

sy

o S e

e

e

. - ;:; e Aﬂ/ e e ,fa - >/\> o e

W e . . con : : i Lo - -

PSR

? T

% : Ay s . 5 - i ; S . "
Sarandnmmaa SR s

Slrtinn i : :

S e

s OOE - 000

FEV, A

FIRST EDITION

June TRED

NS INCORPORATED
REVISION DATE

ATO June 1987

©1282 ALPHA MICROSYSTEMS

THE INFORMATION CONTAINED I THIS MANUAL 1S BELIEVED
RELIABLE. HOWEYER, NO RESPONSIBILITY FOR THE A
LF THIG INFORMATION 18 ASSUMED BY ALPHAS MICRO.

TO BE ACUURATE AND
GURACY COMPLETENESS OR USE

This document reflects AMOS versionsg 4.6 and later

and AMOS/L versions 1.0 and later

THE FOLLOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS, IRVINE, Ca. 92714

Alsha Mioro ARMOS AlphaBASIO AlphaPASCAL
Alphal k3P AlphavUue AlphaBERY AlphaACCOUNTING

ALPHA MICROSYRTEMS
§7881 Sky Park Norh
ving, CA QP74

ALPHABASTC XCALL SUBROUTINE USERSS MANLIAL Page 114

Table of Contents

CHAPTER 1 INTRODUCTION

T MANUAL ORGANIZATION R
-& SAMPLE PROGRAMS TEAmmmsssaneasconese Um0 me D
3 USING XCALL SUBROUTINES R T R

1.
3
Te

CHAPTER

fas]

BASORT = XCALL SUBROUTINE FOR SORTING FILES

LOADING BASORT INTO MEMORY R T TS P

USING BASGRT IN AN ALPHMABASIL PROGRAM =7

2.2.17 Sorting Random Files T
2.2.1.7 An Example of using BASORT

o a Random File w.nwwsonwnen. 24

Z.Z2.8 So;txmg Sequential FIles wevemnncnnwen . 26
d.2.7. An Example of Using Bﬁ&ORT

on a Sequential File L........ 7=

-% BASORT ERROR MESSAGES marcEREs AR s MR u s e e e

b SUMMARY R T -

El

2
2.

Pad et

5\1"\}

CHARTER 3 COMMON - XCALL SUBROUTINE TO PROVIDE
COMMON VARIABLE STORAGE

L LM
E] &
P

LOADING COMMON INTO USER OR SYSTEM MEMORY %=1
USING COMMON FROM WITHIN AN

ALPHABASIC PROGRAM B
3.2.1 Defining Variables vovewsnosnvasennnon, 3 ¢
3.2.2 The XCALL COMMON Command LiNE cuecnnens 33
3.3 AN EXAMPLE OF COMMON R L L T I £ 4
R.4 SumMMARY R R R L T T N T I S 4

CHAPTER 4 FLOCK ~ XCALL SUBROUTINE TO COORDINATE
MULTI~USER FILE ACCESS

4

THE MULTIPLE UPBATE PROBLEM ... ireonmnnnns
THE INTERCONSISTENGY PROBLEM T
=2 THE FLOCK SURROUTINE hma s s s EE R men B s EE R e e e e
A.3.1 FLOCK Program Requirements
4.%.2 FLOCK Calling Sequence Bassmanaaanenea
23,21 ACtion & MOOE .uveeenmenennn ..
R e
4.3 ?n RECOrd wouunmencarnnonconennaes
4.3.2.4 Return-Code Kasmmn e ek s
4.3.% Queue Blogk Requirements ..ovomewonvnnas

S RNV VN

H

i

i !
LEER L R

H

&“«3—“:&"?«%«&*%
H
L R R

i

PE5-10008-00 REYV ADO

ALPHABASTC XCALL SUBROUTINE USER'S MANUEL Page

G.4 USING FLOCK ggwq‘%a,aﬁmﬁ?¢&»mwkg¥*$agmgm»v¢vga
4.4,1 File-Open Interlocks DR R e e e e s
G.4.1.1 The Multiple Update Problem .. &9
£.4.1.2 The Interconsistency Problem
bod,? R@f@fd Ugda?@ INTerionks woveuonnnoonnn
bob, 2.1 The Muitipie i Update Probilem ..
b b 2.2 The Intercons istency Problem .
4.4.3 Improved File Interlocks B A B
4.4.3.1 Fxample B A m o m s s e A ke sy
5.5 DEARLOCK, AND HOW TO PREVENT L .
a.& SUMMARY T T R
G.6.1T Quick Refersnce Summary
OF ACTIONS/MOES L urneinuunonoeonnennee hm1?

CHARTER & KLOUK ~ XCALL SUBROUTINE FOR MULTI~USER LOORE

TOLOADING %LOCK INTG SYSTEM MEMORY L ennnanaa
2 THE XLOCK SUBROUTINE o 0utvmss s onenn . ‘o
703 THE LOCKS wuvvnmncovnnncnnnonnns .
4 THE MODRES I R R L T T R
Soh.T MODE 0 (Lock and Return) wE e w At
Johl2 0 MODE 1 (Lock and Woit) veeurverennnnn..
5.4.% MODE 2 (Clear Lock? At s an e m e
B.4.4 0 MODE R (Ldist Locks) Em e mm sk e s
LB WILDCARDS FE R B A A T e 68 NS s EmoemoE At mw s ke E A a s
b PROGRAMMING EXAMPLES N
5.0.17 Caleulating Record Numbers
5.6.2 Sample Program to Tibustrate
File Record Lo0king wuenmeeonannnasenn.
5.7 SUMMARY e N T T T

R AR
#
P

£
3

e
2

CHAPTER & SPOOL ~ XCALL SUBROUTINE FOR SPOOLING FILES
TO THE LINE PRINTER

S UBING THE %0ALL SPOCL SUBROUTIME | iewens. G
6-1.1 Some Examples using SPOOL oo rnsenes.. ok
GLTLTLT KCALL SPOOL UFILENAMET &b
G.1.1.2 0 xoaLL SPOOL U FILENARED
TER™ o nnnrannana
6.1.1.% MCALL SPOOL A FILENAMEY
“W&EM?%?”K%wg?fH$S wamaswsanan G0
G.1.T.06 XOALL SPOOL "FILEN MAMET |
”?REN?EQ*ﬁgwlséﬂEﬁﬁiﬁﬁiéﬁ pean B
G.1.1.5 KCALL SPOCL,"FILENAME",
CPRINTER" ,SWITCHES , COPIES
B L L
G.1.71.6 X?ﬁi‘ SPOOL TFILENAME"
INTERY SWITCHES .COPIES s
Mf}e@e‘zmwg O H
6.1.007 0 XCALL SpooL v IAMET
”Pﬁi%ff'”ﬁgwETiﬁ.W@ﬁﬂ?§§$ﬁ
CEORMY WIDTHLLFP i innnune. 67
&.7 SPOOL ERROR MESSAGE D Y & S
H.F SUMMARY e

e

34 P F

BE NS B S W Y E M B oW e os w4

ALPHABASTIC XCUALL SUBROUTINE USER®S MamualL Page v

CHAPTER 7 KMOUNT - XCALL SUBROUTINE TO MOUNT A4 pIsSK

7.1 THE XMOUNT SUBROUTINE T T

.1, Some Examples Using XMOUNT O,
7.2 SuUMMaRY

xé?é*\ﬂ
L PG s

wﬁw%uwa&mxsss&aﬁwﬂzmmawww&&s&wmﬁmmwﬁ&ﬂwmmnﬂ

BOCUMENT HISTORY

INBEX

DES~TO00R-00 REY ADD

CHAPTER 1

INTRODUCTION

AlphaBASIC, the Alpha WMicro BASIC Language Processor, s 3 powerfully
enhanced version of BASIC. AlphaBASIC has the ability to access external
machine language subroutines using a keyword called XCALL. Several machine
Language subroutines, ones that perform complex and yet freguently required
tasks, are provided on vour System Disk. These external subroutines, their
features, ahilities and restrictions, are the subject of this manual.

HBecause these external subroutines are machine language programs, they are
much smaller and faster than equivalent AlphaBASIC programs. Machine
Language programs work closely with hardware and the operating system, whioh
AlphaBASIC cannot do in some applications.

It i3 dmpertent to note here that, whereas you can write your ouwn machine
Language subreoutines and access them via XCALL, this manual does not discuss
how those machine language subroutines can be written, This manual instead
restricts iself to a discussion of the existing external subroutines named
BASORT . COMMON, FLOCK, ALOCK, SPOOL and XMOUNT, You will find this manual
useful if you are already somewhat familiar with AlphaBASIC angd wish to
undaerstand, and then access, these external subroutines. You may also find
this manual to be useful later as a reference guide to the various existing
subrout ines.,

Please refer to the ALphaBASIC User's Manual , MWM-Q0100-01 for further
information about the XCALL Keyword and any other topic dealing with
AlphaBASIC itsel f,

1.1 MANUAL ORGANIZATION

This manual s arranged in chapters, You are reading the introductory
chapter, Chapter 1. Chapters 2 through 7 digcuss the XCALL subroutines
themselves; how, when, where and why to use them, and what special features
they nrovidse,

Chapter ¢ talks about BASORT, the AlphaBASIC Sart subroutine, BARORT sorts

the kinds of fites called Random filesg and Seguential files., There 45 also
a tist of the error messages the BASORT subroutine may return,

DEE-TOOUE-00 REY ADD

INTRODUCTIG

Fage 1-¢

COMMON, the external subroutine that enables data to be

® LRGN storage gres of memory (for example, to pass
betwean oh f

programsi

detatls
e ing

ile locking subrautine that protects a data
more than one program in s given moment , so that
twh or more program ousers concurrent iy,

the subroutine used to set, test and clear
brroutine s similar in some raspects

SFPOOL {an acronym for "Eimultaneous Frinter Output

Tthat inserts, or “spools,” & file into a printer

eventual processing cutside of the control of the jaob
ram,

the subroutine used to mount a disk from within
& ouser must z2ccess 3 new disk during the
: v oupdate event. You mount a disk affer vou have
teidas or a flopoy diskette. in order to inform the
that drive has a different "bitmap,” or index af

ams in this manual, ranging Iin complexity
urogram Lings. Hemember that these samples are
e yse of the AlphaBASIC XCALL subroutines, and
the best or most elegant tachniques to

these examples, remember that AlphaBASIC
well as Line numbers, to identify Locations in
compesed of one or more alphanumeric
& space or other delimiter. The first
case leiter. A& label must be the
. and wust be terminated by a colon
Labels C(RANDOMPDIRECTION, UP, DOWN and
tnat performs a kind of simple animation.

Gulters w

Lower

DOWN, STRALGHT

o RETLRN

: RETURN

INTRODUCTION Page 1-3

I the pages of this manual you will be seeing a number of program examples
that use labels,

Motice that line 10 of the above program example is a level-1 MAP statement:
we map the varisble DIRECTION as a floating point variable (F), AlphaBASTC
provides you with the ability to specify the pattern in which variables of
sll kinds (floating point, string, and binary) are allocated inm MEMOFY ., By
mapping variables at different levels you may define whole groups of related
tnformation and reference single elements or an entire group as you chooss,
You will see MAP statements in many of the examples within this manual. For
further information on interpreting and using MAP statements, see Chapter 8,
"Memory Mapping System,” of the AlphaBASIC User's Marnual . DWHM-O0100-01,

1.3 USING XCALL SUBROUTINES

There are seweral things you shoutd keep in mind before beginning to wuse
KOALL subroutines:

1. ALL XCALL subroutines must have s .SBR extension. The subroutines
supplied with your system software reside in account 7,67 of the
System Disk,

Whenever a subroutine is reguested, AlphaBASIC follows a specific
pattern in looking for the requested subroutine. The search
sequense i as follows {where [F,pnd designates the
Project-programmer number that specifies vour account):

a., System memory

b. User memory

t. Default disk:lUser P,.pn]
d. Dbefault disk:[User 07

e, DSKG:[7,6]

Notice that AlphaBASIC checks first system, then user memory. I a
subroutine is to he called a large number of times, it is wise to
toad it dnto memory to avoid the overhead aof fetching the
subroutine from disk.

Pf the subroutine is not in memory, AlphaBASIC attempts to load the
subroutine from the disk, following steps c¢. through e. of the
search seguence above. It an AlphsBASIC program fetches a
subroutine from disk, AlphaBASIC lLoads it into memary only for the
duration of its execution; afterward it is removed from memory if
it is loaded via this automatic orocedure., NOYE: Subroutines
loaded into system or user memory via the LOAD command remain in
memory until you reset the system or until you wse the monitor
command DEL to delete them.

B55-10008-00 REV AQD

INTRODUCTION Fage 1-4

ES
L4

4

*®

You will invoke & particular subrouting via the AlphaBASIC XCALL
statement , and will usvally need o specify several control
parameters on that statement (ine. A typical XCALL statement Line
might took Like this (where COMMON 15 the name of the subroutine
YO Want to invoke, and SEND, UMSGHAMT . and WRITE'OUT are variables
that specify information to the COMMON subroutine):

T XCALL COMMON . SEND _"MSGNAM" JWRITE OuUT

You will nesd to yse Map statements to detine many of the conteel
varisbies you specity on the XCALL statement Line, {This s
because only by way of MAP statements can vou define binary
variables.) For dinformation on MAP statements, refer to the

AlphaBASIC User's Manual, DRM-COTO0-07 .

Many of the ¥CALL subroutines require that you pre~lcad specisl
files. For example, you must load the file DSKD:COMMON, SBRI7Z 47
into user or system memory before running an AlphaBASIC program
that makes use of the COMMON subroutine. (For sach AUALL
subrouting, the documentation that follows will let you know what
files need to be pre-loaded,}

To locad a file into user memory (i.e., your own memory partitien),
enter either of the following from AMOS or AMOS/L command Levels

oLOAD B8KO:Filename. SBRITV 61 [FED

&

oF

-LOAD BAS:Fitename.SBR FET)

Filename ds the name of the subroutine you are requesting
(e.g. . COMMON,

Note the use of the ersatz name, BAS:, which indicates account
of the System Disk. After you ses the monitor prompt,

My run o an AlpheBASIL orogram that uses the specific
suliroutine.,

To toad an XCALL subroutine inte system memory, the Sysiem Operator
Bust use the YSTEM command within the system initialization
command file. For more information on loading files, dincluding
subroutines, into system memory during system boot-up, see the

AMOS Svstem Operator’s Guide,. DS5-1000M1-0D0, or the AMOS/i, System

Uperator’s Guide, B85-10009200.

Boing XCALL subroutines tnamely, FLOCK, XLOCK and SPOOLY use
moniter gueue. The monitor gueue is a List of blocks in 3
mamory which are i{inked ¢o each other +in a forward chain,

ueve block s currently sight words (16 bytes? in size {this :
may ohange with ths next e se of the file systemd. Buring

normal monitor operations, various functions use These gueus blocgks

INTROBUCTION Page 1-5

to perform certain tasks., The monitor initially contains 20 blocks
it the available queus List. This quantity is established in the
system initialization command file, For information on increasing
the number of available monitor gueue blocks, see the AMOS Svstem
Operator’s Guide, DSS-10001-00, or the AMOS/L System Operator’s
Guide, DES-TO002-00,

It wyou use am NOALL subroutine that uses the monitar OQUBUE . YOu
must be sure that enough aueue blocks are available befors
executing the subroutine. If not encugh blocks are available when
the AlphaBASIC program executes the XCALL subroutine, the system
could lock up and require manual reset.,

Your AlphaBasic program can check the number of free cueue hiogks
before you perform the XCALL subroutine by using the WORD function
to read the GFREE memory location. The program should not continue
it the guantity of free queue blocks is insufficient.

To find the QFREE memory location for an AMOS system, eh§€k the
current SYS.MAC file. For AMOS/L systems, see the SYS.MER file to
see Tthe location of GFREE,

The queue block reguirements for each of the XCALL subroutines is
discussed in the appropriate chapter,

DRE-TO008-00 REV ADG

CHAPTER 2

BASORT ~ XCALL SUBROUTINE FOR SORTING FILES

BASORT is an external subroutine, callable from AlphaBASIC via the XCALL
keyword, which can sort both random and sequential files. A random file is
ane in which the records are physically grouped together in one area of the
disk, and where any point within that file can thus be found immediately by
calculating an offset from the file'sg bheginning. A sequential filets
records are not necessarily contiguous on the disk, but are linked in
sequence by pointers in each segment that indicate where on the disk the
next segment can be found. For information on creating and using files from
within AlphaBASIC, refer to Chapter 1% of the AlphaBASIC User's Manual,
DWM-O01 G001,

You can use BASORT to sort a file into numeric order, a list of pames ar
words inte alphabetic order, and so on. BASORT permits uwp to three Keyg,. or
elements of the data records vou wish to base vour sort on. For example,
say you have a List of customer names, each with an associated order date
code and a purchase order number. The first key might be the customer name.
It a particular customer has ordered more than once, the second key comes
inte play to determine which recard of that customer®s should go first. You
can sort that customer's orders chronologically based on the date code. And
it that customer has placed two or more orders in the same day, the third
key will determine the final sorting placement of that customer®s records
hased on his purchase order numbers., {An example of this kind of sort is in
Section 2.2.7.1 below.)

HASORT combines two sorting methods to make it a relatively fast sgort
utility that can still hendle very large fites., If vour memory partition ig
targe enough to contain the entire file that s to be sorted, BASORT
performs a memory-hased heap sort. That means it sifts through and
rearranges the "heap” of data in memory to bring the data into the order YOU
specify in the BASORT command line, 1f there is not enaugh room In user
memory for the entire file, BASORT does a disk-based polyphase merge-sort
That s, the date is brought into memory in small groups where it s sorted
and rewritten to the disk; then the several groups are merged together on
the disk,

BASORT ~ XCALL SUBRCUTINE FOR SORTING FILES Fage 22

2.0 LOADING BASORT INTO MEMORY

The BASORT package consists of three modules {or two modulss on AMOS/L
systems) --BASCRTLGBR, AMSORT.SYS, and FLTONV.LPRG C(EFLTCNY s omitted on
AMOS/L systems), These modules must be in memary when BASORT i3 used. wWhen
the KOALL BASORT command s used in oan SlphaBASIC program, the AlphaBAaSIQ
program automatically loads BASORT, S8R imte user MEMOTy . Howawer ,
AMBORT.EYS and FLTONV.BRG (for AMOS systems) must be loaded into either
system or user memory pricr to running an AlphaBASIC program using BASORT,

to Load AMSORT.SYS fand FLTCNV.PRG for AMOS systems? into user memory, enter
the foliowing from AMOS or AMOS/L command Level:

LOAD DSKO:AMSORT.SYSL1,40 B9 or LOAD DSKOIAMSORT,.3YS01 4] (FED)
ﬁuﬁéﬁ BSKO:FLTONV, PRGTT 4T (AT ”

=

To toad AMSORT.SYS and FLTOMY. PRG %f?a system memory, vyou must have two
Lines in your system dnitialization command File that perform those
funetions. For more information on loading subroutines into system memory
during system boot-up, see the AMOS System Operator's Guide, DSS—10001- 30,
or the AMOS/L System Operator's Guide, DSa=1000 e,

AMEORT.SYS and FLTCNV.PRG are re-sntrant; BASORT.SBR s not, S0 you must not
Load it into system memory.

2 2 u
2.2

IRG BABORT IN AN ALPHABASIC PROGRAM

You may use BASQORY to sort both random and sequential files.
other external subroutinss discussed in this manuel . vou
fram the AlnhaSAsic program using the XCALL kevward. Then wvou will

e aaramet of L to three keys vou wish to sort on are provided to the
LohaBASTIC grogram via the XCALL BASORY commend line.

Jsing BARORT
using H

specific methoads of o

for random files reguires some ditferent parameters rChan ;
SGRT for seguential files, The next two sections desoribe the
g BAJGRT for both random and seguential files,

2.2.7 Sortving Random Filas

Wher use BASDRT to sort random files,. BASORT sarts the fiie onto itself
fthat s, 1t replaces the originsgl , unsorted fitLe wﬁth a2 file containing

sorted data), Therefore, 1 you wish to retain 2 backup copy of the
unsorted file, vou must create a separate copy to be sorted.

BASORT - XCALL SUBROUTINE FOR SORTING FILES Page 2~3

BASORT for random *files is called wia varigbles or constants in this order
{where the ampersand (8) means & continuation of the 2iphaBASIC Line
statemert):

ACALL BASORT, CHANNEL'NUMBER, RECORD'COUNT, RECORD'SIZE, &
KEYT'SIZE, KEY1'POSITION, KEY1'ORDER, &
KEYZ'SITE, KEYZ'POSITION, KEVZ'ORDER, &
KEYZ'SIZE, KEYZ'POSITION, KEYZ'ORDER, &
KEY1'TYPE, KEYZ'TYPE, KEYZFTYPE

CHAMNEL "MUMBER - File chaennel on which file to he sorted iz open
for random PrOCesSsIing.

RECORD P CQUNT - Mumber of records in the random fils You are
sorting. {Untike seguent ial files, the
programmer must know the precise rnumber of
records in a rendom file)

RECORDYSIZE - Size of the Longest record in the file YOU o are
sorting. The size of 3 record is its byte count

dincluding characters, spaces, stc.r. Agein, faor
a random file, you must be sure of the racord

sire,
KEYT!'SEIE ~ The size, in bytes, of sort key #1, &ive the

size of the largest instance of key #1 (i.e., ¥
sort key H#1 is the customer's name . Tind the
Longest name in any record, or perhaps allow for
a very long one.)

KEYT'POSITION -~ The first character position ocoupied by key #1.
If the KEYT'POSITION variable given is 50, for
example, BASORY will #it the characters beginning
at the fifgieth byte in the record into the
seguence 1t is c¢reating.

KEYV'ORDER - sert order of key #1, Enter the digit O to
indicate that vou want key #1 of sach record to
e sorted in ascending sequence, or enter the

digit 1 to indicate descending segeuence. (NOTE:
The order s determiped using ASULI collating
sequencey e.49., all upper-case letters come

before lower-case lelters.)

KEYZ'S51ZF - The

i

tze, in bytes, of sort key #2,

KEY2'POSIYION — The first character position cocupied by hey HZ,

KEYZ"ORDER ~ Sort order of key #2. Enter a 0 or a 1. (See
KEYT'ORDER , above,)

KEYS'S176 = The size, in bytes, of sori key #3.

HASORT -~ XCALL SUBROUTINE FOR SORTING FILESR

o

KEYZ'POSITION = The first character position ocoupt

KEYR'ORDER - B0rt order of kev #3. Enter & 0 or
KEYTPORDER, above,d

KEYT TYRE - The data type of kev #1. Key types

= String
5

= Floating Point
2 = Binary

KEYZ'TYPE

s

Page -

ed by key #3,

g 1. {See

a4re]

- The data type of key #2. (See KEY1'TYPE, above,)
KEYER'TYPE - The data type of key #3, {(See KEY1'TYPE, above.!
Remember, keys are the elements of the data records you wish to bhase your

sort on {1.e., customer name, order number, etu.). If YO
than three keys, all entries in the XCALL command lipe

must be zero. If the key types are omitted, BASORT as
Lype,

ALL arguments in the XUALL command Line are numeric, b
gither floating point or string values. for axample , 99
Rrguments must not be in binary format.

The first character in a record is considered pozition 1.

2.2.17.17 An Example of using BASORT on a Random File

The following is the contents of an unsorted file that we
sorted. The tile we have gathered the following customer
FOINFOLDAY, containing the purchase order information
printed business form (we're pretending) they ordered fro

ROBIN GOOD PUBLICATIONS 143781
K.AL, ENTERPRISES 12T/
EVANS® CLASSIC AUTOMOBILES, Inc. 1420481
G0 PUBLICATIONS 274781

- GROCMING BQUIPMENT o, 6/7/81
4 &/3/81
GUOD PUBLICATIONS PI28/BY
MARTIN MICHAEL LAVELLE, CONSULTANT a712/81
HOMEST DAVE'S CHEAP CAR PARTS G/11/89
BE 30T HORSE GROOMING EGUIPMENT fo. 49781
ROBIN GOOD PUBLICATIONS 2PE/8T
EVANS' CLASSIC AUTOMOBILES, Tnc. F/11/87

want to use less
for the unused kevs
sumes string data

ut may be pagsed s
Yois e valid entry,

FLL pretend we want
names i is called
of the specific
mous.

49 1A%
1707
E7RETA
49201
T8RS
14101
4PRGE
FR7ée
AOEZA
RGeS
LREGY
L98a67

BASORY ~ XCALL SUBRQUTINE FOR SORTING FILES Page 2-5

The orogram that we will use to sort the above Tile looks Like thig:

SAMPLE

5 PROGRAM TO SORT SMALL RANDOM DATA FILE
TOOMAPT CUSTOMERTINKD GEFIMITION OF RECORD:
1

5
T3 MARZ NEME 8 3% ! Fh BYTES maXimum
2 MAP2 PURCHASEDATE,S,R ! B BYTES MAXIMUM
25 MARZ PURCHASEYORDER,S,7 ! 7 BYTES MAXTMUM
!
H

30 MAPY RECORD'SIZE,F,46,50 RECORD IS TOTAL OF 50 BYTES
35 MAPT RECORDNUMBER,F 6.0 START WITH RECORD #0

40 MART CHANNEL ,F 6,100
45 MAPT REC

PFILE IS5 OPEN ON CHANNEL #100
RD? 3ﬁ?ﬁL Fob, 32 UOTOTAL OF 12 RECORDS IN FILE

S Wapl A %ﬁiﬁﬁf?fﬂgﬁ POSORT IN ASCENDING ORDER

5% Mapi STRING,F 6,0 POALL KEYE ARF OF TYPE “STRINGY
00 sTart:

120 SREN B1O0 VRO INFS, BATY SRANDOM RECORD® SIZE RECORD TNUMBER
TED PRINT ”%Qw JQ”YWHQWRK”

140 RCALL BASORT .CHANNEL (RECORD'TOTAL ,RECORD'SIZE, 35,1 CABCENDING .8 36 &
ﬂstﬁbYNGﬁfgwé &afgmbiﬁﬁ STRING STRING STRING
PRINT “We will sort on name, puwrha&@ dat&f and purchase order number®
FOR RECORDINUMBER = 3 10 11
READ #2100, sG%Tﬂmiﬂ INFO
PRINT ﬁ%&
PRINT PURCHASE FRATE,
PRINT PURCHASE*ORDER

NEXT
CLOSE #1100
ERDR

Mote that 160 opens the file, POINFQ.DAT. Line 140 s the XCALL BASORT

zered | where the variables (defined in the MAP statements of lines 15
e the BASORT parameters. The file is sorted back on itsel f
i Then it i3 printed as a result of Lines 160 through 210,
the f1le,

resulting printout, when running the above program, -

Mow sorting. ..

il sort on name, purchase dete, and purchase order number
OTG HORSE GROOMING CQUIPMENT o0 4IT784 TREA

5 HORGE GROODMING EQUIPHMENT GO 479781 1895
CLASEIC AUTOMOBILES, 1INC, T/20/81 KYI8TE
CLASSIC AUTOMOBILES, INC, G/11/781 LeBb4sy
DAYE'S CHEAPR CAR PARTS 9711781 AORZS

who. EMTERPRISESR 124778 12407
N MICHAEL LAVELLE, JONSULTANT HF12/81 TRYZD
SGGD PUBLICATIONS TSN 49130
 PUBLTCATIONS 2/14/87 $9201
FUBLICATEONS 2A2BR/BY LGRS
PUBLTCATIONS 2IARIBY LIFQT

GEATALY 14101

BASORT « XCALL SUBROUTINE FoOR SORTING ¥IiLES Page 72—

£.2.2 Sorting Sequentisl Filesg

When vou sort 3 sequential file, vou must specify both an input and an
autput file. I you wish to sort a file back onto itself, you may specify
the same file for hath input and output,

IMPORTANT NOTE: Before BASORT is galled, the file must be opened for input.
BASORT teaves the file open for output

Cali BASORT for seguential files via:
XOARLL BARORT INPUT " CHANNEL , OUTPUT " CHANNEL RECORDTSIZE,
KEYT'SIZE, KEYT'POSITION, KEYI'ORDER,
KEYZTSIZE, KEYZ'POSITION, KEYZFQRDER,
KEYE'SIZIER, KEYE'POSITION, KEYI'ORDER
Where:

INPUTPCHANNEL ~ The file channel on which the dnput fils is open.

OUTPUTTCHANNEL ~ The file channel on which the output file i3

open.
RECORDPSIZE - The size, in bytes, of the largest record in the
fite, including the terminating carriage

return/ Linefeed characters, NOTE: Yoo smali a
value results in truncation of data FRCONGS .,

KEY1'81IF - The size, in bytes, of sort key #1. Give the
size of the largest instance of key #1 {1.e,, i
gort key #1 i3 the customer's name, Tind the
Longest name in any record, or perhaps aliow for
& vary Long onel,

KEY1'POSITION - The first charascter position occupied by key #1.
PP othe KEY1'POSITION variable given ig S0, for
exanpie, BASOAT will 41t the characters beginning
at the fiftieth byte in the record into the
sequence 3t s creating.

KEYTYORDER - Sort order of key #7, Enter the digit U to
indicate that you want key #1 of sach record to
be sorted in ascending seouence, or enter the

digit 1 to indicate descending seqeuence., {(NOTE:
The order 45 determined using ABCIT cotlating
sequence ; £.9., all upper-case letters come
before lower-case letters.)

KRYZ2'5i7F - The size, in bytes, of sort key #2.
KEYZ'POSITION - The first character position occupied by key #2.

KEYZ'ORDER - sort order of key #2. Enter a 0 or & 1. (See
KEYTPORDER . above,l

BASORT « XCALL SUBROUTINE FOR SORTING FILES Page: -7

KEYR'SIZE - The size, in bytes, of sort key HE,
KEYZ'POSITION -~ The first character position occupied by key #3,

KEYZPORDER -~ Sart order of key #3. Enter a 0 or a 1., (See
KEYI'ORDER, above,)

NOTE: Sequential files contain only ASCII data. For that reason, when you

gort sequential files you do not have to specify the dats type of the sort
keys; BASORT knows that all keys in a sequential file are strings.

2.8.2.1 An Example of Using BASORT on a Sequential File

The following is the contents of an unsorted sequential file that we want to
sort. Pretend this time that we are cartographers, making a mep of & new
suburb Just being built. iKe want to compile an alphabetic index of all the
street names laid out and defined so far, but then we want to compile an
alphabetic list of the streets ta the north of town center only, then one of
the streets to the east, and so on for tha streets to the south and west,

We use a seguential file for this data because as new streetrs are iLaid our
and named, we can fLater add those to our seguential file and then resort the
file for future maps.

We have gathered the existing street names and their relative nositions from
city plans., The file we have put the unsorted List of all the streets in is
called STREET.DAT., The extension, .DAT, indicates to us that this 45 the
raw data file,

He want to record the sorted, alphabetic list of all the streets in a fite
called STREET.LST. The street names sorted according to direction we'll
place in a file called ENSW.LST.

We choose an extension of L3T to remind us that these are files we can
orint when we want to,

Her

La

2]

is the list of street names and directions we've gathered from city
s

3
3

BASORT ~ XCALL SUBROUTINE FOR SORTING FILES Page 2-8

Sinbad st,

Joehn Sitver Bd.
Marco Polo Ave.
Robinsoen Srusos bBr.
Mimrod Cr,

Willdam Tell Ln.
Achilies Dr,
Fontiae Ln,

Fremont st

Kubblail Khan Cr.,
Lonstantine fd.
sencho Panza e,
Balboa br.

dohn Carter Ln.
Homer fve.

Wilitam Taft Ave.
fdward Teach 5t
Cisco Kid Bd.
Michael Fink br,
Herman Meiville Lo,

ﬁzwmmmzzmzmmz&:zmwmﬁz

The first thing we need to do is load AMSORT.SYS (and FLTCNV.PRS far an ﬁmgs
systeml in user memory. We do that at AMOS or AMOS/L command Level , this
Way:

CLOAD DEKO:AMSORT, SYS[1,40 ETY or LLOAD DSKOrAMSORT . SYSIT,47 (FED)

LLOAD DSKO:FLTCNY,PRGDT, 47 -

=

Mow we create the AlphaBASIC program, The first thing we have 1o remember
ta do i3 open the file channel for the file that we want to sort , and fwo
more file channels and files where we want *o put the sorted data into. (We
could name the same file in both Lines 110 and 120 or 170 and 120 bhelow *o
write one of the sorted files right over the original, unsorted data.) Our
program might look Like thisg:

HASORT - XCALL SUBROUTINE FOR SORTING FILES Page 2-9

10 1 SAMPLE PROGRAM TO SORT SMALL SEQUENTIAL DATE FILE

TMI OSTAERT

10 OFER ﬁ?f”STRE§TWDA?”WINQ$f

715 QPEM ﬁﬁf“STﬁﬁﬁfaLST“;OUTPB?

12 OPEN #3,7EWSW.LST™,0UTPUT

125 PRINT "Now sorting all streets alphabetically.”

130 KOALL BASORT ,1,2,50,25,1,0,1,33_0,0,0,0

138 CLOSE #1

140 PRINT "Now sorting according to direction from town center
145 OPEN #1,"STREET.DAT™ , INPUT

150 ROALL BASORT,1,3,50,1,%3,0,2%,1,0,0,0.0

155 PRINT “"&LL done. See STREET.LST and ENSW.LST for sorted filpg M
200 CLOSE #1

210 CLOSE #2

220 (LOSE #7

230 END

Line 110 opens file chanrel #1 and the fite called STREET.DAT for input.
Line 115 opens file channel #2 and the file calied STREET,LST for output,
Line 120 opens file chanmnel #3 for output also.

Line 130 performs the first XCALL BASORT subroutine. impediately Tollowing
the word BASORT and the delimiting comma, we indicate the fite channel open
for dnput. Then we indicate the output file channel, 2, where we want the
file sorted the first way.

Note that in the unsorted file above, a record (the data of a single street
namel) s confined to one line, That makes it #asy to judge the aoproximate
gize of the longest record, So, being Lliberal, we round it up to a
record-size of 54,

The size of key #1 is never more than 25 bytes in size, s0 next on the ACALL
BASORT line we enter 2 25, The position of Key #1 is the first byte in the
record (column 1, as it happens), so we enter a 1. Next, we must specify a
Soor al ta flag whether we want to sart Key #1 in ascending or descending
arder. Qur street dndex s alphabetically ordered, (starting at & and
ending &t 1), so we enter a 0 here to choose ascending order,

key #2 is our direction, N, S, F or W. The size of Key #2 in this case ig
always 1. The position of Key #2 in our file STREET.DAT is column for
record byte number) 3%, We don't really care whether our girections are
ascending or descending vet, but we'll enter a O tn indicate ascending
arder,

We don't have a Key #3, so we specify Key #3 size, position and order as 0,
Oo and O respectively,

Note that we do not specify the date tyne of kevs #1, #7 and #3X for »
sequential file because they are always ASCII data, which BASORT knows.

After Uine 130 s executed, the file STREET.LST is created and the data in
STREEY.OAT d2 rewritten in alphabetical order. Lines 135 and 4% are in the
program to close, then reopen file channel #1 and the file ATREFT, DAY, I+
those two Lines are omitted, the new file ENSW.LST, though crested, would bhe

HASORT ~ XCALL SUBROUTINE FoR SORTING FILER Page 210

gmply Decause ﬂ@\iﬁft?&ﬁ date would be found 4n the file STREET.DAT,
These two lines Gause fhe BASORT subroutine to loock at the beginning of the
file, rather than the end.

Line 150 is the second XCALL BASORT program Line in the AlphaBASIC program.
This line ds different than the first (Line 130) because we are now
specifying the direction byte (N, S, Eor W) as Key #1 and the street name
a8 Key ¥2.

The size of key #1 is always just 1 byte ih size, so on the XCALL BASORT
pragram Uine after the delimiting comma following the subroutine name, we
enter a 1. The position of Key #1 s the thiety third byte {columm 2%y, =0
we next enter a 33, We must specify a 0 or a 1 to flag whether we want to
sort Key #1 in ascending or descending order.. ASCIT sequence puts € first,
then N, then § and W, which is fine with us. We'll enter a (0 here.

Key B2 this time i3 the street neme. That is,ithe size of Key #2 din this
case is 25. The position of Key #2 is column f(or record hyte number) 1. ke
want the streel names within the four éfr@stigﬂ groups alphasbetically
aordered, so we specify ascending order, or {1, |

Again, we don't have a Key #3, so we specify Key #3 size, position and order
as O, O, and 0 respectively. :

Lines 200, 210 and 220 close our input and twaé@utmut files. The program
prints us a reminder of the file names , then erids.

EET.LST, the sorted version of all the gtreets, contained in the #ile
Pl ¥ :

Achilies Dr.

Balboa br.

Cisco Kid gd.
{onstantine Rd,
Edward Teach 5t.
Fremaont 50,

Herman Melyille Lo,
Homer Ave.

dohn Carter Ln,
Jonn Silver Rd.
Kublat whan Cr.
Marco Polo Ave.
Michael Fink Dr.
Mimrod Cr,

Fonttac Ln.
Robinson Crusoe br.
Sanche Panza Or,
Sinbad .

William Tafr Ave.
William Tell bLn.

The fiie ENSW.LEY, which s the streets First sorted azecording to their
tocation relative to ftown center, then sorted alphabeticatly, would appear
tike thig:

BASORT - XCALL SUBROUTINE FOR SORTING FILES Page 2-11

Edward Teach st
Fremont 8§t

Homer Ave,

Marco Polo Ave.
Sancha Panzs Cr,
Balboa Dre,

dohn Larter Ln,
Michael Fink pr,
Pontiac Ln,
Sinbad 5t.,

Cisco Kid Rd.
Kublal Khan Cr.
Mimrod Cr.
Robrinson Crusce br.
William Taft fve.
Achilles or,
Constant ine Rd,
Friday Br,

Herman Melville Ln.
John Silver Re.
Witldiam Tell Ln.

ﬁzgﬁzawmmwmzzxzzmmmmm_

Remember . 1f you choose not to asgign # third key, or perhaps even & second
key, you still must place zeros in the size, pesition and order variables of
the kevs you omit,

2.3 BASORT ERROR MESSAGES

TAMSORT . EYS not found in MEmory
the sort UET[AtY routine, AMSORT.SYS, must bhe Loaded into user gr
system memory before calling BASORT.SBR.

Bad channel number in XCALL BASORT
The channel number you passed to BASORT was invalid, This error can
oreuwr tf the file s not open, or if the value given as channel is not
& "?t‘q&?‘i

PRile dmproperly open in XCALL BASORT
When voi ©all BASORT, the file vou wish to sort must be open for INPUT
Or RANDOM procesging.

FELICHV.PRG not found in memory
Far an AMGS system, the floating-point conversion module, FLTOCNY.PRG,
must be loaded inte user or system memory before calling BASORT.SER,

"Iliegal value in XCALL BASORT
One oF the arguments to The BABORT call was invalid. Check the kev
stzes and positions to make sure they fit into the record size which
rou specified., Also make sure that you have given valid key types.

TRead Tiile error in XCALL BASORT
ANy error nocurred during & read operation while sorting your file.

BASORT -~ aCaLL SUBROUTINE fFOR SORTING FILES Page 2-12

THrite file errop in XCALL BASORT
A BTFOr Gecurred during a write aperation while 8OTLing vour fila,

*Wrong record gize 1M KCALL BASORT
' The record &7ve ¥ou spectified when calling BASORT does nat match the
record size you specified when you OPEMed the file,

2.4 SUMMaRy

BASgRY sort both random and sequential fites, whether or not thosge files
can T entirely into ysaer memory. The data to be sorted must already be in
a format where tha BASORT execution line within an AlphaBhsic grogram can
specity the position and size of up to three sort keys., The data can he
n ascending ar sescending order, each key being independent of the

Because BASORT combines, as needed, two sort technioges cal led &
sry-hased hesp sort and s disk-based polyphase merge-sort, 1t is a
tively fast sort utility subroutine,

CHAPTER 3

COMMON ~ XCALL SUBROUTINE TO PROVIBE COMMON VARIABLE STORAGE

COMMON is an external subroutine that allows vou to place data into a common
staorage area of elther user memory or System memnory. The data can be
numeric variables or string variables of up to 150 bytes in length.

When 1this data 18 in user memory, it may be accessed by separate AlphaBASIC
programs, as when chaining from one program to @8 second that reguires
variable information defined 4in the first program. When it is in user
memory, the data is only common to programs run by the particuiar job that
olaced them in memory.

When in system memory, this common data can be used to pass messages between
jobs, or for any other function that reqguires a data area that is accessible
to more thanm ong person.

The common data is placed in either user or system mem@ry via an AiphaBis1C
program. The idea is to assign a name to one or several packets of dats,
which can later, and at various times, be retrieved by other AlphaBa5IC
programs. Yhe AlphaBASIC program assigns & name to a packet of dats by
using the BASIC keyword XCALL and then the name of the exfernal subrout ine
COMMON. On the same Line the AlphaBASIC program must indicate whether it i%
sending a variable to or retrieving a variable from user or system QDemoary.
Following that, on the same Line, the program must g3 fve elther a string
variable or a string Literal (the name must be six characters or fewery 1o
he +the name of the data packet. Finally, still on the same line, the nanme
af the numeric or string varisble containing the data of the packet {which
can be up to 150 bytes in length) iz specified.

3.1 LOADING COMMON INTO USER OR SYSTEM MEMORY

Yo insure oproper results, you must load the COMMON subrout ine Into mepory
befors yvou use 1t from within an AlphaBASIC program.

You may Load COMMON into either system or user memory. I you load UOMMON
intg 2 user's memoary partition, only that user can asccess the deta stored Dy
COMMON, Tf you load COMMON into aystew memory (making the datas accessibis
to all users)y, be sure that vou assign & unigue name for each packet of
data.

DES-10008-00 rEY ADO

COMMON - xCaLL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page B2

To o losdg Commoy

, inte user Memory, enter either of the following from AMOS or
AMOR/L command Lay

el

<LOAD DSKUICOMMON. SBRL7,6] FET)

s
"%

-LOAD RAS:COMMON. SBR (FET)

(BAS: s the ersatz name for ppn 07,61 of the system disk), After vou sae
the AMOS or AMOS/L REOmGl . you may fun an ALphaBASIC program that uses the
COMMON subrout ine,

To lead COMMON. SBR into System memory, you must have s Line in your system
initialization f$ile that performs that funetion. for more information on
Leading subroutines into system memory during system boot-up, see the AMOS
Svstem Opsrator’s Guide, BES-10001-00, or the AMOS/L S¥stem Operator’s
S BEETIOT O '

5.2 USING COMMON EROM WITHIN AN ALPHABASIC PROGRAM

twi things that the AlphaBASIic program ttself must secomplish in
use the COMMON subroutine. The program nust define certain
that COMMON will use, and it must contain an XCALL commandg 1
name (OMMON and certain parameter specifications.

3.2.7 befining Variables

COMMON from within an AlphaBASIC program, you must first define
hinary yvariables that tell COMMON to send a packet to memory ar to
ne from memory: and, 11 set to receive, to set a flag ¥ the packet

- ot oy S s
Fact received.

fine these binary variables by using MAP statements. MAP statements

ssed at length in Chapter 8, TMemory Mapping System,” of the
IC User's Manual , DWM=00100-01, (The MaP statements vou
be sufficient for all but the most exotic programs using COMMON. S

R 2

a packet of datas to common memory, you must define a varisble {(we'll
SENDY . which must appear in the XCALL ©OMMON program Line when vou

MAPY SEMD,B,1,0

‘te binary variabie alwavs containg zers {the flag telling COMBON

T Z sket of data from common memary, you must define
Binary veriasble {we'll call 4t REcEIvVE) which must appear
COMMON nrog) Line when you are receiving, to communicate Twe .
iriform: The first byte must bhe a T, which 98 the flag to

o raceive a3 pa

DEE-10008-00 reEv AQD

COMMON - XCALL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 3-3

COMMON that you are going to receive a packet from.memory (weil name that
byte FIROVY., The second byte (which we'll call RCVELG) ts a flag you can
test aftter the XCALL COMMON subroutine s executed to see of wou did in fact
receive the packet. That two-byte binary variable is defined Like this:

MAPT RECEIVE
MAPZ FRCY,B,1,1
MAP2 RCVFLG,B,1,0

Again, F'RCV always containg a one {the flag teliing COMMON to receivel.
REVFLG functions as s fiag to indicate whether or not COMMON finds the
reguested packet of information. If COMMON does not fimd that packet, it
will return a 2ero in this byte; otherwise it is non—-zero.

2.2 The XCALL COMMON Command Line

You call COMMON to send data to the common ares vias:

KCALL COMMON . SEND,"MSGNAM' , INFO
Your call COMMON to receive data from the common area via:
KCALL CQ%MQN;REQ%EVSW”MSQNAM”,INFQ
Wheres
SEMD A one~byte binary variable that contains zero.

RECEIVE A two-byte binary variable, where the first byte must be set
to one, and the second byte functions as a flag that
indicates whether or not COMMON found the reguested packel of
information. If COMMON did mot find thet packet, it returns
a zero in this byte; otherwise it is non-zero.

IMPORTANT NOTE: Once you wuse COMMON to retrieve a data
packet , that data packet is gone from memory, and gannot be
read again.

UMEGNAMY A string containing from one to six charscters that specifies
the name of the packet to be sent or received. WNote that
string Literal must be enclosed in quotation marks. COMMON
also can handle a string variasble here {e.9., KCALL
COMMON, SEND L PACKET L INFO) & string wvariable, of course,

nust be defined esarlier in the program.

INFO The variable te hold the data to be. sent or received. The
variabie wmust represent data that 4s less than 151 hwtes
Long.,

If you load COMMON into system memory {making the data accessible to all
usersd . be sure the i to é-character name is untgue for each packet.

DEE-T0008-00 REY AQD

COMMON -~ XCALL SUBROUTINE 70 PROVIDE COMMON vARIARLE STORAGE Page 54

5.5 AN BEXAMPLE OF COMMON

Let's create a pair of etementary AlphaBASiC programs and put a packet into
4Rer memory, then retrieve it., We assume that after you write and compile
these programs, vou will load the COMMON subroutine into user memary bhefore
running them, as we discussed in Section 3,1 abhove.,

iy

to send & data packel to common MEMGIY, you may use a routine Like thig:
10 MAPT SEND,B,1,0
200 MART INFC LS, 150
30 MAPY PACKET,S,6
00 IHPUT “Enter message (maximum of 150 characters): " _INFO
VIO INPUT “Now enter name of data packet (up to & nﬁmr&u*e*QE: " LPACKET
TE woAaLL COMMON, SEND .PACKET , INFO
TED EWD

Line 10 defipss the binary varisble SEND as a zero. Line 20 defines the
vartable VINFOY as a string variable up to 150 characters in tength {ths
maximum COMMON can handle) . Line 30 defines a3 string variable called
FALKET, which can be up to six characters in length. Line 100 accepis &
Lue and assigns it to the variable INFQ, which will make up the data in
packet you'll store in common memory., Line TH) accepts an input string
that becemes the name of the packet., Line 120 Beging with the BARIC keyword
RCALL . which means the program is going to access one of the external
: the system., COMMON is the name of the specific subroutine to
%EM& ts the variabie neme for the Binary byte that, because it
OMMON to write into common memory. PACKET s the string
! 3 W*er@a that names the specific packel, hecause several can be
placed in memory via [OMMON at one time. Finally, the value of the variable
INFO, from Line 100, is placed in common memory under the name defined as
PACKET. Then, of course, the program ends in Life 138. When ths program s
fur, at this point the packet s in commen WEMOTY ..

Teo retrieve the packet under the npame vou anput {(defined as the string
? PACKETY . which s now residing in common MEMOIY, YO may use 2
routine Like the following:

vartabhi

MART QECEIVE
MARZ FIROV,B,T,1
MAPZ RCVFLG,R,1.0
1 MAPT RETRIEVE,S_150
3 OMART PACKET,S,6
¥MQWT TEnter name of dats packet s M APACKET
B DOMMON SRECEIVE PACKET RETRIEVE
LF RCVFLG=0 PRINT “Message not found” &
%i E PRINT "Message is: ";RETRIEVE

e¢f the retrieving program 495 & lewvel 1 MWMAP statement. The

5 MARZ statements pertain to it; when the variable RECEIVE is
Laoked at, the associated information in Lines 20 and 30 are automatically
aeoepted as weli

BES-100U8-00 REYV A00

COMMON ~ XCALL SUBROUTINE T0 BROVIDE COMMON VARIABLE STORAGE Fage 3-5

Line 20 defines the binary variable FURCV as a one, which later wiil tell
COMMON to receive, rather than send., Line 30 rcontains ROVFLG, another
binary byte. This one can be tested by the program foltowing the XCALL 1o
the COMMON subroutine, 1 this binary variasble equals zerc, the program can
determine that for some reason COMMON did not find the desigrated packet. A&
non-rere means 1t did find 4t

Line 40 defines RETRIEVE as a string variable of up to 150 characters 4n
tength,

Line 50 defines PACKEY as a string variable of up to 2ix characters 4n
Length,

Line 100 asks the program user for the name of the packet in common My
that he or she wants to retrieve.

Line 110 begins with the BASIC keyword XCALL, which wmeans the nrogram ig
going to access one of the external subroutines on the system., COMMON g
the name of the specific subroutine to be accessed. RECEIVE is the variable
name for the binary byte that, because it is g T, tells COMMON to find =&
data packet in common memory, PACKET is the string variable that tekes the
steding the user enters at Line 100 snd uses 4+ to name the specific packer
that (OMMON 15 to find Uignoring any others that may bhe in memoryl,
Finally, the variable RETRIEVE is assigned the value of the data found din
that packet.

Line 120 tests the binary flag to see if the packet was found and displavs
the appropriate message on your terminal. If the packet s found, its
contents are displaved alse. Then the program ends.,

Sample runs of the sample programs above could be:
SRUN FIRST (RET)

Enter message (maximum of 150 characters): TEMPUS FUGIT! e
HMow enler name of data packat {up to 6 characters): MESAGY (RET)

aryele
<RUN SECOND (RET)

Enter name of data packet: MESAGT (FET)
Message 1g: TEMPUS FUGLT!

When running the second program above, if vou were to enter a MESSTAQE nams
that does not represent a packet inm common memory, you would see the message
from line 120 of the program saying, "Message not found,”

DES-10008-00 "EY ADD

COMMON -~ XCALL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page %-4

3.4 SUMMARY

COMMON 45 an external subroutine that allows ¥ou to place date into & commen
storage area in memorv. This is useful for passing dats between chained
programs, pessing messages hetween jobs, or any other function that reguires
a data area accessible to mere than one program or persen. 8y assigning a
name 1o each packet of information within the common area, you can have
several of these packets in common storage ready to be retrieved by other
WURErs or programs at various times,

DEE-T0008-00 REV 200

{HAPTER 4

FLOCK = XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS

The name FLOCK is an acronym for File Locking.” FLOCK 15 an exfernal
subroutine that i3 callasble from AlphaBASIC, and is wsed in a program that
accesses files whenm it s necessary to protect a file or files from
concurrent access by another user. In other words, FLOCK prevenis one user
from accessing information that another uwser is wupdating at the same time.

Below we describe in some detail the potential problems of multi-user fite
access. Then, afterward, we detail how you can use FLOCK from. an AlphaBASIC
program to coordinate shared file access and processing, and offer you some
schemes to implement FLOCK in your ALphaBASIC progrems. Finally, we discuss
the hazards of "Deadlock,” and how FLOCK conauers thalt too.

4.7 THE MULTIPLE UPDATE PROBLEM
Consider the following orogram:

10 OPEN 81, FILE" ,RANDOM,6 ,KEY
20 KEY = 1

30 READ #7,0NE

40 ONE = ONE + 1

50 WRITE #1,0NE

50 CLOSE #1

70 END

The purpose of this program is fo increment record. t of 'FILE' by one. 1f
two users execute this program concurrently, we wish the value in record one
o be incremented by two, thus:

DEE~-10008-00 REV AQU

~- PEN #? “FELE“ SRANDOM 6 KEY
- KEY = 1

5 READ H1,0ME

& ONE = ONE + 1

& WRIVE #1,.0ME
& CLOSE #1
& END

5
5
5
5
é
é
é
& OPEN #1,"FILE™ RANDOM &, KEY -
6 KEY = 1 -
6 READ #1,0NE &
& ONE = ONE + 1 ' 7
7 WRITE #1,0NE 7
7 CLOSE #1 7
7 END 7

MOTE: TIn fh?s example, the value in record ? 18 wnstﬁasiy 5 a

However, wunder some circumstances ¢ s possible for record 1 to he
incremented by only 1, rather than 2, after being .accessed by twe users
soncurrently:

ONE USER #1 REC #1 u%&% #3 OME
OPEN #1 ”?EL&”PRAmbﬁwﬂé KEY 5
- KEY = 1 g
S READ #1,0NE 5
5 5 OPEN #1,UFILE" , RANDOM, 6, KEY -
5 5 OKEY = 1 -
5 5 READ #1,0NE 5
5 5 ONE = ONE + 1 &
5 & WRITE #1,0NE 6
5 6 CLOSE #1 4
5 & END &
& ONE = ONE + 1 &
& WRITE #1,_0ONE &
& CLOSE #1 6
& END 6

To prevent multiple update problems from occurring, we need some method to
prevent the kind of overbtap in READ-madify-WRITE seduences on shared data
that is itlustrated above,

BRES~T0008~00 REV ADD

FLOCK ~ XCALL SUBROUTINE TO COORDIMATE MULTI~USER FILE ACCESS Page 4—3

4,7 THE INTERCONSISTEWLY PROBLEM
Consitder the following twe programs:

10 GPEN #1, 7 FILE" ,RANDOM, &, KEY
20 KEY = 1 1 READ #1,0NE

25 ONE = ONE + 1 ¢ WRITE #71,0NE
30 KEY = 2t READ #1,0NE

35 ONE = ONE+1 @ WRITE #1,0NE
401 CLOSE #1 : END

LH

10 OPEN #9,"FILE" ,RANDOM 6, KEY
20 KEY = 1 @ READ #1,0ME

A0 OKEY = 2 @ READ #2,TW0

40 PRINT OME - TWO

50 CLOSE #1 @ END

I the walues in records one and two of PFILE' are identical, then they
should continue to he identical if the first program (which increments the
values in both records by one) is executed. Hence, if the values in records
one and two asre identical, and we execute boath of the above programs
concurrent Ly, we would Like the second program to print zero, thus:

OGNE UsEr g1 REC #1 #2 USER #2 ONE TWO
- OREN #1, FILEY RANDOM, &, KEY 5 &
5 KEY = 1 @ REAL #1,0NE 5 %
& ONE = ONE + 1 ¢ WRITE #1,0NE 6 5
5 KEY = 2 3 READ H1,0NE & 5
& OME = OME + 1 ; WRITE #1,0NE & &
& LLOSE BT END 6 &
- & & OPEN B1,TFILEY RANDOM.&,.KEY ~ -
6 6 KEY = 1 : READ #1,0NE b -
- & & KEY = 2 @ READ #1,TWO & &
- & & PRINT ONE - TWO & 6
0
- 4 & CLOSE #1 : ENB & &

DES-T00GE-00 ary AQ0

FLOCK ~ MCALL SUBROUTINE TO COORDINATE MULTI~USER EFILF ACCESS Page &—4

Howsver, wunder some circumstances it {s possible for the second program to
print 1, rather than [

ONE USER #1 REC #1 #7 UsER #2 ONE TWO
- OPEN #1,"FILE" , RANDOM,6 ,KEY g

5 KEY = 1 1 READ #1,0NE

& ONE = ONE + 1 ; WRITE #1,0NE

LT LR S S W I
WA A

4 OPEN #1,"FILE" ,RANDOM,6 KEY « -
& 5 KEY = 1 : READ #1,0NE &

6 5 KEY = 2 : READ #1,TWO & 5
4 5 PRINT ONE=TWO & 5

1

& & 5 CLOSE #1 ¢ ENB & 8
BOKEY = 2 : REAR #1,0NE & 5
& ONE = ONE + 1 ; WRITE HT1,0NE 6 6
& CLOSE #1 < END & 6

The READ-WRITE-READ-WRITE sequence in the first program can be considered as
steps in a single update opperation. To maintain imterconsistency-~ that ig,
to elimipate the situation outlined above-~ we need a mechanism to preyvent
to a collection of data during any update operaticn, Otherwise, the
cotlection of data we retrieve may be only partiailly updated, dus to
interference from snother program which has ceoncurrently accessed that data.

In actual applications, the loss of interconsistency described above can
cause you Te sccess nonexistent records through e fayley dndex File, to
' incorrect totals on reports, to create inconsistent reporty, and so

o

25

ifs

5.5 THE FLOCK SUBRGUTINE

Fioge £ te prevent multiple updste problems, finterconsistency flaws,
ang other file access hazards that may cccur if you are not the oniy user on
Y IvES ; FLOCK provides s way to synchronize attempis at accessing
~es and devices so that you and the other wusers can avoid pertially
upcat ing or scrambling data,

G501 FLOK Program Hequirements

ety functions properly if it i3 loaded into system memory. FLOCK
26 i account DSKO:D7,87, and hes a .SBR extension. i you have an
system, rather than an AMOS/L system, FLOCK also reqguires that you have
FLTCHVLPRG in system memory. FLTCNV.PRG resides in account DSKO:01,473.

IMPORTANT NOTE: You must load FLOCK fnto system mamory onlyy 11 will appear
to work 3f vou load it dinto user memory, but no fite locking will actually

(LSRN VT

PLOCK ~ XCALL SUBROUTINE TO COORDINATE MULTI~USER FILE ACCESS Page 4~5

To load FLOCK.SBR {and FLTCNV.PRG for an AMOS system) inte system memory,
you must have Lines in your system initializetion command file that perform
thnse funcltions. for more information on Loading subroutines into 5y§§ﬁm
memory durinsg system Dboot-up, 5€€ the AMOS System Operator’s Guide,
pES-10001-00, or the AMOS/L System Operator's Guide, Bas—-100602-00,

4.%5.2 FLOCK Calling HBequence
The calling seguence for FLOCK in AlphaBASIC iss
XCALL FLOCK,ACTION,MODE RETURN-CODE,FILE,RECORD
Where:
1. Action, Mode, File, and Record are all @%thgr fiopating Qﬁ?ﬁt
expressions which evaluate to positive integer wvalues, or string

expressions which represent positive integer values.

2. Return-{ode is a 6~byte floating point variable.

4.5%.2.1 Action & Mode

Action, modified by mode, specifies the action te be performed by FLOCK. A
guick-reference summary of the actions and their modes iz in Section 4.8.1,
The actions, and their modes:

Action 0, Mode 0: Requests permission te epen 'file’ for noreexclusive use
{that is, other users can access the filed). The reguest
is placed in a first-come-first-served queue and the
program 15 delayed until the request can be granted.

fotion 0, Mode 2: Reguests permission to open tEile! for exclusive use.

The reguest g placed in a first~come-first-served gueue

and the program 1is delayed until the request can be

granted.

w9

Action O, Mode 4

29

Reguests permission toc open 'File’ for nonexclusive
UEe ., it the reguest cannot be immediately granted,
Return—Lode 1T 18 returned.

action O, Mode &: Reguests permission to ogpen 'Fite' for gxclusive uie.
i the reguest cannot he immediately granted,
Beturn-Code 1 is returned.

botion T, Mode O: Informs FLOCK that *File’ has been closed. Unlocks the
file, Implicitly informs FLOCK that any processing of
records in File' has been completed (i.e., Actions 5 or
are performed automatically as necessaryl.

08 S-10008-00 rEY A00

FLOCK - XCARLL SUBRQU

Action 2, Mode {i:

Action 3, Mode O

L

Aoetion 3, Mode 2

58

Action 3, Mode 4

a

Action 3, Mode 4

EE

fetion 4, Mode 7

EE

Action &, #Mode b

Botion 5, Mode 0

wh

PEE-T0008-00 REY ALD

TINE TO COORDINATE MULTI-USER FILE ACLESS Fage &—&

Informs FLOCK that asbnormal grégran terminstion 4s about
to ocour €., during an ervor hendling eputine)

Releases all locks on all files by performing action 1
FE NBCLSRArY. '
Reguests permission to read ‘Record’ of ‘rFilet foe

nen-exclugsive use (1.e., record will not be ysed to
update file). Permission to open *File' must already be
granted. The reauest ig ciaced in &
first-come-~first-served aueue ard the progran is delayved
until the request can be granted,

Requests permission to resad ‘'Record’ of *Fiile' for
exclusive use (i.e., record will be wused to update

Tiled, Permission to open ‘File' wmust already be
granted, The reguest ig placed iy B

first-come-first~served aueue ang the program s delayed
until the request can be granted,

Requests permission to read ‘Regord' of File' far
non-exclusive use {(i,¢., record will not be used to
update file), Permission to open *File’ must already he
granted, It the reguest cannot be immediately granted,
Return~lode 1 s returned,.

@

Reguests permission teo read ‘Regord’ of ‘'Fiief
exclusive wse (i.e., recdrd will be 2
fitael, Permission to open *File' must already be
granted, 1f the reqguest cannot be immediately granted,
Return=Code 1 iz retuyrned,

Reguests permission to read/write all recordsg of

for exclusive wuse (f.e., processing will upde ;
possibly re-create filed, Permission o open e
must already be granted. THe request is placed i a

first-come~first-served gueue amd the program is detlayed
until the reauest can be granted.

Reguests permission to read/write gli records of 'Fitet
for exclusive wuse (i.e., prdcgessing will update and

nassibly reecreate Filad, Permiasion to open 'File?
must already be granted, If the repgusst cannot be

immediately granted, Return~Code 1 is returned.

Informs FLOCK that processing of "Recard® of FRilet, for
which permission was granted by Action 3, hes been
completed, The record is unlocked. If data has been
buffered for output, 1t s written to disk.

FLOCK -~ XCALL SUBROUTINE TO COORDIMATE MULTI-USER FILE ACCESS Page 4~7

Betion 6, Mode O: Informs FLOCK that exclusive processing of TFile', for
which permission was graﬁtaﬁ by Action 4, has been

completed. The file 143 unlocked, Ary S?ﬂﬁ@%ﬁéﬁg
programs which are granted use of "Fitet by fActions 3 or
4 will automatically reopen ‘File’ This 13 done i

case exclusive progessing of *File’ hag raused it 1o be
re-created. 1f data has been buffered for output, it 1%
written to disk.

4.5.2.2 File
File specifies a fite-channel number. File is dgnared by Action 2 and may
he omitted if °Recgord’ is also omitied., The file specified may be either
QANDOM or SEQUENTIAL for Actions 0 and 1, but must be a RANDOM fite for atl
ather actions.

TMPORTANT NOTE: In order for FLOCK to function properly, file-channal
numbers should denote specific and unigue files, This means you must
systematically assign file-channel numbers to your files when designing
applications programs, being careful to assign the same numbers 1o the same
files and different numbers to different files,

File~channel numbers 1 through 999 have been reserved for use by Aiphs Micro
software. Although there i3 nothing fe prevent your programs from using
these numbers, we advise you not to do so in conjunction with FLOCK zo that
ne conflict canm arise between your application programs and any present or
future Alpha Micro software on your System.

4.%,2,3 Record

Recard specifies & logicel record number. ar Actions 0 through 2, &, and
&, record i3 ignored and may be omitted.

LA TR Qefjrn fﬁdﬁ

Berurn-Code denotes 2 vartable in which FLOCK places & number that indicates
the sucoess or fatlure of an action:

{ode O Sugcessful (AL actions)d

Code 1: Hesource unavailable (Actions O, %, &)

Code 23 Open request has already been granted (Action 07

Code %: Permission to open must first be granted (Actions 1, 3-67

tode 4: Duplicate request for use of some record in file (Actions 3, &)
fode 6: Permission to use some record in file wnmust first be granted

{hctions 5, &)
Cade 100: Unimplemented Action

Code 107: File-channel rmber iz not oper in AlphaBASIC for RANDOM
nprocessing (Actions 362

051000800 REV ADG

FLOCK — XKCALL SUBROUTINE 1O LCOOHRDINATE MULYI-USER FILE ACUESS Page 4~8

Lode 1021 ?%%% channel 1s already open in AlphaBASIC for an 1SAM indexed
ite.
Code 103 ?mr actions U, 3 and 4: Less than 13 .queus blocks are available.

£ Heturn-{ode greater than 1 is an indication of some programming error.
For gelils to FLOCK whioh do not use wmodes 4 or &, vou should yse the
following statement while debugging vour program:

IF Heturn-Codert THEN PRINT "FLOCK Error® 3 STOP

For calls which wuse amodes & or &, Return-Qode = 1 should be checked o
determine if FLOCK was able to immediately satisfy the reguest. Modes 4 and
& ars generally used in this way t0 allow the user fo cengel @& regusst which
may involve 2 lengthy delay.

f.5.5 dueus Block Reguirements

The FLOCK subroutine builds its dynamic tables out of monitor ousue Dblocks.
The monitor gueue 13 a List of blocks of system memory which are Uinked to
b oother in & forward ehain. It 1s very important, be fore running any
LphaBASIC program using FLOCK, to ensure that the monitor 15 configured to
maxe an adeguate number of these gueuwe blooks availasble. The number of
gueus biocks FLOCK uses varies with the number of jobs asccessing filegs, the
1L uﬁ af filez open at one Uime, and the number of records open for each
fita, Lusremiiy§ st any given moment during the use.of FLOCK, the number of

aueve bloocks heing used eagusls:

twice the number of different files open using FLOCK, plus
the of ditferent records cpen using FLOUK, plus

the nf iobs with Tiles open using FLOCK, plus

U numher of FLOGK apens (1.e2., number of Agtion 0s)
) been closed, plus

of record uses {{.e., number of Action 5sl
been released

tha

last two factors of this sguation anticipate gircumstances

game (ile and/or the same regord itz being accessed by
g than one job at a time. 1 two jobs are reading the same

Tile, that is two opens or two Action Os.)

=2 If FLOCK changes in the future, the above formuls may slse reguirs

The monitor is initially gecerated with 20 free blocks in the available
CHAB LG o You may modify the system initiatizetion command file to aliocats
more oueus biocks by adding the "GUEYE nna' command anvwhers n the sysiem
%“‘*éwﬁizat o command file pricy to the final SYSTEM command. When the
command is exscuted, "non” more gueue blocks will he aELﬁsaiﬁﬁ for
general use. For mors iﬁ%@rmatiaﬁ on modifying the system initiaslizetion
command file, =mee the AMOS System Operator's Guide, BES-1000T-04, or the
AMOS/L System Operator®s Guide, DSS-10002-00,

DRE-TOO08-00 REV A00

k=

FLOCK - XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page &9

NMOTE: You may use the QUEUE command at monitor tevel to determine wvour
system's use of gueue blocks. The system will respond with @hg gurrent
number of free queue blocks in the available aueue List. For example:

< QUEUE (RET)
70 fueus blocks available

.6 UBING FLOCK

There are three levels of increasing complexity with which FLOCK subroutine
caltls may be incorporated into a program system:

1, dse fctions 0 through 2 to implement file-open interlocks {(see
Section 4.2.73.

7. Use Actions 0 through 2 to implement file-open interliocks and use
Actions % and 8 to dmplement individual recerd-update interlocks
{zee Bection 4.2.2).

%, Use Actions 0 through 2, 4, and & to implement complete file
interiocks and use Actions 3 and 5 to implement individual
record-processing interlocks (see Section 4.2.3).

The problems outiined in Segtions 4,1.2 and 4.1.3 can be solved by using
FLOCK to any of the above levels of complexity. In your design you are free
to trade off complexity for performaence, so long as you use a single level
af gomplexity consistently for any given data file.

.41 File~0pen Interlocks

Using dust fctions O through 2, it i3 possible te implement a wvery simple
file access coordination scheme which solves the problems of Sections 4.7.7
and 4,.1.%, Action 0, Mode 0 or &, s used before opening a file for input
only {(that i3, opening a file for ZANDOM processing, upon which only READSs
will he performedr. Action (0, Mode 2 or &, %5 used before opening s Tils
for output {e.g.. a file open for RANDOM processing, upon which RBEARs or
WRITEs will be performed, or 8 fite which meay be re-creastedl. Finally,
fottonn 1 s used after ¢losing any file, and fction 2 is used before any
abaormal termination points in the gprogram.

ba.h.T.7 The Muttiple Update Probilem

Herse s how the prograem of Section 4.7.2 can be rewritien fo incorporate
file-open interlozks:

LES-10008-00 REV ADD

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 4-10

10 XCALL FLOCK,0,2,RET,1000

20 OPEN #1000,7FILE" .RANDOM 6 KEY
30 KEY = 1

40 READ #1300 ,0NE

50 ONE = ONE + 1

40 WRITE #1000,0NE

70 CLOSE #1000

80 ACALL FLOCK,1,0,RET 1000

90 END

The program now will function correctly in a concurrent environment. I any
other programs have "FILE® open when Line 10 i3 executed {and have correcily
informed FLOCK of the fact with Action 0, FLOCK will make the above program
walt wuntil the other program closes "FILE®. Furthermore, no more programs
will be sllowsd te open *FILE' until the shove program reaches Line &0,

The above program has no provisions for the uwser typing "0, or for other
grrors cecurring which will sbort execution, This can be corrected by
further rewriting the program, as follows:

5 O ERROR GOTO ARQRT

10 XCALL FLOCK,0,2,RET, 1000

20 OPEN #1000, " FILEY .RANDOM &, KEY

30 Ky = 1

413 READ #1000 ,0NE

50 ONE = ONE + 1

&4 WRITE #1000 ,0ME

70 CLOBE #1000

B LCALL FLOCK, 1 O, RET 000

G0 END

100 ABORT:

190 KCALL FLOCK,Z,0,RET

120 o8 ERROR GOTO 0

4.4,%.2 The Interconsistency Problem

Here is haw the programs of Section 4.1.3 can be rewritten to incorporate
fite=-ppen interlocks. TYhe first program:

DES-10008-00 rEY AQ0

ELOCK ~ XCALL SUBROUTINE TO COORDINATE MULTI~USER FILE ACCESS page 4-11

10 ON ERROR GOTO ABORT
20 weALL FLOCK,0,2,RET,1000
30 OPEN #1000, FILE" ,RANDOM 6 ,KEY

&{ KEY = 1 ¢ READ #1000,0NE
50 ONE = ONE + 1 5 WRITE #1000,0NE
&0 KEY = 2 : READ #1000 ,0NE

70 ONE = ONE + 1 ¢ WRITE #1000,0NE
80 CLOSE #1000

90 KCALL FLOCK,1,0,RET, 1000

100 END

110 ABORT:

120 KCALL FLOCK,2,0,RET

130 ON ERROR GOTO O

The second program:

10 ON ERROR GOTO ABORT

20 XCALL FLOCK,0,0,RET,1000
30 OPEN #1000 ,"FILE™ ,RANDOM 6 ,KEY
40 KEY = 1 : READ #1000,0NE
50 KEY = 2 1 READ #1000,TW0
&0 PRINT ONE — TWO

70 CLOSE #1000

81} XOALL FLOCK,1,0,RET,1000
90 END

100 ABORT

140 XCALL FLOCK,?,0,RET

1200 ON ERROR GOTO O

The above programs will now function correctly in & concurrent eny T ronment .
While the first program is updating ‘FILE', no other programs can have
FEILEY open, This prevents the second program from reading PRILEY when it
ig in 2 partially updated state.

Since the second program does not update 'FILE', it requests permission to
open it using Mode O with Action 0. This enahles other programs which read
but do not update 'FILE® to open and process 'FILE! simultaneously.

4.4.7 FRecord-lUpdate Interlocks

Most programs open files when the programs begin, and glose those files when
they end. The programs may not actually need the files to be open
throughout exscution, but by not repeatediy opening and cloging the files,
the programs avoid many undesirable delays.

File-gpen interiocks that are set lock out the entire file; it a file s
oper throughout the run of a program, and thus unavailable to programs run
by other users, serious or annoying delays can result.

Although filew~open dinterlocks do preévent concurrendcy probilems, they

generally reduce concurrency far more than 15 NeCessary. Typicailly,
file-open interlocks lock out the entire file to prevent access 1o the

RES=10008-00 REY ADD

FLOCK = XCALL SUBRQUTINE T0 COURDINATE MULTI-USER FILE ACCESS FPage 412

single record. Locking ouwt an entire file to prevent access to & single
record is Like using a sledge hammer to drive s push-pin ALl that is
actuatly necessary i3 toe delay any other user bttempting to modify the

record wntil the user originally accessing the record is dons.

fonsider an example of application in which you and several other users are
intersctively updating an employee record file, Assume files are kept open
only where reguired. Once vou display an employee’s recoerd, it is necessary
that ali the other users wait for vou to findish making chenges to that
record Dbefore they ¢an, in turn, access Gtz otherwise Two users might
concurrently attempt 1o update the same emplovee record. This results in
the multiple updste problsem described in Section &.1.2. In other words, ali
gther users must wvalt for one user to enter changes to the emplowvee's record
before any other user can access: and modify that record, This s called a
record-update interlock, and is 2 far less severe restriction to all the
usars accessing a file than a file-ppen dnteriock is. (ROTE: You should
remember, when performing a record-update interltock, that FLOCK converts
togical record numbers into physicel block pumbers, &1L record locking
operations are performed on physical blocks, not logical records. ¥ both
you and another user attempl to lock twe separate logical records within the
same ohysical bDlock, wou will sgee the error message “Record astready
Locked V)

Aottons % and 5 of FLOCK permit control of concurrent sccess to individual
g Adoction 3, Mode 0 or 4, 13 used bhefore reading 2 sequence of
ich will not be used for updeting, 1in order 1to prevent
stency errors {(see Section 4£.71.%). Adtdion 5 s used afi e
af reads. Action 3, Mode 2 or &, s used WBefore reading records
will bhe used for updsting. Action 5 is used again after rewriting the
CECOrds .,

bdod.2.1 The Multiple Update Problem

Here s how the program of Section 4.1.2 can be rewritten to incorporate
Record-Update interlocks:

5 ON ERROR GOTO ABORT
i KCALL FLOCK,0,0,RET, 1000

70 OPEN #1000, FILE" RANDOM .6, KEY
%) KEY = 1

40 KCALL FLOCK,3,2,RET,1000,KEY
50 READ #1000 ,0NE

50 ONE = ONE & 1

70 WRITE #1000 ,0NE

T KCALL FLOCK,S,0,RET,1000,KEY
911 CLOSE #1000

100 XCALL FLOCK,T,0,RET, 1000

110 END

120 ABORT

130 XCALL FLOCK,2,0,RET

140 ON ERROR GOTO O

E-1OUGE-00 REY AQTD

i
43

FLOCK - XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 4-13

G.6,2.2 The Interconsistency Problem

Here is how the programs of Section 4.1.3 can be rewritten 1o incorporate
Gecord-lUndate interlogks:

1 ON ERROR GOTO ABORT

200 ACALL FLOCK,0,0,RET, 1000

21 OPEN #1000, FIUE" ,RANDOM 6, KEY

0 KEY = 1

31 XCALL FLOCK,3,2,RET,1000,KEY

%2 READ H¥1000,0NE : ONE = ONE + 1 : WRITE #1000,0ME
3% XCALL FLOCK,5,0,RET,1000,KEY

A0 KEY = 2

47 XCALL FLOCK,3,2,RET,1000,KEY

42 READ H1D00,ONE : ONE = ONE + 1 : WRITE #1000 ,0NE
6% XKCALL FLOCK,5,0,RET,T000,KEY

50 CLOSE #1000

51 XCALL FLOCK,1,0,RET, 1000

0 END

70 ABORT;

71 XCALL FLOCK,2,0,KEY

72 ON ERROR GOTOD O

@

a

10 ON ERROR GOTO ABORT

20 XCALL FLOCK,0,0,RET,1000
21 OPEN #1000, FILE" RANDOM 6 ,KEY
A0 XCALL FLOCK,3,0,RET,1000,1
%1 XCALL FLOCK,3,0,RET,1000,2
%2 KEY = 1 : READ #1000 ,0NE
R KEY = 2 : READ #1000,7TW0
34 XCALL FLOCK,5,0,RET,1000,2
35 XCALL FLOCK,5,0,RET,1000,1
40 PRINT ONE - TWO

50 CLOSE #1000

51 XCALL FLOCK,1,0,RET, 1000
40 END

7O OABORT:

71 KCALL FLOCK,Z,0,KEY

72 ON ERROR GOTO O

4£,.4.2%2 Improved File Interiocks

In Section 4.7.7 we said that fite-open interlocks can incur long delavs
upon any users trying to access a file after ome user has opened it and
therefore tocked them out, MNevertheless, it 1s sometimes necessary to lock
are entire file for exclusive use. Ffor example, 1f file ¥YZ 45 bacoming
fulil, vyou might wish to copy the file X¥Z into a new, larger file TEMP, and
then delete ¥YZ and rename TEMP to ¥YZ. Or, as snother exsmple, you might
wish To reorgentze an index and datas file. Ohwviousiy, during these
mansuvers, you want assurance that no other user gan gccess the file.

BES-TO0G8-00 REYV ADD

FLOCK — XOALL SUBRGUTINE TO COORDINATE MULTI-USER FILE ACCESS Page &-14

Action & obtains exclusive access 1o a file by obtaining exclusive access fo
atl the records of that file. Exclusive sccess is- relinguished by ufing
tetion A. Action %, Mode D or 4, i3 necessary before reading a sequence of
recards in order to avoid the interconsistency problem. if Action & i3
used, it is necessary to use Action 3, Mode O or 4, before reading
inebtvidual records which won't be used for updating. This is because a user
who has excilusive use of a file can re-create it, which reguires that all
ather users with the file open must then reopen it. MAction 3 performs the
NeCEESaATY regpenings.

4.6,.%,1 Example

Here are two partial programs which illustrate the use of improved file
interliooks:

10 IBEORGANIZATION PROGRAM

15 XCALL FLOCK,0,0,RET,1001

20 XCALL FLOCK,0,0,RET, 1002

25 OPEN #1007, INDEX" ,RANDOM,S12,KEY]
30 OPEN #1002,7DATA" ,RANDOM,512 ,KEY?
35 XCALL FLOCK,4,2,RET, 1001

400 XCALL FLOCK,4,2,RET,1002

45 CALL REORGANIZE | REORGANIZE INDEXED DATA FILE
S0 KCALL FLOCK,6,0,RET,1002

S5 KCALL FLOCK,&,0,RET,1007

60 CLOSE #1001 : CLOSE #1002

65 XOALL FLOCK,1,0,RET, 1001

700OXCALL FLOCK,1,0,RET 1002

75 END

100 REORGANIIE:

110 REMARK wes SUBROUTINE GOES HERE #dw
120 RETURN

BES-TOO0E-00 REV ADO

FLOCK - XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page 415

10 LINGUIRY PROGRAM

15 XCALL FLOCK,0,0,RET,1001

20 XCALL FLOCK,0,0,RET, 1002

25 OPEN #1001, INDEX™ ,RANDOM, 512 KEY1

30 OPEN #1002,7DATAY RANDOM, 512 ,KEY2

35 EMPLOYEE'ENTRY:

40 INPUT UEMPLOYEE #7,EMBLOYEES

45 TFOEMPLOYEES = U7 THEN LEAVE

50 CALL LOOKUP [LOCATE EMPLOYEES IN INDEX FILE, &
RETURN EMPLOYEE REC # IN KEY2

55 PCALL FLOCK,0,0,RET,KEYT IS5 TN EFFECT &
WHEN LOOKUP RETURNS

60 TF KEY? = [THEN 7"EMPLOYEE NOT ON FILE" : GOTO EMPLOYEE'ENTRY

45 KCALL FLOCK,3,4,RET, 1002 ,KEY2

70 IF RET <> 1 THEN 5%

75 INPUT DO YOU WISH TO WAIT? *,ANSWERS

80 IF UCS(ANSWERS) <> "Y' AND UCSCANSWERS) <> "YES” &
THEN EMPLOYEE'ENTRY

85 XCALL FLOCK,3,0,RET,1002,KEY?

50 READ #1000, EMPLOYEE"RECORD

35 KOCALL FLOCK,5,0,RET,1002,KEYZ

100 XCALL FLOCK,S,0,RET,1001,KEY1

105 CALL DISPLAY | DISPLAY EMPLOYEE'RECORD
110 GOTO EMPLOYEE'ENTRY

200 LEAVES

210 CLOSE #1001 @ CLOSE #1002

220 XCALL FLOCK,1,0,RET, 1001

230 XCALL FLOCK,1,0,RET,1002

300 END

L00 LOOKUP: REMARK #+SUBROUTINE GOES HERE##
496 RETURN

SO0 DISPLAY: REMARK #xSUBROUTINE GOES HEREw
S9% RETURN

.5 DEARLOCK, AND HOW TO PREVENT IT

NOTE: for the purposes of the following discussion, having permission fto
open 2 Tile or use a record is referred to as possessing 2 rescurce,

The possession of a rescowrce by some job XYZ can directly or indirectiy
cause the exscution of other iobs to be delayed. It is then possible for
one of these delaved jobs to possess & rescurce needed by job XYL, thus
causing execution of job XYL to bes delayed also. This ig known as a
DEADLOCK,. dNone of the jobs involved can proceed since each requires 2
resource owned by one of the other jobs involved. The situaiion is
nermanent because none of the jobs involved can proceed until one of the
other iobs proceeds and relinguishes a needed resource.

DEADLOCK csan only occur 1t & dob reguests more than one resource
simultansously. There iz a simple way to prevent DEADLOCK, a2 method which,
i most cases, i1s feasible to implement. The method is: ALHAYE requesst
resources in the same order.

PES-TO00E-G0 REYV a00

FLOCK ~ XCALL SUBROUTINE TO CODRDIMATE MULTI-USER FILE ACCESS Page 4-16

Here i 2 simple fllustration of the principle., First we consider what can
happen 1f resources are reguested in differing order in fwo programs:

10 {PROGRAM 1

20 XCALL FLOCK,0,2,RET,1001

21 XCALL FLOCK,D,2,RET, 1002

100 REMARK #% BODY OF PROGRAM %%
990 XCALL FLOCK,1,0,RET 1002

991 ACALL FLOCK,1,0,RET 1001

997 END

10 IPROGRAM 7

20 XCALL FLOCK,.0,2,RET, 1002

21 XCALL FLOCK,D,2,RET, 1001

100 REMARK W+ BODY OF PROGRAM #+
990 XCALL FLOCK,D,2,RET, 1001

991 XCALL FLOCK,0,2,RET,1002

992 END

Consider the Tollowing sequence of execution?

1. FProgram 1 executes lines 10 and 20, obtaining exclusive permission
to opern file 1009,

I

. Program ? executes lines 10 and 20, obtaining exclusive permission
to open file 1002. It then executes linme 21, and must be delaved

because Program 1 already has exclusive permission to open file
1001,

%, Program 1 executes Line 21, and must be delayed because Program 2
atready has exclusive permisszion to open file 10E.

At this point, programs 1 and 2 have both been delayed. Since no other
programs are present, the reasons for their delays will remain unchanged.
DEADLOOK has ocourred.

Byt DEADLOCK will not occur if program 2 reguests permission to open files
1009 aned 1002 for exclusive use in the same order as program 1. For
DEADLOCK to occur, program 1 must be granted permission to open file 1007
for exclusive use, but be delayed permission to open file 1002 for exclusive
LEE . However, 1% oprogram 1 8 granted permission to open file 10071 for
exclusive use, the corrected program 2 (& duplicate of program 1) will not
be alicwed o execute lines 21-990; thus 4t will be unable to obtain
peraisgion to open file 1002 for exclusive use. DREADLOCK cannol ocour.

DES-TOMIE-00 REY AQRD

FLOCK - XCALL SUBROUTINE TO COORDINATE MULTI-USER FILE ACCESS Page &-17

4.6 SUMMARY

The FLOCK,GBR progrem is an external XOALL subroutine which is callable from
BASIC. FLOCK locks files, and can lock records within fites, to prevent
concurrent access by other running programs that access the same
files. FLOCK may also be wused to coordinate shared file access gnid
processing.

s Loaded inte system memory via the
SYSTEM Comm e i the AN inttial ization command file,
DEKOISYSTEM, INITT 4], It you have an AMOS gystem, FLOCK alsc reguires that
¥ have FLTCONV. R% it system memory.

FLOCK only functions properiy

b.6,1 Guick Reference Summary of Actions/Modes

ACTION

23
@

REQUEST TO QPEN FILE
MOBE U Hom-excliusive; delay until free
MODE dr Cxclusivep delay until free
MOBE 4: Non-exclusive; RETURNPCODE = 1 1 not free
MODE &: Exclusive; RETURNPCODE = 1 if not free

ACTION T: TELLS FLOCK THAT FILE I8 CLOSED. RELEASES THE LOCK, (ACTIONS 5
AND & PERFORMED AS NECESSARY.)

ACTION 2: TELLS FLOCK THAT & PROGRAM ARORT IS ABCUT TO 0CCUR. RELEAZES aLL
LOCKS ON ALL FILES BY PERFORMING ACTION 1 AS NECESSARY.

ACTION 3: REQUEST TO READ RECORD.

MORBE O: &@@m%xciu%ivﬂ§ delay if not free. (Betion [must
already have peen granted.)

MODE 21 Exclusive; delay 4f not free, thction must
already have been granted.)

MODE 4: WNonrexclusive; RETURN'COBE = 1 1f not free. C(Action
U must already have heen granted,?

MODE 6: Exclusive: RETURNICODE = 1 if net free, Chotion U
must already have been granted.)

ACTION 4: REQUEST TO REAG/WRITE ALL RECORDSE,
MODE 20 Exclusive; delay 4F not free, fAction O must
already hﬂq@ been granted.}

MODE &1 Exclusive; BETURBN'CORE = 1 if rnot free. (fction D
must already have hesn granted,)

ACTION 5: ELLS FLOCK THAT Y0U HAVE FINISHED PROCESSING THE RECORD REQUESTED
%? A PREY %gg ALTION 3 CALL. ANY BUFFERED DATA IS OUTPUT TO DISK.

ACTION 631 TELLS FLOCK THAT vou n
BY & PREVIOGUS ACYIORN

SO FINIEHED PROCESSING THE FILE HFEGUESTED
CALL. ANY BUFFERED DATA IS QUTPUT TO DISK.

DE5-10008-00 REY ATO

CHEPTER &

XLOCK —~ XCALL SUBROUTINE FOR MULTI-USER LOCKS

& lock i3 a tool to help you synchronize aftempts to access devigces and
files, You can imagine the problems that result when you have two ysers
tryving to update the same record of the same file at the same time. A tock
is an entity created by a program to help it keep track of whether a certain
device, file, etc., s in use at the specific time that the program wants to
access it, The general way that the locking system works is this:

1. When you want fo prevent access to something (a file, a device,
etc.) while vour program accesses it, vou create (that is, "set") a
system Lock on that resource.

7. Whenever you want to access a device or file, your program tries fo
set the lock associated with that dtem; 17 it i3 already szet, you
know that another user's program is using the device or file.

2, when vou are finished accessing a device or file, you destroy (that
is, ‘elear”™) the lock so that other programs can now access the
rESoUTCE,

Note that a system lock is NOT a security device~- it's a convenience. if

a program wants to allow its users to write to a file without checking o
see if another user s there first, it can do so (and run the risk of
creating chaost. A system lock simply provides e convenient way to help 8
program keep 1ts users from conflicting in their attempts to wuse systenm
FESOUPCES, The only job that can clear a lock is the job that originally
set the lock. ALphaBASIC does not sutomatically clear locks when a program
exits, so be careful that vour program clears any locks it has set before 1t
8xits. (For more background information on why locks are necsssary, see
Chapter 4, "FLOCK - XCALL Subroutine o Coordinate Multi-user File Access.'

PES-TO008-00 REY ARD

KLOCK — XCALL SUBROUTINE FOR MULTI-USER LOCKS Fage 5-2

5.7 LOADING ¥LOCK INTO SYSTEM MEMORY

You must dnclude the BSKD:XLOCKLSBRIT,AT in system memory before yvou can use
an AlphaBASIC program faplementing XLOCK,

To Load XLOCK,SBR into system memory, vou must have a Line in vour system
initiatization command file that performs that function, Far wors
information on loading subroutines into system memory during system boot-up,
see the AMOS System Operator's Guide, DES~10001-00, or the AMOS/L System
Operator’'s Guice, baa~tubls-00.

B.2 THE XLOCK SUBROUTINE

XCALL XLOCK, MODE, LOCK1, LOCKZ

MODE The function you went to perform. These modes are:
#Mode 0 Set lock and return.
Mode 1: Set lock. (Wait 3f already Lockedy then setl.
Mode Z2: Clear lock (if set By your jobil.
HMode %: Return List of all gystem locks and the jobs that

set them.
{(S5ee below for & discussion of each mode.?
LOORT The first digit of the lock code. (See below.)
LOCKZ The second digit of the lock code, {See below.?

& MAP statements at the front of vour grogram to define MORE, LOUKT, and
LOCKZ w3 two-byvie binary wariables. {(They may not be floating point or
. Al

ing variables.) For example:

MAPT MOBE, B, 2
MART LOCKT, B, 7
MAP1 LOCK2, B, 2

Before yvou call XLOCK, vour AlphaBASIC progrem must first set up the corregt
values for MODE, LOCKT, and LOCKEZ.
IMFORTANT NOTE: XLOCK parameters must be defined on evenr-byte boundartes in
memary. (Thet ds, the veriables must begin on word bountiaries.) Yariable
structures defined at 2 MAPT level always begin on & word boundary,
Thergfore, the eagiest way to ensure that XLOCK arguments begin an & word
boundary 1s to define them in MAPT statements {(@s in the example abovel, If
v do define XLOOK paremeters in deeper level MAP statements {£.g.,. MAPZ or
MAP3) . make sure that the variables begin on & word boundary by keeping the
number of bytes defined an even number. For example, this definition:

BEE-10G08-00 REV ADG

KLOCK — XKCALL SUBROUTINE FOR MULTI-USER LOCKS Page 5-%

MAP1 PARAMETERS
MaP? FILL, S, 1
MAPZ 11, B, 2
MARFZ L2, B, ?
MAPZ MODE, B, ?

will cause XLOCK to fail; however, removing the definition for FILL (which
pushed the ¥LOCK parameters onto an odd=byte boundary’) will correct the
probiem,

5.% THE LOCKS

A system lock is a two-level numeric lock; the number representing either
Level may he from 1 1o £5535%, (& value of zero in either position acts as a
wildoard. That i, any number will match in that position when 1 comes fo
clearing or setting that lock.? Some typical locks are:

The numbers vou choose are up te vou. You may choose to assign some meaning
to the numbers (for example, the first number wight be the file-channel
number of the fite vyou want to lock, and the second numbser might be the
number of the record within that file that you want to lock.)

$ince both numbers in the tock may range from 1 to 65335, the actual
possikle number of unioue locks is 65535 % &553%. But, every time you
create a lock, the svstem sets aside a block in the monitor gueus in system
memary for that lock, which ¥s not returned o the available list until the
tock 45 released by the job that has it locked. Since there are initially
onty 20 qgueue blocks available, t's a good ddea to keep the number of locks
to & mindmum, A good rule 15 that @ program should not have more than two
or three locks active at any one time. As vou clear a lock, that gueue
block begomes available again. (80, in essence, every time you set a lock
you create it, and every time vou clear a lock, vou destroy ft.)

Seh THE MORES

The MODE argument in the ¥LOCK call line cart contain ope of four valuyes
(-5 which selects one of the four possible locking modes:

DES-10008-00 REV AGO

KLOCK ~ MCALL SUBROUTINE FOR MULTI-USER LOCES Page T4

S.4.1 MODE 0 (Lock and Returnd

This mode tells YLOCK to create a lock with the velue LOCKILLOCKZ, If the
Lock already exists {i.e., some other job is accessing the file or device

¢ owant to use), KLOCK returns with MODE eaual te the number of the job
set the lock. (A job number 1is assigned to each jeb in the oeder that
eh jobs were defined in the JOBS command in the system initialization
command file. For example, the first job definped in the JOBS command line
e ok #1. The SYSTAT command lists the jobs in this order.? If the lock
does net already exist, XLOCK creates it and returns with a zero in HODE.
Youfve now set the lock.

SAod 0 MOBE G (Lock and Waitl

DK mode g ddentical to MODE O, exgept that i1 fthe logk already
00K telils the system to put your ifob to sleep wntil the look is
; That means that vour job wiil be in an inaciive state {except ?ww
w&kﬁ&g gt every olock tick to test the status of the flock? untit fthe
chat wﬂéﬁémaiiy set the lock clears 1t. If vou use this mode, take
J%”f: the fact that another user may be waiting for the same Lo
g that the lock might be clesred and then grabbed up sither by
ancther job before your job wakes up.

5.k.% MODE 7 [fissr Lock)

RLGLE clsars the lock specified by LOCKT and LOCEZ and returng ;
cam. 4 pero returned in MODE indicates that the lLock you tried g &
*t oset by vyour joby a one returned indicates that you sucesstull
Lacky a aumber greater than one indicates that vou clsared mors
¥ twhich means that LOCKT or LOCKYZ were origimally selt 1o zerpe—
valued ., You may never use ALOGK to glear 2 logk that was not
Fodob, (NOTE: If you attach your terminal to another job, XLOUE
you a new ich.) '

WRsSn
& { earad

S.bh.4 WMODE B {idist Locks)

eturns a complete List of all the ilocks set on the system and the
the jobs that set them, When vou use MODE X, LOCKY wmu

& mapped array Large encough to hold the expected data. When XLOCK
from & MODE % call, MODE contains the number of locks that are set
\y%ﬁ%ﬁ LOCKT contains your job number, LOCKZ contains one %hr“@ W

2% that i3 set on the svstem. (You must set up anbry

gach g 5
binary words in a MAP statement.) The first two bytes hold the iob
&aw secong and third words hold the actusl LOCKET and LOCKZ valuss of
fied lock. The following is an example of how to set up the MAP
for a MODE % cail:

THONE-O0 wEv AlD

Page 5=-%

I~USER

T
%
fes

XLOCK — XCALL SUBROUTIHE FOR BUL

10 MAPT MODE, 8, 2

20 MART WYJOR, B, 7

A MART LIGTARRAY

LT MAP? LOCKENTRY(25)

50 MARE JORNUMBER, B, ¢

&1 MARPY 11, B, 2

[t MAPZ L2, B, 2

&6 DBvare of Program goes here

T MODE = 3
THD MCALL XLOCK, MODE, PYJOB, LISTARREAY
120 P pest of program goes here

& system lock consists of two numbers, the vatues of LOCKT and LOCKZ. 17
gither of these two numbers s a zero, that rumber is a wildcard and any
number between 1 and 6553% will match it. (A wildeard is a symbol that is
matched by any other symbol.}

You can use wildcards for various reasons, For example, suppose that you
decide that the LOCKT value is going to represent a particular file and that
the LOCK? wvalue will represent a particular record in that file. If you
want to stop all references to that file while vour program iu accessing it.
vou would set the lock with 2 zero in LOCKZ and the number representing your
File in LOCKY. Anvone who tries to set a lLock that has the same LOCKY value
as vour Lock won't be able to do so; the system will tell him that that lock
already exists {since your wildeard in LOCKZ will match any number he may
try in that position). No one (including yourself) will be able to set @
tock with the same LOCKT value until vou clear the lock. MNote that setting
a2 lock with both numbers zero will prevent enyone from setting & lock, since
the svstem will say that all possible locks are already set.

5.6 PROGRAMMING EXAMPLES

The following s 2 small sample demonstration program that you may want to
use to sxperiment with WLOUK, and to get a feeling for how it works. it
asks wou for the values of MODE, LOCKY, and LOCKZ, and then reports back on
the results of the locking operation you ssked for. Remember: MODE = O sets
a lock, MODE = 1 sets the lock after waiting for it to be cleared; MODE = P
clears the lock, and MODE = 3 displays the locks set.

DES-10008-00 BEY AGO

KLOCK = XCALL SUBROUTINE FOR MULTI-USER LOCKS FPage 56

%
T
15
20
25
EG
A5

{

&

P Sample Program to ITllustrate File Logking
MaRY FLAG,F

MEFT LOUNTER, F

MAPT MODE, B, 2

MAPT LOCKYT, B, 2

MART LOCKZ, B, 2

MAPT LOCKARRAY

& MAPZ LOCKENTRY(25)

4 MERE OB, B, 2

50 MAPE L1, B, ?

; MAPE L2, B, 2

50 START:

J INPUT "MODE, LOCKT, LOCKZ: " ,MODE,LOCKT,LOCKZ
70 FLAG = MODE

75 IF MOBE = 5 gaTO DISPLAY
80 AEALL ®RLOCK, #WMODE, Lﬁiﬁﬁf LOGER

8% PRINT "Mode = o ﬁﬁ%ﬁ

20 IF FLAG = [BAND MODE ék 0 PRINT "Lock already set.”

G5 IF OFLAG = 2 AND MODE = 0 PRINTY "You didn't set that lock.”

SEH) IF FLA&G = 2 ANSD MODE = T PRINT “You cleared the logk.”

105 IF FLAG = 22 AND MODE > 7 PRINT "You cleared more than one Lock.”

140 GOTE BTARY
15 DISPLAYS

120 XOALL MLOCK, MORE, LOCKY, LOCKARRAY
125 INT “Your job number is: ";LOCKY

TRD NT "Current Llocks in use = ":MORE.

TES IF MODE = D GOTG LOOP

R3S FOR COUNTER = 1 TO MODE

145 PRINT SPALECS);

TR PRINT STROLTOCOUNTERI D& VP 8TR (L2 CCOUNTER)
155 PRIMT SPARCECLY 3 PRINT "(job' JOB(COUNTER) ;™"

164 HEXT
165 LOOP:
70 PRINT @ G070 BTARY

aften used to lock individusl records within a file so that more
e can upkdate that file et the same time. LOCKT might contain a
! regresents the particular file vou want to open for multi-user
{perheps by conteining the file's fFile-channel rnumberl, LocK?

& number that regresents the specific record within the fiie thet
Lo unGaie.

Lating Record Mumbers

We assume that you will usuailly be using XLOCK to control multi-user

am files, {(For dnformstion on random files ses Lhapter 15
Rig&ﬁ%ﬁiié dser's Manual, DWM-0G00-01.Y If vou are going to be
; file record, you need to understand the relationship
‘ﬁﬁ%% anct file records. & record (sometimes calied s “logical
?&uufﬁi3 cuptng of data that vou define: vou also define the L

of that record. Just as an exasmple, let's define a file record at
sontains & bytes for a customer D number, 24 bytes for 3 customsr name, 10

XLOCK ~ ¥CALL SUBROUTINE FOR MULTI-USER LOCKS Page 57

bytes for the name of the customer's sales contact, and 10 bytes for the
customer phone number. This File record would then gontain 50 bytes. A
digk block is a physical grouping of data on the disk that iz always 51
bytes Long. The monitor always transfers disk infarmation in this 3i1Z-byte
block. AlphaBASTIC unblocks a disk block into smal ler groups== your logical
FECOFTS. For example, one disk hlock (512 bytes) would contain 10 of the
tagical records we defined asbove (30 * 1 = 500 with 12 bytes left over.
Ne logicai record is ever Larger than a disk block. HOTE: You specify the
size of your Logical record in the OPEN statement for the file.

The reason for our explanation above is this: if you want the LOCK? value to
contain the number of the record you sre updeting, it must contain the
relative number of the disk block being used, and not the logical record
number. Wher AlphaBASIC unblocks a disk bloek dnte Llogical records, it
brings the entire disk block into your memory partition. Even 1T you are
only updating one logical record in that disk blocks, the entire disk blogk
remaing in vour memory area until you either close the file or read a
togical record that is in a different disk block. What rhis means s that
more than one user could try to write out the same disk block at the same
time even though they are updating different logical recards. So, you must
prevent access, not onky to the logicel record that you are updating, but to
the entire disk block that contains it.

You must caleulate the relative disk block number yourself by dividing the
Logical record number by the blocking factor, (The blocking factor is the
number of logical records that can it in one disk biock.) In the example
above where we had logical records 50 bytes long, the blocking factor is 10,
Remember that each disk black s 512 bytes long and will be blocked fo
contain as many togical records as will fit.

It ome of your lock digits s the disk block number, you ¢an prevent access
to the emtire disk block: no one can access any of the logical records in
the disk Dlock until wou clear the lock.

REMEMBER: The tock wildoard symbol is a zero, so calculate your disk blocks
heginning with one instead of zero. fefore you urtlock the lock on & disk
hiock, force the system to write that record by reading & logical regord
that falls ocutside of that disk block. (HOTE: You may also use the
RANDOM' FORCED mode in your OPFH statement to force AlphaBASIC to perform 2
disk read or a disk write every time vou aceéss the file. See Chapter 13 ot
the AlphaBASIC User's Manual for wmere information.) The sample pragram
below may Relp to cLarity the last few paragraphs.

DES-10008-00 REv AGD

®LOCK

]
=z
T
%
ud

.
o]

Ee IR)

HPE SR TR N S Y

had
W €0

#
[

F R

%%

Y

= RCALL SUBROUTINE FOR MULTI-USER LOCKS Page

Sawmple Program to Itlustrate File Record Locking

! Sample Program to Illustrate File Record Locking
Femember to load XLOCK.SBR befere running!
Mart MODE, B, 2 P befine locking variables
MARPY LOCKY, B, 2
MAPT LOCKEZ, B, 2

MAPT LOSTCAL *ﬁ?f%%& ! pefine logicsl record
2 CUSTYIn,.F.b Popontents-- 50 bytes
”‘QVﬁ%ﬁﬁgﬁygé Lot customer info.
CONTRCT 8,10 PoCustomsr 1D is actuaily
PHOME 5,10 ¢ togical record number.

MAPT RECORDSIZE,.F,.50
P Serateh variables:
MAPT RECORDNUM,TF Plpgicel record number
MAPT FLAG,F '
MAPT QUERY 5,1
P Begin programe
START:
LOGKUP T"LUSTIDL.DATY FLAG P 1F file deoesn't exist,
IF FLAG = 0 THEM GOTO FILE*ERp ! report error andg exit.
OREN F100, TCUSTID.DATY RANDOM RECORDSIZE RECORDNUM

PRINT "Hel
LOOK
LHPLT TR

ome o The Tustomer Maintenance Program.”™

[i
Customer 1D is just number of that logical record.
: S

Voregords begin with zerold:
LOCKZ = INT(RECORDNUM/T0Y+1
P lock the disk block used by the record.
CALL XLOCK,MODE ,L0CKT , LOCKD
SAD #1100, LOGICAL"RECORD
I Customer %mfe?maﬁﬁﬁﬁ*”
TAER{S 2" Customer IDE: Y CUSTTID
TABOEY ;" Customer name: " pCUSTOMER
FREINT TAB(3::"Sales contact: “sCONTACT
PERINT TAB{SI;"Phone #: Y PHONE
URRATE
T

Bo vou wish %m change any info?. "QUERY
RYY o= VN OTHEN GOTO LOOP

ustomer ID: “ﬁydﬁ? I

e customer name: TCUSTOMER

saies contact: "oCONTACT

ohvne number: s PHONE
GICAL'RECORD

T we are in First disk block, since blocking facior is
G, record number »s 10 will force 4n next diszk blockd

T OTHEM RECORDMUM = 10 ELSE RECORDNUM = [

sring in different disk block:

LOGICAL P RECORD

LOTET = ?ﬁﬁ MO0 represents CUSTID file

enter customer identification number: ¥, RECORDNLM

58

KLOCK — XCARLL SUBROUTINE FOR MULTI-USER LOCKS Page 5-9

270 ! Releass the lock.

275 MODE = 2

280 XCALL XLOCK, MODE, LOCKT, LOCK?

28T LOOP:

2940 INPUT "Do you wish to see info on another customer? Y, QUERY
£95 IF UCS(QUERYY = ™YY THEN 84TO L00K

300 gxive

308 PRINT “"Returning vou to Command Level..."

210 CLOSE #9100

R END

TE0 FILE'ERR: P Gops. File didn't exist.

225 FRINT "File error. Please see System Operator,”
330 END

5.7 BUMMARY

XLOCK can both set and test system locks, to help users from conflicting in
their attempts to use system resources. These locks are not for secyurity;
they are for the convenience of the users. A user may Lock & file or a
device fo prevent any other user from apnessing 1, may test a lock to ses
it another wuser has already set a lock and is using the file or device, or
may clesr the lock so that the programs of other users may avccess the File
or device,

Before running any program containing the XCALL XLOCK subroutine, you must

include the XLOCK.SBR in system memory by using the SYSTEM command within
the system initialization command file.

PES-TOO0B-00 REV A0

(HAPTER &

SPOOL - XOALL SUBRQUTINE FOR SPOCLING FILES TG THE LINE PRINTER

5POOL ds an XCALL subroutine that you can call from AlphaBASIC to spool 2
digk file to the Line pripter. (USPOCLT s actuslly an acronym mean tng
“Simultanecus Printer Output On-Line.” To “spool™ a file is fto insert it
into the printer gueue, after which you can continue to do gther things
while wour file waits in the gqueue for its turn to be printed.? YOour ¢ atn
specify to SPOOL which printer vou want the file to be printed on, the
number of copies to print, the form to print on, the width {measured in
characters) of a page, and the Lines per page. Also you can specify any
combination of switches te turn on or off the banner option, the delete
option (which deletes the file from the printer queue gfter arinting:, the
header option, the formfesd option, or the wait option.

You do not have to load the BPOOL subroutine inte sysiem or user memory in
arder to access it from an AlphaBASIC program. However, 1T you have an AMGS
system, rather than an AMOS/L svystem, and if you are going 1o use the
SWITCHES featurs of SPOOL, vou must load FLYCNY.PRG into sither user or
system memory before you run an AlphaBASIC program containing the HIALL
EPOCL program Line.

To load FLTONV.PRG into user memory, enfer the following from AMOS command
level:

"

To Load FLTCNY.PRG into system memory of your AMOS system, you must have a
Line in wour system ‘initialization command file that performs that function.
For more information on loading subroutines into system memory during system
boot-up, see the AMOS System Operstor®s Guide, 0855-10001-00, or the
AMGS/L System Operatar' s Guide, DSS-T00HI-00.

DEE-10008-00 REV ADD

SFOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER

G.1 USING THE XCALL SPOOL SUBROUTINE

fall the SPOOL subroutine from withip anm BlphaBASIC program via:

KOALL ﬁ?ﬁﬁip?ILEﬁ?@X%Tﬁﬁﬁﬁ@ETiHEﬁﬁuG?EES FORM WIDTH, LPP

where:

FILF A steing variable or expression that

Page &H-2

gives the
specification of the +file vou want to print,

I vou

specify a file which does not exist, SPOOL doesn't tell
you thet it can’t find the file (but, of course, doesn't

print snythingl.

PRINTER A string wvariable or expression that gives
the printer vou want tg send the file to. If PRINYER i3

SWITCHES A floating point variasble or sxpressicn that

REE-100

omitted or is & null string, SPOOL uses the
printer and
also wish to use ome oar mare of subsequent

(BWITCHES , COFIES, =1 s place 8 it L
dﬁﬁ%qnatﬁﬁn 'y dn the FRIN?E& poesition of ?h@

printer, If you want to use the defayly

Line (e.g., XCALL SPOOL,"DATA.THT","" 53,

various control switches and tlags that

= name of

detault

tealturss
steing
perogran

specities
affect the

orinting of the fils, Tt wou have a AMOS svstewm (as

spposed To an AMOS/L systemd, you mush lLoad

into system or user memory if you are going to

SWITOHES argument .,

The switches that SPOOL uses are the same

FLTOMNY . PRG

use the

as the

switches of the same names used by the monitor PRINT

command, (S5ee the AMOS System Lommends

Beference

Manual . DWM-D0100-49 “or the AMOS/L Svsten

Commancs

Reterence Marual, DEE-T0006-00, for information on

PRINT,

The switches are:

T BANNER - Yo print & hanner Lidentifying) page

at the front of the printout,

2. NOBANNER ~ S0 a banner willi not he g i

inted.

B, BELETE ~ To delete & file after i1 is printed,

4. MNODELETE - S0 2 file is not deleted after it is

orinted,

5. HEADER ~ To print 3 payge header at the

ton of

gvery page of the printout. Page hsaders give

the name of the file being printed,

08~-00 sey A00

the date,

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6-3

and the current pags number,

4., NOWEADER ~ So 2 page hesder is not printed on
szch page of the printout.

7. EE - To do a formfeed after s file is printed.

8, NOFF - Supresses a formfeed after a file s
printed.

9, WAIT - To wait until previous eniries into the
orinter aueue are finished printing, so that
the print reguest 13 not discarded 11 the
printer gueue it temporarily full. {*¥ <the
file has to wait to be printed, the job running
the AlphaBASIC program that performed the XLALL
SPOOL subroutine waits too, and nothing else
can be done until that reguest s inserted finto
the gueus .}

Each switch you can use has a numeric code associated
with it (zee belowl. For example, the BANNER switch
code is 1 the DELETE switch code 18 4. et control
switches by putting the sum of the appraopriate switch
codes into the SWITCHES vardable. For example, 1f vyou
want to use the DANNER and DELETE switches {te tell the
Line printer spooler program to print a banner page angd
delete the file after printing 1), load SWITCHES with 5
{BANNER code + DELETE codel. it vou omit SWITCHES,
SPOOL uses the default switches for the selected
printer. 1f you do not wish to use SWITCHES, bul want
teo use one or more of the subseguent options (LOFIES,
FORM, etc.), replace the SWITCHES variable or expression
with the null designation (772,

Switch codes:

BANNER 1
NOBERANNER Z
BELETFE 4
NODELETE 8
HEADER 14
NOHEADER ¥4
FE &4
NOFF 128
WATT 254

BES-1O008-00 REV ADD

SEOGL — XOALL SUBROUTINE FOR SPOGLING FILES TO THE LINE PRINTER Page &~4

COPTES & floating point variable gr expression that speoifi
the number of copies to be printed. Ef wise omtt C0
ar 3t is zerg, the line printer spooler program pr
ofie copy. If you want COPIES to peint the de
nunber of copies of the line printer spoolsr, and wanht
to use subseguent options (FORM, WIDTH, etc.), enter the

null designation (") in place of the COPIES variable or

eRpression.

FORM A string varisble or expression that specifies the form
on which the file is to be printed,. If omit FORM oo

it s a null steing, the Line printer spooler uses the
NORMAL form. If wou want FORM to use the default form of

the line prinmter spooler, and want o use subsegquent
Gﬁ??ﬁﬁ% (WIBTH or LEBP} enter the nubl designation {77}
in place of the FORM variable or exprassion.

WIDTH & floating point variable or expression thst %p@xa

the width (in characters) of the pags.
this value 1 you have speciftied the HEAD
the SWITCHES veriable. WIBTH does
number of chargeters in the peint Line; ferg
the text in the henner (if any) angd the h&%d&r h;-“f
the width vou specify. If vou omit WIDTH, the sp

orogram uses the default wvalue Tor the s
printer, If vou want to omit WIDTH, bul ws

LPP, the subseguent option, enter the null

Y dn place of the WIDTH variable or exprzassion.
LPF & floating point veriable or expression that

the number of Lines per page. SPGOL only

valug i1 you have specified %%@ HEABER swi
SHITCHES wariable. If vou omit LPP, the spooler
yses the default value for th%_ap@cﬁQ%@ﬁ eIt e

&.1.7 Some Examples wsing SPOGL

The fﬁii@w ng examples are intended to be various modifications of
gne~- or fwo-lipe programs,. ESach modification will affect the prf
file in a % Trerent way.

At KOALL SPQOL JFILENAMEY

As with all of the XLALL subroutines catlable from &Lwﬁﬁﬁﬁai » The
subroutine wust be indicated by the ¥UALL kevwnrd foliowsd by the naw
the subroutine, SPOOL. The keyword and the subroutine name, 3 comma,
the filename (as either 2 string veriable or expression) to be spooled
mandatory:

T0 XCALL SPOOL,TTEXT.LSTY

DHE-T0008-00 gEY A00

SPOOL ~ XCALL BUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6-3

where “TEXT,LSTY i regarded as an expression by the AlphaBASIC program, and
TEXT.LET 48 the file wyou want printed. (Note that the expression 1is
enclosed in auotation marks.) This next program sccompl ishes the =ame thing
necause SPOOL accepts a string variable ﬁ@%ﬁﬁﬁdfuﬁﬁt

5 MAPY FILENAME,S,26
10 FILENAME="TEXT LST"
20 XCALL SPOOL,FILENAME

Motice in both of the above examples thal ne options have been specified,
ALL the parameters are set by default.

6.1.1.2 XCALL SPOOL ,"FILENAME" "FRINTER"

Modifving the above examples, the XCALL SPOOL command Line wmay specify a
printer via a string variable or an expression:

5 MAPRT PRINTER,S,6
10 PRINTER=VTIETOV
20 ECALL SPOOL UTENTLLETT PRINTER
OF3
10 KCALL SPOOLUTEXT.LETY MTIBT0Y
wherse TIR10 is the name of a printer defined by the monitor TRMDEF command.,

Note that the string exgwsss?@n TR0 must always be enclosed in quotation
marks.

6. 1.1.% XCALL SPOOL U FTLENAME" "PRINTER" ,SWITCHES

Mow we'll add the SWITCHES option to our examples.

i1f vyou have an AMOS system, then before you can run an AlphaBASLIC program
using the XCALL 5POOL subroutineg and the SWITCHES option, you must load
FLTONY_PREG into ayslfem OF USEr MEMOrY.

The nine available switeches esch have z unigue numeric code assigned to
them. Add the numeric value of the various codes that you want to use. For
example, say we wish to have a BANNER and a HEADER, and throw & formfeed
whern our fite is done printing. Those ,adegp ?ﬁ 16 and 64, add up to 81,
our sample program’s XCALL SPOOL command Line should read:

10 XCALL SPOOLUTEXT.LETT,"TIS10", 8%

pES-T0008-00 REY ADG

SPGOL ~ XTALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page &G

6.1.%.4 XCALL SPOOL,"FILENAME" "PRINTER" SWITCHES,COPLES

Say we want to spoel two copies to the printer gueue, We would sdd the
{OPIES floating point wvariable or expression to the XCALL SPOOL line in a
way something Like this:

0 ECALL SPOOL L VTEXT LETY 70 7 2
ar Like thigs

10 COPIES=D
20 ACALL SPOOL,UTEXT LETS 7, " COPIES

HOTE: In the above sexamples, the PRINTER string wvariable or
expression and the SWITCHES floating point varisble or expression
have been replaced by place~holding sulls (M3, You must slways
remember to add a2 place—holding null in the XCALL SPOOL progrem
Line if vou are net going to use the option that goes in that
place but are geoing to use cne or nere subséguent options.

f,1.1.% XCALL SPOOL,UFILENAME” "PRINTER" SWITCHES, COPIES "FORM”

The FORM option of the XCALL 3POOL command line may specify a form thal you
want mounted on the printer. The FORM may be either a string warisble or an
grpression:

5 MAPT FORM.%,. 6
TOOFORM=TPAYROLY
20 XCALL SPOOL,TFILEMAME” "PRINTER” .SWITCHES ,COPIES ,FORM

10 KCALL SPOOL,"FILENAME,"PRINTER” ,SWITCHES .COPIES "PAYROLY

where FAYHOL fs the nasme of & form defined by the monitor TEMDEF command.
Mots that g string expression ddentifying the form to use must alweys be
enciLosed in quotation marks.

form specified iz different than the one mounted on the printer, the
net print. Instead, the file will dimply remain in the ogueus
monitor SET command s used and the farim is changed to match thHe
the XCALL SPOOL program Line. See the SET reference sheet n
the AMOS Systewm Commands Reference Manusl, HM=00100-6%, or the AMOS/L
System Commands Geterence Manual, Db5s-10004-00, for wmore information on
setting the Torm tTor the printer to use.

BES-TONOE~00 REV ADD

SPOOL - XCALL SUBROUTINE FOR SPOOLING

¥
-
178
i

T4 OTHE LINE PRINTER Page &~7

G018 EUALL %F@@Lf”?EL%ﬂﬁﬁgﬁﬁﬁﬁRE%?Eﬁ”fgﬁi?ﬁﬁgﬁyﬁﬁﬁiﬁﬁf”?QR%”F@EQTHyiﬁﬁ

einally, the XCALL SPOOL subroutine can use 2 fiosting point wvariable or
sxpression to get the widih {measured im characters) of the page. SP00L
only uses this valug if you have specilied the HEABER switch in the SWITCHES
variable, WIDTH affects the appearance of the banner twhich is only printed
when using the BANNER switch of SHITEHES) and the header text; It doss not
affect the number of characters in the print Line.

When a file is spooted to the printer, WIDTH determines how wide the Dbanner
ie 1o be by controelling the number of characters that form the panner
aslphanumerics. At the top of each page, SPOOL nlaces the header text. Part
of the header text is » page number, which s oriented near the right-hand
margin. That right-hand margin ia determined by WIDTH,

The actusl iLines that are printsd are not controlled by WEIDTH. in other
words, print lines whose lLengths have oreviously been established are not
changed via the WIDTH value,

As an example of WIDTH, to print a file with @ banner that fits on an B 172"
X 11" page, and & header with the peage number appearing toward the right of
the page, you can sel WIBTH o 70. Your XOALL sPoOL oprogram Line should
appesr something Like this:

10 XCALL SPOOL,TEXT,LETY,TIR10",17,2, "NORMALY 70

or WIDTH can appesrs as a fioating point variable, like this:

10 CHARPPERFLINESTO
20 KOALL ﬁ@ﬁ@aﬁ”?EX?thT”g”Tiﬁéﬁ“gﬁ?EEKHNGQW&L”yéggiﬁﬁﬁﬁﬁéﬁELENQ

In either case, WIDTH wiil not faorce the file you print out to start
printing a new Line at 70 characters,

.17 ROALL ﬁ?%%k&”FERKNQMQ“W”Fﬁimfﬁﬁ”§3w3?ﬁﬁﬁﬁﬁiﬁ?iﬁﬁg“FGRM”»@E@?QWL??

To use the LPP feature of SPOOL, the HEADER switch of the SWITCHES feature
must also hbe used. The fioating point veriable or expression included on
the HCALL SPOOL Line specifies the number of Lines per page. When a fult
page {according to the LPP specification’ is printed, the SPOOL subroutine
prints a form feed and then prints the header st the top of the following

Dage . To aliow 48 Lines on 2 page {counting the header), for gxample, LPP
should appear something like this in the program Line:

10 XCALL SPOOLUTEXT LST™,TIB107,81,2, "NORMAL" 70,48
or LPP can appear as a fLoating point variable, Like this:

T OLINESTPERTPAGE=4E
2L BORLL ﬁﬁﬁﬁhﬁ“?QX?*iﬁ?“ﬁ“?IE?Q“wﬁi#EW“N@%M%L”f?GgifﬁﬁﬁﬁFﬁﬁE?ﬁ@ﬁ

DSS-10008-00 REV A0U

Se00L - XCALL SUBROGUTINE FOR GPROOLING FILES TO THE LINE PRINTER Page &8
Remember, 1f LPP is the only gptien you care to use, wou wmust heve all
previous placeholders in places

?g K{:éhé« SF}{}{ELFSEEEXTW iﬂx—‘rés F;!M! ,;;”” ﬁpii’ﬂ y?ﬂﬁﬁ g”“ f@g

£.2 BPGOL ERROR MESEAGE
The SPO0L subroutine returns only one error message:

THo spooler allocated

I7 vou see the message above, it mesns that no Uine printer spooler program
is gurrently running on the system.

A nove of caution: Each use of SPOOL in your AlphaBASIC program places the
fitename specified in the XCALL SPOOL program line into the monitor queus.
The svstem is oprotected so that a certain number of mondtor gueuwe biocks
{eurrentliy 153 are left unoccupied by SPEOL {or by the monitar command
PRINTY ., tHowsver, 1f the total of monitor gueus blocks being gccupied at a
giverr moment by ali the Jjobs running on the swystem {including your
AlphaBASIC program uzing SPOOLY exceed the total allocated, the systew will
Lock up and reguire s manual reset, Ne error message will De generated.

H.5 SUMMARY

5POOGL dnsertys a file into vour system's printer gueue, aTter which wour
AlphalBASEL program can continue to do other things. The file spociled into
the gueue waits its turn to be printed.

SP00L has 2 nusber of options that are very similar in both funcition and use
toa the coptions available using the FRINT command from AMGE or AMOS/L command
Level, the options each have specific positions on the XCALL SPOOL program

Lime. T an option 1% not desired, but 8 subseguent option i3, the
preceding option must be replaced by a2 placeholding null string enclosed in
guates 77,

AMOS systems (hut not AMOS/L svstemsl, one option, the SWITCHES command,

requires that FLTCHV,PRG be in system or user memory.

Fubsequent options {(those whose positicons on the XOALL SPOOL program Ling
right of the SWITCHES option} are avaitlable sven 11 the SWITOHES
' aesired by placing & null argument (YY) dn the SWITCHES

owever, even 1f SWITCHES is null, FLTCNV.PFRE must be loaded in

or user memory §f its position on the program line is used.

P
T3

DES-TOGOE-CD BEY ADD

CHARTER 7

YMOUNT - XCALL SUBROUTINE TO MOUNT A DISK

YMOUNT is an XCALL subroutine that allows you To mount 2 disk from within an
AlphsBASIC program without leaving AlphaBASIC. Yeu should call 1t whenewver
you change a disk and your AlphaBALIL program iz going to sort files or
creste new files on the newly changed disk. (You must always mount a disk
after vou've changed it and before you write to itz otherwise the system
Wwill think that the old disk is stitl in the drive. When it comes time to
write information out to the new disk, the disk's bitmap will be wrong, and
the system will try to write to the new digk ms 1T it had ihe samg areas
free as the old one.? BResides bringing 1nto memory the proper bitmap,
YMOUNT also Loads in the alternate track table, if any, for the specified
device.

IMPORTANT NOTE: NEVER mount or unmount a disk while someone is accessing
that disk. Doing so may corrupt the data on the disk,

It is not necessary to Load the XMOUNT subroutine into system oF user
MEMOTY . Howewver, the XMOUNT subroutine s fuily re-entrant, so for
increased access speed you may Load it into system memory via the SYSTEM
command in vour system initialization command file. {(See the AMOS System
operator's Guide, D3S~10001-00, or the AMOS/L System Operator s Guide,

BTSN For information on the system inftialization command fila.?

7.1 THE XMOUNT ZUBRGUTINE
You can call XMOUNT to mount a disk viar
KOALL MMOUNT , DEVICE VOLUME® LD
Where:
BEVICE Strine variasble or expression that represents 2 device
specification fe.g.., TDREKI:Y). Yoy may optionally

follow the device specification with /U7 to unmount the
device {€.G., "DPEKDIAUW .

AMOUNT — XCALL SUBROUTINE 70 MOUNT A& DISK Fage 7-2

YOLUMETID String variable in which the volume 1D of the wmounted
device will be returned. This variable must be 10 byies
Long. If 4t is not specified the labels block will not
pe read. This variable i3 dgrored 1F the /U option s
used,

If you specity the unmount option, the "UY must be uppercase. Hhen you
unmount a disk, wvou prevent AlphaBARIC and most system programs from
accessing that device,

Toi.l Bome Examples Using XMOUNT

As with ail the XCALL subroutines catlable from AlphaBASIC,. the program Line
must begin with the keyword XCALL and the name of the subrouting, XMOUNT.
The XMOUNT subroutine further reguires a string variable or expression fto
represent the specification of the device teo be mounted {(or unmounted?,
which ie¢ sepsrated by a comma from the word EMOUNT. For example:

TO KCALL XMOUNT ,"HWIKT:'"

5 MAPT DEVICE 3,9
10 DEVICES"HWKT "
20 ACALL XMOUNT .DEVICE

You may similarly unmount e disk by making the /U switgh part of the same
gxpression or string variable:

10 MCALL XMOUNT ,"'HWKT 5 /U™

i

5 OMAPT DEVICE,S,9
10 DEVICE=THWKT /UT
200 CALL XMOUNT DEVICE

The only option avatlable when using XMOUNY (other than the JU switch to

unmount a disk ¥ i3 the ability to store the wvolume ID of the newly mounted
disk within s string wvariable, gperhaps to be displaved immediastely after
H

ng the XMOUNT subroutine s the program user 48 sure he or she put the
4=

righ skoin the drive.

L

AMGUNT recognizes this option when it sees s string variable following the
deyvice specification string or expression {and separated from it by a
SOMMB Y . ¥MOUNT returns the volume IR of the disk as that variable, which
then may be displayved or tested., For example:

KMOUNT = MCALL SUBROUTINE 7O MOUNT 5 DISK Page 7-3

5 MAPT VOLUME'1D,5,10

10 MOUNTING: XCALL XMOUNT, "HWK1:" ,VOLUME®ID

20 PRINT YOLUMETID " iz mounted,”

E0OTF VOLUMEf ID<>UARCHIVE™ THEN G0OTO WRONGRISK
400 GOTO COMTINUING

100 WRONG DISK: PRINT "This is5 not the ARCHIVE disk.”

P10 PRINT "You may abort the program or place the correct™

120 PRINT "disk in the drive, To abori type Control-C.7 @ 8T0F
150 GOTS MOUNTING

200 CONTINUING: ..,

If the volume ID string variable is omitted or is too small, or if a /U
follows the device specification string variable or expression, the volume
ID variaeble is ignored and returns & null string.

7.d SUMMARY

The XMOUNY subroutine provides you with the ability to mount a disk without
leaving an AlphaBASIC program. It is used when a new disk has been inserted
in a disk drive and must be mounted in order for the bitmap to be updated.
AMOUNT may also be used to unmount a disk from within an AlphaBASIC program.
XMOUNT also provides the volume ID of the disk as an option, if the program
user needs to identify the disk just mounted,

ALPHABASTC XOALL SUBROUTINE USER'S MANUAL Page History=l

DOCUMENT HISTORY

Revision AOD ~ AMOS Release 4.6 and AMOS/L Release 1.0 - (Printed &/82)

The intormaton Thriuded im o this manual was formerly
contained as separate documents in the TBASIC Programmer’s
information” section of the AMOS Software Undate
Documentation Packet, The contents of this manual ars
updated to reflect advancements in software and the inclusion
of AMOS/L system information. Also, the information in this
manual has been expended and clarified in response to wuser
requests.,

ALPHABASIC XCALL SUBROUTINE USER’S MANUAL

AMBORT.BYE .

BANNER switch

BAS: ersatz name

BARORT . . .«
HASORT error

El

L3

*®

»

Binary variable

Channel number

Ciesr lock mode
Clearing & Lock

COMMON . . .
Common data -
Common storage

COMMON variable

E

£

@

ki

a

"

Concurrent access
Coordinating shared

CORIES option

Datas packel .
Jata type - -
Deadiack . .
BEL command .
PELETE switch
Bisk binck .

Bisk-hased polyphase merge sort

Exclusive use
Extension (S5BR

FF switeh . .
File tack . .
FILE aption .
File record .

Fite-open interd

FLOCK . .« .

ACTION parameter
FILE parameter
MODE parameler

@

®

3

®

=

u

ES

5

W

El

incex

"

E]

s

e

@

&

ook

L3

®

=

@

Length

L]

=

=

&

=

&

@

©

RETURN CODE parameter

FLTONV.PRE .
FORM option .

m

@

m

=

P

#

P

"

"

=

W

ES

Page Index-

i

mx;’sm
i

JE O R e e B

i

i
¥
L&
e

i
ERN
L

i
ey

»

i

]

8

H

i

to 65

I
=
He
§
]
LA

S A
e P43 L e

b

I
3
Lad W

H

1

i

i

-
2
el
[
b
k]
”gm“
|
-
&
v;&
}
&

i

§

H
FEY T TN IR N B A

%"

i
I

3

SRR AR

i’)ﬂ’\&”"
[]

ALPHABASIC XCALL SUBROUTINE USER'S MANUAL Page Index-2

HEADER switch . . 0 o o = « « s o G2, &6
Input chammel & & ¢« o « v & o o » 276
Interconzistency problem . .« « &=3, 410, 4~13
K8Y w & s 5 s » « o « = = 2 = = » £2=1%
Grader o o - 2 5 6 & s e 5 o= = s £m3, =6
Bosition . s o « v 2 o a o « s E=3, 276
G128 4 n s e s s w omow s oa o= s EmH
TYBE W s o v 6 6 o ow omowox on oa emhk
Labal . . . v 4 s v e s e o ow e . ™2
Colon o v o o o o « » = = = o« o 192
List lock mode o - . . . 34
LOAD command . .« « o o« & 2 » o« 123 to T-&, d-2, -8,
B2, G=2, &1, F-1
Lock and wait mode . . . - « « « 2v&
Logical record o ¢ 4 & o a s = » Db
LPE option . 0 s s 5 4 s o= o= o= oa fimb, 66
Machine language .« . « +« » » = - =1
MAR Statement o 4 w w w o« = o w o« 173 to t=4, B4, 52
Memarv-based heap sort . . - . .« 2~1
MODE L . . s e s e e w s om e A
MOnTEor QUEBUE o 4 w « n o o o w « 1m5
Mounting a disk . » & 4+ & = = & « =1
Muloi=user File ancess . o « - « 4~
Multiple update problem o & « » « &=1, &=9_ &~13
HOBAMNER switch o v « 2 v ¢ « = o G2
HODELETE switeh o . o o o & & = &H=F
MOFF switch o« & W 5 5 & ¢ = « o« ©6=3
MOMEADER switoh o & 0 & o o & « « B=3
Morn—exclusive WSe « o w o » s = o &5

Output chanmel . . & & = &« « » » 276
Freventing deadlock . « . - « - « 4=15%
PRINTER option . o 4 = o & o = w bH=g, 65
Frogram chaining . . « « « « « « 31

Queve block & o & 4 4 & = » = = = 15

Random Tile o ¢ o » o o = s o 5 o 271, 4«F
Record count . .+ 4+ « o = & & o 2=3

Qacord 5128 . . & 4 4 % w2 = s+ - 2=3, 2-6
Record-update interlock . « » « o 4=11, 4153
feserved file=-channel number . . &7
Beturo=cod® . v 4 o s = s s on o= . GB, b7

ALPHABAZIC MCALL SUBROUTINE USER'S MAMUAL Fage Index~3

t

Search SeguUent® . . o s & = s & =
segquential file« 4 .
SET command o . . - . 2 s s e oa a
Sort key . o 4 s s 5 s s s o= o= o=
BPOGL . 4 s s s s s s e s e w s s
SPQOL {acromym} .« ¢ o 4 o s & v e
Spooling & file . - . . & . . &
SWITCHES numeric code . + & o &
SWITOHES option & . & . o 4 » = =
SYSTEM command . . . & o o o & o«
Syslem mEmoOryY . o « . 4 s 4 s o w

toi g

i

[

: i
Lo B P L ek b e 4 SR e Lpd

£

wﬁ‘wﬁﬁ?«i%i}*?«&q\}{ﬁm-é

]

L4

USEr MBMOrY + & s o« o = s o =« & & 17

Vartable -3
Binary . - o & « = . -3
Floating point . . « + & « « - 1-3
BEriNg « o = & « o = w w = » = 13

Volume ID . o o & & v 5 o & & & « 172

WATT switch . o 4 w4 4 4« 2 w o - 6=3
WIDTE option o o o 4w s v s s o« & bOb, b7

T R P R P
XORLL statement . . . & o o & w «
HEOUK o 4 2 5 a w2 5 o o % n s a
LOCK MORE . ¢ & & & ¢ 4 o & o« s
ALOCK record number calgulation .
XLOCK witdeard .+ & & 4 o o « s
KMOUNT . . & o v s s 2 2 e = e s
KROUNT /U Gption o 0« 6 o w v =

i

i

P
o
sy
)

£
5

i
-3

H

§

i

to 1=2, 7=1

w«,;ﬂ.:nm;?mmaw
Prd ot WA O Ll ol ok

¥

AlphaBASIC XCALL Subroutine User®s Manual

TECHMICAL PUBLICATIONS FILY REFERENCE

TECHMNICAL PUBLICATIONS READERS COMMENTS

We appreciate your halp i svalugting our documeniation efforis, Please fesl free 1o attach scditional comments,
H you require a writien response, check here: 3

NOTE: This fore is for commeants on documentation only, To submit reporis on software problems, use Sofiware

Parf ance Meporty (BPRsl, svailable from Alphs Mioro.

Please commaent on the uselulnsss arganization, and slarity of this

el wou Ting ervors in this manus!? I so, piease specify the srror and the aumber of she page on which it cccurred,

Wihat kings of manuals would vou ke g ses in the future?

Pipase indicte the type of reader that you ropresent [oheok afl that aoniv):

Alpta Micro Deater ar GEM

Mortprogramaner, using Alohs Micro compuier for:

Businegss applicdaiions
= tion applications

B ET
her-level language
Experianoed programmer
FOGPRITHTHIN SX DR @00

A TE:

PHONE MNMUMBER:

DRGAMIZATION,

ETATE: Zi

CITY

ETAFLE STAPLE E
g
i
§
§
2
g
'
g
$
B
H
§
§
]
§
i
:
i
B
I
3
g
1
]
i
1
P
i
8
g
E
g
§
;
;
1
1
3
I
‘

FOLD FOLD P
§ﬂ&@%§-ﬁ@®@%§&&%Q@@@HE@O&O@%%ﬁ@9@@%&0&@@@&@ﬂﬁ*w&sﬂ8!.EﬂQ?-QQ@D'Eﬂﬁ’?’@ﬁﬁ@ﬁ%ﬂ-w@@##@&ﬁg
:

— §

PLACE
STAME
HERE

Ly

TFERY Sky Park Marth
PO Box 18347
frwine, Caditorniz 82714

ATTM: TECHNICAL PUBLICATIONS

ﬁ@&@ﬂ?@%ﬁﬂ&sm“@&ww%@&@w&%ﬂﬁ@@@k’#ﬁ%@$wﬁﬂ°ﬁﬁﬂﬁ$@@@a&aaﬁﬂnﬁﬁﬁn&ﬁs%@ﬁ@fhﬁﬁsﬁﬁ@@&w

RO P

L S 5 D (5 TR 5 G £ S L VA T R O R T 0 S i e e o e S 1 s Y T SUR) 7 S S 5 G i S 5 e 5 A 50 S s A e B8 e v e

CUT ALONG LINE

