem.l

Description Writes data to a memory location using a long as the size of the
write.

Usage writemem.l <address> <value>

address—the hex, octal, or decimal address in memory to modify
PPC–304 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
value—the hex, octal, or decimal value to write at the address

Example

writemem.l 0x00010000 0x00000000 # Writes 4 bytes to memory

writemem.w

Description Writes data to a memory location using a word as the size of the
write.

Usage writemem.w <address> <value>

address—the hex, octal, or decimal address in memory to modify

value—the hex, octal, or decimal value to write at the address

Example

writemem.w 0x0001FFF0 0x1234 # Write 2 bytes to memory

writemmr

Description Writes a value to the specified MMR (Memory Mapped Register).
The setIMMR command must precede any writemmr commands in
the debug initialization file. If the register size is smaller than the
data given in the data argument, the lowest significant bytes of the
data will be used.

All the Memory Mapped registers are supported by name as found
in the Power QUICC II manual. If any registers are found to not be
supported, writemem commands can be used to accomplish the reg-
ister modification.

NOTE: The writemmr command applies only to target boards
with 8xx or 8260 processors.
Targeting Embedded PowerPC PPC–305

Debug Init ial ization Files
Debug Initialization File Commands
Usage writemmr <register number | register name> <value>

Example

writemmr 0x0000 0x01632440
writemmr SYPCR 0xffffffc3
writemmr RMR 0x0001
writemmr MPTPR 0x3200

writereg

Description Writes data to the specified register on the target. If the PC is modi-
fied in the debug initialization file, the debugger plug-in will give
you the option to use this address value as the entry point. The valid
register names that you can specify follow:

• R0-R31

• FP0-FP31

• VR0-VR31

• The names of all special-purpose registers

NOTE: writereg PC <value> allows you to modify the entry point
of the program to a value other than the entry point of the “.elf” file.
A dialog prompts you for the entry point to use.

Usage writereg <registerName> <value>

Example

writereg MSR 0x00001002

writespr

Description Writes the value to the SPR with number regNumber, which is the
same as writereg SPRxxxx but allows you to enter the SPR number
in other bases (hex/octal/decimal).
PPC–306 Targeting Embedded PowerPC

Debug Init ial ization Files
Debug Initialization File Commands
Usage writespr <regNumber> <value>

regNumber = a hex/octal/decimal SPR number (0-1023)

value = a hex/octal/decimal value to write to SPR

Example

writespr 638 0x02200000

writeupma

Description Maps the user-programmable machine (UPM) registers to define
characteristics of the memory array.

Usage writeupma <offset> <ram_word>

<offset> 0-3F, as defined in the UPM transaction type table in the
Memory Controller section of the Motorola manual

<ram_word> UPM RAM word for that offset

Example

writeupma 0x08 0xffffcc24

writeupmb

Description Maps the user-programmable machine (UPM) registers to define
characteristics of the memory array.

Usage writeupmb <offset> <ram_word>

<offset> 0-3F, as defined in the UPM transaction type table in the
Memory Controller section of the Motorola manual

<ram_word> UPM RAM word for that offset
Targeting Embedded PowerPC PPC–307

Debug Init ial ization Files
Debug Initialization File Commands
Example

writeupmb 0x08 0xffffcc24
PPC–308 Targeting Embedded PowerPC

C
JTAG Configuration
Files
A JTAG configuration file contains a set of commands that config-
ure the PowerTAP device and the JTAG interface of the target board
so that target control is established and debugging can take place.

This appendix discusses how to generate JTAG configuration files.

Generating JTAG Configuration Files
The support software provided with a PowerTAP device includes
JTAG configuration files for many of the MPC6xx and MPC7xx vari-
ants on the market. When you launch Debug from the CodeWarrior
IDE, the PowerTAP device reads the PVR register of the target pro-
cessor, determines the processor type, and automatically loads the
correct JTAG configuration files.

Occasionally, Motorola or IBM issues a new PowerPC variant with a
new PVR value. After encountering such a PVR value, the Power-
TAP device fails to complete connection and issues an error mes-
sage containing the unknown PVR value.

NOTE: The only time you must concern yourself with JTAG con-
figuration files is when the PowerTAP device issues an error mes-
sage indicating that it encountered an unknown PVR value.

To correct the error, you must clone a new JTAG configuration file
from the existing ones and rename it.
Targeting Embedded PowerPC PPC–309

JTAG Configuration Files
Generating JTAG Configuration Files
To clone the file:

1. Locate the current set of JTAG files in the following directory:

{CodeWarrior directory}\Bin\Plugins\Support\amctap\Support\pt60x

2. Use the list in Table C.1 to determine which existing JTAG config-
uration file to use as the basis for your new file.

Table C.1 Current JTAG configuration files

Frequently, you can use heuristics to determine the correct base file.
For example, if the PVR reported at startup is 0x60070201, you
should look for another file that attaches a three-digit prefix to
70201. IBM versioning uses a prefix to the original Motorola number
(here 70201); whereas Motorola increments the final digit. Select the
file that supports a processor that is architecturally closest to the one
on your target.

JTAG Configuration File
Name

Processors Supported

60400.jtag 68603E (Stretch)

70201.jtag 68603E-PID7v, 68603EV (Valiant)

71201.jtag 68603E-PID7t, 68603R (Goldeneye)

80201.jtag 68740/750 (Arthur)

80202.jtag 68740/750 (Arthur), 68740P/750P (Conan / Doyle)

80300.jtag 68740/750 (Arthur)

80301.jtag 68740/750 (Arthur)

810101.jtag 8240, 8260

910101.jtag 8240, 8260

10070201.jtag 68603E-PID7v, 68603EV (Valiant)

2007120.jtag 68603E-PID7t, 68603R (Goldeneye)

40071201.jtag 68603E-PID7t, 68603R (Goldeneye)
PPC–310 Targeting Embedded PowerPC

JTAG Configuration Files
Generating JTAG Configuration Files
3. Copy the base file to its new name.

The PowerTAP device expects the filename to be in the following
format:

pvr_string.jtag

For example, a PVR of 0x60070201 becomes 60070201.jtag

4. Attempt to launch debug again.

If you selected the correct base file and applied the correct name, the
PowerTAP device should connect successfully. If not, try using an-
other related JTAG file as a base.

AMC (Applied Microsystems Corporation) Customer Support can
assist you, if you are unable to generate a JTAG file that works. For
more information, see “CodeTAP Technical Support” on page 251
or “PowerTAP Technical Support” on page 259.

For a list of current PVR numbers for all versions of Motorola 6xx
and 7xx processors, see the following URL:

http://www.mot.com/SPS/PowerPC/teksupport/faqsolutions/allelse/
PVRSettings.txt
Targeting Embedded PowerPC PPC–311

JTAG Configuration Files
Generating JTAG Configuration Files
PPC–312 Targeting Embedded PowerPC

D
Memory
Configuration Files
A memory configuration file contains commands that define the le-
gally accessible areas of memory for your specific board.

This appendix covers the following topics:

• Command Syntax

• Memory Configuration File Commands

Command Syntax
Listed below are the rules for syntax of commands in a config file:

• All syntax is case insensitive.

• Any white spaces and tabs are ignored.

• Comments can be standard C or C++ style comments.

• A number may be entered in hex, octal, or decimal.

– Hex - preceded by 0x (0x00002222 0xA 0xCAfeBeaD)

– Oct - preceded by 0 (0123 0456)

– Dec - starts with 1-9 (12 126 823643)
Targeting Embedded PowerPC PPC–313

Memory Configuration Files
Memory Configuration File Commands
Memory Configuration File Commands
This section lists the command name, its usage, a brief explanation
of the command, examples of how the command may appear in
configuration files, and any important notes about the command.

A sample configuration file can be found in this directory:

{CodeWarrior directory}\CodeWarrior\PowerPC_EABI_Support\
Config\Memory\mem_config.txt

reservedchar

Description Allows you to specify a reserved character for the memory configu-
ration file. This character is seen when you try to read from an ille-
gal address. When an illegal read occurs, the debugger fills the
memory buffer with this reserved character.

Usage reservedchar <char>

<char> can be any character (one byte).

Example

reservedchar 0xBA

range

Description Allows you to specify a memory range for reading and/or writing,
and its attributes.

Usage range <loAddr> <hiAddr> <sizeCode> <access>

• <loAddr>—start of memory range to be defined

• <hiAddr>—ending address in the memory range to be de-
fined

• <sizeCode>—specifies the size, in bytes, to be used for
memory accesses by the debug monitor or emulator.
PPC–314 Targeting Embedded PowerPC

Memory Configuration Files
Memory Configuration File Commands
• <access>—can be one of the following: Read, Write, or
ReadWrite. This parameter allows you to make certain
areas of your memory map read-only, write-only, or read/
write only to the debugger.

Example

range 0xFF000000 0xFF0000FF 4 Read
range 0xFF000100 0xFF0001FF 2 Write
range 0xFF000200 0xFFFFFFFF 1 ReadWrite

reserved

Description Allows you to specify a reserved range of memory.

Any time the debugger tries to read from this location, the memory
buffer is filled with the reservedchar. Any time the debugger tries to
write to any of the locations in this range, no write will take place.

Usage reserved <loAddr> <hiAddr>

• <loAddr>—start of memory range to be defined

• <hiAddr>—ending address in memory range to be defined

Example

reserved 0xFF000024 0xFF00002F
Targeting Embedded PowerPC PPC–315

Memory Configuration Files
Memory Configuration File Commands
PPC–316 Targeting Embedded PowerPC

E
Tested Jumper and
Dipswitch Settings
This appendix provides tested jumper and dipswitch settings for a
number of supported target boards. Before using a target board
with this product, set any appropriate jumper or dipswitch settings
for your supported target board.

This appendix contains the following topics:

• Cogent CMA102 with CMA 278 Daughtercard

• IBM 403 EVB

• Motorola MPC 505/509 EVB

• Motorola 555 ETAS

• Motorola Excimer 603e

• Motorola Yellowknife X4 603/750

• Motorola MPC 8xx ADS

• Motorola MPC 8xx MBX

• Motorola MPC 8xx FADS

• Embedded Planet RPX Lite 8xx

• Motorola Maximer 7400

• Motorola Sandpoint 8240

• Motorola MPC 8260 VADS

• Phytec miniMODUL-PPC 505/509
Targeting Embedded PowerPC PPC–317

Tested Jumper and Dipswitch Sett ings
Cogent CMA102 with CMA 278 Daughtercard
Cogent CMA102 with CMA 278 Daughtercard
Table E.2 lists the tested jumper settings for the Cogent CMA102
target board when used with a CMA 278 daughtercard.

NOTE: The CMA 278 daughtercard uses a 603/740 processor.

Table E.1 Cogent CMA102 jumper settings

Table E.2 lists the tested dipswitch setting for the Cogent CMA278
daughtercard.

Table E.2 Cogent CMA278 daughtercard dipswitch settings

For more information, see the following documents:

• CMA102 Motherboard User’s Manual by Cogent Computer
Systems, Inc.

• CMA278 PPC60x/740 User’s Manual by Cogent Computer
Systems, Inc.

Jumper Locations Settings

P6 All pins are OPEN.

W2 Use the factory default settings.

Dipswitch Location Setting

SW2 Set 6 and 8 to OFF. All others are
ON.
PPC–318 Targeting Embedded PowerPC

Tested Jumper and Dipswitch Sett ings
IBM 403 EVB
IBM 403 EVB
Table E.3 lists the tested jumper settings for the IBM 403 EVB target
board.

Table E.3 IBM 403 jumper settings

Motorola MPC 505/509 EVB
Table E.4 lists the tested dipswitch and jumper settings for the Mo-
torola MPC 505/509 EVB target board.

Table E.4 Motorola MPC 505/509 EVB dipswitch and jumper settings

Jumper Locations Settings

J3 1-2 CLOSED

J4 1-2 CLOSED

J5 1-2 CLOSED

J6 1-2 CLOSED

J7 1-2 CLOSED

J8-9 Use the factory defaults.

J10 1-2 OPEN

J11 1-2 OPEN

Dipswitch and Jumper Locations Settings

DS1 All set to ON.

DS2 (reset configuration word) Set 1 and 2 to ON. All others are OFF.

DS3 Set 5 and 7 to ON. All others are OFF.

DS4 Set 3, 6 and 8 to ON. All others are OFF.

DS5 Set 2, 4, 5, 6 to ON. All others are OFF.
Targeting Embedded PowerPC PPC–319

Tested Jumper and Dipswitch Sett ings
Motorola 555 ETAS
Motorola 555 ETAS
Table E.5 lists the tested dipswitch settings for the Motorola 555
ETAS target board.

Table E.5 Motorola 555 ETAS dipswitch settings

DS6, position 1 (BDM or HC11) Set to BDM when BDM or MetroTRK is
used as the connection protocol.

DS6, positions 2-4 (DCE or DTE) Set to DCE.

J3 1-2 CLOSED (factory default)

J4 1-2 CLOSED (factory default)

J6 1-2 CLOSED (factory default)

J7 1-2 CLOSED (factory default)

Dipswitch and Jumper Locations Settings

Dipswitch Locations Settings

Reset Configuration Word
(32bit)

Set 2 and 20 to OFF. All others
are ON.

SW100 Set 6, 7 to ON. All others are
OFF.

SW101 Switch to A.

SW102 Switch to A to use BDM (Mac-
raigor Wiggler) or MetroTRK.

SW200 Set 1 and 3 to OFF, 2 and 4 to
ON.

MODCK 1 Set to OFF.

MODCK 2 Set to ON.

MODCK 3 Set to OFF.
PPC–320 Targeting Embedded PowerPC

Tested Jumper and Dipswitch Sett ings
Motorola Excimer 603e
Motorola Excimer 603e
Table E.6 lists the tested jumper settings for the Motorola Excimer
603e EVB target board.

Table E.6 Motorola 555 ETAS jumper settings

Motorola Yellowknife X4 603/750
Table E.7 lists the tested jumper settings for the Motorola Yel-
lowknife X4 603/750 target board.

Table E.7 Motorola Yellowknife X4 603/750 jumper settings

Jumper Locations Settings

J3 1-2 CLOSED; 3 OPEN

J4 1 OPEN; 2-3 CLOSED

J5 1 OPEN; 2-3 CLOSED

Jumper Locations Settings

J39 1 OPEN; 2-3 CLOSED

J63 Use the factory defaults.

J64 1 OPEN; 2-3 CLOSED

J61 1-2 CLOSED

J34 1-2 OPEN

J32 1-2 CLOSED

J35 1-2 CLOSED

J36 1-2 OPEN

J38 1-2 OPEN

J40 1-2 OPEN
Targeting Embedded PowerPC PPC–321

Tested Jumper and Dipswitch Sett ings
Motorola MPC 8xx ADS
Motorola MPC 8xx ADS
Table E.8 lists the tested dipswitch and jumper settings for the Mo-
torola MPC 8xx ADS target board.

Table E.8 Motorola MPC 8xx ADS dipswitch and jumper settings

J57 1-2 CLOSED

J59 1-2 OPEN

J58 1-2 CLOSED

J60 1-2 CLOSED

J45, J46, J47, J55, J56 Use the factory defaults.

Jumper Locations Settings

Dipswitch and Jumper Locations Settings

DS1, DS2 Set all to OFF.

J1 (POR) Set to KA.

J2 (VDDL) Set to 3.3V.

J3 (KAWPR) Set to 3.3V.
PPC–322 Targeting Embedded PowerPC

Tested Jumper and Dipswitch Sett ings
Motorola MPC 8xx MBX
Motorola MPC 8xx MBX
Table E.9 lists the tested jumper settings for the Motorola MPC 8xx
MBX target board.

Table E.9 Motorola MPC 8xx MBX dipswitch and jumper settings

Jumper Locations Settings

Jumper 1 Depends on battery setup. See the refer-
ence manual for your target board.

Jumper 2 3-4 CLOSED (Normal Mode setting)

Jumper 3 1-2 CLOSED (Boot ROM Write Protect)

Jumper 4 2-3 CLOSED (Uses Flash for Boot)

Jumper 5 2-3 CLOSED (Select DEBUG Port Signal
Pins)

Jumper 6 Depends on setup. See the reference man-
ual for the board.

Jumper 7 Any setting is allowed.

Jumper 8 Depends on DRAM setup. See the refer-
ence manual for the board.

Jumper 9 Depends on DRAM setup. See the refer-
ence manual for the board.

Jumper 10 Depends on DRAM setup. See the refer-
ence manual for the board.

Jumper 11 Depends on PCMCIA setup. See the refer-
ence manual for the board.
Targeting Embedded PowerPC PPC–323

Tested Jumper and Dipswitch Sett ings
Motorola MPC 8xx FADS
Motorola MPC 8xx FADS
Table E.10 lists the tested dipswitch and jumper settings for the Mo-
torola MPC 8xx FADS target board (main board).

Table E.10 Motorola MPC 8xx FADS dipswitch and jumper settings

Table E.11 lists the tested settings for the Motorola MPC 8xx FADS
daughtercard.

Table E.11 Motorola MPC 8xx FADS jumper settings (daughtercard)

Dipswitch and Jumper Locations Settings (Main Board)

J1 1-2 CLOSED; 3 OPEN

DS1 Set all 4 to ON.

DS1 Set all 4 to OFF.

Jumper Locations Settings (Daughtercard)

J1 Determines a level at which
Power-On-Reset is generated.
Any setting is allowed.

J2 1-2 CLOSED; 3 OPEN
(3.3V setting)

J3 Set to 1-2 CLOSED; 3 OPEN
(factory default).
PPC–324 Targeting Embedded PowerPC

Tested Jumper and Dipswitch Sett ings
Embedded Planet RPX Lite 8xx
Embedded Planet RPX Lite 8xx
Table E.12 lists the tested dipswitch settings for the RPX Lite 8xx tar-
get board.

Table E.12 RPX Lite 8xx dipswitch settings

Table E.13 lists the tested jumper settings for the RPX Lite 8xx target
board.

Table E.13 RPX Lite 8xx jumper settings

Dipswitch Locations Settings

1 Set to on.

2 Set to on.

3 Set to on.

4 Set to on.

Jumper Locations Settings

JP1 Set to off (no jumper connected).

JP4 1 -2 = DEBUG connector valid (P6 - BDM
port).
Targeting Embedded PowerPC PPC–325

Tested Jumper and Dipswitch Sett ings
Motorola Maximer 7400
Motorola Maximer 7400
For the Motorola Maximer 7400 board, the tested settings are the
factory default jumper settings.

Motorola Sandpoint 8240
Table E.14 lists the tested dipswitch and jumper settings for the Mo-
torola Sandpoint MPC 8240 target board (main board).

Table E.14 Motorola Sandpoint MPC 8240 jumper and dipswitch settings

Dipswitch and Jumper Locations Settings (Main Board)

VIO Set for 5V. (Each pin on J30
is connected to the corre-
sponding pin on J32; all
pins on J31 are uncon-
nected.)

J34 Closed.

J33 Open.

S3 Up. (Points toward the
word Sandpoint at the top
of the board.)

S4 Up. (Points toward the
word Sandpoint at the top
of the board.)

S5 Down. (Points away from
the word Sandpoint at the
top of the board.)

S6 Down. (Points away from
the word Sandpoint at the
top of the board.)
PPC–326 Targeting Embedded PowerPC

Tested Jumper and Dipswitch Sett ings
Motorola MPC 8260 VADS
Table E.15 lists the tested settings for the Motorola Sandpoint MPC
8240 daughtercard.

Table E.15 Motorola Sandpoint MPC 8240 settings (daughtercard)

Motorola MPC 8260 VADS
Table E.16 lists the tested dipswitch and jumper settings for the Mo-
torola MPC 8260 VADS target board.

Table E.16 Motorola MPC 8260 VADS jumper and dipswitch settings

Dipswitch and Jumper Locations Settings (Daughtercard)

J12 2-3

SW2 (1-5) 1, 3, 4: OFF
2, 5: ON

SW3 (1-5) 3, 4: OFF
1, 2, 5: ON

Dipswitch and Jumper Locations Settings

J1 1-2 CLOSED; 3 OPEN
(5V+ setting)

P10 Set all to OFF.

DS1 Set 1 and 3 to OFF.
Set 2 and 4 to ON.

DS2 Set all 4 to ON.

DS3 Set all 4 to ON.
Targeting Embedded PowerPC PPC–327

Tested Jumper and Dipswitch Sett ings
Phytec miniMODUL-PPC 505/509
Phytec miniMODUL-PPC 505/509
Table E.17 lists the tested jumper settings for the Phytec miniMO-
DUL-PPC 505/509 target board.

Table E.17 Phytec miniMODUL-PPC 505/509 jumper settings

Jumper Locations Settings

JP1 Use the factory default setting.

JP2 Use the factory default setting.

JP3 Use the factory default setting.

JP4 Set all to OFF.
PPC–328 Targeting Embedded PowerPC

F
Command-Line Tool
Options
This appendix describes the command-line tool options that are
available for CodeWarrior for Embedded PowerPC.

This appendix contains the following topics:

• Embedded PowerPC Project Options

• Embedded PowerPC Options

• Embedded PowerPC Disassembler Options

Embedded PowerPC Project Options
Table F.1 shows the embedded PowerPC project command-line op-
tions.

Table F.1 Embedded PowerPC project command-line options

Option Description

-big Generates code and links for a big-endian target;
this option is the default.

-little Generates code and links for a little-endian target.
Targeting Embedded PowerPC PPC–329

Command-Line Tool Options
Embedded PowerPC Project Options
-proc[essor] keyword Specifies the processor for scheduling and inline
assembler.

Parameter Description

401 | 403 | 505
| 509 | 555 |
601 | 602 | 603
| 603e | 604 |
604e | 740 | 750
| 801 | 821 |
823 | 850 | 860
| 7400 | 8240 |
8260

This is the processor num-
ber.

generic This is the default option.

-fp keyword Specifies floating-point code generation options.

Parameter Description

none | off Indicates not to use float-
ing point.

soft[ware] Indicates software floating-
point emulation; this op-
tion is the default.

hard[ware] Hardware floating-point
codegen.

fmadd Same as the following
items:

-fp hard
-fp_contract

-sdata[threshold] short Sets the maximum size in bytes for mutable data
objects before being spilled from a small data sec-
tion into a data section; the default is 8.

Option Description
PPC–330 Targeting Embedded PowerPC

Command-Line Tool Options
Embedded PowerPC Options
Embedded PowerPC Options
Table F.2 shows the embedded PowerPC command-line options.

Table F.2 Embedded PowerPC command-line options

-sdata2[threshold] short Sets the maximum size in bytes for constant data
objects before being spilled from a constant section
into a data section; the default is 8.

-model keyword Specifies the code model.

Parameter Description

absolute Specifies absolute code and
data addressing; this is the
default option.

other Specifies a different code
model than absolute; this
option is equivalent to the
following option:

-gprel

Option Description

Option Description

-align keyword[,...] Specifies structure and array alignment options.

Parameter Description

power[pc] Specifies PowerPC align-
ment; this option is the de-
fault.

mac68k Specifies Macintosh 680x0
alignment.

mac68k4byte Specifies Mac 680x0 4-byte
alignment.
Targeting Embedded PowerPC PPC–331

Command-Line Tool Options
Embedded PowerPC Options
array[members] Specifies to align members
of arrays.

-common on|off Specifies whether to move all uninitialized data
into a common section; the default is off.

-fp_contract | -maf
on|off

Specifies whether to generate fused multiply-add
instructions; the default is off.

-func_align keyword Specifies function alignment.

Parameter Description

4 Specifies four-byte align-
ment; this is the default.

8 Specifies eight-byte align-
ment.

16 Specifies 16-byte align-
ment.

32 Specifies 32-byte align-
ment.

64 Specifies 64-byte align-
ment.

128 Specifies 128-byte align-
ment.

-pool[data] on|off Specifies whether to pool like data objects; the de-
fault is on.

-profile on|off Specifies whether to generate calls at function
entry and exit for use with a profiler.

-rostr |
-readonlystrings

Specifies to make string constants read-only.

-schedule on|off Specifies whether to schedule instructions; the de-
fault is off.

Option Description
PPC–332 Targeting Embedded PowerPC

Command-Line Tool Options
Embedded PowerPC Disassembler Options
Embedded PowerPC Disassembler Options
Table F.3 shows the embedded PowerPC disassembler options.

Table F.3 Embedded PowerPC disassembler options

-use_lmw_stmw on|off Specifies whether to use multiple-word load/store
instructions for structure copies; the default is on.

-vector keyword[,...] Specifies AltiVec vectorization options.

Parameter Description

on Enables support for vector
types / codegen.

off Disables vectorization.

[no]vrsave Specifies to use VRSAVE
prologue/epilogue code.

Option Description

Option Description

-fmt | -format keyword Specifies formatting options; this option exists for
compatibility reasons.

Parameter Description

[no]x Specifies whether to show
extended mnemonics; the
default is to not show the
extended mnemonics.

-show keyword[,...] Specifies display options.

Parameter Description

only | none Examples:

-show none
-show only,code,data
Targeting Embedded PowerPC PPC–333

Command-Line Tool Options
Embedded PowerPC Disassembler Options
all Specifies to show every-
thing.

[no]binary Specifies whether to show
binary information, such as
addresses and opcodes, for
object code; the default is
to show the binary infor-
mation.

[no]code |
[no]text

Specifies whether to show
.text sections; the default
is to show the .text sec-
tions.

[no]data Specifies whether to show
data; the default is to show
data.

[no]detail Specifies whether to show
detailed dump informa-
tion.

[no]extended Specifies whether to show
extended mnemonics; the
default is to show ex-
tended mnemonics.

[no]exceptions
|
[no]xtab[les]

Specifies whether to show
exception tables; these op-
tions also imply the follow-
ing item:

-show data

[no]headers Specifies whether to show
object headers; the default
is to show the object head-
ers.

Option Description
PPC–334 Targeting Embedded PowerPC

Command-Line Tool Options
Embedded PowerPC Disassembler Options
[no]debug |
[no]dwarf

Specifies whether to show
DWARF information.

[no]tables Specifies whether to show
string and symbol tables;
the default is to show the
string and symbol tables.

[no]xtables Specifies whether to show
exception tables.

-[no]relocate For DWARF information, specifies whether to relo-
cate addends in .rela.text and .rela.debug.

-xtables on|off Specifies whether to show exception tables; the de-
fault is off. This option exists for compatibility rea-
sons.

Option Description
Targeting Embedded PowerPC PPC–335

Command-Line Tool Options
Embedded PowerPC Disassembler Options
PPC–336 Targeting Embedded PowerPC

Index
Symbols
__abs() 236
__attribute__ ((aligned(?)))

overview 203, 204
struct definition examples 204
struct member examples 205
variable declaration examples 203

__cntlzw() 238
__eieio() 235
__fabs() 236
__fnabs() 236
__isync() 235
__labs() 236
__lhbrx() 236
__lwbrx() 236
__pixel 171
__rlwimi() 237
__rlwinm() 237
__rlwnm() 237
__setflm() 237
__sthbrx() 236
__stwbrx() 236
__sync() 235
__vector 171

A
Abatron BDI2000 (debugging device)

connecting with 143
connection type 124

__abs() 236
Access Paths panel See IDE User Guide
alternate C/C++ libraries 208
AltiVec

AltiVec Programming Model checkbox 83
vector types 170

AltiVec Programming Model checkbox 83
AMC (Applied Microsystems Corporation) 249,

251, 252, 253, 254, 255, 257, 259, 260, 261, 262, 263
AMCMemReadDelayCycles 299
AMCMemWriteDelayCycles 300
AMCMemWriteVerify 300
AMCRegWriteVerify 300
AMCTargetInterfaceClockFreq 301

AMCTargetSerializeInstExec 301
AMCTargetShowInstCycles 301
Applied Microsystems Corporation

CodeTAP
connecting with 132
highlights of 250
setting up 254
updating firmware 255

PowerTAP
connecting with 136
highlights of 258
interrupts 264–265
operational notes 264–265
setting up 262
updating firmware 263

resetting emulator
CodeTAP 255
PowerTAP 263

setting up emulator
CodeTAP 254
PowerTAP 262

technical support 251, 259
using the PowerTAP 6xx/7xx 257–265

asm blocks not supported 217
asm keyword 216
assembler

stand-alone described 27
See also inline assembler

__attribute__ ((aligned(?)))
overview 203, 204
struct definition examples 204
struct member examples 205
variable declaration examples 203

B
back-end compiler See compiler
baud rates

MetroTRK 158
selecting the baud rate using the Rate

menu 119
BDM Port 271
binary files 33
board initialization code 214
bool 171
bool size 169
Targeting Embedded PowerPC PPC–337

Index
breakpoint, setting 48
Build Extras panel See IDE User Guide
building code 46
Byte Ordering radio button, EPPC Target panel 71

C
C/C++ Language panel See C Compilers Reference
C/C++ Warnings panel See C Compilers Reference
cables, serial (using to connect with a target

board) 127
calling conventions for PowerPC 174
Change IMMR menu option 150
char size 169
__cntlzw() 238
Code Address edit field 97
Code Model menu, EPPC Target panel 72
CodeTAP

connecting to target system 254
connecting with 132
connection type 124
error messages 245, 246
highlights of 250
host-to-emulator communications 254
resetting emulator 255
setting up 254
technical support 251
updating firmware 255

CodeWarrior
compare to command line 29
compiler architecture 25
compiler described 26
components 25–29
debugger described 28
development process 29–32
documentation architecture 13
IDE described 26
installing 24
linker described 27
stand-alone assembler described 27
tools listed 25

Cogent CMA102 target board jumper settings 318
Cogent CMA 278 daughtercard dipswitch

settings 318
command file syntax

flash programmer 275–287

command syntax
debug initialization files 296
memory configuration files 313

command-line and CodeWarrior compared 29
command-line tool options

embedded PowerPC-specific disassembler
options 333

embedded PowerPC-specific options 331
embedded PowerPC-specific project

options 329
commands

debug initialization files syntax 296
memory configuration files syntax 313

comments in inline assembler 221
communications with target board 243, 246
compiler

architecture 25
back-end for PowerPC 167–205
described 26
other documentation 168
support for inline assembly 215
See also C Compilers Reference

compiling 31
configuration files, generating JTAG 309
configuration files, memory, command syntax

of 313
configuring the board for console I/O 211
connecting hardware 126
Connection menu, choosing a serial or TCP/IP

connection 103
console I/O 208, 209–212

configuring the board 211
UART libraries 209

Conventions 174
creating a project 34–36
Custom Keywords panel See IDE User Guide

D
Data Address edit field 97
Data Addressing 171
data addressing

for PowerPC Embedded 171–173
Data Bits menu 120
data cache window 152
data transmission rates (for MetroTRK) 158
PPC–338 Targeting Embedded PowerPC

Index
Deadstrip Unused Symbols checkbox, EPPC Tar-
get panel 74

deadstripping unused code 191
debug initialization files

command syntax 296
commands 294

Abatron DBI2000 299
AMCMemReadDelayCycles 299
AMCMemWriteDelayCycles 300
AMCMemWriteVerify 300
AMCRegWriteVerify 300
AMCTargetInterfaceClockFreq 301
AMCTargetSerializeInstExec 301
AMCTargetShowInstCycles 301
CodeTAP 296
initregs 302
Macraigor Wiggler 298
polltime 302
PowerTAP 297
setMMRBaseAddr 303
sleep 303
writedcr 304
writemem.b 304
writemem.l 304
writemem.w 305
writemmr 305
writereg 306
writespr 306
writeupma 307
writeupmb 307

creating stand-alone code 290
debugging 289
initialization 290
memory initialization 290
proper use 294
use of 294

debug monitor, connecting with 127
debugger

described 28
EPPC Menu

Breakpoint Type menu option 152
Change IMMR menu option 150
Hard Reset menu option 151
overview 150
Set Stack Depth menu option 150
Soft Reset menu option 150
Watchpoint Type menu option 151

special purpose registers 147
See also Debugger User Guide

Debugger Settings panel See IDE User Guide
debugging 32

Debug command 46
debug initialization files 289
debugging monitors

MetroTRK 123
SDS Monitor 123

ELF files
additional considerations 165
customizing default XML project file 163
deleting files 166
deleting old access paths 166
overview 162
procedure 164
recreating an ELF-created project 166
removing files 166

for PowerPC Embedded 123–162
setting up remote 126–143
special features 147–156
Stop and Kill buttons 56
supported methods

Abatron BDI 123
CodeTAP 123
Hummingbird 123
MetroTRK 123
PowerTAP 123
Raven BDM 123
Raven COP 123
SDS Monitor 123
Wiggler 123

target settings 101–121
See also Debugger User Guide

debugging with MetroTRK 162
details, Register Details window 155
development tools 25–29
Device menu

Hummingbird 104
Raven 104
Wiggler 104

dipswitch settings
Cogent CMA 278 daughtercard 318
Embedded Planet RPX Lite 8xx target

board 325
Motorola 555 ETAS target board 320
Targeting Embedded PowerPC PPC–339

Index
Motorola MPC 8xx ADS target board 322
Motorola MPC 8xx FADS target board 324
Motorola MPC 8xx MBX target board 323
Motorola MPC 8260 VADS target board 327
Motorola MPC 505/509 EVB target board 319
Motorola Sandpoint 8240 target board 326

directives, assembler
entry 230
fralloc 231
frfree 231
machine 232
nofralloc 234
opword 234

Disable CW Extensions checkbox, EPPC Target
panel 72

Disassemble Exception Tables 89
disassembly, Register Details window 155
documentation

contacting Metrowerks 18
description 12
feedback 18

documentation architecture 13
double size 170
downloading code problems 244
DWARF 16

E
editing code 31

See also IDE User Guide
editor

integrated 42
third party 43

__eieio() 235
ELF 16
ELF files, debugging

additional considerations 165
customizing default XML project file 163
deleting files 166
deleting old access paths 166
overview 162
procedure 164
recreating an ELF-created project 166
removing files 166

entry assembly statement 230
entry directive 230

Entry Point edit field 100
EOL Character pull-down menu 96
EPPC Assembler settings panel 75–78

Generate Listing File checkbox 77
Prefix File field 77
Source Format checkboxes 77

EPPC Disassembler settings panel 87–90
EPPC Linker settings panel 90–100
EPPC Menu (embedded PowerPC-specific)

Breakpoint Type menu option 152
Change IMMR menu option 150
Hard Reset menu option 151
overview 150
Set Stack Depth menu option 150
Soft Reset menu option 150
Watchpoint Type menu option 151

EPPC Processor settings panel 79–87
AltiVec Programming Model checkbox 83
Generate VRSAVE Instructions checkbox 83
Profiler Information checkbox 87

EPPC Target panel 70–75
Byte Ordering radio button 71
Code Model menu 72
Deadstrip Unused Symbols checkbox 74
Disable CW Extensions checkbox 72
File Name menu 71
Heap Size (k) field 73
Optimize Partial Link checkbox 74
Project Type menu 71
Require Resolved Symbols checkbox 75
Small Data field 72
Small Data2 field 73
Stack Size (k) field 73

EPPC Target Settings panel 101–113
Initialization File field 105
Reset on Connect checkbox 109
Use Initialization File checkbox 112

error messages
CodeTAP and PowerTAP 245, 246

F
__fabs() 236
File Mappings panel See IDE User Guide
File Name menu, EPPC Target panel 71
flash programmer
PPC–340 Targeting Embedded PowerPC

Index
command file syntax 275–287
using 273–275

flashing a program to ROM using project statio-
nery targets 37

float size 170
floating point formats for PowerPC 170
Floating Point support 82
floating-point formats 170
Flow Control menu 121
__fnabs() 236
FPSCR 237
fralloc assembly statement 223
fralloc directive 231
frfree assembly statement 223
frfree directive 231
function level assembly 217

G
Generate DWARF File check box 92
Generate Link Map check box 92
Generate Listing File checkbox, EPPC Assembler

settings panel 77
Generate ROM Image checkbox 98
Generate S-Record File checkbox 95
Generate VRSAVE Instructions checkbox 83
generating code

for specific processors 177
Global Optimizations panel 78

H
hard reset

CodeTAP 255
PowerTAP 263

Hard Reset menu option 151
hardware, connecting 126
Heap Address 93
Heap Size (k) field, EPPC Target panel 73
Host Name field 121
Hummingbird (debugging device) 104

connecting with 140
connection type 124

I
IBM 403 EVB target board jumper settings 319
IDE described 26
Use Initialization File checkbox 112
Initialization File field 105
initregs 302
inline assembler

asm blocks not supported 217
comments 221
directives 230–234
for PowerPC 215–241
function level support 217
instructions 215, 216
labels 221
local variables 222
operands 224
preprocessor use 222
special PowerPC instructions 220
stack frame 223
syntax 216
using for PowerPC 216–230

installing CodeWarrior 24
int size 169
integer formats 169, 170
integer formats for PowerPC 169
interrupts

PowerTAP 264–265
intrinsic functions

described 234
for PowerPC 234–241
See also inline assembler 234

__isync() 235

J
JTAG configuration files 309
jumper settings

Cogent CMA102 target board 318
Embedded Planet RPX Lite 8xx target

board 325
IBM 403 EVB target board 319
Motorola Excimer 603e target board 321
Motorola Maximer 7400 target board 326
Motorola MPC 8xx ADS target board 322
Motorola MPC 8xx FADS daughtercard 324
Motorola MPC 8xx FADS target board 324
Targeting Embedded PowerPC PPC–341

Index
Motorola MPC 8xx MBX target board 323
Motorola MPC 8260 VADS target board 327
Motorola MPC 505/509 EVB target board 319
Motorola Sandpoint 8240 target board 326
Motorola Yellowknife X4 603/750 target

board 321
Phytec miniMODUL-PPC 505/509 target

board 328

L
labels in inline assembler 221
__labs() 236
__lhbrx() 236
libraries

alternate C/C++ 208
console I/O 208, 209–212
MSL for PowerPC Embedded 207–212
runtime 212–213
support for PowerPC Embedded 207–214
UART 209
using MSL 208–209

link order 192
linker

.a files 192

.o files 192
and executable files 192
described 27
for PowerPC 189–192
multiply defined symbols 192
other documentation 168

linker generated symbols 190
Linker option, Target Settings panel 69
linking 31

See also IDE User Guide
List Unused Objects check box 93
LMW 86
local variables in inline assembler 222
L1 Data Cache window 152
long double size 170
long long

type 227
long long size 169
long size 169
__lwbrx() 236

M
machine assembly statement 232
machine directive 232
makefiles 30
Max Length edit field 95
memory

code section when using MetroTRK 159
data sections when using MetroTRK 159
exception vectors when using MetroTRK 158
map when using MetroTRK 160
stack when using MetroTRK 160

MetroTRK
connecting with 128
debugger settings 109
described 28
MetroTRK Reference 157
using MetroTRK 157
See also MetroTRK Reference
baud rates 158
data transmission rates 158
debug monitor 157
memory configuration 158
overview 157
RAM section locations 158

MetroTRK Reference 157
Metrowerks Standard Libraries See MSL
Metrowerks Target Resident Kernel See MetroTRK
modifying

project 41
source file 42
target settings 43, 63–65

Motorola Excimer 603e target board jumper
settings 321

Motorola 555 ETAS target board dipswitch
settings 320

Motorola Maximer 7400 target board jumper
settings 326

Motorola MPC 8xx ADS target board dipswitch
settings 322

Motorola MPC 8xx ADS target board jumper
settings 322

Motorola MPC 8xx FADS daughtercard jumper
settings 324

Motorola MPC 8xx FADS target board dipswitch
settings 324
PPC–342 Targeting Embedded PowerPC

Index
Motorola MPC 8xx FADS target board jumper
settings 324

Motorola MPC 8xx MBX target board dipswitch
settings 323

Motorola MPC 8xx MBX target board jumper
settings 323

Motorola MPC 8260 VADS target board dipswitch
settings 327

Motorola MPC 8260 VADS target board jumper
settings 327

Motorola MPC 505/509 EVB target board
dipswitch settings 319

Motorola MPC 505/509 EVB target board jumper
settings 319

Motorola Yellowknife X4 603/750 target board
jumper settings 321

MSL
 using 208–209
and runtime libraries 208
described 29
for PowerPC Embedded 207–212
using alternate C/C++ libraries 208
using console I/O 208, 209–212
using with RTOS 209
See also MSL C Reference, MSL C++ Reference

multiple symbols and linker 192

N
nofralloc directive 234
number formats

floating-point 170
for PowerPC 168–171
integers 169

O
Only Show Operands and Mnemonics 89
operands in inline assembler 224
Optimize Partial Link checkbox, EPPC Target

panel 74
optimizing

for PowerPC 175–176
inline assembly disables 218
register coloring 175
settings panels used to optimize code 65

opword directive 234

Output Directory option, Target Settings panel 69

P
Parallel Port 107
Parity menu 120
Phytec miniMODUL-PPC 505/509 target board

jumper settings 328
picking a target 67
pixel 171
polltime 302
Port menu 119
Post-Linker option, Target Settings panel 69
PowerPC Embedded debugging See debugging
PowerPC Embedded settings panels See settings

panels
PowerTAP

connecting to target system 262
connecting with 136
connection type 124
error messages 245, 246
highlights of 258
host-to-emulator communications 262
interrupts 264–265
operational notes 264–265
resetting emulator 263
setting up 262
technical support 259
updating firmware 263

pragma
for PowerPC 177
overload 192

Prefix File field, EPPC Assembler settings panel 77
Pre-Linker option, Target Settings panel 69
preprocessing 32

See also IDE User Guide
preprocessor, using in inline assembler 222
Processor

compiler settings 81
Profiler Information checkbox 87
project

creating 34–36
modifying 41
stationery 33
types of 33
working with a 38–61
Targeting Embedded PowerPC PPC–343

Index
project stationery 65
project stationery targets, types 37
Project Type menu, EPPC Target panel 71
project window 41
Protocol 108
PVR register 309

R
RAM

data sections when using MetroTRK 159
exception vectors when using MetroTRK 158
map when using MetroTRK 160
stack when using MetroTRK 160

RAM Buffer Address edit field 99
Rate menu 119
Raven BDM (debugging device)

connecting with 140
connection type 124

Raven COP (debugging device)
connecting with 142
connection type 124

Raven (debugging device) 104
register coloring optimization 175
Register Details window 155
register variables for PowerPC 174
registers

displaying 147
floating point 147
general 147
Register Details window 155
special purpose 147
variables 174
vector registers 147

Release Notes 11
Relocate Dwarf Info 90
remote debugging 126–143
Remote Debugging Options settings panel 114–

116
Require Resolved Symbols checkbox, EPPC Target

panel 75
requirements See system requirements
Reset on Connect checkbox 109
resetting emulator

CodeTAP 255
PowerTAP 263

__rlwimi() 237
__rlwinm() 237
__rlwnm() 237
ROM, flashing a program to, using project statio-

nery targets 37
ROM Image Address edit field 100
RPX Lite 8xx dipswitch settings 325
RPX Lite 8xx jumper settings 325
runtime libraries

and MSL 208
customizing 213
for PowerPC Embedded 212–213
in projects 212
initializing hardware 213

S
Sandpoint 8240 dipswitch settings 326
Sandpoint 8240 jumper settings 326
Save Project Entries Using Relative Paths option,

Target Settings panel 69
SDS Monitor

connecting with the 128
SDS Monitor debug monitor

choosing from the Protocol menu 109
section pragma 183
selecting a target 67
serial

cables (using to connect with a target
board) 127

connection
choosing on the Connection menu 103

port
connecting using a 127
Port menu 119

Set Stack Depth menu option 150
__setflm() 237
setMMRBaseAddr 303
setting

breakpoints 48
watchpoints 49

setting up emulator
CodeTAP 254
PowerTAP 262

settings panels
Access Paths See IDE User Guide
PPC–344 Targeting Embedded PowerPC

Index
Build Extras See IDE User Guide
C/C++ Language See C Compilers Reference
Connection Settings 118–121
Custom Keywords See IDE User Guide
Debugger Settings See IDE User Guide
EPPC Assembler 75–78
EPPC Disassembler 87–90
EPPC Exceptions 116–117
EPPC Linker 90–100
EPPC Processor 79–87
EPPC Target 70–75
EPPC Target Settings 101–113
File Mappings See IDE User Guide
for PowerPC Embedded 66–121
Remote Debugging Options 114–116
selecting 64
Target Settings panel 67–69
See also target settings

Settings window 45
short double size 170
short size 169
Show Code Modules 89
Show Data Modules 89
Show Dwarf Info 89
Show Headers 88
Show Symbol Table 89
signed char size 169
sleep 303
Small Data Address edit field 97, 98
Small Data field, EPPC Target panel 72
Small Data2 field, EPPC Target panel 73
soft reset

CodeTAP 255
PowerTAP 263

Soft Reset menu option 150
source file, modifying 42
Source Format checkboxes, EPPC Assembler set-

tings panel 77
special purpose registers 147
S-record 95

EOL Character 96
Max Length 95

stack
MetroTRK 160

Stack Address edit field 94

Stack Crawl window
Stop button 56

stack frame in inline assembler 223
Stack Size edit field 73
Stack Size (k) field, EPPC Target panel 73
stand-alone assembler 27

See also Assembler Guide
stationery 33
stationery targets, types 37
__sthbrx() 236
STMW 86
Stop

Stack Crawl window 56
Stop Bits menu 121
Stop button

debugging with 56
__stwbrx() 236
Suppress Warning Messages check box 93
symbols

linker generated 190
multiple linker 192

__sync() 235
system requirements 21–24

target 22
Windows 21

T
Target Name text field, Target Settings panel 68
Target Processor 111
Target Resident Kernel See MetroTRK
target server 123
target settings 63–121

Connection Settings 118–121
debugging panels 101–121
EPPC Exceptions 116–117
EPPC Target Settings 101–113
modifying 43, 63–65
overview 63–65
Remote Debugging Options 114–116
window 45, 63
See also settings panels

Target Settings panel 67–69
Linker option 69
Output Directory option 69
Pre-Linker option 69
Targeting Embedded PowerPC PPC–345

Index
Save Project Entries Using Relative Paths
option 69

Target Name text field 68
Target Settings window 63
Target system requirements 22
target, selecting a 67
targets, project stationery, types of 37
TCP/IP

connection, choosing on the Connection
menu 103

options, on the Connection Settings panel 121
templates 33
third-party editor 43
types

long long 227

U
UART libraries

and console I/O 209
and processor speed 211

unsigned char size 169
unsigned int size 169
unsigned long long size 169
unsigned long size 169
unsigned short size 169
updating firmware

CodeTAP 255
PowerTAP 263

Use Extended Mnemonics 89
Use Full Path Names check box 92
Use Global Connection Settings checkbox 121
Use Linker Command File checkbox 96
using alternate C/C++ libraries 208

V
variables

register 174
vector 171
vector registers (AltiVec), displaying 147
Verbose Info 90

W
Watchpoint Type menu option 151
watchpoint types

data 151
read 151
read/write 151
write 151

watchpoints, setting 49
what’s in this manual 12
where to learn more 15
Wiggler (debugging device) 104

connecting with 140
connection type 124

Windows system requirements 21
wordwarrior@metrowerks.com 18
working with a project 38–61
writedcr 304
writemem.b 304
writemem.l 304
writemem.w 305
writemmr 305
writereg 306
writespr 306
writeupma 307
writeupmb 307
PPC–346 Targeting Embedded PowerPC

CodeWarrior

Targeting Embedded PowerPC

Credits

writing lead: John Roseborough

other writers: Caresse Bennett, Stephanie Tucker, Jim
Trudeau

engineering: Mark Anderson, Greg Clayton, Steve
Moore, Khurram Qureshi, Eric Roe, Day-
mon Rogers, Robert St. John, Ferry Sutan-
to, Joel Sumner, ChingLing Wang,
Charles Watson, Lawrence You, Warren
Paul

frontline warriors: Mark Anderson, Ferry Sutanto, L.Frank
Turovich, Todd McDaniel, Steve Moore,
Nick Havens, Gary Hogan, Joc O’Connor,
Warren Paul, Vasili Prikhodko, Roy Zuni-
ga, Eddie Trevino, ChingLing Wang, and
many more...

Guide to CodeWarrior Documentation
CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C/C++ front-end compiler

Pascal Compilers Reference Information on the Pascal front-end compiler

Error Reference Comprehensive list of compiler/linker error messages, with many fixes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler syntax

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks ANSI standard C library

MSL C++ Reference Function reference for the Metrowerks ANSI standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference Microsoft’s Reference for the Win32 API

The PowerPlant Book Introductory guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting Java VM How to use CodeWarrior to program for the Java Virtual Machine

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting NEC V800 Series How to use CodeWarrior to program for NEC V800 Series processors

Targeting Net Yaroze How to use CodeWarrior to program for Net Yaroze game console

Targeting Nucleus How to use CodeWarrior to program for the Nucleus RTOS

Targeting Palm OS How to use CodeWarrior to program for PalmPilot

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting VxWorks How to use CodeWarrior to program for the VxWorks RTOS

Targeting Win32 How to use CodeWarrior to program for Windows

Targeting Windows CE How to use CodeWarrior to program for Windows CE

	Introduction
	Read the Release Notes!
	Solaris: Host-Specific Information
	About This Book
	Where to Go from Here
	Technical Support
	Metrowerks Year 2000 Compliance

	Getting Started
	System Requirements
	Installing CodeWarrior for Embedded PowerPC
	CodeWarrior Compiler Architecture
	Development Tools for Embedded PowerPC
	CodeWarrior IDE
	CodeWarrior Compiler for Embedded PowerPC
	CodeWarrior Assembler for Embedded PowerPC
	CodeWarrior Linker for Embedded PowerPC
	CodeWarrior Debugger for Embedded PowerPC
	MetroTRK
	Metrowerks Standard Libraries

	The Development Process with CodeWarrior
	Makefiles
	Editing Code
	Compiling
	Linking
	Debugging
	Viewing Preprocessor Output

	Creating a Project for Embedded PowerPC
	Types of Projects
	Project Stationery
	Creating a Project
	Project Stationery Targets

	Working with a Project

	Target Settings for Embedded PowerPC
	Target Settings Overview
	Settings Panels to Optimize Code
	Settings Panels for Embedded PowerPC
	Target Settings
	EPPC Target
	EPPC Assembler
	Global Optimizations
	EPPC Processor
	EPPC Disassembler
	EPPC Linker
	EPPC Target Settings
	Remote Debugging Options
	EPPC Exceptions
	Connection Settings

	Debugging for Embedded PowerPC
	Supported Debugging Methods
	Setting Up for Remote Debugging
	Configuring Your Embedded PowerPC Board
	Connecting with a Debug Monitor
	Connecting with CodeTAP
	Connecting with PowerTAP
	Connecting with Wiggler, Hummingbird, or Raven BDM
	Connecting with Raven COP
	Connecting with Abatron BDI2000

	Special Debugger Features for Embedded PowerPC
	Displaying Registers
	EPPC Menu
	AMC Data and Instruction Cache Windows

	Register Details Window
	Using MetroTRK
	MetroTRK Overview
	MetroTRK Baud Rates
	MetroTRK Memory Configuration
	Using MetroTRK for Debugging

	Debugging ELF Files
	Customizing the Default XML Project File
	Debugging an ELF File
	ELF File Debugging: Additional Considerations

	C and C++ for Embedded PowerPC
	Integer Formats
	Embedded PowerPC Integer Formats
	Embedded PowerPC Floating-Point Formats
	AltiVec Vector Data Formats

	Data Addressing
	Calling Conventions
	Register Variables
	Register Coloring Optimization
	Generating Code for Specific Processors
	Pragmas
	force_active
	function_align
	incompatible_return_small_structs
	incompatible_sfpe_double_params
	interrupt
	pack
	pooled_data
	section

	Linker Issues for Embedded PowerPC
	Linker Generated Symbols
	Deadstripping Unused Code and Data
	Link Order
	Linker Command Files

	__attribute__ ((aligned(?)))
	Variable Declaration Examples
	Struct Definition Examples
	Typedef Declaration Examples
	Struct Member Examples

	Libraries and Runtime Code for Embedded PowerPC
	MSL for Embedded PowerPC
	Using MSL for Embedded PowerPC
	Using Console I/O for Embedded PowerPC
	Allocating Memory and Heaps for Embedded PowerPC

	Runtime Libraries for Embedded PowerPC
	Board Initialization Code

	Inline Assembler for Embedded PowerPC
	Working With Assembly
	Assembler Syntax for Embedded PowerPC
	Special Embedded PowerPC Instructions
	Support for AltiVec Instructions
	Creating Labels for Embedded PowerPC Assembly
	Using Comments in Embedded PowerPC Assembly
	Using the Preprocessor in Embedded PowerPC Assembly
	Using Local Variables and Arguments
	Creating a Stack Frame in Embedded PowerPC Assembly
	Specifying Operands in Embedded PowerPC Assembly

	Assembler Directives
	entry
	fralloc
	frfree
	machine
	nofralloc
	opword

	Intrinsic Functions
	Low-Level Processor Synchronization
	Floating-Point Functions
	Byte-Reversing Functions
	Setting the Floating-Point Environment
	Manipulating the Contents of a Variable or Register
	Data Cache Manipulation
	Math Functions
	Buffer Manipulation
	AltiVec Intrinsics Support

	Troubleshooting for Embedded PowerPC
	No Communications with Target Board
	Downloading Code Fails or Crash When Code Runs
	Debugger Window Does Not Appear
	Common Error Warnings for CodeTAP and PowerTAP
	Targeting BDM Devices FAQ

	Using a CodeTAP Debugging Device
	CodeTAP Highlights
	CodeTAP Technical Support
	CodeTAP Requirements
	Target Settings for CodeTAP
	Setting Up the CodeTAP Emulator
	Updating the CodeTAP Firmware
	Debugging Using CodeTAP
	Resetting the Processor

	Using the PowerTAP 6xx/7xx Debugging Device
	PowerTAP Highlights
	PowerTAP Technical Support
	PowerTAP Requirements
	Target Settings for PowerTAP
	Setting Up the PowerTAP Emulator
	Updating the PowerTAP Firmware
	Resetting the Processor
	Operational Notes
	Recoverable Interrupts
	Interrupts and the Machine Status Save/ Restore Registers

	Flash Programmer
	What You See
	Console
	Status and Errors
	Help
	Preferences

	Using the Flash Programmer
	Initialize the Programmer
	Specify a Flash Image
	Send the Flash Image

	Command File Syntax
	Write Register Commands
	Read, Write and Save Memory Commands
	Loop Commands
	Action Commands
	Wait and Abort Commands
	Print Commands
	Miscellaneous Commands

	Debug Initialization Files
	Using Debug Initialization Files
	Creating Stand-alone Code
	Initializing Memory
	Enabling Debug Support
	Creating a Debug Initialization File
	Disabling the Software Watchdog Timer
	Using Emulator Operational Settings

	Proper Use of Debug Initialization Files
	Debug Initialization File Commands
	Debug Initialization File Command Syntax
	CodeTAP Commands
	PowerTAP Commands
	Macraigor Wiggler Commands
	Abatron BDI2000 Commands
	AMCMemReadDelayCycles
	AMCMemWriteDelayCycles
	AMCMemWriteVerify
	AMCRegWriteVerify
	AMCTargetInterfaceClockFreq
	AMCTargetSerializeInstExec
	AMCTargetShowInstCycles
	initregs
	polltime
	setMMRBaseAddr
	sleep
	writedcr
	writemem.b
	writemem.l
	writemem.w
	writemmr
	writereg
	writespr
	writeupma
	writeupmb

	JTAG Configuration Files
	Generating JTAG Configuration Files

	Memory Configuration Files
	Command Syntax
	Memory Configuration File Commands
	reservedchar
	range
	reserved

	Tested Jumper and Dipswitch Settings
	Cogent CMA102 with CMA 278 Daughtercard
	IBM 403 EVB
	Motorola MPC 505/509 EVB
	Motorola 555 ETAS
	Motorola Excimer 603e
	Motorola Yellowknife X4 603/750
	Motorola MPC 8xx ADS
	Motorola MPC 8xx MBX
	Motorola MPC 8xx FADS
	Embedded Planet RPX Lite 8xx
	Motorola Maximer 7400
	Motorola Sandpoint 8240
	Motorola MPC 8260 VADS
	Phytec miniMODUL-PPC 505/509

	Command-Line Tool Options
	Embedded PowerPC Project Options
	Embedded PowerPC Options
	Embedded PowerPC Disassembler Options

	Index

