

COMMUNICATIONS MANAGER FOR
COOLMUSCLE MOTOR SYSTEMS

(COMMMANAGER)

MYOSTAT MOTION CONTROL

17817 LESLIE ST. UNIT 43

NEWMARKET ONTARIO

 7/24/2006

7/24/2006

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2
LIST OF FIGURES.. 4
1. INTRODUCTION... 5
2. TRANSFERABLE BENEFITS USING COMMMANAGER... 6

2.1. A BRIEF OVERVIEW OF EXISTING COOL MUSCLE MOTOR NETWORK TOPOLOGY........................ 6
2.2. BASIC REQUIREMENTS FOR A PC APPLICATION CONTROLLING COOL MUSCLE MOTORS 6
2.3. APPLICATION DEVELOPMENT WITH THE COMMMANAGER .. 7

2.3.1. CommManager Installation.. 8
2.3.2. CommManager Uninstallation ... 8
2.3.3. CommManager Password .. 9

THE FEATURES OF COMMMANAGER ... 10
2.4. OPERATIONAL PROPERTIES OF THE TASK QUEUES... 12

2.4.1. Timing and Scheduling of the Queues .. 12
2.4.2. Properties of the Foreground Queue.. 14
2.4.3. Properties of the Background Queue.. 14
2.4.4. Properties of the Silent Queue.. 15

2.5. THE FEATURES OF THE COMMMANAGER... 15
2.5.1. Management of Low-Level RS232C Communication ... 15
2.5.2. An Accurate Timer.. 15
2.5.3. A Syntax Checker.. 15
2.5.4. Command Queues... 16
2.5.5. Call-back Functionality .. 16
2.5.6. Management of CML Command Queues.. 16
2.5.7. Multi-Threaded Operation.. 16

3. FUNCTIONS IN THE COMMMANAGER COM INTERFACE WITH PROGRAMMING
EXAMPLES.. 19

3.1. GENERAL DEFINITIONS FOR COMMMANAGER FUNCTIONS ... 19
3.1.1. Some common arguments to most CommManager functions ... 19
3.1.2. Return arguments ... 20
3.1.3. Events related with commands ... 20
3.1.4. Using ActiveX controls in your application.. 20
3.1.5. Constants defined in CommManager ... 21

3.2. FUNCTION DESCRIPTIONS ... 21
3.2.1. OpenCommPort() ... 21
3.2.2. CloseCommPort() ... 22
3.2.3. SendCommPort() .. 22
3.2.4. ReadCommPort().. 23
3.2.5. SendCML() ... 23
3.2.6. SendmCML()... 24
3.2.7. SendbgCML().. 25
3.2.8. SendbgmCML()... 25
3.2.9. SendFile() ... 26
3.2.10. SendcbbgCML() ... 27
3.2.11. SendcbCML() ... 27
3.2.12. SendSilentCML().. 28
3.2.13. SendCMLBlock().. 29
3.2.14. GetM_Result().. 30

PAGE 2

7/24/2006

3.2.15. ExecuteCML... 31
3.2.16. DeletebgCML() .. 31
3.2.17. ExecutemCML.. 32
3.2.18. TimerInterval()... 32
3.2.19. TimerStart() ... 33
3.2.20. TimerStop() .. 33
3.2.21. m_BackForeRatio() ... 33
3.2.22. DeleteCML() .. 34
3.2.23. DeleteCMLOnQues() ... 35
3.2.24. MotorResponse().. 35
3.2.25. m_Timing() .. 36
3.2.26. SetMemoryLength() ... 37
3.2.27. m_QueueBackCount().. 37
3.2.28. m_QueueForeCount() .. 38
3.2.29. m_QueueSilentCount()... 38
3.2.30. m_CMLCheck().. 38
3.2.31. m_WriteToLogFile() .. 39
3.2.32. TestCommDelay() .. 40
3.2.33. Functions for Wrapping Basic CML Commands ... 40

3.2.33.1. MotorGoOrigin().. 40
3.2.33.2. MotorExecBank() .. 41
3.2.33.3. MotorStop() ... 41
3.2.33.4. MotorEnable().. 41
3.2.33.5. MotorDisable()... 41
3.2.33.6. MotorDynaExec() .. 41
3.2.33.7. MotorCP().. 41
3.2.33.8. MotorQuery()... 41

3.3. FUNCTIONS FOR RUNNING CML SCRIPT.. 42
3.3.1. GetVersion() ... 42
3.3.2. m_SchedulerStyle() ... 42
3.3.3. RegisterEvents().. 42
3.3.4. DetectMotorCommunication().. 44
3.3.5. BlockExecute().. 44
3.3.6. DisableBlock() .. 45
3.3.7. RunScript() ... 45
3.3.8. m_Password()... 46
3.3.9. RunMScript() .. 46
3.3.10. StopMScript()... 47
3.3.11. m_ScriptVar() .. 47
3.3.12. m_TranslatedCMLScript() ... 47
3.3.13. ScriptStepExecute().. 48

4. EVENTS OF COMMMANAGER .. 49
4.1. ONCOMM AND ONEXECUTECML.. 49
4.2. ONMOTOREVENT() .. 49
4.3. ONRS232() .. 50

5. CALLBACK OF COMMMANAGER.. 51
6. EXAMPLES USING COMMMANAGER ... 52
7. CONCLUSION ... 53
APPENDIX A CONSTANTS DEFINED IN THE COMMMANAGER 54

PAGE 3

7/24/2006

LIST OF FIGURES

FIGURE 1: OSI MODEL OF INTERACTION BETWEEN LAYERS WITH THE COMMMANAGER 10
FIGURE 2: COMPONENTS AND INTERACTION OF THE COMMMANAGER ... 11
FIGURE 3: SNAPSHOT OF THE TIMING REQUIRED FOR COMMMANAGER TASK SCHEDULING 13

Page 4

7/24/2006

1. INTRODUCTION

This manual details how to develop PC side applications using the CommManager

interface and Cool Muscle motor(s). In the following pages, it is assumed that the

reader is already familiar with:

• The Cool Muscle Language (CML) (for readers yet unfamiliar with CML,

please refer to the Cool Muscle User Manual before continuing with this

document);

• Component Object Model (COM) Technology including ActiveX Controls;

• How to program using Object Oriented (OO) techniques.

Though not essential to understand the material, many concepts and terminology

inside the document relate to Windows programming, and users with neither

experience nor knowledge in this area will benefit from visiting

http://www.msdn.microsoft.com before continuing to explore issues in COM,

threads, and the Win32 API including handles, and conventions. Programming

examples found inside this document have been written in either C++ or Visual

Basic. Furthermore, the following discussion applies only to C-type Cool Muscle

motors controlled via a PC.

Page 5

http://www.msdn.microsoft.com/

7/24/2006

2. TRANSFERABLE BENEFITS USING COMMMANAGER

2.1.

2.2.

A Brief Overview of Existing Cool Muscle Motor Network
Topology
Traditional Cool Muscle network topology involves using a host device (a PC, PLC,

embedded controller, etc.) with an RS232 Com port that communicates to a daisy

chain network of Cool Muscle motors. A maximum of 16 Cool Muscle motors can be

connected in a daisy chain network. In this daisy chain arrangement, there exists a

master device on the daisy chain that handles all network communication between

the chain and the host. Thereafter, communication is propagated down the chain

from each link between the master motor and the first slave and then between

each successive slave motor. It is important to note, that this topology does not

require a permanent host device, rather the daisy chain can stand-alone and

execute motion programs residing in memory that is pre-loaded by an initial

connection to a host device.

Basic Requirements for a PC Application Controlling Cool
Muscle Motors
When developing motion control applications involving the coordination of actions

between subsystems there are certain actions and tasks that are prerequisite to

the control aspect of the system. Applications involving Cool Muscle motors are

also subject to these prerequisites. To control Cool Muscle motor networks and to

coordinate motion for an overall system there are three critical actions:

• Polling or querying a motor for information

• Waiting for events from a motor

• Subsequently performing tasks based on return information from polling or

event-driven motor info

Likewise when developing a PC application to act as a terminal or a soft-controller

for a motion control system, there are basic requirements the application must

fulfill to either convey information or to coordinate motor movement. The basic

requirements for a PC application to communicate with the motor network is:

• To send a string of commands to the motor network

• To wait for some special return string from the motor network

• To acquire and analyze results returned from the motor network

Page 6

7/24/2006

• To ensure execution of CML commands does not freeze or deadlock

operation of the GUI

Moreover, the programming of a PC application for controlling motors involves

either iterating or recurring one or more of these requirements for a particular item

or sequence of items.

Satisfying the above requirements with respect to application development is

greatly simplified when dealing with a single motor system. In this instance the

developer is responsible for GUI operation and a manageable degree of motor

communication handling. The most difficult decision becomes timing of execution

or rather waiting on motor events to trigger other system events (including more

motor events). For example, suppose you are polling the motor and you send it the

command “?96.1” then your application becomes suspended waiting for a return

message. This presents a dangerous situation where the application is suspended

on I/O that may never return. In the event a message does not return the

application may crash and the system integrity compromised.

In large and complex systems involving many motors and external sub-systems,

handling I/O communication becomes significant in magnitude. Combined with the

development of stable GUI operation, system integrity becomes a major problem if

the application is not robust in design. This is further complicated by the existence

of N motors over a single RS232 Com port. The timing of motor response and

query becomes increasingly critical to avoid, prevent, and handle the occurrence of

collisions over network traffic. In this instance, a communication protocol must be

established to transmit and receive messages in an efficient manner and deliver

error messages or notification when contention or collision occurs.

2.3. Application Development with the CommManager
To release our users from complex and repetitive programming, MyoStat Motion

Control engineers have developed an ATL ActiveX control, called CommManager, a

software interface for the management of Cool Muscle motor network

communication. This ActiveX control is a multi-threaded windows control that

communicates with motors at the highest (real-time) priority allowed in Windows

OS environments. Furthermore, the control can be inserted into Visual Basic

Page 7

7/24/2006

projects, Visual C++ projects, or any other language that supports COM

(Component Object Model) technology.

The CommManager will free the application programmer from developing the

communication code necessary to control Cool Muscle motor networks. Instead, a

suite of functions is available to actively monitor network communication or

passively wait for special return events. Furthermore, by using multiple

CommManager objects in the user application the user can develop larger networks

across multiple Com ports. The only limitation on network size becomes the

amount of available Com ports on the PC.

2.3.1. CommManager Installation
The installation process for CommManager is the same as that of any other

ActiveX control DLL file. Save the included DLL files, CommProj.dll and

CMLScript1.dll, to a directory path that does not include the “space” character.

Execute the following lines from a command prompt in that directory:

 regsvr32 CommProj.dll

 regsvr32 CMLScript1.dll

These commands will register each DLL in the system registry, and make

CommManager available within the preferred development environment.

Note: To work with the Visual C++ examples distributed with the CommManager

package, the DLL file "Diagram.dll" must also be registered in the manner

described above.

2.3.2. CommManager Uninstallation
Before CommManager is removed from a system, references to the associated

ActiveX control DLL files should be removed from the system registry. In the

directory from which CommProj.dll and CMLScript1.dll were registered, execute

the following from a command prompt:

 regsvr32 CommProj.dll /u

 regsvr32 CMLScript1.dll /u

These commands will unregister each DLL as a command component in the

system registry. Once both files are unregistered, it is safe to manually remove

all CommManager files from the system.

Page 8

7/24/2006

2.3.3. CommManager Password
A unique 12-character password is distributed with each licensed copy of

CommManager to serve as a license key. This password must be included, via

method call or value assignment, in any software client that is designed to be

served by a CommManager COM object. For the CommManager object instance

m_CommManager, the password assignment syntax for Visual C++ and Visual

Basic is given below:

 VB: m_CommManager.m_Password = “##########”

 VC: m_CommManager.SetM_Password(“##########”);

Note: The password must be set for each CommManager object instance within

the software client. Until the password is set, the client will not be able to open a

Com Port using that instance of CommManager.

A detailed functional description for password assignment command is given in

Section 4.3.8 of this manual, found on Page 46.

Page 9

7/24/2006

THE FEATURES OF COMMMANAGER

The end-user PC application and the CommManager interface interact in the

following way: The application sends CommManager a CML command that is

placed into a task queue. Items inside the task queue are executed by the Task

Scheduler. Concurrently, CommManager receives transmitted results from the

motor network and places these into indexed memory. Next, CommManager

returns a message to the end-user application that indicates return information is

available. Upon receipt of the return message, the end-user application can

access the memory content. Below, Figure 1 shows an OSI model of interaction

between the different layers of communication in the CommManager. Figure2

describes interaction between components within the CommManager Interface.

….

PC Application

CommManager Interface

RS232 Port

RS232 API
CommManager

Application/Presentation Layer

Link Layer

Physical Layer

Session/Transport/Network
Layer

Daisy-Chain of Motors

Figure 1: OSI Model of Interaction between Layers with the CommManager

Page 10

7/24/2006

PC Application

CommManager Interface

Task Dispatch
Foreground Queue

Background Queue

Silent Queue

Task Scheduler

Syntax Checker

RS232 Port

CommManager::Memory

CommManager::Timing

Motors

Windows Message Callback

Figure 2: Components and Interaction of the CommManager

The CommManager consists of the following parts:

• COM interface: This interfaces to the user application. CML commands are

passed from the user application to the interface. Return messages either

come back to the application or a callback is issued to the calling function.

• Task Dispatcher: Places CML commands in one of three task queues

according to the desired behaviour of queue items.

• Task Queues: Queues used to store commands from user. The three

different task queues are the foreground queue, the background queue

and the silent queue.

• Task Scheduler: Schedules the execution of tasks according to an internal

multimedia timer.

• Syntax Checker: Checks to ensure semantics of CML observed. Wrong

commands are dropped and are not sent to the motor network.

• RS232 API: Manages the low-level communication with the RS232 Com

port.

Page 11

7/24/2006

• CommManager Memory: Memory used to store the return results of

command execution.

2.4. Operational Properties of the Task Queues
The most significant data feature of the CommManager interface is the task

queues. There exist three unique task queues each with a distinct set of features

that operate on events placed inside each respective queue. Though each queue

has a unique feature all queues are managed from a common thread and are

subject to a user pre-defined allocation of execution time.

2.4.1. Timing and Scheduling of the Queues
Though the user cannot directly impose strict execution time in the sense of

measured seconds, execution is adjusted according to a ratio of time units

determined by the system clock, the OS task scheduler and the actual

transmission rate. However, digital systems are very predictable and it has been

found that the average CML command takes between 8 ~ 10 ms total time when

using a transmission rate of 57.6Kbps and running a minimized set of

applications on a WIN2K platform with Intel Pentium III architecture. It should be

noted that in the Windows OS a priority scheduler is implemented to determine

application processing and I/O handling; CommManager has real-time priority in

the Windows OS. Though Windows is not a real-time OS, threads running on the

real-time priority level are given highest priority on the task scheduler and these

threads are given CPU time whenever I/O events are generated.

The CommManager itself contains a task scheduler to manage CML I/O from the

three queues. Suppose some fundamental time unit α, which is the period

allotted to threads executing in real-time priority. Next, suppose a time unit δ,

which denotes the time required to execute a CML event in the silent queue. Also,

suppose λ denotes the time given to execute a single CML event in the

foreground queue or background queue. Last, η denotes the ratio of execution

time allotted to the foreground/background queues. Then in the period of α, the

CommManager task scheduler first executes δ and then executes ηλ foreground

queue CML events and last executes λ. Refer to Figure 3 for an illustration of task

scheduling by the OS and CommManager.

Page 12

7/24/2006

For any CML event still waiting for a motor response at the end of a time unit, the

time unit is extended until a timeout period is reached. In the event timeout is

reached in the foreground queue then the CML event is discarded and the calling

application receives a message indicating a timeout occurred. If a timeout occurs

to an event in the background queue, the calling application receives a timeout

message and the CML event is placed at the back of the queue for the next

execution. If a timeout occurs in the silent queue then “?99.X” (where X denotes

the motor number) is immediately executed. If the response is “Ux.X=8” then

the CommManager returns an in-position message to the calling application.

Should no response return or “Ux.X=Y” return (where Y denotes any number

other than 8) then an error message is sent to the calling application.

OS Task
Scheduler

α α

time

t0 t0 + α t0
| t0

| + α

CommManager
Task

λ

time

t0 t0 + λ + δ t0 + 2(λ + δ) t0 + η (λ + δ)

λ δδ δ λ

t0 + (η + 1) (λ + δ)

λδ

Foreground and Silent Queue CML
Events

Background and Silent Queue
CML Events

. . .

Figure 3: Snapshot of the Timing Required for CommManager Task Scheduling

Page 13

7/24/2006

2.4.2. Properties of the Foreground Queue
The foreground queue is a FIFO queue that executes CML commands one time

and waits for a returning message before executing the next queued CML

command. Once a return message is received the CML command exits the queue

and will not be executed again. In the event an executed command in the

foreground queue is waiting for a return message and the allotted time period of

execution expires then the time period is extended for the remainder of a pre-

defined time-out period. If time-out occurs then CommManager subsequently

returns a queue enumerator argument outside the range of accepted values to

the calling function. Though there is no restriction on what CML commands can

enter the foreground queue, it is recommended that only those commands with

return messages of relatively small wait duration be placed in the queue. This

includes commands like “p1.1=500”, “k20.1=0”, “p1.1”, “~.1”, and “x5” but

excludes commands like “^.1”, and “[.1” if the desired return message is “End!”.

It is important to note that it is not necessary to wait for a return message for

any items executed in the queue if so desired.

2.4.3. Properties of the Background Queue
The background queue is a circular FIFO queue that executes CML commands

repeatedly. Similar to items in the foreground queue, items in the background

queue are executed and do not exit the front of the queue until a return message

is received. Likewise, in the event the allotted execution time expires, execution

time is extended until the time-out period is reached. If the time-out period is

reached then a queue enumerator argument returns an error value to the calling

function. Regardless of time-out or successful message return the command is

then placed at the back of the queue index for the next execution.

There is no restriction placed on what commands can execute in the queue but

query type commands are best suited for the background queue for polling and

status queries. This includes commands such as “?99.1”, “?1.1”, etc. Customers

who need to make thousands of repetitive moves, for example customers using

G-code, can send a sequence of motion type CML commands to the background

queue for recursive execution.

Page 14

7/24/2006

2.4.4. Properties of the Silent Queue
Though the foreground and background queues are FIFO the silent queue

executes all events inside the queue at once. The silent queue can be thought of

as a FCFS queue where events arriving simultaneously are served

simultaneously.

For each time period allocated to the silent queue, the queue routinely checks

CommManager memory for return messages. The silent queue is ideal for

watching return messages with long periods between return and execution. For

example, we may place the item “[.1” on the silent queue and watch for the

return “End!”. Here we are watching to ensure the entire program executes and

are not concerned whether or not the “[.1” echoed back to the application.

2.5. The Features of the CommManager

2.5.1. Management of Low-Level RS232C Communication
Inside CommManager is an internal data link layer to manage low-level RS232

communication to send and receive a stream of characters from a comm port.

This object will find the baud rate setting of the Cool Muscle and set the PC baud

rate automatically to match. There is a buffer in the object to manage the

incoming stream of ASCII characters. This object works as an independent

thread. Therefore, any operation of the GUI will not block the communication

buffers. This object waits for comm port events from the Windows OS rather than

polling the receive buffer.

2.5.2. An Accurate Timer
A timer using the Windows System “tick” (clock) is implemented and typically

accurate within 1ms (this is provided the system is executing a minimized set of

processes).

2.5.3. A Syntax Checker
Anything sent to the motor network will be checked for syntax with respect to

CML. Wrong CML commands will be discarded and, consequently, not sent. There

are two components to the Syntax Checker:

• Validation of CML commands, for instance “k75=1” is discarded since

there is no k75 parameter.

Page 15

7/24/2006

• Parameter Value Range Check, for instance “k37=80” is discarded since

k37 cannot be assigned the value 80.

2.5.4. Command Queues
There are three virtual command threads in CommManager. The first is the

foreground thread, the second is the background thread and the third is the silent

thread. The commands queued in each of the above three threads operate

independently from one another. Execution of Foreground and Background CML

commands will not block one another.

2.5.5. Call-back Functionality
In real-time control problems, timing is critical. The CommManager can callback a

calling application according to an internal timer. This timer operates in an

independent thread to ensure it will not be affected by GUI operation. Callback

items can be placed in either the foreground or background queue and upon

successful execution will directly return to the calling application rather than

using OnComm or OnExecuteCML.

2.5.6. Management of CML Command Queues
User can send a set of CML commands and let the CommManager to execute

them according to timing. For example, you can send 100 “?96.1” to

CommManager in the foreground. The CommManager will execute these

commands every 10msec. Therefore it is very easy to trace the position when

motors are moving. This is useful in getting a step response of motor and so on.

2.5.7. Multi-Threaded Operation
CommManager is composed of 5 smaller threads whose separation guarantees

excellent inter-operation and ensures elements inside one thread do not block the

operation of other elements inside other threads. In particular, individual threads

handle all GUI operation, queue management, RS-232 I/O handling, and

multimedia timing.

3.2.8 CML Scripting Language for CML Devices

A CML Scripting language is introduced which is natural English based, easy to

understand language. For example, you can draw a circle by the following macro

command.

Page 16

7/24/2006

 Circle(Motor1, Motor2, Starting angle, incremental angle, radius, speed)

To draw a rectangle card with four round corners, you only need to write the

following script and execute the script with the help of CommManager:

 |2.1,|2.2

 Define px 15000

 Define py 15000

 Define R 4000

 Define s 300

 Define a 300

 Define sCircle 50

 Define Motor1 1

 Define Motor2 2

 Define DelAngle 900

 ABSMove(Motor1,a,s,px)

 Circle(Motor1,Motor2,900,-DelAngle,R,sCircle)

 ABSMove(Motor2,a,s,-py)

 Circle(Motor1,Motor2,0,-DelAngle,R,sCircle)

 ABSMove(Motor1,a,s,-px)

 Circle(Motor1,Motor2,2700,-DelAngle,R,sCircle)

 ABSMove(Motor2,a,s,-R)

 Circle(Motor1,Motor2,1800,-DelAngle,R,sCircle)

 ABSMove(Motor1,a,s,0)

In addition, the CML scripting language includes nested-loop, branch and step

execution commands. It is shown the Scripting language can save development

time by reducing programming and debugging time.

For details, please refer to the document on the CML scripting language.

3.2.9 Polling and Event driven

CommManager is designed to deal with both polling and event driven

programming. For the case of pulling programming, we the put the pulling on the

background que and send CML commands to motor at foreground queue. For

Page 17

7/24/2006

Event driven, CommManager can capture and report 7 events from motors. There

are 7 events happen when motors are running, which can shown as follows:

a) Motor Status:
 Ux.ID=x
b) Input changes
 IN.ID=x
c) Output1 changes

 OUT1.ID=x
d) Output2 changes
 OUT2.ID=x
e) Motor is powered on
 ID
f) The execution of a bank program finishes.
 End!
g) The search of origin finished.
 Origin

 We will call Ux.ID=x event as Ux event, and so on later.

Page 18

7/24/2006

3. FUNCTIONS IN THE COMMMANAGER COM INTERFACE
WITH PROGRAMMING EXAMPLES

3.1. General definitions for CommManager functions

3.1.1. Some common arguments to most CommManager functions
Most CommManager functions have the following arguments in their parameter

list:

• BSTR CML, is a string or a string array of CML commands. I.e. the CML

command that is to be sent to the motors. It can consist of a single

command or and entire list of commands

• BSTR Wait, is a string or a string array of messages that CommManager

waits to see return. When the string is returned the CommManager

analyses the string and returns the appropriate result. If the string is not

returned CommManager will time out. If the ‘*’ character is used as the

Wait string then CommManager will wait for the appropriate response for

the command.

• Long No, is an index of CommManager memory where the results of

executed CML code are saved. See m_Result() for details on retrieving the

results.

• Long ID, is an ID used to identify callback messages sent from

CommManager to the application. An ID is assigned to a CML command

and the ID is returned when the event response associated with that

command occurs.

• Long Dim, contains the number of array elements used in CommManager

memory to store the results when multiple commands are executed.

If an index to CommManager memory is included in the parameter list of a

function then a range check is carried out. If it goes beyond the upper bound of

the memory then an error message will be issued and the function will not be

executed, consequently, any CML string arguments will not be sent to the motor

network. However, you can set the index argument as –1 to not use

CommManager memory. It is important to note that CML commands intended to

run in the background queue are assigned a positive index value.

Page 19

7/24/2006

3.1.2. Return arguments
Most of the functions of CommManager will return S_OK if the function executes

successfully.

The above information is true for all CommManager functions unless documented

otherwise in the following sections.

3.1.3. Events related with commands
CommManager can generate four events:

• OnComm()

• OnExecuteCML()

• OnMotorEvent()

• OnRS232()

A function beginning with “Send” will generate OnComm() and OnExecuteCML().

ExecuteMCML() will generate OnExecuteCML(). OnMotorEvent() will be generated

when there is a event from motor. OnRS232() will be generated when there is an

event from the RS-232 port. Refer to §4 for a complete description on the events

generated.

3.1.4. Using ActiveX controls in your application
In this manual, we introduce the functions and their arguments according to their

prototypes in the ActiveX control. They may take different forms in different

applications depending on the programming language chosen. For example, in VB

the m_Result property is used as follows:

 x = m_CommManager.m_Result

However in VC, a default class generated by the IDE wizard will use m_Result as

follows:

 m_CommManager.GetM_Result(&x);

Use the Object Brower window included in VB or VC IDE to find information

pertaining on how to manipulate methods and properties. This topic will not be

expanded upon further in this manual since it is assumed the reader is already

familiar with ActiveX Controls.

Page 20

7/24/2006

3.1.5. Constants defined in CommManager
There are several constants defined in CommManager that can be found in

APPENDIX A. CommManager uses these constants when they return a value to

the caller or when it sends a message to the caller. Constants are used in

CommManager for the purpose of communicating with the user application.

Constants are used to return messages to a calling function or send messages to

a calling function. Furthermore, users can use the Object Browser window in

Visual C and Visual Basic environments for definitions of the constants.

3.2. Function descriptions
In the following sections, it is assumed that m_CommManager is an instance of

CommManager in the application project.

3.2.1. OpenCommPort()
HRESULT OpenCommPort(BSTR Setting)

Description:

Open a Com port. Each CommManager interface can only handle one real

physical Com port. If you need to use multiple Com ports in your application then

you must create a new instance of a CommManager for each Com port used.

Parameters:

• BSTR Setting: This string sets the properties for the Com port and

contains the following:

 “COM# baud=# parity=% data=# stop=#”

For example, to use Com Port 1 with a baud rate of 38.4kbps, no parity

bit, 8 data bits and a stop bit the Setting string reads as:

 “COM1 baud=38400 parity=N data=8 stop=1”

Return value(s):

• cmErrorOpenCommPortErr: port is already open

• cmCanNotOpenCommPort: port cannot be opened.

• S_OK: successful

Example:

VB: call m_CommManager.OpenCommPort("COM2 baud=38400 parity=N data=8

stop=1")

Page 21

7/24/2006

VC: m_CommManager.OpenCommPort((LPCTSTR)"COM2 baud=38400 parity=N

data=8 stop=1");

3.2.2. CloseCommPort()
HRESULT CloseCommPort()

Description:

Used to close the Com port. Once closed, the same Com port can be re-opened.

Parameters:

• None

Return Value(s):

• S_OK: successful

Example:

VB: call m_CommManager.CloseCommPort ()

VC: m_CommManager.CloseCommPort();

3.2.3. SendCommPort()
HRESULT SendCommPort(BSTR str)

Description:

Used to send a user-defined string from the comm port. Note that a carriage

return must follow a CML command to be recognized by a motor. For example, to

execute the “?99.1” command then send “?99.1” + “\r” to have the motor

execute the command.

Parameters:

• str: A command string sent to motor

Return Value(s):

• S_OK: successful

Example:

VB: call m_CommManager.SendCommPort(“?99.1”+chr(13))

VC: m_CommManager.SendCommPort((LPCTSTR)“?99.1\r”);

Page 22

7/24/2006

Remark: This function will wait until all the data is fed to the RS232 buffer and

does not run in the background. The port is ready to accept another string when

this function returns.

3.2.4. ReadCommPort()
HRESULT ReadCommPort(BSTR *str)

Description:

This function is used to read the Com port receive buffer via CommManager

memory.

Parameters:

• *str: a pointer to a string that will receive data in the input buffer.

Return Value(s):

• S_OK: successful

Example:

VB: call m_CommManager.ReadCommPort(str)

VC: m_CommManager.ReadCommPort((LPCTSTR*)&str);

Remark: The CommManager will declare the memory for this string but the

calling function must release the memory.

3.2.5. SendCML()
HRESULT SendCML(BSTR CML, BSTR Wait, long No, long ID)

Description:

This function is used to send a CML command to the foreground queue.

Parameters:

• Refer to §3.1.1

Return Value(s):

• S_OK: successful

• CmGoesBeyondBoundary: if user-defined “long No” is outside the

permissible value range.

Example:

VB: call m_CommManager.SendCML(“?99.1”, “?99.1*”, 0, 100)

Page 23

7/24/2006

VC: m_CommManager.SendCML((LPCTSTR)“?99.1”, (LPCTSTR)“?99.1*”, 0, 100);

Remark 1: If Wait is set to a null string then SendCML returns immediately and

OnComm returns immediately. If the Wait string is identical to the CML string

then the SendCML function returns immediately but OnComm triggers when the

echo message returns to CommManager. If the Wait string is equal to the CML

string plus an “*” then the function will not return until CommManager receives

both the echo and the corresponding return message. The Wait string can either

be null in value or contain any combination of ASCII character values that results

in a complete or incomplete form of a CML command.

Remark 2: There are two communicating modes. 1.) with echo mode (K14.1=0)

and 2.) without echo mode (K14.1=1111). E.g. when you send “?99.1” to motor,

motor can respond in the following different ways depending on K14.

1.) K14.1=0

?99.1 (Sent to motor)

?99.1 (Returned from motor)

Uq.1=8 (Returned from motor)

2.) K14.1=1111

?99.1 (Sent to motor)

Uq.1=8 (Returned from motor)

If the correct setting of the Wait string is not clear, set Wait = “*”. In this case,

CommManager will automatically set Wait properly.

3.2.6. SendmCML()
HRESULT SendmCML(BSTR* CML, BSTR* Wait, int dim, long * No, long ID)

Description:

This function is used to send several CML to the foreground queue once time. It

is equal to multiple SendCML command.

Parameters:

• Refer to §3.1.1

Return Value(s):

• S_OK: successful

Page 24

7/24/2006

• CmGoesBeyondBoundary: if user-defined “long No” is outside the

permissible value range.

Example:

Assume K14.1=0

VB: dim CML(2) as string, Wait(2) as string, No(2) as integer

 CML(0) =”?99.1”:CML(1)=”?99.2”

 Wait(0) =”?99.1*”:Wait(1)=”?99.2*”

 No(0)=1:No(1)=2

 Call m_CommManager.SendmCML(CML(0), Wait(0), 2, No(0), 101)

VC: CString CML[2], Wait[2]

 int No[2];

 CML[0]=”?99.1”; CML[1]=”?99.2”

 Wait[0]=”?99.1*”; Wait[1]=”?99.2*”

 No[0] = 1; No[1]=2;

 m_CommManager.SendmCML((LPCTSTR*)CML, (LPCTSTR*)Wait, 2, No, 101)

3.2.7. SendbgCML()
HRESULT SendbgCML(BSTR CML, BSTR Wait, long No, long ID)

Description:

This function sends a CML command to the background queue.

Parameters:

• Refer to §3.1.1

Return Value(s):

• S_OK: successful

• CmGoesBeyondBoundary: if user-defined “long No” is outside the

permissible value range.

Example:

VB: call m_CommManager.SendbgCML(“99.1”, “?99.1*”, 1,100)

VC: m_CommManager.SendbgCML((LPCTSTR)”?99.1”,(LPCTSTR)”?99.1*”, 1,100)

3.2.8. SendbgmCML()
HRESULT SendbgmCML(BSTR* CML, BSTR* Wait, int dim, long* No, long ID)

Description:

Page 25

7/24/2006

Send multiple CML commands to the background queue.

Parameters:

• Refer to §3.1.1

Return Value(s):

• S_OK: successful

• CmGoesBeyondBoundary: if user-defined “long No” is outside the

permissible value range.

Example:

Assume K14.1=0

VB: dim CML(2) as string, Wait(2) as string, No(2) as integer

 CML(0) =”99.1”:CML(1)=”?99.2”

 Wait(0) =”?99.1*”:Wait(1)=”?99.2*”

 No(0)=1:No(1)=2

 Call m_CommManager.SendbgmCML(CML(0), Wait(0), 2, No(0), 101)

VC: CString CML[2], Wait[2]

 int No[2];

 CML[0]=”?99.1”; CML[1]=”?99.2”

 Wait[0]=”?99.1*”; Wait[1]=”?99.2*”

 No[0] = 1; No[1]=2;

 m_CommManager.SendbgmCML((LPCTSTR*)CML,(LPCTSTR*)Wait,2,No, 101)

3.2.9. SendFile()
HRESULT SendFile(BSTR file, int ID)

Description:

Send a CML file to the motor. I.e. a large amount of data that isn’t necessarily

looking for a response such as a program bank or K-parameters.

Parameters:

• file: a string containing CML data or settings

• ID: refer to §3.1.1

Return Value(s):

• S_OK: successful

Page 26

7/24/2006

Example:

VB: call m_CommManager.SendFile(file, 100)

VC: m_CommManager.SendFile(file,100);

Remark: This command sends a file to the motor line by line and waits for it to

finish transferring. This command can prevent buffer overflow in both the Cool

Muscle and PC.

3.2.10. SendcbbgCML()
HRESULT SendcbbgCML(BSTR CML, BSTR Wait, long No, long func, long ID)

Description:

This command puts a task on the background queue with callback to a specific

function via the allocation of memory.

Parameters:

• func: the return address of the calling application

• others: refer to §3.1.1

Return Value(s):

• S_OK: successful

• cmAllocateMemoryError: If the allocation of memory failed.

Example:

VB: See sample program

VC: See sample program

Remark: This function is used for real-time control. Two motors can cooperate

with each other to draw an ellipse or do torque control. The function will be called

back after the querying command finishes.

3.2.11. SendcbCML()
HRESULT SendcbCML(BSTR CML, BSTR Wait, long No, long func, long ID)

Description:

This function sends a CML command and calls a specific function via the

allocation of memory when it returns.

Parameters:

Page 27

7/24/2006

• func: the return address of the calling application

• others: refer to §3.1.1

Return Value(s):

• S_OK: successful

• cmAllocateMemoryError: If the allocation of memory failed.

Example:

VB: See sample program

VC: See sample program

Remark: This function is used for real-time control. Two motors can cooperate

with each other to draw an ellipse or do torque control. The function will be called

back after the querying command finishes.

3.2.12. SendSilentCML()
HRESULT SendSilentCML(BSTR*CML,BSTR*Wait,long TimeOut,long Dim,long ID)

Description:

This function puts a task into the silent queue.

Parameters:

• TimeOut: is defined in seconds

• Dim: the number of elements in the CML string.

• others: refer to §3.1.1

Return Value(s):

• S_OK: if successful

• CmGoesBeyondBoundary: if index of the memory goes beyond the

boundary

Example:

VB:Dim cml(3) As String, Wait(3) As String

 cml(0) = "|2.1", cml(1) = "|2.2", cml(2) = "^.1", cml(3) = "^.2"

 wait(0) = "", wait(1) = "", wait(2) = "Ux.1=8", wait(3) = "Ux.2=8"

 call m_CommManager.SendbgCML("?96.1", "?96.1*", 1, 103)

 call m_CommManager.SendSlientCML(cml(0), wait(0), 10, 2, 102)

Page 28

7/24/2006

 call m_CommManager.SendSlientCML(cml(2), wait(2), 10, 1, 100)

 call m_CommManager.SendSlientCML(cml(3), wait(3), 10, 1, 101)

 VC:CString CML[3], Wait[3]

 CML[0] = "|2.1"; CML[1] = "|2.2"; CML[2] = "^.1"; CML[3] = "^.2";

 Wait[0] = ""; Wait[1] = ""; Wait[2] = "Ux.1=8"; Wait[3] = "Ux.2=8";

 m_CommManager.SendbgCML(“?96.1”, “?96.1*”, 1,103)

 m_CommManager.SendSilentCML(&CML[0], &Wait[0], 10, 2, 102)

 m_CommManager.SendSilentCML(&CML[2], &Wait[2], 10, 1, 102)

 m_CommManager.SendSilentCML(&CML[3], &Wait[3], 10, 1, 102)

Remark: This function is used to put a task in the silent queue. The tasks in the

silent queue will not actively query the motor, instead it will wait until all waiting

messages specified by the Wait array come back. If the messages from the motor

cannot come back within the timeout interval then a message will be issued to

indicate the timeout.

3.2.13. SendCMLBlock()
HRESULT SendCMLBlock(BSTR CML, BSTR Wait, long* ErrorCode, long* Val,
BSTR* MotorEcho)

Description:

This function is used to send a CML command to motor and get the querying

result when it returns.

Parameters:

• Refer to §4.1.1

• ErrorCode: error code that is defined in the function SendCML.

• Val: the result of the query

• MotorEcho: A string that contains the log of communication during the

querying

Return Value(s):

• S_OK: if executed successfully

• CmGoesBeyondBoundary: if user-defined No is outside the permissible

value range.

Example:

Page 29

7/24/2006

VB:Dim ErrCode as long, Val as long, echo1 as string

 call m_CommManager.SendCMLBlock(“?99.1”, “?99.1*”, ErrCode, Val, echo1)

In this you will get the results as follows:

 ErrCode = 0

 Val=8

 Echo1=“?99.1”

 ?99.1

 Ux.1=8

VC:Long ErrCode, Val;

 BSTR echo1;

m_CommManager.SendCMLBlock((LPCTSTR) “?99.1”, (LPCTSTR) “?99.1*”,
&ErrCode, &Val, & echo1)

Remark: This function and SendCML() are quite similar but differ in that the

function does not use the Comm event to return the value. The value is returned

by the function immediately. It also does not use the task queue and will wait

until the foreground queue is empty before executing.

3.2.14. GetM_Result()
long m_Result(long index)

long GetM_Result(long* index)

Description:

GetM_Result() is a read only CommManager memory-search function. A calling

application can use it to retrieve results from the CommManager memory.

Parameters:

• index: The memory index from 0 to 1023.

Return Value(s):

• A long type value.

Example:

VB: dim x as long ‘result

 Dim y as long ‘index

 x = m_CommManager.m_Result(y)

VC: long x,y;

 X = m_CommManager.GetM_Result(x);

Page 30

7/24/2006

3.2.15. ExecuteCML
HRESULT ExecuteCML(BSTR CML, long No, long ID)

Description:

Execute a CML motion Command, such as “^.1”, “[.1” and so on.

Parameters:

• Refer to §4.1.1

Return Value(s):

• S_OK: if executed successfully

• CmGoesBeyondBoundary: if user-defined No is outside the permissible

value range

Example:

VB: call m_CommManager.ExecuteCML(“|2.1,p.1=1000,^.1”, 1, 100)

VC:m_CommManager.ExecuteCML((LPCTSTR) “|2.1,p.1=1000,^.1”, 1, 100)

Remark: This function will send the CML command to the foreground queue and

will automatically send a “?99.1” command to the background queue. You will

receive a message in the event function OnExecuteCML() for every iteration of

the background queue. The value in m_Result will display the state of the task

executed in ExecuteCML().

3.2.16. DeletebgCML()
HRESULT DeletebgCML()

Description:

This function deletes all the CML commands in the background queue.

Parameters:

• None

Return Value(s):

• S_OK: if executed successfully

Example:

VB: call m_CommManager.DeletebgCML()

VC: m_CommManager.DeletebgCML();

Page 31

7/24/2006

3.2.17. ExecutemCML
HRESULT ExecutemCML(BSTR* CML, long* No, int dim, int* ID)

Description:

A multiple CML command execute.

Parameters:

• Refer to §4.1.1

Return Value(s):

• S_OK: if executed successfully

• CmGoesBeyondBoundary: if user-defined No is outside the permissible

value range

Example:

VB: call m_CommManager.ExecutemCML(CML(0), No(0), 2, ID(0))

VC: m_CommManager.ExecutemCML((LPCTSTR*) CML, No, 2, ID)

3.2.18. TimerInterval()
HRESULT TimerInterval(short *pVal)

HRESULT TimerInterval(short newVal)

Description:

The timer for the foreground queue in milliseconds. A task in the queue will be

executed every newVal milliseconds.

Parameters:

• *pVal and newVal are used to get and to set the timer interval

respectively

Return Value(s):

• None

Example:

VB: m_CommManager.TimerInterval = 10

VC: m_CommManager.SetTimerInterval(10);

Remark: If the TimerInterval is too short, it is possible that a command will not

finish during the interval. In this case, the task will be executed continuously

without interruption while future tasks are queued.

Page 32

7/24/2006

3.2.19. TimerStart()
HRESULT TimerStart()

Description:

Start the multimedia timer

Parameter:

• None

Return Value(s):

• S_OK if executed successfully

Example:

VB: call m_CommManager.TimerStart

VC: m_CommManager.TimerStart();

Remark: TimerStart() does not start a timer but records the timestamp at the

execution.

3.2.20. TimerStop()
HRESULT TimerStop(double* time1)

Description:

TimerStop() returns the difference between the timestamps of the start and stop

timer.

Parameter:

• time1: pointer to a double type variable.

Return Value(s):

• S_OK: if executed successfully

Example:

VB: call m_CommManager.TimerStop(time1)

VC: m_CommManager.TimeStop(&time1);

3.2.21. m_BackForeRatio()
HRESULT m_BackForeRatio(short *pVal)

HRESULT m_BackForeRatio(short newVal)

Description:

Page 33

7/24/2006

The foreground and background execution times are set according to this ratio.

For a positive value the ratio is set newVal:1 (forground:background). For a

negative value the ratio is set |newVal|:1 (background:foreground). See the

remarks below the example for a more complete description of the functionality

of the method.

Parameter:

• *pVal and newVal are the parameters for the foreground ratio.

Return Value(s):

• S_OK: if executed successfully

Example:

VB: m_CommManager.m_BackForeRatio = 4

VC: m_CommManager.SetM_BackForeRatio(4)

Remark: An important parameter for the CommManager, m_BackForeRatio sets

the ratio of foreground events versus background events for a single period of

queue task scheduling. m_BackForeRatio > 0 means foreground tasks will

execute m_BackForeRatio queue time units for every 1 background queue time

unit for a single period. m_BackForeRatio < 0 means foreground tasks will

execute 1 queue time unit for every |m_BackForeRatio| background queue time

units executed per period. Special considerations include:

• m_BackForeRatio = 0 results in a single pre-emptive queue whereby

events are executed on a FCFS basis. This version of queuing pre-empts

empty time-units incurred when executing tasks based on a ratio of

|m_BackForeRatio| > 0. However, tasks are still loaded into either the

foreground queue or background queue and thus will inherit the properties

of that queue when executed;

• m_BackForeRatio = 32767 results in a foreground queue only;

• m_BackForeRatio = -32767 results in a background queue only.

Refer to §3.1 for more in-depth consideration of queue operation and

functionality.

3.2.22. DeleteCML()
HRESULT DeleteCML()

Page 34

7/24/2006

Description:

Deletes all the tasks in the foreground queue.

Parameters:

• None

Return Value(s):

• S_OK: if executed successfully

Example:

VB: call m_CommManager.DeleteCML

VC: m_CommManager.DeleteCML();

3.2.23. DeleteCMLOnQues()
HRESULT DeleteCMLOnQues(EventConstant QueID, long TaskID)

Description:

Delete a CML command in the queue assigned by QueID with the TaskID.

Parameters:

• QueID: Queue ID is defined as follows:

 ForeGroundQue = vbForeGnd = 1

 BackGroundQue = vbBackGnd = 2

 Command Sent by ExecuteCML (ExecutemCML) = vbExecute = 3

 SilentQue = vbSilent = 4

Return Value(s):

• S_OK: if executed successfully

Example:

VB: call m_CommManager.DeleteCMLOnQues(1, 100)

VC: m_CommManager.DeleteCMLOnQues(1,100);

3.2.24. MotorResponse()
HRESULT MotorResponse(int MotorID, long Altitude, long MaxSpeed, long
MaxAcc, int dim, MotorExecuteBankConstant Type, long ID)

Page 35

7/24/2006

Description:

This function is used to do a motor test.

Parameters:

• MotorID is the id of motor in the daisy chain.

• Altitude is the altitude of motion in the unit of pulses

• MaxSpeed is the speed of the motion in the unit of pulses per second

• MaxAcc is the maximum acceleration of the motion in the unit of

Kilopulses per second squared

• dim is number of sampling points during the motor test

• Type is the query command.

• ID refer to the general definition in §4.1.1

Return Value(s):

The CommManager memory from index range 0 to dim-1 will be used to record

the experiment Results. The data is in m_Result and the time that the data is

sampled is in m_Timing.

Example:

VB: call m_CommManager.MotorResponse(1, 1000, 100, 100, 200, 96, 101)

VC: CString t, t1;

 t = "K37.1=3"; t1 = t + "*";

 m_CommManager.SendCML(t, t1, 0, 0);

 t = "K23.1=0"; t1 = t + "*"; m_P = 1000; m_S = 100; m_A = 100;

 m_CommManager.SendCML(t, t1, 0, 0);

 m_CommManager.MotorResponse(1, m_P, m_S, m_A, 200, 96, 101);

Remark: The units of Altitude, MaxSpeed and MaxAcc depend on the motor’s

resolution parameter (K37). Be sure to understand and set this command first.

3.2.25. m_Timing()
HRESULT m_Timing(int index, double *pVal)

Description:

CommManager memory used together with the m_Result.

Parameters:

Page 36

7/24/2006

• index is the index of CommManager memory.

• *pVal a pointer to a double type variable

Return Value(s):

• S_OK: if executed successfully

Example:

VB: x = m_CommManager.m_Timing(1)

VC: m_CommManager.GetM_Timing(&x);

3.2.26. SetMemoryLength()
HRESULT SetMemoryLength(long len)

Description:

Release the CommManager memory and reallocate the CommManager memory

with dimension len.

Parameter:

• len is the dimension of the CommManager memory.

Return Value(s):

• S_OK: if successful

• cmAllocateMemoryError: If the allocation of memory failed.

Example:

VB: call m_CommManager.SetMemoryLength(1024)

VC: m_CommManager.SetMemoryLength(1024);

Remark: The default size of CommManager Memory is 1024 (0-1023)

3.2.27. m_QueueBackCount()
HRESULT m_QueueBackCount(long *pVal)

Description:

This function retrieves the number of tasks in the background queue.

Parameter:

• *pVal: a point to a double type variable.

Return Value(s):

• S_OK: if executed successfully

Page 37

7/24/2006

Example:

VB: x = m_CommManager.m_QueueBackCount

VC: m_CommManager.GetM_QueueBackCount(&I)

3.2.28. m_QueueForeCount()
HRESULT m_ QueueForeCount (long *pVal)

Description:

This function retrieves the number of tasks in the foreground queue.

Parameter:

• *pVal: is a point to a double type variable.

Return Value(s):

• S_OK: if executed successfully

Example:

VB: x = m_CommManager.m_ QueueForeCount

VC: m_CommManager.GetM_ QueueForeCount(&i)

3.2.29. m_QueueSilentCount()
HRESULT m_QueueSilentCount(long *pVal)

Description:

This function retrieves the number of tasks in the silent queue.

Parameter:

• *pVal: is a point to a double type variable.

Return Value(s):

• S_OK if executed successfully

Example:

VB: x = m_CommManager.m_QueueSilent

VC: m_CommManager.GetM_QueueSilent (&i)

Remark: Useful for determining if the queues are overloaded during execution.

3.2.30. m_CMLCheck()
HRESULT m_CMLCheck(long *pVal)

HRESULT m_CMLCheck(long newVal)

Page 38

7/24/2006

Description:

Boolean type function to turn CML syntax checking on or off.

Parameters:

• *pVal and newVal are values from and to CommManager respectively. To

enable CML syntax checking then set newVal equal to 1. All other values

will disable syntax checking.

Return Value(s):

• S_OK: if executed successfully

Example:

VB: m_CommManager.m_CMLCheck = 1

VC: m_CommManager.SetM_CMLCheck (1)

3.2.31. m_WriteToLogFile()
HRESULT m_WriteToLogFile(long *pVal)

HRESULT m_WriteToLogFile(long newVal)

Description:

This function is used to turn on/off a log file of all motor network and Host PC

communication.

Parameters:

• *pVal and newVal are values from and to CommManager respectively. To

enable data logging set newVal equal to 1. All other values will disable

data logging.

Return Value(s):

• S_OK: if successful

Example:

VB: m_CommManager.m_WriteToLogFile = 1

VC: m_CommManager.SetM_WriteToLogFile(1)

Remark: The log file is saved as log.dat and is placed in the root directory of the

CommManager object. The log.dat has no limit in size and is intended for

debugging purposes. It should be noted that continuous daily use of the log file

Page 39

7/24/2006

could result in PC system performance degradation and may result in a system

crash. The log.dat will be cleared when CommManager is loaded.

3.2.32. TestCommDelay()
HRESULT TestCommDelay(int Motor1, int Motor2, double* TimeDelay)

Description:

This function will send “?99.1” to Motor1 and Motor2 and return the propagation

time difference between them.

Parameters:

• Motor1: ID of the 1st motor in the daisy chain

• Motor2: ID of the 2nd motor in thedaisy chain

Return Value(s):

• S_OK: if executed successfully

Example:

VB: call m_CommManager.TestCommDelay(1,2 TimeDelay)

VC: m_CommManager.TestCommDelay(1,2,&TimeDelay);

3.2.33. Functions for Wrapping Basic CML Commands
The following functions are simple wrapper functions of CML commands to free

the user from CML

In the following, ‘MotorID’ is the ID of the motor in the daisy chain. ‘No’ is the

index of CommManager memory. ‘ID’ is a message ID. ‘Type’ is the type of query

command during the execution. It takes the following values:

• vbPError = 95 query position error

• vbPos = 96 query position

• vbVel = 97 query current speed

• vbTorq = 98 query current torque

• vbStatus = 99 query current motor status

These values are defined in enum of MotorExecuteBankConstant.

3.2.33.1. MotorGoOrigin()
HRESULT MotorGoOrigin(int MotorID, long No, long ID)

Page 40

7/24/2006

Description: Returns the motor to its origin

Remark: The returning result is in m_Result[No]

3.2.33.2. MotorExecBank()
HRESULT MotorExecBank(int MotorID, int BankNo, int dim,
MotorExecuteBankConstant Type, long ID)

Description: Executes a bank program

Remark: The returning result is in m_Result[From 0 to dim-1]

3.2.33.3. MotorStop()
HRESULT MotorStop(int MotorID, long ID)

Description: Stops the motor

3.2.33.4. MotorEnable()
HRESULT MotorEnable(int MotorID, long ID)

Description: Enables the motor.

3.2.33.5. MotorDisable()
HRESULT MotorDisable(int MotorID, long ID)

Description: Disables the motor.

3.2.33.6. MotorDynaExec()
HRESULT MotorDynaExec(int MotorID, int dim, MotorExecuteBankConstant Type,
long ID)

Description: Executes the dynamic bank contents – i.e. motor moves to p0.1 at

speed, s0.1, and acceleration, a0.1.

Remark: The returning result is in m_Result[From 0 to dim-1]

3.2.33.7. MotorCP()
HRESULT MotorCP(int MotorID, int dim, MotorExecuteBankConstant Type, long
ID)

Description: Motor moves using the continuous point feature

Remark: The returning result is in m_Result[From 0 to dim-1]

3.2.33.8. MotorQuery()
HRESULT MotorQuery(int MotorID, int No, int Type, long ID)

Description: Queries motor status

Remark: The returning result is in m_Result[No]

Page 41

7/24/2006

3.3. Functions For Running CML Script

3.3.1. GetVersion()
HRESULT GetVersion(BSTR* version);

Description: This function is used to query the version of CommManager.

Parameters:

• Version: to receive the version of CommManager

Return Value(s):

• S_OK: if executed successfully

Example:

VB: Dim ver as string

call m_CommManager.GetVersion(ver)

VC: BSTR ver;

m_CommManager.GetVersion(&ver)

3.3.2. m_SchedulerStyle()
A property of CommManager which is under development. At present, you can

use m_BackForeRatio to define the style of the Scheduler of the CommManager.

3.3.3. RegisterEvents()
RegisterEvents(long EventType, long MotorID, double TimeOut);

Description:

This function will register an event to CommManager so that when an event

happens, the calling application will get notified from Event (OnMotorEvent) of

CommManager. See more on the event types in the remarks below the example.

Parameters:

• EventType:

o 1 - "Ux"

o 2 - " IN"

o 3 - "OUT1"

o 4 - "OUT2"

o 5 - "ID"

Page 42

7/24/2006

o 6 - "End!"

o 7 - "Origin"

• MotorID: A number between 1 to 16.

• TimeOut: A time period for timeout time whose unit is second.

 Return:

• S_OK: if executed successfully

Example:

VB: call m_CommManager.RegisterEvents(1, 1, 10.0)

VC: m_CommManager.RegisterEvents(1, 1, 10.0);

Remark 1: This function is an early function in CommManager development. Now

all the events from the motor are registered as system events when

CommManager is initialised. This function is different from the system events as

you can assign a timeout.

Events during operation depend on the setting of K23. The following are events

when K23=7:

1. Motor Status: Ux.ID=x

2. Input changes: IN.ID=x

3. Output1 changes: OUT1.ID=x

4. Output2 changes: OUT2.ID=x

5. Power on: ID

6. Completion of bank execution: End!

7. Origin search completion: Origin

Note: Ux.ID=x event will now be referred to as Ux event, and so on.

Remark 2: If we register the following event to CommManager

 VB: call m_CommManager.RegisterEvents(1, 1, 10.0)

Then if an event of Ux.1=x happens within 10.0sec then OnMotorEvent will be

issused with the following parameters:

 MotorEvent = 1

 MotorID = 1

Page 43

7/24/2006

 Value = x

If it times out then OnMotorEvent will be issused with the following parameters:

 MotorEvent = 1

 MotorID = 1

 Value = -77777777

3.3.4. DetectMotorCommunication()
DetectMotorCommunication(long MemoryAddress)

Description:

This function scans how many motors are there in the network. Not implemented

as of this time.

3.3.5. BlockExecute()
BlockExecute(long flag)

Description:

This function blocks the execution of the application with Keyboard and mouse

activated. This function is an auxiliary function to simplify the programming of

sequential actions. It will be released when Ux, End and Origin events happen.

Parameters:

• Flag:

o True - activate blocking

o False – deactivate blocking

Return:

• S_OK: if executed successfully

Examples:

VB: call m_CommManager.BlockExecution(1)

VC: m_CommManager.BlockExecution(1);

Remark: To provent this function hangs up your program, it is recommdated to

call BlockExecution(0) before exit the program. For VB program, call it at

query_unload.

For VC program, call it in the deconstructor of a class that calls the

BlockExecution.

Page 44

7/24/2006

3.3.6. DisableBlock()
HRESULT DisableBlock(No)

Description: This function will terminate the execution of the current script(s).

Parameter:

• No

Return value:

• No

Examples:

VB: m_CommManager.DisableBlock = 0

VC: m_CommManager.Put_DisableBlock(0);

Remark: Set DisableBlock() to a value that is not equal to 1 will terminate the

execution of the current script(s). It is different from StopMScript function.

StopMScript only terminates the script with BankNo.

3.3.7. RunScript()
HRESULT RunScript(BSTR bank)

Description: Run a CML script for CML devices. This function will not block your

application and will issuse a message to your application when the script finishes.

The definition can be found in the document of CML script language. It contains a

set of natural English based commands, such as Circle(1, 2,0, 3600, 1000,100)

draws a circle with radius 1000, speed 100 by means of motor 1 and motor 2.

Parameters:

• bank: A string contains the script

Return value:

• S_OK: if executed successfully

Examples:

VB:dim bank

 bank = “Loop(3)”+ vbcrlf

 bank = bank + “p.1=10000,^.1”+vbcrlf

 bank = bank + “p.1=-10000,^.1”+vbcrlf

Page 45

7/24/2006

 bank = bank + “LoopEnd”+vbcrlf

 call commport1.RunScript(bank)

This will cause motor1 go forward and backward three times.

VC: CString bank;

 bank = “Loop(3)\r\n”;

 bank = bank + “p.1=10000,^.1\r\n”;

 bank = bank + “p.1=-10000,^.1\r\n”;

 bank = bank + “LoopEnd\r\n”;

 m_CommManager.RunScript((LPCTSTR)bank);

Remark: To run RunScript successfully, set K14=1111. This turns off the echo

message from motors.

3.3.8. m_Password()
Description: A password to be able to use CommManager

Parameter(s):

• No

Return value(s)

• S_OK: if executed successfully

Examples:

VB: m_CommManager.m_Password = “1234567890”

VC: m_CommManager.SetM_Password(“1234567890”);

3.3.9. RunMScript()
RunMScript(BSTR* mBank, int Dim)

Description: Run several scripts at the same time. For some advanced

application, there is a need to group motors on the network into different groups

and execute scripts at the same time.

Parameters:

• mBank: a string array contains scripts

• Dim: the dimension of mBank

Return Value(s):

• S_OK: if executed successfully

Page 46

7/24/2006

Examples:

 Refer to 4.3.8

3.3.10. StopMScript()
StopMScript(int BankNo)

Description: stop a script launched by RunScript() or RunMScript()

Parameters:

• BankNo: the No of the script that you want to stop

Return Values:

• S_OK: if executed successfully

Examples:

VB: call m_CommManager.StopMScript(1)

VC: m_CommManager.StopMScript(1);

Remark: When the script is lauched by RunScript, set BankNo = 1

3.3.11. m_ScriptVar()
Description: An array with the dimension of 1024 used by script.

Please refer to the document of CML scripting language.

3.3.12. m_TranslatedCMLScript()
m_TranslatedCMLScript(long Index, BSTR *pVal)

Description: Before a script execution, it is be translated to CML language. The

translated results will be saved in the m_TranslatedCMLScript(). By looking at

this, you can understand what is happening in the CommManager.

Parameter:

• Index: the number of the script interested

• pVal: a pointer to a string.

Return Values:

• S_OK: if executed successfully

Page 47

7/24/2006

3.3.13. ScriptStepExecute()
ScriptStepExecute()

Description: Execute the script step by step.

Parameters:

• No

Return Values:

• S_OK: if executed successfully

Examples:

VB: Call m_CommManager.ScriptStepExecute()

VC: m_CommManager.ScriptStepExecute();

Remark: Stepping execution will start when “S_Stepping” appears in the script.

When “E_Stepping” is encountered the stepping execution terminates. For

example:

Loop(3)

p.1=1000,^.1

p.1=-1000,^.1

LoopEnd

S_Stepping

Loop(3)

p.1=1000,^.1

p.1=-1000,^.1

LoopEnd

E_Stepping

Loop(3)

p.1=1000,^.1

p.1=-1000,^.1

LoopEnd

Then only the loop marked with yellow will be executed step by step. When you

call ScriptStepExecute. S_Stepping and E_Stepping is not valid for the RunScript

and RunMScript.

Page 48

7/24/2006

4. EVENTS OF COMMMANAGER

4.1.

4.2. OnMotorEvent()

OnComm and OnExecuteCML
HRESULT OnComm(long CommEvent, long MotorID, long MsgID)

HRESULT OnExecuteCML(long CommEvent, long MotorID, long MsgID)

Description:

If you insert the CommManager as an ActiveX control into your project then you

can use these events. OnComm event will be issused when you use the commands

beginning with “Send” to send commands to motors. OnExecuteCML will be issused

when you execute a command by ExecuteCML or ExecutemCML.

Parameters:

• CommEvent, CommManager uses these constants to distinguish by what

kind of command the event is triggered. The EventConstant is defined as

follows:

o vbTimeout = -1 Triggered when timeout occurs

o vbDirect = 0 Triggered by SendCommPort function

o vbForeGnd = 1 Triggered by a foreground command

o vbBackGnd = 2 Triggered by a background command

o vbExecute = 3 Triggered by a ExecuteCML function

o vbSilent = 4 Triggered by a silent command Info,

CommManager uses this number to indicate by which command

the event is triggered

o vbBlock = 5 Triggered by a SendCMLBlock command.

 Return Value(s):

• None

HRESULT OnMotorEvent(long MotorEvent, long MotorID, long Value)

Description:

Capture the events from motor. Seven events will be generated, shows as follows:

Page 49

7/24/2006

 1) "Ux": Generated when Ux.Id=* (*= 0, 1, 2, 4, 8) returned from motor.

 2) "IN": Generated when Inputs of motors change

 3) "OUT1": Generated when Outputs 1 of motors change

 4) "OUT2": Generated when Outputs 2 of motors change

 5) "ID": Generated when motors are powered on.

 6) "End!": Generated when a bank program finishes.

 7) "Origin": Generated when motor arrives its origin.

In additional to those, when a script finishes, OnMotorEvent will be issused with

MotorEvent = 8, MotorID = 0, Value = 0.

Parameters:

• MotorEvent: belongs to 1-8. The value means a kind of event occurs.

• MotorID: the motor that generates the event

• Value: The event value.

For example: Ux.4=8 occurs then OnMotorEvent will be generated with the

following parameters:

 MotorEvent = 1

 MotorID = 4

 Value = 8

4.3. OnRS232()
OnRS232(CommPortEventConstant EventNo)

This event tells you a CommPort hardware event has happened.

Parameter:

• EventNo takes the following value:

o EV_RXCHAR = 0x0001, // Any Character received

o EV_RXFLAG = 0x0002, // Received certain character

o EV_TXEMPTY = 0x0004, // Transmitt Queue Empty

o EV_CTS = 0x0008, // CTS changed state

o EV_DSR = 0x0010, // DSR changed state

o EV_RLSD = 0x0020, // RLSD changed state

o EV_BREAK = 0x0040, // BREAK received

o EV_ERR = 0x0080, // Line status error occurred

Page 50

7/24/2006

o EV_RING = 0x0100, // Ring signal detected

o EV_PERR = 0x0200, // Printer error occured

o EV_RX80FULL = 0x0400, // Receive buffer is 80 percent full

o EV_EVENT1 = 0x0800, // Provider specific event 1

o EV_EVENT2 = 0x1000, // Provider specific event 2

Return value:

• No

5. CALLBACK OF COMMMANAGER

CommManager can callback a function defined by the user application. This is

important when we do real-time control. The callback function can be set to

CommManager by SendcbbgCML() function. The prototype of the callback

function is defined as follows:

 long _stdcall func(long x, BSTR*u)

Where x is measurement data from the CommManager, and u is a point of a

string that will be sent to a motor. This function usually can be used to

implement a controller. For example, by VB, we can implement a torque control

by the following command.

Call m_CommManager.SendcbbgCML("?98.1", "?98.1*", 0, AddressOf controllerX,
101)

Where the controllerX is defined a module as public function as follows:

Public Function controllerX(ByVal x As Long, ByRef u As String) As Long

 sp2 = CInt(Main.TS.Text)

 err = sp2 - x

 s1 = err * 1

 Main.TR.Text = x

 Debug.Print s1, x

 If (s1 > 25000) Then

 s1 = 25000

 ElseIf (s1 < -25000) Then

 s1 = -25000

 End If

 u = "s0.1=" + CStr(Int(s1))

 Print #1, x, Main.ComPort1.m_Timing(0)

End Function

Page 51

7/24/2006

6. EXAMPLES USING COMMMANAGER

There are five projects sent together with the CommManager control. They are

projects of

a) BasicFunctions

Examples of SendCML, SendbgCML, ExecuteCML and so on are given. This

project shows that we can execution of “^.1” on the foreground queue

then qeury the motor position on the background queue. We can monitor

the position during the motion. This project also shows that we can

execute a set of CML Commands serially as the same to the exection of

Bank program in the motor.

b) DrawACircle

Examples of using SendcbbgCML and callback. This project shows how to

implement an external position controller by CommManager so that we

can make two motors work cooperatively. However, be very cautious

using this program, because windows OS is not a real-time OS. Therefore,

DO NOT EXECUTE ANY OTHER PROGRAM WHEN RUNNING THIS

APPLICATION.

c) StepResponse

Examples of using MotorResponse. This project shows how to get a step

response of motor

d) TorqueControl

Examples of using SendcbbgCML. This project shows how to implement an

external torque controller by CommManager

e) SilentCML.

Examples of using SendSilentCML. This project shows how to use

SendSilentCML to execute CML Command silently.

Each project has VB and VC version.

Page 52

7/24/2006

7. CONCLUSION

CommManager was developed to help users manage complex and repetitive

programming in their developing of control software for Cool Muscle motor

system. Several other functions will be added to the CommManager such as G-

code commands.

Page 53

7/24/2006

APPENDIX A Constants Defined in the
CommManager

There are three sets of constants defined in the CommManager. They are type

information or error message. The error message is somewhat strange because it

is COM message. You can find out its real value by the Object Browser.

enum EventConstant {

 vbTimeout = -1,

 vbDirect = 0,

 vbForeGnd = 1,

 vbBackGnd = 2,

 vbExecute = 3,

 vbSilent = 4,

 } EventConstant;

enum MotorExecuteBankConstant{

 vbPError = 95,

 vbPos = 96,

 vbVel = 97,

 vbTorq = 98,

 vbStatus = 99,

} MotorExecuteBankConstant;

enum CmError{

 cmErrorOpenComPortErr = MAKE_HRESULT(SEVERITY_ERROR,FACILITY_ITF,0xFFFF),

 cmSearchingBaud rateError = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFFE),

 cmCanNotOpenComPort = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFFD),

 cmSendCMLError = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFFC),

 cmGoesBeyondBoundary = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFFB),

 cmComPortNotOpen = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFFA),

 cmWrongMotorID = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFF9),

 cmAllocateMemoryError = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF,0xFFF8)

} CmError

Page 54

	1. INTRODUCTION
	2. TRANSFERABLE BENEFITS USING COMMMANAGER
	2.1. A Brief Overview of Existing Cool Muscle Motor Network Topology
	2.2. Basic Requirements for a PC Application Controlling Cool Muscle Motors
	2.3. Application Development with the CommManager
	2.3.1. CommManager Installation
	2.3.2. CommManager Uninstallation
	2.3.3. CommManager Password

	 THE FEATURES OF COMMMANAGER
	2.4. Operational Properties of the Task Queues
	2.4.1. Timing and Scheduling of the Queues
	2.4.2. Properties of the Foreground Queue
	2.4.3. Properties of the Background Queue
	2.4.4. Properties of the Silent Queue

	2.5. The Features of the CommManager
	2.5.1. Management of Low-Level RS232C Communication
	2.5.2. An Accurate Timer
	2.5.3. A Syntax Checker
	2.5.4. Command Queues
	2.5.5. Call-back Functionality
	2.5.6. Management of CML Command Queues
	2.5.7. Multi-Threaded Operation

	3. FUNCTIONS IN THE COMMMANAGER COM INTERFACE WITH PROGRAMMING EXAMPLES
	3.1. General definitions for CommManager functions
	3.1.1. Some common arguments to most CommManager functions
	3.1.2. Return arguments
	3.1.3. Events related with commands
	3.1.4. Using ActiveX controls in your application
	3.1.5. Constants defined in CommManager

	3.2. Function descriptions
	3.2.1. OpenCommPort()
	3.2.2. CloseCommPort()
	3.2.3. SendCommPort()
	3.2.4. ReadCommPort()
	3.2.5. SendCML()
	3.2.6. SendmCML()
	3.2.7. SendbgCML()
	3.2.8. SendbgmCML()
	3.2.9. SendFile()
	3.2.10. SendcbbgCML()
	3.2.11. SendcbCML()
	3.2.12. SendSilentCML()
	3.2.13. SendCMLBlock()
	3.2.14. GetM_Result()
	3.2.15. ExecuteCML
	3.2.16. DeletebgCML()
	3.2.17. ExecutemCML
	3.2.18. TimerInterval()
	3.2.19. TimerStart()
	3.2.20. TimerStop()
	3.2.21. m_BackForeRatio()
	3.2.22. DeleteCML()
	3.2.23. DeleteCMLOnQues()
	3.2.24. MotorResponse()
	3.2.25. m_Timing()
	3.2.26. SetMemoryLength()
	3.2.27. m_QueueBackCount()
	3.2.28. m_QueueForeCount()
	3.2.29. m_QueueSilentCount()
	3.2.30. m_CMLCheck()
	3.2.31. m_WriteToLogFile()
	3.2.32. TestCommDelay()
	3.2.33. Functions for Wrapping Basic CML Commands
	3.2.33.1. MotorGoOrigin()
	3.2.33.2. MotorExecBank()
	3.2.33.3. MotorStop()
	3.2.33.4. MotorEnable()
	3.2.33.5. MotorDisable()
	3.2.33.6. MotorDynaExec()
	3.2.33.7. MotorCP()
	3.2.33.8. MotorQuery()

	3.3. Functions For Running CML Script
	3.3.1. GetVersion()
	3.3.2. m_SchedulerStyle()
	3.3.3. RegisterEvents()
	3.3.4. DetectMotorCommunication()
	3.3.5. BlockExecute()
	3.3.6. DisableBlock()
	3.3.7. RunScript()
	3.3.8. m_Password()
	3.3.9. RunMScript()
	3.3.10. StopMScript()
	3.3.11. m_ScriptVar()
	3.3.12. m_TranslatedCMLScript()
	3.3.13. ScriptStepExecute()

	4. EVENTS OF COMMMANAGER
	4.1. OnComm and OnExecuteCML
	4.2. OnMotorEvent()
	4.3. OnRS232()

	5. CALLBACK OF COMMMANAGER
	6. EXAMPLES USING COMMMANAGER
	7. CONCLUSION

