

r
In

In
z

rn -
c

\fl
 r

\
5>

/
\/

H
C

-t

a
r In

c

C

/

Ap

H

- j
-\

FJRST EDITON

June 1932

June •1982

©1982 ALPHA MICROSYSTEMS

THE NFORMATON CONTANEO N THS MANUAL S BELiEVED To BE ACCURATE AND.:.EUABLE, HOWEVER, NO REBPONBIBn CV FOR THE ACCURACY, COMPLETENESS CR USEOF THC NFORMATON 0 ASSUMED BY ALPHA MiCRO,

Mpha Micro
AphaLSP

AMOS AphaBA5Icj
Apha5ER'J

AphaPASOAL
AphaACCOUNTfNG

ALPHA MCROSYSTEMS
17551 Sky Park North

IrvIne, CA. 92714

A co

THiS document tject° AMOS versions 46 and later
and A,MO5/L versions 1,, 5 and later

THE FOLlOWING ARE TRADEMARKS OF ALPHA MICROSYSTEMS IRVNE. Ca. 92714

'I

ALPHAAIC XCALL SUBROUTINE USER'S MANUAL Page HI

Table of Contents

CHAPTER 1 INTRODUCTION

1.1 MANUAL ORGANIZATION
1—1

1.2 SAMPLE PROGRAMS
1—2

1.3 USING XCAU. SUBROUTINES
1—3

CHAPTER 2 BASORT — XCALI. SUBROUTINE FOR SORTING FILES

2.1 LOADING BASORT INTO MEMORY 2—2
2.2 USING BASORT IN AN ALPHABA5jc PROGRAM 2—2

2.2.1 Sorting Random Files 2—2
2.2.1.1 An Example of using BASORT

on a Random File 2—4
2.2.2 Sorting Sequential Files 2—6

2.2.2.1 An Example of Using BASORT
on a Sequential File 2—7

2.3 8ASORT ERROR MESSAGES 2—11
2.4 SUMMARY 2—12

CHAPTER 3 COMMON — XCALL SUBROUTINE TO, PROVIDE
COMMON VARIABLE STORAGE

3.1 LOADING COMMON INTO USER. OR SYSTEM MEMORY 3—1
3.2 USING COMMON FROM WITHIN AN

ALPHABASIC PROGRAM 3—2
3.2.1 Defining Variables 3—2
3.2.2 The XCALL COMMON Command Line 3—3

3.3 AN EXAMPLE OF COMMON 3—4
3.4 SUMMARY 3—6

CHAPTER 4 FLOCK — XCALL SUBROUTINE TO COORDINATE
MULTI—USER FILE ACCESS

4.1 THE MULTIPLE UPDATE PROBLEM 4—1
4.2 THE INTERCONSISTENCY PROBLEM 4—3
4.3 THE FLOCK SUBROUTINE 4—4

4.3.1 FLOCK Program Requirements 4—4
4.3.2 FLOCK Calling Sequence 4—5

4.3.2.1 Action & Mode 4—5
4.3.2.2 File 4—7
4.3.2.3 Record 4..7
4.3.2.4 Return—Code 4—7

4.3.3 Queue Block Requirements 4—S

DSS—10008—OO REV A®

ALPHABASIC XCALL SUBROUTINE USER'S MANUAL Page iv

4.4 USING FLOCK 49
4.4.1 File—Open Interlocks 4—9

4.4.1.1 The Multiple Update Problem .. 4—9
4.4.1.2 The interconsistency Problem . 4—10

4.4.2 Record—update Interlocks 4—11
4.4.2.1 The Multiple Update Problem .. 4—12
4.4.2.2 The Interconsistency Problem • 4—13

4.4.3 Improved File Interlocks 4—13
4.4.3.1 Example 4—14

4.5 DEADLOCK, AND HOW TO PREVENT IT 4—15
4.6 SUMMARY 4—17

4.6.1 QuIck Reference Summary
of Actions/Modes 4—17

CHAPTER 5 XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS

5.1 LOADING XLOCK INTO SYSTEM MEMORY 5—2
5.2 THE XtOCK SUBROUTINE 5—2
5.3 THE LOCKS 5—3
5.4 THE MODES 53

5.4.1 MODE 0 (Lock and Return) 5—4
5.4.2 MODE 1 (Lock and Wait) 5—4
5.4.3 MODE 2 (Clear Lock) 54
5.4.4 MODE 3 (List Locks) 5—4

5.5 WILDCARDS 5—5
5.6 PROGRAMMING EXAMPLES 5—5

5.6.1 Calculating Record Numbers 5—6
5.6.2 Sample Program to IlLustrate

File Record Locking 5—8
5.7 SUMMARY 5—9

CHAPTER 6 SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES
TO THE LINE PRINTER

6.1 USING THE XCALL SPOOL SUBROUTINE 6—2
6.1.1 Some Examples using SPOOL 6—4

6.1.1.1 XCALL SPOOL,"FZLENAME" 6—4
6.1.1.2 XCALL SPOOL,"FILENAMr,

"PR INTER' 6—5
6.1.1.3 XCALL SPOOL,"Fn.EP4AMr',

"PRINTER",SWITcIS 6—5
6.1.1.4 XCALL SPOOL,"FILENAfIE,

"PRINTER',SWITCIIES,COPIES 6—66.1.1.5 XCALL SPOOL,'tFILENAME",

• AD SI —'I
6.1.1.6 XCALL SPOOL,"FILENAME",

E,ITCHES,COPIES,
6—7

6 1 1 7 XCALL SPOOL,"FILENAME",
"PRINTER",SWITcPIES,cOpIEs,
"FORM",WIDTH,LPP 6—7

6.2 SPOOL ERROR MESSAGE 6—86.3 SUMMARY 6—8

DSS—10008—OQ REV ADO

ALPHABASIC XCALI. SUBROUTINE USER'S MANUAL Page v

CHAPTER 7 XMOUNT — XCALL SUBROUTINE TO MOUNT * DISK

7.1 THE XMQUNT SUBROUTINE
7—17.1.1 Some ExampLes Using XMOUNT 7—27.2 SUMMARy 73

DOCUMENT HISTORY

INDEX

055—10008—00 REV *00

CHAPTER 1

INTRODUCTION

AIphaBASIC, the ALpha Micro BASIC Language Processor, is a powerfully
enhanced version of BASIC. ALphaBASIC has the ability to access externat
machine language subroutines using a keyword catted XCALL. Several machine
language subroutines, ones that perform complex and yet frequently required
tasks, are provided on your System Disk. These external subroutines, their
features, abilities and restrictions, are the subject of this manual.

Because these external subroutines are machine language programs, they are
much smaller and faster than equivalent AIphaBASIC programs. Machine
language programs work closely with hardware and the operating system, which
AIphaBASIC cannot do In some applications.

It is important to note here that, whereas you can write your own machine
language subroutines and access them via XCALL, this manual does not discuss
how those machine language subroutines can be written. This manual Instead
restricts Isetf to a discussion of the existing external subroutines named
BASORT, COMMON, FLOCK, XLOCK, SPOOL and XMOUNT. You will find this manual
useful if you are already somewhat familiar with ALphBASIC and wish to
understand, and then access, these external subroutines. You may also find
this manual to be useful later as a reference guide to the various existing
subroutines.

Please refer to the AIphaBASIC User's Manual, DWM—OO100—O1 for further
information about the XCALL keyword and any other topic dealing with
AIphaBASIC itself.

1.1 MANUAL ORGANIZATION

This manual is arranged in chapters. You are reading the introductory
chapter, Chapter 1. Chapters 2 through 7 discuss the XCALL subroutines
themselves; how, when, where and why to use them, and what special features
they provide.

Chapter Z talks about BASORT, the AIphaBASIC Sort subroutine. BASORT sorts
the kinds of files called Random files and Sequential files. There Is also
a List of the error messages the BASORT subroutine may return.

DSS—10008—QO Rev A®

INTRODUCTION
Page 1—2

Chapter 3 discusses COMMON, the external subroutine that enables data to betransferred into a common storage area of menory (for example, to passvariables between chained programs).

Chapter 4 detaiLs FLOCK, the File Locking subroutine that protects a datafiLe from being accessed by more than one program in a given moment, so thatthe file won't be updated by two or more program users concurrently.

Chapter 5 discusses XLOCK, the subroutine used to set, test and cLear"Locks" on files and devices. This subroutine Is similar in some respectsto FLOCK, discussed in Chapter 4.

Chapter 6 talks about SPOOL (an acronym for "Simultaneous Printer OutputOn—Line"), the subroutine that inserts, or "spools," a file into a printerqueue for immediate or eventual processing outside of the control of the jobrunning the AIphaBASIC program.

Chapter 7 discusses XMOUNT, the subroutine used to mount a disk from withina AIphaBASIC program, as when a user must access a new disk during thecourse of a multi—disk fife update event. You mount a disk after you havechanged a hard disk cartridge or a floppy diskette, in order to inform thesystem that the disk in that drive has a different "bitmap," or index offree and used storage areas.

1.2 SAMPLE PRO6RAM$

There are a number of sample programs in this manual, ranging in complexityfrom one to several dozen program lines. Remember that these samples aremeant only to demonstrate the use of the AlphaaASxC XCAIJ. subroutines, andare not intended as examples of the best or most elegant techniques tofollow when creating AIphaBASIC programs.

To quickly grasp the point of these examples, remember that AIphaBASICpermits the use of labels, as welt as line numbers., to Identify locations ina program. A program label is composed of one or more alphanumeric
characters which are not separated by a space or other delimiter. The firstcharacter is always an upper case or Lower case letter. A Label must be thefirst item on a tine after the tine number and must be terminated by a colon(:). The following is an example of labels CRANDOM'DIRECTIoN, UP, DOWN andSTRAIGHT) in an AiphanAsIc program that performs a kind of simple animation.

10 MAP 1 DIRECTION,r

100 RANDOM'DIRECTION:
110 DIRECTI0N=INT(3*pj(Q)+)
120 ON DIRECTION 605U8 UP, DOWN, STRAIGHT
130 6010 RANDOM'DIRECTIQN

1000 UP: PRINT "I"; TAB(—1,3); : RETURN

2000 DOWN: PRINT TA8(—1,4);"\"; RETURN

3000 STRAIGHT: PRINT";
: RETURN

DS$—10008—0Q REV ADO

*

*

INTRODUCTION
Page 1—3

In the pages of this manual you wilt be seeing a number of program examples
that use labels.

Notice that tine 10 of the above program example Is a Level—i MAP statement;
we map the variable DIRECTION as a floating point variable (F). AIphaBASIC
provides you with the ability to specify th! pattern in which variables of
alt kinds (floating point, string, and binary) are allocated in memory. By
mapping variables at different levels you may define whole groups of related
information and reference single elements or an entire group as you choose.
You will see MAP statements in many of the examples within this manual. For
further information on Interpreting and using MAP statements, see Chapter 8,
"Memory Mapping System," of the AIphaBASIC Usr's Manua4, DWM—OOiOO—O1.

1.3 USING XCALL SUBROUTINES

There are several things you should keep in mind before beginning to use
XCALI.. subroutines:

1. All XCALL subroutines must have a .SBR extensjon. The subroutines
supplied with your system software reside in account [7,6) of the
System Disk.

Whenever a subroutine is requested, AIphaBASIC follows a specific
pattern In looking for the requested subroutine. The search
sequence Is as follows (where tP,pn] designates the
Project—programmer number that specifies your account):

a. System memory

b. User memory

c. Default disk:tUser P,pn]

d. Default disk:(User,O)

e. DSKO:[7,6)

Notice that AIphaBASIC checks first system, then user memory. If a
subroutine is to be catted a large number of times, it is wise to
toad it into memory to avoid the overhead of fetching the
subroutine from disk.

If the subroutine is not in memory, AIphaBASIC attempts to load the
subroutine from the disk, following steps c. through e. of the
search sequence above. If an AlphaBASIC program fetches a
subroutine from disk, AIphaBASIC loads it into memory only for the
duration of its execution; afterward it is removed from memory If
it is loaded via this automatic procedure. NOTE: Subroutines
loaded into system or user memory via the LOAD command remain in
memory until you reset the system or until you use the monitor
command DEL to delete them.

DSS—10008—OO REV A®

INTRODUCTION
Page 1—4

2. You wilt invoke a particular subroutine via the AIphaBASIC XCALLstatement, and wilt usually need to specify several controlparainetert on that statement tine. A typical XCAU. statement tine
might took like this (where COMMON is the name of the subroutineyou want to invoke, and SEND, "MSGNAM", and WRITE'OUT are variablesthat specify information to the COMMON subroutine);

100 XCALL COMMON,SEND,"MSGNAMU,WRITE*OUT

3. You wilt need to use MAP statements to define many of the control
variables you specify on the XCAIL statement tine. (This isbecause only by way of MAP statements can you define binary
variables.) For information on MAP statements, refer to the
AlphaBASIc User's Manual, DWM—O0100—Oj.

4. Many of the XCALL subroutines require that you pre—toad special
files. For example, you must load the file DSKO:cOMMopi.SBR(7,6]
into user or system memory before running an AtphaBASIC programthat makes use of the COMMON subroutine. (For each XCALL
subroutine, the documentation that follows will Let you know what
files need to be pre—toaded,)

To toad a file Into user memory (I.e., your own memory partition),
enter either of the following from AMOS or AMOS/I command level;

LOAD DSKO;Fllename.$9Rc7,o) @j

or

.LOAD $AS:fitename.SeR lED

where Filename is the name of the subroutine you are requesting
(e.g., COMMON, BASORT, etc.).

Note the use of the ersatz name, BAS:, which indicates account
[7,6] of the System Disk. After you see the monitor prompt,
you may run an AIphaBASIC program that uses the specifTc
subroutine.

To toad an XCALL subroutine into system memory, the System Operator
must use the SYSTEM command within the system initialization
command file. For more information on loading files, including
subroutines, into system memory during system boot—up, see the
AMOS System Operator's Guide, DSS—10001—OO, or the AMOS/I System
Operator's Guide, DSS—1000p-O0.

5. Some XCALL subroutines (namely, FLOCK, XIOCK and SPOOL) use the
monitor queue. The monitor queue is a list of blocks in systemmemory which are Linked to each other in a forward chain. Each
queue block is currentLy eight words (16 bytes) in size (this value
may change with the next release of the file system). During
normal monitor operations, various functions use these queue blocks

DSS—1000$—OO REV 400

4 *

INTRODUCTION
Page 1—5

to perform certain tasks. The monitor Initially contains 20 btocksin the available queue list. This quantity is established in thesystem InitialIzation command file. For information on increasingthe number of available monitor queue blocks, see the AMOS System
Operator's Guide, DSS—10001—QO, or the AMOS/I System Operator's
Guide, DSS—10002—OO.

If you use an XCALL. subroutine that uses the monitor queue, you
must be sure that enough queue blocks are available beforeexecuting the subroutine. If not enough blocks are available when
the AlphaaASjC program executes the XCALI. subroutine, the system
could lock up and require manual reset.

Your AlphaBA$jC program can check the nwnber of free queue blocks
before you perform the XCALI. subroutine by using the WORD function
to read the QFREE memory location. The program should not continue
If the Quantity of free queue blocks is insufficient.

To find the QFREE memory location for an AMOS system, check the
current SYS.MAC file. For AMOS/L systems, see the SYS.M68 tile to
see the location of QEREE.

The queue block requirements for each of the XCALL subroutines Is
discussed in the appropriate chapter.

DS$—1000$—0O REV AOO

'4

CHAPTER 2

BASORT — XCALL SUBROUTINE FOR SORTING FILES

BASORT is an external subroutine, callabLe from AIphaBASIC via the XCALL
keyword, which can sort both random and seqUential files. A random file is
one in which the records are physically grouped together in one area of the
disk, and where any point within that file can thus be found immediately by
calculating an offset from the file's beginning. A sequential file's
records are not necessarily contiguous on the disk, but are linked in
sequence by pointers in each segment that indicate where on the disk the
next segment can be found. For information on creating and using files from
within AIphaBASIC, refer to Chapter 15 of the AIphaBASIC User's Manuat,
DWM—OO100—O1.

You can use BASORT to sort a tile Into numeric order, a list of names or
words into alphabetic order, and so on. BASORT permits up to three keys, or
elements of the data records you wish to base your sort on. For example,
say you have a list of customer names, each with an associated order date
code nd a purchase order number. The first key might be the customer name.
If a particular customer has ordered more than once, the second key comes
into play to determine which record of that customer's should go first. You
can sort that customer's orders chronologically based on the date code. And
if that customer has placed two or more orders in the same day, the third
key will determine the final sorting placement of that customer's records
based on his purchase order numbers. (An example of this kind of sort is In
Section 2.2.1.1 below.)

BASORT combines two sorting methods to make it a relatively fast sort
utility that can stilt handle very large files. If your memory partition is
large enough to contain the entire file that is to be sorted, BASORT
performs a memory—based heap sort. That means it sifts through and
rearranges the "heap" of data in memory to bring the data into the order you
specify in the BASORT command line, If there is not enough room in user
memory for the entire file, BASORT does a disk—based polyphase merge—sort.
That is, the data is brought into memory in smaLl groups where it is sorted
and rewritten to the disk; then the several groups are merged together on
the disk.

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—2

2.1 LOADING BASORT INTO MEMORY

The BASORT package consists of three modules (or two modules on AMOS/I
systems) ——BASORT.BR, AMSORT.SYS, and FLTCNV.PRG (FLTCNv is omitted onAMOS/I systems). These modutes must be in memory when BASORT is used. Whenthe XCALL BASORT command is used in an AIphaBASIC program, the AIphaBASICprogram automatically loads BASORT..SBR into user memory. However,
AMSORT.Sys and FLTCNV.PRG (for AMOS systems) must be toaded into either
system or user memory prior to running an AtphaBASIC program using BASORT.

To load AMSORT..sys (and FLTCNV.PRG for AMOS systems) into user memory, enter
the fottowing from AMOS or AMOS/I command level:

.LOAD DSKQ:AMSORT.Sys[1,4) tD or .LOAD DSKO:AMSORT.$YSr1,4] E!
IL0AD DSKO:FLTCNV.PRGCI,4J @3

To toad AMSORT,.SyS and FLTCNV.PRG into system memory, you must have two
tines in your system initialization command fite that perform those
functions. For more information on loading subroutines into system memory
during system boot—up, see the AMOS System Qperator's Guide, DSS—10001—OO,
or the AMOS/I System Operator's Guide, DSS—10002—OQ.

AMSORT.,$Y5 and FLTCNV.PRG are re—entrant; BASORT.SBR is not, so you must not
toad it into system memory.

2.2 USING BASORT 114 AN AIPHABASIC PROGRAM

You may use BASORT to sort both random and sequential files. Like all the
other external subroutines discussed in this manual, you wilt call BASORT
from the Alphaak$IC program using the XCALL keyword. Then you wilt supply
the parameters of up to three keys you wish to sort on are provided to the
AtphaBASjC program via the XCALL BASORT command tine.

Using BASORT for random files requires some different parameters than does
using I3ASORT for sequential files. The next two sections describe the
specific methods of using 8ASORT for both random and sequential files.

2.2.1 Sorting Random Files

When you use BASORT to sort random files, BASORT sorts the file onto itself(that is, it replaces the original, unsorted file with a file containing the
sorted data). Therefore, if you wish to retain a backup copy of the
unsorted file, you must create a separate copy to be sorted.

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—3

BASORT for random files is called via variables or constants in this order(where the ampersand (&) means a continuation of the AIphaBASIC linestatement):

XCALL BASORT, CHANNEL'NUMBER, RECORD'COUNT, RECORD'SIZE, &
KEY1'SIZE, KEY1'POSITION, KEY1'ORDER, &
KEY2'SIZE, KEY2'POSITION, KEY2'ORDER, &
KEY3'SIZE, 1CEY3'POSITIQN, KEY3'ORDER, &
KEY1'TYPE, KEV2'TYPE, KEY3'TYPE

Where:

CHANNEL'NLJPIBER — File channel on which file to be sorted is open
for random processing.

RECORD'COup4T — Number of records in the random file you are
sorting. (Unlike seuentia1 files, the
programmer must know the precise number of
records in a random file.)

RECORD'SIZE — Size of the longest record in the file you are
sorting. The size of a record is its byte count
(including characters, spaces, etc.). Again, for
a random file, you must be sure of the record
Size.

KEY1'$IZE — The size, in bytes, of sort key #1. Give the
size of the largest instance of key #1 (i.e., if
sort key #1 is the customer's name, find the
longest name in any record, or perhaps allow for
a very long one.)

KEY1'POSITION — The first character position occupied by key #1.
if the KEY1'POSITION variable given is 50, for
example, BASORT will fit the characters beginning
at the fiftieth byte in the record into the
sequence it is creating.

KEY1'ORDER — Sort order of key #1. Enter the digit 0 to
indicate that you want key #1 of each record to
be sorted in ascending sequence, or enter the
digit 1 to indicate descending seqeuence. (NOTE:
The order is determined using ASCII collating
sequence; e.g., alL upper—case letters come
before tower—case Letters.)

KEY2'sjzE — The size, in bytes, of sort key #2.

KEY2'POSITION — The first character position occupied by key #2,

KEY2'ORDER — Sort order of key #2. Enter a 0 or a 1. (See
KEY1'ORDER, above.)

KEY3'SIZE — The size, in bytes, of sort key #3.

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—4

KEY3'POSITION The first character position occupied by key #3.

KEY3'ORDER — Sort order of key #3. Enter a 0 or a 1. (See
KEY1'ORDER, above.)

KEY1'TYPE — The data type of key #1. Key types are:

0 String
1 = Floating Point
2 = Binary

KEY2'TYPE — The data type of key #2. (See KEYI'TYPE, above.)

KEY3'TYpE — The data type of key #3. (See KEY1'TYPE, above.)

Remember, keys are the elements of the data records you wish to base your
sort on (i.e., customer name, order number, etc.). If you want to use less
than three keys, all entries in the XCALL command line for the unused keys
must be zero. If the key types are omitted, BASORT assumes string data
type.

Alt arguments in the XCALL command line are numeric, but may be passed as
either floating point or string values. For exampte, "99' is a vaLid entry.
Arguments must not be in binary format.

The first character in a record is considered position 1.

2.2.1.1 An Example of using BASORT on a Random File

The following is the contents of an unsorted file that we'll pretend we want
sorted. The file we have gathered the following customer names in is called
POINFO.DAT, containing the purchase order information of the specific
printed business form (we're pretending) they ordered from us.

ROSIN GOOD PUBLICATIONS 1/3/61 49130
K.A.L. ENTERPRISES 12/7/81 1207
EVANS' CLASSIC AUTOMOBILES, Inc. 1/20/81 K79876
ROBIN GOOD PUBLICATIONS 2/14/81 49201
DE SOTO HORSE GROOMING EQUIPMENT Co. 4/7/81 1836
VIDCOM 8/3/81 14101
ROBIN GOOD PUBLICATIONS 2/28/81 49393
MARTIN MICHAEL LAVELLE, CONSULTANT 6/12/81 75729
HONEST DAVE'S CHEAP CAR PARTS 9/11/81 A00326
OF SOTO HORSE GROOMING EQUIPMENT Co. 4/9/81 1895
ROSIN GOOD PUBLICATIONS 2/Z8/81 49397
EVANS' CLASSIC AUTOMOBILES, Inc. 9/11/81 L98467

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—5

The program that we wiLl use to sort the above tiLe tooks Like this:

5 ! SAMPLE PROGRAM TO SORT SMALL
10 MAP1 CUSTOMER'IIIFO
15 MAP2 NAME,S,35
20 MAP2 PURCHASE'DATE,S,$
25 MAP2 PURCHASE'ORDER,S,7
30 MAPI RECORD'SIZE,F,6,5Q
35 MAPI RECORD'NUMBER,F,6,0
40 MAP1 CHANNEL,F,6,100
45 MAP1 RECORD'TOTAL,F,6,12
50 MAP1 ASCENDING,F,6,g
55 MAP1 STRING,F,6,0

100 START:

RANDOM DATA FILE
DEFINITION OE RtORD:

35 BYTES MAXIMUM
8 BYTES MAXIMUM
7 BYTES: MAXiMUM

RECORD IS TOTAL Of 50 BYTES
START WITH RECORD #0
FILE IS OPEN ON CHANNEL #100
TOTAL OF 12 RECORDS IN FILE
SORT IN ASCENDING ORDER
ALL KEYS AR, OF TYPE "STRING"

120 OPEN
130 PRiNT "Now sorting..."
140 XCALL BASORT,CHANNEL,RECORD'TOTAL,RECORDISIZE,35,1,ASCENDINGS3o&

ASCENDING,7,44,ASCENDING,STRING,STRING,STRING
150 PRINT "We will, sort on name, purchase date, and purchase order number"
160 FOR RECORD'NUMSER 0 TO 11
170 READ #100,CUSTOMER'INFO
180 PRINT NAME,
190 PRINT PURCHASE'DATE,
200 PRINT PURCHASE'ORDER

NEXT

230 END
CLOSE #100

Note that tine 120 opens the file, POINFO.DAI. Line 140 is the XCALL SASORT
command tine, where the variabLes (defined in the MAP statements of tines 15
through 55) define the BASORT parameters. The file Is sorted back on itself
at that point. Then it is printed as a resutt of tines 160 through 210.

The resulting printout, when running the above program, is:

Now sorting...
We wiLl sort on name, purchase date,
DE SOTO HORSE GROOMING EQUIPMENT CO
DE SOTO HORSE GROOMING EQUIPMENT CO
EVANS' CLASSIC AUTOMOBILES, INC.
EVANS' CLASSIC AUTOMOBILES, INC.
HONEST DAVE'S CHEAP CAR PARTS
K.A.L. ENTERPRISES
MARTIN MICHAEL LAVELLE, CONSULTANT
ROBIN GOOD PUBLICATIONS
ROBIN GOOD PUBLICATIONS
ROBIN GOOD PUBLICATIONS
ROBIN GOOD PUBLICATIONS
Vi DC OM

and purchase
4/7/81
4/9/81
1/20/81
9/11/81
9/11/81
12/7/81
6/12/81
1/3/81
2/14/81
2/28 / 81
2/28/81
8/3/81

order number
1836
1895
K79876
L98467
A00326
1207
78729
49130
49201

49393
49397
14101

210
220

Line 220 cLoses the tiLe.

4

BASORT — XCALt. SUBROUTINE FOR SORTING FILES Page 2—6

2.2.2 Sorting Sequential Files

When you sort a sequential file, you must specify both an input and anoutput file. If you wish to sort a file back onto Itself, you may specifythe same file for both input and output.

IMPORTANT NOTE: Before BASORT is called, the file must be opened for input.BASORT leaves the file open for output.

Call BASORT for sequential files via:

XCALL BASORT, INPUT'CHANNEL, OUTPUT'CHApEL, RECORD'SIZE,
KEY1 'SIZE, KEVI 'POSITION, KEYI 'ORDER,
KEY2'SIZE, KEY2'POSITION, KEY2'ORDER,
KEY3'5IZE, KEY3PO$ITION, KEY3'ORDER

Where:

INPUT'CHANNEL — The file channel on which the input file is open.

OUTPUT'CpjA — The file channel on which the output file is
open.

RECORD'$IZE — The size, in bytes, of the Largest record in the
file, including the terminating carriage
return/tinefeed characters. NOTE: Too small a
value results in truncation of data records.

KEY1'SIZE — The size, in bytes, of sort key #1. Give the
size of the largest instance of key #1 (i.e., if
sort key #1 is the customer's name, find the
longest name in any record, or perhaps at low for
a very long one).

KEY1'POSITION — The first character position occupied by key #1.
If the KEY1'POSITION variable given is SO, for
example, BASORT will, fit the characters beginning
at the fiftieth byte in the record into the
sequence it is creating.

KEY1QRDER — Sort order of key #1. Enter the digit 0 to
indicate that you want key #1 of each record to
be sorted in ascending sequence, or enter the
digit 1 to indicate descending seqeuence. (NOTE:
The order is determined using ASCII collating
sequence; e.g., alt upper—case Letters come
before lower—case letters.)

KEY2'SIZE — The size, in bytes, of sort key #2.

KEY2'PO$ITIOPI — The first character position occupied by key #2.

KEY2'ORDER — Sort order of key #2. Enter a 0 or a 1. (See
KEY1 'ORDER, above.)

BASORT — XCALL SUBROUTINE FOR SORTING Ffl.ES Page4 2—7

KEY3'SUE — The size, in bytes, of sort key #3.
KEY3'POSITION — The first character position occupied by key #3.
KEY3'ORDER — Sort order of key #3. Enter a 0 or a 1. (See

KEY1 'ORDER, above.)

NOTE: Sequential files contain only ASCII data. For that reason, when yousort sequential files you do not have to specify the data type of the sortkeys; BASORT knows that alt keys in a sequential file, are strings.

2.2.2.1 An Example of Using BASORT on a Sequential File
The following is the contents of an unsorted sequential file that we want tosort. Pretend this time that we are cartographers, making a map of a newsuburb just being built. We want to compile an alphabetic index of alt theStreet names laid out and defined so far, but then we want to compile analphabetic list of the streets to the north of town center only, then one ofthe streets to the east, and so on for the streets to the south and west.
We use a sequentiaL file for this data because as new streets are laid outand named, we can later add those to our sequential file and then resort thefile for future maps.

We have gathered the existing street names and their relative positions fromcity DIans. The file we have put the unsorted ljst of alt the streets In iscatted STREET.DAT. The extension, .DAT, indicates to us that this is theraw data file.

We want to record the sorted, alphabetic, list of all the streets in a filecatted STREET.LST. The Street names sorted, acco.rdiag to ditectlon we'llplace in a file called ENSW.LST.

We choose an extension of .LST to remind' us that these are files we canprint when we want to.

Here is the list of street names and directions we've gathered from cityplans:

BASORT — XCALL SUBROUTINE FOR SORTING PILES Page 2—8

Sinbad St. N
John Silver Rd. W
Marco Polo Ave. E
Robinson Crusoe Dr. S
Nimrod Cr.
William Tell In. W
Achilles Dr. W
Pontiac Ln. N
Fremont St. E
Kubtai Khan Cr. S
Constantine Rd. W
Sancho Panza Cr. E
Balboa Dr. N
John Carter In. N
Homer Ave. E
William Taft Ave. S
Edward Teach St. E
Cisco Kid Rd. S

Michael Fink Dr. N
Herman Melville In. V

The first thing we need to do Is Load AMSORT.SYS (and FLTCNV.PRG for an AMOS
system) in user memory. We do that at AMOS or AMOS/I command Level., this
way:

.LOAD DSKO:AMSORT.SYSE1,4] f or .LOAD DSKO:AMSORT.5y5(1,4) @J
L0A0 DSK0:FLTCNV.PRGCI,4) tEID

Now we create the AIphaBASIC program. The first thing we have to remember
to do is open the file channel for the file that we want to sort, and two
more file channels and files where we want to put the sorted data into. (We
could name the same file in both Lines 110 and 120 or 110 and 130 below to
write one of the sorted files right over the original, unsorted data.) Our
program might took like this:

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—9

10 ! SAMPLE PROGRAM TO SORT SMALL SEQUENTIaL DATA FILE

100 START:
110 OPEN #1,"STREET.DAT",INpur
115 OPEN #2,'STREET.LST",ijyptj
120 OPEN #3,"ENSw.LST",tJipaj
125 PRINT "Now sorting alt streets alphabetically."
130 XCALL BASORT,1 ,2,50,25,1 ,O,1 ,33,O,O,O,0
135 CLOSE #1
140 PRINT "Now sorting according to direction from town center."
145 OPEN #1,"STREET.DAT",pjjy
150 XCALL BASORT,1,3,50,1 ,33,O,25,1 ,0,0,0,O
155 PRINT "kIt done. See STREET.LST: and ENSW.LST for sorted files,"
200 CLOSE #1
210 CLOSE #2
220 CLOSE #3
230 END

Line 110 opens file channeL #1 and the file calls STREET.DAT for input.
Line 115 opens file channel #2 and the file catted STREET,LST for output.
Line 120 opens file channel #3 for output also.

Line 130 performs the first XCALL BASORT subroutine. Immediately following
the word BASORT and the delimiting comma, we indicate the file channel open
for input. Then we Indicate the output tile channeL, 2, where we want the
file sorted the first way.

Note that in the unsorted file above, a record (the data of a single Street
name) is confined to one tine. That makes it easy to judge the approximate
size of the longest record. So, being Liberal, we round it up to a
record—size of 50,

The size of key #1 is never more than 25 bytes In size, so next on the XCALL
BASORT line we enter a 25. The position of Key #1 Is the first byte in the
record (column 1, as it happens), so we enter a 1. Next, we must specify a
o or a 1 to flag whether we want to sort Key #1 in ascending or descending
order. Our street index is alphabetically ordered, (starting at A and
ending at 1), so we enter a 0 here to choose ascending order.

Key #2 is our direction, N, 5, E or W. The size of Key #2 in this case is
always 1. The position of Key #2 in our file STREET.DAT is column (or
record byte number) 33. We don't realty care whether our directions are
ascending or descending yet, but we'll enter a 0 to indicate ascending
order.

We don't have a Key #3, so we specify Key #3 size, position and order as 0,
0, and 0 respectively.

Note that we do not specify the data type of keys #1, #2 and #3 for a
sequential file because they are always ASCII data, which BASORT knows.

After line 130 is executed, the file STRIET.,LST is created and the data in
STREET.DAT is rewritten in alphabetical order. Ltnes 135 and 145 are in the
program to close, then reopen file channeL #1 and the file STREET.DAT. If
those two lines are omitted, the new file ENSW.L$T, though created, would be

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—10

empty because no further data would be found in the file STREET.DAT.These two tines cause the BASORT subroutine to took at the beginning of thefile, rather than the end.

Achilles Dr.
Balboa Dr.
Cisco Kid Rd.
Constantine Rd.
Edward Teach St.
Fremont St.
Herman Melville In.
Homer Ave.
John Carter In.
John Silver Rd.
Kubtai Khan Cr.
Marco Polo Ave.
Michael Fink Dr.
Nimrod Cr.
Pontiac In.
Robinson Crusoe Dr.
Sancho Panza Cr.
Sinbad St.
William Taft Ave.
William Tell In.

W
N

$

W

E

E

W
F

N

W

$

E

N

S

N

$

F

ie in the AIphaBASIC program.
line 130) because we are now
3 Key #1 and the street name

t size, so on the XCALL BASORT
mg the subroutine name, we
ty third byte (column 33), so

P to flag whether we want to
ASCII sequence puts F first,

e'll enter a 0 here.

the size of Key #2 in this
or record byte number) 1. We
rection groups alphabetically

y #3 size, position and order

The program

4treets, contained in the file

The file
location
like this

Line 150 is the second XCALL BASORT program lii
This line is different than the first C

specifying the direction byte (N. 5, E or W) a
as Key #2.

The size of key #1 is always just 1 byte ii
program line after the delimiting comma follow'
enter a 1. The position of Key #1 is the thu
we next enter a 33. We must specify a 0 or a
sort Key #1 In ascending or descending order.
then N, then S and W, which is fine with us. i

Key #2 this time is the Street name. That Is,
case is 25. The position of Key #2 is column I

want the street names within the four d
ordered, so we specify ascending order, or 0.

Again, we don't have a Key #3, so we specify K
as 0, 0, and 0 respectively.

lines 200, 210 and 220 close our input and two ioutput files.
prints us a reminder of the file names, then erds.

STREET.IST, the sorted version of all the
STREET.LST, would appear like this;

N

S

W

FNSW.LST, which is the streets first sorted according to their
relative to town center, then sorted alphabetically, would appear

BASORT — XCALL SUBROUTINE FOR SORTING FILES Page 2—11

Edward Teach St. E
Fremont St. E
Homer Ave.
Marco Polo Ave. £
Sancho Panza Cr. I
Balboa Dr. N
John Carter Ln. N
Michael Fink Dr. N
Pontiac In. N
Sinbad St. N
Cisco Kid Rd. S
Kubtai Khan Cr. $
Nimrod Cr. S

Robinson Crusoe Dr. S
William Taft Ave. S
Achilles Dr. W
Constantine Rd.
Friday Dr. V
Herman Melville In. V
John Silver Rd. V
William Tell In. V

Remember, if you choose not to assign a third key, or perhaps even a second
key, you still must place zeros in the size, position and order variables of
the keys you omit.

2.3 BASORT ERROR MESSAGES

?AMSORT.sys not found in memory
The sort utiLity routine, AMSORT.SY$, must be Loaded into user or
system memory before catting BASORT.SBR.

?Bad channel nunber in XCALL BASORT
The channel number you passed to BASORT was invalid. This error canoccur if the file is not open, or if the value given as channel is notan integer.

?File improperly open in XCALL BASORT
When you call. BASORT, the file you wish to sort must be open for INPUT
or RANDOM processing.

?FLTCNV.pRG not found in memory
an AMOS system, the floating—point conversion module, FLTCNV.PRG,

must be loaded into user or system memory before catting BASORT.SBR.

?Iltegat value In XCALL BASORT
One of the arguments to the BASORT call was invalid. Check the keysizes and positions to make sure they fit into the record size whichyou specified. Also make sure that you have given valid key types.

?Read file error in XCALL BASORT
An error occurred during a read operation while sorting your fite.

BASORT — XCALL SUBROUTINE FOR SORTING FILES
Page 2—12

?Wrjte file error in XCALt. BASORT
An error occurred during a write operation white toning your file.

?Wrong record size in XCALL BASORT
The record size you spectried when catting BASORt does not match therecord size you specified when you OPENed the fite.

2.4 SUMMARy

BASGRT can sort both random and sequential fites, whether or not those fitescan fit entirety into user memory. The data to be sorted must atready be ina format where the BASORT execution tine within an AtphaeASxc program canspecify the position and size of up to three sort keys. The data can besorted in ascending or descending order, each key being independent of theothers.

Because BASORT combines, as needed, two sort techniques catted amemory—based heap sort and a disk—based potyphase merge—sort, it is arelatively fast sort utility subroutine.

CHAPTER 3

COMMON — XCALL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE

COMMON is an external subroutine that allows you to place data into a common
storage area of either user memory or system memory. The data can be

numeric variables or string variables of up to 150 bytes In length.

When this data Is in user memory, It may be accessed by separate AIphaBASIC
programs, as when chaining from one program to a second that requires

variable information defined In the first program. When it Is in user

memory, the data is only common to programs run by the particular job that

placed them in memory.

When in system memory, this common data can be used to>pass messages between
jobs, or for any other function that requires, a data area that is accessible

to more than one person.

The common data is placed in either user or system memory via an AIphaBASIC

program. The idea is to assign a name to one or several packets of data,

which can later, and at various times, be retrieved by other AlphaBASIC
programs. The AIphaBASIC program assigns a name to a packet of data by

using the BASIC keyword XCALL and then the name of the external subroutine.
COMMON. On the same line the AlphaBASIC program must indicate whether it Is

sending a variable to or retrieving a variable from user or system memory.

Following that, on the same line, the program must give either a string

variable or a string literal (the name must be six characters or fewer) to

be the name of the data packet. FinaLly,, stilt, on the same line, the name

of the numeric or string variable containing the data of the packet (which

can be up to 150 bytes In length) Is specified.

3.1 LOADING COMMON INTO USER OR SYSTEM MEMORY

To insure proper results, you must toad the COMMON subroutine Into memory
before you use it from within an AIphaBASIC program.

You may load COMMON into either system or user memory. If you load COMMON
into a user's memory partition, only that user can access the data stored by
COMMON. If you load COMMON Into system memory (making the data accessible
to all users), be sure that you assign a unique name for each packet of

data.

DSS—10008—OO REV A®

COMMON XCALL. SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 3—2

To toad COMMON into user memory, enter either of the tot lowing from AMOS orAMOS/I command level:

.LOAD DSKO:COMM0N.seftc7,o, lED
*

or

.LOAD BAS:COMMON.$BR @jJ

(BAS: is the ersatz name for ppn C7,63 of the system disk). After you seethe AMOS or AMOS/I prompt, you may run an AlphaBA$IC program that uses theCOMMON subroutine.

To toad COMMON.s$R into system memory, you must have a tine in your systemInitiaLization file that performs that function. For more Information onLoading subroutines into system memory during system boot—up, see the AMOSSystem Operator's Guide, DSS—10001—OO, or the AMOS/I System OperatorsGuide, DSS—10002—tJIJ.

3.2 USING COMMON FROM WITHIN AN AIPHABASIC PROGRAM

There are two things that the AIphaBASIC program itself must accomplish Inorder to use the COMMON subroutine. The program must define certainvariables that COMMON will use, and it must contain an XCALL command tineusing the name COMMON and certain parameter specifications.

3.2.1 Defining Variables

To use COMMON from within an AIphaBASIC program, you must first definecertain binary variables that tell COMMON to send a packet to memory or toreceive one from memory; and, if set to receive, to set a flag if the packetIs in fact received.

You define these binary variables by using MAP statements. MAP statementsare discussed at tength in Chapter 8, "Memory Mapping System," of theAIphaBASIC User's Manual, DWM—OQ100—o1. (The MAP statements you see belowwilt be sufficient for alt but the most exotic programs using COMMON.)

To send a packet of data to common memory, you must define a variable (we'lLcatl it SEND), which must appear in the XCAU. COMMON program tine when youare sending, as:

MAPI SEND,B,1,o

This one—byte binary variable always contains zero (the flag telling COMMONto send).

To receive a packet of data from common memory, you must define a two—bytebinary variable (we'll call it RECEIVE) which must appear in the XCAILCOMMON program line when you are receiving, to communicate two pieces ofinformation to COMMON. The first byte must be a 1, which Is the flag to

DSS—10008-.OO REV AGO

COMMON — XCALL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 3—3

COMMON that you are going to receive a packet frommemory (we'U name thatbyte FRCV). The second byte (which we'Ll calL RCVFLG) is a flag you cantest after the XCALL COMMON subroutine is executed to see of you did In fact
receive the packet. That two—byte binary variabLe, is defined Like this:

MAP1 RECEIVE
MAP2 F'RCV,B,l,l
MAP2 RCVFLG,B,1,O

Again, F'RCV always contains a one (the flag telling COMMON to receive).
RCVFLG functions as a flag to indicate whether or not COMMON finds the
requested packet of information. If COMMON does not find that packet, It
wilt return a zero in this byte; otherwise It is non—zero.

3.2.2 The XCALL. COMMON Command Line

You call COMMON to send data to the common area via:

XCALL.

You call COMMON to receive data from the common area via;

XCALL COMMON, RECEIVE,"MSGNAM', INFQ

Where:

SEND A one—byte bInary variable that cqntains., zero.

RECEIVE A two—byte binary variable, wher& the first byte must be set
to one, and the second byte functions as a flag that
indicates whether or not COMMON found the requested packet of
information. If COMMON did 'not find that packet, it returns
a zero in this byte; otherwise it Is non—zero.

IMPORTANT NOTE: Once you use COMMON to retrieve a data
packet, that data packet Is äone from memory, and cannot be
read again.

"MSGNAM" A string containing from one to SIX characters that specifies
the name of the packet to be sent: or received. Note that a
string literal must be enclosed in quotation marks. COMMON
also can handle a string variabLe here (e.g., XCALL
COMMON,SEND,PACKET,INFO). A stelng variable, of course,
must be defined earlier in the program.

INFO The variable to hoLd the data to be sent or received. The
variable must represent déta that is less than 151 bytes
long.

If you load COMMON Into system memory (making the data accessible to all
users), be sure the 1— to 6—character name ii unique for each packet.

DSS—10008—OQ REV ADO

COPMON). CALL SUBROUTINE. TO PROVIDE COMMON VARIABLE STORAGE.

Let S create a pa r of eLementarY
phaBAS'IC drbgC.ams and ptstuser memory, then retrieve it We assume that after you writethese orograms, you wi I I Load the COMMON subrout inc into userrunning, them, as we discussed in Section 3i above

'i'n send a data packet to common memo-rI, you may use a routinC'
10 MAlL 5ENO,B,1'Q
20 eAPI INFO,5,150
30 MAP1 PACKET,5,6
100 INPUT "Enter messayC (maximum

'0 'MELT Now Cnter name "t oatd
120 XCALL COMMON,SE:N0, cKET, INFO
1 30

Page 3'4

END

inc 10: defines the binary variable SEND as a zero Line 20 defines theva.riahL "iNFO"' as .a string variabLe up to 150 characters in Length (the
max imuT COMMON can handLe) , Line 30 defines a string variable cal led
PACKET, which can he up to six., characters' in ength Line 100. accepts a.vaLu.ear a.ssi gns it to the variable INFO, which wiLL make up the data inthefl packet y-ou' IL store i.n common memo'rY Line 110 accepts an input strinPthat cc omes the 'name of the packet Line: 120 'begins with the BASIC keywOrcL "h meor tnr or ooram s go'n access on exter "as.u'brout i nes' on the: system COMMON 5 the name of the specific subrout inc tohe acce ssed SEND is the variable name for the hinprY byt.e that, because i'tisa 0, teL Is COMMON to write into common memory PACKET' is the stringvariabLe lust. entered that, names the speci''ti.c packet, because several can be
placed in memory via COMMON at one time FinaLLy, the value of the varia.h
iNFO, from Line 00, is placed in ccmmOn methoty .under the name c:efined as'.PACKET Then, of course, the progr'am ends in. Lihe i3O When the program' i5run, at this coint the packet is in common' memorY

packet under the n.ame you i,np.ut (defined as t, he
which is now residing in .commOn rnemory, you mayf0owing

MAP1. R EC'EIVE:
20 MAP? rpr'g ,B,i ,'
'Mi BAP2 RCVFLS,B,7 ,0
4'O MAP1 R'ETRltVE,5t10
50 MA P'l PACKET,5,6
100 INPUT "Enter name of data packet ,PACKE
11.0 y,CA'LL .COMMON,RECEI,CT,
120 iF P,CVFLLLO PRiNT "Message' not found" &

ELSE PRINT "Message is: ";,RETRIEVE

oSS'i ooos-4)0 REV P00

a leveL 1 MAP statement * The
when the variable RECEIVE is'

Lines 20 and 30 are oatcahty

3,3 AN EXAMPLE OF COMMON

a pac
and:

memor

ket into
comoi Le

y before

Like tis:

of 150 characters): " ,INF'O
packet (up to 6 character

To retrieve the
variah PA,CKE'),
routine Like the

s•t r i ng
use a

130 END

Lin.e 10 of' the retrievinl program is
subsequent MAP? statements pertain, to it;
Looked at, the associated .nformatlon in
ac;.:c;.ePtei as weLL

COMMON — XCALL SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 3—5

Line 20 defines the binary variable F'RCV as a one, which later will, tellCOMMON to receive, rather than send. Line 30 contains RCVFLG, anotherbinary byte. This one can be tested by the program foLlowing the XCALL tothe COMMON subroutine. If this binary variable equals, zero, the program candetermine that for some reason COMMON did not find the designated packet. Anon—zero means it did find it,

Line 40 defines RETRIEVE as a string variable of up to 150 characters In
I eng t h.

Line 50 defInes PACKET as a string variable of up to six characters InLength.

Line 100 asks the program user fGr the name of the packet in common memory
that he or she wants to retrieve.

Line 110 begins with the BASIC keyword XCALL, which means the program isgoing to access one of the external subroutines on the system. COMMON is
the name of the specific subroutine to be accessed. RECEIVE is the variable
name for the binary byte that, because it is a 1, tells COMMON to find adata packet in common memory. PACKET is the string variable that takes the
string the user enters at tine 100 and uses it to name the specific packetthat COMMON is to find (ignoring any others that may be• in memory).
Finally, the variable RETRIEVE is assigned the value of the data found In
that packet.

Line 120 tests the binary flag to see if the packet was found and displays
the appropriate message on your terminal. If the packet is found, its
contents are displayed also, Then the program ends.

Sample runs of the sample programs above could be:

.RUN FIRST @F
!'nter message (maximum of 150 characters): TEMPUS FUGIT! tED
Now enter name of data packet (up to 6 characters): MESAGI (ED

and:

.RUN SECOND ø!D
tnter name of data packet: MESAGI
Message is: TEMPUS FUGIT!

When running the second program above, if you were to enter a message name
that does not represent a packet in common memory, you would see the messagefrom tine 120 of the program saying, "Message not found."

055—10008—00 REV A00

COMMON — XCALI. SUBROUTINE TO PROVIDE COMMON VARIABLE STORAGE Page 3—6

3.4 SUMMARY

COMMON is an external subroutine that aLlows you to pLace data into a commonstorage area in memory. This is useful for passing data between chainedprograms, passing messages between jobs, or any other function that requiresa data area accessibLe to more than one program or person. By assigning aname to each packet of information within the common area, you can haveseveral, of these packets in common storage ready to be retrieved by other
users or programs at various times.

DSS-10008—QO REV A®

a

CHAPTER 4

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS

The name FLOCK is an acronym for "File Locking." FlACK is an external

subroutine that is callable from AIphaBASLC, end is used in a program that

accesses files when it is necessary to protect a file or files from

concurrent access by another user. In otterwords, FLOCK prevents one user
from accessing information that another user is updating at the sante time.

Below we describe in some detail the potential problems of multi—user file

access. Then, afterward, we detail how you can use FLOCK froman AtphaBASIC

program to coordinate shared file access end processing, and otter you some
schemes to implement FLOCK In your AIphaBASyIC programs. Finally, we discuss

the hazards of "Deadlock," and how FLOCK conquers that too.

4.1 THE MULTIPLE UPDATE PROBLEM

Consider the following program:

10 OPEN #1,"FILE",RANDOM,6,KEY
20 KEY 1

30 READ #1,ONE
40 ONE = ONE + 1

50 WRITE #1,ONE
60 CLOSE #1
70 END

The purpose of this program is to lncr:ement record1 of 'FILE' by one. If
two users execute this program concurrently, wewtsh the vaLue in record one
to be Incremented by two, thus:

DSS—10008—0O REV A0O

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—2

ONE USER #1 REC #1 USER #2 ONE

— OPEN #1,'FILE",RANDOM,6,KEY 5
— KEYI 5
5 READ #1,ONE 5

6 ONESONE+1 5
6 WRITE #1,ONE 6
6 CLOSE #1 6
6 END 6

6 OPEN #1,'FILE",RANDOM,6,KEY
6 KEY = I
6 READ#1oNE 6
6 ONEONE+1 7

7 WRITE #1,ONE 7

7 CLOSE #1 7
7 END 7

—---—— ——-—— —_-——-
NOTE: In this exampte, the vetuein, record I is tnttlatty 5.

However, irder some circumstances it is possibLe for record 1 to be
incremented by onLy 1, rather than 2, after being accessed by two users
concurrently:

ONE USER #1 REC #1 uSER 42 ONE
——---—-—- ___________________

— OPEN #17F1LE",RANDOM,6,KEY 5
— KEY=l S

5 READ #1,ONE 5
5 5 OPEN #1,'FILE'5RANDOM,6,KEY
5 5 KEY 1:

5 5 READ #1,ONE 5
5 5 ONE S:ONE:+I 6
5 6 WRITE #I,ONE 6
5 6 CLOSt:#1 6
5 6 END 6
6 ONE=ONE+1 6
6 WRITE #1,ONE 6
6 CLOSE #1 6
6 END 6

To prevent mutt ipte update problems from occurringp we need some method to
prevent the kind of overlap in READ—modify—WRIIt sequences on %hared data
that is illustrated above.

DSS—10008—OO REV A®

a

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—3

4.2 THE INTERCONSISTENCY PROBLEM

Consider the following two programs:

10 OPEN #1/'FILE",RANDOM,6.KEY
20 KEY = I : READ #1,ONE
25 ONE = ONE + I : WRITE #1,ONE
30 KEY = 2 : READ #1,ONE
35 ONE = ONE+1 : WRITE #1,ONE
40 CLOSE #1 : END

10 OPEN #1,"FILE",RANDOM,ó,KEY
20 KEY = 1 : READ #1,ONE
30 KEY = 2 : READ #2,TWO
40 PRINT ONE — TWO

50 CLOSE #1 : END

If the vaLues in records one and two of 'FILE' are identical, then they

should continue to be identical if the first program (which increments the

values In both records by one) is executed. Hence, if the values in records

one and two are identical, and we execute both of the above programs
concurrently, we wouLd Like the second program to print zero, thus:

ONE USER #1 REC #1 #2 USER #2 ONE TWO

— OPEN #1,"FILE',RANDON,6,KEY 5 5

5 KEY = 1 : READ #1,ONE 5 5

6 ONE = ONE + 1 : WRITE #1,ONE 6 5

5 KEY 2 READ #1,ONE 6 5

6 ONE z ONE + 1 : WRITE #1,ONE 6 6

6 CLOSE#1 : END 6 6
6 6 OPEN #1,'FILE",RANDOM.6,KEY — —

6 6 KEY = 1 : READ #1,ONE 6 —

6 6 KEY = 2 : READ #1,TWO 6 6

6 6 PRINT ONE — TWO 6 6

0

— 6 6tLOSE#1:END 66

DSS—10008—00 REV A00

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI:_USER FILE ACCESS Page 4—4

However, under some circirstances it is possible 4cr the second program to
print 1, rather than 0:

ONE USER #1 REC #1 #2 USER #2 ONE TWO

— OPEN #1,"FILE',RANDOM,6,KEY 5 5

5 KEY = 1 : READ #1,ONE 5 5
6 ONE = ONE + I : WRITE #1,ONE 6 5

6 6 5 OPEN #I,"rIu",RANDeM,6,KEY — —

6 6 5 KEY = 1 : READ #I,ONE 6 —
6 6 5 KEY = 2 READ #1,TWO 6 5
6 6 5 PRINT ONE—TWO 6 5

1

6 6 5 &OSI#1:END 6 5
5 KEY = 2 : READ #1,ONE 6 5

6 ONE = ONE + I : WRITE #1,ONE 6 6
6 CLOSE#1 :END 6 6

The READ—WRjTE—READ—wRzT sequence in the first program can be considered as
steps in a single update operation. To maintain interconsistency—— that is,
to eliminate the situation outlined above—— we need a mechanism to prevent
access to a collection of data during any update operation. Otherwise, the
collection of data we retrieve may be only partially updated, due to
interference from another program which has concurrently accessed that data.

In actual applications, the loss of interconsistency described above can
cause you to access nonexistent records through a faulty index tile, to
derive incorrect totals on reports, to create inconsistent reports, and so
forth.

4.3 THE FLOCK SUBROUTINE

FLOCK exists to prevent muLtiple update problems, Interconsistency flaws,
and other file access hazards that may occur If you are not the only user on
your system. FLOCK provides a way to synchronize attempts at accessing
files and devices so that you and the other users can avoid partiatly
updating or scrambling data.

4.3.1 FLOCK Program Requirements

FLOCK only functions properly if it is loaded into system memory. FLOCK
resides in account DSKO:C7,6], and has a .SBR extension. If you have an
AMOS system, rather than an AMOS/L system, FLOCK also requires that you have
FLTCNV.PRG in system memory. FLTCNV.PRG resides in account DSKO:C1,4].

IMPORTANT NOTE: You must load FLOCK into system memory only; it wilt appear
to work if you toad it into user memory, but no file locking wilt actually
occur.

4&

Mt

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—5

To toad FLOCK.$BR (and FLTCNV.PRG for an AMOS system) Into system memory,
you must have tineè in your system initiaLization command fiLe that perform

those functions. For more information on Loading subroutines into system

memory during system boot—up, see the AMOS System Oeerator's Guide,

DSS—1000100, or the AMO$/L System Operator's 6ude, DSS—10002OO.

4.3.2 FLOCK Catting Sequence

The catting sequence for FLOCK in AIphBASIC is:

XC*LL FLOCK,ACTION,MODE,RETURN.CODE,FILE,RECO

Where:

1. Action, Mode, File, and Record are all either fLoating point

expressions which evaLuate to positive integer values, or string

expressions which represent positive Integer values.

2. Return—Code is a 6—byte fLoating point variable.

4.3.2.1 Action & Mode

Action, modified by mode, specifies the anion to be performed by FLOCK. A

quick—reference summary of the actions and their modes Is in SectIon 4.6.1.

The actions, and their modes:

Action 0, Mode 0: Requests permission to open Fite' for non—exclusive use

(that is, other users can access the fiLe). The request

is pLaced in a first—come—first—served queue and the

program is delayed untiL the request can be granted.

Action 0, Mode 2; Requests permission to open 'FILe' for exclusive use.

The request is pLaced In a first—come—f irstserved queue
and the program is deLayed untiL the request can be

granted.

Action 0, Mode 4: Requests permission to open 'File' for non—excLusive

use. If the request cannot be immediately granted,
Return—Code 1 is returned.

Action 0, Mode 6: Requests permission to open 'FiLe' for excLusive use.

If the request cannot be Immediately granted,

Return—Code 1 is returned.

Action 1, Mode 0: Informs FLOCK that 'FiLe' has been cLosed. Unlocks the

file. Implicitly informs FLOCK that any processing of
records in 'Fite' has been completed (i.e., Actions S or
6 are performed automatically as necessary).

055—10008—00 REV *00

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—6

Action 2, Mode 0: Informs FLOCK that abnormal Øtogran(termltiation Is about
to occur (e.g., during at error handtlPg routine).
Releases alt locks on alt fites by performing Action 1
as necessary.

Action 3, Mode 0: Requests permission to read 'Record' of 'File' for
non—exclusive use (i.e., record wilt not be used to
update file). Permission to open 'File' must already be
granted. The request is placed In a

first—come—f trst—servect queue and the program Is delayed
until the request can be granted.

Action 3, Mode 2: Requests permission to read 'Record' of 'File' for
exclusive use (i.e., record wilt be used to update
file). Permission to open 'File' must already be
granted. The request Is placed in a

first—come—first—served queue and the program is delayed
until the request can be granted.

Action 3, Mode 4: Requests permission to read 'Record' of 'File' for
non—exclusive use (i.e., record will not be used to
update file). Permission to open 'Flle must already be
granted. If the request cannot be immediateLy granted,
Return—Code I is returned.

Action 3, Mode 6: Requests permission toteS 'ReGord' of 'File' for
exclusive use (I.e., reccird wiLL be used to update
tile). Permission to open 'File' must already be
granted. If the request cannot be immediately granted,
Return—Code I Is returned.

Action 4, Mode 2: Requests permission to read/write alt records of 'File'
for exclusive use (i.e., processing wilt update and
possibly re—create file). Permission to open 'File'
must already be granted. Th rEquest is placed in a
first—came—first—served queue and the program Is delayed
until the request can be granted.

Action 4, Mode 6: Requests permission to read/write alt records of 'File'
for exclusive use (I.e., processing wilt update and
possibly re—create file). Permission to open 'File'
must already be granted. If the request cannot be
immediately granted, Return—Code 1 is returned.

Action 5, Mode 0: Informs FLOCK that processing of 'Record' of 'File', for
which permission was granted by Action 3, has been
completed. The record is unlocked. If data has been
buffered for output, it is written to "disk.

DSS—10008—O0 REV AO0

*

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—7

Action 6, Mode 0; Informs FLOCK that exclusive processing of 'File', for

which permission was granted by Action 4, has been

completed. The file is unlocked. Any succeeding

programs which are granted use of 'File' by Actions 3 or

4 wilt, automatically reopen 'File'. This Is done in

case exclusive processingof 'File' has caused It to be

re—created. If data has been buffered for output, it Is

written to disk.

4.3.2.2 FIle

File specifies a file—channel number. File is Ignored by Action 2 and may

be omitted If 'Record' is also omitted. The file specified may be either

RANDOM or SEQUENTIAL for Actions 0 and 1, but must be a RANDOM file for alt,

other actions.

IMPORTANT NOTE: In order for FLOCK to function properly, file—channel

numbers should denote specific and unique files. This means you must

systematically assign file—channel numbers to your files when designing

applications programs, being careful to assign the same numbers to the same

files and different numbers to different files.

File—channel numbers I through 999 have been reserved for use by Alpha Micro

software. Although there Is nothing to prevent your programs from using

these numbers, we advise you not to do so in conjunction with FLOCK so that

no conflict can arise between your appti:catton programs and any present or

future Alpha Micro software on your system.

4.3.2.3 Record

Record specifies a logical record number. For Actions 0 through 2, 4, and

6, record is ignored and may be omitted.

4.3.2.4 Return—Code

Return—Code denotes a variable in which FLOCK places a number that indicates
the success or failure of an action:

Code 0: Successful (All actions)
Code 1: Resource unavailable (Actions 0, 3, 4)
Code 2: Open request has already been granted (Action 0)
Code 3: Permission to open must first be granted (Actions 1, 3—6)
Code 4: Duplicate request for use of some record in file (Actions 3, 4)

Code 6: Permission to use some record in tile must first be granted

(Actions 5, 6)
Code 100: Unimplemented Action
Code 101: File—channel number is not open in AlphaBASIC for RANDOM

processing (Actions 3—6)

DSS—10008—0O REV A0O

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—8

Code 102: File—channel is already open in AtphaBA$ICt, for an ISN't indexed
file.

Code 103: For actions 0, 3 and 4: Less than 15:queue blocks are available.

A Return—Code greater than I is an indication of some programming error.
For calls to FLOCK which do not use modes 4 or 6, you should use the
following statement while debugging your program:

IF Return—Codni THEN PRINT "FLOCK Error" : STOP

For calls which use modes 4 or 6, Return—Code = 1 should be checked to
determine if FLOCK was able to immediately satisfy the request. Modes 4 and
6 are generally used in this way to allow the user to cancel a request which
may involve a lengthy delay.

4.3.3 Queue Block Requirements

The FLOCK subroutine builds Its dynamic tables out of monitor queue blocks.
The monitor queue is a list of blocks of system memory which are Linked to
each other in a forward chain. It is very important, before running any
AlphaBASiC program using FLOCK, to ensure that the monitor is configured to
make an adequate number of these queue blocks available. The number of
queue blocks FLOCK uses varies with the number of jobs accessing files, the
number of files open at one time, and the number of records open for each
file. Currently, at any given moment during the useof FLOCK, the number of
queue blocks being used equals:

twice the number of different files open using FLOCK, plus
the number of different records open using FLOCK, plus
the number of jobs with files open using FLOCK, plus
the total number of FLOCK opens (i.e., number of Action Os)

that haven't been closed, plus
the total number of record uses (i.e., number of Action 3s)

that haven't been released

(The last two factors of this equation anticipate circumstances
where the same file and/or the same record.. is being accessed by
more than one job at a time. If two jobs are reading the same
file, that is two opens or two Action Os.)

NOTE: If FLOCK changes in the future, the above formula may also require
modification.

The monitor is initially generated with 20 free blocks in the available
queue. You may modify the system initialization command file to allocate
more queue blocks by adding the "QUEUE nnn" command anywhere in the system
initialization command file prior to the final SYSTEM command. When the
QUEUE nnn command is executed, "nnn" more queue blocks will be allocated for
general use. For more information on modifying the system initialization
command file, see the AMOS System Operator's Guide, DSS—10001—O0, or the
AMOS/L System Operator's Guide, DSS—10002—0O.

DSS—10008—OO REV AQO

*

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4-9

NOTE: You may use the QUEUE command at monitor level to determine your

system's use of queue blocks. The system will respond with the current
number of free queue blocks in the available queue list. For example:

.QUEUE @D
70 Queue blocks available

4.4 USING FLOCK

There are three levels of increasing complexity with which FLOCK subroutine

cat Is may be Incorporated Into a program system:

1. Use Actions 0 through 2 to implement file—open interlocks (see
Section 4.2.1).

2. Use Actions 0 through 2 to implement file—open interlocks and use

Actions 3 and S to implement individual record—update interlocks
(see Section 4.2.2).

3. Use Actions 0 through 2, 4, and 6 to implement complete file

interlocks and use Actions 3 and 5, to implement' individual

record—processing interlocks (see Section 4.2.3).

The problems outlined in Sections 4.1.2 and 4.1.3 can be solved by using

FLOCK to any of the above levels of complexity. in your design you are free
to trade off complexity for performance, so tong as you use a single level

of complexity consistently for any given data file.

4.4.1 File—Open Interlocks

Using just Actions 0 through 2, it is possible to implement a very simple
file access coordination scheme which solves the problems of Sections 4.1.2
and 4.1.3. Action 0, Mode 0 or 4, Is used before opening a file for input

only (that is, opening a file for RANDOM processing, upon which only READS
wilt be performed). Action 0, Mode 2 or 6, is used before opening a file

for output (e.g., a file open for RANDOM processing, upon which READs or
WRITEs wilt be performed, or a file which may be re—created). Finally,
Action 1 is used after closing any file, and Action 2 is used before any
abnormal termination points in the program.

4.4.1.1 The Multiple Update Problem

Here is how the program of Section 4.1.2 can be rewritten to incorporate
file—open inter locks:

DSS—10008—O0 REV A00

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—10

10 XCALL FLOCK,O,2,RET,1000
20 OPEN #1000,"FILE",RANDON,o,KEY
30 KEY I
40 READ #1000,ONE
50 ONE = ONE + 1

60 WRITE #1000,ONE
70 CLOSE #1000
80 XCALL FLOCK,1,0,RET,1000
90 END

The program now will function correctly in a concurrent environment. If any
other programs have 'FILE' open when tine 10 is executed (and have correctly
informed FLOCK of the fact with Action 0), FLOCK wiLt make the above program
wait tmtit the other program closes 'FILE'. Furthermore, no more programs
wiLt be allowed to open 'FILE' until the above proqram reaches tine 80.

The above program has no provisions for the user typing Ac, or for other
errors occurring which wilt abort execution. This can be corrected by
further rewriting the program, as follows:

5 ON ERROR GOTO ABORT
10 XCALL FLOCK,O,2,RET,1000
20 OPEN #1000,"FILE",RANDOM,6,KEY
30 KEYI
40 READ #1000,ONE
50 ONEONE+1
60 WRITE #1000,ONE
70 CLOSE #1000
80 XCALL FLOCK,1,0,RET,I000
90 END
100 ABORT:
110 XCALL FLOCK,2,O,RET
120 ON ERROR GOTO 0

4.4.1.2 The Interconsistency Problem

Here is how the programs of Section 4.1.3 can be rewritten to incorporate
file—open interlocks. The first program:

DSS—10008—OO REV A0O

4

*

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—11

10 ON ERROR 6010 ABORT

20 XCAt.L FLOCK,O,2,RET,1000

30 OPEN #1000,"FILE",RANDOM,6,KEY
40 KEY = 1 READ #I000,ONE
50 ONE = ONE + 1 : WRITE #1000,ONE

60 KEY = 2 READ #1000,ONE
70 ONE = ONE + 1 : WRITE #1000,ONE
80 CLOSE #1000
90 XCALL FLOCK,1,O,RET,1000
100 END

110 ABORT:
120 XCALL FLOCK,2,0,RET
130 ON ERROR GOTO 0

The second program:

10 ON ERROR GOTO ABORT
20 XCALL FLOCK,O,0,RET,1000
30 OPEN #1000," FILE" ,RANDOM,6,KEY
40 KEY = 1 : READ #1000,ONE

50 KEY = 2 READ #1000,.TWO

60 PRINT ONE — TWO

70 CLOSE #1000
80 XCALL FLOCK,1,O,RET,1000
90 END
100 ABORT:
110 XCALL FLOCK,2,0,RET
120 ON ERROR GOTO 0

The above programs will now function correctly in a concurrent environment.

While the first program is updating 'FILE', no other programs can have

'FILE' open. This prevents the second program from reading 'FILE' when it

is in a partially updated state.

Since the second program does not update 'FILE', it requests permission to

open It using Mode 0 with Action 0. This enables other programs which read

but do not update 'FILE' to open and process 'FILE' simultaneously.

4.4.2 Record—Update Inter locks

Most programs open files when the programs begin, and close those files when

they end. The programs may not actually need the files to be open

throughout execution, but by not repeatedly opening and closing the flies,

the programs avoid many undesirable delays.

File—open interlocks that are set lock out the entire file; if a file Is

open throughout the run of a program, and thus unavailable to programs run

by other users, serious or annoying delays can result.

Although file—open interlocks do prevent concurrency problems, they

generally reduce concurrency far more than Is necessary. Typically,

file—open interlocks lock out the entire file to prevent access to the

DSS—10008—OO REV A®

FLOCK — XCALL SUBROUTINE TO COORDDIATE MULTI—USER FILE ACCESS Page 4—12

single record. Locking out an entire file to prevertt access to a single
record is Like using a sledge hammer to drive a: puSh—pin. ALL that is

actually necessary is to deLay any other user otteapting to modify the
record until the usee originalLy accessing the record is done.

Consider an example of application in which you and several other users are
interactively updating an empLoyee record fiLes Assume files are kept open
only where required. Once you display an empLoyee's recotd, it is necessary
that alt the other users wait for you to finish making changes to that
record before they can, In turn, access it; otherwise two users might
concurrently attempt to update the same empLoyee record. This results in

the multipLe update problem described in Section 4.1.2. Zn other words, all
other users must wait for one user to enter changes to the empLoyee's record
before any other user can access and modify that record. This is called a
record—update interLock, and is a far less severe restrittion to alt the
users accessing a file than a tile—open interlock Is. (NOTE: You should
remember, when performing a record—update interlock, that FLOCK converts
Logical record numbers Into physical blocktflunbers. ALL record locking
operations are performed on physicaL blocks, not 'Logicat records. If both
you and another user attempt to Lock two separate Logical records within the
same physical block, you will see the error message "Record already
locked.')

Actions 3 and 5 of FLOCK permit control of concurrent access to individual
records. Action 3, Mode 0 or 4, Is used before reading a sequence of
records which will not be used for updating, in order to prevent
interconsistency errors (see Section 4.1.3) Action 5 is used after the
sequence of reads. Action 3, Mode 2 or 6, Is used before reading records
which will be used tor updating. Action S Is used again after rewriting the
records.

4.4.2.1 The Multiple Update Problem

Here is how the program of SectIon 4.1.2 can be rewritten to incorporate
Record—Update interlocks:

5 ON ERROR 6010 ABORT
10 XCALL FLOCK,O,O,RET,1000
20 OPEN #1000,'FILE",RANDOM,6,KEY
30 KEY=1
40 XCALL FLOCK,3,2,RET,1000,KEY
50 READ #I000,ONE
60 ONEONE+1
70 WRITE #1000,ONE
80 XCALL FLOCK,S,Q,RET,1000,KEY
90 CLOSE #1000
100 XCALL FLOCK,1,O,RET,1000
110 END
120 ABORT;
130 XCALL FLOCK,2,O,RET
140 ON ERROR 6010 0

055—10008—00 REV AGO

*

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—13

4.4.2.2 The Interconsistency Problem

Here is how the programs of SectIon 4.1.3 can be rewritten to incorporate

Record—Update Interlocks:

10 ON ERROR 6010 ABORT
20 XCAt.L FLOCK,.0,O,RET,1000
21 OPEN #1000,"FZLE",RANDOM,6,Kfl
30 KEY1
31 XCAL.L FLOCK,3,2,RET,1000,KEY
32 READ #1000,.ONE : ONE = ONE + I : WRITE #1000,ONE

33 XCALL FLOCK.5,0,RET,1000,KEY
40 KEYZ
41 XCALL FLOCK,3,2,RET,1000,KEY
42 READ #1000,ONE : ONE = ONE + I :. WRITE #1000,ONE
43 XCALL FLOCK,5,0,RET,I000,KEY
50 CLOSE #1000
51 XCALL FLOCK,1,0,RET,1000
60 END
70 ABORT:
71 XCALL FLOCK,2,0,KEY
72 ON ERROR GOTO 0

10 ON ERROR GOTO ABORT
20 XCAt.L FLOCK,0,.0,RET,1000
21 OPEN #l000,.FILE",RANDOM,ó,KEY
30 XCALL FLOCK,3,O,RET,1000,1
31 XCALL FLOCK,3,O,RET,1000,2,
32 KEY = 1 READ #1000,ONE
33 KEY = 2 : READ #1000,TWO
34 XCALL FLOCK,5,0,RET,l000,2
35 XCALL FLOCK,S,O,RET,1000,1
40 PRINT ONE — TWO
50 CLOSE #1000
51 XCALL FLOCK,1,0,RET,1000
60 END

70 ABORT:
71 XCALL FLOCK,2,0,KEY
72 ON ERROR GOTO 0

4.4.3 Improved File interlocks

In Section 4.2.2 we said that file—open interlocks can incur long delays
upon any users trying to access a file after one user has opened it and

therefore Locked them out. Nevertheless, It is sometimes necessary to Lock
an entire file for exclusive use. For example, if file XYZ is becoming
full, you might wish to copy the tile XYZ Into a new, larger file TEMP, and
then delete XYZ and rename TEMP to XYZ. Or, as another example, you might
wish to reorganize an index and data file. Obviously, during these
maneuvers, you want assurance that no other user can access the file.

DSS—10008—00 REV A0O

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—16

Action 4 obtains exclusive access to a file by obtaining exclusive access to
alt the records of that file. Exclusive access is: retinquished by using

Action 6. Action 3, Mode 0 or 6, is necessary before reading a sequence ?
records in order to avoid the interconsistency problem. If Action 4 is

used, it Is necessary to use Action 3, Mode. 0 or 4, before reading
individual records which wont be used for updating. This is because a user
who has exclusive use of a file can re—create It, which requires that alt

other users with the file open must then reopen it. Action 3 performs the
necessary reopenings.

4.4.3.1 Example

Here are two partial programs which itl*estrate the use of Improved file

interlocks:

10 !REORGANIZATION PROGRAM
15 XCALL FLOCK,O,0,RET,1001
20 XCALL FLOCK,O,O,RET,1002
25 OPEN #1001,' INDEX",RANDOM,Sl 2,KEYI
30 OPEN #1002,"DATA",RANDOM,512,KEY2
35 XCALL FLOCK,4,2,RET,IOOI
4(1 XCALL FLOCK,4,Z,RET,IOO2
45 CALL REORGANIZE REORGANIZE INDEXED DATA FILE
50 XCALL FLOCK,6,O,RET,1002
55 XCALL FLOCK,6,O,RET,100I
60 CLOSE #1001 : CLOSE #1002
65 XCALL FLOCK,1,0,RET,1001
70 XCALL FLOCK,1,0,RET,1002
75 END

100 REORGANIZE:
110 REMARK *** SUBROUTINE GOES HERE ***
120 RETURN

DS$—10008—QQ REV AOO

at

p

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—15

10 UNQUIRY PROGRAM
15 XCALL FLOCK,0,0,RET,1001
20 XCALL FLOtK,0,O,RET,1002
25 OPEN #1001 ,"INDEX",RANDOM,512,KEYI
30 OPEN #1002,"DATA",RANDOM,512,KEY2
35 EMPLOYEE'ENTRY:
40 INPUT "EMPLOYEE #",EMPLOYEES
45 IF EMPLOYEES = " THEN LEAVE
50 CALL LOOKUP ILOCATE EMPLOYEES IN INDEX FILE, &

RETURN EMPLOYEE REC# IN KEY2
55 !XCALL FLOCK,O,0,RET,KEYI IS IN EFFECT &

WHEN LOOKUP RETURNS
60 IF KEY2 = 0 THEN ?"EMPLOYEE NOT ON FILE" : GOTO EMPLOYEE'ENTRY

65 XCALL FLOCK,3,4,RET,1002,KEYZ
70 'IFRETOlTHENSS
75 INPUT "DO YOU WISH TO WAIT? ",ANSWERS
80 IF UCS(ANSWER$) <> "C" AND, UCSCANSWERS) C> "YES" &

THEN EMPLOYEE'ENTRY
85 XCALL FLOCK,3,0,RET,1002,KEY2
90 READ #1000,EMPLOYEERECORD
95 XCALL FLOCK,,5,O,RET,1002,KEY2
100 XCALL FLOCIç.5,0,RET,1001,KEYI
105 CALL DISPLAY I DISPLAY EMPLOYEE'RECORD
110 6010 EMPLOYEE'ENTRY
200 LEAVE:
210 CLOSE #1001 : CLOSE #1002
220 XCALL FLOCK,1,O,RET,100I
230 XCALL FLOCK,1,0,RET,IOO2
300 END
400 LOOKUP: REMARK **SUBROUTINE GOES HERE**
499 RETURN
500 DISPLAY: REMARK **SUBROIJTINE GOES HERE**
599 RETURN

4.5 DEADLOCK, AND HOW TO PREVENT IT

NOTE: For the purposes of the following discussion, having permission to
open a file or use a record is referred to as possessing a resource.

The possession of a resource by some job Xvi can directly or indirectly

cause the execution of other jobs to be delayed. It. is then possible for
one of these delayed jobs to possess a resource needed by job Xvi, thus
causing execution of job XYi to be delayed also. This is known as a
DEADLOCK. None of the jobs involved can proceed since each requires a

resource owned by one of the other jobs invoLved. The situation is
permanent because none of the jobs Involved can proceed until one of the

other jobs proceeds and relinquishes a needed resource.

DEADLOCK can only occur if a job requests more than one resource
simultaneously. There is a simple way to prevent DEADLOCK, a method which,
In most cases, is feasible to Implement. The method Is: ALWAYS request
resources in the same order.

DSS—10008—0O REV A00

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—16

Here is a simple illustration of the principle. First w! consider what can

happen if resources are requested in differing order in two programs:

10 IPROGRAM I
20 XCALL FLOCK,0,2,RET,1001
21 XCALL FLOCK,O,2,RET,1002
100 REMARK ** BODY OF PROGRAM **
990 XCALL FLOCK,1.0,RET,1002
991 XCALL FLOCK,1,O,RET,1001
992 END

10 !PROGRAM 2
20 XCALL FLOCK,0,2,RET,1002
21 XCALL FLOCK,0,2,RET,1001
100 REMARK ** BODY OF PROGRAM **
990 XCALL FLOCK,0,Z,RET,1001
991 XCALL FLOCK,0,2,RET,1002
992 END

Consider the following sequence of execution:

1. Program 1 executes tines 10 and 20, obtaintng exclusive permission
to open file 1001.

2. Program 2 executes lines 10 and 20, obtaIning exclusive permission
to open fIle 1002. It then exetutes tiae 21, and must be delayed
because Program 1 already has exctus$ve permission to open file

1001.

3. Program I executes tine 21, and must be delayed because Program 2
already has exclusive permission to open tiLe 1002.

At this point, programs 1 and 2 have both been delayed. Since no other

programs are present, the reasons for thetr delays wilt remain unchanged.
DEADLOCK has occurred.

But DEADLOCK will not occur if program 2 requests permission to open files

1001 and 1002 for exclusive use in the same order as program 1. For

DEADLOCK to occur, program I must be granted peDmtssion to open fIle 1001

for exclusive use, but be delayed permission to open file 1002 for exclusive
use. However, if program 1 is granted permission to open file 1001 for
exclusive use, the corrected program 2 (a dupticate of program 1) will not

be allowed to execute lines 21—990; thus It will be unable to obtain
permission to open file 1002 for exclusive use. DEADLOCK cannot occur.

D$$—10008—00 REV A00

FLOCK — XCALL SUBROUTINE TO COORDINATE MULTI—USER FILE ACCESS Page 4—17

4.6 SUMMARY

The FLOCK.SBR program is an externaL XCALL subroutine which is callable from
BASIC. FLOCK locks files, and can Lock records within files, to prevent
concurrent access by other users running programs that access the samefiles. FLOCK may also be used to coordinate shared file access and
processing.

FLOCK only functions property If it is Loaded into system memory via the
SYSTEM command In the system initialization command file,
DSKO:YTE,q.INI(1,4]. If you have an AMOS system, FLOCK also requires that
you have FLTCNV.PRG In system memory.

4.6.1 Quick Reference Summary of Actions/Modes

ACTION 0: REQUEST TO OPEN FILE
MODE 0: Non—excLusive; delay until free
MODE 2: ExcLusive; delay until free
MODE 4: Non—exclusive; RETURN'CODE = I if not free
MODE 6: ExclusIve; RETURN'CODE = 1 if not free

ACTION 1; TELLS FLOCK THAT FILE IS CLOSED. RELEASES THE LOCK. (ACTIONS 5
AND 6 PERFORMED AS NECESSARY.)

ACTION 2: TELLS FLOCK THAT A PROGRAM ABORT IS ABOUT TO OCCUR. RELEASES ALL
LOCKS ON ALL FILES BY PERFORMING ACTION I AS NECESSARY.

ACTION 3: REQUEST TO READ RECORD.
MODE 0: Non—excLusive; delay if not free. (Action 0 must

already have been granted.)
MODE 2: ExclusIve; delay If not free. (Action 0 must

already have been granted.)
MODE 4: Non—excLusive; RETURN'CODE = I if not free. (Action

0 must already have been granted.)
MODE 6: ExcLusive; RETURN'CODE = I If not free. (Action 0

must already have been granted.)

ACTION 4: REQUEST TO READ/WRITE ALL RECORDS.
MODE 2: ExcLusive; delay if not free. (Action 0 must

already have been granted.)

MODE 6: ExcLusive; RETURP4'CODE = 1 if not free. (Action 0
must aLready have been granted.)

ACTION 5: TELLS FLOCK THAT YOU HAVE FINISHED PROCESSING THE RECORD REQUESTED
BY A PREVIOUS ACTION 3 CALL. ANY BUFFERED DATA IS OUTPUT TO DISK.

ACTION 6: TELLS FLOCK THAT YOU HAVE FINISHED PROCESSING THE FILE REQUESTED
BY A PREVIOUS ACTION 4 CALL. ANY BUFFERED DATA IS OUTPUT TO DISK.

D$S—10008—OO REV AOO

CHAPTER 5

XLOCK — XCALL SUBROUTINE FOR MULTLSER LOCKS

XLOCK is an external subroutine that your AIphaBASIC program can call to set

and test "locks."

A Lock is a tool to help you synchronize attempts to access devices and

files. You can Imagine the problems that result when you have two users
trying to update the same record of the same file at the same time. A lock

is an entity created by a program to help it keep track of whether a certain
device, file, etc., is in use at the specific time that the program wants to
access It. The general way that the Locking system works is this:

1. When you want to prevent access to something (a fiLe, a device,
etc.) while Vour program accesses 'it, you create (that is, "set") a
system lock on that resource.

2. Whenever you want to access a device or file, your program tries to
set the lock associated with that item; if it is already set, you

know that another user's program is using the device or file.

3. When you are finished accessing a device or file, you destroy (that
is, "ctear') the lock so that other programs can now access the

resource.

Note that a system lock is NOT a security device—— it's a convenience, If

a program wants to allowlis users to write to a fiLe without checking to
see if another user is there first, It can, do so (and run the risk of

creating chaos). A system Lock simply provides a convenient way to help a
program keep its users from conflicting in their attempts to use system

resources. The only job that can clear a Lock is the Job that originally
set the Lock. AIphaBASIC does not automatically clear locks when a program

exits, so be careful that your program clears any locks it has set before it

exits. (For more background information on why Locks are necessary, see
Chapter 4, "FLOCK — XCALL Subroutine to Coordinate Multi—user File Access.")

DSS—10008—OO REV A®

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—2

5.1 LOADING XLOCK INTO SYSTEM MEMORY

You must include the DSKO:XLOCK.SBRC7,6) In system memory before you can use
an AIphaBASIC program implementing XLOCK.

To load XLOCK.SBR into system memory, you must have a line in your system

initialization command file that performs that function. For more

information on loading subroutines into system memory during system boot—up,
see the AMOS System Operator's Guide, DSS—10001—OO, or the AMOS/L System

Operator's Guide, DSS—10002—OO.

5.2 THE XLOCK SUBROUTINE

XCALL XLOCK, MODE, LOCKI, LOCK2

Where:

MODE The function you want to perform. These modes are:

Mode 0: Set lock and return.
Mode 1: Set lock. (Wait If already Locked; then set).
Mode 2: Clear lock (if set by your job).
Mode 3: Return list of alt system locks and the jobs that

set them.

(See below for a discussion of each mode.)

LOCKI The first digit of the lock code. (See below.)

LOCK2 The second digit of the Lock code. (See below.)

Use MAP statements at the front of your program to define MODE, 100(1, and
LOCK2 as two—byte binary variables. (They may not be floating point or
string variables.) For example:

MAP1 MODE, B, 2
MAP1 LOCKI, B, 2
MAP1 LOCK2, 8, 2

Before you call XLOCK, your Alpha8ASIC program must first set up the correct
values for MODE, LOCK1, and LOCKZ.

IMPORTANT NOTE: XLOCI(parameters must be defined on even—byte boundaries in
memory. (That is, the variables must begin on word boundaries.) Variable
structures defined at a MAPI level always begin on a word boundary.
Therefore, the easiest way to ensure that XLOCI(arguments begin on a word
boundary is to define them in MAP1 statements (as in the example above). If

you do define XLOCK parameters in deeper level MAP statements (e.g., MAP2 or
MAP3), make sure that the variables begin on a word boundary by keeping the
number of bytes defined an even number. For example, this definition:

DSS—10008—O0 REV AOO

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—3

MAPI PARAMETERS
MAP? FILL, 5, 1
MAP2 Li, 8, 2
MAP? L2, 8, 2
MAP? MODE, B, 2

wild cause XLOCK to faiL; however, removing the definition for FILL (which

pushed the XLOCK parameteri onto an odd"byteboundary) will correct the
problem.

5.3 THE LOCKS

A system lock is a two—Level numeric lock; the ntaber representing either

leveL may be from I to 65535. (A vaLue of zero in either position acts as a
witdcard. That is, any number will match In that position when it comes to
clearing or setting that lock.) Some typical locks are:

1 ,i

1,2
4,0
100,100

The numbers you choose are up to you. You may choose to assign some meaning
to the numbers (for exampLe, the first number might be the fiLe—channel
number of the file you want to lock, and the second number might be the
number of the record within that fiLe that you want to Lock.)

Since both numbers in the lock may range from 1 to 65535, the actual

possible number of unique locks is 65535 * 65535. But, every time you
create a lock, the system sets aside a block in thimonitor queue in system
memory for that Lock, whtch Its not returned to the available list until the
lock is released by the Job that has it locked. Since there are initially
only 20 queue bLocks available, it's a good idea to keep the number of Locks
to a minimum. A good rule is that a program should not have more than two
or three locks active at any one time. As you clear a lock, that queue
block becomes avaiLabLe again. (So, in essence, every time you set a Lock
you create it, and every time you clear a lock, you destroy it.)

5.4 THE MODES

The MODE argument in the XLOCK calL tine cant contain one of four values
(0—3) which selects one of the tour possible Lockthq modes:

DSS—10008—00 REV AOO

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—4

5.4.1 MODE 0 (Lock and Return)

This mode tells XLOCK to create a lock with the vatue LOCK1,LOCK2. If the

lock already exists (i.e., some other job is accessing the file or device

you want to use), XLOCK returns with MODE equaL tothe number of the job
that set the Lock. (A job number is assigned to each job in the order that

the jobs were defined in the JOBS command in the system initialization
command file. For example, the first job defined, in the JOBS command tine

is Job #1. The SYSTAT command Lists the jobs in this order.) If the lock
does not already exist, XLOCK creates it and returns with a zero in MODE.

You've now set the Lock.

5.4.2 MODE 1 (Lock and Wait)

This XLOCK mode Is identical to MODE 0, except that if the lock already
exists, XLOCK tells the system to put your job S Steep until the lock is

cleared. That means that your job wilt be In an Inactive state (except for
waking at every clock tick to test the status of the lock) until the job
that originally set the Lock clears it. If you use this mode, take Into
consideration the fact that another user nay be waiting for the same lock;

it's possible that the lock might be cleared and then grabbed up either by
the same or another job before your job wakes up.

5.4.3 MODE 2 (Clear Lock)

XLOCK clears the lock specified by LOCKI and LOCKZ and returns to your

program. A zero returned in MODE indicates that the lock you tried to clear
wasn't set by your job; a one returned indicates that you sucessfutly
cleared one lock; a number greater than on! in4icates that you cleared more
than one lock (which means that LOCKI or LOCK2 Mer1e originally set to zero——
the wlldcard value). You may never use XLOCK to c,Lear a Lock that was not
set by your job. (NOTE: If you attach your terminal to another job, XLOCK
considers you a new job.)

5.4.4 MODE 3 (List Locks)

MODE 3 returns a complete list of all the locks set on the system and the
numbers of the jobs that set them. When you use MODE 3, LOCKZ must
represent a mapped array large enough to hold the expected data. When XLOCK
returns from a MODE 3 calL, MODE contains tJ'ie number of locks that are set
on the system, LOCK1 contains your job number1, LOCX2 contains one three—word
entry for each lock that is set on the system. (You must set up this entry
as three binary words in a MAP statement.) The first two bytes hold the job
number; the second and third words hold the actual LOCK1 and LOCK2 values of
the specified lock. The following is an example of how to set up the MAP
statement for a MODE 3 call:

DSS—10008—OO REV AOO

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—5

10 MAP1 MODE, B, 2
20 MAPI MYJOB, B, 2
30 MAP1 LISTARRAY
40 MAP2 LOCKENTRY(25)
50 MAP3 JOBNUt4BER, 8, 2
60 MAP3 Li, B, 2
70 MAP3 L2, B, 2
80 ! Start of Program goes here
100 MODE s 3
110 XCALL XLOCK, MODE, MYJOB, LISTARRAY
120 ! Rest of program goes here

5.5 WILDCARDS

A system Lock consists of two numbers, the values of LOCKI and LOCK2. If

either of these two numbers is a zero, that number is a wttdcard and any

number between I and 65535 will match It. <A witdcard is a symbol that is

matched by any other symbol...)

You can use wlldcards for various reasons. For example, suppose that you

decide that the LOCKI value is going to represent a particular file and that

the LOCK2 value will represent a particular record in that file. If you

want to stop all, references to that file while your program is accessing It,

you would set the Lock with a zero tn LOCK2 and 'the number representing your

fit. in LOCKI. Anyone who tries to set a Lock that has the same LOCKI value

as your lock won't be able to do so; the system will tell him that that lock
already exists (since your wildcard in LOCZ2 wiLt match any number he may

try in that position). No one (lnctudttg yourself) will be abLe to set a
lock with the same LOCK1 value until you clear the lock. Note that setting

a Lock with both numbers zero wilt prevent anyone from setting a Lock, since

the system wilt say that all possible loctks are aLready set.

5.6 PROGRAMMING EXAMPLES

The following is a small sample demonstration program that you may want to
use to experiment with XLOCK, and to get a feeLing for how it works. It

asks you for the values of MODE, LOCKI, and LOCK?, and then reports back on

the results of the locking operation you asked for. Remember: MODE = 0 sets

a lock, MODE = 1 sets the lock after waiting for it to be cleared; MODE = 2

clears the Lock, and MODE = 3 dispLays the locks set.

DSS—10008—OO REV AO0

XLOCI(— XCAU. SUBROUTINE FOR MULTI—USER LOCKS Page 5—6

5 ! Sample Program to Illustrate File Lockingt
10 MAP1 FLAG,F
15 MAP1 COUNTER, F
20 MAP1 MODE, B, 2
25 MAPI LOCK1, 8, 2
30 MARl LOCK2, B, 2
35 MARl LOCKARRAY
40 MAP2 LOCKENTRY(25)
45 MAP3 JOB, 8, 2
50 MAP3 Li, B, 2
55 MAP3 L2, 8, 2
60 START:
65 INPUT "MODE, LOCKI, LecK2: ",MODE,,LOCK1,LOCK2
70 FLAG * MODE

75 IF MODE = 3 6010 DISPLAY
80 XCALL XLOCK, MODE, LOCK1, LOCK2
$5 PRINT "Mode = ";MODE
90 IF FLAG = 0 AND MODE <> 0 PRINT "Lock aLready set."
95 IF FLAG = 2 AND MODE = 0 PRINT "You didn't set that lock."
100 IF FLAG = 2 AND MODE = I PRINT "You cleared the lock."
105 IF FLAG = 2 AND MODE > I PRINT "You cleared more than one Lock."
110 6010 START
115 DISPLAY:
120 XCALL XLOCK, MODE, LOCK1, LOCKARRAY
125 PRINT "Your Job number is: ";LOKI
130 PRINT "Current Locks. in use s ";MODE.
135 IF MODE * 0 6010. LOOP
140 FOR COUNTER = I TO MODE
145 PRINT SPACE(S);
150 PRINT STR(L1 (COUNTER))+","+STR (LZ(COUNTER));
155 PRINT SPACE(4) : PRINT "(Job";JOB(COUNTER);")"
160 NEXT
165 LOOP:
170 PRINT : 6010 START

XLOCK is often used to Lock individual records within a file so that more
than one user can update that tile at the same time, LQcK1 might contain a

number that represents the particuLar tile you want to open for multi—user
updating (perhaps by containing the file's tile—channel number). LOCK2
might hold a number that represents the specific record within the file that
you want to update.

5.6.1 CalcuLating Record Numbers

We assume that you will usually be using XLOCK to control multi—user
updating of random files. (For information on random files, see Chapter iS
of the AIphaBASIC User's Manual, DWM—00100—O1.) It you are going to be
locking a specific file record, you need to understand the relationship
between disk blocks and file records. A record (sometimes catted a "logical
record") is a grouping of data that you define; you also define the Length
of that record. Just as an example, Let's define a file record that
contains 6 bytes for a customer ID number, 24 bytes for a customer name, 10

DSS—10008—Q0 REV A®

$

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—7

bytes for the name of the customer's sates contact, and 10 bytes for the

customer phone number. Th1s'f lIe record Would then contain 50 bytes. A

disk block is a physical grouping of data on the disk that is always 512

bytes long. The monitor always transfers disk information in this 512—byte

block. AtphaBASXC unblocks a disk block Into smaller gróups— your logical

records. For example, one disk block (512 bytes) would contain 10 of the

logical records we defined above (50 * 10 s 500) with 12 bytes Left over.

No logical record is ever Larger than a disk btock. NOTE: You specify the

size of your logical record in the OPEN statement for the file.

The reason for our expLanation above is this: If you want the LOCK? value to

contain the number of the record you are updating, it must contain the

relative number of the disk block being used, and not the logicaL record

number. When AIphaBASIC unbLocks a disk block into Logical records, it

brings the entire disk block into your memory partition. Even if you are

only updating one logical record in that disk block, the entire disk block

remains in your memory area until, you either close the file or read a

logical record that is in a different disk block. What this means is that

more than one user could try to write out the same disk block at the same

time even though they are updating different logical, records. So, you must

prevent access, not onLy to the logical record that you are updating, but to

the entire disk block that contains it.

You must calculate the relative disk block number yourself by dividing the

logical record number by the blocking factor. (The blocking factor is the

number of logical records that can fit in one disk block.) in the example

above where we had Logical records 50 bytes tong, the blocking factor Is 10.

Remember that each disk block is 512 bytes tong and wilt be blocked to

contain as many logical recordsas wilt fit.

If one of your lock digits is the disk block number, you can prevent access

to the entire disk block; no one can access any of the logical records in

the disk block until you clear the lock.

REMEMBER: The lock wildcard symbol is a zero, so calculate your disk blocks

beginning with one instead of zero. Before you unlock the lock on a disk

block, force the system to write that rectrd by readtng a logical record

that falls outside of that disk block. (t4OTi: You may also use the

RANDOM'FORCED mode in your OPEN statement to force AtphaBA$IC to perform a

disk read or a disk write every time you acc4ss the file. See Chapter 15 of

the AIphaBASIC User's Manual for more Information.) The sample program

below may help to clarify the Last few paragraphs.

DSS—10008—OO REV A®

XLOCK — XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—8

5.6.2 SampLe Program to IlLustrate File Record Locking,

10 Sample Pr.gram to ILlustrate FiLe Record Locking
15 ! Remember to Load XLOCK.SBR before running!
20 MAP1 MODE, B, 2 ! Detine Locking variab3es
25 MAPI LOCK1, B, 2
30 MAPI LOCK2, 8, 2
35 MAP1 LOGICAL'RECORD ! Define Logical record
40 MAP2 CUST'ID,F,6 ! contents—— 50 bytes
45 MAP2 CUSTOMER,S,24 of custOmer info.
50 MAP2 CONTACT,S,1O I Customer ID is actually
55 MAP2 PHONE,S,10 LOgical record ntnbér.
60 MAPI RECORD'SIZE,F,,SO
65 1 Scratch variables:
70 MAP1 RECORDNUM,F Logical record niaiber
75 MAP1 FLAG,F
80 MAPI QUERY,,S,1
85 ! Begin program:
100 START:
105 LOOKUP "CUSTID.DAT'5FLAG I If fiLe doesn't exist,
110 IF FLAG = 0 THEN GOTO FILE'ERR report error and exit.
115 OPEN #100, "CUSTID.DAT",RANDOM,RECORD'SIZE,RECORDNUM
120 LOCK1 = 100 "100" represents CUSTID file
125 PRINt "Welcome to the Customer Maintenance Pro9ram."
130 LOOK:
135 INPUT "Please enter customer identification nsnb!r: ',RCDNUM
140 Note: Customer ID is Just number of that lOgical record.
145 CalcuLate relative disk bLock nSber (assuies togicat
150 I records begin with zero):
155 LOCK2 = INT(RECORbNUM/1O)+1
160 I Lock the disk bLock used by the record.
165 XCALL XLOCK,MODE,LOCK1,LOCK2
170 READ #100, LOGICAL'RECORD
175 PRINT "Customer information:"
180 PRINT TAB(5);"Customer ID#: ";CUST'ID
185 PRINT TAB(S);"Custorner name: ";CUSTOMER,
190 PRINT TAB(5);"Sales contact: ";CPNTACT
195 PRINT TAB(5);"Phone #: ";PHONE
200 UPDATE:
205 INPUT "Do you wish to change any into? "$UERY
210 IF UCS(QUERV) = "N" THEN Goto LOOP
215 PRINT "Customer ID: ",CUST'ID
220 INPUT "Enter customer name: ";CUSTOMER
225 INPUT "Enter sates contact: ";CONTACT
230 INPUT "Enter phone number: ";PHONE
235 WRITE #100, LOGICAL'RECORD
240 I Force BASIC to bring different disk block into memory.
245 I (It we are in first disk block, since bLocking factor is
250 1 10, record number >= 10 wiLt force in next disk bLock)
255 IF LOCK2 = 1 THEN RECORDNUM = 10 ELSE RECORDNUM 0
260 I Now bring in different disk block:
265 READ #100, LOGICALRECORD

055—10008—00 REV AO0

XLOCJ(— XCALL SUBROUTINE FOR MULTI—USER LOCKS Page 5—9

270 ! ReLease the Lock.
275 MODEs?
280 XCALL XLOCK, MODE, LOCK1, LOCK?
285 LOOP:
290 INPUT "Do you wish to see info on another customer? ",QUERY
295 IF UCS(QUERY) * "Y" THEN GOTO LOOK
300 EXIT:
305 PRINT "Returning you to Command Levet...'
310 CLOSE #100
315 END
320 FILE'ERR: Oops. File didn't exist.
325 PRINT "FiLe error. Please see System Operator."
330 END

5.? SUMMARY

XLOCK can both set and test system Locks, to help users from conflicting In
their attempts to use system resources. These Locks are not for security;
they are for the convenience of the users. A user may lock a fiLe or a
device to prevent any other user from accessing it, may test a lock to seeif another user has already set a lock and Is using the file or device, or
may cLear the Lock so that the programs of other users may access the file
or device.

Before running any program containing the XCALL XLOCK subroutine, you must
incLude the XLOCK.SBR In system memory by using the SYSTEM command within
the system initiaLization command file.

DSS—10008—0o REV AOO

CHAPTER 6

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER

SPOOL is an XCALL subroutine that you can caLl from ALphaBASIC to spool a

disk file to the line printer. ("SPOOL" is actually an acronym meaning

"Simultaneous Printer Output On—line." To "spool" a file is to insert it

into the printer queue, after which you can continue to do other things

white your file waits in the queue for its turn to be printed.) You can

specify to SPOOL which printer you want the file to be printed on, the

number of copies to print, the form to print on, the width (measured in
characters) of a page, and the tines per page. Also you can specify any

combination of switches to turn on or off the banner option, the delete
option (which deletes the file from the printer queue after printing), the

header option, the formfeed option, ot the wait option.

You do not have to toad the SPOOL subroutine into system or user memory in

order to access it from an AIphaBASIC program. However, If you have an AMOS

system, rather than an AMOS/t. system, and If you are going to use the

SWITCHES feature of SPOOL, you must toad Ft.TCNV.PRG into either user or

system memory before you run an AIphaBASIC program containing the XCALL

SPOOL program tine.

To toad FLTCNV.PRG into user memory, enter the foLlowing from AMOS command
level:

.LOAD DSKO:FLTCNV.PRGE1,4] LED

To toad FLTCNV.PRG into system memory of your AMOS system, you must have a

tine in your system initialization command file that performs that function.
For more information on loading subroutines Into system memory during system
boot—up, see the AMOS System Operator's Guide, DSS—10001—OO, or the

AMOS/L System Operator's Guide, DSS—10002—QO.

DSS—10008—O0 REV *00

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6—2

6.1 USING THE XCALL SPOOL SUBROUTINE

Call the SPOOL subroutine from within an AlphaBA$IC program via:

XCALL SPOOL,FILE,PRINTER,SWITCHES,COpIES,FORM,wzDTHLpp

where:

FILE * string variable or expression that gives the
specification of the file you want to print. If you
specify a file which does not exist, SPOOL doesn't tell
you that it can't find the file, (but, of course, doesn't
print anything).

PRINTER A string variable or expression that gives the name of
the printer you want to send the file to. If PRINTER is
omitted or 'is a null string, SPOOL uses the default
printer. If you want to use the default printer and
also wish to use one or moie of subsequent features
(SWITCHES, COPIES, etc.), place a null string
designation C"") in the PRINTER posit ton of the program
line (e.g., XCALL $POOL,'DA'TA.TxT",'"',5).

SWITCHES A floating point variable or expression that specifies
various control switches and flags that affect the
printing of the file. U you l%ave a AMOS,system (as
opposed to an AMOS/L system),. you mutt toad FLTCNV.PRG
into system or user memory if you are going to use the
SWITCHES argument.

The switches that SPOOL uses are the same as the
switches of the same names used by the monitor PRINT
command. (See the AMOS Syst!m Commends Reference
Manual, DWM—OO100—49 or the AMOSIL System Commands
Reterence Manual, DSS—10004—OO, for information on
PRINT.)

The switches are:

1. BANNER — To print a banner (identifying) page
at the front of the printout.

2. NOBANNER — So a banner wilt not be printed.

3. DELETE — To delete a tilt after it Is printed.

4. NODELETE — So a file is not deleted after it is
printed.

5. HEADER — To print a page header at the top of
every page of the printout. Page headers give
the name of the file being printed, the date,

DSS—10008—OO REV AOO

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRIpifER Page 6—3

and the current page n*mpber.

6. NOHEAOEQ — So a page header Is not printed fl

each page of the printout.

. FF — To do a fornpfeed after a file is printej

8. NOFF — $upren a formfej after a file is

printed.

9. WAiT — To wait until. previous entries into the
Printer queue are finlshd printing, so that

the print reges is not discarded if the

printer queue is teflfPorarl(y full.. (If the

file has to waft to be printed, the job running
the AtphagA:sjc program that performed the XCAtj

SPOOL subroutine waits too, and nothing eLse
can be done until. that request is inserted into

the queue.)

Each switch you can use has a ntsftertc code associated

with It (see beLow). For exapte, the BANNER switch
code Is 1; the DELEn switch code is 4. Set control.

Switches by putting the sun, of the appropriate switch

codes into the SWITCHES variable. For example, f you
want to use the BANNER and DELETE switches (to tell. the

tine printer spooler p1gram to print a banner page and

delete the file after printing it), Load SWITCHES with 5
(BANNER code + DELETE code). If you omit SWITCHES,

SPOOL uses the default Switches for the selected

printer. If you do not wish to USC SWITCHES, but want
to use one or more of the subsequent options (COPIES,

FORM, etc.), replace the SWITCHES varlabl.e or expression
with the null designation ('")•

Switch codes:

BANNER 1

NO8AfJNER 2
DELETE 4
NODELETE 8
HEADER 16

32
FF 64
NOfl 128

WAU 256

DSS—1000$...oo REV AOO

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO ThE LINE PRINTER Page 6—4

COPIES A floating point variable or expression that specifies
the number of copies tobe printed. If you omit COPIES
or it is zero, the tine printer spooler program prints
one copy. If you want COPIES to print the default
number of copies of the line printer spooler, and want
to use subsequent options (FORM, WIDTH, etc.), enter the
null designation ("") in. place of the COPIES variable or
expression.

FORM A string variable or expression that specifies the form
on which the file is to be printed. If you omit FORM or
it is a null string, the tine printer spooler uses the
NORMAL form. If you. want FORM to use the default form of
the tine printer spooler, and want to use subsequent
options (WIDTH or LPP) enter the null designation ("")
in place of the FORMyariabte or expression.

WIDTH A floating point variable or expression that specifies
the width (in characters) of the page. SPOOL only uses
this value if you have specified the HEADER switch in
the SWITCHES variable. WIDTH does not affect the
number of characters in the print line; irEnty affects
the text In the banner (if any) and the header, based on
the width you specify. If you omit WIDTH, the spooler
program uses the default :vatue for the specified
printer. If you want to omit WIDTH, but want to use
LPP, the subsequent opt4on, enter the null designation
("") In place of the WIDTH variable or expression.

LPP A floating point variable r expression that specifies
the number of lines per page. SPOOL only uses this
value if you have specified the HEADER switch in the
SWITCHES variable. If you omit LPP, the spooler program
uses the default value for Ithe ipecified printer.

6.1.1 Some Examples using SPOOL

The following examples are intended to be various modifications of the same
one— or two—line programs. Each modification will affect the printing of a
file in a different way.

6.1.1.1 XCALL SPOOL,"FILENAME"

As with all of the XCALL subroutines callable from AIphaBASIC, the SPOOL
subroutine must be indicated by the XCALL keyword followed by the name of
the subroutine, SPOOL. The keyword and the subroutine name, a comma, and
the filename (as either a string variable or expression) to be spooled are
mandatory:

10 XCALL SPOOL,"TEXT.LST'

055—10008—00 REV A®

I
SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6—5

where "TEXT.LST" is regarded as an expression by the ALphaBASIC program, and

TEXT.LST is the file you want printed. (Note that the expression is
enclosed in quotation marks.) This next program accomplishes the same thing
because SPOOL accepts a string variable designation:

5 MAPI FILENAME,S,26
10 FILENAME"TEXT.LST'
20 XCALL SPOOL,FILENAME

Notice in both of the above examples that no options have been specified.
Alt the parameters are set by default.

6.1.1.2 XCALL SPOOL/'FILENAME","PRINTER"

Modifying the above examples., the XCALL SPOOL command Line may specify a

printer via a string variable or an expression:

5 MAP1 PRINTER,S,6
10 PRINTER"TI81O"
20 XCALL SPOOL,"TEXT.LST",PRINTER

or:

10 XCALL SPOOL,"TEXT.LST","T1810'

where 11810 is the name of a printer defined by the monitor TRNDEF command.
Note that the string expression TI81O must always be enclosed in quotation
marks.

6.1.1.3 XCALL SPOOL,"FILENAtIE',"PRINTER'.SWITCHES

Now we'll add the SWITCHES option to our examples.

If you have an AMOS system, then before you can run an AIphaBASIC program
using the XCALL SPOOL subroutine and the SWITCHES option, you must load

FLTCNV.PRG into system or user memory.

The nine available switches each have a unique nireric code assigned to
them. Add the numeric value of the various codes that you want to use. For

example, say we wish to have a BANNER and a HEADER, and throw a formfeed

when our file Is done printing. Those codes, 1, 16 and 64, add up to 81.
Our sample program's XCALL SPOOL command line should read:

10 XCALL SPOOL,"TEXT .LST" ,"TI8IO",Sl

DSS—10008—OO REV AGO

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6—6

6.1 .1 .4 XCALL SPOOL,"FILENAME","PRINTER',SWfltEOPIES

Say we want to spool two copies to the printer queue. We would add the

COPIES floating point variable or expression to te XCALL SPOOL tine in a
way something Like this:

10 XCALL SPOOL,"TEXT.LST'/',t'52

or Like this:

10 COPIESZ
20 XCALL SPOOL,"TEXT. LST" ,"" ,"" ,COPIES

NOTE: In the above examples, the PRINTER string variable or

expression and the SWITCHES ftoattng point variable or expression
have been replaced by place—holding flults C"). You must always
remember to add a place—holding null in the XCALL SPOOL program
tine it you are not going to use the option that goes In that

place but are going to use one or more subsequent options.

6.1.1.5 XCALL SPOOL/'FZLENAME","PRINTER",SWITCHES,COPIES,"FORM"

The FORM option of the XCALL SPOOL command Lirte may specify a form that you
want mounted on the printer. The FORM may be either a string variable or an
expression:

5 MAP1 FORM,S,6
10 FORM="PAYROL"
20 XCALL SPOOL,"FILENAME","PRINTER",SWZTCHES,COPIES,FORM

or:

10 XCALL SPOOL," FILENAME' ,"PRINTER",SWXTCHES,COPIES,"PAYROL"

where PAYROL is the name of a form defined by the monitor TRMDEF command.
Note that a string expression identifying the form to use must always be
enclosed in quotation marks.

When SPOOL sends a file to the printer queue, if the FORM option is selected
and the form specified is different than the one mounted on the printer, the
file will not print. Instead, the file wilt simply remain in the queue
until the monitor SET command Is used and the form Is changed to match the
one used in the XCALL SPOOL program line. See the SET. reference sheet in
the AMOS System Commands Reference Manual, DW*OOIOO—49, or the AMOSIL
System Commands Reference Manual, DSS—10004—OO, for more Information on
setting the form for the printer to use.

DSS—10008—0O REV A00

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6—7

6.1.1.6 XCALL

Finally, the XCALL SPOOL subroutine can use a floating point vartabte or

expression to set the width (measured in characters) of the page. SPOOL

only uses this value if you have specified the HEADER switch in the SWITCHES

variable. WIDTH affects the appearance of the banner (which is only printed

when using the BANNER switch of SWITCHES) and the header text; It does not

affect the number of characters in the print line.

When a file is spooled to the printer, WIDTH determines how wide the banner

is to be by controlling the number of characters that form the banner

alphanumerics. At the top of each page, SPOOL places the header text. Part

of the header text is a page number, which is oriented near the right—hand

margin.. That right—hand margin Is determined by WIDTH.

The actual lines that are printed are not controlled by WIDTH. In other

words, print tines whose lengths have previously been established are not

changed via the WIDTH value.

As an example of WIDTH, to print a tile with a banner that fits on an 8 112'

X 11" page, and a header with the page number appearing toward the right of

the page, you can set WIDTH to 70. Your XCALL SPOOL program line should

appear something like this:

10 XCALL SPOOL,"TEXT. LST" ,"TISlO",l 7,2/'NORMAL' ,70

or WIDTH can appear as a floating point variable, like this:

10 CHAR'PER'LINE7O
20 XCALL SPOOL/'TEXT. LSTt ,"TI81O",81 ,2,"NORMAL" ,48,CHAR' PER 'LINE

In either case, WIDTH wilt not force the file you print out to start

printing a new line at 70 characters.

6.1.1.7 XCALL SP0OL,.1FILENAME,PRINTER,SwITCHES,C0PIES.'F0RM",t)T,L'

To use the LPP feature of SPOOL, the HEADER switch of the SWITCHES feature

must also be used. The floating point variable or expression Included on

the XCALL SPOOL tine specifies the number of lines per page. When a full

page (according to the LPP specification) is printed, the SPOOL subroutine

prints a form feed and then prints the header at the top of the following

page. To aLlow 48 lines on a page (counting the header), for example, LPP

should appear something like this in the program line:

10 XCALL SPOOL,'TEXT. L$T" ,T1810",81 ,2,"NORMAL",.70,48

or LPP can appear as a floating point variable, like this:

10 LINES' PER 'PAGEM8
20 XCALL SPOOL,"TEXT. LST" ,"TI8IO",81 ,2,"NORMAL",70,LINES' PER' PAGE

DSS—1 0008—00 REV AO0

SPOOL — XCALL SUBROUTINE FOR SPOOLING FILES TO THE LINE PRINTER Page 6-8

Remember, if LPP is the onLy option you care to use, you must have all

previous placehotders In pLace:

Vt Al I tOflAl 1tT VT I CT' •t' lift liii liii Oilf n.n.. . 1 •*i! p p

6.2 SPOOL ERROR MESSAGE

The SPOOL subroutine returns onLy one error message:

?No spooler allocated

If you see the message above, It means that no Line printer spooler program
Is currently running on the system.

A note of caution: Each use of SPOOL in your ALphaBASIC program places the
filename specified in the XCALL SPOOL program tine into the monitor queue.
The system is protected so that a certain number of monitor queue blocks
(currently 15) are Left unoccupied by SPOOL (or by the monitor command
PRINT). However, if the total of monitor queue blocks being occupied at a

given moment by alt the jobs running on the system (including your
AIphaBASIC program using SPOOL) exceed the total allocated, the system wiLL
lock up and require a manual reset. No error message wILL be generated.

6.3 SUMMARY

SPOOL inserts a file into your system's printer queue, after which your
AIphaBASIC program can continue to do other things. The file spooled into

the queue waits its turn to be printed.

SPOOL has a number of options that are very similar in both function and use
to the options available using the PRINT command from AMOS or AMOS/L command
level. The options each have specific positions on the XCALL SPOOL program
line. If an option is not desired, but a subsequent option is, the
preceding option must be replaced by a placehotdlng nuLl string enclosed in
quotes (") *

For AMOS systems (but not AMOS/I systems), one option, the SWITCHES command,
requires that FLTCNV.PRG be in system or user memory.

Subsequent options (those whose positions on the XCAL SPOOL program line

are to the right of the SWITCHES option) are available even if the SWITCHES
option is not desired by placing a null argument C"") in the SWITCHES
position. However, even if SWITCHES Is null, FLTCNV.PRG must be loaded in
system or user memory if its position on the. program tine Is used.

055—10008—00 REV A®

4

CHAPTER 7

XMOUNT — XCALL. SUBROUTINE TO MOUNT A DISK

XMOUNT is an XCALL subroutine that allows you to mount a disk from within an

AIphaBASIC program without Leaving AIphaBASIC. You should call it whenever

you change a disk and your AIphaBASIC program is going to sort tiles or

create new files on the newly changed disk. (You must always mount a disk

after you've changed It and before you write to it; otherwise the system

will think that the old disk is stilt in the drive. When it comes time to

write information out to the new disk, the disk's bitmap wilt, be wrong, and

the system wilt try to write to the new disk as if it had the same areas

free as the old one.) Besides bringing into memory the proper bitmap,

XMOUNT also loads in the alternate track table, if any, for the specified

device.

IMPORTANT NOTE: NEVER mount or unmount a disk while someone is accessing

that disk. Doing so may corrupt the data on the disk.

It is not necessary to Load the XMOUNT subroutine into system or user

memory. However, the XMOUNT subroutine is fully re—entrant, so for

increased access speed you may load it into system memory via the SYSTEM

command in your system initialization command file. (See the AMOS System

Operator's Guide, DSS—10001—OO, or the AMOS/I System Operator's Guide,

DSS—1000Z—OO for information on the system initialization command file.)

7.1 THE XMOUNT SUBROUTINE

You can call XMOUNT to mount a disk via:

XCALL XMOUNT,DEVICE,VOLUME' ID

Where:

DEVICE String variable or expression that represents a device

specification (e.g., "DSKl:"). You may optionally

follow the device specification with "IU" to unmount the

device (e.g., "DSKO:/U").

XMOUNT — XCALL. SUBROUTINE TO MOUNT A DISK Page 7—2

VOLUME'ID String variable In which the volume ID of the mounted
device wilt be returned. This variable must be 10 bytes
tong. If it is not specified the labels block wilt not
be read. This variable is Ignored if the /U option is

used.

If you specify the irmount option, the "U" must be uppercase. When you
unmount a disk, you prevent AlphaBASIC and most system programs from
accessing that device.

7.1.1 Some Examples Using XMOUNT

As with alt the XCALL subroutines callable from AIphaBASIC, the program line
must begin with the keyword XCALL and the name of the subroutine, XMOUNT.
The X$OUNT subroutine further requires a string variable or expression to
represent the specification of the device to be mounted (or unmounted),
which is separated by a comma from the word XMOUNt. For example:

10 XCALL XMOUNT,"HWKI:"

or

5 MAP1 DEVICE,S,9
10 DEVICE&'HWKl:"
20 XCALL XMOUNT,DEVICE

You may similarly unmount a disk by making the LU switch part of the same
expression or string variable:

10 XCAL.L XMOUNT,,"HWKI:/U"

or

5 MAPI DEVICE,S,9
10 DEVICE=°IIWKI :111"
20 XCALL XMOUNT,DEVICE

The only option availabte when using XMOUNT (other than the LU switch to
unmount a disk) is the ability to store the volume ID of the newly mounted
disk within a string variable, perhaps to be diplayed immediately after
using the XMOUNT subroutine so the program user is èure he or she put the
right disk in the drive.

KNOUNT recognizes this option when It sees a string variable following the
device specification string or expression (and separated from it by a

comma). XMOUNT returns the volume ID of the disk as that variable, which
then may be displayed or tested. For example:

XMOUNT — XCALL. SUBROUTINE TO MOUNT A DISK Page 7—3

5 MAP1 VOLUME'ID,S,lO
10 MOUNTING: XCALL XMOUNT,"HWK1:",VOLUI4E'ID
20 PRINT VOLUME'ID;" is mounted."
30 IF VOLUME'ID<>"ARCHXVE" THEN GOTO WRONG'DISK
40 GOTO CONTINUING

100 WRONG'DISK: PRINT "This is not the ARCHIVE disk.'
110 PRINT "You may abort the program or pLace the correct"
120 PRINT "disk in the drive. To abort type Control—C." : STOP
130 GOTO MOUNTING

200 CONTINUING:

If the volume ID string variable is omitted or Is too small, or If a /U
follows the device specification string variable or expression, the volume
ID variable is ignored and returns a null string.

7.2 SUMMARY

The XMOUNT subroutine provides you with the ability to mount a disk without
leaving an AlphaBASIC program, It is used when a new disk has been inserted
in a disk drive and must be mounted in order for the bitmap to be updated.
XMOUNT may also be used to unmount a disk from within an AIphaBASIC program.
XMOIJNT also provides the volume ID oi the disk as an option, if the program
user needs to identify the disk just mounted.

ALPHABASIC XCALL SUSROUTINE USER'S MANUAL Page History—i

DOCUMENT HISTORY

Revision A® — AMOS Release 4.6 and AMOS/L Release 10 — (Printed 6/82)

The information included in this manual was formerly

contained as separate documents in the "BASIC Programmer's

Information" section of the AMOS Software Update

Doctj*entatiOn Packet. The contents of this manual are

updated to reflect advancements in software and the inclusion

of AMOSfL system information. Also, the information in this

manual has been expanded and clarified in response to user

requests.

AIPHABASIC XCALL SUBROUTINE USER'S MA1UJAL

index

Page Index—I

AMSORT.SYS . .

BANNER switch
BAS: ersatz name
BASORT
BASORT error . .
Binary variable

2—2

Channel number
Clear Lock mode
Clearing a lock
COMMON
Common data
Common storage
COMMON variable length .

Concurrent access
Coordinating shared tile access
COPtEsoption

2—3
5—4

5—1
1—1 to 1—2, 3—1
3—1

3—1

3—1

4—I

4—1
6—4 to 6—5

FE switch

File Lock
FILE option . .
File record . .
File—open interlock
FLOCK
ACTION parameter
FILE parameter
MODE parameter

6—3
S—I

6—2
5—6
4—9
1—1

4—5
4—S

4—5
4—5
2—2,
6—4,

2—1

S

S

Data packet
Data type
Deadlock
DEL command

2—4

4—1,
1—3

DELETEswitch 6—2

Disk block 5—6

Disk—based potyphase merge sort . 21

Exclusive use 45

4—15

to 1—2, 4—1, 4—4

4—5
6—6

RETURN CODE parameter
FLTCNV.PRG
FORM option

HEADER switch

Input channel
Interconsistency problem

6-2, 6—6

2—6
4—3, 4—10, 4—13

Page Index—2

Key
Order . . .
Position
Size -

Type .

2—1

2—3, 2—6
2—3, 2—6
2—6
2—4

Label
Colon .

List lock mode
LOAD command

I —
1—2

5—4
1—3 to 1—4, 2—2, 2—8,
3—2, 5—2, 6—1, 7—1
5—4
5—6
6—4, 6—6

Machine language - .
MAP Statement
Memory—based heap sort
MODE
Monitor queue
Mounting a disk . . .
Multi—user file access
Mutt iple update problem

5—2

• 2—1

4—9, 4—13

NOBANNER switch
NODELETE switch
NOFF switch •

NOHEADER switch
Non—exclusive use

Output channel

Preventing deadlock
PRINTER option
Program chaining

Queue block

2—6

1—5

Random file . .
Record count . .
Record size . . .

• •
. •

2—1, 4—7
2—3
2—3, 2—6
4—11, 4—13
4—7
4—5, 4—7

ALPHABASIC XCALL SUBROUTINE USER'S MANUAL

• • . .
. . . —

Lock and wait mode
Logical record
LPP option . • .

6—2
6—2
6—3
6—3
4—5

4—15
6—2, 6—5
3—1

Record—update interlock
Reserved file—channel number
Return—code

ALPHABA$IC XCALL SUBROUTINE USER'S MANUAL Page Index—3

Search sequence 1—3
SequentiaL tile 2—1, 4-7
SETcommand 6—6
Sortkey 2—3
SPOOL 1—ltol—2,6—1
SPOOL(acronyn,) 6—1
Spoolingafile 6—1
SWITCHES numeric code 6—3
SWITCHES option 6—2, 65
SySTEMcommarid 1—4
Systemmemory 1—3

User memory . . . 1—3

Variable 1—3
Binary 1—3
Floating point 1—3
String 1—3

Vottiuie ID 7—2

WAIT switch . . . 6—3
WIDTH option . . 6—4, 6—7

XCALL 1—1, 1—4, 2—1
XCALL statement 7—1
XLOCI(1—ltol—2,5—1
XLOCK MODE . . . 5—3
XL.OCI(record number calculation . 5—6
XLOCKwitdcard 5—5
XMOUNT 1—ltol—2,7—1
XMOUNT/UOpt,on 7—2

TECHNKLALPUELiCATIONS FUE REFERENCE
AIphaBASIC XCALL Subroutine User s ManuaL

TECHMCAL PUF3UCA1IONS READERS COMMENTS

We appreciate your help in evaluating our documentation efforts. Reese feei free to eftech additionei comments,
you require a written response, check here: 0

NOTE: Th is form is for comrnen ts on docum en tati on only To suorn it reports on software problems, use Sof-twere
Perforrrnance Reports fSPRsi, available from Aiphe Micro.

Pieese comment on the usefulne.es orrlanitetion, end -cierity of this manuel:

Did you find errors in t.hie manuel? if so, pieese specify the error and the number of the pege on which it occurred,

What kinds of rssenuelswouid you hke 5mm see in the future?

Pleese indicate the type of reader that you represent ichec k ci that apply I:

U Alpha Micro Dealer or OEM

0 Non-prugremrrser, using Aloha Micro computer for:
Business eppi ica.tiorls.
Eriucstion app-i icetions

Li Sc ien ti. fic eppi icetmons
0 Other lpleese specifyi:

CL- Prop rorrtrrs e

LI Astern ft ly issnq u ape
Li Higher-level language
0 E 555cr i ems ced program Itser

L.I Lil:tle prrsmsrsmmrsing cx persersr:e

o f) the' r I please spec i fyi:

NAME:

TlTLE: — — PHONE NUMBER- --

ORGANiZATiON:

ADDRESS-

ClTY: _____ STAT•E': ZiPOR000NTRY:

STAPLE STAPLE

S

FOLD FOLD....*....... •••••.•......i

PLACE
STAMP
HERE

alpha micra

liSli Sky Park North

P.O. Box 18347

Irvin., CalIfornia 92114

AITH: TECHNICAL PUBLICATIONS

••••...*.... ••*•............ •••••.•......................,
FOLD FOLD

