
UNICORE Commandline Client: User Manual

UNICORE COMMANDLINE CLIENT: USER

MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 7.0.3
Date: 18 07 2014

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

UNICORE Commandline Client: User Manual

Contents

1 Overview 1

2 Installation and configuration 1

2.1 Prerequisites . 1

2.2 Download . 1

2.3 Installation and configuration . 2

2.4 Preferences file . 2

2.5 Logging . 3

2.6 Installing UCC extensions . 3

2.7 Testing the installation . 3

3 Getting started with UCC 3

3.1 Getting help . 4

3.2 Connecting . 4

3.3 List available sites . 4

3.4 Running your first job . 4

3.5 Listing your jobs . 5

4 Common options to UCC 5

4.1 User attributes and VOs . 6

4.2 Configuration file . 6

4.3 Credential and truststore options . 7

4.4 Trust store examples . 12

4.5 Using Unity . 12

4.6 Using MyProxy . 13

4.7 Client options . 13

4.8 Other options . 16

5 SAML PUSH support 17

5.1 Introduction . 17

5.2 Basic usage . 17

5.3 Attribute filtering . 18

5.4 Rules for multiple filters . 19

UNICORE Commandline Client: User Manual

6 Running jobs 19

6.1 Introduction . 19

6.2 Options overview . 20

6.3 Resource brokering . 21

6.4 Processing jobs asynchronously . 21

7 Job description format 23

7.1 Site name . 24

7.2 Specifying the application or executable . 24

7.3 Arguments and Environment settings . 25

7.4 Application parameters . 25

7.5 Job data management . 26

7.6 Resources . 29

7.7 Execution environments . 29

7.8 Miscellaneous options . 30

8 Data management functions 31

8.1 Specifying remote locations . 31

8.2 Data movement . 33

8.3 Handling directories . 34

8.4 Finding data . 35

8.5 Deprecated commands . 35

9 Metadata management functions 36

9.1 Basics . 37

9.2 Available commands . 37

10 Workflow extensions 39

10.1 Introduction . 39

10.2 Command overview . 39

10.3 Basic use . 39

10.4 Managing workflow data . 40

10.5 More . 41

UNICORE Commandline Client: User Manual

11 Batch processing 41

11.1 Options . 41

11.2 Performance tuning options . 42

11.3 Resource selection in batch mode . 43

12 OGSA-BES functions 43

12.1 OGSA-BES Setup . 43

12.2 Running and monitoring OGSA-BES jobs . 44

12.3 Get OGSA-BES job outputs . 45

12.4 Enabling username/password authentication 46

13 The UCC shell 46

13.1 Exiting the shell . 46

13.2 Changing property settings . 47

14 Admin use of UCC 47

14.1 Security considerations . 47

14.2 Filtering lists . 47

14.3 WSRF commands . 48

15 Scripting 49

15.1 Script context . 49

15.2 Examples . 49

16 Frequently asked questions 51

16.1 Configuration . 51

16.2 Usage . 52

UNICORE Commandline Client: User Manual 1

1 Overview

The UNICORE Commandline client (UCC) is a full-featured client for the UNICORE Grid
middleware. UCC has client commands for all the UNICORE basic services, the OGSA-BES
interface and the UNICORE workflow system.

It offers the following functions

• Job submission and management for both UNICORE native and OGSA-BES interfaces

• Batch mode job submission and processing with many performance tuning options

• Data movement (upload, download, server-to-server copy, etc) using the UNICORE storage
management functions and available data transfer protocols

• Storage functions (ls, mkdir, . . .) including creation of storage instances via storage factories

• Full UNICORE workflow system support, including the possibility to run single jobs through
the resource brokering system

• Support for the UNICORE metadata system

• Information about the Grid is provided via the "system-info" and "query-cip" commands

• Various utilities like a "shell" mode, the ability to generate SAML trust delegations, low-level
WSRF operations and others

• Extensibility through custom commands and the possibility to run scripts written in the
Groovy programming language

• Built-in help

For more information about UNICORE visit http://www.unicore.eu.

2 Installation and configuration

2.1 Prerequisites

To run UCC, you need a Java runtime in version 1.6.0_25 or later.

We recommend Java 7 (OpenJDK, Oracle or IBM). You might need to install the "unlimited
cryptography extensions" for the Oracle or IBM Java.

2.2 Download

You can get the latest version from the SourceForge UNICORE download page.

http://www.unicore.eu
http://sourceforge.net/project/showfiles.php?group_id=102081&package_id=263954

UNICORE Commandline Client: User Manual 2

2.3 Installation and configuration

To install, unpack the distribution in a directory of your choice. It’s a good idea to add the bin/
directory to your PATH variable,

export PATH=$PATH:<UCC_HOME>/bin

where UCC_HOME is the directory you installed UCC in.

Note
Windows only Please do not install UCC into a directory containing spaces such as "Program
files".
Also avoid long path names, this can lead to errors due to the Windows limit on command line
length.
Setting environment variables can be done (as administrator) using the Control
panel→System→Extras panel.

Though you can specify your keystore location and other parameters on the commandline, it
is easiest to place this information in a file, so that you do not have to key in this information
repeatedly.

2.4 Preferences file

UCC checks by default whether the file <userhome>/.ucc/preferences exists, and reads it.

A minimal example that specifies keystore, password and your preferred UNICORE registry
URL would look as follows:

credential.path=<your keystore>
credential.password=<your password>
truststore.type=keystore
truststore.keystorePath=<your keystore>
truststore.keystorePassword=<your password>
client.serverHostnameChecking=NONE
registry=<your registry>

Please refer to Section 4 for a full description of available options.

Note
If you are worried about security, and do not want specify the password: UCC will ask for it if
it is not given in the preferences or on the commandline.

UNICORE Commandline Client: User Manual 3

Note
Windows only The preferences are usually searched in the "c:\Users\<user_name>\.ucc"
folder.
To create the .ucc folder, you might have to use the command prompt "mkdir" command.
When specifying paths in the preferences file, the backslash \ character needs to be written
using an extra backslash \\

For example, if you are using a local UNICORE installation for testing, you could use

registry=https://localhost:8080/DEMO-SITE/services/Registry?res= ←↩
default_registry

Note
If you wish to change the default property file location, you can set a Java VM property in the
UCC start script, for example by editing the command that starts UCC

java -Ducc.preferences=<preferences location>

2.5 Logging

UCC writes some messages to the console, more if you choose the verbose mode (-v option). If
you need real logging (e.g. when using the batch mode), you can edit the <UCC_HOME>/conf/logging.properties
file, which configures the Log4J logging infrastructure used in UNICORE.

2.6 Installing UCC extensions

UCC can be extended with additional commands. It is enough to copy the libraries (.jar files)
of the extension into a directory that is scanned by UCC: in general these are the UCC lib

2.7 Testing the installation

To test your UCC installation and to get information about the resources on the Grid you’re
connecting to, do

ucc system-info -l -v

3 Getting started with UCC

Assuming you have successfully installed UCC, this section shows how to get going quickly.

UNICORE Commandline Client: User Manual 4

3.1 Getting help

Calling UCC with the "-h" option will show the available options. To get a list of available
commands, type

ucc -h

To get help on a specific command, type

ucc <command> -h

See also here for a list of common options.

3.2 Connecting

First, contact UNICORE and make sure you have access to some target systems.

ucc connect [options]

3.3 List available sites

Then, list the sites available to you using

ucc list-sites [options]

3.4 Running your first job

The UCC distribution contains samples that you can run. Let’s run the "date" sample. The "-v"
switch prints more info so you can see what’s going on.

ucc run [options] -v [UCC_HOME]/samples/date.u

Note
Look for UCC samples in the /usr/share/doc/unicore/ucc/samples directory,

This will run "date" on a randomly chosen site, and retrieve the output. To run on a particular
site, use the "-s" option to specify a particular target system.

file:options.html

UNICORE Commandline Client: User Manual 5

3.5 Listing your jobs

The command

ucc list-jobs [options]

will print a list of jobs (actually their addresses) with their respective status (RUNNING, SUC-
CESSFUL, etc)

4 Common options to UCC

The following table lists the options understood by most UCC commands. Most commands
have additional options. You can always get a summary of all available options for a command
by calling UCC with the "-h" or "--help" option, for example

ucc batch --help

Since it is not possible to give all the required options on the commandline, it is mandatory to
create a preferences file containing e.g. your settings for keystore, registry etc.

Table 1: Common options for the UCC

Option (short and long
form)

Description

-c,--configurati-
on
<Properties_file>

Properties file containing your preferences. By default, a
file userhome/.ucc/preferences is checked.

-k,--authenticat-
ionMethod
<auth>

Authentication method to use (default: X509)

-o,--output
<Output_dir>

Directory for any output produced (default is the current
directory)

-r,--registry
<List_of_Registr-
y_URLs>

The comma-separated list of URLs of UNICORE registries

-v,--verbose Verbose mode
-h,--help Print help message
-y,--with-timing Timing mode

UNICORE Commandline Client: User Manual 6

4.1 User attributes and VOs

If you have multiple user IDs or are a member of multiple Unix Groups on the target system,
you may wish to control the user atttributes that are used when invoking UCC. Also, when
using UCC with infrastructures that run a SAML-enabled VO server such as UVOS, there are
additional options for specifying the VO server, your VO etc. Please see [?] section for details
about the VO support.

Here is a list of options related to user attributes and VOs.

Table 2: Security and VO options for the UCC

Option (short and long
form)

Description

-U, --user User ID to use remotely (if you have multiple)
-Z, --preference Select from your remote attributes (e.g. xlogin)
-J, --VO VO server URL
-G, --voGroup VO group
-A, --attributeA-
ssertion

File containing a VO attribute assertion

-I, --includeAtt-
ributes

Filter VO attributes

-Q, --excludeAtt-
ributes

Filter VO attributes

4.2 Configuration file

Note
Since UCC 6.6.0, the use of a configuration file is mandatory, since the possibility to specify
options related to keystore and truststore on the command line have been removed

By default, UCC checks for the existence of a file <userhome/.ucc/preferences> and reads set-
tings from there. As shown above, you can use a different file by specifying it on the comman-
dline using the "-c" option.

The configuration file can contain default settings for many commandline options, which are
given in the form <option name>=<value> where <option name> is the long which are auto-
matically replaced with the environmental variable values with the same name. absolute path
of your configuration file.

For example, to set your keystore, truststore and registry, the file would contain the following
settings

UNICORE Commandline Client: User Manual 7

credential.path=<your keystore>
credential.password=XXXXXXX
truststore.type=keystore
truststore.keystorePath=<your keystore>
truststore.keystorePassword=XXXXXX
registry=https://localhost:8080/DEMO-SITE/services/Registry?res= ←↩

default_registry

Note
To protect your passwords, you should make the file non-readable by others, for example on
Unix using a command such as chmod 600 preferences

Note
If the credential and/or truststore passwords are not given in the properties file, they will be
queried interactively.

4.3 Credential and truststore options

In general you need a keystore containing your identity in order to use UNICORE, as well as a
truststore file (or directory) containing trusted certificates. (Note that there may be other options
available for authentication, try ucc help-auth to find out)

A full list of options related to credential and truststore management is available in the following
table. You can also get them via the online help using

ucc help-auth

Table 3: Credential properties

Property name Type Default
value /
mandatory

Description

credential.path filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

UNICORE Commandline Client: User Manual 8

Table 3: (continued)

Property name Type Default
value /
mandatory

Description

credential.form-
at

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

credential.pass-
word

string - Password required to load
the credential.

credential.keyP-
ath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

credential.keyP-
assword

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

credential.keyA-
lias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

Table 4: Truststore properties

Property name Type Default
value /
mandatory

Description

truststore.allo-
wProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

truststore.type [keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

UNICORE Commandline Client: User Manual 9

Table 4: (continued)

Property name Type Default
value /
mandatory

Description

truststore.upda-
teInterval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
truststore.dire-
ctoryConnection-
Timeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

truststore.dire-
ctoryDiskCacheP-
ath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

truststore.dire-
ctoryEncoding

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.

truststore.dire-
ctoryLocations.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
truststore.keys-
toreFormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

truststore.keys-
torePassword

string - The password of the
keystore type truststore.

truststore.keys-
torePath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---

UNICORE Commandline Client: User Manual 10

Table 4: (continued)

Property name Type Default
value /
mandatory

Description

truststore.open-
sslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDP-
MA_GLOB-
US

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

--- Revocation settings ---
truststore.crlC-
onnectionTimeout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

truststore.crlD-
iskCachePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

truststore.crlL-
ocations.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

UNICORE Commandline Client: User Manual 11

Table 4: (continued)

Property name Type Default
value /
mandatory

Description

truststore.crlM-
ode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

truststore.crlU-
pdateInterval

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

truststore.ocsp-
CacheTtl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

truststore.ocsp-
DiskCache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

truststore.ocsp-
LocalResponders-
.<NUMBER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

truststore.ocsp-
Mode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAI-
LABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

truststore.ocsp-
Timeout

integer number 10000 Timeout for OCSP
connections in miliseconds.

truststore.revo-
cationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

truststore.revo-
cationUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

UNICORE Commandline Client: User Manual 12

4.4 Trust store examples

Here are some examples for commonly used trust store configurations.

Directory trust store with a minimal set of options

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

Directory trust store with more options

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=/some/dir/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

OpenSSL trust store

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

4.5 Using Unity

If your Grid installation is using the Unity identity management service (see http://www.unity-
idm.eu), you can setup UCC to use Unity. In this case you do not need a private key, only a
truststore. UCC is configured for Unity using the following properties

http://www.unity-idm.eu
http://www.unity-idm.eu

UNICORE Commandline Client: User Manual 13

authenticationMethod=unity
unity.address=https://<host>:<port>/unicore-soapidp/saml2unicoreidp ←↩

-soap/AuthenticationService
unity.username=<your Unity username>
unity.password=<your Unity password>

At minimum, you must specify the "authenticationMethod" and "unity.address" parameters.
Password and username are optional: if you do not specify them, they will be queried interac-
tively.

4.6 Using MyProxy

UCC can retrieve a short lived certificate from a MyProxy server. To setup UCC for this, use
the following properties

authenticationMethod=MYPROXY
myproxy.host=myproxy.teragrid.org
myproxy.port=7512
myproxy.username=<your MyProxy username>
myproxy.password=<your MyProxy password>

At minimum, you must specify the "authenticationMethod" and "myproxy.host" parameters.
The default port of 7512 will be used if not otherwise specified. Password and username are
optional: if you do not specify them, they will be queried interactively.

4.7 Client options

The configuration file may also contain low-level options, for example if you need to specify
connection timeouts, http proxies etc.

Table 5: Client options

Property name Type Default
value /
mandatory

Description

client.digitalS-
igningEnabled

[true, false] true Controls whether signing of
key web service requests
should be performed.

client.httpAuth-
nEnabled

[true, false] false Whether HTTP basic
authentication should be
used.

client.httpPass-
word

string empty
string

Password for use with
HTTP basic authentication
(if enabled).

UNICORE Commandline Client: User Manual 14

Table 5: (continued)

Property name Type Default
value /
mandatory

Description

client.httpUser string empty
string

Username for use with
HTTP basic authentication
(if enabled).

client.inHandle-
rs

string empty
string

Space separated list of
additional handler class
names for handling
incoming WS messages

client.maxWsCal-
lRetries

integer number 3 Controls how many times
the client should try to call
a failing web service. Note
that only the transient
failure reasons cause the
retry. Note that value of 0
enables unlimited number
of retries, while value of 1
means that only one call is
tried.

client.messageL-
ogging

[true, false] false Controls whether messages
should be logged (at INFO
level).

client.outHandl-
ers

string empty
string

Space separated list of
additional handler class
names for handling
outgoing WS messages

client.security-
Sessions

[true, false] true Controls whether security
sessions should be enabled.

client.serverHo-
stnameChecking

[NONE,
WARN, FAIL]

WARN Controls whether server’s
hostname should be
checked for matching its
certificate subject. This
verification prevents
man-in-the-middle attacks.
If enabled WARN will only
print warning in log, FAIL
will close the connection.

client.sslAuthn-
Enabled

[true, false] true Controls whether SSL
authentication of the client
should be performed.

client.sslEnabl-
ed

[true, false] true Controls whether the
SSL/TLS connection mode
is enabled.

UNICORE Commandline Client: User Manual 15

Table 5: (continued)

Property name Type Default
value /
mandatory

Description

client.wsCallRe-
tryDelay

integer number 10000 Amount of milliseconds to
wait before retry of a failed
web service call.

--- HTTP client settings ---
client.http.all-
ow-chunking

[true, false] true If set to false, then the
client will not use HTTP
1.1 data chunking.

client.http.con-
nection-close

[true, false] false If set to true then the client
will send connection close
header, so the server will
close the socket.

client.http.con-
nection.timeout

integer number 20000 Timeout for the connection
establishing (ms)

client.http.max-
PerRoute

integer number 6 How many connections per
host can be made. Note:
this is a limit for a single
client object instance.

client.http.max-
Redirects

integer number 3 Maximum number of
allowed HTTP redirects.

client.http.max-
Total

integer number 20 How many connections in
total can be made. Note:
this is a limit for a single
client object instance.

client.http.soc-
ket.timeout

integer number 0 Socket timeout (ms)

--- HTTP proxy settings ---
client.http.non-
ProxyHosts

string - Space (single) separated list
of hosts, for which the
HTTP proxy should not be
used.

client.http.pro-
xy.password

string - Relevant only when using
HTTP proxy: defines
password for authentication
to the proxy.

client.http.pro-
xy.user

string - Relevant only when using
HTTP proxy: defines
username for authentication
to the proxy.

client.http.pro-
xyHost

string - If set then the HTTP proxy
will be used, with this
hostname.

UNICORE Commandline Client: User Manual 16

Table 5: (continued)

Property name Type Default
value /
mandatory

Description

client.http.pro-
xyPort

integer number - HTTP proxy port. If not
defined then system
property is consulted, and
as a final fallback 80 is
used.

client.http.pro-
xyType

string HTTP HTTP proxy type: HTTP or
SOCKS.

Table 6: HTTP options for the UCC

Property name Description
client.http.prox-
yHost

HTTP(s) proxy to use

client.http.prox-
yPort

Port of the HTTP(s) proxy to use

client.http.nonP-
roxyHosts

Space separated list of host name fragments for which NOT
to go via the proxy. If the target URL contains such a
fragment, it is accessed directly

client.http.conn-
ection.timeout

Timeout to use when establishing a HTTP connection

client.http.sock-
et.timeout

Timeout to use when reading/writing from/to HTTP
connection

For example, to set the timeout when establishing a connection to 5 seconds, you would use

client.http.connection.timeout=5000

4.8 Other options

The following table lists other options, that are more rarely used.

UNICORE Commandline Client: User Manual 17

Table 7: Other options for the UCC

Property name Description
contact-registry Do not attempt to contact the registry, even if one is

configured

5 SAML PUSH support

5.1 Introduction

UCC supports the "SAML PUSH" mode of authentication. In this mode, the user is authen-
ticated by an attribute assertion signed by a trusted third party. The third party is a Virtual
Organisation (VO), SAML 2.0 server such as UVOS or VOMS.

5.2 Basic usage

First, retrieve an attribute assertion from VO server, scoped for a particular group you are in,
and save it into a file.

ucc save-attributes -J https://uvos.example.com:2443 -G /vo/group - ←↩
O assertion.xml

If the VO server has been registered in the registry, you may use "auto" instead of server’s URL
(this is possible only in case of UVOS).

ucc save-attributes -J auto -G /vo/group -O assertion.xml

Then, you may use this assertion to get access to the server. Most UCC commands support this,
for example you may connect to the server using this assertion.

ucc connect -A assertion.xml

You also may combine those two steps into one:

ucc connect -J https://uvos.example.com:2443 -G /vo/group

or assuming that UVOS server is in the registry:

ucc connect -J auto -G /vo/group

However note that using <<←A>>> option is faster: attributes are read from a file, while in the
combined scenario the attributes are fetched from a remote VO server prior to invocation of the
intended UCC command.

UNICORE Commandline Client: User Manual 18

5.3 Attribute filtering

You might want to obtain an assertion with only handful of attributes and their values. This is
done by using attribute filters.

UCC can display a list of all attributes. Names, scopes, values and descriptions (if available)
will be displayed.

ucc list-attributes -J auto

The last column (F) contains a letter Y next to all attribute values, that pass through attribute
filters. There are two kinds of filters: inclusive filters (which specify what attributes should pass)
and exclusive filters (which specify what attributes should be filtered out). If not specified, the
default inclusive filter approves of all attributes and their values, and the default exclusive filter
does not reject anything.

In this example an inclusive filter choose only those attributes, whose name contains the word
"xlogin".

ucc list-attributes -J auto -I ".*xlogin.*"

The value for the <<←I>>> option is a list of semicolon-separated Java regular expressions.
The expressions that contain the equal sign are called name-value filters, those which do not are
called name filters.

For example, you may choose all attributes with names that contain the word "login", and the
"admin" value of all attributes containing the word "role" in their name.

ucc list-attributes -J auto -I ".*xlogin.*;.*role.*=admin"

You may also exclude attributes. For example, the following filter chooses all attributes but
those ending with an "a".

ucc list-attributes -J auto -Q ".*a"

If you are content with the results of filtering, you can obtain an assertion only with the filtered
attributes.

ucc save-attributes -J auto -G /vo/group -O assertion.xml -I ".* ←↩
xlogin.*;.*role.*=admin" -Q ".*a"

You can also use it directly.

ucc connect -J auto -G /vo/group -I ".*xlogin.*;.*role.*=admin" -Q ←↩
".*a"

UNICORE Commandline Client: User Manual 19

5.4 Rules for multiple filters

Each attribute is considered as a set of name-value pairs, containing the name of attribute and
the value of attribute.

A pair matches a name filter (i.e. a filter defined using a regular expression without equals sign)
if the name of the attribute matches the regular expression.

A pair matches a name-value filter (i.e. a filter defined using a regular expression with equals
sign) if the name of the attribute matches the left hand of the regular expression, and the value
matches the right hand.

For each pair, the following steps are performed:

• if there is a matching exclusive name-value filter, the pair is rejected

• otherwise, if there is a matching inclusive name-value filter, the pair passes

• otherwise, if there is a matching exclusive name filter, the pair is rejected

• otherwise, if there is a matching inclusive name filter, or there are no inclusive name filters,
the pair passes

• otherwise, the pair is rejected

The result of filtering are the attributes, containing only those values which passed (after filter-
ing, empty attributes are discarded).

6 Running jobs

6.1 Introduction

The UCC can run jobs specified in a simple job description format Section 7 . In the following
it is assumed that you have UCC installed Section 2 and tried some examples Section 3 .

For example, assume the file "myjob.u" looks as follows

{
ApplicationName="Date",
ApplicationVersion="1.0"

}

To run this through UCC, issue the following command

ucc run myjob.u

This will submit the job, wait for completion, download the stdout and stderr files, and place
them in your default output directory. The run command has many options, to see all the
possibilities use the built-in help:

ucc run -h

UNICORE Commandline Client: User Manual 20

6.1.1 Controlling the output location and file names

Output files will be placed in the directory given by the "-o" option, if not given, the current
directory is used. Also, file names will be put into a subdirectory named as the job id, to prevent
accidental overwriting of existing files. This behaviour can be changed using the "-b" option.
When "-b" is given on the command line, no subdirectory will be created.

6.1.2 Specifying the site

In the example above, a random site will be chosen to execute the job. To control it, you can
use the "-s" option. This will accept the name of a target system. The target systems available
to you can be listed by

ucc list-sites

6.1.3 Accessing a job’s working directory

Using the UCC’s data management functions, the job working directory can be accessed at any
time after job submission. Please see section Section 8 for details.

6.2 Options overview

The following options are available when running jobs (see also the general options overview
in Section 4.

Table 8: Job submission options for UCC

Option (Short and long
form)

Description

-a,--asynchronous Run asynchronously
-b,--brief Do not create a sub-directory for output files
-B,--broker Select the type of resource broker to use (LOCAL or

SERVORCH)
-d,--dryRun Only show candidate sites, but do not submit the job
-s,--sitename
<SITE>

Site where the job shall be run

-S,--schedule
<Time>

Schedule the submission of the job at the given time

-j,--jsdl Tell UCC that the job file is a JSDL document
-o,--output
<Output_dir>

Directory for any output produced (default is the current
directory)

-O,--stdout
<stdout_name>

specify a name for the exported standard out (by default:
stdout)

-E,--stderr
<stderr_name>

specify a name for the exported standard error (by default:
stderr)

UNICORE Commandline Client: User Manual 21

6.3 Resource brokering

If no site is specified upon submission, UCC will select a matching site, where the requirements
(resources, application and execution environments) are met.

There are two types of brokers available, which can be selected using the "-B" or "--broker"
option.

• LOCAL : brokering is done by UCC itself

• SERVORCH (default) : brokering is done by the "service orchestrator" component of the
UNICORE Workflow system.

The SERVORCH broker requires an accessible UNICORE workflow system in version 6.6.0 or
later. If this is not available, UCC will fall back to the LOCAL broker. As usual, you can set
this option in your UCC preferences file.

6.4 Processing jobs asynchronously

In case of long-running jobs, you will want to run the job asynchronously, i.e. just submit the
job, stage in any files and start it, in order to get the results later. UCC supports this, of course.
The basic idea is that when submitting a job in asynchronous mode, a job descriptor file is
written that contains the job’s address, and any information about export files.

6.4.1 Asynchronous submission

Use the "-a" flag when submitting a job

ucc run -a <job file>

This will submit the job, stage-in any local files, start the job and exit. A job descriptor file
(ending in ".job") will be written to your configured output directory.

6.4.2 Get the status of particular jobs

The command

ucc job-status <job_desc> <job_desc_2> ...

will retrieve the status of the given jobs. If not given on the command line, a job ID will be read
from the console.

UNICORE Commandline Client: User Manual 22

6.4.3 Download results

To get stdout, stderr and other files you have marked for export in your job description, do

ucc get-output -o <outdir> <job_desc>

Here, the option "-o" specifies the directory where to put the output, by default the current
directory is used. As before, the job address can also be read from the console.

6.4.4 Referencing a job by its EPR (Endpoint reference)

In case you want to check on a job not submitted through UCC, or in case you do not have
the job descriptor file any more, you can also refer to a job given its EPR. For example, the
"list-jobs" command will produce a list of all job EPRs that you can access.

Note that in this case UCC will only retrieve stdout and stderr files. To download other result
files, you’ll have to use the datamovement functions described in Section 8.

6.4.5 Uploading and executing an executable

To upload and execute a file on a remote server, you might need a small helper script to make
the uploaded file executable and run it:

#!/bin/sh
chmod +x myapp
./myapp

Your ucc job description would then look as follows

{
Executable: "/bin/sh",
Arguments: ["helper.sh"],
Imports: [

{From: "helper.sh", To: "helper.sh"},
{From: "myapp", To: "myapp"},

],
}

Note
Recent servers do not require this trick, and you should be able to directly execute your
uploaded executable without requiring a helper script.

file:jobs.html

UNICORE Commandline Client: User Manual 23

6.4.6 Scheduling job submission to the batch system

Sometimes a user wishes to control the time when a job is submitted to the batch queue, for
example because she knows that a certain queue will be empty at that time.

Note
This feature only works with server release 6.4.0 or higher.

To schedule a job, you can either use the "-S" option to the ucc "run" command:

ucc run -S "12:24" ...

Alternatively, you can specify the start time in your job file using the "Not before" key word

{

Not before: "12:30",

}

In both cases, the specified start time can be given in the brief "HH:mm" (hours and minutes)
format shown above, or in the full ISO 8601 format including year, date, time and time zone:

{

Not before: "2011-12-24T12:30:00+0200",

}

7 Job description format

UCC uses a simple format that allows you to specify the application or executable you want to
run, arguments and environment settings, any files to stage in from remote servers or the local
machine and any result files to stage out.

A number of sample files can be found in the "samples" directory of your UCC distribution. (on
Linux, check also /usr/share/unicore/ucc/samples)

The format used is called JSON, and contains comma-separated key-value mappings, where
the values can be simple strings, or lists of values, or maps. String values should be placed in
"quotes". Comments are (inofficially) possible using the "#" hash character, as in Unix shell
scrips.

Each JSON file must begin and end with curly braces "{ . . . }". Several complete job samples
can be found in the "samples" directory of the distribution.

http://www.json.org

UNICORE Commandline Client: User Manual 24

Note
Note: quotes "" are needed around the keys and values in case special characters (like : or
/ ") appear, if in doubt use quotes!

To view an example job showing all available options, simply run

ucc run -H

(most of the options shown are not mandatory, of course)

Note
You may alternatively specify jobs in the JSDL format that is used internally in UNICORE. To
do this, run UCC with the "-j" option.

7.1 Site name

You can (optionally) specify on which site (if available) the job should be run.

Site: "DEMO-SITE",

If you do not specifiy anything UCC will select a site that will match your requirements (at least
those that UCC checks for).

7.2 Specifying the application or executable

You can specify a UNICORE application by name and version, or using a (machine dependent)
path to an executable file.

#using application name and version
{

ApplicationName: "Date",
ApplicationVersion: "1.0",

}

Note the comma-separation and the curly braces. To call an executable,

#using an executable

{
Executable: "/bin/date",

}

UNICORE Commandline Client: User Manual 25

7.3 Arguments and Environment settings

Arguments and environment settings are specified using a list of String values. Here is an
example.

{

Executable: "/bin/ls",

Arguments: ["-l", "-t"],

Environment: ["PATH=/bin", "FOO=bar"],

}

7.4 Application parameters

In UNICORE, parameters for applications are often transferred in the form of environment
variables. For example, the POVRay application has a large set of parameters to specify image
width, height and many more. In UCC, you can specify these parameters in a very simple way
using the "Parameters" keyword:

{
ApplicationName: POVRay,

Parameters{
WIDTH: 640,
HEIGHT: 480,
DEBUG: "",

},

}

Note that an "empty" parameter (which does not have a value) needs to be written with an
explicit empty string due to the limitations of the JSON syntax.

7.4.1 Parameter sweeps

Parameter sweeps allow to create multiple jobs from a template. UNICORE supports two types
of sweeps, one of which is parameter sweep. You can sweep over application parameters by
replacing the parameter value by a sweep specification.

This can be either a simple list:

Parameters{
WIDTH: { Values: [240, 480, 960] },

},

UNICORE Commandline Client: User Manual 26

or a range:

Parameters{
WIDTH: { From: 240, To: 960, Step: 240 },

},

where the From, To and Step parameters are floating point or integer numbers.

7.5 Job data management

In general your job will require data files, either from your client machine, or from some remote
location. An important concept in UNICORE is the job’s workspace (also called Uspace, which
is the default location into which files are placed. The same applies to result files: by default,
files will be downloaded from the job’s workspace.

However, other remote storage locations are supported, too.

7.5.1 Importing files into the job workspace

To import files from your local computer or from remote sites to the job’s working directory on
the remote UNICORE server, there’s the "Imports" keyword. Here is an example Import section
that specifies three imports:

{

Imports: [

import a local file into the job workspace
{ From: "/work/data/fileName", To: "uspaceFileName" },

import a set of PDF files into the Uspace
{ From: "/work/data/pdf/*.pdf", To: "/" },

import a remote file from a UNICORE storage
{ From: "u6://DEMO-SITE/Home/testfile", To: "otherUspaceFile" ←↩

},
]

}

If for some reason it may happen that the local file does not exist, and you want the job to run
anyway, there is a flag "FailOnError" that can be set to "false" :

Imports: [
do not fail on errors for this import:
{ From: "/work/data/fileName", To: "uspaceFileName", ←↩

FailOnError: "false", },
]

UNICORE Commandline Client: User Manual 27

Note
UCC supports simple wild cards ("*" and "?") for importing exporting LOCAL files, and for
remote files if the server is version 7.x or later. Wildcards do not work for server-to-server
imports and exports on 6.x servers.

7.5.2 Importing files into other storage locations

Note
This requires a UNICORE server v6.4.2 or later

A UNICORE site may supports multiple storages (for example, a TMP or SCRATCH directory).
To instruct the server to stage-in a file into such a storage, the "Filesystem" tag may be used.
For example to stage-in a file into SCRATCH space, the following Imports definition can be
used:

Imports: [

import a file from a remote storage into the SCRATCH space on ←↩
the target resource

{ From: "u6://DEMO-SITE/Home/work/data/fileName", To: "fileName ←↩
", Filesystem: "SCRATCH", },

7.5.3 Exporting result files from the job workspace

To export files from the job’s working directory to your local machine or to some remote storage,
use the "Exports" keyword. Here is an example Exports section that specifies two exports:

{

Exports: [
#this exports all png files to a local directory
{ From: "*.png", To: "/home/me/images/" },

#this exports a single file to a to local directory
#failure of this data transfer will be ignored
{ From: "error.log", To: "/home/me/logs/error.log", FailOnError ←↩

: "false", },

#this exports to a UNICORE storage
{ From: "stdout", To: "u6://DEMO-SITE/Home/results/myjob/stdout ←↩

" },

]

}

UNICORE Commandline Client: User Manual 28

As a special case, UCC also supports downloading files from other UNICORE storages using
the Exports keyword:

{
Exports: [
#this exports a file from a UNICORE storage
{ From: "u6://DEMO-SITE/Work/somefile", To: "/home/me/somefile" ←↩

},
]

}

The remote location can be given as a full UNICORE URI, or using the more user friendly (but
slower) "u6://" notation. Read more on remote locations in Section 8.

Local files can be given as an absolute or relative path; in the latter case the configured output
directory will be used as base directory.

The protocol to be used for imports and exports can be chosen using the "Preferred Protocols"
entry, containing a space-separated list of protocols:

{

Preferred protocols: "BFT RBYTEIO",

}

If not specified, BFT will be used.

7.5.4 Specifying credentials for data staging

Some data staging protocols supported by UNICORE require credentials such as username and
password. Currently, these are "ftp" and "scp". In case you want to give username and password,
the syntax is as follows

{
Imports: [
{ From: "ftp://someserver:25/some/file", To: "input_data"

Credentials: { Username: "myname", Password: "mypassword" },
},

]
}

and similarly for exports.

7.5.5 Redirecting standard input

If you want to have your application or executable read its standard input from a file, you can
use the following

UNICORE Commandline Client: User Manual 29

Stdin: filename,

then the standard input will come from the file named "filename" in the job working directory.

7.6 Resources

A job definition can have a Resources section specifying the resources to request on the remote
system. For example

Resources: {

memory per node (bytes, you may use the common "K","M" or "G ←↩
")

Memory: 2G ,

walltime (seconds, use "min", "h", or "d" for other units)
Runtime: 86400 ,

Total number of requested CPUs
CPUs: 64 ,

you may optionally give the number of nodes
#Nodes: 2 ,
together with the CPUs per node
#CPUsPerNode: 32,

Custom resources (site-dependent!)
StackLimitPerThread : 262144,

Operating system
Operating system: LINUX, #MACOS, WINNT, ...

Resource reservation reference
Reservation: job1234,

}

Note that you can also specify a reservation reference if your batch system supports this and
you have made a resource reservation.

7.7 Execution environments

To run a job in a special execution environments (as supported by the server), you can use the
following syntax.

UNICORE Commandline Client: User Manual 30

Execution environment: {
Name: ...,
Arguments: {
ArgName1: "value1", ArgName2: "value2", ...

},
Options: [...],
Precommands: [...],
Postcommands: [...],
User precommand: "..." ,
RunUserPrecommandOnLoginNode: "false",
User postcommand: "..." ,
RunUserPostcommandOnLoginNode: "true",

},

The user pre and post commands can be run either separately on the login node (default) or be
placed in the job script. This is achieved using the "RunUserPrecommandOnLoginNode" and
"RunUserPostcommandOnLoginNode" directives, which can be set to true or false.

7.8 Miscellaneous options

7.8.1 Selecting the remote login and/or group

In case you have multiple logins or Unix groups on the remote site mapped to the same creden-
tial, you can select the user name and/or group to use as follows

User name: yourlogin,
Group: yourgroup,

Hint: you can get a list of your logins/groups on the site by executing

ucc list-sites -s SITENAME -l

7.8.2 Specifying a project

If the system you’re submitting to does accounting, you can specify the account (or project) you
want to charge the job to using the "Project" tag:

Project: "my_project",

7.8.3 Specifying the user email for batch system notifications

Some batch systems support sending email upon completion of jobs. To specify your email, use

User email: foo@bar.org

UNICORE Commandline Client: User Manual 31

Hint: if you want to explicitely switch off the email notification, use "NONE" as email value.
This might be necessary because older UNICORE server versions try to use the email address
from your certificate (if present).

7.8.4 Specifying the job name

The job name can be set simply by

Name: Test job

7.8.5 Specifying the status check interval for batch mode

Once a job is started, it is often not useful to check its status every few seconds, because the job
might be running several minutes or more. Especially in batch mode it can reduce the load on
the servers if the update interval is chosen longer. This can be achieved by using the following
setting (this only affects batch mode!):

Update interval: 60, #only check once a minute (default is one ←↩
second)

7.8.6 Specifying the "lifetime" of the job

If you want to specify a lifetime of the job, and not rely on the server default, you can use the
lifetime attribute:

Lifetime: 12h, #sec, min, h, d

8 Data management functions

UCC offers access to all the data management functions in UNICORE. You can upload or
download data from a remote server, initiate a server-to-server transfer, create directories and
so on.

8.1 Specifying remote locations

Remote locations can be specified in two ways. The first way is to use a URI that includes
protocol, storage server and filename, for example

BFT:https://mygateway:8080/SITE/services/StorageManagement?res= ←↩
default_storage#/file

UNICORE Commandline Client: User Manual 32

which specifies a file named "/file" on the storage instance "https://mygateway:8080/SITE/services/StorageManagement?res=default_storage",
using the BFT protocol.

Paths are relative to the storage root, not the root of the actual file system.

This explicit format is sometimes inconvenient, so you can use a shorter, more intuitive format.
This is also a URI, but you need to know only the name of the virtual site (target system), and
the storage or job id. For example

unicore6://SITE/Home/file?protocol=PROTOCOL

or shorter

u6://SITE/Home/file?protocol=PROTOCOL

This will resolve the current user’s "Home" storage at the target system named "SITE". Note
that if you do not specify the protocol, the BFT protocol will be used as default.

You can also refer to a job’s working directory on a given site. For this, you will need the unique
ID of that job, which you can get for example using the list-jobs command. For example,

u6://SITE/1f3bc2e2-d814-406e-811d-e533f8f7a93b/outfile

refers to the file "outfile" in the working directory of the given job on the "SITE" target system.
And

ucc ls -l u6://SITE/1f3bc2e2-d814-406e-811d-e533f8f7a93b/

will list the job’s working directory.

It is also possible to refer to storage services that are registered in the registry using their name,
for example

u6://SHARE/myfiles/a_file

can be used to refer to the shared storage named "SHARE" if it is registered in the registry.

Though convenient, the method using "unicore6://" is much slower, and will generate some
network traffic. If you do a lot of operations on the same resource, you should use the resolve
command to find out the URI of the resource, and use that later.

8.1.1 The resolve command

This will figure out the "real" address for a "unicore6://" URL as defined above.

ucc resolve u6://SHARE/

UNICORE Commandline Client: User Manual 33

8.2 Data movement

8.2.1 cp

The cp command is a generic command for copying source file(s) to a target destination, where
source and target can be remote locations or files on the local machine. Wild card characters *
and ? are supported.

Examples for client-server transfers:

ucc cp data/*.pdf u6://SHARE/pdfs
ucc cp u6://SHARE/test.pdf .
ucc cp u6://SHARE/test1 u6://SHARE/test3 data/

The "-R" option allows to choose whether subdirectories are to be copied, too.

Examples for server-server transfers:

ucc cp u6://SHARE/*.pdf u6://Demo-SITE/Home/

For server-to-server transfers, the cp command supports several additional options.

The "-S" option allows to schedule a transfer for a certain time. For example

ucc cp -S "23:00" u6://SHARE/*.pdf u6://Demo-SITE/Home/

The format is simply "HH:mm" (hours and minutes). Alternatively you can give the time in the
full ISO 8601 format including year, date, time and time zone:

ucc cp -S "2011-12-24T12:30:00+0200" ...

Another useful option is "-a" which will execute the server-server transfer asynchronously, i.e.
the client will not wait for the transfer to finish.

8.2.2 copy-file-status

This will print the status of the given data transfer. As argument, it expects a file name contain-
ing the transfer reference, or directly the reference.

Example (for Unix) which captures the reference into a shell variable:

export ID=$(ucc cp -a u6://OTHER-SITE/Home/test.txt u6://DEMO-SITE/ ←↩
Home/test.txt)

ucc copy-file-status $ID

UNICORE Commandline Client: User Manual 34

8.2.3 Specifying the file transfer protocol

To use a different protocol from the default BFT, you can use the "-P" option to specify a list
of preferred protocols. UCC will try to match them with the capabilities of the storage and use
the first match. Your preferred protocols can also be listed in your preferences file using the
"protocols" key:

protocols=UFTP BFT

Note
If necessary, you can specify additional filetransfer options in your preferences file as well.
For example, to use the UFTP protocol you may need to specify the client host address and
the number of parallel streams explicitely:

uftp.client.host=your_client_ip_address
uftp.streams=2
encrypt data (at the cost of performance)
uftp.encryption=true
compress data (requires UFTP2 server)
uftp.compression=true

You can even override the UFTP server host, which can be useful in case the UFTP server is
accessible via multiple network interfaces:

uftp.server.host=myhost.com

UCC will try to use reasonable defaults for any missing parameters.

8.3 Handling directories

8.3.1 mkdir

This will create a directory (including required parent directories) remotely.

Example

ucc mkdir u6://DEMO-SITE/Home/testdirectory/data/pdfs

8.3.2 rm

This will remove a file or directory remotely. By default, UCC will ask for a confirmation.
Use the "--quiet" or "-q" option to disable this confirmation (e.g. when using this command in
scripts).

Example

ucc rm u6://DEMO-SITE/Home/testdirectory/data/pdfs

UNICORE Commandline Client: User Manual 35

8.4 Finding data

8.4.1 ls

This will list a remote directory. Useful options are: "-l" (detailed output), "-H" (human-
friendly) and "-R" (recurse). Example:

ucc ls u6://DEMO-SITE/Home -l -H

If the storage supports metadata, you can get the metadata of a single file using "ls -l -m":

ucc ls u6://DEMO-SITE/Home/.bashrc -l -m

8.4.2 find

This command is a similar to the well-known Unix utility, however much less powerful. It
allows to do recursive listings and retrieve files matching certain conditions. Currently only
"name match" is available. For example to get all PDF files on a storage,

ucc find -r -l u6://DEMO-SITE/Home/ -N .pdf

The find command is currently implemented synchronously, and may thus run into a network
timeout when it takes too long. This limitation will be overcome in future versions of this
command.

8.5 Deprecated commands

While the old get-file, put-file and copy-file are still available, you can use the simpler cp in-
stead.

8.5.1 get-file

Use get-file to download remote files to your local machine.

Example

ucc get-file -s u6://DEMO-SITE/Home/test.txt -t my_test.txt

The "-s" (source) and "-t" (target) options are used to denote the source file(s) and the target file
or directory. Wild card characters * and ? are supported. For example,

ucc get-file -s u6://DEMO-SITE/Home/*.pdf -t pdfs/

will download all *.pdf files and write them to the "pdfs" directory (which must exist).

UNICORE Commandline Client: User Manual 36

8.5.2 put-file

Use put-file to upload a local file to a remote location.

Example:

ucc put-file -s test.txt -t u6://DEMO-SITE/Home/test.txt

If you specify the "-a" option, data will be appended to an existing file.

8.5.3 copy-file

This will initiate a server-to-server data transfer. Use the "-a" option to run asynchronously, i.e.
ucc will not wait for the transfer to complete. Instead, a file containing the transfer reference
will be written, which can be passed to the copy-file-status command for status checking later.

In case the source and target file are on the same storage resource, UCC will issue the remote
copy command and return immediately, as there is no need for an asynchronous mode.

Example:

ucc copy-file -s u6://OTHER-SITE/Home/test.txt -t u6://DEMO-SITE/ ←↩
Home/test.txt

Sometimes a user wishes to schedule the time when a server-to-server transfer is executed, for
example because she knows that more network bandwith will be available at that time.

Note
This feature only works with server release 6.4.0 or higher.

To schedule the file transfer, you can use the "-S" option to the ucc "copy-file" command:

ucc copy-file -S "12:30" ...

The format is simply "HH:mm" (hours and minutes). Alternatively you can give the time in the
full ISO 8601 format including year, date, time and time zone:

ucc copy-file -S "2011-12-24T12:30:00+0200" ...

9 Metadata management functions

UCC offers a simple interface to access the metadata management service in UNICORE.

UNICORE Commandline Client: User Manual 37

9.1 Basics

The metadata functions are all accessed via a single UCC command metadata. The actual
operation to be performed is given with the "-C" (i.e. "command") option.

The storage to be operated upon is given using the "-s" option, alternatively the "-m" option can
be used to directly give the metadata service URL.

In addition to the URL, the name of the target file on the storage is required.

Metadata is represented in JSON format. The metadata operations usually read metadata from
a file (or write results to file), which is specified using the "-f" option.

In the following examples, <STORAGE> denotes the URL of a storage capable of handling
metadata.

9.2 Available commands

9.2.1 creating metadata

To create metadata, a file in JSON format is required containing key-value pairs. For example,
edit the file "meta.json" to contain:

{
foo: bar

}

Say we have a file "test" on our storage, then you can create metadata as follows

ucc metadata -C create -f meta.json -s <STORAGE> /test

If you now look at the file with "ls -l -m",

ucc ls -l -m <STORAGE>#/test

you should get something like this:

-rw- 3344 2011-06-27 22:32 /test
{
"foo": "bar",
"resourceName": "/test"

}

9.2.2 reading metadata

Apart from the "ls -l -m" used above, there is also an explicit "read" command, which can write
the metadata to a file as well.

ucc metadata -C read -s <STORAGE> /test -f out.json

The "-f" option is optional.

UNICORE Commandline Client: User Manual 38

9.2.3 updating metadata

Using update, the given metadata is merged with any existing metadata. Say we have a file
x.json containing:

{
x: y

}

we can append this to the existing metadata

ucc metadata -C update -s <STORAGE> /test -f x.json

Check that the metadata has indeed been appended.

9.2.4 deleting metadata

Explicitely deleting is also possible:

ucc metadata -C delete -s <STORAGE> /test

Check that the metadata has indeed been deleted.

9.2.5 searching

Searching requires a search string (according to the rules of Apache Lucene), and is triggered
by the "search" command:

ucc metadata -C search -q "foo" -s <STORAGE> /

9.2.6 triggering metadata extraction

To trigger the extraction of metadata on the server, use the "start-extract" command:

ucc metadata -C start-extract -s <STORAGE> /

In this case the "/" denotes the base path from which to start the extraction process. The extrac-
tion process is asynchronous, so a "Task" service address will be returned which can be used to
monitor the extraction process using the "wsrf getproperties" command.

UNICORE Commandline Client: User Manual 39

10 Workflow extensions

10.1 Introduction

UCC supports the UNICORE workflow system and allows to submit workflows to the workflow
engine or single jobs to the service orchestrator (broker).

The workflows are executed server-side, and UCC is used only for submitting, managing data
and getting results.

10.2 Command overview

The following commands are provided. More details and examples follow below.

• workflow-submit : submit a workflow file

• workflow-info : list information about workflows

• workflow-trace : gather performance data from the workflow execution

10.3 Basic use

To check the availability of workflow services, issue the following command

ucc system-info -l

This should show at least an accessible workflow engine and service orchestrator.

The distribution contains some example workflow files in the <[?]> directory that you can edit
and submit.

ucc workflow-submit yourworkflow.swf

which will submit the workflow and print the address of the workflow to standard output. To
get the workflow status,

ucc workflow-info <workflow_address>

To list all your workflows, you can use the <[?]> command without an explicit workflow address

ucc workflow-info -l

UNICORE Commandline Client: User Manual 40

10.4 Managing workflow data

During workflow execution, data files will be produced that the workflow system will move to
a location on the Grid that is accessible for the individual jobs. Usually this location is created
automatically by UCC before the workflow is submitted, using a special UNICORE service
called a storage factory. If you want to influence this decision, UCC allows to select the storage
factory to be used via the "-f" option to the workflow-submit command:

ucc workflow-submit -f <factory-url> <workflow-file>

You can check the available factories with the system-info command. If not specified, UCC will
use the fist storage factory it finds in the registry.

In general, storages that are dynamically created will be deleted when the workflow is deleted.
To persistently store data, you need to make sure to export important result files to a persistent
location (e.g. your Home on some Grid site, or a persistent storage).

Alternatively you can directly specify a storage URL, either using the convenient "u6://. . . "
notation, or as a real network URL:

ucc workflow-submit -S u6://MY-SITE/Home <workflow-file>

ucc workflow-submit -S https://my-gateway/SITE/services/ ←↩
StorageManagement?res=myuser-Home <workflow-file>

10.4.1 Importing local data for use by a workflow

If you have local files that need to be imported before starting the workflow, you have to specify
this using a normal UCC job file that contains only an "Imports" section:

{
#stage-in specification

Imports: [
{From: local-file.sh, To: "c9m:${WORKFLOW_ID}/input.sh"}

],
}

When submitting the workflow, add the "-u <filename>" option to specify the imports file.

This will cause UCC to copy the local file "local-file.sh" to the workflow storage space. You can
refer to this file in your workflow using the "global" name "c9m:. . . ", say in a script activity:

....
<jsdl:DataStaging>
<jsdl:CreationFlag>overwrite</jsdl:CreationFlag>
<jsdl:FileName>input.sh</jsdl:FileName>
<jsdl:Source>

<jsdl:URI>c9m:${WORKFLOW_ID}/input.sh</jsdl:URI>

UNICORE Commandline Client: User Manual 41

</jsdl:Source>
</jsdl:DataStaging>

....

The workflow system will resolve the name at runtime and your file will be used. This allows
you to group your files by workflow ID.

10.4.2 Downloading output files

You can use the usual get-file command to download files using the "global IDs" used by
the workflow engine. Hint: the workflow-info command will list the files that are produced
by the workflow.

10.5 More

10.5.1 Tracing

The trace functionality of the workflow engine allows to retrieve some performance data, try

ucc workflow-trace <your_workflow_address>

11 Batch processing

The batch command allows you to run many jobs without having to start UCC each time.
You can control how many jobs should go to which site. This allows efficient job processing,
while putting some load on the client machine. If you need to take the client offline, you
should consider using the workflow system instead, which also allows efficient high-throughput
processing.

Assume you have a bunch of jobs in UCC’s job description format (Section 7) stored in a
directory jobs. The output should go to a directory out. You can run them all through UCC
using a single invocation as follows:

ucc batch -i jobs -o out

As job files, UCC will accept files ending in ".u", ".jsdl" or ".xml".

11.1 Options

You can run in "follow" mode, where UCC will watch the input directory, and will process new
files as they arrive.

UNICORE Commandline Client: User Manual 42

ucc batch -f -i jobs -o out

UCC can also process JSDL files, to batch-process these, use the "-j" option:

ucc batch -j -i jobs -o out

11.2 Performance tuning options

Getting the most performance out of UCC and your Grid installation can be a challenging task.
Sending too many jobs to a site might decrease throughput, sometimes the client machine can
be the limiting factor, etc.

You should experiment a bit to get the best performance for your specific setup. UCC has many
options available for tuning. Here is an overview.

Table 9: Tuning options for the UCC batch mode

Option (short and long
form)

Description

-K,--keep Do not delete finished jobs on the server. By default,
finished jobs are destroyed.

-m,--max
<MaxRunningJobs>

Limit on jobs submitted by UCC at one time (default: 100)

-t,--threads
<NumThreads>

Number of threads to be used for processing (default: 4)

-u,--update
<UpdateInterval>

Minimum time in milliseconds between status requests on a
single job (Default: 1000)

-R,--noResourceC-
heck

Do not check if the necessary application is available on the
target system (will increase performance a bit)

-X,--noFetchOutc-
ome

Do not fetch standard output and error

-S,--submitOnly Only submit the jobs, do not wait for them to finish
-M,--maxNewJobs Limit the number of job submissions (default: 100)
-s,--sitename Specify which site to use
-W,--siteWeights Specify a file containing site weights
-j,--jsdl Assume jobs are in JSDL format instead of the default

JSON .u files

UNICORE Commandline Client: User Manual 43

11.3 Resource selection in batch mode

By default, the UCC batch mode will select a random site for running a job. You can modify
the selection in different ways.

• using the "-s" option or a "Site: <sitename>," entry in the job file, you can specify the site
directly

• use the "-W" option to specify a file containing site weights.

Say you have two sites where one site is a big cluster and the other a small cluster. To send
more jobs to the big cluster, you can use the site weights file,

#example site weights file for use with "ucc batch -W ..."

BIG-CLUSTER = 100
SMALL-CLUSTER = 10

#send no jobs to this site
BAD-CLUSTER = 0

set default weight (for any sites not specified here)
UCC_DEFAULT_SITE_WEIGHT = 10

This would tell UCC to send 10 times more jobs to the "BIG-CLUSTER" site, and send no
jobs´to the "BAD-CLUSTER". All other sites would get weight "10", i.e. the same as "SMALL-
CLUSTER".

12 OGSA-BES functions

Assuming you have successfully installed UCC Section 2, this section shows you how to man-
age and monitor jobs on OGSA-BES services using UCC. The set of commands not only sup-
ports the UNICORE implementation, but may also work with implementations in other Grid
middlewares compliant with OGF’s OGSA-BES specification.

12.1 OGSA-BES Setup

In UNICORE style, users are required to provide a Registry URL inside the preferences file.
For BES users it is not always the case that an endpoint is advertised via a UNICORE Registry.
Therefore, the configuration options allow user to modify this behaviour.

contact-registry=[true|false]

http://www.ogf.org/documents/GFD.108.pdf

UNICORE Commandline Client: User Manual 44

Users who whish to disable UCC calling the registry can set the "contact-registry" option to
false. By default the "contact-registry" option is true.

When setting "contact-registry" to false, OGSA-BES users must provide at least one BESFac-
tory URL using the following format.

bes.1=https://site1.com/services/BESFactory
bes.2=https://site2.com/services/BESFactory
bes.3=https://site3.com/services/BESFactory
bes.4=file:///tmp/bes-jugene.xml
bes.5=/tmp/bes-juropa.xml
...

If the "contact-registry" option is set to false and no OGSA-BES URL is specified, UCC will
report an error. To use an XML endpoint reference (EPR) read from a file for contacting a
BESFactory service, the contents of a EPR file must validate against the WS-Addressing’s end-
point reference schema. See below the contents of the sample endpoint reference file,

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/ ←↩
addressing">

<wsa:Address>https://localhost:8080/DEMO-SITE/services/BESFactory ←↩
?res=default_bes_factory</wsa:Address>

</wsa:EndpointReference>

In the above XML snippet, under the "Address" tag, you must specify the URL of a target
BESFactory service.

For the sake of convenience, here is an XML infoset representation taken from the WS-Addressing
specification:

<EndpointReference>
<Address>xs:anyURI</Address>
<ReferenceParameters>xs:any*</ReferenceParameters> ?
<Metadata>xs:any*</Metadata>?

</EndpointReference>

12.2 Running and monitoring OGSA-BES jobs

UCC provides an easy to use command for submitting jobs on OGSA-BES complaint endpoints.
To send a job read from a JSDL file,

ucc bes-submit-job -j hellompi.xml -s bes.3 -v

Alternatively, the job can be submitted using a BESFactory URL or endpoint reference file path.

ucc bes-submit-job -j hellompi.xml -s https://example3.com/services ←↩
/BESFactory -v

or

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/

UNICORE Commandline Client: User Manual 45

ucc bes-submit-job -j hellompi.xml -s file:///tmp/bes-jugene.xml -v

The JSON job description Section 7 can also be used, although only a subset of JSON constructs
are supported for the OGSA-BES extensions.

Users can fetch the job status by specifying the descriptor (.job) file. This file is automatically
generated after a successful execution of "bes-submit-job" command. Example:

Fetch job status example:

ucc bes-job-status jobid.job

Job can be terminated using a job descriptor file:

ucc bes-terminate-job jobid.job

To list BESFactory properties:

ucc bes-list-att -s bes.1

The above command will result in BESFactory’s properties without jobs information. To see
the list of the user’s jobs on a BESFactory

ucc bes-list-job -s bes.1

12.3 Get OGSA-BES job outputs

The UCC OGSA-BES extension allow users to fetch job’s output through the descriptor (.job)
file. The command is called "bes-get-output". It supports downloading standard error and output
files. The common usage scenario is, as soon as user issues the command, UCC will attempt to
download the output files. Before downloading these files, UCC probes the job’s status to check
whether the job has successfully finished. If it is, then the output files will be fetched instantly,
otherwise UCC waits until the job approaches completion.

Get job output example:

ucc bes-get-output jobid.job

Note that, at the moment the bes-get-output command only supports UNICORE based BES
implementations. However, it can be used against other BES services which implement UNI-
CORE specific server extensions such as BES-Activity and UNICORE’s native StorageMan-
agementService.

UNICORE Commandline Client: User Manual 46

12.4 Enabling username/password authentication

Some BES implementations support authentication using username and password. To add user-
name and password to the messages sent by UCC, the UCC preferences file must contain the
following settings

#
setup username/password
#
uas.security.out.handler.classname=de.fzj.unicore.bes.security. ←↩

UsernameOutHandler
de.fzj.unicore.bes.security.UsernameOutHandler.wsUserName=< ←↩

your_username>
de.fzj.unicore.bes.security.UsernameOutHandler.wsPassword=< ←↩

your_password>
de.fzj.unicore.bes.security.UsernameOutHandler. ←↩

wsActivateUsernameProfile=true

13 The UCC shell

If you want to run a larger number of UCC commands, the overhead of starting the Java VM or
checking the registry may become annoying. For this scenario, UCC offers a "shell" that allows
the user to enter UCC commands interactively.

It is usually started by

ucc shell

If you want to process a list of commands from a file instead of typing them, you can start the
shell like this

ucc shell -f commandsfile

or on Unix you can use the redirection features

ucc shell < commandsfile

13.1 Exiting the shell

To exit, type exit or press CTRL-D

UNICORE Commandline Client: User Manual 47

13.2 Changing property settings

To change a property setting in shell mode, you can use the set command. Without additional
arguments, current properties are listed:

ucc>set
registry=https://...
output=/tmp
...

To set one or more properties, add space separated key=value strings:

ucc>set output=/work registry=https://....

You can also clear a property (set it to null) by using unset

ucc>unset registry

14 Admin use of UCC

You can use UCC to keep track of your jobs, or, with appropriate permissions, to keep track of
all the resources on a site. UCC allows to list jobs, Grid sites, and applications, including full
details. Using the scripting possibilities described in Section 15, UCC can be extended to other
administrative tasks as well.

14.1 Security considerations

Usually, each UNICORE user has only access to his or her own resources (such as jobs). For
administrative use, you will need to aquire administrator privileges. There are two ways to
achieve this.

• create a dedicated certificate and map it to role "admin" (in the XUUDB, or whatever attribute
source you are using). This method is recommended if you want to remotely administrate
UNICORE/X.

• use the server keystore (of the UNICORE/X server you want to administrate) as UCC key-
store. This will also give you administrator privileges. For this you will need to be logged on
to the UNICORE/X server.

14.2 Filtering lists

The UCC commands that list server-side things (list-jobs etc) accept a filtering option, that can
be used to limit the results of the operation. Filtering works on the XML resource properties of
the resource in question.

Filtering is enabled by the "-f" or "--filter" option of the form

UNICORE Commandline Client: User Manual 48

-f XMLNAME OPERATOR VALUE

where XMLNAME is the name of an XML Element from the WSRF resource properties docu-
ment.

For example, to list all your running jobs:

ucc list-jobs -f Status equals RUNNING

To list all jobs submitted on Nov 13, 2007:

ucc list-jobs -f SubmissionTime contains 2007-11-13

etc.

Table 10: Filtering options

Operator (long and
short form)

Description

equals, eq String equality (ignoring case)
notequals, neq String inequality (ignoring case)
contains, c Substring match
notcontains, nc substring non-match
greaterthan, gt Lexical comparison
lessthan, lt Lexical comparison

14.3 WSRF commands

UCC supports several low-level WSRF operations using the "wsrf" command.

To destroy a resource,

ucc wsrf destroy <Address>

To get a property listing (i.e. print the XML resource property document)

ucc wsrf getproperties <Address>

To extend the lifetime of a resource

ucc wsrf extend <Address> <Days>

These commands can be abbreviated, e.g. + ucc wsrf d <Address>

UNICORE Commandline Client: User Manual 49

15 Scripting

UCC can execute Groovy scripts. Groovy (http://groovy.codehaus.org) is a dynamic scripting
language similar to Python or Ruby, but very closely integrated with Java. The scripting facility
can be used for automation tasks or implementation of custom commands, but it needs a bit of
insight into how UNICORE and UCC work.

15.1 Script context

Your Groovy scripts can access some predefined variables that are summarized in the following
table

Table 11: Variables accessible for scripts

variable description Java type
registry A preconfigured client for

accessing the registry
de.fzj.unicore.uas.client.IRegistryQuery

configurationProvider Security configuration
provider (keystore, etc)

de.fzj.unicore.ucc.authn.UCCConfigurationProvider

registryURL the URL of the registry java.lang.String
messageWriter for writing messages to the

user
de.fzj.unicore.ucc.MessageWriter

commandLine the command line org.apache.commons.cli.CommandLine
properties defaults from the user’s

properties file
java.util.Properties

15.2 Examples

Some example Groovy scripts can be found in the samples/ directory of the UCC distribution.

Here is a script that will delete all your finished jobs (use at your own risk):

Groovy example: delete all your jobs

/*
* remove all jobs

*/

//import UNICORE/X client classes
import de.fzj.unicore.uas.client.*;
import eu.unicore.security.wsutil.client.authn. ←↩

DelegationSpecification

http://groovy.codehaus.org

UNICORE Commandline Client: User Manual 50

//helper: kills a job with the given status (SUCCESSFUL, RUNNING, ←↩
...)

def kill(job, statuscode){
if (job.status.toString() == statuscode)job.destroy()

}

//iterate over TSSs and remove all jobs
def lister = new de.fzj.unicore.uas.lookup.SiteLister(registry, ←↩

configurationProvider)

lister.each {
it.jobs.each{

messageWriter.message "Job at "+it.address.stringValue
securityProperties = configurationProvider. ←↩

getClientConfiguration(it,DelegationSpecification. ←↩
STANDARD)

kill(new JobClient(it, securityProperties),"SUCCESSFUL")
}

}

Groovy example: list available storages

/*
* list available storages

*/
import de.fzj.unicore.uas.client.*
import eu.unicore.security.wsutil.client.authn. ←↩

DelegationSpecification
import javax.xml.namespace.QName

//porttype of storage service
def SMSPORT=new QName("http://unigrids.org/2006/04/services/sms"," ←↩

StorageManagement")

//method to extract storage name from a storage client
def findName(epr){
securityProperties = configurationProvider.getClientConfiguration ←↩

(epr,DelegationSpecification.STANDARD)
sms=new StorageClient(epr, securityProperties)
return sms.resourcePropertiesDocument.storageProperties. ←↩

fileSystem.name
}

//list storages from registry
registry.listAccessibleServices(SMSPORT).each {

name=findName(it)
messageWriter.message "Storage <"+name+"> at "+it.address. ←↩

stringValue
}

UNICORE Commandline Client: User Manual 51

//list storages attached to target systems
def lister = new de.fzj.unicore.uas.lookup.SiteLister(registry, ←↩

configurationProvider)

lister.each {
it.storages.each {

name=findName(it)
messageWriter.message "Storage <"+name+"> at "+it. ←↩

address.stringValue
}

}

16 Frequently asked questions

16.1 Configuration

16.1.1 Do I really have to store my password in the preferences file? Isn’t this insecure?

Putting the password in a file or giving it as a commandline parameter can be considered inse-
cure. The file could be read by others, and the commandline parameters may be visible in for
example in the output of the ps command. Thus, UCC will simply ask for the password in case
you did not specify it.

16.1.2 How can I enable more detailed logging?

UCC uses log4j, by default the configuration is done in <UCC_HOME>/conf/logging.properties
You can edit this file and increase the logging levels, choose to log to a file or to the console,
etc.

16.1.3 How can I set the HTTP connection timeout?

In your properties file, set

client.http.connection.timeout=<timeout in milliseconds>

16.1.4 How can I log the SOAP messages sent and received by UCC?

In your properties file, set

UNICORE Commandline Client: User Manual 52

#log outgoing messages
log.outgoing=true
#log incoming messages
log.incoming=true

which will log the messages on INFO level.

16.1.5 How can I generate a proxy cert and add it to my message in order to use e.g.
GridFTP?

In your properties file, add

#enable proxy cert out handler
client.outHandlers=de.fzj.unicore.uas.security.ProxyCertOutHandler

which will add a handler that creates a proxy cert and adds it to the message.

16.2 Usage

16.2.1 Can I use multiple registries with UCC?

Yes. Simply use a comma-separated list of URLs for the "-c" option. However, you may
only use a single key/truststore, so all registries (and sites listed in them) must accept the same
security credentials.

16.2.2 Can I upload and execute my own executable?

Yes. Check Section 6.

16.2.3 Can I use UCC to list the contents of the registry?

Using the wsrf command, and the UNIX grep utility, this is very easy, for example

ucc wsrf getproperties https://localhost:8080/DEMO-SITE/services/ ←↩
Registry?res=default_registry | grep Address

will list the addresses of all services registered in the registry.

16.2.4 How can I use plain JSDL files instead of a .u JSON file for job submission?

Add the "-j" option when submitting a job.

UNICORE Commandline Client: User Manual 53

16.2.5 I get strange errors related to security

Please read the general UNICORE FAQ on www.unicore.eu[the UNICORE website] which
contains descriptions of many common errors.

16.2.6 Are the JSDL documents and workflow documents validated?

The JSDL documents passed to the run command and to submit-workflow are validated, and
any errors are logged. If you wish UCC to stop in case of validation errors, you need to set a
property

ucc.validation.fail_on_errors=true

	Overview
	Installation and configuration
	Prerequisites
	Download
	Installation and configuration
	Preferences file
	Logging
	Installing UCC extensions
	Testing the installation

	Getting started with UCC
	Getting help
	Connecting
	List available sites
	Running your first job
	Listing your jobs

	Common options to UCC
	User attributes and VOs
	Configuration file
	Credential and truststore options
	Trust store examples
	Using Unity
	Using MyProxy
	Client options
	Other options

	SAML PUSH support
	Introduction
	Basic usage
	Attribute filtering
	Rules for multiple filters

	Running jobs
	Introduction
	Options overview
	Resource brokering
	Processing jobs asynchronously

	Job description format
	Site name
	Specifying the application or executable
	Arguments and Environment settings
	Application parameters
	Job data management
	Resources
	Execution environments
	Miscellaneous options

	Data management functions
	Specifying remote locations
	Data movement
	Handling directories
	Finding data
	Deprecated commands

	Metadata management functions
	Basics
	Available commands

	Workflow extensions
	Introduction
	Command overview
	Basic use
	Managing workflow data
	More

	Batch processing
	Options
	Performance tuning options
	Resource selection in batch mode

	OGSA-BES functions
	OGSA-BES Setup
	Running and monitoring OGSA-BES jobs
	Get OGSA-BES job outputs
	Enabling username/password authentication

	The UCC shell
	Exiting the shell
	Changing property settings

	Admin use of UCC
	Security considerations
	Filtering lists
	WSRF commands

	Scripting
	Script context
	Examples

	Frequently asked questions
	Configuration
	Usage

