O

Aten v1.7
User Manual

Last Updated Thursday, 21 July 2011

TODO

In command reference, return types which are variable names and in “Command Type” style
should be linked to relevant VType references.

Remove references to old region information in disordered builder.
New GUI images.

New description for Select window

Topic: Colourscales

Topic: Glyphs

Topic: Grids

External Programs Section

Examples / Tutorials Section

Disclaimer
Aten comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it under certain conditions. For
more details read the GPL at http://www.gnu.org/copyleft/gpl.html.

Aten is under continual development and tweaking. If you have a feature suggestion, a feature
request, or have found a bug or an idiosyncrasy, please contact me at tris@projectaten.net

Aten uses Space Group Info © 1994-96 Ralf W. Grosse-Kunstleve, the Qt toolkit © Nokia,
and the readline library.

Some general notes:

First off, if you find that Aten doesn’t support the format you want, consider writing a filter to
do so. And if you need help, please ask!

More so, if you find that Aten does support the format you want, but doesn't appear to write it
out correctly, please let me know.

For forcefield expression files written with Aten, | recommend that you check that the correct
atom types get assigned to your molecule(s). Blind trust that this has actually occurred should
only be employed once you are confident that the forcefield types are consistently correct!
Larger forcefields, e.g. OPLS-AA by Jorgensen et al., do not have a complete set of type
descriptions implemented in Aten. Once more, if your add some in, please send them to me so
they can be included in a future revision of the code.

tris@projectaten.net

Acknowledgements

Aten is maintained entirely by T. Youngs. However, many people have contributed useful
thoughts, ideas, bugfixes, and motivation to the project over its lifetime. These people are, in
no particular order:

A. K. Croft and crew (Mac afficionado, supreme fault-finders)

S. Cromie (algebraic guidance)

A. Elena (bug-finder extraordinaire, ‘pathological case’-locator, Windows / Mac building and
packaging)

D. Pashov (Windows / Mac building and packaging)
S. Norman (icon judgment)

N. C. Forero-Martinez and M. Smyth (bug finding, bug finding, and bug finding)

http://www.gnu.org/copyleft/gpl.html
mailto:tris@projectaten.net
mailto:tris@projectaten.net

Table of Contents

Lo INEFOAUCTION ..ottt bbbttt b e 1
L.10 OVEBIVIBW ...ttt bbbttt b ettt b e n et an e 1
1,20 FRALUIE IMIAIIIX ...ttt 1
1.3, Supported File FOIMALS........ccviiieiieieciece et 1

2. INSEAHALION ..o 3
2.1. From Precompiled Packages (All PIatfOrms) ..o 3
2.2. From Source (LINUX/MAC OS X) ...ooiiiiiiiiiiiiisiisiieiesie sttt 3
2.3, From Source (WINAOWS)ccueiieiieeieiieiteesie et e e te st staeste e steenaesnaesraeee s 6

3. Frequently Encountered Problems ..o 12
3.1, CoNFIQUIALION EFTOISeeivecieiie sttt ettt be e sre e 12
3.2, COMPIALION EITOIS ..ottt 12
330 USAQE EFTOIS ...ttt 13

I O 11 o] - g SR 15
I - 11 1[4 o] [0 o Y2 SO POSSTRR 15
4.2, FIlE LOCALIONS ...oeviieiiitiieiett ettt ettt 16
4.3, REFErENCING ALBN ..ot e et e e esre e sre e 17

5. USAQGE EXAMPIES ... 18
5.1. Creating a Bulk Water Model (GUI) ..o 18
5.2. Building 6-Alumina from Basic Crystal Datacccoeviiiiiniiiicicee 23
5.3. Creating an NaCl/Water Two-Phase System (GUI)ccceviviiiieiiiieece e, 27
5.4. Building Ice Iy from Crystal Information (GUI)........c.cccoeiiiiiiiiiicieecce e 33
5.5. Exporting Coordinates in Bohr (FIIErs)cccooviiiiniieiisseeee e 36
5.6. Calculate Average Coordinates (CLI)cccooiiiiiiiiiiieie e 38
5.7. Self-Contained Liquid Chloroform Builder (SCript)ccccccvvvieriiiniree e 39
5.8. Generating Images Without the GUI (CLI)ccoviiiiiiiiiiiiee e 40

5.9. Calculating a Torsion Energy Profile (CLI)ccccoooiiiiiiiiinii e 41

5.10. Running a Script on Many Models (CLI/Batch)c.cccooviiiiniiniceneceee 42
5.11. Saving GAMESS-US Input with Options (CLI)......cccccooiiiiiiiiiccee 43
5.12. Printing all Bond Distances in a Model (CLI)ccooviieiiieiiie e 44

ComMMANG LINE USAJEvveveeieiiie ittt e stesee st te et estaesseenaessaebeeneesneenneenee e 45
B.1. SWILCH OFUEI ... 45
B.2. SWITCNES ...t 45
6.3. Batch Processing IMOESccviiiiiiiieiier e 52

LI L=3X 1 PSSR 54
7.0, OVEIVIBW ...ttt bbb bbbttt b bbbtk b b e 54
7.2, MOUSE CONEIOL ...t 55
7.3, Keyboard SNOMCULS...........coiiieiieie e 57
7.4, The MaIN TOOIDANcvoiiiiiiie e 58
7.5, TRE TOOIBOX . .ciiiiiiiieieiteite sttt bbbttt 60
7.6, ATOM LISt WINGOW ...ttt 61
7.7, BUIHA WINAOWoiiiiiiiiiiitce et 62
7.8, Cell Definition WINUOW..........coiiiiiiiiieieieie e 64
7.9, Cell Transform WINGOW ..o 65
7.10. CommMANT WINAOWouoiiiiiiiiiiiieiieieeee et 67
7.11. Disorder BUIlder WIZardcccooeiierieiiiiieiieeee e 70
7.12. FOrcefields WINCOWoiiiiiiiiiieie s 73
713, Fragments WINGOWccooiiuiiiiiiie ettt 76
714, GeOMErY WINAOWooiiiiiiiciiie ettt ettt 78
8 T €1 1Y/ o] 4 S VAV AT To (01 SRS OPPP 79
7.16. GridS WINUOW ...t 80
717, MESSAGES WINUOW.....ciuieiiiiieiieeie ettt te e e staeae e snaeneenneenes 83

7.18. POSIEION MWINAOW ... 84

7.19. SEIECE WINUOW ...ttt 87
7.20. TraJeCtory WINAOWccoiiiiiiieieieiesie ettt 89
7.21. Transtorm WINQOWcoooiiiiiiiiiieisesie e 90
7.22. ZMATIX WINQOW.....cooiiiiiiiiiieieieee e 93

(Ofo] g aFoT T =T Lo TUF- Vo SR 94
8.1. Command Language OVEIVIEWccereiririiriiriieieieniesie st sie e see e 94
8.2, Variable TYPES ... 100

ComMANd RETEIENCE ..o 131
9.1, ALOM COMMEANGS ..ottt b et e 131
9.2, BONA COMMEANGS......cuiiiiiitiiieieiisieiee ettt enens 137
9.3. BUIldING COMMEANGScueeiiieieiiecieeie e sreesre e sreenee s 141
9.4, Cell COMMANGS......c.iiiiiiiiieee bbb 148
9.5, Charges COMMANGScouiiiieieriese ettt bbb 153
9.6. ColourScales COMMEANGS.........cciiiiiiiiirieee bbb 155
9.7. DiSOrder COMMANGScerueieiiriiieeitenteriees ettt 158
9.8, EdIt COMMANGS........oiuiiiiiitiiieieiiit ettt 159
9.9. ENErgy COMMANGS........cccueiuieieiriesieeieseeseeste et este e e e s s ste e ae s e e sreesesnsesreeeeas 161
9.10. FIOW COMMANGSeoueiiiiiieieieiee sttt sb bbb 165
9.11. Forcefield COMMANGScc.oiiiiiiiiiicieee e 170
9.12. FOrceS COMMANTScciuiiiiiieitiite sttt st bbb eneas 180
0.13. Glyph COMMANGS........eiiiieiii et aeere e 181
9.14. Grid COMMENTS ..ot 187
0.15. IMAage COMMANGS........ociieiiieiie ittt sre e ae e ste e sbe e sbeesraeereea 194
9.16. Labeling COMMANGScccoueiieiieie e sre e e e sreeee s 196
9.17. Math COMMANGSc.veueiiiiiieiiite e 197

9.18. Measuring COMMANGS........ueiurreriereeieeie e sttt sbeebesreesree e 200

9.19. MesSSaging COMMANGSccveiuiriiriiiiaieeiieie e sb bbb 203
9.20. MIiNIMISEr COMMEANGScviitiiiiitiiiisieeie e 205
9.21. Model EXtras COMMANGScoceiiiriiieinienieieesi e 207
9.22. MoOdel COMMANGS ..ottt 209
9.23. Monte Carlo COMMANGScvivirriiiirieiei e 215
9.24. Pattern COMMEANGScoviieiiieiteitesie ettt sie e 217
9.25. SCHIPL COMMENTS ..ottt bbbt 229
9.26. Selection COMMANGS.coiiiriiirieeeie et 230
9.27. Site COMMEANGSc.vereeiiitiieeieiest ettt b ettt 239
0.28. StriNg COMMANGSccveiiieieiiecie ettt be e sreesreennesreeee s 241
0.29. SyStem COMMANGS........ccveieiieiieeie e seerte st ese e se et e s e re e e e sreesresneesreeeeas 246
9.30. Trajectory COMMEANGScc.oiiriiiiiiieiieieee et 249
9.31. Transform COMMANGS.......cc.eiiriiiiiiiei et 251
9.32. VIBW COMMANGS ..ottt bbbt 258
10, TOPICS OF INTEIEST.....eciiieicieiee ettt et re e re e 262
10.1. COlOUISCAIES ...ttt 262
O €] 1Y/ o) OSSOSO 263
10.3. PAIEINS .o 264
O 11 £ RSSO PRI 267
11,2, TraJECOrY FIIES ..o 279
11.3. Reading and WIIINGeoiieiiiiiee et sae e eena e 283
12, Forcefields and TYPINGc.ooiioiieiii ettt e e e eere e 289
12,10 OVEIVIBW ..ottt bbbttt bbbt eae s 289
12.2. Supplied FOrCefields........ooiiiiiee e 290
12.3. KeyWOrd REFEIENCEciviiiecie ittt 293

12.4. RUIE-BaSEd FOrCETIIASo 302

0 T Y/ o 12T USSR 304
12.6. NETA REIEIENCE ... 310
13, FUNCHIONAI FOMMIS ...ttt 316
13.1. VDWW FUNCLIONAI FOIMS ...t 316
13.2. Bond FUNCHIONAI FOIMS........oviiiiiiciiicce s 317
13.3. Angle FUNCLIONAI FOMMS.......oiuiiiiiiieeie e 318
13.4. Torsion FUNCHIONAl FOMMScooiiiiiiiii e 319
14, EXEErNal PrOGramsSooiiiiiiiiieiee ettt 320
14.1. IMOVIE GENEIALION......cviuiitiieiieiest ettt 320
4.2, MOPAC. ... ettt et re e 320
15, MBENOGS ...t 321
151, CusStom AIGOITNMSocuiiiiiiieee e 321
15.2. Literature MEtNOUGSooiiiiiicre s 325
16, ENUMEIATIONSoiuiiiietiitesie ettt bbbttt bbb 326
16.1. BasiS SNEll TYPESviivieiiee et 326
T2 = To 1o I I/ o 1= OSSOSO 326
16.3. BOUNG TYPES o.oveeiicieitie sttt ettt ettt et te e e s re e teenaesneesneenne e 326
16.4. CeIITYPES oottt bbbttt bbbt sn s 327
16.5. COlOUI SCNEIMES.......couiiiiiieiiiee et 327
16.6. Combination RUIES........c.oiiiiiiii e 327
16.7. DraWing SYIESoiiiieiiecie ettt ra e 328
16.8. ENEIQY UNITS. ..ottt ettt e e ba e eeree 328
16.9. GIYPN TYPES oottt ra e 328
T80 TR € o IS VLSS 329
G200 R € o I8/ o1 OSSR 329

16.12.

16.13.

16.14.

16.15.

16.16.

LADET TYPES ettt e 329

OULPUL TYPES ettt 330
PArSE OPLIONS. ...ttt bbbt 330
REA SUCCESS INTEYEISvecvviieeie ettt te et re e 331
ZIMAPPING TYPES .vveveenteetiesit et s eeste e e st e ste e e s e e s teebessaesteessesseesteaseesseesteaneesseesens 331

Vi

1.Introduction

1.1. Overview

Aten will let you generate and edit coordinates for your simulations, and view any trajectories
you might have generated. A set of tools in the GUI (and also accessible from the command
line) enables you to change the geometry of bonds, angles, and torsions, translate atoms,
create atoms, rotate groups of atoms, and cut, copy, and paste them around the place. All this
can be done in the context of loading and saving in the format that you need - if the file
format you need isn't currently a part of Aten, you yourself can write a filter to cover it.

Periodic systems are supported, be they crystals, liquids, gases, or a heady mixture. All
editing functions that are possible for simple molecules apply to periodic systems as well.
Moreover, given a basic unit cell a whole crystal or a larger supercell can be constructed. For
any periodic system, a random ensemble of molecules can be added, allowing the facile
creation of coordinates with which to begin your molecular dynamics simulations.

As well as coordinates, Aten has support for forcefields (in its own, plain-text format) and can
automatically apply these forcefields to your system if correct type descriptions are present
for the atom types in the forcefield. Then, in the same way as with coordinates, you may write
out a forcefield description of your system in the format that you require it with a different
filter. Please don't use Aten as a literal ‘black box’, though, and blindly write out forcefield
files without checking them. While it will certainly make the process of generating your
forcefield descriptions easier, the art of determining the correct types in the first place (and
hence the correct forcefield terms) is not definite for larger forcefields that cover many atom
types. Check the output - a cursory glance of the selected forcefield types is an excellent idea,
and a good habit to get in to.

Aten is in continual development, so if you get stuck, find a bug, or have a suggestion to
make, please go to the Support page of the website and visit the forums or send an email
directly. Making Aten better depends to some degree on user feedback!

1.2. Feature Matrix

TODO

1.3. Supported File Formats

A list of formats currently supported by Aten follows as well as the file extensions and
assigned filter IDs. Remember, adding support for other codes and formats is in your hands
with Aten’s filters (see Section 11).

Table 1-1 Supported Model Formats

Format Extension(s) Nickname

Plain-text format

Aten Keyword Format *.akf akf 1 RW used by Aten

Cambridge Structural

Database Service * dat*fdat csd 7 RO

(Fiirlgstallographlc Information * cif oif 8 RO

*

DL_POLY Configuration *ggygg\ﬂ dlpoly 2 RW

EPSR ATO File *.ato ato 18 RW

GAMESS-US Output (Log) *.log gamuslog 11 RO
Cartesian

GAMESS-US Input File *.inp gamusinp 5 RW coordinates and Z-
Matrices
Cartesian

Gaussian Input File *.gjf gjf 17 WO coordinates and Z-
Matrices

Gromacs Configuration *.gro gro 14 RW

Mopac Archive File *.arc arc 16 RO

Including periodic
Mopac Control File *.mop mop 4 RW systems. Cartesian
coordinates only.

MDL Molfile *.mol mol 10 RO
MSI (Cerius2) Model File *.msi msi 12 RO
Protein Databank (PDB) *.pdb pdb 13 RO
Quantum Espresso *.in in 15 RW Assumes ibrav=0
SIESTA Flexible Data Format *.fdf siesta 9 RW
Tripos Sybyl Mol2 *.mol2 mol2 6 RW
XMol XYZ * Xyz XYz 3 RW

Table 1-2 Supported Trajectory Formats

Format Extension(s) Nickname Notes
DL_POLY Formatted
- HISu | *HIST |
& L_Jnformatted HISTORY dlpoly
Trajectories
GAMESS-US Trj File *.trj £r SJ';]"S atoms in MD and IRC
PDB Trajectory *
(Multiple PDB file) -pdb pdb
XYZ Trajectory *
XYyZ XYZ

(Multiple XYZ file)

Table 1-3 Supported Grid Data Formats

Format Extension(s) Nickname ID

Gaussian Cube *.cube cube 1 Alsoan importmodel filter
Probability density ~ *.pdens pdens 2 Simple 3D volumetric data format
Surface * surf surf 3 Simple 2D surface data format

Table 1-4 Supported Expression Data Formats

Format Extension(s) Nickname ID Read? Write? Notes
. *FIELD |
DL_POLY FIELD file FIELD dlpoly 1 no yes
Gromacs RTP file *.rp rtp -- no yes Prell_mlnary
version.
Gromacs TOP file *.top top 14 no yes

2.1nstallation

2.1. From Precompiled Packages (All Platforms)

The easiest way to get Aten is, of course, to download a precompiled installer for your
system. Installers are available for Windows, Mac OS X, and many Linux distributions
through the website (http://www.projectaten.net) and the OpenSuSE Build Service
(http://download.opensuse.org/repositories/home:/trisyoungs/).

2.2. From Source (Linux/Mac OS X)

If you want to compile Aten by hand (e.g. if you’re keeping your own copy of the source and
updating it via subversion) then these guides may help. They are very general and
(unavoidably) quickly go out of date, but they should provide some info to at least get started.
The Windows method is entirely different and somewhat more complicated than for Linux
and Mac OS X, but a working approach is documented here.

2.2.1. Obtaining the Source
From the Website (as an Archive)

Go to http://www.projectaten.net and grab the tar.gz of the version you want, and unpack it
with:

bob@pc:~> tar -zxvf aten-1.7.tar.gz

A directory called aten-nn.mm will be created containing all the guts of the code, ready to
build, where nn.mm is the current version number.

From GoogleCode (with subversion)

If you want to build Aten from source and maintain a local copy so you can update it quickly
to make the most of bugfixes and new features, this is the best way of doing it. You’ll need to
have subversion (http://subversion.tigris.org/) installed, since the GoogleCode repository
where Aten lives is a subversion-style repository. To get yourself a copy of the latest source,
run the following command:

bob@pc:~> svn co http://aten.googlecode.com/svn/trunk ./aten-latest

Afterwards, you’ll have a complete copy of the source in a directory called aten-latest.

2.2.2. Installing Necessary Pre-requisites

http://www.projectaten.net/
http://download.opensuse.org/repositories/home:/trisyoungs/
http://www.projectaten.net/
http://subversion.tigris.org/

Aten has a fairly modest set of external dependencies, namely Qt4 and readline. Since you’re
building from source, all the development files related to these packages must also be
installed. The C++ (g++) compiler and the automake/libtool packages are also a necessity.

Debian and Variants

On deb-based systems (e.g. Debian and Ubuntu) a command a bit like this should install all
that you need:

bob@pc:~> sudo apt-get install autotools-dev libtool autoconf \
automake g++ libreadline5-dev libgt4-gui libgt4-opengl \
libgt4-core libgtéd-dev

RPM-Based Systems

For most other Linux flavours the method of installing the necessary software really depends
a lot on your personal preferences (or your system administrators). For instance, using
zypper on an OpenSuSE distribution the command is (run as root) as follows:

bob@pc:~> zypper in readline-devel libgt4-devel libtool automake

Mac OS X

On Mac OS X you have two ways of installing Qt4. Nokia offer an installable disk image,
providing Qt4 as a proper Framework (see http://gt.nokia.com/downloads). Alternatively, Qt4
is available on Fink (gt4-x11). If you're using the Fink installation of Qt4, then you'll also
need pkg-config from the same source.

2.2.3. Configure
Make / Autotools

Configure the source with the following commands, run from the top level of the aten-
latest Or aten-nn.mm directory:

bobRpc:~> ./autogen.sh

This creates the necessary files needed to properly configure the build. If you unpacked the
source from a tar.gz, it is not necessary to run autogen. sh.

Next, run the configure script to check for all programs and files that Aten depends on, and
set up the build. If you plan on installing Aten ‘properly’ (i.e. install it on your machine so it
is available to all users) the configure script will place all binaries and necessary files in
/usr/local by default. This default location can be overridden by using the --
prefix=<path> option. So, the plain command is:

bob@pc:~> ./configure

http://qt.nokia.com/downloads

To set the installation location use, for example:

bob@pc:~> ./configure --prefix=/home/software

On Mac OS X it is necessary to specify which Qt4 installation you have installed (i.e.
Framework or Fink):

bob@pc:~> ./configure --with-gt=framework

or

bobRpc:~> ./configure --with-gt=fink

With the Fink installation you may also need to direct configure to the correct Qt4
development binaries either by setting your $PATH t0 /sw/1ib/qt4-x11/bin:${PATH} Of
by running:

bob@pc:~> ./configure --with-gt=fink --with-gtdir=<path>

where <path> points to the location of the Qt4 development binaries. All being well, no
errors should be encountered by either of these two scripts. Check out the FAQ for some
commonly-encountered problems. If you get find yourself up against unresolvable issues,
please email me and I'1l try to help.

CMake

An out-of-tree build is best. Make a directory somewhere, enter in to it, and run:

bob@pc:~> cmake /path/to/source/for/aten-nn.mm

For example:

bob@pc:~> cd ~

bob@pc:~> mkdir aten-build
bob@pc:~> cd aten-build
bob@pc:~> cmake ~/src/aten-1.7

2.2.4. Compile

Once successfully configured, build the source with:

bob@pc:~> make

This is probably a good time to make tea or brew coffee.

2.3. From Source (Windows)

Note that these instructions were written from the perspective of a Windows XP system. It’s
likely that the procedure for Vista, Windows 7 etc. will be similar. First step, download and
install the following:

2.3.1. Install Visual Studio C++ 2010

Get the C++ version of Visual Studio from http://www.microsoft.com/express/Windows/ — at
the time of writing this was version 10.0, but earlier versions 8.0 and 9.0 are also fine). This
will download a small web installer to your machine called vc_web.exe. Run this, and
accept the license. You may choose not to install Silverlight since it is not necessary for Aten.
Remember where the installation location is set to (by default it is C: \Program
Files\Microsoft Visual Studio 10.0\) because you’ll need this later on for the
installation of Windows PowerShell. Chances are you’ll need to restart your machine after the
installation.

2.3.2. Install the Windows SDK

Get the Windows SDK from http://msdn.microsoft.com/en-us/windows/bb980924 (or search
for “‘Windows SDK’ on the internet). Note that the download is described as being for
‘Windows 7 and .NET’ but this is fine since it’s backwardly compatible with XP. Run the
installer (vinsdk web.exe) and accept the license, and again take note of the installation
directories (since they need to be provided in the PowerShell setup later on). The default
installation options are fine, although you can uncheck the installation of ‘Samples’ since they
are not required. Once installation has finished, the Windows Help Centre may pop up and
ask where your local resources are. This can safely be canceled.

2.3.3. Install CMake

Download the lastest CMake installer from http://www.cmake.org/ (version 2.8.4 at the time
or writing) and install it. Make sure you choose to add CMake to the PATH for all users when
running the installation.

2.3.4. Install Readline

Go to http://gnuwin32.sourceforge.net/packages/readline.htm (or search for ‘Windows
Readline’ on the internet) and download the ‘Complete package, except sources’ installer
(around 2.3 Mb). If you choose to install somewhere other than the default location, you’ll
need to tweak the PowerShell profile given in Step 7.

http://www.microsoft.com/express/Windows/
http://msdn.microsoft.com/en-us/windows/bb980924
http://www.cmake.org/
http://gnuwin32.sourceforge.net/packages/readline.htm

2.3.5. Download GLext Header

Go to http://www.opengl.org/registry/api/glext.h and save the page as ‘glext.h’ somwhere like
your ‘My Documents’ directory. Again, if you choose somewhere other than this location,
you’ll need to tweak the PowerShell profile given in Step 7.

2.3.6. Download and Unpack Qt4 Source

Go to http://gt.nokia.com/downloads and download the LGPL package for Windows (approx
322 Mb) and run the installer file. Again, you may choose where to unpack the files to (the
default is ‘C:\Qt\2010.05” for the release downloaded here) but if you change the default
you’ll need to modify the relevant paths accordingly in Step 7. You may choose not to install
the MinGW part of the package since we will be using Visual Studio for the compilation.
There is no need to run Qt Creator once the installation is finished.

2.3.7. Install and Setup Windows PowerShell

Download PowerShell from http://support.microsoft.com/kb/968930. Once installed, run
PowerShell (its Start Menu entry is typically placed inside the ‘Accessories’ folder) and you
should be presented with a blue shell, starting inside your Documents and Settings folder
(C:\Documents and Settings\Your Name). First thing is to set up your profile with the
relevant paths set so we can find the Visual Studio, readline, and Qt4 files. Such settings are
stored in a file which doesn’t yet exist, and which is referenced by the environment variable
Sprofile. You can type this into PowerShell and see exactly where it points to:

PS C:\Documents and Settings\Your Name> Sprofile

C:\Documents and Settings\Your Name\My
Documents\WindowsPowerShell\Microsoft.PowerShell profile.psl

We must first create the directory where this file is expected to be:

PS C:\Documents and Settings\Your Name> mkdir "My Documents/WindowsPowerShell"

Directory: C:\Documents and Settings\Your Name\My Documents

Mode LastWriteTime Length Name

Q=== 23/04/2011 11:05 WindowsPowerShell
PS C:\Documents and Settings\Your Name> ls "My Documents"

Directory: C:\Documents and Settings\Your Name\My Documents

Mode LastWriteTime Length Name

Ele=== 23/04/2011 10:49 Downloads

d-r—- 10/07/2009 23:41 My Music

El=== 08/04/2010 16:35 My Pictures

Q=== 14/03/2011 08:47 My Received Files
El=== 26/06/2010 19:44 My Videos

http://www.opengl.org/registry/api/glext.h
http://qt.nokia.com/downloads
http://support.microsoft.com/kb/968930

Ql==== 23/04/2011 11:05 WindowsPowerShell
-a-—- 23/04/2011 17:43 637740 glext.h

You can then create and edit the profile file directly with Notepad:

PS C:\Documents and Settings\Your Name> notepad S$profile

In the empty file, paste the following into it and adjust any paths/versions as may be
necessary.

Setup Visual Studio and Windows SDK environment variables
if (test-path -path $env:VS100COMNTOOLS)

{

echo "Setting Visual Studio environment"
SVCSTUDIO="C:\Program Files\Microsoft Visual Studio 10.0"
SWINSDK="C:\Program Files\Microsoft SDKs\Windows\v7.1"

System variables

Senv:VSINSTALLDIR = "S$SVCSTUDIO"

$env:VCINSTALLDIR = "$VCSTUDIO\VC"

Senv:FrameworkDir = "C:\Windows\Microsoft.NET\Framework"
Senv:FrameworkVersion = "v2.0.50727"
Senv:FrameworkSDKDir = "$VCSTUDIO\SDK\v3.5"
Senv:DevEnvDir = "$VCSTUDIO\Common7\IDE"

Executable path
Senv:PATH += ";$SVCSTUDIO\Common7\IDE"

Senv:PATH += ";S$SVCSTUDIO\VC\BIN"

Senv:PATH += ";$VCSTUDIO\Common7\Tools"
Senv:PATH += ";S$VCSTUDIO\Common7\Tools\bin"
Senv:PATH += ";S$VCSTUDIO\VC\PlatformSDK\bin"
Senv:PATH += ";$SVCSTUDIO\SDK\v2.0\bin"
Senv:PATH += ";$VCSTUDIO\VC\VCPackages"
Senv:PATH += ";SWINSDK\Bin"

Include directories

Senv:INCLUDE += ";$VCSTUDIO\VC\ATLMFC\INCLUDE"
$env:INCLUDE += ";$VCSTUDIO\VC\INCLUDE"
Senv:INCLUDE += ";SVCSTUDIO\VC\PlatformSDK\include"
Senv:INCLUDE += ";SVCSTUDIO\SDK\v2.0\include"
$env:INCLUDE += ";SWINSDK\Include"

Libraries

Senv:LIB += ";SVCSTUDIO\VC\ATLMFC\LIB"
Senv:LIB += ";S$VCSTUDIO\VC\LIB"
Senv:LIB += ";S$VCSTUDIO\VC\PlatformSDK\1lib"
Senv:LIB += ";SVCSTUDIO\SDK\v2.0\1lib"
Senv:LIB += "; SWINSDK\Lib"
Senv:LIBPATH += ";$SVCSTUDIO\VC\ATLMFC\LIB"
}
else

{

echo "No Visual Studio installed, or incorrect version string used?"

}

Setup Qt environment variables
Senv:QTDIR="C:\Qt\2010.05"

if (test-path -path $env:QTDIR)
{

Senv:PATH += ";"+S$Senv:QTDIR+"\gt\bin"
Senv:INCLUDE += ";"+$Senv:QTDIR+"\gt\include"
Senv:LIB += ";"+S$env:QTDIR+"\qgt\1lib"

}

Setup GnuWin32 environment variables

Senv:INCLUDE += ";C:\Program Files\GnuWin32\include"
Senv:LIB += ";C:\Program Files\GnuWin32\1lib"
Senv:PATH += ";C:\Program Files\GnuWin32\bin"

Setup custom library and header environment variables
Senv:INCLUDE += ";SHOME\My Documents"

By default, the running of scripts in PowerShell is (likely to be) disabled, meaning that the
profile will not be loaded when PowerShell next starts up. To enable the execution of scripts,
run the following command:

PS C:\Documents and Settings\Your Name> set-executionpolicy remotesigned

You need to answer Yes to the question which then pops up. Afterwards, close this shell by
typing:

PS C:\Documents and Settings\Your Name> exit

...and then restart PowerShell. Your new profile should now be loaded, and you should see
the ‘Setting local environment’ message which we added to it. All being well, there should be
no error messages here — if there are, then its likely that there’s a mistake in one of the paths
set in the profile.

238. Build Qt4

First stage is to configure Qt ready for building by running the following commands:

PS C:\Documents and Settings\Your Name> cd C:\Qt\2010.05\gt

PS C:\gt\2010.05\gt> ./configure -release -opensource -platform win32-msvc2010
-gt-libjpeg -gt-libmng -gt-libtiff -gt-libpng -gt-zlib -gt-gif -no-webkit
-no-script

This will take a few minutes. Once complete, build Qt with:

PS C:\gt\2010.05\gt> nmake

This will take a few more minutes (approximately one hour, depending on your system’s
speed).

2.3.9. Download and Build Aten

Go to www.projectaten.net/download and get a zipped copy of the source. For this example
the latest beta version is 1.7.1626, so the zipfile is called ‘aten-1.7.1626.zip’. Unpack the
source somewhere — here it has been placed in the users’s home directory — and run cmake to
generate the necessary makefiles:

http://www.projectaten.net/download

PS C:\Documents and Settings\Your Name> cd aten-1.7.1626
PS C:\Documents and Settings\Your Name\aten-1.7.1626> cmake -G “NMake Makefiles”

Then, build Aten by running nmake:

PS C:\Documents and Settings\Your Name\aten-1.7.1626> nmake

Time to wait again, but hopefully after a little while you will see something resembling the
following (the important part isthe [100%] Built target Aten):

C:\Program Files\Microsoft Visual Studio 10.0\VC\INCLUDE\stdlib.h (433)
see declaration of 'getenv'
C:\Documents and Settings\Your Name\My Documents\aten-1.7.1626\src\main.cpp (52)
warning C4996: 'getenv': This function or variable may be unsafe. Consider using
_dupenv_s instead. To disable deprecation, use CRT SECURE NO WARNINGS. See
online help for details.

C:\Program Files\Microsoft Visual Studio 10.0\VC\INCLUDE\stdlib.h (433)
see declaration of 'getenv'
Linking CXX executable bin\Aten.exe
[100%] Built target Aten
PS C:\Documents and Settings\Your Name\My Documents\aten-1.7.1626>

If this is what you see, then you’ve built Aten successfully. You’ll need to point Aten to it’s
data directory by hand. From the command line, you can run the following:

PS aten-1.7.1626> .\bin\Aten.exe --atendata .\data

You can also set up a shortcut to the executable and set the option there.

2.3.10. Potential Readline Errors

There is the potential for the build to fail on the basis of odd readline errors:

C:\Program Files\GnuWin32\include\readline/keymaps.h(97) : see
declaration of 'rl set keymap'
C:\Program Files\GnuWin32\include\readline/readline.h(364) : error C2375:
'rl get keymap' : redefinition; different linkage

C:\Program Files\GnuWin32\include\readline/keymaps.h(94) : see
declaration of 'rl get keymap'
NMAKE : fatal error U1077: 'C:\PROGRA~1\MICROS~1.0\VC\bin\cl.exe' : return code
'0x2"'
Stop.
NMAKE : fatal error U1077: '"C:\Program Files\Microsoft Visual Studio
10.0\VC\BIN\nmake.exe"' : return code '0Ox2'
Stop.
NMAKE : fatal error U1077: '"C:\Program Files\Microsoft Visual Studio
10.0\VC\BIN\nmake.exe"' : return code '0x2'
Stop.

PS C:\Documents and Settings\Your Name\My Documents\aten-1.7.1626>

10

These errors arise because the functions r1_* * are declared differently between the
readline.h and keymaps.h header files, but can be fixed as follows. Since keymaps are
not used, the offending lines can be commented out in readline.h. Locate the file (by default,
itisinstalled in C:\Program Files\GnuWin32\include\readline/readline.h) and
edit it with Notepad or something similar. Put a comment marker /* at the very beginning of
line 356, and a comment end marker */ at the very end of line 364. Rerun nmake and
everything should be fine.

2.3.11. Anything Else?

Instead of downloading the zipped source of Aten, you could download a Windows
subversion client and maintain an up-to-date copy of the source on your machine — useful if
you want to frequently get the latest updates. There are many subversion clients available, but
Win32svn (http://sourceforge.net/projects/win32svn/) works well for me.

11

http://sourceforge.net/projects/win32svn/

3.Frequently Encountered Problems

What follows is a sort of mini FAQ detailing some commonly-encountered problems and
issues when compiling and executing Aten for the first time, and also some of the more
persistent problems that various platforms exhibit.

3.1. Configuration Errors

[ALL] ./autogen.sh: line 35: libtoolize: command not found

You need to install the 1ibtool package - it should be on the original CD of your linux
distro or on one of the billions of repository mirrors around the world.

[OSX] Error: Possibly undefined macro: AC_DEFINE

When running ./autogen.sh, autoconf sometimes fails with ‘configure.ac:16: error: possibly
undefined macro: AC DEFINE’. This is related to the version of pkg-config you have
installed (e.g. version 0.15.1 gives this error, but version 0.21 does not) with Fink / MacPorts.
Upgrade to the latest version. Incidentally, the line-number reported (16) is not the actual
location of the error - autoconf reports this wrongly (the actual error occurs later on with the
‘PKG CHECK MODULES(GTKZ2S, ..., [AC DEFINE...” command).

[OSX] Warning: Underquoted definition of PKG_CHECK_MODULES

Running ./autogen.sh, aclocal complains ‘/sw/share/aclocal/pkg.m4:5: warning: underquoted
definition of PKG_CHECK_MODULES’ If pkgconfig is not installed this is likely to give
rise to the said spurious error. Install pkgconfig from Fink / MacPorts to proceed.

[ALL] autogen.sh appears successful, but aclocal complains about ‘underquoted
definition of AM PATH...’

These warnings should not have affected the generation of a working ./configure script. So
you may as well move on to the next step in the build.

3.2. Compilation Errors

[ALL] Error: 'uic: File generated with too recent version of Qt Designer (4.0 vs. 3.X.x)"

This error can occur when both the Qt3 and Qt4 development packages are installed The
SPATH IS sometimes set so that the Qt3 binaries are found first, so the Meta-object compiler
from Qt3 is called, and then the generated source includes the Qt4 headers. Running which
moc Will tell you which binary is being used - you can then run this binary with the -+ option
to check the version. If its version 3.x.x then you will need to reconfigure the build as follows.

Each of the three Qt4 utilities needed to compile Aten — moc, rcc, and uic — can be specified

explicitly with three configure options; --with-gtmoc, --with-gtuic, and --with-
gtrcc. Typically, the Qt3 binaries are located in /usr/lib/qt3/bin while the Qt4 binaries are in

12

/usr/bin, but this may not be the case on your particular system. For the sake of argument,
let’s say they are, then the configure command will be run as follows:

bobRpc:~/src/aten> ./configure —-with-gtmoc=/usr/bin/moc --with-gtuic=/usr/bin/uic
-with-gtrcc=/usr/bin/rcc

[ALL] Error: "This file was generated using the moc from 3.X.X. It cannot be used with
the include files from this version...!

Again, this is usually related to both Qt3 and Qt4 development tools being installed
simultaneously. See the previous question and its solution above.

[OSX] Undefined reference to ___ stdoutp expected to be defined in
{usr/lib/libSystem.B.dylib

Chances are you have an older operating system - Panther (10.3.9) is confirmed to show this
error. Since the Universal Mac binaries are built on a machine with Snow Leopard (10.6) this
error can only be avoided by upgrading your operating system or compiling Aten by hand.

3.3. Usage Errors

[LINUX] I saved an image from the GUI and it was completely black / corrupt. Why?

A common issue with (integrated) Intel graphics chips, but may affect others. There are some
issues with the Qt code used to grab the current view as an image, but an alternative method is
available and works. Try the prefs option ‘aten.prefs.useframebuffer = TRUE;' to use the
alternative method. If this remedies the problem, add the line to your preferences file. One
caveat - although this appears to fix problems when saving images from the GUI, it does not
(apparently) solve the problem when saving the image from the command line.

[ALL] Why is Aten’s main view corrupt/black? I can’t see anything!

This is a fairly common issue, and the exact causes are not known for sure. Certainly on some
Linux machines the presence of an ATI graphics card seems to be related. Using the radeon
or fglrx drivers supplied with the OS rather than the proprietary ati driver sometimes
helps.

Forcing the main view widget to manually refresh itself usually solves the problem. To do this

on the latest versions, activate Settings—Manual Swap Buffers from the main menu (on
newer versions) or type the following into Aten’s command window:

aten.prefs.manualswapbuffers = TRUE;

If this remedies the problem, add the line to your user preferences file (see Section 4.2.2).

[WINDOWS] Aten fails to start, giving this message:

13

C:\Program Files\Witen-1.7.14635\binVAten.exe

@ Cs\Program Files! Aten-1.7. 1635 hintAben. exe

This application has Failed ko start because the application configuration is incorrect, Reinstalling the application may
fix this problem,

This descriptive (1) message suggests that the installation process failed, but this is not the
case. The real reason for Aten’s failure is that your machine lacks the Visual Studio C++
2008 runtime libraries. These can be freely downloaded from Microsoft’s website:

http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-
3802b2af5fc2&displaylang=en

Allternatively, search the internet for ‘Microsoft Visual C++ 2008 Redistributable Package
SP1°. Note that it must be the Service Pack 1 version.

14

http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=a5c84275-3b97-4ab7-a40d-3802b2af5fc2&displaylang=en

4.Quickstart

The following sections give an overview of the most important things to know about Aten.
It’s only a few pages long, and its well worth taking five minutes to read it.

4.1. Terminology
It is useful to know exactly what a few terms mean in Aten’s world:
Model

A model is a single molecule, a snapshot of an ensemble of molecules in a liquid, a crystal’s
unit cell — basically, any collection of atoms and bonds, optionally including a unit cell
definition and/or a number of glyphs (annotations or shapes).

Pattern

A system containing many molecules can be described (and manipulated) efficiently through
the recognition that there are sets of molecules of the same type. A pattern describes one such
set of similar molecules, and a model’s pattern definition may contain many individual
patterns. Many operations in Aten require that a pattern definition be present, and one is
automatically created as and when necessary. See Section 10.3 for more information.

Filter

A filter is a set of commands (i.e. a program) which loads data in to or saves data from Aten.
Aten depends on filters to be able to load and save models, forcefields, expressions,
trajectories, and grid data. All filters are written in Aten’s own scripting language (which is
based syntactically on C) and are loaded in on startup. New filters can be added at will (by the
user) to cater for specific formats. See Section 11 for more information.

Expression

While a forcefield is a collection of terms (bonds, angles, van der Waals terms, etc.) which
describe (usually) a large number of molecular types and systems, an expression is a subset of
terms specific to one model.

NETA

Aten is able to automatically assign forcefield atom types to atoms in a model through the use
of type descriptions in the Nested English Typing of Atoms (NETA) language. This is a
simple, readable system for describing the connectivity and environment of individual atoms.
See Section 12.5 for more information.

Fragment

A fragment is a molecule or structure which can be used to quickly build up a new model, or
modify an existing one. For example, cyclohexane, or a tertiary butyl group.

15

4.2. File Locations

4.2.1. Installed / Provided Files

Aten depends on several sets of files in order to function properly and, generally-speaking,
knows where to look for them. Sometimes, however, you may need to tell Aten where these
files are (e.g. if you have not installed Aten after compiling the source yourself). There are

several ways of achieving this. When running Aten from the command-line, the --atendata
switch can be used to specify the location of Aten’s data files. For instance:

bob@pc:~> aten --atendata=/usr/software/aten/data

Alternatively, the environment variable SATENDATA can be set. For example, in a bash-style
shell:

bob@pc:~> export ATENDATA=/usr/software/aten/data

In both cases, Aten should be directed to the data directory; either it’s installed location or
the directory in the top level of the source distribution.

The structure of the data directory is as follows:

data/filters Contains stock filters for import and exporting data
data/fragments Fragment models for drawing / modifying models
data/ff Forcefield files

data/fftesting Forcefields that are incomplete or have not been tested
data/partitions Partition data for the disorder builder

data/test Various test files (models, grids etc.) (not installed)

4.2.2. User Files

Aten will search for additional filters, fragments, and forcefields in a specific location in the
user’s home directory. On Linux and Mac OS X systems this directory is called .aten, while
on Windows the directory should be called simply aten (i.e. without the preceding dot).
Within this directory exists (optionally) further directories named similarly to those in the
data directory, in which user files of the relevant type should be located.

Finally, the two main preferences files are located in the user’s .aten (Or aten) directory.
Both are optional. The first, prefs.dat (or, alternatively, prefs. txt) is written by Aten
from the Prefs window. While this file may be modified by hand, changes will be lost if
overwritten by Aten. The second file, user.dat (or, alternatively, user. txt) is maintained
entirely by the user, and should be used to change or set up exotic situations and preferences.
For instance, a specific forcefield could be loaded automatically on startup.

16

4.3. Referencing Aten

Aten has been published in the Journal of Computational Chemistry, and the article can be
found online here. The full reference is:

“Aten - An application for the creation, editing, and visualization of coordinates for glasses,
liquids, crystals, and molecules”, T. G. A. Youngs, J. Comp. Chem. 31, 639-648 (2010).

It is not a requirement to cite Aten in your work, but if you feel that Aten has been
particularly useful then the credit would be nice.

17

http://doi.wiley.com/10.1002/jcc.21359

5.Usage Examples

5.1. Creating a Bulk Water Model (GUI)

Bulk (periodic) systems are the staple diet of the molecular dynamicist, particularly systems
that are isotropic. This example illustrates how to generate a simple bulk configuration of
liquid water.

Make a Water Molecule

We need a water molecule. We could load one in, but its marginally more interesting to build
one from scratch. So, we’ll place an oxygen atom down somewhere and automatically add
hydrogens to it.

Main Toolbar Create a new, empty model (if you don’t have one already) with _J
7 Build In the Build Window change the active element to oxygen on the Edit
page by clicking B

Select the draw single atoms tool *: and click once somewhere in the
empty model to draw an oxygen atom

Add hydrogens to the model by clicking #AddH Model

A G Aten (vL7 r1671)- 2 [<=no) [Modified] v & %
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

UmAB X DDl +=00@ QX

¢

Select: Click or click-drag to select, +shift toggle (left click) or add areato selection (left click-drag) or translate (middle click-drag) = 3 Atoms 18 015000 g mal?
or rotate in local frame (right click-drag), +etrl remove from selection Mon-periadic

Run the Disorder Builder

The Disordered Builder adds molecules into a new or existing model with a unit cell. The
only requirement of the Disorder Builder is that all the models you wish to add must be
loaded into Aten before the builder is run. Everything else is handled by a wizard which
guides you through the process.

18

&F Disorder Run the Disorder Builder wizard

'(—2' Disorder Wizard 2 @ @ &

Step 1/5 - Model Target
Select the target model for the build, or choose to create a new one

Use Existing Mode|

Select a loaded mode! which already has a cell definition as the target for the
diserdered builder. The maodel may have existing contents which will be preserved
during the build. An optional pariitioning scheme may be applied.

Create New hlodel and Define Cell

A new model will be created and used as the target for the disordered builder. The
unit cell will be defined in the next step, and an optional partitioning scheme may be
applied.

._;. Create New hodel and Generate Cell

A new model will be created and used as the farget for the disordered builder. The

shape of the cell will be defined in the next step, while the final size will depend on

the specified contents. Ne partitioning scheme other than ‘none’ may be selected in
this mode.

Back Mext= || Cancel

Step 1 is to select either an existing model (which has a unit cell) or choose to create a new
one. Since the water molecule is the only one loaded in this example, the existing model
option is grayed out in the graphic above. When creating a new model, there are two options
for the generation of the unit cell — either you can specify the cell lengths and angles explicitly
to get exactly the cell you want, or you can specify just the angles and relative lengths of the
cell, which will then be enlarged automatically to contain whatever you choose to put inside
it. For this example, we will do the latter, so select the last option and click Next.

'(—2' - Disorder Wizard d » @ &

Step 2 /5 - Model Selection / Cell Definition
Select or define a suitable model ! cell target

Define a unit cell for the new model:

Relative Lengths Angles
a [1.0000 ¢ w50 00000000 * [4)
b | 10000 £ B 9000000000 Q
¢ [1.0000 ¢ | v [90.00000000 * Q

Final cell angles will be those set here, while the final cell lengths will follow the ratios
you set here, with their absolute length determined by the cell contents.

<Back || Mext> | Cancel

As mentioned, here we define exacly the angles of the cell, but any lengths we specify are
relative lengths which will be scaled according to the number and density of the molecules we
choose to put in the cell. We will leave them as they are for now, so we will end up with a
cubic cell with some side length .

19

'g,'? - Disorder Wizard D v @ &

Step 3 /5 - Choose Cell Partitioning
Select a partitioning scheme to apply to the cell

Scheme Options...

< Back Next= || Caneel

The Disorder Builder normally permits a partitioning scheme (see Section XXX) to be
selected in order to partition molecules up into different regions in the cell. When generating a
cell, however, this is not possible, so we must choose the basic cell option and click Next.

& Disorder Wizard e E

=

Step 4/5 - Choice of Components
Select the models representing the components to be added to the cell

Select models to use as components:

¢

Select muttiple components with Shift and Ctrl

< Back Next= || Caneel

Next we must choose which models or components we wish to add into the new system. Here
there is only one choice, the water model we created earlier, so select it ans press Next.

,(:2' Disorder Wizard 2) e (2

Step 5 /5 - Set Component Populations
Set the desired population number andlor density for each component

Target Partition | 0 Whaole Cell v
; Insertion Policy
_) Exact Number
Specific Density
= Exact Number / Density
> Relative Mumber ! Exact Density

Population 200 k]

Density 1.00000|glcm3]

! Allow component to be rotated

Method Options

<Back || Finish | Cancel

20

Finally, the most important step of the wizard is to define a policy for the insertion of each
model we selected in the last step. There are usually four options here; either a specific
number of molecules or a specific density (more correctly a specific partition density), and
exact number and density, or a relative number and exact density. Since our cell size is to be
automatically determined, only one of those four options is available, Exact Number /
Density, since both pieces of information are required in order to work out the final cell
volume. So, choose the number of water molecules to add, say 200, and the density you want
them to have in the cell. Press Finish and the system will then be built.

(5\ Aten (vL7 r1671) - Disorder Model (<<no filename>>) [Modified] ¥ @ X
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

UrBABX DD +=008 QMG

e

Select: Click or click-drag to select, +shifttoggle (left click) or add area to selection (left click-drag) or translate (middle click- 600 Atoms 3603.000000 g mol*
drag) or rotate in local frame (right click-drag), +ctrl remove from selection Cubic, 1.000000 g cm*

Script

When run from the command line the disorder builder always requires a model with a unit
cell to be defined — only through the GUI is the model created automatically. This script
defines a basic cubic cell in a new model before the disorder builder is run with the second
argument set to FALSE (which indicates that the cell size is not fixed and should be adjusted
to suit the defined molecule contents) and also minimises the system a little before saving out
coordinates and a forcefield expression for DL_POLY.

newmodel ("water") ;

newatom (O) ;

addhydrogen () ;

setupcomponent ("both", 1, 200, 1.0);

newmodel ("box") ;
cell(1.0,1.0,1.0,90,90,90);
disorder ("None", FALSE);

loadff ("spce.ff");
mcminimise (20) ;
sdminimise (20);

saveexpression ("dlpoly", "water.FIELD");

21

savemodel ("dlpoly",

quit();

"water.CONFIG") ;

22

5.2. Building 8-Alumina from Basic Crystal Data

Crystal structures are useful for many things, provided you can find them in electronic format.
When you can't and are left with the bare crystallographic data in a paper things are slightly
more troublesome. This was exactly my experience when working with #-alumina — the
crystal information is readily available in a paper by Zhou and Snyder (Acta. Cryst. B, 47, 617
(1991)), and here’s how to make use of it.

Create the Unit Cell

First, we create the crystal cell in which to add our atoms. From the paper we see it is a
monoclinic cell with £ = 103.83°, and side lengths a = 11.854, b = 2.904, and ¢ = 5.622 A.
You may want to zoom out afterwards to get a proper look at the new cell.

[7 Define Open the Cell Define Window
Add a unit cell to the model by checking the Has Cell? Checkbox, then go to
the Define/View ABC page and set the cell lengths a, b, and ¢ to 11.854,
2.904, and 5.622 respectively. Set the cell angle g to 103.83°, and click
Define.

A G Aten (vL7 r1671)- 1 (<<no) [Modified] EANESES
File Edit View Selsction Model Trajectory Forcefield Settings Scripts Help

UeABX DDl +=0/0@ OM%RE

¢

Seleet Click or click-drag to select, +shifttoggle (left click) or add areato selection (left click-drag) o translare (middle click- | 0 Atoms 0.000000 g mal*
drag) or rotate in local frame (right click-drag), +ctrl remove from selection Parallelepiped, 0.000000 g cm?

Add Symmetry Unique Atoms

There a five symmetry-unique atoms to add into the cell, which will in turn be used to
generate the remaining 35 symmetry-related atoms to give the complete unit cell. To add the
atoms we will use the Add Atom method in the editing tools available in the Build Window.
Atom positions in the paper are given in fractional coordinates - we will create the atoms
using these coordinates which will be converted to their ‘real’ equivalents by Aten (according
to the current cell) as we add them.

23

%% Build In the Build Window change the active element on the Edit page to
aluminium by clicking the periodic table button B= and selecting it there.
On the Add Atom panel in the Tools page make sure Fractional Coordinates
is checked and then enter the following sets of coordinates, clicking Add after
each set is entered:
x =0.9166,y =0.0, z=0.2073
x =0.6595, y =0.0, z = 0.3165

Go back to the the Edit page and change the active element to oxygen by
clicking the B button. Then, return to the Tools page and add three more
atoms at the following fractional coordinates:

x =0.8272,y=0.0,z=0.4273

x =0.495,y=0.0,z =0.2526

x =0.1611,y=0.0, z = 0.0984

AG Aten (VL7 r1671)- 1 (<<no) [Modified] v e
File Edt View Selection Model Trajectory Forcefield Settings Scripts Help

. == = ©
UwBABX DDl +=008 COHh%EE®

Select: Click or click-drag to select, +shift toggle (left click) or add areato selection (left click-drag) or translate (middle click- | 5 Atoms 101961000 g mol*
drag) or rotate in local frame (right click-drag), +etrl remove from selection Parallelepiped, 0.900964 g cm®

Assign the Spacegroup and Pack

To complete the model the spacegroup of the crystal must be set, so that generation of the
symmetry-related atoms can be performed. This is all done on the Cell Define window. The
spacegroup can be entered as either its numeric ID (as listed in the IUC Tables) or as the
unformatted spacegroup name - 8-alumina belongs to spacegroup C2/m (number 12).
Symmetry-related copies of the five atoms present in the cell can then be generated. Any
overlapping atoms resulting from the application of the spacegroup’s generators are
automatically removed.

7 Build Open the Cell Define Window again, and on the Spacegroup page enter the

spacegroup as “C2/m” or “12” and press Set to assign the spacegroup to the
model. Then, generate symmetry equivalent atoms by pressing the Pack button

24

(;\ _ Aten [vL7 r1671) - Unnamed001 [<=no filename>=) [Modified] 2 & &8
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

DBABAX Do Dfl+=08@ A

00 OO ¢
L f. ®

\.\

%

Select: Click or click-drag to select, +shift toggle (left click) or add area to selection (left click-drag) or translate (middle click- | 20 Atoms 407 844000 g mal?
drag) or rotate in local frame (right click-drag), +etrl remove from selection Paralielepiped, 3.603856 g cm?

Replicate Cell and Recalculate Bonds

The basic crystal unit of 6-alumina isn’t too interesting on its own, so lets create a chunk to
properly see the structure. Replicate the unit cell by 3 or 4 units in each positive direction (or
more if you're feeling adventurous) and then calculate the bonding in the model.

7 Build Open the Cell Transform Window and on the Replicate page set each
positive replication direction to 3 or 4. Press the Replicate button to generate
the new supercell.

7 Build Back in the Build Window, go to the Edit page and Rebond the model.

A Aten (VL7 r1671)- 1(<<no) [Modified] 9 @ &
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

UwBABRX DD +=008fiCME

Select Click or click-drag to select, +shifttoggle (left click) or add area to selection (left click-drag) or translate (middle 540 Atoms 11011.788000 g mol*
click-drag) or rotate in local frame (right click-drag), +ctrl remove from selection Parallelepiped, 3.603856 g cm*

25

Script

newmodel ("alumina") ;

cell(11.854, 2.904, 5.622, 90, 103.83,

newatomfrac
newatomfrac

Al1,0.6595,0,0.3165);
A1,0.9166,0,0.2073);
newatomfrac (0,0.8272,0,0.4272);
newatomfrac (0,0.495,0,0.2526) ;
newatomfrac (0,0.1611,0,0.0984) ;
spacegroup ("C2/m") ;

pack () ;

replicate(0,0,0,3,3,3);
rebond () ;

90) ;

26

5.3. Creating an NaCl/Water Two-Phase System (GUI)

It’s often necessary to create a larger system from a simple (or complex) unit cell, for example
to generate bulk supercells of crystals, sufaces etc. The method outlined below shows how to
do this for a simple crystal, and then extends this system to create a solid liquid interface.

Create the Template Model

First off, we will create a basic FCC template model which has a unit cell of exactly 1 A, with
atoms at {0,0,0}, {0.5,0.5,0}, {0.0,0.5,0.5}, and {0.5,0.0,0.5}, representing the basic positions
of atoms in a face-centred cubic lattice.

[7 Define Open the Cell Define Window
Add a unit cell to the model by checking the Has Cell? checkbox, then go to
the Define/View ABC page and set the cell lengths a, b, and ¢ to 1.0, then
click Define.

¢ Build Add the following four atoms to the model at the coordinates specified.
Change the current element to Na with B= Pick on the Edit page in the Build
Window, and use the Add Atom panel in the Tools page to create the atoms.

x=0.0,y=0.0,z=0.0
x=05y=0512=00
x=0.0,y=05,2z=05

x=05,y=00,z=05

Aten (vL7 r1671)- 1 (<<no) [Modified] v @ &

File Edt View Selection Model Trajectory Forcefield Settings Scripts Help

UeBBX DD +=008 QG

4

¢

Transmute: Click atoms to transmute into current drawing element, +shift to transmute all atoms of the same element as the 4 Atoms 91960000 g mol*
clicked atom Cubic, 152.703154 g cm?

Create Interpenetrating Secondary Lattice

27

We need a second FCC lattice on which the chlorine atoms will sit. We could add them all by
hand, but there are easier ways.

Ctrl-A Select all the atoms in the model with the Ctrl-A shortcut, or go to the Edit
(7 Define menu and choose Select All.

Ctrl-C Copy the current atom selection with Ctrl-C, or Edit—Copy.

Ctrl-v Paste the copied atoms with Ctrl-V or Edit—Paste.

* Position Open the Position Window and select the Flip page. Here we can mirror the

coordinates of the current atom selection about its centre of geometry. So,
mirror it once in any one of the x, y, or z directions (::,*, or £*). Do not
deselect the atoms afterwards, since we still need to transmute them into
chlorines.

7 Build On the Edit page in the Build Window, set the current element to chlorine with
= Pick, and then click &§ Transmute Sel.

A Aten (VL7 r1671)- 1 (<<no) [Modified] v o X
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

D@BBX DD +=008 QT

4

|

Select: Click or click-drag to select, +shifttoggle (left click) or add area to selection (left click-drag) or translate (middle click- 8 Atoms 233.772000 g mol*
drag) or rotate in local frame (right click-drag), +ctrl remove from selection Cubic, 388.187491 g cm*

Scale and Replicate Unit Cell

We wish to scale the cubic unit cell of the model (currently with side length | = 1.0 A) to
correspond to the unit cell of sodium chloride (I = 5.628 A). The cell can be scaled by a
different amount in each Cartesian axis, but since we want to end up with a cubic cell we must
scale each axis by the same amount.

Once the model represents proper the basic sodium chloride unit cell we can replicate it to
create a larger system. Aten can replicate a basic cell by any integer or non-integer amount
along each of the three principal cell axes, but here we will stick to integer amounts. The
Replicate method also allows specification of both negative and positive replication amounts
for each direction. Note that the values given in the Replicate page represent the total size
which we require, so input values (negative/positive) of {0,0,0} and {1,1,1} will result in an
unchaged cell.

g Transfarm On the Cell Transform Window go to the Scale page and enter a scale factor

28

of 5.628 for each of x, y, and z. Press the Scale button to resize the unit cell.

Now, select the Replicate page and enter positive replication values of 5.0 for
both x and z, and 2.0 for y, and press Replicate to create the supercell.

A& Aten [vL7 r1671) - Unnamed001 <<no filename>=} [Modified]
File Edit VWiew Selection Model Trajectory Forcefield Settings Scripts Help

UeABX DDl +=008 AHXE
W w -w

Owa.f.ﬁ

Select Click or click-drag to select, +shift toggle (left click) or add area to selection (left click-drag) or translate (middle 400 Atoms 11688600000 g mol?
click-crag) or rotate in local frame (right click-crag), +ctrl remove from selection Orthorhambic, 2.177606 g cm?

- L)
S

Lo

Create an Interface

It's a simple job to create an interface from the current system - all we need do is increase the
cell dimension along the y direction (the cell’s b length).

[Define Open the Cell Define Window, and either change the central number of the
Matrix page or the b value on the Define/View ABC page. If you replicated
the y direction by 2.0 earlier, then the current value of b should be 11.238 A.
Change it to 22.5 to roughly double the volume of the cell and create an
interface in the xz plane.

Make a Water Model

We will now create a water molecule in a separate model so we can add it in to the NaCl cell
using the Disorder Builder.

Main Toolbar Create a new, empty model (if you don’t have one already) with |
¢ Build In the Build Window change the active element to oxygen on the Edit
page by clicking B

Select the draw single atoms tool *: Atom and click once somewhere in
the empty model to create an oxygen

Add hydrogens to the model by clicking AddH Model

29

A Aten (vL7 r1671)- 2 [<=no) [Modified] Lo

File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

UDeBABX D00 +=0 88 BCMKS

¢

Select: Click or click-drag to select, +shift toggle (left click) or add areato selection (left click-drag) or translate (middle click-drag) = 3 Atoms 18 015000 g mal?
or rotate in local frame (right click-drag), +etrl remove from selection Mon-periadic

Add Water to the NaCl Cell

It’s time to run the disorder builder on the system. We’ll instruct the builder to add water in to
the extended NaCl cell, but only into the part which is empty.

&F Disorder Run the Disorder Builder wizard

&g Disorder Wizard AN g Disorder Wizard 2w e %

Step 1/5 - Model Target Step 2/5 - Model Selection / Cell Definidon
Select the target model for the build, or choose to create a new one Select or define a suitable model | cell targst
» Use Existing Model Select an existing model to use as the target

—
<

Select a loaded model which already has a cell definition as the target for the I
disordered builder. The model may have existing contents which will be preserved | —
during the build. An optional partitioning scheme may be applied.

Create New Model and Define Cell %“‘E

A new model will be created and used as the 1arget for the disordered builder. The
unit cell will be defined in the next step, and an optional partitioning scheme may be
applied.

O Create New Model and Generate Cell

A new mode! will be created and used as the 1arget for the disordered builder. The

shape of the cell will be defined in the next step, while the final size will depend on

1he specified contents. No partitioning scheme other than 'none’ may be selected in
his mode.

<Back || Nest> || Cangel <Back || Nest> || Cancel

We wish to add in water to an existing system in this example, so choose the top option (Use
Existing Model) and press Next. You then need to choose the target model for the builder,
which is the extended NaCl system we just created. Select it and press Next.

30

*?’7.’ Disorder Wizard) (v () (X

Step 3 /5 - Choose Cell Partitioning
Select a partitioning scheme to apply to the cell

CylinderZ ~
Cylinder along Z-Axis
Mumber of partitions = 2

SlabxY
Slah in X Flane
Humber of partitions = 2

Slab¥Z
Slab in YZ Plane
Mumber of partitions = 2

Sphere

Simple spherical region L A Options for scheme 'SlabXzZ' (2 v A X
Humber of partitions = 2 st st i :
i
7&“9”‘9 Options, Slab Properties
Start Y 040000 £ EndY 100000 [+]
<Back || Mext= || Cancel | @ ok || @ cancel

Now we choose the partitioning scheme for the system. We could be lazy and just choose
“None”, since the NaCl lattice should ‘reject” any water molecule we attempt to add over it.
However, here we will choose an appropriate partitioning scheme for the task, “SlabXZ”.
This will allow us to restrict water molecules to a specific y-range in the unit cell. Select
“SlabXZ” and press the Scheme Options button to bring up the options dialog for the
scheme. There you will see the start and end values of y for the slab (in fractional cell
coordinates). The initial minimum limit of 0.4 is, luckily, appropriate for the system, but the
upper bound needs to be set to 1.0. Press OK when done and then Next.

& Disorder Wizard Y & &g Disorder Wizard @ &
Step 415 - Choice of Components Step 5 /5 - Set Component Populations
Select the models representing the components to be added to the cell Set the desired population number and/or density for each component

Select models to use as components: Target Partition | 2 Slab v

; ; Insertion Policy
Exaet Number
- Specific Density
B Exact Mumber { Density
~ Relative Number | Exact Density
Population
Density 1.00000 glem3 k]

~_f Allow component to be rotated

Select multiple components with Shift and Ctrl Method Options ...

< Back Next = Cancel < Back Finish Cancel

Finally, model selection and preparation. Select the water molecule from the list and press
Next to get to the component setup page. We must change the Target Partition of the water
molecule to 2 (the slab we defined earlier), and then request that a Specific Density of
molecules be inserted into this partition (the default of 1.0 g cm™ is fine). Once this
information has been entered, press Finish to start the build.

31

A Aten (VL7 r1671)- 1 (<<no)[Modified] v A X
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

DeBEX oDl =008 LM

Select Click or click-drag to select, +shifttoggle (left click) or add area to selection (left click-drag) or translate (middle 1462 Atoms 18065.910000 g mol*
click-drag) or rotate in local frame (right click-drag), +ctrl remove from selection Orthorhombic, 1.683752 g cm?

Script

The script below creates the water molecule as the first step to make life a little easier.

newmodel ("Water") ;

newatom (O) ;

addhydrogen () ;

setupcomponent ("density", 2, 0, 1.0);

newmodel ("fcc") ;
cell(1,1,1,90,90,90);

newatom (Na, 0,0,0) ;

newatom (Na,0.5,0.5,0) ;
newatom (Na,0.5,0,0.5) ;
newatom (Na,0,0.5,0.5);

selectall () ;
copy ()
paste () ;
flipx();
transmute (Cl) ;
scale(5.628,5.628,5.628);
replicate(0,0,0,5,2,5);
setcell ("b",28.12);
disorder ("SlabXZ,end=1.0");

32

5.4. Building Ice I;, from Crystal Information (GUI)

Similar in spirit to the alumina example (Section 5.2), here we create a single ice I, crystal
from the crystal information, and then replicate it to form a larger supercell. The crystal
information used below is from Leadbetter et al., J. Chem. Phys., 82, 424 (1985), Table Il
(Structural parameters of ice at 5 K).

Create the Basic Unit Cell

First, we create the unit cell, which from the paper is orthorhombic with side lengths a =
45019, b = 7.7978, and ¢ = 7.328 A. There a five symmetry-unique atoms to add into the cell.
This might seem odd given that this doesn't add up to a whole number of water molecules, but
one of the water molecules lays with its oxygen on a mirror plane, and so only needs one
hydrogen to be specified. Atom positions in the paper are given in fractional coordinates - we
will create the atoms using these coordinates which will be converted by Aten into their real
(cell) coordinates automatically.

[F pefine Open the Cell Define Window
Add a unit cell to the model by checking the Has Cell? Checkbox, then go to
the Define/View ABC page and set the cell lengths a, b, and ¢ to 4.5019,
7.7978, and 7.328 respectively. Leave the cell angles all at 90°, and click
Define.

¢ Build In the Build Window change the active element on the Edit page to oxygen
by clicking the B button.
On the Add Atom panel in the Tools page make sure Fractional Coordinates
is checked and then enter the following sets of coordinates, clicking Add after
each set is entered:

x =0.0,y=0.6648, z = 0.0631

x = 0.5,y =0.8255, z=-0.0631

Go back to the the Edit page and change the active element to hydrogen by
clicking the [button. Then, return to the Tools page and add three more
atoms at the following fractional coordinates:

x=0.0,y=0.6636,z =0.1963

x=0.0,y=0.5363,z=0.0183

X =0.6766, y =-0.2252, z = -0.0183

33

A Aten [vL7 r1671)- 1 (=<no } [Modified] TSI

File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

D@ABX DDl +=0 908 "LOMES

— Oy

%

Select: Click or click-drag to select, +shift toggle (Ift click) or add areato selection (left click-drag) or translate (middle click- 5 Atoms 35.022000 g melt
drag) or rotate in local frame (right click-drag), +ewl remove from selection Orthorhombic, 0.226067 g em®

Set the Spacegroup and Pack

To complete the model the spacegroup of the crystal must be set so that generation of the
symmetry-related atoms can be performed.

¢ Build Open the Cell Define Window again, and on the Spacegroup page enter the
spacegroup as “Cmc21” or “36” and press Set to assign the spacegroup to the
model. Then, generate symmetry equivalent atoms by pressing the Pack button

C\ Aten [vL7 r1671) - Unnamed001 [=<no filename== | [Modified] & @ &
File Edit View Selection Model Trajectory Forcefield Settings Scripts Hslp

JeBHBEX DsDfl =0 CLOMES

%

Select: Click or click-drag to select, +shifttoggle (et click) or add area to selection (et click-drag) o transiate (middle click- | 24 Atoms 144.120000 g mal*
drag) or rotate in local frame (right click-drag), +etrl remove from selection Qrthorhombic, 0.930293 g cm?

34

Replicate Cell and Calculate Bonding

The basic cell of ice I, isn’t particularly interesting by itself, so we will replicate the cell to
create a larger supercell, and then calculate bonds in the new model so that the hexagonal

structure is clear to see.

g Transfarm

Now, select the Replicate page and enter positive replication values of 5.0 for
both x and z, and 2.0 for y, and press Replicate to create the supercell.
Back in the Build Window, go to the Edit page and Rebond the model.

%% Build

A Aten (vL7r1671)-
File Edit View Selection Model Trajectory Forcefield Settings Scripts Help

J»ABX D00 +=008"AHKE

1 (<<no)

On the Cell Transform Window go to the Scale page and enter a scale factor
of 5.628 for each of x, y, and z. Press the Scale button to resize the unit cell.

ofe B

£ oo
g‘» & ;;q%k f :"

%

Select: Click or click-drag to select, +shifttoggle (left click) or add areato selection (left click-drag) or translate (middle
click-drag) or rotate in local frame (right click-drag), +ctrl remove from selection

Script

newmodel ("ice") ;
cell(4.5019,7.7978,7.3280,90,90,90);
newatomfrac (0,0,0.6648,0.0631);
newatomfrac(0,0.5,0.8255,-0.0631) ;
newatomfrac (H,0,0.6636,0.1963);
newatomfrac (H,0,0.5363,0.0183);
newatomfrac (H,0.6766,-0.2252,-0.0183) ;
spacegroup ("Cmc21") ;

pack () ;

replicate(0,0,0,4,4,4);

rebond () ;

35

1536 Atoms 9223.680000 g mol*
Orthorhombic, 0.930293 g cm™®

5.5. Exporting Coordinates in Bohr (Filters)

Aten works in units of Angstroms, but of course this does not suit every other computational
code out there. Many physics code allow (or require) input in units of Bohr. The simplest
way of generating coordinates in Bohr rather than Angstroms is to write a custom filter to
output the data in the units that you want, converting to/from Angstroms on the fly. This
examples takes the existing xyz filter and creates a new ‘xyzbohr’ filter that does reads and
writes in Bohr (note that Aten still works in Angstroms, however).

Firstly, copy the xyz filter that comes with Aten, probably in
/usr/share/aten/data/filters on Linux/Mac, or C:\Program Files\Aten N.MMM
on Windows, and copy this to your user filter directory. On Linux/Mac this is
~/.aten/filters, while on Windows this will be a directory called aten in your user
home in Documents and Settings. Rename your copy of the file to xyzbohr.

To make this new filter file read and write in units of Bohr we need to simply divide or
multiply by 0.5292, depending on whether we’re writing or reading the coordinates. SO,
begin by changing the importmodel section (around line 23) to read:

i = newatom(e, rx*0.5292, ry*0.5292, rz*0.5292);

So this just converts the units of Bohr in the file to Angstroms on input, right? The
exportmodel section must be modified as well (around line 38):

for (atom i=m.atoms; i != 0; ++i) writelinef ("%-8s %12.6f %$12.6f %12.6f
%12.6f\n",i.symbol,i.rx*0.5292,1.ry*0.5292,1.rz*0.5292,1.q9);

The importtrajectory section can be modified in a similar way, or can be removed if it is not
required.

As it stands, this new xyzbohr filter will ‘hide’ the original xyz filter since both the
nicknames and IDs are the same, and so they must be changed in the importmodel and
exportmodel headers (and the importtrajectory if itis still there). Simply changing all
occurrences of ‘xyz’ to something like ‘xyzb’ is enough, as well as choosing an ID for the
new filter which is not currently in use (something above 100 is safe).

The next time Aten is run the user filter directory will be searched and the new xyzbohr
filter will be loaded ready for use, just as the normal stock of filters are.

The entire new filter file looks like this:

Bohr XYZ coordinates files (for vl1.2+)
Created: 19/07/2011

Last modified: 19/07/2011

Changelog:

filter (type="importmodel", name="XMol XYZ Coordinates (in Bohr)", nickname="xyzb",
extension="xyzb", glob="*.xyzb", i1d=30)
{

Variable declaration

36

}

filter (type="exportmodel", name="XMol XYZ Coordinates

int natoms,n,m;
string e, title;
double rx,ry,rz,q;
atom i;

Read data

while (!eof())

{
readline (natoms) ;
getline (title);
newmodel (title) ;

for (n=1; n<=natoms;

{

++n)

readline (e, rx,ry,rz,qd);

i = newatom(e,

i.g = qg;
}
rebond () ;
finalisemodel () ;

extension="xyzb", glob="*.xyzb",

{

Variable declaration
model m = aten.frame;

writeline (m.natoms) ;
writeline (m.name) ;
for (atom i=m.atoms; i !=

rx/0.529, ry/0.529,

nickname="xyzb", 1d=30)

0;

Tral)

writelinef ("$-8s

$12.6f\n",i.symbol,i.rx*0.529,1i.ry*0.529,1i.rz*0.529,1.q9);

}

37

rz/0.529);

o

°

(in Bohr)",

12.

6f

$12.6f

%1l2.6f

5.6. Calculate Average Coordinates (CLI)

This example takes the supplied water trajectory and determines the average coordinates of all
the individual water molecules. Note that no accounting for the periodicity of the system is
taken into account.

vector xyz[aten.model.natoms];

int nframes = aten.model.nframes;
int natoms = aten.model.natoms;
printf ("Number of frames is %i\n", nframes);

for (model f = aten.model.frames; f; ++f)
{
for (int n=1; n<=natoms; ++n) xyz[n] += f.atoms[n].r;
}
for (int n=1; n<=natoms; ++n) xyz[n] = xyz[n] / nframes;
model f = aten.model.frames;
newmodel ("Average") ;
for (int n=1; n<= natoms; ++n)
{
newatom(f.atoms[n] .z, xyz[n].x, xyz[n].y, xyz[n].z);

}

Copy and save this to a file named avgeom. txt.

To run the example:

aten --zmap singlealpha data/test/water66-spcfw.CONFIG
-t data/test/water66-spcfw.HISu -s avgeom.txt

38

5.7. Self-Contained Liquid Chloroform Builder (Script)

This script (installed in the SATENDATA/scripts directory) is an example of a completely
self-contained script, depending on no external model or forcefield files. The chloroform
model is built by hand, and the necessary forcefield is constructed in the script itself, before
being used to create a box of liquid chloroform. Only the density of the liquid and the desired
number of molecules are required in order to build the system, since the molecular volume is
worked out from the density and the mass.

Build chloroform system

First, create chloroform model by transmuting a methane molecule.

Since C-Cl distances will then be too short, we lengthen them afterwards
newmodel ("chloroform") ;

newatom(C) ;

addhydrogen () ;

select (3,4,5);

transmute (Cl) ;

for (int n=3; n<6; ++n) setdistance(l,n,1.758);

Set number of molecules and density required (g/cm3)
setupcomponent ("both", 1, 100, 1.483);

Create a model with a basic unit cell - the disorder builder will adjust its
size as necessary

newmodel ("box") ;

cell(1.0,1.0,1.0,90,90,90);

disorder ("None", FALSE):;

Construct new forcefield (using AMBER params)

newff ("chloroformff");

units ("kj");

Taken from files at http://www.pharmacy.manchester.ac.uk/bryce/amber
typedef (1,"Cz","Cz2",C,"-Cl (n=3),-H","Chloroform carbon");
typedef (2, "HZ","HZ",H,"-&1","Chloroform hydrogen") ;

typedef (3,"C1","C1",Cl,"-&1","Chloroform chlorine") ;

interdef ("13",1,-0.3847,4.184*0.1094, 1.9080*2.0/2.07(1.0/6.0));
interdef ("13",2,0.2659,4.184*0.0157, 1.187*2.0/2.07(1.0/6.0));
interdef ("13",3,0.0396,4.184*0.3250, 2.0*2.0/2.0~(1.0/6.0));
bonddef ("harmonic","Cz","HZ",2845.12,1.1);

bonddef ("harmonic","Cz","C1",1944.7232,1.758) ;

angledef ("harmonic", "HZ","Cz","C1",318.8208,107.68) ;

angledef ("harmonic","C1l","Cz","C1l",650.1936,111.3);
finaliseff () ;

ffmodel () ;

Minimise our new system a little
mcminimise (100) ;

savemodel ("dlpoly", "chloroform.CONFIG") ;

saveexpression ("dlpoly", "chloroform.FIELD");
quit();

39

5.8. Generating Images Without the GUI (CLI)

Sometimes it's useful to quickly generate images for a system from the command line, either
because the system is prepared from the command line, or because generating hundreds of
images through the GUI is insanely repetetive. To quickly save a picture of a system in it's
‘standard’ view orientation (i.s. as you would see it if you loaded it into the GUI) you can do
the following:

aten data/test/cellulose.cif -c 'savebitmap ("png", "cellulose.png"); quit();'

Doing this will load the cellulose model, save an image of it, and then quit without ever
starting the GUI. By default, the size of a saved image is 800x600, but optional arguments to
the savebitmap command allow this to be set explicitly.

40

5.9. Calculating a Torsion Energy Profile (CLI)

This example demonstrates a simple energy analysis procedure in which we load a model and
perform a scan of a geometric parameter, calculating the energy at each step. The methanol
model and OPLS-AA forcefield (both supplied with Aten) are used by the command, but of
course can easily be substituted with your own choices. The command first sets the
electrostatic calculation method to be the simple Coulomb sum (since the methanol model is
non-periodic) and prior to the loop starting a text header is written. The loop iterates a
variable 'phi' over the range -180 to +180 degrees in steps of 5, and is used to set the torsion
angle between atoms 2, 1, 4, and 6 (corresponding to one of the H-C-O-H torsions in the
model). A line of output is written for each torsion angle considered, providing the total
torsion, van der Waals, and electrostatic energy of the system at this geometry.

aten --ff oplsaa.ff data/test/methanol.inp -qg

-c 'aten.prefs.elecmethod = "coulomb";
printf ("Torsion Angle E (Torsion) E (VDW) E (Coulomb) \n") ;
for (double phi = -180.0; phi <= 180.0; phi += 5) {

settorsion(2,1,4,6,phi);
printf ("$12.6f %$12.6f %$12.6f %$12.6f\n", phi, aten.model.torsionenergy(),
aten.model.vdwenergy (), aten.model.elecenergy()); } quit();'

Note that the use of the -g option means that only fundamental error messages and user
output (through the printf statements in the command) is printed - all of Aten’s other working
information is suppressed.

41

5.10. Running a Script on Many Models (CLI/Batch)

aten -c 'loadscript("test.script™,"ascript");' --keepnames *.gro --batch

-C 'runscript(“ascript");’

42

5.11. Saving GAMESS-US Input with Options (CLI)

~[src/aten/src/aten chloroprene-1.xyz chloroprene-2.xyz piperidine-1.xyz
piperidine-2.xyz piperidine-capped-cr.xyz --export
"gamusinp,dfttyp=B3LYP,basis_gbasis=MCP-DZP,statpt_nstep=200" --batch -c

'mopacminimise();'

43

5.12. Printing all Bond Distances in a Model (CLI)

aten data/test/methanol.inp -c ‘for (bond b = aten.model.bonds; b; ++b) printf("Geometry =
%f\n", geometry(b.i,b.j));’

44

6.Command Line Usage

From a shell, running Aten with no arguments will start up the code in GULI. If model files are
provided on the command line, these will be loaded in so that, when the GUI starts, they may
be hacked apart according to your desired tastes. The command-line is also a powerful way of
editing without using the GUI at all. What follows is a description of the usage of command-
line arguments, and a list of all recognised arguments.

6.1. Switch Order

Two important things to consider. Firstly, short options (e.g. *-b’, ‘-d’ etc.) may not be
concatenated into one long specification of a short option (i.e. ‘-bd”) - they must be given
separately as ‘-b -d’ or they will not be recognised. Secondly, the order of the given
switches is important since their meaning is applied or acted out immediately. For example:

bob@pc:~> aten --nobond testl.xyz test2.xyz

will load the models ‘test1.xyz’ and ‘test2.xyz’, preventing recalculation of bonds
between atoms in both. However:

bob@pc:~> aten testl.xyz --nobond test2.xyz

will only prevent recalculation of bonds for the second model. The reason for acting on
switches and arguments in the order they are encountered on the command line is to allow for
flexibility, especially when using Aten as a non-graphical processor.

Note: The position of debug switches or those affecting the verbosity of the program has no

bearing on the timeliness of their effect — they are dealt with first by Aten regardless of where
they appear in the program’s arguments.

6.2. Switches

A

--atendata <dir>

Tells Aten to use the specified di r as its data directory (where filters etc. are stored). This
overrides the ATENDATA shell variable.

B

-b, --bohr

Specifies that the unit of length used in any models and grid data that follow is Bohr rather
than A, and should be converted to the latter.

45

--batch

Enter batch processing mode, modifying and saving models to their original filenames. See
Section 6.3 for details and a list of other modes.

--bond

Force recalculation of bonding in loaded models, regardless of whether the filter used any of
the rebond commands (see the list of bond-related commands in Section 9.2).

C

-c <commands>, --command <commands>

Provides a command or compound command to execute. Commands should be enclosed in
single quotes (to prevent the shell from misquoting any character strings) and individual
commands separated with semicolons. Commands provided in this way can be used to set up
Aten in the way you want it from the command line, perform operations on model files before
loading the GUI, or perform operations on model files without loading the GUI at all.

For example, to start the GUI with a new model named “cube’ that has a cubic cell of 30 A
side length:

bob@pc:~> aten -c 'newmodel ("cube"); cell (30,30,30,90,90,90) ;"'

Similarly, to load a model and make a duplicate copy of the atoms (pasted into the same
model):

bob@pc:~> aten original.xyz -c 'selectall(); copy(); paste(10,10,10);"

In both cases the GUI initialises itself without being told, but this can be prevented with the
quit command. Consider the last example — to save the newly-expanded model and quit
without ever launching the GUI:

bob@pc:~> aten original.xyz -c 'selectall; copy; paste(10,10,10);
savemodel ("xyz", "pasted.xyz"); quit;'

Multiple sets of commands may be given:

bob@pc:~> aten source.xyz -c 'selectall; copy' target.xyz -c 'paste(10,10,10);"'

Take care here, since the commands provided act on the current model, i.e. the one that was
most recently loaded. Commands are available that select between the loaded models — see
the list of model-related commands in Section 9.22.

-—-cachelimit <limit>

46

Sets the size limit for trajectory loading, in kilobytes. If an entire trajectory will fit into this
cache, all frames in the trajectory are loaded immediately. If not, frames will be read from
disk as and when required.

--centre

Force translation of non-periodic models centre-of-geometry to the origin, even if the centre
command was not used in the corresponding filter.

D

-d [<type>], --debug [type]

Enables debugging of subroutine calls so that program execution can be traced, or enables
extra debug output from specific types of routines (if type is given). Warning - this creates a
lot of output, most of which is incomprehensible to people with their sanity still intact, but is
useful to track the program up to the point of, say, a hideous crash. Valid type values are
listed in Output Types in Section 16.13.

--double <name=value>

Creates a ‘floating’ variable name which is of type ‘double’ and that can be accessed from
any subsequent script, command, or filter. Note that declarations of variables with the same
name made in scripts, commands and filters will override any passed value names in order to
avoid conflicts and breaking of existing filters and scripts. The intended use is to be able to
pass values easily from the command-line into scripts or one-line commands.

For example, in a bash shell:

bob@pc:~> for num in 10.0 50.5 100.0; do aten --double d=$num -c 'printf ("Value
is %f\n", d); quit();' done

E

--export <nickname>

Enter export mode, where each model specified on the command line is loaded and saved in
the format corresponding to the <nickname> specified. If specified in conjunction with --
batch, batch export mode is entered instead, with commands run on models before being
saved to the new format. See Section 6.3 for details and a list of other modes.

--exportmap <name=element,...>

Manually map assigned atom typenames in an expression to the names defined here when
expressions are written to a file. For example:

bob@pc:~> aten --ff spc.ff data/test/water.xyz —--exportmap "OW=Ospc,H=Hspc" -c
'saveexpression ("dlpoly", "water.FIELD"); quit();'

47

writes the water forcefield with the ow and Hw atomtype names mapped to Ospc and Hspc
respectively.

--expression <file>
Loads the specified ri1e as if it were an expression.

F

-f <nickname>, --format <nickname>

For any forthcoming model files provided as arguments on the command line, the specified
model import filter is used to load them, regardless of their filename extension (or, indeed,
actual format). Since Aten tends not to determine file formats by looking at their content, this
is useful for when you know that file is in a particular format, but with an extension that
doesn't help Aten recognise it as such.

--ff <file>

Loads the specified forcefield file, making it the current forcefield. If the desired forcefield is
present in either Aten’s installed data/ directory or in your own .aten/ £ £ directory (see
Section 4.2), then just the filename need be given as Aten searches these locations by default.

--filter <file>

Load the specified £i1e as if it were a filter file, installing any filters defined within it. Any
filters already loaded that have the same ‘nickname’, ‘id’ etc. will be hidden by those loaded
from rile. See Section 11.1.3 for more information on overriding existing filters.

--fold

Force folding of atoms to within the boundaries of the unit cell (if one is present) in loaded
models, even if the command £o1d was not used in the corresponding filter.

G

-g <file>, --grid <file>

Loads the specified grid data £1 1e, associating it to the current model, and making it the
current grid. A model (even an empty one) must exist for a grid to be loaded.

H

-h, --help
Show the possible command-line switches and a short description of their meaning.

-i, --interactive

48

Starts Aten in interactive mode, where commands are typed and immediately executed. The
GUI is not started by default, but may be invoked.

--int <name=value>
Creates a ‘floating’ integer variable name. See the --double switch for a full description.

K

-k, —--keepview

Preserves the last stored view of models when the GUI starts, retaining any model rotations
and camera transformations performed in scripts or on the command line (normally, the view
Is reset to display the entire model on startup).

--keepnames

If specified, for each model loaded the original atom names in the file will be preserved as a
series of forcefield types generated within a new forcefield created specifically for the model.
Elements are still determined from conversion of the atom names, and may still be mapped
with the --map option. This option is useful for quickly creating a skeleton set of forcefield
types from an existing model with type names, or to allow quick import and export of typed
configurations without requiring the original forcefield file to be loaded.

Note that the --keeptypes and --keepnames switches are mutually exclusive.
--keeptypes

If specified, for each atom name converted to an element using a forcefield name match, the
corresponding forcefield type will be assigned to the atom and fixed. Like the --keepnames
switch, this is useful for preserving atom type data when importing certain models which do
not store element information.

Note that the --keeptypes and --keepnames switches are mutually exclusive.

M

-m <name=element,...>, --map <name=element,...>

Manually map atom typenames occurring in model files to elements according to the rules
defined here. For example:

bob@pc:~> aten --map 'CX=C,N =P'

will result in atoms called cx being mapped to carbon, and atoms called N mapped to
phosphorus (for whatever reason). These mappings are attempted prior to any z-mapping
scheme defined in the filter, and so will take precedence over standard typename-to-element
conversions.

N

49

-n
Create a new, empty model.
--nobond

Prevent recalculation of bonding in loaded models, overriding filter directives. This basically
means that, if a filter tries to run the rebond command, then specifying --nobond will
prevent it.

--nocentre

Prevent translation of non-periodic models centre-of-geometry to the origin, overriding filter
directives.

--nofold

Prevent initial folding of atoms to within the boundaries of the unit cell (if one is present) in
loaded models, overriding the use of the fo1d command in the corresponding filters.

--nofragments
Prevent loading of fragments from both standard and user locations on startup.
--nofragmenticons

Prevent generation of fragment icons, used in the Fragment Library Window (see Section
7.13).

--noincludes
Prevent loading of global includes on startup.

--nolists

Prevent the use of OpenGL display lists for rendering. Simple vertex arrays will be used
instead. Try this option out if rendering is corrupt or Aten crashed unexpectedly on startup.
The rendering will be slower, but more compatible.

--nopack

Prevent generation of symmetry-equivalent atoms from spacegroup information in loaded
models, overriding any occurrences of the pack command is used in the corresponding filter.

--nopartitions
Prevents loading of partitions on startup.
--nogtsettings

Don’t read in any system-stored Qt settings on startup (such as window positions, toolbar
visibilities etc.) using the defaults instead.

50

P

--pack

Force generation of symmetry-equivalent atoms from spacegroup information in loaded
models, even if the pack command was not used in the corresponding filter.

--pipe

Read and execute commands from piped input on startup.

——process

Enter process mode, where commands are run on models but no changes are saved — instead,

the GUI is started once all commands have been executed. See Section 6.3 for details and a
list of other modes.

Q

-q, --quiet

Prevents nearly all text output from Aten, including error messages and the like, but does
allow printing of user output via the print£ command in scripts and commands passed with
--command. Useful in order to print clean data to a file or standard output.

S

-s <file>, --script <file>

Specifies that the script file is to be loaded and run before moving on to the next command-
line argument. A script file is just a plain text file that contains sequence of commands to be
executed, written in the command language style (see Section 8.1).

--string <name=value>

Creates a ‘floating’ string variable name. See the --double switch for a full description.

T

-t <file>, --trajectory <file>
Associates a trajectory file with the last loaded / current model.

U

-u <nlevels>, --undolevels <nlevels>
Set the maximum number of undo levels per model, or -1 for unlimited (the default).

\%

-v, —--verbose

o1

Switch on verbose reporting of program actions.
--vbo
Attempt to use OpenGL vertex buffer objects when rendering, for maximum performance.

y4

-z <maptype>, --zmap <maptype>

Override the names to elements z-mapping style defined in file filters. For a list of possible
mapping types see ZMapping Types in Section 16.16.

6.3. Batch Processing Modes

Aten has several batch or ‘offline’ processing modes that do not need the GUI to be invoked.
These permit calculations, analyses or processes to be performed on multiple models in one
simple command. Most work by storing any commands or command sequences supplied with
--command until all models are loaded, and then running the commands on each loaded
model in sequence. The modes are as follows:

Batch Mode

Invoked by the --batch switch, this mode runs all commands provided on all models, once
the last model has been loaded. The models are then saved in their original format to the same
filename. Note that, if the an export filter does not exist for the original model file format,
changes to that model will not be saved. It is advisable to work on a copy of the model files
when using this command, or to use batch export mode to save to a different format in order
to preserve the original files. The GUI is not automatically started in batch mode.

For example, to transmute all iron atoms into cobalt for a series of xyz files named
‘complex 001.xyz’, ‘complex 002.xyz’ etc.

bob@pc:~> aten --batch -c 'select (Fe); transmute(Co);' complex *.xyz

Export Mode

Invoked by the --export switch, in export mode each model file specified on the command
line is loaded and immediately saved in the format specified by the provided nickname,
allowing multiple files to be converted to a different format at once. The GUI is not
automatically started in export mode.

For instance, to convert three DL_POLY CONFIG files and an xyz into mol2 format:

bob@pc:~> aten --export mol2 biol.CONFIG bio2.CONFIG watercell.CONFIG random.xyz

52

If specified in conjunction with the --batch switch, batch export mode is entered instead,
and any supplied commands are executed on each loaded model file before it is saved. The
original model files are not modified.

Batch Export Mode

Invoked by providing the --batch and --export switches together, batch export allows a
series of commands to be run on a set of loaded models, the results of which are then saved in
new files in the model format provided to the --export switch. The GUI is not
automatically started in batch export mode.

Let’s say that you have a directory full of xyz files that you wish to energy minimise with
MOPAC2009 (see Section 14.2), centre at zero, and then save as input to GAMESS-US. This
can be achieved with the following command:

bob@pc:~> aten --export gamusinp --batch -c ‘mopacminimise(); selectall();
centre () ;' *.xyz

Various export options for the GAMESS-US filter (e.g. method type, basis set) can be set at
the same time. See how to set filter options in Section 11.1.5, and Section 5.11 for an
example.

Process Mode
Similar to the --batch switch, in that all commands supplied with --command are executed

on each model, but in this case the results are not saved, and the GUI starts once processing is
complete.

53

7. The GUI

7.1. Overview

Aten’s main window is predominantly taken up with the rendering canvas where model(s) are
displayed. Multiple models may be displayed simultaneously — the ‘current’ model (i.e. the
one to which all editing / data operations are send) always has a black box drawn around it. A
single toolbar sits above the canvas providing quick access to file, edit, and select actions. All
other functionality is contained with various tool windows. These tool windows are accessed
by the ToolBox widget, which by default is the only window displayed on startup (if it is not
visible, you can raise and centre it on the main window from the menu item Settings—Show
Toolbox). At the foot of the window is a status bar reflecting the content of the current model,
listing the number of atoms and the number of selected atoms (bold value in parentheses, but
only if there are selected atoms), the mass of the model, and the cell type and density (if the
model is periodic).

Taolbeox s X 5\. . Aten (v1.7 11603) - Unname d001 (<=no filename>>) & &

Tyt Model List | Tat Atom List | [~] Comman d File Edit View Modsl Trajectary Farcefield Seftings Seripts Help

74 Z-Matrix Messages PR A=l J)ﬁ of '/ f’j + =3 P t I'l'\& C}“ E?ﬁ g‘: @ (9] @ o
Edit
% Build i@, Tansform | U5 Fragments
% Position | £F Define 5 Transfam

£F pisorder

Calculate / Modify
#* geomaty | [FFiEnergy | ®9 salaction

2
L WD

Visualise

! Grids ko Glyphs 2, Vibrations
) Trajectory

%

Select: Click or elick-drag to select, +shift taggle (1eft click) or add area to selection (left ¢lick-drag) or translate (middle click-drag) or 0 Atoms 0.000000 g mol-*
ratate in lacal frame (right lick-drag), +ctrl ramove fram szlzction Non-periodic

Figure 7-1 Aten’s main window and toolbox

The edges of the main window, around the canvas, are standard (Qt4) dock areas, in which the
toolbox and any of the tool windows can be placed. Once you have the various subwindows
set up how you like them, press Settings—Store Default Window State to remember these
settings for when Aten next starts.

54

7.2. Mouse Control

Each of the mouse buttons has a different ‘style’ of action on the canvas, each of which can be
set to the user’s taste in the preferences (menu item Settings— Preferences on
Linux/Windows). In addition the Shift, Ctrl, and Alt keys modify or augment these default
actions performed by the mouse. Standard settings out of the box are:

Table 7-1 Mouse Button Actions

Button Key Modifier Action
Click on individual atoms to select exclusively
Left None Click-hold-drag to exclusively select all atoms within
rectangular region
Click on individual atoms to toggle selection state
Shift : . , I
Click-hold-drag to inclusively select all atoms within
rectangular region
Click on individual atoms to toggle selection state
Ctrl Click-hold-drag to inclusively deselect all atoms within
rectangular region
Click-hold-drag to rotate camera around model
Right None
Click on atom to show context (Selection) menu
Shift Click-hold-drag to rotate view around z-axis (perpendicular to

plane of screen)
Ctrl Click-hold-drag to rotate selection in local (model) space
Click-hold-drag to rotate selection around z-axis in local

Ctrl+Shift
(model) space
Middle None Click-hold-drag to translate camera
Ctrl Click-hold-drag to translate selection in local (model) space

7.2.1. Manipulating the View

At its most basic Aten’s main view acts as a visualiser allowing models to be rotated, zoomed
in and out, and drawn in various different styles. By default, the right mouse button is used to
rotate the model in the plane of the screen (right-click and hold on an empty area of the
canvas and move the mouse) and the mouse wheel zooms in and out. Note that right-clicking
on an atom brings up the atom context menu (equivalent to main window’s Selection menu).
The middle mouse button translates the model in the plane of the screen — again, click-hold
and drag.

These rotation and translation operate only the position and orientation of the camera, with no
modifications made to the actual coordinates of the model. The view can be reset at any time
from the main menu (View—Reset) or by pressing Ctrl-R. Both the main menu
(View—Style), the main toolbar, and the shortcuts Ctrl-1 to Ctrl-5 allow the drawing style of
models to be changed between stick, tube, sphere, scaled sphere, and individual. The last
option allows different view styles to be set for different atoms.

55

The Ctrl key changes the normal behaviour of the rotation and translation operations and
forces them to be performed on the coordinates of the current atom selection instead of the
camera. The centroid of rotation is the geometric centre of the selected atoms.

7.2.2. Atom Selection

Atom selection or picking is performed with the left mouse button by default - single-click on
any atom to highlight (select) it. Single-clicks perform ‘exclusive’ selections; that is, all other
atom(s) are deselected before the clicked atom is (re)selected. Clicking in an empty region of
the canvas deselects all atoms. Clicking on an empty space in the canvas, holding, and
dragging draws a rectangular selection region - releasing the mouse button then selects all
atoms within this area. Again, this selection operation is exclusive. Inclusive selections
(where already-selected atoms are not deselected) are performed by holding the Shift key
while performing the above operations. Furthermore, single-clicking on a selected atom while
holding Shift will deselect the atom.

56

7.3. Keyboard Shortcuts

Shortcut Action Description

Escape Box Select Return to basic box-select interaction mode

Ctrl-A Select All Select all atoms in the current model

Ctrl-C Copy Copy the current atom selection to the clipboard
Ctrl-Alt-C ~ Centre Selection Centre the current atom selection at {0,0,0}

Ctrl-D Deselect All Deselect all atoms in the current model

Ctrl-Delete Delete Delete the current atom selection

Ctrl-F Fold Atoms Fold all atoms into the unit cell

Ctrl-Shift-F Fold Molecules Fold atoms into the unit cell, keeping molecules intact
Ctrl-H Hide Selection Hide all selected atoms

Ctrl-Shift-H Show All Atoms Unide any hidden atoms

Ctrl-1 Invert Selection Toggle the selection state of all atoms

Ctrl-N New Create a new, empty model

Ctrl-O Open Load an existing model into Aten

Ctrl-P Play/Pause Play / pause current trajectory

Ctrl-R Reset View Reset the camera for the current model

Ctrl-S Save Save the current model under its original filename
Ctrl-v Paste Paste the contents of the clipboard to the current model
Ctrl-X Cut Copy the current selection to the clipboard and delete it
Ctrl-Y Redo Redo last undone operation

Ctrl-Z Undo Undo last operation

Ctrl-1 Stick View models as sticks

Ctrl-2 Tube View models as tubes

Ctrl-3 Sphere View models as tubes and spheres

Ctrl-4 Scaled View models as tubes and scaled spheres

Ctrl-5 Individual View models according to atom’s assigned styles
Ctrl-- Zoom Out Zoom out

Ctrl-+ Zoom In Zoom in

Ctrl-Alt-< First Frame Jump to first frame of current trajectory

Ctrl-Alt-> Last Frame Jump to last frame of current trajectory

Ctrl-Right ~ Next Model

F8 Detect H-Bonds Toggle detection and display of hydrogen bonds

F10 Quick Command Raise a dialog window allowing a quick command to be run

57

7.4. The Main Toolbar

The main toolbar provides quick access to model load / save, edit, and selection operations.
Left to right these icons are:

Action

Shortcut

a
o}
=

New
Open
Save
Save As

Close

Copy

Cut

Paste

Sc ABDBENC

Delete

Stick

Tube
Sphere

Scaled

Individual

ool v+

L Box Select

@ Molecule
< Select
a Element
- 5 Select
a* Expand
~-"¥ Selection
G Invert
Selection

Ctrl-N
Ctrl-O
Ctrl-S

Ctrl-C
Ctrl-X

Ctrl-V

Ctrl-Delete

Ctrl-1

Ctrl-2
Ctrl-3

Ctrl-4

Ctrl-5

Escape

Ctrl-I

Description
Create a new, empty model

Load an existing model into Aten
Save the current model under its original filename
Save the current model under a different filename

Close the current model (prompting to save first if
changes have been made)

Copy the current atom selection to (Aten’s internal)
clipboard

Copy the current atom selection to the clipboard and then
delete it

Paste the contents of the clipboard to the current model at
the original coordinates. The pasted atoms then become
the current selection. Note that pasted atoms are not
translated to avoid overlap with existing atoms.

Delete the current atom selection

Atoms are not explicitly drawn unless they possess no
bonds, bonds are drawn using simple lines
Atoms and bonds are drawn as tubes

Atoms are drawn as uniformly-sized spheres, with bonds
drawn as tubes

Atoms are drawn as spheres whose size depends on their
atomic radii, bonds are drawn as tubes

Each atom is drawn according to its own assigned style

Atoms may be (de)selected by clicking on them
individually, or selected en masse with a click-hold-drag
Bound fragments are selected by clicking on a single
atom within that fragment

Clicking on a single atom selects all atoms of the same
element

The current selection is expanded by following bonds
attached to any select atoms

Toggle the selection state of all atoms

58

7.4.1. The Mouse Toolbar

There is only one other toolbar in (newer versions of) Aten — the Mouse toolbar. For multi-
button mice each button can be assigned an invidual action (select, rotate model etc.). For
those who use single-button rats, this toolbar changes the function of the first (or left) button
between select / interact, rotate model, and translate model. Selecting these buttons overwrite
the stored action for the left button in the Preferences.

BB

Icon Shortcut Action

‘a7 F1 The left button selects and interacts with atoms
@ F2 The left button rotates the view or selection
C%;, F3 The left button translates the view or selection

59

7.5. The ToolBox

The ToolBox provides access to most of Aten’s functionality, allowing various different
subwindows to be shown (and hidden).

Toolbox o X

T4 Model List || ™52 Atom List ||[*] Command

Z4 Z-Matrix Messages
Edit
:c Build '@4 Transform 2’8 Fragments
Pesition gbeﬁne @ Transform

&7 Disorder
Y
Calculate / Modify
** Geometry ‘;VZ FFIEnergy ;i;,‘ Selection

’
Em MD
Visualise
! Grids B« Glyphs | &, Vibrations

\PED Trajectory

Figure 7-2 The ToolBox Window

Button Window Function / Contents

5 Madel List List of models currently loaded

i Atom List List of atoms in the current model

[|command Runs single commands; Provides interactive shell; Load & run scripts

2% Z-Matrix Edit Z-matrix for the current model

¢ Build Draw atoms, chains of atoms, and bonds; Rebond & clear bonds

@, Transform Transform the current atom selection (e.g. flip, rotate, matrix multiply)
S Fragments Access to molecular fragments when in fragment drawing mode

%, Position Position the current atom selection (e.g. shift, translate, centre)

(T pefine Define / create cell for the current model

g Transfamm Transform the cell for the current model

£F Disorder Run the Disorder builder

** Geometry Measure distances and angles; Edit geometry of current atom selection
V* FF/Energy Load / edit forcefields; Perform geometry optimisation of models

B9 selection Advanced atom selection tools

® cids Grid manipulation and editing

< Glyphs Glyph manipulation and editing

3 Vibrations Visualisation of molecular vibrations (if present)

CEH Trajectary Visualisation of associated trajectory (if present)

60

7.6. Atom List Window

The Atom List window provides a list of all atoms in the current model or frame, displaying
elements, charges, and positions. If patterns have been defined for the model (see Section
10.3), the atoms in the list will be grouped according to their encompassing pattern, otherwise
they are listed in one continuous run by ascending ID.

Atorn List ® X

Pattern : ID :E X Y :Z

Wiew By

#® | Atom FPattern
Y Y

Actions

v T

Figure 7-3 Atom List Window
Atom Selection
The selection of items in the atom list mirrors the selection in the current model -
(de)selecting atoms in one will also (de)select them in the other. If patterns are defined,
(de)selecting the pattern name in the list (de)selects all atoms making up the pattern.
Changing the Order of Atoms
The four buttons at the foot of the atom list allow the current selection of atoms to be moved
up and down the list, useful for reordering atoms into a specific sequence. Selected atoms can

be shifted up/down the list one place at a time, or all moved to the top or bottom of the list at
once. In the latter case the order of the original selection is preserved.

61

7.7. Build Window

The primary function of the Build window is to allow for drawing, deletion, and transmuting
of individual atoms and bonds using the mouse, along with drawing and automatic creation of
bonds.

Build Tools o X
Edit | Tools | Options
Draw

‘_», Atom "J Chain .9 Frag

.n Delete _‘fi Transmute # Add H

o

HE M8 F B Pick

&3 Transmute sel #' AddH Model

Bonding
&% Single ‘3 Double ff Triple
>3 Delete 3-§ Augment 7

::: Rebond v '.". Clear v

Figure 7-4 Build Window — Edit controls

The top half of the Edit page of the window provides tools to draw individual atoms, chains
of atoms, and molecular fragments, allow the deletion and transmutation of atoms, and
provide the ability to add hydrogen atoms automatically to atoms (or the whole model). Select
the relevant tool, and simply click on atoms in the main view. The element of new atoms
when drawing atoms or chains (as well as the transmutation target element) is determined by
the currently-selected element button. The bottom half provides tools to draw individual
bonds between atoms, or to calculate bonds automatically. Drawing a bond requires pairs of
atoms to be clicked sequentially once the tool is activated.

Build Toals ° X
Edit | Tesls | Options

Add Atom
X |0.0000014: | ¥ 0.0000004 Z 0.000000 £

Fractional Coards Addd

Figure 7-5 Build Window — Tools page

62

The Add Atom tool allows atoms to be created at specific positions in the model. Coordinates
are entered and the atom created (with element defined by the current selected element on the
Edit page) by pressing the Add button. If the Fractional Coords checkbox is ticked the
coordinates are assumed to be fractional and are converted to cell coordinates as the atom is
added. For example, setting coordinates to {0.5,0.5,0.5} will create an atom in the centre of
the current unit cell.

Build Tools o X

Edit || Tasls | Options

FPrevent Folding

Figure 7-6 Build Window — Options page

Finally, the Options page allows automatic folding of atoms to be restricted. When
transforming atoms in a periodic system with the mouse (i.e. rotating or translating them) if
any move outside the unit cell as a result of the transformation they are automatically folded
back in to the confines of the cell. If the Prevent Folding checkbox is ticked, these folding
operations will not occur.

63

7.8. Cell Definition Window

Allows the user to edit the unit cell specification of the current model, assign a
crystallographic spacegroup, and perform spacegroup packing according to the spacegroup.
Whether or not the current model possesses a unit cell is determined wholly by the Has Cell
checkbox — if checked, the current model is periodic, if not, then it is an isolated collection of
atoms.

Cell Defintion e X Cell Defintion e X
+| Has Cell? +| Has Cell?
Matrix | DefinefView ABC | Spacegroup Matrix | DefinefView ABC | Spacegroup
¥ 1000000015 | 0.0000000 £ |0.0000000 O Lengths Angles

a 10.00000000 & @ | 90.00000010°

¥ 0.0000000 £ | 10.0000000£3 | 0.0000000 &3

Z 0.0000000 £ | 0.0000000 £ 10.00000005

3OO

~
W

b 1000000000 & £\ F 90.00000010°
~
W

€ 10.00000000 & ¥ | 90.00000010°

Yolume : 1000000 A3 Yolume : 1000000 A3

Figure 7-7 Cell Definition Window — Matrix and Define/View pages

If the model has a cell, its size and shape can be set in one of two ways. The primary method
Is though direct editing of the cell matrix on the Matrix page, which presents the individual
components of the X (A), Y (B), and Z (C) axes. All values are in Angstroms, and any
changes made here are immediately applied to the current model. Alternatively, the cell may
be set by entering its lengths (in Angstroms) and angles (in degrees) on the Define/View
ABC page and then pressing the Define button.

Cell Definition o X

(V| Has Cell?

Matrix = Define/View ABC = Spacegroup

Spacegroup

(None{0) Remove

Set
Pack

Volume : 1000.000 A3

Figure 7-8 Cell Definition Window — Spacegroup page

The spacegroup assigned to the current model can be changed and removed on the
Spacegroup page. On its own, an assigned spacegroup is just a number - no modifications to
the atoms are made by changing the assigned spacegroup. Packing of atoms, however, is a
different matter. Once a spacegroup is assigned, symmetry-equivalent atoms may be
generated by use of the Pack button. This assumes that the current contents of the model
represents the symmetry-unique set of atoms (i.e. the minimal generator set which, along with
the spacegroup and unit cell, defines the entire crystal).

64

7.9. Cell Transform Window

Transformations of the unit cell and its contents can be made here, encompassing geometric
scaling of the cell (and atoms contained within) and replication of the system in three
dimensions.

Cell Transfarm © ®

Replicate | Scale | Rotate | Miler

0.00000 £ X 1.00000 o

0.00000 & ¥ |1.00000 4

0.00000 &1 Z 100000 [+

+| Fold Before | Trim After
Replicate

Figure 7-9 Cell Transform Window — Replicate page

The Replicate page allows the current cell to be replicated along its three principal axes in
both positive and negative directions. The six inputs represent negative and positive
replication values for each direction — most of the time its probably only useful to consider the
positive (right-most) replication directions. Note that the numbers define the additional cells
that will be created in addition to the original one. So, if all numbers are left at zero the
original cell will remain untouched. Entering a value of 1 for each positive direction will give
a 2x2x2 supercell of the original cell, and so on. The representative unit cells of replicated and
partially replicated copies of the current cell are drawn onto the current model.

Atoms in the model are folded into the unit cell prior to replication, unless the Fold Atoms
checkbox is unticked. Similarly, atoms that exist outside of the cell after replication are
trimmed unless the Trim Atoms checkbox is unchecked.

Cell Transform @ =

Replicate = Scale | Rotate | Miller
X 1.00000

Y 1.00000

Lo o

Z |1.00000
| Scale Molecule COG
| Calculate Energy Changs

Scale

Figure 7-10 Cell Transform Window — Scale page

The Scale page allows the principal axes of the current unit cell to be arbitrarily scaled, along
with the cell's contents. If a valid pattern description exists for the model, then the positions of
individual molecules or bound fragments within the cell are scaled relative to their centres of
geometry - all intramolecular distances within molecules remains the same as before the

65

scaling. If this is undesirable (or unintended) then performing the scaling with no pattern
definition will scale the position of each atom separately.

Cell Transfarm 4

Replicate = Scale | Rotate | Miller

Ratate 90° around X
Ratate 90° around ¥

Rotate 90° around Z

Figure 7-11 Cell Definition Window — Rotate page

Not currently implemented.

Cell Transfarm ¢
Replicate Scale | Rotate = Miller

Indices

Direction

In ®) Out

Select Cut

Figure 7-12 Cell Definition Window — Miller page

The Miller page allows the model to be cut so that various Miller surfaces are left behind.
The hkl indices of the desired Miller plane should be entered in the three spin boxes, and the
resulting plane(s) will be drawn onto the current model. The deletion of atoms can be done in
one of two ways, removing either those atoms that are ‘inside’ or those atoms that are
‘outside’ of the defined Miller plane and its periodic or symmetric equivalent.

66

7.10. Command Window

The command window allows commands or sequences of commands to be run and stored for
later use, allows management and execution of scripts, and provides access to searchable
command help.

Command Consaole @ X
Frampt Interactive Scripts Command Help

+"| Force Update

aten.prefs.usenicetext = FALSE;
aten.prefs.usenicetext = TRUE;

Figure 7-13 Command Window — Prompt page

Any command or compound command can be entered in the bottom editbox and will be
executed immediately. This command will then be added to the list above, and can be single-
clicked to return it to the editbox for tweaking or re-editing, or double-clicked to execute it
again. The list of stored commands is saved when Aten exits, and loaded back in when
restarted.

67

Command Console ¢ X
Frompt | Interactive | Seripts | Command Help
‘ariables
Yariable : Type

1 | aten atend O3]

<l J <>

| Force Update

Figure 7-14 Command Window — Interactive page

For when single-line commands are too inflexible, the interactive page mimics a more
‘proper’ console-like environment. Here, variables can be defined in one instance and referred
back to and manipulated in others, much like a normal shell. A list of variables currently
defined in the local scope is shown in the uppermost part of the window.

Cammand Consale ® X

Frampt | Interactive | Scripts | Gemmand Help

I Load Reload All Run Selected

Figure 7-15 Command Window — Scripts page

Scripts can be loaded in from here and executed at will by double-clicking individual scripts
in the list or selecting multiple scripts and clicking the Run Selected button. Any script files
loaded in this way are remembered when Aten exits and are loaded back in when restarted.
All scripts can be reloaded from disk (if, for example, changes have been made to one or more
files after they were loaded in) by clicking the Reload All button.

68

Command Console ¢ X
Frampt | Interactive | Seripts | Command Help

Search

finalise

~
frameanalyse
gearndat
madelanalyse
pdens
listjobs
rdf
savequantities
Y
W

trajanalyse
atomstyle
colouratoms
currentatam
fiae

Figure 7-16 Command Window — Command Help page
All of Aten’s commands are listed in the panel in the upper half of the page, while the syntax

and description of any command selected in the list is displayed in the lower half. The list can
be searched by typing in a partial name in the Search box at the top.

69

7.11. Disorder Builder Wizard

TODO

Disordered Builder Wizard

The Disorder builder wizard generates a disordered system involving a collection of
molecules. This can be a snapshot of a liquid suitable for use in a molecular dynamics
program, a mixture of two or more species, an interface between two or more species, or
something more exotic. The disordered builder requires that all molecules which are to be
included in the system are currently loaded, and none must have its own cell defined.
However, while all models which are to be ‘inserted into’ the final system may not possess a
unit cell, a periodic model can be the target of the insertion, and may contain an existing
collection of molecules / atoms.

In order to begin the disordered wizard, click on the 'Disorder" icon in the 'Edit’ section
of the tool box. This will present the first of five steps designed to build your system.

In the first wizard screen, the model target may be assigned. If a cell has already been
defined choose the first choice “Use existing model”. Significantly, the model may have
existing contents, which will be preserved during the build. The second choice creates a new
model for the system and a user input is required in order to define the cell dimensions. These
dimensions will act as a target for the builder. The final choice creates a new model, however
the dimensions of the cell are not predetermined and are calculated by Aten depending on the
number and density of the requested molecules, as defined by the user. The proportions of the
cell may be set by the user.

The second step in the disordered builder defines the cell. This screen will depend on
the user choice for the first screen.

1) User input required — select model to be used as target.
2) Define the length and angles for the target model.
3) Define the length ratios and angles for a target model. The absolute length of the final

target model cell walls will be generated by Aten, depending on the contents defined by the
user.

70

It is possible to select a partitioning scheme to apply to the cell. This is only available
for a pre-existing model. The possible partitioning options are:

None, cylinder, sphere and slab.

In step four the wizard provides a choice of components. The models representing the
components to be added to the target model may be selected. In order to select multiple
components hold shift and ctrl.

The final step in the disordered builder wizard sets the population of the components
selected in the previous window. If a partition has been defined, it is necessary to assign the
components to a certain partition. The components will be added to the whole cell if this is
not the case. There are various options available to set the desired population number and/or
density for each component. The options are as follows:

The exact number required for each component may be specified.
The specific density of the component may be given.

The exact number of components may be requested and a density defined.

Disordered Builder Window

Figure 5.9. Disordered Builder Window

The list at the top of the panel gives all the currently-loaded molecules that are suitable for use
as components — the main criterion is that they do not themselves possess a unit cell. Next to
the name of each model in the list is a number, which specifies the number of molecules that
you want to be inserted into the target model, and two checkboxes that allow certain Monte
Carlo move types to be prevented for individual molecules. The first checkbox, if unticked,
prevents rotations (both on insertion and in standard Monte Carlo moves) of the model, while
the second checkbox, if unticked, will prevent the standard Monte Carlo translation move
from being used with this model. If the number is set to zero (the default for all components)
then no insertions of that model will be attempted.

The disordered builder needs a model with a cell already defined to insert into, and should be
selected as the current model in the main view. The Build button will only be available if the
current model is periodic. Note that the current model does not have to be empty to begin
with, but if it is not, a forcefield must be assigned (or must be available) that describes
completely the existing contents.

71

By default, all components are randomly distributed over the entire space of the model cell,
but can be restricted to specific regions of the cell if required. For the model currently selected
in the list of components, the Region panel may be used to define an area of the unit cell in
which to restrict insertions of the model. If regions are defined for one or more models, these
will displayed in the current model's cell.

The number of cycles determined the number of times to perform a round of Monte Carlo
moves (see XXX), while the VDW Scale sets a temporary scaling factor to use in the energy
calculation.

72

7.12. Forcefields Window

The Forcefields is the place to go to load in and edit forcefields, perform atom typing on
models, and calculate / minimise the energies of models. As well as being able to perform
standard steepest descent and conjugate gradient minimisations, Aten also provides a
molecular Monte Carlo minimiser, and the ability to run MOPAC directly from the GUI.

Energy ! Farcefields o X Energy ! Farcefields o X
Energy Farcefields Manual Typing Energy Foreefields Manual Typing
B Curent Energy F Cunent Farces B Curent Energy F Cunent Farces
Minimiser Minimiser
Farcefield MOPAC Farcefield MOPALC
Steepest Descent (Simple) w fMethod RHF “ MOZYME
Convergence Criteria Spin Singlet w
Energy: 1.0E-5 Hamiltanian | PMEG b

RMS Farze: |1.0E-4 Charge 0 Iy

GO O

Max Cyeles |100

c.'_ Mini mise c' Mini mise

Figure 7-17 Forcefields Window — Energy minimisation controls
Energy Minimisation

The Energy page provides the means to perform geometry optimisations on loaded models
using one of several methods. The forcefield selected in the Forcefields page is used to
perform the minimisation, unless one has previously been explicitly associated to the model.
The current energy and forces may also be calculated (akin to single-point energy
calculations). The MOPAC minimiser requires that the locations of a valid MOPAC
executable and temporary directory are defined — see Section 14.2 for more information. A
job file is automatically written to disk and MOPAC executed when ‘Minimise’ is clicked,
and the results loaded back in. Output of the program is buffered to the Messages window
(see Section 7.17).

Forcefield Management

Forcefield files are managed through the Forcefields page. A list of currently-loaded
forcefields is provided in the form of a drop-down list at the top; the selected item is the
current default forcefield, and is used whenever one is required by a process but none has
been linked to the target model. The forcefield selected in the list is the current forcefield, and
the one used by all other actions on the page. Forcefields are loaded, unloaded, and edited
with the buttons immediately underneath the list.

The Associate panel links the selected forcefield to one or more models and their patterns; the
Current Model button links the current forcefield to the current model, while the All Models
button links the current forcefield to all loaded models. The Pattern in Current Model

73

button brings up a dialog listing the patterns of the current model, from which one is selected
to link the forcefield to. A forcefield associated to an individual pattern will be used in
preference to the forcefield associated with its parent model (and, if none is assigned, the
default forcefield).

Automatic atom typing can also be performed (or removed) from here. Finally, you may
check that a full expression is available for the current model by pressing the Create button in
the Expression panel at the very bottom. The nearby checkbox determines whether atomic
charges should be assigned from atom type information, or whether the current charges (if
any) should be left intact.

Energy / Forcefields ® X
Energy | Forcefields | Manual Typing

UFF v

@ Open x Close Edit

Associate

Current Model All Models

Pattern in Current Model

Automatic Typing

Apply Remove

Expression

Create /| Assign FF Charges

Figure 7-18 Forcefields Window — Forcefields page

Energy / Farcefields L
Energy | Farcefields || Manual Typing

Manual Typing

Element |H

TypelD © Mame @ Description :

101 _MDEF_

Set Clear Test

Figure 7-19 Forcefields Window — Manual typing page
Assigning Atom Types

Manual assignment of forcefield types can be performed in the Manual Typing page. The list
gives all atom types in the current forcefield that are relevant to the element entered just

74

above the list. One can be selected from the list and be manually assigned (forced) onto the
current atom selection with the Set button. Such assignments will not be overwritten by
subsequent automatic typings. Manual typings can be removed with the Clear button, and the
currently selected atomtype can be tested for suitability on the current selection of atoms with
the Test button.

75

7.13. Fragments Window

Fragments & X

Graup : Fragment { Atoms | Deseriptio :

w— alkyl
XL

L g M ethyl
[*

ih! FPropyl =)

X
r 1 ' 14 Tertiary Bi
(®

¥

<L] 1¢ >

+" Adjust Bond Length an Paste

. ~
w— aramatics

W

Filter View As

Show All | List Grid

Figure 7-20 Fragments Window

When in fragment drawing mode, the Fragments window presents a list of all the available
fragment models (in either List or Grid formats), and whichever is selected represents the
current fragment to add in to the model. The current fragment is ‘attached’ to the mouse
pointer when moving over the main canvas, and shows a preview of what will be the
orientation and position of the fragment when a left-click is made.

If a fragment is drawn (attached) to an existing atom in a model, the resulting bond length is
adjusted to match the two elements involved if the Adjust Bond Length on Paste checkbox
is ticked.

Fragment Models

Fragment models are just normal models stored in specific places. The only real difference is
that atoms with unknown element (integer ‘0’, or string ‘XX’) are slightly more useful than
usual. These can act as anchor points for the fragment that do not correspond to the position
of any ‘proper’ atom to allow for more control over the placement of structures - for instance,
such an atom may be placed at the centre of a ring. It is important to note that all atoms with
unknown element type are removed when the fragment is added to the current model.

Anchor Points

At any time, a single atom in the selected fragment represents the attachment point and
appears directly under the mouse pointer. Any atom in the fragment can be selected as the

76

current anchor point, and may be cycled through by pressing Alt. If the atom acting as the
anchor point has at least one bond to another atom then a reference vector is constructed
allowing the fragment to be oriented along vectors dependent on the current geometry of
existing atoms, for example.

Placing Fragments in Free Space

Single-clicking in free space (i.e. not over an existing atom) places a copy of the current
fragment in the current orientation in the current model. Click-dragging allows the fragment
to be freely rotated about the anchor point before the placement is final. On placement, the
anchor atom is pasted too unless it is of unknown element (see above).

Attaching to Existing Atoms

When moving over an existing atom with an anchor point that has at least one bond to another
atom, the fragment is attached at a suitable geometry, provided the valency of the atom allows
(if not, the atom will be surrounded by a crossed-out box and the fragment will temporarily
disappear). A single-click will place the fragment in the shown position and orientation, while
click-dragging rotates the fragment about the newly-formed bond to allow fine adjustment
before the final placement. If the anchor point has no bonds to other atoms, the fragment is
placed in no specific orientation, and click-dragging freely rotates the molecule about the
anchor point. In both cases, the anchor atom is always removed when being added to the
model since the existing atom which was clicked on will replace it in terms of position.

If the existing atom in the model has one or more other atoms attached to it, holding Shift will
orient the fragment along an existing bond vector. In this case, both the anchor atom and the
atom at the other end of the bond are removed when the fragment is placed. Pressing Ctrl
cycles over the bonds of the existing atom.

77

7.14. Geometry Window

Simple measurements of distances, angles, and torsions between picked atoms or the current
selection of atoms is possible from the measure toolbar.

Geometry o X

Measure | Distance | Angle | Torsion

i Distance i Selection
e Angle v+ Selection
-‘Y’ Torsion [-,Y' Selection

x Clear All

Figure 7-21 Geometry Window — Measure page

Distances, angles and torsions between atoms can be measure here — select the desired tool on
the left-hand side and click the relevant number of atoms one-by-one in the main window.
Alternatively, select a molecule or group of atoms for which you wish to measure all (bound)
instances of a certain type of geometry, and press the corresponding button on the right-hand
side. To clear all measurements from the current model, press the Clear All button.

Geometry ¢ K

Meagure | Distance = Apgle Torsion

Currert None (no atoms selected)

Set

=) ®

<

Mew |1.08000

<

hudge |1.00000

Figure 7-22 Geometry Window — Distance page (angle and torsion pages are similar)

The Distance, Angle, and Torsion pages of the Geometry window allow the specific
geometry of a set of selected atoms to be set. Simply select, for example, two atoms from a
model (note that they do not have to be connected by a bond) and set or adjust their distance
from here. When choosing the Set Bond Length, Set Bond Angle, and Set Torsion Angle
items on the atom context (or Selection) menu, the Geometry window is automatically
presented on the correct page for the number of selected atoms.

78

7.15. Glyphs Window

TODO XXX
Glyphs Window

The glyphs window allows new glyphs to be created by hand, or existing glyphs in the model
to be managed, edited, and deleted.

Figure 5.13. Glyphs Window

All glyphs in the current model are listed to the left. Selecting one will allow its properties to
be edited on the right. The type of glyph can be changed also. Colours for individual glyph
data (i.e. points) may be changed through the colour controls associated to each.

79

7.16. Grids Window

The Grids window provides management for grid data sets owned by the different models.
All grid data sets held by the current model are displayed here. The appearance of individual
grids may be changed, and axes / cutoffs changed. Grid data can also be cut, copied, and
pasted to different models.

A ‘grid’ in Aten’s world can be more or less any kind of volumetric or surface data. For
instance, orbital densities, 2D height maps, molecule probability densities etc. See the Grids
section for more information.

Grids ® X

File Edit

Data / Cuteff | Origin /Axes | Style | Shift < >

Data Sums

Minirmum 0.0 Positive 0.0
Maximum 0.0 Negative 0.0
NPoints O Total oo
Cutoffs
Frimary Secondary

Lawer |0.00000000 0.00000000

SO

Upper |0.00000000 0.00000000

Wiew 0.0 0.0

Figure 7-23 Grids Window — Data / Cutoff page
General Grid Management

Each grid in the list has associated with it a checkbox that determines whether or not it is
currently visible. Below the list the minimum and maximum data values contained within the
grid, and the current cutoffs (i.e. the values for which the isosurface is drawn at) for the
primary and (optional) secondary surfaces to use when rendering the data. The File and Edit
menus allow new grids to be loaded into the current model, and to cut, paste, and delete grids
between models.

The Secondary checkbox specified that a second isosurface should be created for the current
grid. This is useful, for instance, to draw a second, transparent surface at a lower cutoff than
the primary, or to display an isosurface encompassing the negated cutoff range of the primary
(e.g. to display both signs of the wavefunction in orbital data).

80

Grids ® X

File Edit

Data / Cuteff | Origin /Axes | Style Shift >

Aoxes
¥ 000000 £ 000000 0 000000
¥ 000000 £3| (000000) 000000 £
Z (0.00000 £:| (000000 £:| D.00OO0DO £
Crigin
000000 4| (000000 | (000000 G

Figure 7-24 Grids Window — Origin / Axes page

The associated origin and axes to the currently selected grid can be modified here. In this way
grid data may be arbitrarily flipped, stretched, and sheared, and its position in the local space
of the model changed. All changes made are reflected immediately in the main view.

Grids ® X

File Edit

Data § Gutoff arigin J Axes Style Shift >

Grid w

Cutlineg Volume Periodic

Colour
Frarm CalourSeale

Scale ID 1 ¢ {unknawn)

| Internal Colaurs
-

Frima _

Secondary

> |

Figure 7-25 Grids Window — Style page

The general appearance of the selected grid can be modified in the Style page, with the main
rendering style set with the combo box (see Section 16.10 for a list of possible styles).
Optionally, a bounding box around the grid data may be drawn by selecting the Outline
Volume checkbox. The Periodic checkbox influences the way 3D surfaces are drawn close to
the boundaries of the grid. If unchecked, a ‘gap’ will appear near to the edges of the grid

81

volume since there is insufficient data with which to generate gradient information. If
checked, data points on the opposite site of the grid will be used in this region (useful, for
instance, in the case of orbital information calculated in periodic systems).

Colours for the primary and (if active) secondary sufaces can be set to simple (single) colours
by selecting Internal Colours and choosing whatever colour is desired from the colour
selection buttons. Should a more useful colouring scheme be desired than the surfaces may be
rendered using a colour scale (see Section 10.1), in which case the isovalue (if volumetric) or
height (if a 2D grid) determines the colour of the data point. To do so, select From
Colourscale, and choose the ID of the colour scale to use (from the ten definable in the
program).

Grids @ X

File Edit

Cata / Cuteff | Origin fAxes | Style | Shit | £ 3>

NI NP
S VD

Atom Shift

| None Selection All
St Y et

Figure 7-26 Grids Window — Shift page

The Shift page can be used to ‘translate’ the grid data points along each axis of the data set
allowing, for instance, isosurface features of interest in a periodic grid to be displayed in a
more central position. Note that no modification of the actual grid data is performed — the
effect is entirely visual. The Atom Shift group allows translation of selected/all atoms in the
parent model to be moved at the same time, so as to correlate them with the new positions of
the grid data.

Orbitals Page

Not implemented yet.

82

7.17. Messages Window

IMessages

Aten version 1.7 (hitp./faten.googlecode. comiswn/trunk@1503) built an Fri 01 Apr- 17:13, Copyright (C) 2007-2011 T. Youngs.
Aten uses Space Group Info (e) 1994958 Ralf W. Grosse-Kunstleve.

Aten comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it under cerain conditions.
Faor more details read the GPL at <http:ifwwangnu.arg/eapyleftigpl.html=.

Figure 7-27 Messages Window

The messages window is simply that — a place for all of Aten’s text output to appear when the
GUI is active.

83

7.18. Position Window

Tools for the absolute positioning of atoms are available here. All work on the current
selection of atoms in the current model.

Pasition &

Centre | Flip | Translate | Shift | Reposition

Target Coordinates
X |0.000000 &) Leek
Y 10.000000 o) Lock
Z |0.000000 G Lock
" Define
—Lentre_

Figure 7-28 Position Window — Centre page

The Centre page allows the centre of geometry of the current selection to be positioned at
absolute coordinates. The desired position is entered in the three input boxes, or can be
defined from the geometric centre of a selection of atoms (prior to the positioning of a
different set). Any (or all) of the Cartesian axes may be locked preventing coordinate
adjustment along particular directions.

Paosition ¢
Certre Flip Translate Shift Reposition

@ @
SR 3

Figure 7-29 Position Window — Flip page
The Flip page mirrors the positions of atoms in the current selection through its centre of

geometry in either the X, Y, or Z directions. Note that this tool currently works only along the
Cartesian axes, and does not take into account the shape of any defined cell.

84

Position & ¥
Centre | Flip | Translate || Shift | Reposition

Frame

% Maodel _c’:: _dl} _E:}
World

- & || ||

el —

Shift |1.00000000 ¢

Figure 7-30 Position Window — Translate page

Translations of atoms within model (local), world (view) and cell frames of reference can be
performed in the Translate page. The group of directional buttons move the selected atoms
along the relevant axis within the selected frame of reference, and by the amount specified in
the Shift control. For model and world reference frames the Shift control specifies the
number of Angstroms moved along the axis in each step. For the cell reference frame it
defines the fractional cell distance moved in each direction.

Pasttion ¢ X
Certre | Flip | Translate = Shift | Reposition

Wector

%" Pick

<o

X |0.000000

Y |0.000000 o Nermalise

SIS

Z |0.000000

Magnitude 0.0

<

Shift 1.000000

=

Figure 7-31 Position Window — Shift page

The vector along which to move the current selection is defined on the left hand side of the
Shift page. Furthermore, the axis may be defined by Picking two atoms in the main window.
The supplied vector does not need to be normalised, but thus may be performed through the
Normalise button. The defined shift value dictates the multiple of the defined vector by which
selected atoms are shifted.

85

Pasttion &
Certre | Flip | Translate | Shift | Reposition

Reference Target
X 10.000000 O ® 0.000000 4]
' |0.000000 O ' |0.000000 &
Z |0.000000 &1 1| Z oooooo0 O

%5 Define 5" Define

Reposition

Figure 7-32 Position Window — Reposition page

The reposition page allows the centre of geometry of a selection of atoms to be moved from a
reference coordinate (defined by the Reference panel) to a destination coordinate (defined by
the Target panel). Either coordinate may be set from the centre of geometry of the current
atom selection by pressing the relevant Define button.

86

7.19. Select Window

The select window provides a means to quickly access the capabilities of the select and
deselect commands from within the GUI. The total number of atoms selected along with
their empirical formula is also displayed.

Select o X
Actions
@AII | |MNone @ Invert
% Expand
Selection by ID/Element
Select Deselect
Select by Description
NETA
Element C | B Select Deselect

Current Selection

Total selected : 0

Figure 7-33 Select Window

Basic atom selection operations can be made using the All, None, Invert, and Expand
buttons at the top of the window. The first three are self-explanatory, selecting all atoms, no
atoms, and reversing the current selection respectively. The final button, Expand, looks at
any bonds attached to any currently-selected atoms, and selects those atoms that are bound as
well. Only the immediate bound neighbours of each atom are considered each time the
expansion is made.

Three more advanced selection methods are also available.

Selection by ID/Element Ranges

Ranges of atom IDs and/or elements are specified as ‘a-b’ where a and b are either both atom
IDs or both element symbols. In addition, the ‘+’ symbol can be used before (as in ‘+a’) or
after (as in ‘a+’) an atom ID or element symbol to mean, respectively, ‘everything up to and
including &’ or ‘a and everything after’. Multiple selection ranges may be given, separated by
commas. Selection or deselection of atoms based on the defined range(s) is made by the
Select and Deselect buttons.

Select by Description

XXX

Select by For Loop

XXX

87

88

7.20. Trajectory Window

If a trajectory is associated to the current model, the trajectory toolbar allows to skip through
frames and playback the trajectory.

Trajectary o =

= (| (pa))]

- A~
! i -

Figure 7-34 Trajectory Window

The EEB button serves to act as a toggle between displaying the actual trajectory frames and the
parent model which ‘owns’ those trajectory frames. Its state is linked to the
Trajectory—View Model and Trajectory— View Trajectory menu items of the main
window, and vice versa. The set of standard playback controls allow individual frames to be
skipped, as well as going straight to the beginning or end of the trajectory. The current frame
may also be set with either the spin control or slider at the foot of the window. The delay
between swapping of frames is controlled by the slider on the right where the delay can be set
in milliseconds. Note that the actual speed of playback will also depend on the size of the
system being viewed and the raw power of your graphics card.

89

7.21. Transform Window

For a selection of atoms, rotational or matrix-based transformations can be applied through
the Transform Window.

Rotation About Arbitrary Axis

Atarn Transform @ o

Axis Rotate Transfarm Matrix Canvert

Crigin Bxis
X 0.00000 £ | % o.00000 Y]
¥ |0.00000 & | v 0.00000 Y]
Z |0.00000 |||z o.0o0000 Y]
** Define ** Define
% Pick
Angle |60.00000 SHE Q

Figure 7-35 Transform Window — Axis Rotate page

The Rotate page allows an origin and a rotation axis about this origin to be defined about
which to rotate atom selections. The origin and axis may be entered manually, can be
determined from a current atom selection (Define buttons), or defined by the click-selection
of two atoms (Pick button). Defining the rotation axis from the current selection will set the
axis to the vector between the currently-defined origin and the centre of geometry of the
current atom selection. Rotations of atom selections about this axis/origin combination are
then made by defining the Angle of rotation (in degrees) and then applying the rotation either
clockwise or anticlockwise.

90

Matrix Transformation

Atarn Transform ® X

Axis Rotate Transfarm Matrix Convert

Matrix
¥ | 1.00000 £ | |0.00000 £ 0.00000 O
*.2 Pick o Nem s Orthe [& en
¥ |0.00000 £ 1.00000 £ 0.00000 O
%2 Pick || fho Mam || fp orthe || JE Gen
I |0.00000 £ | |0.00000 £ 1.00000 O
%2 Pick || 1o Mo fp Ottha & een
Qrigin
0.00000 2| |0.0o000 2| [0.00000)
ﬂ Cell Gentre "'!." Define
Transform

Figure 7-36 Transform Window — Transform page

From here a 3x3 transformation matrix can be applied to the current atom selection, and with
a specific coordinate origin (not necessarily the centre of geometry of the selection). The Pick
buttons allow selection of the various axes through click-selection of two atoms (not
necessarily in the same model as the current atom selection), while the Normalise buttons
will normalise each of the currently-defined axes to be of unit length. Finally, the
Orthogonalise and Generate buttons allow particular axes to be orthogonalised relative to, or
generated from, the other defined axes.

Matrix Conversion

Atarn Transform @ K
Axis Raotate Transfarm Matrix Convert

Source Target

¥ 1.00000 | |0.00000 £ 0.00000 G
%2 Pick o Ham e Orthe & cen

¥ |0.00000 | [1.00000 | |o.0o000 O
%2 Pick || f1o Mo g orthe || [een

z |0.00000 % | [0.00000 £ | [1.00000 O]

*.2 Pick o Nam s Orthe & en

Qrigin
'0.00000 2| [0.00000 2| [0.00000 ")
ﬂ Cell Gentre “‘!." Define
Convert

Figure 7-37 Transform Window — Matrix Convert page

91

It is possible to transform the orientation of a given set of atoms if a suitable pair of source
and destination matrices are defined. The Source matrix defines what should be considered
the current frame of reference for the current set of coordinates. Once the Convert button is
pressed, a rotation matrix is generated such that, when applied to the Source matrix (and the
current atom selection) it will be transformed into the Target matrix.

As for the matrix convert page, the Pick, Normalise, Orthogonalise, and Generate buttons
allow each axis to be selected, normalised, orthogonalised relative to the others, and generated

from the others respectively.

92

7.22. ZMatrix Window

Matrix Window

The z-matrix window allows the z-matrix for the current model to be viewed and its variables
edited. Any changes made are reflected immediately in the coordinates of the model.

Figure 5.29. ZMatrix Window

93

8.Command Language

8.1. Command Language Overview

The scripting language in Aten is based syntactically on C/C++, with echoes of useful Fortran
features included for good measure. This means that if you're familiar with C/C++ then
controlling Aten from the command line, or writing a script, command, or filter should be
relatively straightforward. There are lots of C primers on the web, so the following sections
provide only a brief summary of the style of the language.

8.1.1. General Input Style

Keywords, variables, and function names are case sensitive, so ‘for’ is different from ‘For’
(all internal commands in Aten are in lowercase). Individual commands must be separated by
a semicolon ‘;’, and newlines are optional. For example:

int i; printf("Hello there.\n"); i = 5;
...and...

int 1i;

printf ("Hello there.\n");

i =5;

...are equivalent. Whitespace characters (spaces and tabs) are ignored and may be present in
any amount in any position in the code.

Individual lines or parts of them may be commented out. The presence of either the hash
symbol # or // in a line means ‘ignore rest of line’. Note that the /*. . . */ commenting style
is not supported.

8.1.2. Variables
There are several standard rules for variables within Aten:

e They must be declared before use

e They are strongly-typed, i.e. they hold a specific type of value (e.g. an integer, a
character string etc.)

e They must begin with an alpha character (‘a’ to ‘z’), but may otherwise consist of
letters, numbers, and the underscore (*)

e They may not be named the same as any existing function or internal keyword

e Since variables are strongly-typed, trying to set an integer variable from a string will
not work since these are incompatible types. However, standard C-style string
conversion functions are available - see String Commands in Section 9.28.

94

So, to initialise some variables, assign values to them, and print them out, we would do the
following:

int 1i;
double result;
i = 10;
result = 1i*5.0;

printf ("i multiplied by 5.0 = $f\n", result);

In addition to the standard int and double types, a st ring variable exists for the storage of
arbitrary-length character strings, and do not need to have a length specified on their creation
(they will adjust dynamically to suit the assigned contents). Literal character strings should be
surrounded by double-quotes. A set of variable types exist that are able to contain references
(not copies) of various objects within Aten, e.g. atoms, models, unit cells, etc. Variables of
these types are declared in exactly the same way as normal variables (see Section 8.2 for a list
of available types). A vector type is provided for convenience and stores a triplet of double
values. There is no boolean type — use an int instead — but the built-in constants (see Section
8.1.4) TRUE and FALSE may be used in assignment, etc., and correspond to the integer values
‘1’ and ‘0’ respectively.

All variables will default to sensible values (e.g. empty string, numbers equal to zero) on
initialisation. To create a variable with a specific value simply do the following:

int i=1,3=2,k=1001;
double myvar=0.0, angle = 90.0;

8.1.3. Arrays
Arrays of most variable types are allowed (some, for instance the aten type, don't really

make sense as an array). Arrays are requested by providing a constant size (or an expression)
in square brackets after the name:

int values[100], 1 = 4;
double q[i];

Here, two arrays are created - an array of 100 integer numbers called values, and an array of
four floating point numbers called g. Array indices always run from 1 to the size of the array,
unlike C in which arrays run from 0 to N-1. Note that it is not possible to use a custom range
of array indices, as is the case in Fortran.

Arrays can be initialised to a simple value on creation, setting all elements to the same value...

string s[4] = "Nothing";

95

...or each element to a different value using a list enclosed in curly brackets:

string s[4] = { "Nothing", "Nicht", "Nada", "Not a sausage" };

Also, all array elements can be set to the same value with a simple assignment:

int t£[100];
t = 40;

8.1.4. Predefined Constants

Several predefined constants exist, and may not be overridden by variables of the same name.
All predefined in constants are defined using uppercase letters, so the lower case equivalents
of the names may be used as variables, functions etc.

Table 8-1 Built-In Constants

Name Type Value

ANGBOHR double 0.529177249
AVOGADRO double 6.0221415E23

DEGRAD double 57.295779578552

FALSE int 0

NULL int 0

Pl double 3.14159265358979323846
TRUE int 1

In addition, all element symbols found in the input will be seen as their equivalent integer
atomic number. So, instead of having to provide short strings containing the element name to,
for example, the transmute command, simply the capitalised element name itself may be
used. Thus...

transmute ("X
transmute (X
transmute (5

ell);
e);
4);

...are all entirely equivalent.

8.1.5. Blocks, Scope, and Variable Hiding

As with C, variable scope is employed in Aten meaning that a variable may be local to certain
parts of the code / filter / script. In addition, two or more variables of the same name (but
possibly different types) may peacefully co-exist in different scopes within the same code /
filter / script. Consider this example:

int n = 4, i = 99;
printf ("$i\n", 1i);
if (n == 4)

96

int i = 0;
printf ("$i\n", 1i);
}

printf ("$i\n", 1);

...will generate the following output:

99

99

Why? Well, even though two variables called i have legitimately been declared, the second
declaration is made within a different block, enclosed within a pair of curly braces. Each time
a new block is opened it has access to all of the variables visible within the preceeding scope,
but these existing variable names may be re-used within the new block in new declarations,
and does not affect the original variable. Hence, in the example given above, after the
termination of the block the final printf statement again sees the original variable i, complete
with its initial value of 99 intact. Note that if a variable is re-declared within a scoping block,
there is no way to access the original variable until the scoping block has been closed. Blocks
can be nested to any depth.

8.1.6. Functions

For functions that take arguments, the argument list should be provided as a comma-separated
list in parentheses after the function name. For instance:

newatom ("C", 1.1, 0, 4.2);

Arguments may be constant values (as in this example), variables, arithmetic expressions, or
any other function that returns the correct type. For functions that (optionally) do not take
arguments, the empty parentheses may be omitted. A list of all functions, their arguments, and
their return types is given in the command reference in Section 9.

All functions return a value, even if it is ‘no data’ (i.e. “‘void’ in C/C++). For instance, in the
example above the newatom command actually returns a reference to the atom it has just
created, and this may be stored for later use:

atom a;
a = newatom("C", 1.0, 1.0, 1.0);

However, if the return value of any function is not required then it may simply be forgotten
about, as in the example prior to the one above.

8.1.7. User Defined Functions

97

User-defined functions can be defined and used in Aten, taking a list of variable arguments
with (optional) default values. The syntax for defining a function is as follows:

type name (arguments) { commands }

type IS one of the standard variable types and indicates the expected return value type for the
function. If no return value is required (i.e. it is a subroutine rather than a function) then type
should be replaced by the keyword void:

void name (arguments) { commands }

Once defined, functions are called in the same way as are built-in functions. The name of the
function obeys the same conventions that apply to variable names, e.g. must begin with a
letter, cannot be the name of an existing keyword, function, or variable. The arguments are
specified in a similar manner to variable declarations. A comma-separated declaration list
consisting of pairs of variable types and names should be provided, e.g.:

void testroutine (int i, int j, double factor) { ... }

Our new subroutine testroutine is defined to take three arguments; two integers, i and 7,
and a double factor. All three must be supplied when calling the function, e.g.

printf ("Calling testroutine...\n");
int num = 2;

double d = 10.0;

testroutine (num, 4, d);

printf ("Done.\n") ;

When defining the function/subroutine arguments, default values may be indicated, and
permit the function to be called in the absence of one or more arguments. For instance, lets
say that for our testroutine, the final argument factor is likely to be 10.0 on most
occasions. We may then define a default value for this argument, such that if the function is
called without it, this default value will be assumed:

void testroutine (int i, int j, double factor = 10.0) { ... }
printf ("Calling testroutine...\n");

int num = 2;

testroutine (num, 4);

testroutine (num, 4, 20.0);
printf ("Done.\n");

Both methods of calling testroutine in this example are valid.

8.1.8. Return Values

98

For functions defined to return a specific type, at some point in the body of the function a
suitable value should be returned. This is achieved with the return keyword. Consider this
simple example which checks the sign of a numeric argument, returning 1 for a positive
number and -1 for a negative number:

int checksign (double num)

{
if (num < 0) return -1;
else return 1;

If an attempt is made to return a value whose type does not match the type of the function, an
error will be raised. Note that, once a return statement is reached, the function is exited
immediately. For functions that do not return values (i.e. those declared with vo1id) then
return simply exits from the function — no return value need, or should, be supplied.

8.1.9. Arithmetic Expressions and Operators

Arithmetic operates in the same way as in C, and utilises the same operator precedence etc.
Similarly, comparison operators (less than, equal to etc.) are the same as those found in C.

99

8.2. Variable Types

8.2.1. Overview

For variables in Aten that are of reference type (i.e. the non-standard types) various sub-
variables and functions may be accessed in the same way class members are utilised in C++.
Each non-standard variable type is listed here along with the types and descriptions of their
available subvariables / members.

In the same way that class members are accessed in C/C++, subvariables of reference types
are accessed by use of the full stops between member names. For instance, the atom type
allows all the information of a given atom to be accessed. The following example illustrates
the process of retrieving the third atom in the current model, finding its coordinates, and
subsequently adjusting them:

atom a = aten.model.atoms[3];

vector v = a.r;

printf ("0ld coordinates are: %$f $f %$f\n", v.x, v.y, v.z);
v.X += 4.0;

a.r = v;

printf ("New coordinates are: %$f %f %f\n", a.rx, a.ry, a.rz);

Lots of paths are used here. Firstly, the global atenvariable is used to get access to the
current model and grab a reference to its third atom (aten.model.atoms [3]). Then, the
coordinates of this atom are placed in a vector v by requesting the r subvariable from the
stored atom reference. We then adjust the vector and store the new coordinates in the atom.

All members can be read, but not all can be written back to — these are read-only members for
which setting a value makes no sense. Members which can be modified are indicated with
mark in the ‘RW’ column in the following tables.

Function members act in the same as subvariable members except that they take one or more
arguments enclosed in parentheses immediately following the member name, just as
command functions do.

8.2.2. Aten Type

The ‘master’ class type, aten, Is there to provide access to various other structures such as
the list of loaded models, preferences, element data etc. It is available at all times from any
command, script, or filter, and is always called aten. Note that it is not possible to declare
new variables of type aten.

Table 8-2 Aten Type Members

Member Type RW Description
elements element[] Array of element data (masses, symbols, names, etc.)
frame model The current model being displayed and the focus of editing,

i.e. the current trajectory frame or, if no trajectory is
100

associated to the current model then the current selected
model is returned

model model The current model selected (this is the parent model of a
trajectory if a frame is currently being displayed)

models model[] Array of all loaded models currently available

nelements int Number of chemical elements defined in the elements array

nmodels int Number of models (parent models, i.e. not including
trajectory frames) currently loaded

prefs prefs Program preferences

8.2.3. Atom Type Member Functions

convertenergy

Syntax:

double convertenergy (double value, string oldunits)

Convert the supplied energy value from oldunits to the current, internal unit of energy in
use by Aten. See also Energy Units (Section 16.8) and the relevant prefs accessor.

findelement

Syntax:
element findelement (String name)

Convert the name specified into an element, according to the current ZMapping Type
(Section 16.16).

8.2.4. Atom Type

The atom type encompasses a single atom in a model or frame.
Table 8-3 Atom Type Members

Member Type RW Description

bonds bond[] List of bonds the atom is involved in

colour double[4] Custom colour of the atom (used when the Colouring Scheme,
see Section 16.5, is set to ‘custom’)

data string . Temporary character data stored on the atom (for use in filters
etc.)

element element . Returns a pointer to the assigned element data of the atom

fixed int . Whether the atom's position is fixed (1) or not (0)

f vector . Force vector

fracx double . Position x-component in fractional cell coordinates

fracy double . Position y-component in fractional cell coordinates

fracz double . Position z-component in fractional cell coordinates

X double . Force x-component

fy double . Force y-component

101

fz double . Force z-component

hidden int . Whether the atom is hidden (1) or visible (0)

id int Numerical ID of the atom within its parent model
mass double Atomic mass of the atom

name string Element name of the atom

q double . Atomic charge associated to the atom

r vector . Position vector

rX double . Position x-component

ry double . Position y-component

rz double . Position z-component

selected int . Whether the atom is selected (1) or unselected (0)
style string . The current Drawing Style of the atom (see Section 16.7)
symbol string Element symbol of the atom

type ffatom . Forcefield type of the atom

v vector . Velocity vector

VX double . Velocity x-component

vy double . Velocity y-component

V74 double . Velocity z-component

z int . Atomic number of the atom

8.2.5. Atom Type Functions

findbond

Syntax:

bond findbond (atom 1)

Return the bond (if any) between this and the and specified atom 1.

8.2.6. BasisPrimitive Type

The basisprimitive type provides access to basis primitive coefficient and exponent
information in a basis shell.

Table 8-4 BasisPrimitive Type Members

Member Type RW Description

exponent double . Exponent of the basis primitive
coefficients double[] . Coefficients of the basis primitive
8.2.7. BasisPrimitive Type Functions

addcoefficient

Syntax:

void addcoefficient (double coeff)

102

Add a new coefficient to the basis primitive.

8.2.8. BasisShell Type

The basisshell type contains information about a basis shell centred on a specific atom in
a model, allowing a full basis set specification to be associated with a system.

Table 8-5 BasisShell Type Members

Member Type RW Description

atomid int . Atom ID on which the basis shell is centred
nprimitives int Number of primitives defined for the basis shell
primitives basisprimitivel[] List of primitives defined for the basis shell
type string . The type (shape) of the basis shell. See Basis

Shell Types in Section 16.1 for a list.

8.2.9. BasisShell Type Functions

addprimitive

Syntax:

basisprimitive addprimitive (double exponent, double coeffl = 0.0

)

Add a new primitive to the basis shell, with the specified exponent and (optional) coefficients
given.

8.2.10. Bond Type

The bond type represents a chemical connection of some defined order between two atoms.

Table 8-6 Bond Type Members

Member Type RW Description

[atom First atom involved in the bond

J atom Second atom involved in the bond
order double Bond order

type string Bond Type — see Section 16.2 for a list

8.2.11. Bond Type Functions

partner

Syntax:

atom partner (atom 1)

103

Return the other atom (i.e. not 1) involved in the bond

8.2.12. Bound Type

The bound type is used by the pattern type, and defines a single bound interaction (e.g. a
bond, angle, or torsion) between a group of atoms within the pattern. It differs from the
f fbound type since no forcefield information is stored locally in the structure.

Table 8-7 Bound Type Members

Member Type RW Description

data double Parameters describing the bound interaction

escale double Electrostatic 1-4 scaling factor (for torsion interactions)

form string Functional form of the bound interaction

id int[] Array of atom IDs involved in the interaction

termid int Array index of forcefield term in relevant list (ffangles,
ffbonds, or fftorsions) in local pattern

type string Returns the Bound Type (Section 16.3) of the interaction.

typenames stringl[] Array of typenames involved in the interaction

vscale double Short-range 1-4 scaling factor (for torsion interactions)

8.2.13. Bound Type Functions

parameter

Syntax:
double parameter (string keyword)

Search for and return the named parameter of the bound interaction

8.2.14. ColourScale Type

The colourscale type allows direct access to the points defined inside a colourscale.

Table 8-8 ColourScale Type Members

Member Type RW Description
npoints int Number of points contained in the colourscale
points colourscalepoint[] Array of points in the colourscale

8.2.15. ColourScale Type Functions

addpoint

Syntax:

104

colourscalepoint addpoint (double value, double r, double g, double
b, double a = 1.0)

Add a new point to the colourscale at point va1ue and RGB(A) colour specified, the
components of which should have values ranging from 0.0 to 1.0 inclusive).

clear

Syntax:

void clear ()
Clear all points contained in the colourscale

colour

Syntax:

void colour (double value, double &r, double &g, double &b, double
&a)

Retrieve the colour components for the vaiue specified. The RGBA values of the colour
will be placed in the supplied variables.

8.2.16. ColourScalePoint Type
The colourscalepoint is asimple type which allows definition of the point colour.
Table 8-9 ColourScalePoint Type Members

Member Type RW Description
colour double[4] . Colour associated to the point

8.2.17. Eigenvector Type

The eigenvector type stores the coefficients of a complete molecular orbital for a specific
model.

Table 8-10 Eigenvector Type Members

Member Type | RW Description

eigenvalue double . Associated eigenvalue of the eigenvector

name string . Name of the eigenvector, e.g. orbital symmetry

occupancy double . Associated occupancy of the eigenvector

size int . Current size of the eigenvector array. Can be set to
reinitialise the array.

vector double[] The eigenvector data array

105

8.2.18. Element Type

The element type stores all information describing a given chemical element, the full array
of which is stored in the aten type.

Table 8-11 Element Type Members

Member Type RW Description
ambient double[4] Ambient colour of the element
colour double[4] Returns the ambient colour of the element. Set this property

to define both ambient (supplied values) and diffuse
(0.75*supplied values) components simultaneously

diffuse =~ double[4] Diffuse colour of the element

mass double Atomic mass of the element

name string Capitalised name of the element

radius double . Atomic radius of the element. Affects the scaled sphere
rendering style and bond calculation.

symbol string Atomic symbols of the element

8.2.19. EnergyStore Type
The energystore type stores the last set of energy values calculated for a model or frame.
Table 8-12 EnergyStore Type Members

Member Type RW Description

angle double Total angle energy

bond double Total bond energy

electrostatic double Total electrostatic energy (efrom Coulomb or Ewald sums)
torsion double Total torsion energy

total double Total of all energy components

ureybradley double Total Urey-Bradley energy

vdw double Total van der Waals energy

8.2.20. FFAtom Type

The ffatom type stores parameter data relevant to a specific atom type in a forcefield.

Table 8-13 FFAtom Type Members

Member Type RW Description

charge double . Charge associated to the type

data double[6] o Parameter data for short-range potential

datakeyword string[] Keyword names of the associated parameters, up to
'nparams’

datanames string[] Proper names of the associated parameters, up to
'nparams’

description string . Text data describing the type

equivalent string . Equivalent name for the type

form string . Functional form of short-range potential

106

id int Internal ID of the atom type within its parent forcefield

name string . Name of the type

neta string The original type description used to identify the type

nparams int The number of parameters used by the functional form
of the interaction

ff forcefield Parent forcefield containing the type

z int . Element id (Z) corresponding to the target element of
this type

8.2.21. FFAtom Type Functions

datad

Syntax:

double datad (string varname)

Return the value of the defined data item varname as a double if it has been defined in a
data block in its encompassing forcefield.

datai

Syntax:

int datai (string varname)

Return the value of the defined data item varname as an integer if it has been defined in a
data block in its encompassing forcefield.

datas

Syntax:
string datas (string varname)

Return the value of the defined data item varname as a string if it has been defined in a data
block in its encompassing forcefield.

parameter

Syntax:

double parameter (string name)

Return the value of the parameter name in the associated vdW data. See VDW Functional
Forms in Section 13.1 for a list of parameter names in the supported vdW functions.

8.2.22. FFBound Type

107

The ffbound type stores parameter data relevant to a specific bound interaction within a
pattern. It differs from the bound type in that no atom ID information is stored.

Table 8-14 FFBound Type Members

Member Type RW Description

data double[] Parameter data for the potential

datakeyword string[] Keyword names of the associated parameters, up to
‘nparams’

datanames string[] Proper names of the associated parameters, up to ‘nparams'

escale double[] For torsion-type interactions, the electrostatic scaling
factor between atoms 1 and 4

form string . Functional form of intramolecular potential - see the

Section 13 for lists of allowable functional forms for each
intramolecular interaction type

natoms int Number of atoms involved in the bound interaction

nparams int The number of parameters used by the functional form of
the interaction

type string Actual type of the bound interaction (bond, angle, etc.)

typenames string . Names of the atom types the interaction is relevant to

vscale double[] For torsion-type interactions, the VDW scaling factor

between atoms 1 and 4

8.2.23. FFBound Type Functions

parameter

Syntax:

double parameter (string name)

Search for and return the value of the parameter name within the bound interaction

8.2.24. Forcefield Type

The forcefield type stores a complete set of atom types and ffbound interaction data.

Table 8-15 Forcefield Type Members

Member Type RW Description

energygenerators int[] . Array of integers flagging which generator data are
‘energetic’ and should be converted

filename string e Filename if the forcefield was loaded from a file

name string e Name of the forcefield

nangles integer Number of angle terms defined in the forcefield

natomtypes integer Number of atomtypes defined in the forcefield

nbonds integer Number of bond terms defined in the forcefield

nimpropers integer Number of improper dihedral terms defined in the
forcefield

ntorsions integer Number of torsion terms defined in the forcefield

108

8.2.25. Forcefield Type Functions

addangle

Syntax:

ffbound addangle (string form, string type i, string type j, string
type k, double datal, ...)

Create a new angle definition in the forcefield. See the angledef command for a full
description.

addbond

Syntax:

ffbound addbond (string form, string type i, string type j, double
datal, ...)

Create a new bond definition in the forcefield. See the bonddef command for a full
description.

addinter

Syntax:

ffbound addinter (string form, int typeid, double charge, double
datal, ...)

Create a new interatomic definition in the forcefield. See the interdef command for a full
description.

addtorsion

Syntax:

ffbound addtorsion (string form, string type 1, string type j,
string type k, string type 1, double datal, ...)

Create a new torsion definition in the forcefield. See the torsiondef command for a full
description.

addtype

Syntax:

ffatom addtype (int typeid, string name, string equiv, stringl|int
element, string neta, string description = "")

Create a new type definition in the forcefield. See the typede£ command for a full
description.

109

finalise

Syntax:

void finalise ()
Finalise the forcefield. See the £inaliseff command for a full description.

findangle

Syntax:
ffbound findangle (string type i, string type j, string type k)
Search for an existing angle definition in the forcefield between the type names supplied.

findbond

Syntax:
ffbound findbond (string type 1, string type j)
Search for an existing bond definition in the forcefield between the type names supplied.

findimproper

Syntax:

ffbound findimproper (string type i, string type j, string type k,
string type 1)

Search for an existing improper torsion definition in the forcefield between the type names
supplied.

findtorsion

Syntax:

ffbound findtorsion (string type i, string type j, string type k,
string type 1)

Search for an existing torsion definition in the forcefield between the type names supplied.

findureybradley

Syntax:

ffbound findureybradley (string type i, string type j, string
type k)

Search for an existing Urey-Bradley definition in the forcefield between the type names
supplied.

110

8.2.26. Glyph Type

The g1yph type contains information describing a single glyph within a model.

Table 8-16 Glyph Type Members

data glyphdata Individual data for each vertex of the glyph

ndata int How many data points (vertices) are associated with this
glyph’s type

rotated int . Flag to indicate whether the glyph's rotation matrix has been

modified (i.e. the glyph has been rotated). Setting this to '0'
resets (and removes) any current rotation matrix (same as
calling member function 'resetrotation’).

rotation double[9] e Rotation matrix for the glyph. Note that not all glyphs can be
rotated (see the topic on Glyphs for more information.

selected int . Whether the glyph is currently selected

solid int . Specifies whether the glyph is drawn as a filled (solid) shape
or in wireframe

text string . Text data associated to the glyph. Not all glyphs use text

type string . Style of the glyph - see Glyph Types (Section 16.9) for a list

visible int . Flag indicating whether the glyph is currently visible

8.2.27. Glyph Type Functions

recolour

Syntax:

void recolour (double r, double g, double b, double a = 1.0)

Recolour all data vertices of the glyph to the specified RGB(A) value, each component of
which should be in the range 0.0 to 1.0 inclusive.

resetrotation

Syntax:

void resetrotation ()
Reset any rotation applied to the glyph

rotatex

Syntax:

void rotatex (double angle)

Rotates the glyph by ang1e degrees about its x axis

111

rotatey

Syntax:
void rotatey (double angle)
Rotates the glyph by ang1e degrees about its y axis

rotatez

Syntax:

void rotatez (double angle)

Rotates the glyph by ang1e degrees about its z axis

8.2.28. GlyphData Type

The glyphdata type stores colour and position data for a single point in a glyph.

Table 8-17 GlyphData Type Members

Member Type RW Description

atom atom . Atom (if any) from which positional data is retrieved

atomdata int . Type of data to retrieve from specified atom (if any) - 0 =
position, 1 = force, 2 = velocity

colour double[4] RGBA colour of the vertex (components ranging from 0.0
1.0)

vector vector . Vertex coordinates

8.2.29. Grid Type

The grid type stores all information for a single grid structure associated to a model.

Table 8-18 Grid Type Members

Member Type RW Description

axes unitcell Axes system for the grid, stored in a unit cell
structure

colour double[4] e The primary colour of the grid data

cutoff double . The lower primary cutoff value

name string . Name associated to the grid data

nx int Size of grid data in the x-dimension

ny int Size of grid data in the y-dimension

nz int Size of grid data in the z-dimension

origin vector . Coordinates of the origin (lower left-hand
corner) of the grid data

outlinevolume int . Flag specifying whether a bounding volume
cuboid should be drawn for the grid

periodic int . Flag specifying whether the grid is periodic (e.g.

112

secondarycolour double[4]
secondarycutoff double .
secondaryuppercutoff double .
shiftx int .
shifty int .
shiftz int .
uppercutoff double .
visible int .

at the edges data from opposite side should be
used to form grid)

The secondary colour of the grid data

The lower secondary cutoff value

The upper secondary cutoff value

Shift value (in points) for the grid along its x-

axis

Shift value (in points) for the grid along its y-

axis

Shift value (in points) for the grid along its z-

axis

The upper primary cutoff value

Flag specifying whether the grid is visible (i.e.
should be drawn in the model)

8.2.30. Measurement Type

The measurement type stores the atom indexes and current value of a single measurement

currently displayed on a model.

Table 8-19 Measurement Type Members

Member Type RW Description

atoms atom[] Array of atoms involved in the measurement

[atom First atom involved in the measurement

j atom Second atom involved in the measurement

k atom Third atom involved in the measurement (if any)

I atom Fourth atom involved in the measurement (if any)

literal double The literal value (e.g. distance, angle, or torsion angle) of the

measurement using atom coordinates as-is without applying
minimum image criteria in periodic systems
value double Value (e.g. distance, angle, or torsion angle) of the measurement

8.2.31. Model Type

The mode1 type contains all the information describing a single model within Aten, including

bonds, grid data, measurements, etc..

Table 8-20 Model Type Members

Member Type

angles measurement []
atoms atom[]

bonds bond []

cell unitcell
componentbulk int
componentdensity double
componentfree int

RW Description

List of current angle measurements in the
model

Array of atoms in the model

Array of bonds defined in the model

The model's unit cell

Whether the component is to be considered
a bulk component

Requested density of the model

Whether the model or not has a specific

113

componentpartition

componentpopulation

distances
eigenvectors
energy

ff

ffangles
ffbonds

ffmass

fftorsions
fftypes
frame

frames

glyphs
grids

id

mass
name
nangles

natoms
nbasiscartesians

nbasisshells

nbonds
ndistances

nffangles
nffbonds

nfftorsions

int

nt

-

measurement []
eigenvector(]
energystore
forcefield
ffbound[]
ffbound[]

double

ffbound[]
ffatom
model

model]

glyphl]
gridl]
int
double
string

int

int
int

int

int
int

int
int

int

114

density requested (FALSE)

The integer index of the partition which
this model will be added to in the
disordered builder

The number of times this model will be
added to the specified partition in the
disordered builder

List of current distance measurements in
the model

List of current eigenvectors stored in the
model

The model's energy store, containing the
total calculated energy and all associated
contributions

Forcefield associated to the model (if any)
List of unique forcefield angle terms in the
model

List of unique forcefield bond terms in the
model

Forcefield mass of the current model,
which can differ from the actual mass if
united-atom types have been assigned
List of unique forcefield torsion terms in
the model

Array of unique atom types used in the
model

The current frame in the model's trajectory
(if it has one)

Array of trajectory frame pointers (only if
the trajectory is cached)

List of glyphs owned by the model

List of grids owned by the model

The index of the model in Aten's internal
list of loaded models

Mass of the current model

Name of the model

Number of angle measurements in the
model

Number of atoms in the model

Number of cartesian basis functions
defined in stored basis shells

Number of basis shells defined in the
model

Number of bonds in the model

Number of distance measurements in the
model

Number of unique angle terms used in the
model

Number of unique bond terms used in the
model

Number of unique torsion terms used in the
model

nfftypes int Number of unique atom types used in the

model

nframes int Number of frames in associated trajectory

nglyphs int Number of glyphs owned by the model

ngrids int Number of grids owned by the model

npatterns int Number of patterns defined for the model

nselected int Number of atoms selected in the model

ntorsions int Number of torsion angle measurements in
the model

nunknown int Number of atoms in the model that are of
unknown element

patterns pattern(] Array of patterns currently defined for the
model

selection atom[] A list of atoms in representing the current
atom selection of the model

torsions measurement [] List of current torsion angle measurements
in the model

8.2.32. Model Type Functions

addhydrogen

Syntax:
void addhydrogen ()

Hydrogen satisfy all atoms in the model. See the addhydrogen command for more details.

angleenergy

Syntax:
double angleenergy ()
Calculates and returns the total angle energy for the current model.

augment

Syntax:

void augment ()

Automatically detect and add multiple bonds in the system. See the augment command for
more details.

bondenergy

Syntax:
double bondenergy ()

115

Calculates and returns the total bond energy (including Urey-Bradley contributions) for the
current model.

charge

Syntax:

void charge ()

Assign charges to the model from the current forcefield. See the charge command for more
details.

clearbonds

Syntax:
void clearbonds ()

Remove all bonds from the model. See the clearbonds command for more details.

clearcharges

Syntax:
void clearcharges ()

Remove al charges from the model, setting them to zero. See the clearcharges command
for more details.

clearselectedbonds

Syntax:

void clearselectedbonds ()

Remove all bonds from the current atom selection. See the clearselectedbonds command
for more details.

copy

Syntax:

void copy ()
Copy the current atom selection to the clipboard. See the copy command for more details.

cut

Syntax:

void cut ()

116

Cut the current atom selection to the clipboard. See the cut command for more details.

delete

Syntax:
voilid delete ()

Delete the current atom selection. See the delete command for more details.

elecenergy

Syntax:
double elecenergy ()

Calculates and returns the total electrostatic energy for the current model, using the
calculation method specified in the preferences.

expand

Syntax:

void expand ()
Expand the current atom selection along bonds. See the expand command for more details.

finalise

Syntax:

void finalise ()
Finalise the current model. See the finalisemodel command for more details.

interenergy

Syntax:

double interenergy ()

Calculates and returns the total intermolecular (i.e. combined van der Waals and electrostatic)
energy for the current model.

intraenergy

Syntax:

double intraenergy ()

117

Calculates and returns the total intramolecular (i.e. combined bond, angle, and torsion) energy
for the current model.

movetoend

Syntax:
void movetoend ()

Move the current atom selection to the bottom (highest IDs) of the atom list. See the
movetoend command for more details.

movetostart

Syntax:
void movetostart ()

Move the current atom selection to the top (lowest IDs) of the atom list. See the
movetostart command for more details.

newatom

Syntax:

atom newatom (int|string el, double x = 0.0, double y
z = 0.0, double vx = 0.0, double vy = 0.0, double vz =
fx = 0.0, double fy = 0.0, double fz)

= 0.0, double
0.0, double

Create a new atom in the model. See the newatom command for more details.

newatomfrac

Syntax:
atom newatomfrac (int|string el, double x, double y, double z,

double vx = 0.0, double vy = 0.0, double vz = 0.0, double fx = 0.0,
double fy = 0.0, double fz)

Create a new atom in the model, in fractional coordinates. See the newatomfrac command
for more detalils.

newbasisshell

Syntax:
basisshell newbasisshell (atom|int i, string type)

Create a new basis shell definition in the model, centred on the specified atom/id, and of the
given shell type. See the newbasisshell command for more details.

118

newbond

Syntax:

bond newbond (atom|int i, atom|int j, string|int bondtype = "")
Create a new bond between atoms in the model. See the newbond command for more details.

newbondid

Syntax:

bond newbondid (int id i, int id j, stringlint bondtype = "")

Create a new bond between atom IDs in the model. See the newbondid command for more
details.

neweigenvector

Syntax:

eigenvector neweigenvector (int size = (auto))
Create a new eigenvector in the model of the specified size. If the size is not specified, the

vector length is set to match the number of cartesian basis functions store with the current
basis shell definitions in the model. See the neweigenvector command for more details.

newglyph

Syntax:
glyph newglyph (string style, string options = "")
Create a new glyph in the model. See the newglyph command for more details.

newgrid

Syntax:

grid newgrid (string name)
Create a new gridh in the model. See the newgrid command for more details.

paste

Syntax:
void paste ()

Paste the current clipboard contents into the model. See the paste command for more details.

119

rebond

Syntax:

void rebond ()
Calculate bonds in the model. See the rebond command for more details.

rebondpatterns

Syntax:

void rebondpatterns ()

Calculate bonds within patterns in the model. See the rebondpatterns command for more
details.

rebondselection

Syntax:

void rebondselection ()

Calculate bonds in the current selection. See the rebondselection command for more
details.

redo

Syntax:
void redo ()

Redo the last undone change in the model. See the redo command for more details.

reorder

Syntax:

void reorder ()

Reorder atoms so bound atoms have adjacent IDs. See the reorder command for more
details.

savebitmap

Syntax:

void savebitmap (string format, string filename, int width = auto,
int height = auto, int quality = 100)

120

Save a bitmap image of the current model view. See the savebitmap command for more
details.

selectall

Syntax:

void selectall ()
Select all atoms in the model. See the selectall command for more details.

selectionaddhydrogen

Syntax:

void selectionaddhydrogen ()

Hydrogen satisfy all atoms in the current selection. See the selectionaddhydrogen
command for more details.

selectnone

Syntax:
void selectnone ()

Deselect all atoms in the model. See the selectnone command for more details.

selecttree

Syntax:

int selecttree (atom i, bond exclude = NULL)

Select all atoms from atom i reachable by following any number of chemical bonds. See the
selectnone command for more details.

shiftdown

Syntax:
void shiftdown (int n =1)

Shift the current atom selection down one (or more) places in the atom list (towards higher
IDs). See the shiftdown command for more details.

shiftup

Syntax:

void shiftup (int n = 1)
121

Shift the current atom selection up one (or more) places in the atom list (towards lower IDs).
See the shiftup command for more details.

showall

Syntax:

void showall ()
Unhides any hidden atoms in the model. See the showall command for more details.

toangstroms

Syntax:

void toangstroms ()

Converts cell specification and atomic coordinates in the model from (assumed units of) Bohr
into Angstroms. No changes to associated trajectory frames or grid data is made.

torsionenergy

Syntax:
double torsionenergy ()

Calculates and returns the total torsion energy (including improper terms) for the current
model.

transmute

Syntax:

void transmute (int|string el)

Transmute all selected atoms to the specified element. See the transmute command for
more details.

undo

Syntax:

void undo ()
Undo the last change made to the model. See the undo command for more details.

vdwenergy

Syntax:

double vdwenergy ()

122

Calculates and returns the total van der Waals energy for the current model.

8.2.33. Pattern Type

The pattern type describes a single continuous collection of similar molecules/fragments
within a model.

Table 8-21 Pattern Type Members

Member Type RW Description

angles bound[] Array of angle interactions in one molecule of the
pattern

atoms atom[] Array of atoms spanned by the pattern

bonds bound [] Array of bond interactions in one molecule of the
pattern

f forcefield[] Reference to the forcefield associated to the pattern (if
any)

ffangles ffbound[] List of unique forcefield angle terms in the pattern

ffbonds ffbound[] List of unique forcefield bond terms in the pattern

fftorsions ffbound[] List of unique forcefield torsion terms in the pattern

fftypes ffatom Array of unique atom types used in the pattern

firstatom atom[] Reference to the first atom spanned by the pattern

firstatomid int Atom ID of the first atom spanned by the pattern

fixed int . Whether the coordinates of all atoms in the pattern are
fixed in minimisation routines

lastatom atom[] Reference to the last atom spanned by the pattern

lastatomid int Atom ID of the last atom spanned by the pattern

name string . Name of the pattern

nangles int Number of angles in one molecule of the pattern

natoms int Total number of atoms spanned by the pattern

nbonds int Number of bonds in one molecule of the pattern

nffangles int Number of unique angle terms used in the pattern

nffbonds int Number of unique bond terms used in the pattern

nfftorsions int Number of unique torsion terms used in the pattern

nfftypes int Number of unique atom types used in the pattern

nmolatoms int Number of atoms in one molecule of the pattern

nmols int Number of molecules (repeat units) in the pattern

ntorsions int Number of torsion interactions in one molecule of the
pattern

torsions bound [] Array of torsion interactions in one molecule of the
pattern

8.2.34. Pattern Type Functions

atomsinring

Syntax:

int atomsinring (int id i, int id j = -1)

123

Return whether the supplied atom index (indices), given in local pattern atom numbering, is in
a ring (the same ring)

cog

Syntax:
vector cog (int index)
Return calculated centre of geometry for the molecule index provided

com

Syntax:
vector com (int index)

Return calculated centre of mass for the molecule index provided

8.2.35. Prefs Type

The prefs type contains all preferences and settings information detailing the inner bits and
pieces of Aten. It exists as a single instance, owned by and available through the aten master

type.

Table 8-22 Prefs Type Members

Member Type RW Description

anglelabelformat string . The C-style format to use for the
numerical value of angle labels

aromaticringcolour double[4] . Colour of aromatic ring circles

atomstyleradius double[4] . The atom radii used for selection and

rendering in the four Drawing Styles
(see Section 16.7)

backcull int . Whether culling of backward-facing
polygons should be performed

backgroundcolour double[4] . Background colour of the main canvas
on which models are drawn

bondstyleradius double[4] . The bond radii used for selection and

rendering in the four Drawing Styles
(see Section 16.7)

bondtolerance double . Tolerance used in automatic calculation
of bonds between atoms
cachelimit int . The trajectory cache size (in kilobytes) -

trajectory files calculated to have more
than this amount of data will not be
cached in memory

calculateintra int . Controls whether intramolecular
contributions to the energy/forces are
calculated

calculatevdw int . Controls whether short-range Vdw

124

chargelabelformat
clipfar

clipnear
colourscales
colourscheme
combinationrule

commonelements

dashedaromatics
densityunit

depthcue
depthfar

depthnear
distancelabelformat

eleccutoff
elecmethod

encoderargs

encoderexe

energyunit
energyupdate

ewaldalpha
ewaldkmax

ewaldprecision

forcerhombohedral

framecurrentview

framewholeview

string
double

double

colourscale[10]

string

string

string

int

string

int
int

int

string

double
string

string

string

double
int

double
int [3]

double

int

int

int

125

contributions to the energy/forces are
calculated

C-style format for atomic charge labels
The far clipping distance used when
rendering

The near clipping distance used when
rendering

List of colourscales

The current Colour Scheme used to
colour atoms and bonds (see Section
16.5)

Lennard-Jones parameter combination
rule equations. See Combination Rules
in Section 16.6 for a list
Comma-separated list of common
elements that appear in the Select
Element dialog

Whether to render solid or dashed rings
for aromatics

The unit of density to used when
displaying cell densities
Enables/disables depth cueing

The far fog distance used when
rendering (if depth cueing is enabled)
The near fog distance used when
rendering (if depth cueing is enabled)
The C-style format to use for the
numerical value of distance labels

The electrostatic cutoff distance

The method of electrostatic energy/force
calculation

Arguments to pass to the movie encoder.
It should include the text strings FILES
and OUTPUT will be replaced with a
wildcard filelist and the output movie
filename respectively.

Encoder executable, including full path
if necessary.

Set the unit of energy to use

Update frequency for the energy in
various methods

Convergence parameter in Ewald sum
Vector of Ewald reciprocal space vector
limits (kmax)

Precision parameter to use when
generating parameters in EwaldAuto
For spacegroups that are detected to
have a hexagonal basis, force packing to
use generators in a rhombohedral basis
Whether to frame the current model with
a box

Whether to frame the entire view with a

globeaxescolour

globecolour
globesize

glyphcolour
hdistance

imagequality

keyaction

labelsize
levelofdetailstartz

levelofdetailwidth
levelsofdetail
linealiasing
manualswapbuffers
maxrings

maxringsize

maxundo

modelupdate
mopacexe
mouseaction

mousemovefilter

multisampling
nogtsettings

perspective
perspectivefov

polygonaliasing
renderstyle
quality

double[4]

double[4]
int

double[4]
double

int

string[3]

int
double

double
int
int
int
int
int

int

int
string
stringl[4]

int

int
int

int
double

int
string
int

126

box

Colour of axis pointers on the rotation
globe

Colour of the actual rotation globe
Size, in pixels, of the rotation globe in
the lower-right-hand corner of the screen
Default colour of all created glyphs
Default H-X bond distance to use when
adding hydrogen atoms

The general rendering quality (i.e.
number of triangles used to generate
primitive objects) of the images, used if
'reusequality’ is set to FALSE (otherwise
the current 'quality’ value is used).
Current actions of the modifier keys
Shift, Ctrl, and Alt

Font pointsize for label text

Z-depth (in Angstroms) at which level of
detail algorithm begins

Z-width (in Angstroms) of each level of
detail strip

Number of levels of detail to employ
Enables/disables line aliasing

Flag whether manual swapping of GL
buffers is enabled

Maximum allowable number of rings to
detect within any single pattern
Maximum size of ring to detect when
atom typing

Maximum number of undo levels
remembered for each model (-1 =
unlimited)

Update frequency for the current model
in various methods

Location of MOPAC executable
(including full path)

Current actions of the Left, Middle,
Right, and Wheel mouse buttons

Sets the degree to which mouse move
events are filtered, with 1 being no
filtering. Use this to reduce update lag
on sluggish systems.

Enables/disables multisampling
(hardware aliasing)

Flag controlling whether OS-stored Qt
settings are loaded on startup

Whether perspective view is enabled
Field of vision angle to use for
perspective rendering

Enables/disables polygon aliasing

The current model drawing style

The general rendering quality (i.e.

replicatefold
replicatetrim

reusequality

selectionscale

shininess

specularcolour

spotlight

spotlightambient
spotlightdiffuse

spotlightposition
spotlightspecular

sticknormalwidth
stickselectedwidth

tempdir

textcolour

transparencybinwidth
transparencycorrect

transparencynbins

transparencybinstartz

unitcellaxescolour
unitcellcolour
useframebuffer

int

int

double
int
double[4]

int
double[4]

double[4]

double[4]
double[4]

double
double
string

double[4]
double
int

int

double

double[4]
double[4]
int

127

number of triangles used to generate
primitive objects) of the main view.
Higher values give rounder atoms but
make rendering slower. See also the
'imagequality’ setting.

Whether to fold atoms before cell
replicate

Whether to trim atoms after cell
replicate

Flag specifying whether to use the
current rendering ‘quality’ value when
saving images (FALSE) or the
'imagequality’ value (TRUE).

Multiple of the standard atom radius to
use for transparent selection spheres
The shininess of atoms (value must be
between 0 and 127 inclusive)

Colour of all specular reflections
Whether the spotlight is on or off

The ambient colour component of the
spotlight

The diffuse colour component of the
spotlight

Spotlight coordinates (in A)

The specular colour component of the
spotlight

Line width of unselected stick atoms
Line width of selected stick atoms
Temporary (working) directory for some
operations (e.g. execution of MOPAC
jobs)

Colour of rendered text

Z-width of individual transparency bins
Whether sort of transparent triangles is
enabled. When enabled, any object
which is to be drawn in a transparent
colour is split into its component
triangles and sorted over several bins
(representing slices in the z direction).
Rendering is a little slower with this
option enabled, but corrects most
transparency artefacts with sensible bin
values.

The number of bins to use for sorting
transparent triangles

The z-depth at which binned
transparency sorting begins. Before this
value, all triangles are grouped (and
rendered) together without sorting
Colour of unit cell axis pointers
Colour of unit cell

Whether to use the grabFrameBuffer()

method of the main widget instead of the
normal renderPixmap() method when
saving bitmap images. If saving an
image results in a completely black or
corrupt bitmap, try setting this to TRUE.

usenicetext int . Whether QPainter (on/1/TRUE) or
QGIWidget (off/0O/FALSE) is used to
render label text

vdwcut double . The VDW cutoff distance
vibrationcolour double[4] . Colour of vibration vector arrows
viewrotationglobe int . Whether to draw a rotation globe in the
lower right-hand corner for each model
warn1056 int . Many changes to the typing language

syntax were introduced in revision 1056,
and a warning message was
implemented. This can be turned off by
setting this variable to FALSE

zoomthrottle double . Zooming 'throttle' value used to calm
down or increase the distance jumped
when zooming with the mouse

8.2.36. Site Type
Table 6.38. Site Type Members

Member Type RW Description

8.2.37. UnitCell Type

The unitcell type contains a full unit cell specification for a model, including any
associated spacegroup.

Table 8-23 UnitCell Type Members

Member Type RW Description

a double . Length of cell axis A

alpha double . Angle between cell axes B and C
b double . Length of cell axis B

beta double . Angle between cell axes B and C
c double . Length of cell axis C

ax double . x-component of cell axis A

ay double . y-component of cell axis A

az double . z-component of cell axis A

bx double . x-component of cell axis B

by double . y-component of cell axis B

bz double . z-component of cell axis B
centrex double x-coordinate at centre of defined cell

128

centrey double y-coordinate at centre of defined cell

centrez ~ double z-coordinate at centre of defined cell

cX double . x-component of cell axis C

cy double . y-component of cell axis C

cz double . z-component of cell axis C

density ~ double Density of the current cell

gamma double . Angle between cell axes A and B

matrix double[9] Cell axis matrix containing all three cell vectors. For
example, ax = matrix[1], ay = matrix[2], etc.)

sgid int . Integer ID of the current spacegroup

sgname string . Symbol of the current spacegroup

type string Type of the current unit cell (see Cell Types in Section 16.4)

volume double Volume of the cell in cubic A

8.2.38. UnitCell Type Functions

mim

Syntax:

vector mim (atom i, atom j)

Returns a vector containing the minimum image coordinates of the atom i with respect to the
reference atom ;. Note that the coordinates of both i and 5 are not modified in any way.

mimd

Syntax:

vector mimd (atom i, atom j)

Returns the minimum image vector between the atom i and the reference atom 5. Note that
the coordinates of both i and 5 are not modified in any way.

translateatom

Syntax:

vector translateatom (atom i, double dx, double dy, double dz)

Returns a vector corresponding to the original coordinates of atom i translated by the
specified fractional cell amounts in each cell axis direction. Note that the existing coordinates
of i are not modified in any way.

8.2.39. Vector Type

The vector type is a simple 3-vector class containing three double values.

129

Table 8-24 Vector Type Members

Member Type RW Description

mag double e Magnitude of the vector. Setting this value rescales the vector
X double The x component of the vector

y double The y component of the vector

Z double The z component of the vector

130

9.Command Reference

9.1. Atom Commands
Define and set properties of atoms.

atomstyle

Syntax:

void atomstyle (string style)

Sets the individual drawing sty1e for the current atom selection, used when the global
drawing style is individual.

For example:

atomstyle ("tube") ;

sets the current atom selection to be drawn in the ‘tube’ style.
Drawing Styles for a list of available styles

currentatom

Syntax:
atom currentatom ()

atom currentatom (atom|id id)

Return a reference to the current atom. If a new atom/id is provided the current atom is set
before being returned.

For example:

atom i = getatom(l);

makes the first atom in the current model the current atom, and returns a reference to it.

fix

Syntax:

void fix (atom|id id = 0)

131

Fix the positions of the current atom selection (or individual atom specified) so that they
remain in the same position following various methods (e.g. minimisations).

For example:

fix ()7

fixes the positions of all selected atoms.

for (int n=1; n<=10; ++n) fix(n);

fixes the positions of the first 10 atoms in the current model.

free

Syntax:
void free (atom|id id = 0)

Free the positions of previously fixed atoms in the current selection (or the individual atom
specified).

For example:

free(5);

allows the fifth atom in the current model to be moved again.

getatom

Syntax:

atom getatom (atom|id id)
Return a reference to the atom specified.

For example:

atom i = getatom(3);

returns a reference to the third atom in the current model.

hide

Syntax:

volid hide (atom|id id = 0)
132

Hides the current selection of atoms (or the supplied atom) from view, meaning they cannot
be selected by direct clicking/highlighting in the GUI. They are still subject to transformation
if they are selected by other means.

For example:

select (H) ;
hide () ;

selects and hides all hydrogen atoms in the current model.

setcharge

Syntax:

void setcharge (double g)

void setcharge (double g, int id)

Set the atomic charge of the current (or specified) atom.

setcoords

Syntax:

void setcoords (double x, double y, double z)

void setcoords (double x, double y, double z, int id)
Set the coordinates of the current (or specified) atom.

setelement

Syntax:

void setelement (string|int element)

void setelement (string|int element, int id)
Set the element of the current (or specified) atom.

setforces

Syntax:
void setforces (double fx, double fy, double fz)

void setforces (double fx, double fy, double fz, int id)

Set the forces of the current (or specified) atom.

133

setfx

Syntax:
volid setfx (double d)

void setfx (double d, int id)

Set the x force of the current (or specified) atom.

setfy

Syntax:

void setfy (double d)

void setfy (double d, int id)

Set the y force of the current (or specified) atom.

setfz

Syntax:

volid setfz (double d)

void setfz (double d, int id)

Set the z force of the current (or specified) atom.

setid

Syntax:

void setid (int newid)

void setid (int newid, int id)

Set the temporary 1D of the current (or specified) atom, useful for when parsing atoms from a
file that are not in any useful order but have an id specified for the purposes of subsequent

connectivity definitions, for example. Within filters, once loading is complete the
finalisemodel command will reset all atom ids to internal numbering.

setrx

Syntax:
void setrx (double d)

void setrx (double d, int id)

Set the x coordinate of the current (or specified) atom.
134

setry

Syntax:

void setry (double d)

void setry (double d, int id)

Set the y coordinate of the current (or specified) atom.

setrz

Syntax:

void setrz (double d)

void setrz (double d, int id)

Set the z coordinate of the current (or specified) atom.

setvelocities

Syntax:
void setvelocities (double vx, double vy, double vz)
void setvelocities (double vx, double vy, double vz, int id)

Set the velocity components of the current (or specified) atom.

setvx

Syntax:

void setvx (double d)

void setvx (double d, int id)

Set the x velocity of the current (or specified) atom.

setvy

Syntax:

void setwvy (double d)

void setwvy (double d, int id)

Set the y velocity of the current (or specified) atom.

setvz

135

Syntax:

voilid setvz (double d)

void setvz (double d, int id)

Set the z velocity of the current (or specified) atom.

show

Syntax:
void show (atom|int id = 0)

Makes the current selection of atoms (or the supplied atom) visible again if they were
previously hidden.

136

9.2. Bond Commands
Create bonds and perform automatic bonding operations.

augment

Syntax:
void augment ()

Augments bonds in the current model, automatically determining multiple bonds based on the
valency of atoms, and aromaticity based on double bonds in rings.

For example:

augment () ;

Augment method for a description of the rebonding algorithm implemented in Aten

bondtolerance

Syntax:
double bondtolerance ()

double bondtolerance (double tol)

Adjust the bond calculation tolerance. It may often be necessary to tweak the bond tolerance
in order to get Aten to recognise patterns within models correctly. The current or new bond
tolerance is returned.

For example:

bondtolerance (1.20) ;

sets the bonding tolerance to 1.2.

double tol = bondtolerance () ;

retrieve the current bond tolerance.
Rebond method for a description of the rebonding algorithm implemented in Aten

clearbonds

Syntax:
137

void clearbonds ()
Delete all bonds in the current model.

For example:

clearbonds () ;

clearselectedbonds

Syntax:
void clearselectedbonds ()
Delete all bonds in the current atom selection.

For example:

clearselectedbonds () ;

newbond

Syntax:

void newbond (atom|int i, atom|int 7,)

void newbond (atom|int i, atom|int j, string|int bondtype)

Create a new bond in the model between the specified atoms. The optional bondtype
argument specified the type of bond: e.g. single (default), double, or triple. Alternatively, an

integer number representing the bond order may be given.

For example:

newbond (4, 5, "double");

creates a double bond between the fourth and fifth atoms in the model.

newbond (1, 2, 3);

creates a triple bond between the first and second atoms in the model.

atom 1i,73;

i = newatom("C", 0, 0, 0);

j = newatom("H", 0, 1.08, 0);
newbond (i, j, "single");

138

creates a new single bond between two atoms, supplied as references.

newbondid

Syntax:
void newbondid (int i, int 7)
void newbondid (int i, int j, string|int bondtype)

Create a new bond in the model between atoms referenced by their temporary ID, set
manually with the setid command. Otherwise identical to the newbond command.

rebond

Syntax:
void rebond ()
Calculate bonding in the current model.

For example:

rebond () ;

rebondpatterns

Syntax:
void rebondpatterns ()

Calculate bonding in the current model, but restrict bond creation to between atoms in
individual molecules of defined patterns.

For example:

rebondpatterns () ;

'rebondpatterns’ can be useful when molecules in a system are too close together to have the
correct bonding detected. In such a case, bonds and any old patterns in the model may be
cleared, new patterns created by hand, and then ‘rebondpatterns' used to calculate bonds only
between the atoms of individual molecules in the defined patterns in order to recreate the
original molecules.

For example:

Delete existing bonds in model
clearbonds () ;
Delete any existing patterns in the model

139

clearpatterns () ;

Add new pattern: 100 molecules of benzene (12 atoms), followed by...
newpattern ("benzene", 100, 12);

...50 molecules of diethyl-ether (15 atoms)

newpattern ("ether", 50, 15);

Calculate bonds within individual benzene and ether molecules
rebondpatterns () ;

rebondselection

Syntax:
void rebondselection ()

Calculate bonding between atoms in the current atom selection.

For example:

rebondselection () ;

140

9.3. Building Commands

Tools to build molecules from scratch, or finalise unfinished models. When creating atoms
using the commands listed below, if the coordinates of the new atom are not specified then it
is placed at the current pen position. In addition, the reference frame of the pen position is
represented as a set of three orthogonal vectors defining the pen's local coordinate system (set
initially to the Cartesian axes) centred at an arbitrary origin (the pen position). Subsequent
rotations operate on these coordinate axes. Think of it as a 3D version of the old-school turtle.

addhydrogen

Syntax:

void addhydrogen ()

void addhydrogen (atom|int 1)

Satisfy the valencies of all atoms in the current model by adding hydrogens to heavy atoms. If
an integer id or atom reference is provided as the argument then the addition of hydrogen is

restricted to the specified atom.

For example:

addhydrogen () ;

add hydrogens to all atoms in the current model.

addhydrogen (10) ;

add hydrogens to atom 10 only.

bohr

Syntax:
void bohr (object x, ...)

Converts the specified object(s) data to A, assuming that it is currently specified in Bohr.

For example:
atom i = aten.model.atoms[2];
bohr (i) ;

converts the coordinates of the supplied atom from Bohr to A

141

chain

Syntax:

atom chain (int|string el)

atom chain (int|string el, int|string bondtype)

atom chain (int|string el, double x, double y, double z)

atom chain (int|string el, double x, double y, double z, int|string
bondtype)

Create a new atom of element e1 at the current pen position (or the specified coordinates)
bound to the last drawn atom with a single bond (or of type bondtype if it was specified).
The element can be provided as a character string containing the element symbol or element
name instead of the integer atomic number. A reference to the new atom is returned.

For example:

atom i1 = chain("C");

places a carbon atom at the current pen coordinates, and creates a single bond with the last
drawn atom.

atom i = chain (8, "double"):;

places an oxygen atom at the current pen coordinates, and creates a double bond with the last
drawn atom.

atom i = chain("Cl", 4.0, 5.0, 6.0, "single");

creates a chlorine at coordinates { 4.0, 5.0, 6.0 }, joined by a single bond to the last drawn
atom.

endchain

Syntax:
void endchain ()
Ends the current chain (so that the next atom drawn with ‘chain' will be unbound).

For example:

endchain () ;

142

locate

Syntax:

void locate (double x, double y, double z)
Sets the pen position to the coordinates specified (in A).

For example:

locate (0.0, 0.0, 0.0);

moves the pen back to the coordinate origin.

move

Syntax:
void move (double x, double y, double z)
Moves the pen position by the amounts specified (in A).

For example:

move (1.0, 1.0, 0.0);

moves the pen one A in both the positive x and y directions.

movetoend

Syntax:
void movetoend ()

Move the current atom selection to the end of the list. The relative order of atoms in the
selection is preserved.

For example:

movetoend () ;

movetostart

Syntax:

void movetostart ()

143

Move the current atom selection to the start of the list. The relative order of the atoms in the
selection is preserved.

For example:

movetostart () ;

newatom

Syntax:
void newatom (int|string el)
void newatom (int|string el, double x, double y, double z)

void newatom (int|string el, double x, double y, double z, double
vx, double vy, double vz)

void newatom (int|string el, double x, double y, double z, double
vx, double vy, double vz, double fx, double fy, double fz)

Create a new atom of element e1 at the current pen position or, if provided, the specified
coordinates (and optional velocities or velocities and forces). Either the integer atomic

number or the symbol/name of the element may be used to identify the desired element. A
reference to the new atom is returned.

For example:

atom i1 = newatom("N");

places a nitrogen atom at the current pen coordinates.

atom i = newatom (18, 5.2, 0, 0);

places an argon atom at the coordinates { 5.2, 0.0, 0.0 }.

newatomfrac

Syntax:
void newatomfrac (int|string el, double x, double y, double z)

void newatomfrac (int|string el, double x, double y, double z,
double vx, double vy, double vz)

void newatomfrac (int|string el, double x, double y, double z,
double vx, double vy, double vz, double fx, double fy, double fz)

144

Create a new atom of element e1 at the specified fractional coordinates (velocities and forces
are optional). Either the integer atomic number or the symbol/name of the element may be
used to identify the desired element. A reference to the new atom is returned.

For example:

atom i = newatomfrac("C", 0.5, 0.5, 0.5);

places a carbon atom at the centre of the model's cell.

reorder

Syntax:

void reorder ()

Adjust the ordering of atoms in the current selection such that atoms in bound
fragments/molecules have successive IDs. Useful to recover ‘'molecularity’ in order to apply a
suitable pattern description to the system.

For example:

reorder () ;

rotx

Syntax:
void rotx (double angle)
Rotates the reference coordinate system about the x axis by ang1le degrees.

For example:

rotx (90.0) ;

rotates around the x axis by 90 degrees.

roty

Syntax:
void roty (double angle)
Rotates the reference coordinate system about the y axis by angle degrees.

For example:

145

roty (45.0);

rotates around the y axis by 45 degrees.

rotz

Syntax:

void rotz (double angle)
Rotates the reference coordinate system about the z axis by angle degrees.

For example:

rotz (109.5);

rotates around the z axis by 109.5 degrees.

selectionaddhydrogen

Syntax:

void selectionaddhydrogen ()
Adds hydrogen atoms to the current atom selection only.

shiftdown

Syntax:
void shiftdown ()

void shiftdown (int n)

Move the current atom selection one (or n) places down in the atom list (i.e. towards higher
IDs).

For example:

shiftdown (4) ;

moves the current atom selection down four places.

shiftup

Syntax:

void shiftup ()
146

void shiftup (int n)
Move the current atom selection one (or n) places up in the atom list (i.e. towards lower 1Ds).

For example:

shiftup();

moves the current atom selection up one place.

transmute

Syntax:
void transmute (int|string el)
Transmute the current atom selection to the specified element.

For example:

transmute ("F") ;

changes all atoms in the current selection to fluorine.

transmute (Cl) ;

changes all atoms in the current selection to chlorine.

transmute (6) ;

changes all atoms in the current selection to carbon

147

9.4. Cell Commands

Create, remove, modify, pack, and replicate the model's unit cell.

adjustcell

Syntax:

void adjustcell (string parameter, double value)

Adjust a single unit cell parameter (one of a, b, ¢, alpha, beta, gamma, Or one of the matrix
elements ax, ay, az, ..., cz) by the given value. This does not set the specified parameter to
the given value; instead the supplied value is added to the existing value of the parameter.

For example:
adjustcell ("alpha",5.0);
increases the cell angle 'alpha’ by 5 degrees.

adjustcell ("c",-10.0);

decreases the cell length 'c' by 10 A

cell

Syntax:

void cell (double a, double b, double ¢, double alpha, double beta,
double gamma)

Set cell lengths and angles of current model. This command will modify an existing cell or
add a new cell to a model currently without a unit cell specification.

For example:

cell(20.0, 10.0, 10.0, 90.0, 90.0, 90.0);

sets the model's cell to be orthorhombic with side lengths 20x10x10 A.

cellaxes

Syntax:

void cellaxes (double ax, double ay, double az, double bx, double
by, double bz, double cx, double cy, double cz)

148

Set cell axes of current model. This command will modify an existing cell or add a new cell to
a model currently without a unit cell specification.

For example:

cellaxes (15, 0, 0, 0, 15, 0, 0, 0, 15);

sets the model’s cell to be cubic with side length 15 A,

fold

Syntax:
void fold ()
Fold all atoms so they are within the boundaries of the unit cell.

For example:

fold();

foldmolecules

Syntax:

void foldmolecules ()
Fold all pattern molecules so the are unbroken across cell boundaries.

For example:

foldmolecules () ;

millercut

Syntax:

void millercut (int h, int k, int 1, bool inside = FALSE)

Remove all atoms from the unit cell that lay ‘outside’ the specified Miller plane (and its
mirror, if it has one). If the final parameter is given as TRUE, then atoms 'inside’ the bounding

Miller plane(s) are selected.

For example:

millercut(1l,2,1, TRUE) ;

149

removes all atoms inside the two enclosing (121) planes.

pack

Syntax:
void pack ()
Perform spacegroup packing on the current model.

For example:

pack () ;

printcell

Syntax:
void printcell ()
Prints the cell parameters of the current model.

For example:

printcell () ;

replicate

Syntax:

void replicate (double negx, double negy, double negz, double posx,
double posy, double posz)

Create a supercell of the current model, creating copies of the cell in each of the three cell axis
directions. The number of cells to replicate in each positive and negative direction are
specified as 'additional’ cells beyond the original. So:

replicate (0, 0, 0, 0, 0, 0);

will do nothing at all to the model, while:

replicate (-5, 0, 0, 5, 0, 0);

will result in a supercell that consists of eleven copies of the original cell along the 'x' axis
direction. Similarly,

150

replicate (0, 0, 0, 4, 4, 4);
replicate (-2, -2, -2, 2, 2, 2);

will both create a 5x5x5 arrangement of the original cell.

removecell

Syntax:
void removecell ()
Clears any cell description (removes periodic boundary conditions) from the current model.

For example:

removecell () ;

scale

Syntax:

void scale (double x, double y, double z, bool calcenergy = FALSE)

Scale unit cell and its constituent atoms by the scale factors x, y, and z. The optional
calcenergy parameter calculates the energy difference resulting from the scaling operation.

For example:

scale (1.0, 2.0, 1.0);

doubles the length of the y-axis of the system. x- and z-axes remain unchanged.

scalemolecules

Syntax:

void scalemolecules (double x, double y, double z, bool calcenergy
= FALSE)

Scale unit cell and centres-of-geometry of molecules within it by the scale factors x, y, and z.
Within individual molecules the relative distances between atoms stays the same, but the
centres-of-geometry of other molecules do not. The optional calcenergy parameter
calculates the energy difference resulting from the scaling operation.

For example:

scalemolecules (0.5, 0.5, 0.5);

151

halves the lengths of all axes, scaling the positions of the molecules to reflect the new size.

setcell

Syntax:

void setcell (string parameter, double value)

Set a single unit cell parameter (one of a, b, ¢, alpha, beta, gamma, or one of the matrix
elements ax, ay, az, ..., cz) to the given value.

For example:

setcell ("beta", 101.0);

sets the cell angle beta to 101 degrees.

setcell ("a", 15.5);

sets the cell length a to 15.5 A,

spacegroup

Syntax:
void spacegroup (int|string sg)
Sets the spacegroup of the model, used for crystal packing.

For example:

spacegroup (12) ;

sets the model spacegroup to be C2/m (number 12).

spacegroup ("P1/m") ;

sets the model spacegroup to P1/m.

152

9.5. Charges Commands

Assign partial charges to models, atoms, and patterns.

charge

Syntax:
double charge ()

double charge (double g)

Assigns a charge of g to each selected atom in the current model, or returns the total charge of
the current selection if no value is supplied.

For example:

charge (1.0);

gives each atom in the current model's selection a charge of 1.0.

chargeff

Syntax:

void charge ()

Assigns charges to all atoms in the current model based on the forcefield associated to the
model and the current types of the atoms.

For example:

chargeff ();

chargefrommodel

Syntax:

void chargefrommodel ()
Copies charges of all atoms in the current model to the atoms of the current trajectory frame.

For example:

chargefrommodel () ;

153

chargepatom

Syntax:

void chargepatom (int id, double g)
Assigns a charge of g to atom id in each molecule of the current pattern.

For example:

chargepatom(3, 0.1);

assigns a charge of 0.1 to the third atom in each molecule of the current pattern.

chargetype

Syntax:
void chargetype (string fftype, double g)
Assigns a charge of g to each atom that is of type £rtype in the current model.

For example:

chargetype ("OW",-0.8) ;

gives a charge of -0.8 to every atom that has an assigned typename of ow.

clearcharges

Syntax:
void clearcharges ()
Clears all charges in the current model, setting them to zero.

For example:

clearcharges();

154

9.6. ColourScales Commands

Define colourscales to colour objects. Each colourscale has a number of points defining
colours at specific values - between adjacent points the colour is linearly interpolated. Points
in a colourscale are numbered from 1 onwards. There are ten available colourscales, with IDs
1-10. Some of these have specific uses within Aten.

Colourscales for a discussion of colourscales and how they may be used within Aten.

addpoint

Syntax:

void addpoint (int scaleid, double value, double r, double g,
double b, double a = 1.0)

Adds a new point to the end of the specified colourscale, at the point va1ue and with the
RGBJA] colour provided (each component of which should be in the range 0.0 to 1.0
inclusive).

For example:

addpoint (1, 15.0, 0.0, 1.0, 0.0);

adds a point to colourscale 1 at a value of 15.0 in a nasty green colour.

clearpoints

Syntax:

void clearpoints (int scaleid)
Clears all points from the specified colourscale.

For example:

clearpoints (3);

clears all points from the third colourscale.

listscales

Syntax:
void listscales ()

Lists the current types, colours, and ranges of the colourscales
155

For example:

listscales () ;

removepoint

Syntax:
void removepoint (int scaleid, int pointid)
Remove a single point from the selected colourscale.

For example:

removepoint (1,4);

deletes the fourth point from colourscale 1.

scalename

Syntax:

string scalename (int scaleid)

string scalename (int scaleid, string newname)

Retrieves the name of the colourscale id provided, or sets the name if a new name is
provided). The name is displayed next to the gradient bar (if drawn).

For example:

scalename (1, "Orientation");

renames the first colourscale to 'Orientation'.

scalevisible

Syntax:
void scalevisible (int scaleid, bool visible)

Sets whether the gradient bar for the specified colourscale should be drawn in the main view.
Default is 'off' for all colourscales.

For example:

scalevisible (9, "yes");

156

draws the gradient bar for the 9th colourscale in the main view.

setpoint

Syntax:

void setpoint (int scaleid, int pointid, double value, double r,
double g, double b, double a = 1.0)

Sets the value and colour of an existing point in the specified colourscale.

For example:

setpoint (1, 2, -3.3, 1.0, 1.0, 1.0);

sets the second point on colourscale 1 to a value of -3.3 and white colour.

setpointcolour

Syntax:

void setpointcolour (int scaleid, int pointid, double r, double g,
double b, double a = 1.0)

Sets the colour of an existing point in the specified colourscale.

For example:

setpointcolour (5, 1, 0.0, 0.0, 1.0);

sets the first point on colourscale 5 to be coloured blue.

setpointvalue

Syntax:

void setpointvalue (int scaleid, int pointid, double value)
Sets the value of an existing point in the specified colourscale.

For example:

setpointvalue (4, 3, 0.1);

sets the third point of colourscale 4 to a value of 0.1.

157

9.7. Disorder Commands

Set up the disordered builder to create systems from individual components using Monte
Carlo methods.

disorder

Syntax:
void disorder (string scheme, XXX)
Start the disordered builder, requesting ncycles cycles of Monte Carlo moves.

For example:

disorder (50) ;

runs 50 cycles of the disordered builder.

listcomponents

Syntax:

void listcomponents ()

Prints a list of the currently requested populations for all models to be added during the
disordered building process.

For example:

listcomponents () ;

158

9.8. Edit Commands

Standard editing commands.

copy

Syntax:
void copy ()
Copy the current atom selection to the clipboard, ready for pasting.

For example:

copy () ;

cut

Syntax:

void cut ()
Cut the current atom selection to the clipboard.

For example:

cut () ;

delete

Syntax:

void delete ()
Delete the current atom selection.

For example:

delete () ;

paste

Syntax:

void paste ()

159

Paste the copied atom selection.

For example:

paste () ;

redo

Syntax:

void redo ()
Redo the last ‘undone’ operation.

For example:

redo () ;

undo

Syntax:

void undo ()
Undo the last operation.

For example:

undo () ;

160

9.9. Energy Commands

Calculate energies for models and trajectory frames. All printing commands refer to the last
energy calculated for either the model or a trajectory frame.

ecut

Syntax:
double ecut ()

double ecut (double cutoff)

Return (or set and return) the cutoff radius used in calculation of the electrostatics for a
system.

For example:

ecut (15.0) ;

sets the electrostatic cutoff radius to 15.0 A.

elec

Syntax:

void elec (string type = "none")

void elec ("coulomb")

void elec ("ewald" double alpha, int kx, int ky, int kz)

void elec ("ewaldauto" double precision)

Set the style of electrostatic energy calculation to use, either no electrostatics, coulombic
(non-periodic) electrostatics, or Ewald-based electrostatics. For the latter, either the various

parameters may be defined explicitly (when “ewald” is the chosen method) or may be
estimated for the current system by using “ewaldauto”.

frameenergy

Syntax:

double frameenergy ()

Calculate energy of the current frame of the trajectory associated with the current model.
For example:

161

double energy = frameenergy() ;

modelenergy

Syntax:
double modelenergy ()

Calculate the energy of the current model, which can then be printed out (in whole or by
parts) by the other subcommands.

For example:

double e = modelenergy();

printelec

Syntax:

void printelec ()
Prints out the electrostatic energy decomposition matrix.

For example:

printelec() ;

printewald

Syntax:

void printewald ()
Prints the components of the Ewald sum energy.

For example:

printewald() ;

printinter

Syntax:
void printinter ()
Prints out the total inter-pattern energy decomposition matrix.

162

For example:

printinter () ;

printintra

Syntax:
void printintra ()
Prints out the total intramolecular energy decomposition matrix.

For example:

printintra();

printenergy

Syntax:
void printenergy ()
Prints the elements of the calculated energy in a list.

For example:

printenergy () ;

printsummary

Syntax:
void printsummary ()
Print out a one-line summary of the calculated energy.

For example:

printsummary () ;

printvdw

Syntax:
void printvdw ()

Prints out the VDW energy decomposition matrix.
163

For example:

printvdw () ;

vecut

Syntax:
double wecut ()

double wecut (double cutoff)

Return (or set and return) the cutoff radius used in calculation of the vdW interactions for a
system.

For example:

veut (9.0) ;

sets the vdW cutoff radius to 9.0 A.

164

9.10. Flow Commands

Loops and if tests. Flow control is styled to replicate the common syntax used in C. Because
of this, providing an in-depth explanation here is unnecessary since lots of people have
already written far clearer and more in-depth documents. A good Google should find them.

do

Syntax:
do { commands } while { condition }

The do-while loop is cousin of the ‘for’ loop, except that there is no control variable. The
termination of the loop depends on the condi tion Which is tested at the end of every
execution of the commands. If the condition evaluates to TRUE, the commands are executed
again, and condition re-tested afterwards. If FALSE the loop ends.

For example:

int 1 = 1;
do { 1 =1 * 2; printf("i = %d\n", 1i); } while (i < 100);

will print out the following:

16
32
64
128

I T
L | | R | | B

Note that the final value of i inside the loop is 128 (greater than 100) since the condition is
only tested at the end of the execution of the commands. The while loop works in the same
way, save that the condition is tested at the beginning of the loop, before commands are
executed, rather than at the end.

for

Syntax:

for (startvalue ; condition ; increment) { commands }

Three separate components make up a ‘for' loop. startvalue defines both the control
variable (i.e. the variable that changes on each loop iteration) and optionally its starting value,
the condition is tested on each loop iteration to see whether or not to continue with the
loop, and finally the i ncrement is an expression to modify the control variable after each
iteration, setting it to a new value. If multiple commands are to make up the body of the loop

165

(executed on each iteration) then they should be enclosed in curly brackets (as written in the
syntax above). If only a single command is executed on each iteration, the curly brackets may
be omitted.

Some examples:

for (int i=1; i<=10; i = i + 1) printf("%i\n", 1);

Loop over and print all integers between 1 and 10. A local variable i is declared and initialised
all in one go in the startvalue part of the loop. The 'long’ way of incrementing the integer
variable (i =i + 1) is typically not used in C/C++, most people preferring to take advantage of
the C's useful postfix and prefix operators, as in the next example).

for (n = 100; n>0; --n) printf ("Counting down... %i\n", n);

Here, an existing variable n is decreased from 100 to 1, printing out all numbers along the
way. Note the usage of the double-minus '--" operator (the prefix decrease operator) which
decreases its associated variable, in this case n. For integers, to decrease means to reduce the
value by 1. For other types the meaning may vary — for instance, with reference types the '--'
operator means ‘previous item in the list', since all such objects in Aten (e.g. atoms) are stored
in lists containing many objects of the same type. This makes iterating over, say, all atoms in
a given model pretty easy...

for (atom a = aten.model.atoms; a; ++a)

{
printf ("Atom id %i is element %$s.\n", a.id, a.symbol);

}

In this example the variable a is declared and initialised to be a reference to the first atom in
the current model. The condi tion part simply consists of the expression ‘a’, which
effectively tests the reference address currently stored in a. Since any positive number equates
to TRUE (see below for the i f test) the loop will continue until a contains no reference. Since
most all reference objects in Aten are stored internally in linked lists, the prefix increment
operator (++) changes the value of the variable to be the reference of the next item in the list,
or O if there are no more items. In this way, the whole list of atoms can be traversed and
neatly ended once the final item in the list has passed.

A variant of the for loop described above is the for/in loop — here, only a control variable
and initial value are supplied, both of which must be of pointer types. The loop itself will
increase the value of the variable (i.e. skip to the next item in the linked list) until a NULL
pointer is found. For example:

select (H) ;
for (atom i = aten.model.selection; 1i; ++1i)
{

printf ("Atom %i is selected\n", i.id);
}
for (atom i1i in aten.model.selection)
{

printf ("Atom %i is selected\n", ii.id);

166

This will select all hydrogen atoms in the current model then loop over the atom selection
twice, once with a for loop and once with a for/in loop, both of which are equivalent.

if

Syntax:

if (condition) { commands } [else if { commands }] [else {
commands }

The i f statement permits sections of code to be executed based on the assessment of logical
comparison of values. If the supplied condition evaluates to be TRUE then the following
commands are executed, otherwise nothing happens. In the second form of the command, if
the condition evaluates to be 'false' then the second set of commands are executed instead.
If multiple commands are to be executed then they should be enclosed in curly brackets (as
written in the syntax above). If only a single command is to be executed the curly brackets
may be omitted.

Typically, comparisons are made between two variables, for example:

if (varl > var2)

checks for var1 being greater in value than var2, executing the following commands if this
turns out to be true. The comparison operator may be any one of the following symbols:

Table 9-1 Comparison Operators

Operator Meaning

== Equal to

I= Not equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

In truth, the condi tion part may be any expression, command, or amalgam of both,
provided the end result of executing it is a single value. The type of the final result doesn't
even matter, since conversion to a boolean is guaranteed. Deep down in the logic of Aten,
integers are at the heart of it all, with zero or any negative number being FALSE, and any
positive number meaning TRUE.

For example:

int i = 10;
if (1 > 5) printf ("Hooray!\n");

167

in this case 'Hooray!" will be printed, because i is greater than 5.

int i = 10, j = 20;
if (1 > j) printf ("Hooray!\n");

but in this case 'Hooray!" will not be printed, because i is not greater than 5.

int i = 10, 7 = 20;
if (1 > j) printf ("Hooray!\n");
else { printf("Too small.\n"); i = j; }

Here, the test fails for the same reason, but since an e1se part was provided we still execute
some commands (printing 'Too small." and setting the variable i equal to).

Since any positive number is TRUE, we can simply test the value of a variable.

int 1 = -55;
if (i) printf ("Snoopy.\n");

atom a = newatom ("H");
if (a) printf ("New atom.\n");

In a similar way, a reference variable has a positive integer value at its heart, and so can also
be tested in this way.

atom a = newatom ("H");
double alpha = 100.0;
if ((a) && (alpha < 50.0)) printf ("Alpha and atom are OK.\n");

else printf ("No good!\n");

Two or more consecutive conditions can be tested in order to determine ‘truth’, in this case
using the ‘and’ operator s&. Here, the value of the reference variable a and the value of
alpha are both checked, and the text ‘Alpha and atom are OK.’ is only printed if both turn
out to be TRUE.

if (time == 0) printf ("There is no time.");
else if (time > 5) printf ("There is more than enough time.");
else printf ("There is only a little time.");

Multiple if tests can also be nested to create a sequence of tests. As soon as a condition is
encountered that equates to 'true’ the accompanying commands are executed and any
subsequent 'else'd tests or commands are ignored.

return

Syntax:

return

168

return value

Used in (user-defined) functions, and returns control immediately back to the calling function.
In the case of a void function, no return value must be specified. Similarly, for functions
returning a value a valid value of that type must be given.

while

Syntax:

while (condition) { commands }

The while loop is another cousin of the for loop, and as with the do-whi1e loop there is no
control variable. The termination of the loop depends on the condi tion which is tested at
the beginning of the loop, before execution of the commands. If TRUE, the commands are
executed, but if FALSE the loop ends without executing the commands (and meaning that it is
possible that the commands are never executed).

For example:

int 1 = 1024;
while (i > 100) { i =i / 2; printf("i = %d\n", 1); }

will print out the following:

512
256
128
64

bbb e
L [

169

9.11. Forcefield Commands

Forcefield management and manual term creation.

angledef

Syntax:

void angledef (string form, string type i, string type j, string
type k, double datal ...)

Add an angle definition to the current forcefield. form should correspond to one of the
implemented angle functional forms, while the three types refer to either type or equivalent
names of defined atom types. Up to ten data parameters may be supplied.

autoconversionunit

Syntax:
void autoconversionunit (string unit = “")

Sets the target energy unit for automatic conversion of energetic forcefield parameters when
writing out expresisons. Can only be used within a file filter definition. The 'unit' parameter
should correspond to one of the energy units recognised by Aten (see energy units) or may be
omitted to specify that no conversion of parameters from the current internal unit of energy
should take place. Note that the conversion of energetic forcefield term parameters is
performed only when accessing data through either the 'data’ member or ‘parameter’ function
of the forcefield atom, forcefield bound or bound variable types.

For example:

autoconversiontype ("kcal") ;

indicates that, no matter what the current internal unit of energy is, all energetic forcefield
parameters, when accessed by the means listed above, will be automatically converted into
units of kcal.

bonddef

Syntax:

void bonddef (string form, string type i, string type j, double
datal ...)

Add a bond definition to the current forcefield. form should correspond to one of the

implemented bond functional forms, while the two types refer to either type or equivalent
names of defined atom types. Up to ten data parameters may be supplied.

170

clearexportmap

Syntax:

void clearexportmap ()
Clear any manual export typemap definitions.

For example:

clearexportmap () ;

clearexpression

Syntax:

void clearexpression ()
Removes any forcefield expression defined for the current model.

For example:

clearexpression() ;

clearmap

Syntax:

void clearmap ()
Clear any manual typemap definitions.

For example:

clearmap () ;

cleartypes

Syntax:
void cleartypes ()
Clear any previously-assigned atom types from the current model.

For example:

cleartypes () ;

171

createexp ression

Syntax:

int createexpression (bool nointra = FALSE, bool nodummy = FALSE,
bool assigncharges = TRUE)

Creates a suitable energy description for the current model. The optional flags control exactly
what is in the created expression, or how it is created. The nointra flag can be used to force
the creation of an expression containing only atomtype (i.e. van der Waals) terms - in such a
case, patterns will contain no definitions of intramolecular bonds, angles, and torsions
whatsoever. The nodummy option indicates whether dummy intramolecular terms (of simple
functional form and with all parameters set to zero) should be automatically added to the
energy expression should no suitable terms be found in the associated forcefield(s). Finally,
assigncharges specifies whether to assign charges to atoms from their assigned forcefield
types (TRUE) or to leave atomic charges as they currently are (FALSE).

For example:

createexpression () ;

deleteff

Syntax:

void deleteff (string|forcefield ff)
Delete the specified forcefield (i.e. unload it).

equivalents

Syntax:

void equivalents (string name, string typename(s) ...)

Define equivalent terms in the current forcefield. name is the new typename to which the list
of quoted typenames are linked, for subsequent use in intramolecular term definitions. See
the equivalents forcefield keyword for more information.

exportmap

Syntax:

void exportmap (string maps)

Set up manual mappings that convert atomtype names when expression are exported. Works
in the opposite way to the map command.

For example:

172

map ("CT=Ctet,N3=N") ;

converts the atomtype names CcT and N3 so that they appear as Ctet and N in any expression
files written out.

ffmodel

Syntax:

void ffmodel ()
Associates current forcefield to the current model.

For example:

ffmodel () ;

ffpattern

Syntax:
void ffpattern (string pattern)
void ffpattern (int patternid)

void ffpattern (pattern p)

Associates current forcefield to the current pattern, or one specified by either a reference,
integer ID in the current model, or a pattern pointer.

For example:

ffpattern();

associates the current forcefield to the current pattern.

ffpattern ("bulk");

associates the current forcefield to a pattern named bulk in the current model.

finaliseff

Syntax:

void finaliseff ()

173

Perform necessary operations on the current forcefield once all data has been added. Must be
called!

fixtype

Syntax:

void fixtype (int typeid, atom|int id = 0)

Set the current atom selection, or the specified atom, to have the type id (in the current
forcefield) specified. Types set in this manner will not be overwritten by tha typing routines,
allowing specific types to be applied above the normal rules. Note that the type’s NETA
description is not checked, and so any (even types not matching the base element) may be
applied in this way.

For example:

typedef (99, "NX", "NX", N, "-C(n=4)"); select(C); fixtype(99);

assigns newly-created type 99 (specific to nitrogen) to all carbons in the model.

fixtype

Syntax:
void freetype (atom|int id = 0)
For the current atom selection, or the specified atom, free any previously-fixed types

For example:

freetype (14) ;

frees any previously-set type on atom 14.

getcombinationrule

Syntax:

string getcombinationrule (string form, string parameter)

Returns the combination rule in use for the specifed parameter of the given functional form.
The formand related parameter should correspond to those given in the VDW functional
forms table. A string corresponding to one of the available combination rule options is
returned.

For example:

174

string cr = getcombinationrule("1j", "epsilon");

getff

Syntax:
forcefield getff (string name)

forcefield getff (int id)

Select the named forcefield (or forcefield with the specified id) and make it current, returning
a reference to it in the process.

For example:

forcefield uff = getff ("uff");

makes the loaded forcefield named uf £ the current one, and stores a reference to it.

interdef

Syntax:

void interdef (string form, int typeid, double charge, double datal
)

Add a new short-range data definition to a type in the current forcefield. form should
correspond to one of the implemented VDW functional forms. Up to ten parameters for the
VDW potential may be given.

loadff

Syntax:
forcefield loadff (string file, string name)
Load a forcefield from £i1e and reference it by name. Becomes the current forcefield.

For example:

loadff ("/home/foo/complex.ff", "waterff");

loads a forcefield called complex. £f and names it waterff.

map

Syntax:

175

void map (string map, ...)

Set up manual typename mappings for atom names that do not readily correspond to element
symbols, forcefield types etc. All atoms that are subsequently created using name as the
element are automatically converted to the corresponding element.

For example:

map ("CT1=C,CT2=C") ;

converts atoms with names cT1 and cT2 to carbon.

newff

Syntax:

forcefield newff (string name)

Create a new, empty forcefield with the given name and make it current. Returns a reference
to the new forcefield.

For example:

forcefield ff = newff ("testff");

printsetup

Syntax:

void printsetup ()
Prints the current expression setup.

For example:

printsetup () ;

recreateexp ression

Syntax:

void recreateexpression (bool nointra = FALSE)

Delete and recreate a suitable energy description for the current model. The optional
nointra flag can be used to force the creation of an expression containing only atomtype
(i.e. van der Waals) terms.

For example:
176

recreateexpression () ;

rules

Syntax:
void rules (string ruleset)

Set rules set to use for parameter generation in the current forcefield (see forcefield fules for
more info).

Note: The implementation of rule-based forcefields will change in a future release.

saveexpression

Syntax:

int saveexpression (string filter, string filename)

Export the forcefield expression for the current model in the format determined by the
filter nickname, to the £i1ename specified. Return value is 1 for successful write, or 0
otherwise.

For example:

saveexpression ("dlpoly", "data.FIELD");

setcombinationrule

Syntax:

void setcombinationrule (string form, string parameter, string rule

)

Sets the combination rule to use for the specifed parameter of the given functional form. The
formand related parameter should correspond to those given in the VDW functional forms
table, while ruie should correspond to one of the available combination rule options.

For example:

setcombinationrule ("1j", "sigma", "geometric");

torsiondef

Syntax:

void torsiondef (string form, string type i, string type j, string
type k, string type 1, double datal ...)

177

Add a torsion definition to the current forcefield. form should correspond to one of the
implemented torsion functional forms, while the four types refer to either type or equivalent
names of defined atom types. Up to ten real-valued parameter values for the function may be
provided.

typedef

Syntax:

int typedef (int typeid, string name, string equiv, string|int
element string neta, string description = "")

Add a new atom type definition to the current forcefield, with the identifying typeidand
called name, with the equivalent typename equiv. The basic element of the new type is given
as element, and neta is the NETA definition of the type. An optional string describing the
type in more detail can be given in description. The command returns '1' if the model was
typed successfully or ‘0" otherwise.

For example:

typedef (101, "Ctet", C, "nbonds=4", "Standard tetrahedral carbon");

creates a new simple type for a carbon atom with four bonds.

typemodel

Syntax:

int typemodel ()

Perform atom typing on the current model. Returns 1 if atom typing was performed
successfully or 0 otherwise.

For example:

int success = typemodel () ;

typetest

Syntax:

int typetest (int typeid, atom|int id)

Test the current forcefield's atomtype typeid on the atom specified, returning the type score
of the match (zero indicating no match).

For example:

178

int score = typetest(112,10);

tests typeid 112 on the tenth atom in the model.

units

Syntax:
void units (string unit)

Sets the units in which energetic parameters are given for the current forcefield. For a list of
available units see energy units.

vdw

Syntax:

void vdw (bool calculate)
Controls calculation of van der Waals terms in energy / force calculations (on by default).

For example:

vdw ("off") ;

turns van der Waals energy / force calculation off.

vdw (TRUE) ;

turns van der Waals energy / force calculation on.

179

9.12. Forces Commands

Calculate forces for models and trajectory frames.

frameforces

Syntax:

void frameforces ()

Calculate the atomic forces of the current frame of the trajectory associated with the current
model.

For example:

frameforces () ;

modelforces

Syntax:

volid modelforces ()
Calculate the atomic forces of the current model.

For example:

modelforces () ;

printforces

Syntax:
void printforces ()
Print out the forces of the current model.

For example:

printforces();

180

9.13. Glyph Commands

Add glyphs to atoms in the model.

autoellipsoids

Syntax:

void autoellipsoids ()

Note: Experimental Feature!

Using the current atom selection, this command creates ellipsoid glyphs that cover (or
represent) individual bound fragments within the selection. An ellipsoid glyph is added for
each bound fragment within the selection, positioned at the geometric centre of the bound
fragment, and scaled in an attempt to cover all atoms within the bound fragment. Such things
are useful when wanting to represent molecules by simple geometric shapes, rather than by
their fine-grained atomic positions.

For instance, given a box full of benzene molecules:

selectall () ;
autoellipsoids() ;

will add on a flattened ellipsoid to each individual molecule. To do the same thing but using
only the ring carbons to generate the ellipsoids:

select ("C");
autoellipsoids() ;

Now the ellipsoids will cover the carbon atoms in each ring, leaving the hydrogens poking
out.

Autoellipsoids method for a description of the process.

autopolyhedra

Syntax:

void autopolyhedra (string options = "")
Note: Very Experimental Feature!

In a similar way to the autoellipsoids command, ‘autopolyhedra’ adds triangle glyphs to the
current selection in an attempt to enclose certain atoms within solid structures. There are two
principal modes of operation. The first (the default) assumes that the current atom selection
consists of individual atoms that should be enclosed in a polyhedron made up from triangles

181

added between triplets of bound neighbours. The carbon atom at the centre of methane would
make a good example. The alternative mode (requested with the ‘fragments’ option) assumes
that atoms within individual bound fragments in the current selection should be used as the
vertices to form an enclosed shell.

Possible options are:

Option Effect centres Assume that the current selection consists of individual atomic centres
that should be enclosed (the default). fragments Use individual bound fragments instead of
assuming individual centres. nolink Do not link the coordinates of generated glyphs to
coordinates of the atoms (the default is to link glyph coordinates to atoms). rcut=distance
Specifies the maximum distance allowed between vertices of a triangle

Autopolyhedra Method for a description of the process.

glyphatomf

Syntax:

void glyphatomf (int n)

void glyphatomf (int n, atom|int sourceatom)

Set current (or specified) atom's forces as data n in the current glyph.

For example:

glyphatomf (1) ;

links the current atoms forces to the first datum in the current glyph.

glyphatomr

Syntax:

void glyphatomr (int n)

void glyphatomr (int n, atoml|int sourceatom)

Set current (or specified) atom's position as data n in the current glyph.

For example:

glyphatomr (3, 55);

links the 55th atom’s position to the third datum in the current glyph.

glyphatomv

182

Syntax:

void glyphatomv (int n)

void glyphatomv (int n, atom|int sourceatom)

Set current (or specified) atom's velocity as data n in the current glyph.

For example:

atom i1 = newatom("H");
glyphatomv (2,1) ;

links the velocity of new atom i to the second datum in the current glyph.

glyphatomsf

Syntax:

void glyphatomsf (atom|int sourceatom ...)

Accepts one or more atoms, setting consecutive data in the current glyph to the forces of the
atoms / atom IDs provided.

For example:

glyphatomsf (1, 2, 3);

links the forces of atoms 1, 2, and 3 to the first three glyph data.

glyphatomsr

Syntax:

void glyphatomsr (atom|int sourceatom ...)

Accepts one or more atoms, setting consecutive data in the current glyph to the positions of
the atoms / atom IDs provided.

For example:

glyphatomsr (3, 10);

links the positions of atoms 3 and 10 to the first two glyph data.

glyphatomsv

Syntax:
183

void glyphatomsv (atom|int sourceatom ...)

Accepts one or more atoms, setting consecutive data in the current glyph to the velocities of
the atoms / atom IDs provided.

For example:

glyphatomsv (9, 11, 13);

links the velocities of atoms 9, 11, and 13 to first three glyph data.

glyphcolour

Syntax:

void glyphcolour (int n, double r, double g, double b, double a =
1.0)

Set the colour of vertex n for the current glyph to the RGB(A) colour provided (each
component of which should be in the range 0.0 to 1.0 inclusive).

For example:

glyphcolour (1, 1.0, 0.0, 0.0);

sets the colour of the first vertex in the current glyph to red.

glyphdata

Syntax:

void glyphdata (int n, double r, double g, double b)
Set vector data n for the current glyph to the fixed values provided.

For example:

glyphdata(l, 0.0, 5.0, 2.4);

sets the first positional data in the glyph to {0.0, 5.0, 2.4}.

glyphsolid

Syntax:

void glyphsolid (bool issolid)

184

Sets the drawing style of the current glyph to solid (true) or wireframe (false) (if the glyph
style permits).

For example:

glyphsolid ("true") ;

glyphtext

Syntax:

void glyphtext (string text)
Set the text data in the current glyph. For text-style glyphs, this is a necessary piece of data.

For example:

glyphtext ("Coordinate Origin");

newglyph

Syntax:
glyph newglyph (string style, string options = "")

Create a new glyph of the specified style, and make it current. The colour of the glyph is set
using the default glyph colour set in the global preferences. Valid glyph styles are listed in
glyph types. Positional / size / scale vector data should be set afterwards with appropriate
'glyphatom*' and 'glyphdata’ commands.

One or more options may be given to the command. The list of possible options is:

Option Effect

solid Render the glyph in solid mode (if the glyph supports it). Same as calling
‘glyphsolid (TRUE) ;’ after creation.

text=string Set the character data associated to the glyph to string. Valid only for
glyphs which display text.

wire Render the glyph in wireframe mode (if the glyph supports it). Same as
calling ‘glyphsolid (FALSE) ;’ after creation.

For example:

newglyph ("cube") ;

creates a new cube in the model.

newglyph ("text", "text=\"I am some text\"");

185

creates a new text glyph in the model, reading 'l am some text'. Note the need to escape the
quotes surrounding the text.

newglyph ("tetrahedron", "wire");

creates a new wireframe tetrahedron in the model.

186

9.14. Grid Commands

Add gridded data to the current model.
Grid window for management of grids in the GUI.

addgridpoint

Syntax:
void addgridpoint (int ix, int iy, int iz, double value)
Set a specific data point in the current grid.

For example:

addgridpoint (4, 1, 15, 4.123);

set the grid value at point { 4,1,15 } in the dataset to 4.123.

addnextgridpoint

Syntax:

void addnextgridpoint (double value)

Add the next sequential grid point, starting at (1,1,1) and proceeding through dimensions as
defined by the gridlooporder command (default is x->y->z, i.e. {1,1,1} is set first, then
{2,1,1}, {3,1,1} etc.).

For example:

addnextgridpoint (20.0) ;

sets the next grid point value to be 20.0.

finalisegrid

Syntax:
void finalisegrid ()

Perform internal post-load operations on the grid. Must be called for every new grid, after all
data has been read in.

For example:

187

finalisegrid();

gridalpha

Syntax:

double gridalpha ()

double gridalpha (double newalpha)

Set the alpha value (transparency of the current surface), with 0.0 being fully opaque and 1.0
being fully transparent (i.e. invisible), or simply return the current alpha value if no new value
is provided. Note that this command sets the alpha values for both the primary and secondary

surface colours.

For example:

gridalpha(0.5);

gridaxes

Syntax:

void gridaxes (double ax, double ay, double az, double bx, double
by, double bz, double cx, double cy, double cz)

Set the axes of the current grid, specified as three vectors.

For example:

gridaxes (1, 0, 0, 0, 1, 0, 0, 0, 1);

sets a cubic system of axes for the current grid.
gridaxes (0.8, 0, 0, 0.1, 0.6, 0, 0, 0,0.7);
sets a monoclinic system of axes for the current grid.

gridcolourprimary

Syntax:

void gridcolourprimary (double r, double g, double b, double a =
1.0)

Set the internal colour of the primary grid surface to the RGB(A) value (each component of
which should be in the range 0.0 to 1.0 inclusive).

188

For example:
gridcolourprimary(1.0, 1.0, 0.0);
sets the primary surface colour to yellow.

gridcoloursecondary

Syntax:

void gridcoloursecondary (double r, double g, double b, double a =
1.0)

Set the internal colour of secondary grid surface to the RGB(A) value supplied (each
component of which should be in the range 0.0 to 1.0 inclusive).

For example:

gridcoloursecondary (0.9, 0.9, 0.9);

sets the secondary surface colour to off-white.

gridcolourscale

Syntax:

void gridcolourscale (int id)

Set the colourscale to use for the current grid to the colourscale 1D specified, which should be
in the range 1-10. If '0" is given as the argument, the internal colour of the grid data is used.
Linking a colourscale to a grid will result in the minimum and maximum ranges of the grid
being recalculated to ensure all points in the grid are covered by the scale, whose range is
adjusted if necessary.

For example:

gridcolourscale (4);

colours the grid data according to colourscale 4.

gridcolourscale (0) ;

uses the internal colour(s) specified for the grid.

gridcubic

Syntax:

189

void gridcubic (double 1)
Sets up a cubic system of axes for the current grid.

For example:

gridcubic(0.5);

sets up a cubic system of axes, each grid point 0.5 A apart in all directions.

gridcutoff

Syntax:
void gridcutoff (double lowercut, [double uppercut])
Sets the lower and (if supplied) upper cutoff values for the current grid.

For example:

gridcutoff (0.002,0.005) ;

sets the lower grid cutoff for the current grid to 0.002, and the upper grid cutoff to 0.005.

gridcutoffsecondary

Syntax:
void gridcutoffsecondary (double Iowercut, [double uppercut])
Sets the lower and (if supplied) upper secondary cutoff values for the current grid.

For example:

gridcutoffsecondary(0.0014) ;

sets the secondary lower grid cutoff for the current grid to 0.0014, leaving the upper
secondary cutoff unchanged.

gridlooporder

Syntax:

void gridlooporder (string order)

Set the grid loop order to use with addnextgridpoint, affecting in which order the dimensions
of the data grid are filled. order should be given as a string of three characters, e.g. 'xyz'
(equivalent to '123"), 'yxz' (equivalent to '213"), etc.

190

For example:

gridlooporder ("zyx") ;

sets the loop order to the reverse of the default, so that the z-index is filled first.

gridorigin

Syntax:
void gridorigin (double x, double y, double z)
Sets the origin of the grid data, in A.

For example:
gridorigin (0, 10, 0);

sets the grid origin to be offset 10 A along the y-axis.

gridortho

Syntax:
void gridortho (double a, double b, double c)
Sets up an orthorhombic system of axes for the grid data.

For example:

gridortho (0.5, 0.5, 0.8);

sets up a system of axes elongated in the z-axis.

gridstyle

Syntax:
void gridstyle (string style)

Determines how the current grid data is drawn on-screen. Valid styles are listed in Grid
Styles.

For example:

gridstyle ("triangles");

191

draws the current grid as a triangle mesh.

gridusez

Syntax:

int gridusez ()

int gridusez (bool usez)

For two-dimensional grid (i.e. surface) data this option controls whether the data value is used
as the height (z) component of the surface, or if no data value is used and the surface is flat. If
called with no arguments the current status of the option is returned (0 being 'off', and 1 being

‘on’).

For example:

gridusez ("on") ;

gridvisible

Syntax:

int gridvisible ()

int gridvisible (bool visible)

Set the visibility of the current grid (i.e. whether it is drawn on screen).

For example:

gridvisible (FALSE) ;

gridsize

Syntax:

void gridsize (string type, int nx, int ny, int nz)

Initialises the current grid to be of the specified grid type and with the dimensions specified
(if the type requires it). This must be called before any calls to addpoint or addnextgridpoint

are issued.

For example:

gridsize ("regularxyz", 64, 128, 64);

192

initialises the current grid to be a regularly-spaced and hold a total of (gets calculator...)
524,288 points.

loadgrid

Syntax:
grid loadgrid (string filename)

Load an existing grid from the specified file, and add it to the current model. If successfully
loaded, a reference to the new grid is returned.

For example:
grid density = loadgrid("density.pdens");
loads a grid called 'density.pdens' into the current model.

newgrid

Syntax:
grid newgrid (string name)

Creates a new, empty grid with the provided 'name’ in the current model, and returns a
reference to it.

For example:
grid g =newgrid("charlie™);

creates a new grid called, for some reason, 'charlie’.

193

9.15. Image Commands

Save bitmap and vector images of the current view. The GUI is not required in order to save
images -- using these commands from the command-line, for example, works just as well
(models still have a current view, even without the GUI, and can be rotated, translated etc.
just as if they were in the GUI).

savebitmap

Syntax:
void savebitmap (string format, string filename)

void savebitmap (string format, string filename, int width, int
height)

void savebitmap (string format, string filename, int width, int
height, int quality)

Saves the current view as a bitmap image. Allowable values for format are:

Table 9-2 Bitmap Formats

Format Description

bmp Windows Bitmap

Jrg Joint Photographic Experts Group
png Portable Network Graphics

ppm Portable Pixmap

xbm X11 Bitmap
xpm X11 Pixmap

If width and height are not specified the current dimensions of the view are used (800x600 if
no GUI is present). The quality option determines the compression used on saved images,
affecting, for example, the quality and size of jpegs and pngs, and should be an integer
between 1 and 100 (with 100 being the best compression).

For example:

savebitmap ("bmp", "test.bmp");

saves the current view to a file test . bmp.

savebitmap ("png", "big.png", 5000, 5000, 10);

saves an enormous, highly uncompressed png.

savemovie

194

Syntax:

void savemovie (string filename, string format, int width = -1 int
height = -1 int quality = -1 int firstframe = 1 int lastframe =
<last> int interval =1)

Saves a movie of the trajectory associated to the current model. Note that a valid movie
encoder must be installed (such as mencoder) and arguments must be set in the program
preferences (see the Prefs variable). Aten will first save a series of png images of the width,
height and quality specified to the temporary directory (also specified in the preferences)
before passing them all to the provided encoder command. The encoder arguments should
contain both the text 'FILES' and 'OUTPUT" - when it comes to running the commane, Aten
will substitute 'FILES' for a wildcard list of image files, and 'OUTPUT' for the target movie
filename. Note that the format of the output movie is entirely guided by the options passed to
the encoder command.

As with the savebitmap command, if width and height are not specified the current
dimensions of the view are used (800x600 if no GUI is present), and the quality option
determines the compression used on saved images. The other arguments are self-explanatory -
firstframe and lastframe give the range of trajectory frames which will be saved, while the
interval value determines the 'stride’ between frames (i.e. '1' for every frame, '2' for every
other frame, '10' for every tenth frame etc.).

For example:

savemovie ("traj.mpg", 1024, 1024, -1, 50, 1000, 50);

saves a movie called 'traj.mpg’ with size 1024x1024, beginning at frame 50 and writing every
50th frame until frame 1000.

195

9.16. Labeling Commands
Add and remove atom labels.

clearlabels

Syntax:

vold clearlabels ()
Remove all atom labels in the current model.

For example:

clearlabels () ;

label

Syntax:

void label (string type)

Adds the specified label to each atom in the current selection. Valid types are listed in Label
Types.

For example:

label ("element") ;

adds element labels to the current atom selection.

removelabel

Syntax:

void removelabel (string type)
Remove the specified label (if it exists) from each atom in the current selection.

For example:

removelabel ("equiv") ;

removes the forcefield equivalent type label from each atom in the current selection.

196

9.17. Math Commands

Standard mathematical functions.

abs

Syntax:
double abs (int|double num)
Returns the absolute (positively-signed) value of num.

COS

Syntax:
double cos (double angle)
Returns the cosine of angle (which should be given in degrees).

dotproduct

Syntax:

double dotproduct (vector u, vector v)
Calculate and return the dot product of the two vectors u and v.

exp

Syntax:
double exp (double x)
Returns the exponential of x.

In

Syntax:

double 1ln (double x)
Returns the natural base-e logarithm of x.

log

Syntax:

double log (double x)
197

Returns the base-10 logarithm of x.

nint

Syntax:

int nint (double x)
Returns the nearest integer value to x.

normalise

Syntax:

double normalise (vector v)

Normalises the vector v, returning the magnitude of the vector before the normalisation was
performed.

For example:

vector v = { 1, 2, 3 };
double mag = normalise (v);
printf ("Normalised vector is { %f, %f, %f }, mag was %$f\n", v.x, v.y, Vv.z, mag);

prints the following:

Normalised vector is { 0.267261, 0.534522, 0.801784 }, mag was 3.741657

random

Syntax:
double random ()
Return a random real number between 0.0 and 1.0 inclusive.

randomi

Syntax:

int randomi (int max = RANDMAX)
Return a random integer between 0 and RANDMAX inclusive, or 0 and max if it is supplied.

sin

Syntax:

198

double sin (double angle)
Returns the sine of ang1e (which should be given in degrees).

sqrt

Syntax:

double sqrt (double x)
Returns the square root of x.

tan

Syntax:

double tan (double angle)

Returns the tangent of angie (which should be given in degrees).

199

9.18. Measuring Commands

Make measurements of distances, angles, and torsion angles (dihedrals) in models. Note that
there are two distinct sets of commands - those which 'measure’ and those which calculate
‘geometry’. The former create visible measurements within the model (which can then be
viewed in the GUI), while the latter simply determine and return geometric values. Both sets
take a variable number of arguments which determine whether a distance, angle, or torsion is
measured/determined.

clearmeasurements

Syntax:

void clearmeasurements ()
Clear all measurements in the current model.

For example:

clearmeasurements () ;

geometry

Syntax:

double geometry (atom|int i1 atom|int j atom|int k = 0 atom|int 1 =
0)

This command is a general measuring tool, able to measure distances, angles, and torsions in
the model, depending on how many arguments are supplied. Note that, unlike the measure
command, the resulting measurement is not added to the Model's internal list, and thus will
not be displayed in the model.

For example:

double rij[501];
for (int i=1; i<=50; ++1i) rij[i] = geometry(l,1i);

calculates the distances between the first 50 atoms in the model and the first, regardless of
whether they are bound or not

listmeasurements

Syntax:

void listmeasurements ()

200

List all measurements in the current model.

For example:

listmeasurements () ;

prints out a list of measurements made so far.

measure

Syntax:

double measure (atom|int i atom|int J atom|int k = 0 atom|int 1 = O

)

This command is a general measuring tool, able to measure distances, angles, and torsions in
the model, depending on how many arguments are supplied. Note that the resulting
measurement is added to the Model's internal list, and will be displayed in the model. Also,
note that measuring the same thing between the same atoms twice will remove the
measurement from the Model.

For example:

double rij = measure(l, 2);

returns the distance between atoms 1 and 2.

double theta = measure (10, 20, 30);

returns the angle between atoms 10, 20, and 30.

double phi = measure(9, 8, 7, 6);
measure(9,8,7,6);

returns the torsion angle made between atoms 9, 8, 7, and 6, and then instantly removes it
from the model by measuring it again.

measureselected

Syntax:

void measureselected (int natoms)

This command is a general measuring tool to measure all of one particular type of interaction
(i.e. bond distances, angles, or torsions) within the current atom selection. The single
argument specifies the type of interaction to calculate by specifying thu number of atoms
involved in the interaction - i.e. 2, 3, or 4 for bond distances, angles, and torsions respectively.

201

For example:

measureselected (3) ;

calculates and displays all bong angles in the current atom selection.

202

9.19. Messaging Commands

Output messages from command lists / filters. All commands work like the C printf()
command, and accept the same fundamental format specifiers. All output from these
messaging commands is directed to either the GUI message box or stdout on the command
line.

Formatted Output for explanations on the usage of C-style formatted output

Read/Write commands for commands to read/write from/to files.

error

Syntax:
void error (string format, ...)
Print a message to screen and immediately exit the current command structure / filter.

For example:

int err=23; error ("Filter failed badly - error = %i.\n", err);

notifies the user that something bad probably happened, provided the error code, and
promptly exits.

printf

Syntax:

void printf (string format, ...)
Standard printing command.

For example:

printf ("Loading data...\n");

prints the string "Loading data..." to the screen.

printf ("Number of atoms = %$i\n", natoms) ;

prints the contents of the variable natoms to the screen.

verbose

203

Syntax:

void verbose (string format, ...)

Prints a message, but only when verbose output is enabled (with the -v command-line switch).

For example:

verbose ("Extra information for you.\n");

204

9.20. Minimiser Commands

Perform energy minimisation on models.

cgminimise

Syntax:
void cgminimise (int maxsteps)
Geometry optimises the current model using the conjugate gradient method.

For example:

cgminimise (20) ;

runs a conjugate gradient geometry optimisation for a maximum of 20 cycles.
Literature methods for details on the conjugate gradient method as it is implemented in Aten.

converge

Syntax:
void converge (double econv, double fconv)

Sets the convergence criteria of the minimisation methods. Energy and force convergence
values are given in the current working unit of energy in the program.

For example:

converge (le-6, le-4);

sets the energy and RMS force convergence criteria to 1.0E-6 and 1.0E-4 respectively.

linetol

Syntax:

void linetol (double tolerance)
Sets the tolerance of the line minimiser.

For example:

linetol (1le-5);

205

sets the line tolerance to 1.0E-5.

mcminimise

Syntax:
void mcminimise (int maxsteps)
Optimises the current model using a molecular Monte Carlo minimisation method.

For example:

mcminimise (20) ;

runs a geometry optimisation for a maximum of 20 cycles.

Monte Carlo Minimiser method for details on the Monte Carlo minimisation method as it is
implemented in Aten.

mopacminimise

Syntax:

void mopacminimise (string options = "BFGS PM6 RHF SINGLET")
Optimises the current model using the external MOPAC program (Copyright 2007, Stewart
Computational Chemistry). Note that the program must be installed correctly as per the
instructions provided with it, and the path to the MOPAC executable must be set in Aten's
preferences, as well as a suitable temporary working directory. The optional argument allows
a specific MOPAC command to be provided for the minimisation, but sensible defaults are
used if this is not provided.

For example:

mopacminimise () ;

minimises the current model with the default options listed above.

mopacminimise ("UHF TRIPLET PM6-DH2");

minimises the current model assuming a triplet state with the UHF method and the PM6-DH2
hamiltonian.

sdminimise

Syntax:

void sdminimise (int maxsteps)

206

Optimises the current model using the Steepest Descent method.

For example:

sdminimise (100) ;

minimises the current model for a maximum of 100 steps with a simple steepest descent
minimiser.

9.21. Model Extras Commands

Store and manipulate molecular orbital data, vibrations, and z-matrix elements.

newbasisshell

Syntax:

basisshell newbasisshell (atom|int id string type)

Adds a new basis shell definition to the current model, returning the generated structure. The
atomic centre on which the basis function exists must be provided either as an integer or an
atom pointer (from which the integer ID is extracter). The type of the basis shell should
correspond to one listed in basis shell types.

For example:

basisshell = newbasisshell (15, "D");

creates a new D-orbital shell centred on atom 15.

neweigenvector

Syntax:

eigenvector neweigenvector (int size = (auto))

Adds a new, empty eigenvector to the current model. If the size argument is given the
eigenvector array will contain this many elements. Otherwise, the size of the array is
determined by the total number of cartesian basis functions implied by the current basis shell
definitions of the model.

For example:

eigenvector = neweigenvector (180) ;

creates a new eigenvector which will contain 180 coefficients.

207

newvibration

Syntax:

vibration newvibration (string name = (auto))
Adds a new, empty vibration definition to the current model.

printzmatrix

Syntax:

void printzmatrix ()

Prints a Z-matrix for the current model to the console, creating one first if necessary.

208

9.22. Model Commands

Model creation and management.

Createatoms

Syntax:

void createatoms ()

Can be run when importing trajectory frames. Creates enough atoms in the current trajectory
frame to match the parent model.

For example:

createatoms () ;

currentmodel

Syntax:

model currentmodel ()

model currentmodel (int id)
model currentmodel (string name)

model currentmodel (model m)

Returns a reference to the current model (if no argument is given) or selects the supplied
model and makes it the current model. The model may be selected either by name, by its
integer position in the list of loaded models (i.e. 1 to N), or a model-type variable containing a
valid model reference may be passed.

For example:

currentmodel (4) ;

selects the fourth loaded model.
currentmodel("Protein coordinates™)

selects the model named "Protein coordinates” (provided it exists)

model ml, m2;
ml = newmodel ("Test model 1");
m2 = newmodel ("Test model 2");

209

currentmodel (ml) ;

creates two models, storing references to each, and then re-selects the first one and makes it
the current target again.

deletemodel

Syntax:

voiddeletemodel int id)

void deletemodel (string name)

void deletemodel (model m)

Deletes the current model (if no argument is given) or the supplied model.

firstmodel

Syntax:
model firstmodel ()
Makes the first loaded / created model the current model, and returns a reference to it.

For example:

firstmodel () ;

info

Syntax:
void info ()
Print out information on the current model and its atoms.

For example:

info () ;

finalisemodel

Syntax:

void finalisemodel ()

Performs various internal tasks after a model has been fully created within a filter. Should be
called after all operations on each created model have finished.

210

For example:

finalisemodel () ;

getmodel

Syntax:
model getmodel (int id)
model getmodel (string name)

model getmodel (model m)

Returns a reference to the requested model, but unlike currentmodel does not make it the
current model.

For example:

model alpha = getmodel ("alpha2");

grabs a reference to the model named 'alpha2'.
model m = getmodel(5);
gets a reference to the fifth loaded model.

lastmodel

Syntax:

model lastmodel ()
Makes the last loaded / created model the current model, and returns a reference to it.

For example:

model final = lastmodel () ;

listmodels

Syntax:
void listmodels ()
Lists all models currently available.

For example:
211

listmodels () ;

loadmodel

Syntax:

model loadmodel (string filename)

model loadmodel (string filename, string filter = <automatic>)
Load model(s) from the £i1ename provided, autodetecting the format of the file. If the
optional £i1ter argument is present, then the file is forcibly loaded using the filter with the
corresponding nickname. The last loaded model becomes the current model, to which a

reference is returned.

For example:

model m = loadmodel ("/home/foo/coords/test.xyz") ;

loads a model called test.xyz, returning a reference to it.

model m = loadmodel ("/home/foo/coords/testfile", "xyz");

forces loading of the model testfile asan xyz file.

modeltemplate

Syntax:

void modeltemplate ()

Can only be run when importing trajectory frames. Templates the atoms in the trajectory's
parent model by creating an equal number of atoms in the target trajectory frame, and copying
the element and style data. Positions, forces, and velocities are not copied from the parent
model atoms.

For example:

modeltemplate () ;

newmodel

Syntax:

model newmodel (string name)

212

Create a new model called name which becomes the current model, and return a reference to
it.

For example:
newmodel ("emptymodel") ;

creates a new, empty model called emptymodel and makes it current.

model cl2 = newmodel ("dodecane");

creates a new, empty model called dodecane, makes it current, and stores a reference to it in
the variable c12.

nextmodel

Syntax:
model nextmodel ()
Skips to the next loaded model, makes it current, and returns a reference to it.

For example:

model next = nextmodel ();

parentmodel

Syntax:

void parentmodel ()
Makes the parent model of the current trajectory frame the current model.

For example:

parentmodel () ;

prevmodel

Syntax:

model prevmodel ()

Skips to the previous loaded model, makes it current, and returns a reference to it.

213

For example:

model prev = prevmodel () ;

savemodel

Syntax:

int savemodel (string format, string filename)

Save the current model in the format given (which should correspond to a model export
Filter nickname) to the £i1ename specified. If the save was successful, an integer value of '1'
is returned, otherwise '0'.

For example:

int success = savemodel ("xyz", "/home/foo/newcoords/test.config");

saves the current model in xyz format to the filename given.

setname

Syntax:
void setname (string name)
Sets the name of the current model.

For example:

setname ("panther") ;

gives the current model the cool-sounding name of panther! Ahem.

showall

Syntax:

void showall ()

Makes any previously-hidden atoms in the model visible again.

214

9.23. Monte Carlo Commands

Change parameters for Monte Carlo-based calculations. Energy values should be given in the
current working unit of energy in the program.

mcaccept

Syntax:

void mcaccept (string move, double emax)
Sets the energy difference emax for the movetype move above which moves will be rejected.

For example:

mcaccept ("translate", 0.0);

requests that only translation moves that lower the overall energy will be accepted.

mcaccept ("insert", 200.0);

requests that insertion moves will be accepted provided the total energy does not rise more
than 200.0 units.

mcallow

Syntax:

void mcallow (string move, bool allow)
Indicates whether to allow moves of the specified type in Monte Carlo calculations.

For example:

mcallow ("translate", FALSE);

disallows translation moves in Monte Carlo calculations.

mcallow ("rotate", "true");

allows rotation moves in Monte Carlo calculations.

mcmaxstep

215

Syntax:

void mcmaxstep (string move, double mcmaxstep)

Sets the maximal step size for the move type move.

For example:
mcmaxstep ("translate", 5.0);
sets the maximum translation displacement to 5 A.

mcmaxstep ("rotate", 30.0);

sets the maximum rotation to 30 degrees.

mcntrials

Syntax:
void mentrials (string move, double n)
Sets the number of times n that the move type move should be attempted in each cycle.

For example:

mcntrials ("insert", 50);

requests that there will be 50 insertion attempts per cycle per molecule type.

printmc

Syntax:
void printme ()
Prints the current Monte Carlo parameters.

For example:

printmc () ;

216

9.24. Pattern Commands

Automatically or manually create pattern descriptions for models.

clearpatterns

Syntax:

void clearpatterns ()

Delete the pattern description of the current model. It's a good idea to run this command
before adding a pattern definition by hand with calls to newpattern.

For example:

clearpatterns() ;

Createpatterns

Syntax:

void createpatterns ()
Automatically detect and create the pattern description for the current model.

For example:

createpatterns () ;

currentpattern

Syntax:
pattern currentpattern ()
pattern currentpattern (string name)

pattern currentpattern (int id)

Get the named pattern or pattern with given id (if either was specified), returning its reference
and setting it to be the current pattern.

For example:

pattern p = currentpattern("liquid");

217

sets the pattern named 'liquid' in the current model to be the current pattern, setting its
reference in the variable p.

pattern p = currentpattern();

returns a reference to the current pattern.

getpattern

Syntax:

pattern getpattern (string name)

pattern getpattern (int id)

Get the named pattern, or pattern with id specified, returning its reference.

For example:

pattern p = getpattern("solid");

gets the pattern named 'solid' in the current model, setting its reference in the variable p.

getpattern (3);

gets the third pattern in the current model.

listpatterns

Syntax:
void listpatterns ()
List the patterns in the current model.

For example:

listpatterns();

newpattern

Syntax:

pattern newpattern (string name, int nmols, int atomspermol)

218

Add a new pattern node to the current model, spanning nmo1s molecules of atomspermo1l
atoms each, and called name. A reference to the new pattern is returned.

For example:

pattern p = newpattern ("water", 100, 3);

creates a new pattern description of 100 molecules of 3 atoms each named 'water' (i.e. 100
water molecules) in the current model, and returns its reference

Methods of reading and writing data from / to files in import and export filters. Many
commands here use formatting strings to provide formatted input and output. All reading and
writing commands here work on input or output files as defined internally by the program.

Messaging Commands for commands that write to the screen.

Formatting Output for more details on the C-style formatting of data employed by some
commands.

Delimited Reading and Writing for details on the parsing of delimited data, as employed by
some commands.

addreadoption

Syntax:

void addreadoption (string option)
Controls aspects of file reading. See Parse Options for a list of possible options.

For example:

addreadoption ("stripbrackets") ;

eof

Syntax:
int eof ()
Returns 1 if at the end of the current input file, 0 otherwise.

For example:

string s; while (!eof()) { getline(s): printf("$s\n", s); }

Reads in and prints out all lines in the current source file.

219

filterfilename

Syntax:

string filterfilename ()

Returns the name of the current input or output file (typically useful from within an import or
export filter).

For example:

string filename = filterfilename();

Puts the current source/destination filename in the variable filename.

find

Syntax:

int find (string searchstring)

int find (string searchstring, string linevar)

Searches for the specified searchstring in the input file, returning 0 if searchstringis
not found before the end of the file, and 1 if it is. The optional argument 1inevarisa
character variable in which the matching line (if any) is put. If the search string is not found
the file position is returned to the place it was before the command was run.

For example:

int iresult = find("Final Energy:");

searches for the string 'Final Energy' in the input file, placing the result of the search in the
variable i result.

string line; int n = find("Optimised Geometry:", line);

searches for the string 'Optimised Geometry:' in the input file, placing the whole of the
matching line from the input file in the variable 1ine.

getline

Syntax:

int getline (string destvar)

Read an entire line from the input file, and put it in the character variable provided. The line
also becomes the current target for readnext. The command returns a Read Successinteger.

220

For example:

string nextline; int n = getline(nextline);

gets the next line from the file and places it in the variable next1ine.

nextarg

Syntax:

int nextarg (int 1)

int nextarg (double d)

int nextarg (string s)

Read the next whitespace-delimited chunk of text from the current file and place it in the
variable supplied. Note that this command reads directly from the file and not the last line
read with getline or readline (see the readnext command to read the next delimited argument
from the last read line). The command returns TRUE (1) if an argument was successfully
read, or FALSE (0) otherwise (e.g. if the end of the file was found).

The command will accept a variable of any ordinary type - int, double, or string - as its
argument. Conversion between the text in the file and the target variable type is performed
automatically.

For example:

int i; int success = nextarg(i);

peekchar

Syntax:
string peekchar ()

Peeks the next character that will be read from the source file, and returns it as a string. The
actual file position for reading is unaffected.

For example:

string char = peekchar();

peekchari

Syntax:

int peekchari ()

221

Peeks the next character that will be read from the source file, and returns it as an integer
value representing the ASCII character code (see http://www.asciitable.com, for example).
The actual file position for reading is unaffected.

For example:

int char = peekchari();

readchars

Syntax:

string readchars (int nchars, bool skipeol = TRUE)

Reads and returns (as a string) a number of characters from the input file. If skipeo1 is true
(the default) then the end-of-line markers "\n' and "\r' will be ignored and will not count
towards nchars — this is of most use when reading formatted text files and you want to
‘ignore’ the fact that data is presented on many lines rather than one. If skipeo1 is false then
\n" and "\r' will count towards the total number of characters. Used on formatted text files, this
might give you unexpected results.

For example:

string text = readchars(80);

reads the next 80 characters from the input file and puts it into the variable text.

readdouble

Syntax:
double readdouble ()

double readdouble (int nbytes)

Read a floating point value (the size determined from the machines 'double’ size) from an
unformatted (binary) input file. Alternatively, if a valid number of bytes is specified and
corresponds to the size of another 'class’ of double (e.g. long double) on the machine this size
is used instead.

For example:

double x = readdouble();

reads a floating point value into the variable x.

readdoublearray

Syntax:
222

int readdoublearray (double d[] int n)

Read n consecutive integer values (whose individual size is determined from the result of
calling 'sizeof(double)’) from an unformatted (binary) input file, placing in the array d
provided. The size of the array provided must be at least n. The command returns a Read
Success integer.

For example:

double data[45]; int success = readdoublearray(data, 45);

reads 45 double numbers into the array data.

readint

Syntax:

int readint ()

int readint (int nbytes)

Read an integer value (the size determined from the result of calling 'sizeof(int)") from an
unformatted (binary) input file. Alternatively, if a valid number of bytes is specified and
corresponds to the size of another ‘class’ of int (e.g. long int) on the machine this size is used

instead.

For example:

int i = readint();

reads an integer number into the variable 1.

readintarray

Syntax:

int readintarray (int i[] int n)

Read n consecutive integer values (whose individual size is determined from the result of
calling 'sizeof(int)") from an unformatted (binary) input file, placing in the array i provided.
The size of the array provided must be at least n. The command returns a Read Success
integer.

For example:

int data[100]; int success = readintarray(data, 100);

reads 100 integer numbers into the array data.
223

readline

Syntax:

int readline (int|double|string var ...)

Read a line of delimited items from the input file, placing them into the list of variable(s)
provided. Conversion of data from the file into the types of the destination variables is
performed automatically. The number of items parsed successfully is returned.

For example:

double x,vy,z; int n = readline(x,v,z);

reads a line from the file and places the first three delimited items on the line into the
variables x, y, and z.

readlinef

Syntax:
int readlinef (string format, ...)

Read a line of data from the input file and separate them into the list of variable(s) provided,
and according to the format provided. The number of items parsed successfully is returned.

For example:

double x,vy,z; int n = readlinef ("%8.6f %$8.6f %8.6f",x,vy,2z);

reads a line from the file, assuming that the line contains three floating point values of 8
characters length, and separated by a space, into the three variables x, y, and z.

readnext

Syntax:
int readnext (int 1)
int readnext (double d)

int readnext (string s)

Read the next delimited argument from the last line read with either getline or readline into
the variable supplied. The command returns either TRUE for success or FALSE (e.g. if the
end of file was reached without reading any non-whitespace characters, or an error was
encountered).

For example:

224

double d; int n = readnext (d);

read the next delimited argument into the double variable 4.

readvar

Syntax:

int readvar (string source, int|double|string var ...)

Parse the contents of the supplied string source into the supplied variables, assuming
delimited data items. Delimited items read from source are converted automatically to the
type inferred by the target variable. The number of data items parsed successfully is returned.

For example:

string data = "rubbish ignore Carbon green 1.0 2.5 5.3"; string element, discard;
vector v; int n = readvar(data,discard,discard,element,discard,v.x,v.y,v.z,discard);
printf("Element = %s, n = %i\n", element, n);

outputs

Element = Carbon, n = 7

The character string in the variable data is parsed, with delimited chunks placed into the
supplied variables. Note the repeated use of the variable discard, used to get rid of
unwanted data. Also, note that there are not enough items in data to satisfy the final
occurrence of discard, and so the function returns a value of 7 (as opposed to the actual
number of target variables supplied, 8).

readvarf

Syntax:

int readvarf (string source, string format, int|double|string var

)
Parse the contents of the supplied string source according to the supplied format string,
placing in the supplied variables. The number of format specifiers successfully parsed (or, to

look at it another way, the number of the supplied variables that were assigned values) is
returned.

For example:

string a, b, data = "abc defl23456.0"; double d; int i, n; n = readvarf (data,"%3s
$3s%4i%4£%8*", a,0,i,d); printf("a = %s, b = %s, d = %f, i = %i, n = %i\n", a, b, d, i, n);

outputs

225

a = abc, b = def, d = 56.000000, i = 1234, n = 4

The supplied format string contains a single space in between the two '%3s' specifiers, and is
significant since it corresponds to actual (discarded) space when processing the format.
Furthermore, the last specifier '%8*" (discard 8 characters) is not fulfilled by the data string,
and so the number of arguments successfully parsed is 4, not 5.

removereadoption

Syntax:

void removereadoption (string option)
Removes a previously-set read option. See Parse Options for a list of possible options.

For example:

removereadoption ("skipblanks") ;

rewind

Syntax:
void rewind ()
Rewind the input file to the beginning of the file.

For example:

rewind () ;

skipchars

Syntax:
void skipchars (int n)
Skips the next n characters in the input file.

For example:

skipchars (15) ;

discards the next 15 characters from the input file.

skipline

226

Syntax:

void skipline (int n = 1)
Skips the next line in the file, or the next n lines if a number supplied.

For example:

skipline () ;

skips the next line in the file.

skipline (5);

discards 5 lines from the file.

writeline

Syntax:

void writeline (int|double|string var ...)

Write a line to the current output file that consists of the whitespace delimited contents of the
supplied arguments. The contents of the arguments are formatted according to their type and
suitable internal defaults. A newline character is appended automatically to the end of the
written line.

For example:

writeline ("Number of atoms =", aten.model.natoms) ;

writes a line indicating the number of atoms in the model to the current output file.

writelinef

Syntax:

void writelinef (string format, ...)

Write a formatted line to the current output file, according to the supplied format and any
supplied arguments. Usage is the same as for the printf command. Note that a newline
character is not automatically appended to the end of the written line, and one should be
written explicitly using the escape sequence \n.

For example:

writelinef ("%s = %8i\n", "Number of atoms", aten.model.natoms):;

227

writes a line indicating the number of atoms in the model to the current output file, e.g.:

Number of atoms = 3

writevar

Syntax:

void writevar (string dest, ...)

Write to the supplied string variable dest the whitespace delimited contents of the supplied
arguments. The contents of the arguments are formatted according to their type and suitable
internal defaults. A newline character is appended automatically to the end of the written line.

For example:

string s; writevar (s, "Number of atoms =", aten.model.natoms); writeline(s);

same result as the example for the ‘writeline' command, except that the final string is written
to a variable first, and then the file.

writevarf

Syntax:

void writevarf (string dest, string format, ...)

Write to the supplied string variable dest the string resulting from the supplied format and
any other supplied arguments. Apart from the mandatory first argument being the destination
string variable, usage is otherwise the same as the printf command. Note that a newline
character is not automatically appended to the end of the written line, and one should be
written explicitly using the escape sequence "\n'.

For example:

string s; writevarf(s,"%s = %8i\n", "Number of atoms", aten.model.natoms); writeline(s);

same result as the example for the 'writelinef' command, except that the final string is written
to a variable first, and then the file.

228

9.25. Script Commands
Commands to load and run scripts.

listscripts

Syntax:

void listscripts ()
Lists all loaded scripts.

For example:

listscripts();

loadscript

Syntax:

void loadscript (string filename)

void loadscript (string filename, string nickname)

Loads a script from the £i1ename specified, giving it the optional nickname.

For example:

loadscript ("scripts/liquid-water.txt", "water");

loads the script from 'scripts/liquid-water.txt' and gives it the nickname 'water'.

runscript

Syntax:

void runscript (string name)
Executes the specified script.

For example:

runscript ("water");

executes the water script loaded in the previous example.

229

9.26. Selection Commands
Select atoms or groups of atoms within the current model.

deselect

Syntax:

int deselect (atom|int|string selection ...)

Deselect atoms in the current model, returning the number of atoms deselected by the
provided selection arguments. One or more arguments may be supplied, and each may be of
the type int, atom, or string. In the case of the first two types, individual atoms (or those
corresponding to the integer id) are deselected. On the other hand, strings may contain ranges
of atom IDs and element symbols permitting atoms to be deselected in groups. Ranges are
specified as ‘a-b’ where a and b are either both atom IDs or both element symbols. In
addition, the ‘+* symbol can be used before (‘+a”) or after (‘a+”) an atom ID or element
symbol to mean either ‘everything up to and including this’ or ‘this and everything after’.
Within a string argument, one or more selection ranges may be separated by commas.

For example:

deselect (5);

deselects the 5th atom.

deselect ("1-10,N") ;

deselects the first ten atoms, and all nitrogen atoms.

int n = deselect ("Sc-zZn");

deselects the first transition series of elements, returning the number of atoms that were
deselected in the process.

deselect ("C+");
deselects all elements carbon and above.
deselect (1, 2, 5, "8+");
deselects the first, second, and fifth atoms, as well as the eighth atom and all that occur after
it.
230

deselectf

Syntax:

int deselectf (string format ...)

Deselect atoms using the same syntax as the deselect command, but constructing the string
using a C-style print£ approach. Useful when two integer numbers defining a range of
atoms to deselect are stored in two local variables, for instance, or when the selection range
must change dynamically in a loop.

For example:

int i = 10;
deselectf ("%i-%i", i, 1+10);

deselects atom ids 10 to 20 inclusive.

deselectfor

Syntax:

int deselectfor (string code)

Compiles and executes the code supplied within a loop which runs over all atoms. The
control variable of the loop in which the code is inserted is of type atom and is named i. The
code provided should use this pointer to decide whether or not the atom in question should be
selected or not, returning TRUE or FALSE in the process. A return path resulting in FALSE
need not be specified, since this is the default if the code supplied does not return a value.

For example:

deselectfor ("if (i.z == 6) return TRUE;");

will deselect all carbon atoms in the current model.

deselecttype

Syntax:

int deselecttype (stringlint|element el, string neta)

Deselect all atoms in the current model matching the element and NETA type description
specified.

For example:

deselecttype (H, "-0(-C)");

231

will deselect all hydrogen atoms bound to oxygen atoms which are, in turn, bound to carbon
atoms (i.e. all hydroxyl hydrogens).

expand

Syntax:

int expand ()

Expand the current selection of atoms by selecting any atoms that are directly bound to an
already-selected atom. The number of atoms added to the previous selection is returned.

For example:

expand () ;

invert

Syntax:

int invert ()
Inverts the selection of all atoms in the current model. Returns the number of atoms selected.

For example:

invert () ;

select

Syntax:
int select (atom|int|string selection ...)

Select atoms in the current model, keeping any previous selection of atoms. See the deselect
command for a full description of the syntax. The number of atoms added to the existing
selection is returned.

For example:

select ("+5");

selects the first five atoms.

int n = select ("+5,H");

232

selects the first five atoms and all hydrogens, storing the number of new atoms selected in the
variable n.

selectall

Syntax:
int selectall ()
Select all atoms in the current model. The number of selected atoms is returned.

For example:

selectall () ;

selectfftype

Syntax:

int selectfftype (string fftype)

Select all atoms with forcefield type £ftype in the current model. The number of atoms
selected is returned.

For example:

selecttype ("CT") ;

selects all atoms that have been assigned the forcefield type 'CT'.

selectf

Syntax:
int selectf (string format ...)

Selects atoms according to a string generated from a C-style print£ call. See the
deselectf command for a full description.

selectfor

Syntax:

int selectfor (string code)

Select atoms using the supplied code, which is inserted inside a loop over all atoms in the
current model. See the deselectfor command for a full description.

selectinsidecell

233

Syntax:

int selectinsidecell (bool usecog = FALSE)

Select all atoms whose coordinates are currently inside the confines of the unit cell (if one
exists). If usecog is TRUE whole molecules are selected if their centre of geometry is within

the unit cell. The number of newly-selected atoms is returned.

For example:

int n = selectinsidecell ()

selectioncog

Syntax:
vector selectioncog ()
Return the centre of geometry of the current atom selection.

For example:

vector v = selectioncog();
printf ("Centre of geometry of current selection is: %$f %f %$f\n", v.x, v.y, v.z);

calculates and prints the centre-of-geometry of the current selection.

selectioncom

Syntax:
vector selectioncom ()
Return the centre of mass of the current atom selection.

For example:

vector v = selectioncom() ;
newatom(Be, v.x, v.y, v.z);

calculates the centre-of-mass of the current selection and creates a beryllium atom at those
coordinates.

selectline

Syntax:

234

int selectline (double Ix, double 1y, double 1z, double x, double
y, double z, double radius)

Selects all atoms that are within a distance radius from a line whose direction is {1x,1y,1z}
and which passes through the point {x,y, z}. The number of newly-selected atoms is returned.

For example:

selectline(0,0,1,0,0,0,5.0);

selects all atoms within 5 A of a line running through the origin along the Cartesian z
direction.

selectmiller

Syntax:

int selectmiller (int h, int k, int I, int inside = FALSE)

Select all atoms that are ‘outside’ the specified Miller plane (and its mirror, if it has one). If
the final parameter is specified as TRUE then atoms inside the specified Miller plane (and its
mirror) are selected.

For example:

selectmiller (1, 1, 1);

selects all atoms located beyond the (111) plane in the unit cell.

selectmolecule

Syntax:

int selectmolecule (atom|int target)
Select all atoms in the molecule / fragment to which the supplied target atom belongs.

For example:

selectmolecule (5) ;

selects the bound fragment in which atom number 5 exists.

selectnone

Syntax:

void selectnone ()

235

Deselect all atoms in the current model.

For example:

selectnone () ;

selectoverlaps

Syntax:

int selectoverlaps (double dist = 0.2)

Select all atoms that are within a certain distance of another, or the default of 0.2 A if no
argument is provided. The number of selected overlapping atoms is returned.

For example:

int noverlaps = selectoverlaps ("0.1");

selects all atoms that are less than 0.1 A away from another.

selectoutsidecell

Syntax:

int selectoutsidecell (bool usecog = FALSE)

Select all atoms whose coordinates are currently outside the confines of the unit cell (if one
exists). If usecog is TRUE whole molecules are selected if their centre of geometry is outside
the unit cell. The number of newly-selected atoms is returned.

For example:

int n = selectoutsidecell ()

selectpattern

Syntax:

int selectpattern (int id, string name, pattern p)

Selects all atoms in the current (or named/specified) pattern. Returns the number of atoms
added to the existing selection.

For example:

selectpattern(2) ;

236

select all atoms in the second pattern of the current model.

selectpattern ("bubble") ;

select all atoms in the pattern “bubble” of the current model.

selectradial

Syntax:

int selectradial (atom|int id, double r)

Select all atoms within r A of the supplied target atom (which is also selected). Returns the
number of atoms added to the existing selection.

For example:

int nclose = selectradial (10, 4.5);

selects all atoms within 4.5 A of atom 10, and returns the number selected.

selecttree

Syntax:

int selecttree (atom|int i, bond exclude = NULL)

Select all atoms which are reachable by following chemical bonds, starting from (and
including) atom 1. If a bond to exc1ude is provided, then this connection will not be
followed during the selection process. This is useful when one wishes to select a “headgroup’
fragment attached to an atom, without selecting the rest of the molecule. The number of atoms
selected by the process is returned.

For example:

int nclose = selecttree(99);

selects all atoms reachable by following chemical bonds from (and including) atom 99.

selecttype

Syntax:

int selecttype (int|string element, string neta)

237

Selects all atoms of the given element that also match the NETA description (see Section
12.5) given, allowing selections to be made based on the connectivity and local environment
of atoms. The number of (previously unselected) atoms matched is returned.

For example:

int nch2 = selecttype ("C", "-H(n=2)");

selects all carbon atoms that are bound to two hydrogens.

238

9.27. Site Commands
Describe sites within molecules for use in analysis.
Note: These commands are outdated and may be removed completely in a future version.

getsite

Syntax:

void getsite (string name)

Selects (makes current) the site referenced by name. If the site cannot be found an error is
returned.

For example:

getsite ("carbl");

makes the 'carbl' the current site.

listsites

Syntax:
volid listsites ()
Prints the list of sites defined for the current model.

For example:

listsites () ;

newsite

Syntax:

void newsite (string name, string atomlist = "")

Creates a new site name for the current model, based on the molecule of pattern, and
placed at the geometric centre of the atom IDs given in atomlist. If no atoms are given, the
centre of geometry of all atoms is used. The new site becomes the current site.

For example:

newsite ("watercentre", "h2o0");

239

adds a site called 'watercentre' based on the pattern called 'h20" and located at the centre of
geometry of all atoms.

newsite ("oxy", "methanol", "5");

adds a site called ‘oxy’ based on the pattern called ‘methanol’ and located at the fifth atom in
each molecule.

siteaxes

Syntax:

void siteaxes (string x atomlist string y atomlist)

Sets the local x (first set of atom IDs) and y (second set of atom 1Ds) axes for the current site.
Each of the two axes is constructed by taking the vector from the site centre and the geometric
centre of the list of atoms provided here. The y axis is orthogonalised with respect to the x
axis and the z axis constructed from the cross product of the orthogonal x and y vectors.

For example:

siteaxes ("1,2", "o");

sets the x axis definition of the current site to be the vector between the site centre and the
average position of the first two atoms, and the y axis definition to be the vector between the
site centre and the position of the sixth atom.

240

9.28. String Commands
Manipulation and conversion of string variables.

afterstr

Syntax:

string afterstr (string source, string search, bool sourceonfail =
FALSE)

Return the part of the source string that comes after the first occurrence of the search
string. If source doesn’t contain any occurrences of search an empty string is returned,
unless the flag sourceonfail is set to TRUE in which case the original source string is
returned instead.

For example:
string fullname = "BobBobbinson";
string firstname = afterstr (name, "Bob");

sets the variable 7i rstname to the value ‘Bobbinson’.

string textl, text2;
textl "No taxes on axes";
text?2 afterstr (textl, "x");

results in text2 having a value of ‘es on axes’.

atof

Syntax:

double atof (string text)

Converts the supplied text into its floating point (double) representation. Equivalent to the
standard C routine ‘atof’.

For example:

double x = atof("1.099d");

would set x to the value '1.099'.

atoi

241

Syntax:

int atoi (string text)

Converts the supplied text into its integer representation. Equivalent to the standard C
routine 'atoi'.

For example:

int 1 = atoi("000023");

would set 7 to the value '23'.

beforestr

Syntax:

string beforestr (string source, string search, bool sourceonfail =
FALSE)

Return the part of the source string that comes before the first occurrence of the search
string. If source doesn't contain any occurrences of search an empty string is returned,
unless the flag sourceonfail is set to TRUE in which case the original source string is
returned instead.

For example:

string source, target; source = "Engelbert"; target = beforestr (source, "e");

places the text "Eng" in the variable target.

string textl
string text2

"No taxes on axes";
beforestr (textl, " ax");

places the text "No taxes on™ in the variable text2.

contains

Syntax:

int contains (string source, string search)

Returns the number of times the search string is found in the source string. The function
counts only non-overlapping occurrences of search.

For example:

242

string poem = "six sixes are thirty-six";
int count = contains (poem, "six");

sets count to ‘3°.

ftoa

Syntax:

string ftoa (double d)
Converts the supplied double 4 into a string representation.

For example:

string num = ftoa (100.001);

would set num to the value’100.00’.

itoa

Syntax:
string itoa (int 1)
Converts the supplied integer i into a string representation.

For example:

string num = itoa (54);

would set num to the value “54”.

lowercase

Syntax:
string lowercase (string source)
Returns the source string with all uppercase letters converted to lowercase.

replacechars

Syntax:

string replacechars (string source, string searchchars, string
replacechar)

243

Searches through the supplied source string, and replaces all occurrences of the individual
characters given in the string searchchars with the character supplied in replacechar,
returning the new string.

For example:

string newstring = replacechars ("Zero 2599 these numbers", "123456789", "0");

replaces any numeric character with a zero.

replacestr

Syntax:

string replacestr (string source, string searchstr, string
replacestr)

Replaces all occurrences of searchstr with replacestr in the supplied source string,
returning the result.

For example:

string fruity = replacestr ("I don't like apples.", "apples", "oranges");

would change your fondness towards apples.

removestr

Syntax:
string removestr (string source, string searchstr)
Removes all occurrences of searchstr from the source string, returning the result.

For example:

string debt = removestr ("I owe you 2 million dollars.", "million ");

would reduce your outgoings considerably.

sprintf

Syntax:

string sprintf (string dest, string format, ...)

Prints a formatted string to the supplied variable dest, and is an alias for the writevar£f
command.

244

stripchars

Syntax:

string stripchars (string source, string charlist)

Strip the supplied character(s) from the source string, returning the result.

For example:

string abc = stripchars ("Oodles of noodles", "o");

places the text "Odles f ndles" in the variable abc.

string abc; abc = "Oodles of noodles";
abc = stripchars (abc, "aeiou");

strips all vowels from the input string, placing the text’Odls f ndl’ in the variable abc.

toa

Syntax:
string toa (string format, ...)
Returns a string formatted according to the supplied format.

uppercase

Syntax:
string uppercase (string source)

Returns the source string with all lowercase letters converted to uppercase.

245

9.29. System Commands

System commands for controlling debug output, instantiation of the GUI, and exiting from the
program.

debug

Syntax:
void debug (string type)

Toggles debug output from various parts of the code. A full list of valid types is given in
output types.

For example:

debug ("parse") ;

getenv

Syntax:
string getenv (string variable)

Retrieves the contents of the named environment variable so that transfer of useful quantities
can be made to Aten through a shell.

For example:

string s = getenv ("HOSTNAME") ;

gets the name of the host Aten is running on (although what you would then usefully do with
it I don’t know).

Better examples can be found in the resources section of the website.

getenvf

Syntax:
double getenvf (string variable)

Retrieves the contents of the named environment variable, converting it to a floating-point
(double) value in the process.

For example:

246

double d = getenvf ("num") ;

gets the shell variable num as a real number.

getenvi

Syntax:

int getenvi (string variable)

Retrieves the contents of the named environment variable, converting it to an integer value in
the process.

For example:

int i = getenvi ("count");

gets the shell variable count as an integer number.

gui

Syntax:
void gui ()
Starts the GUI (e.g. from a script), if it isn't already running.

For example:

gui();

help

Syntax:

help command

Provide short help on the supplied command.

For example:

help cellaxes;

null

247

Syntax:

void null (variable var, ...)

The null command accepts one or more pointer variables whose values are to be set to NULL

(0).

searchcommands

Syntax:
void searchcommands (string search)
Search all available commands for the (partial) command name specified.

seed

Syntax:
void seed (int 1)
Sets the random seed.

For example:

seed (3242638) ;

quit

Syntax:
void quit ()
Quits out of the program.

For example:

quit();

248

9.30. Trajectory Commands

Open and associate trajectory files to models, and select frames to display/edit from the
current trajectory.

Trajectories for information on how trajectories are handled within Aten.

addframe

Syntax:
model addframe ()

model addframe (string title)

Append a new trajectory frame to the current model's trajectory. The reference to the new
frame is returned.

For example:

model m = addframe ("new config");

cleartrajectory

Syntax:

void cleartrajectory ()
Clear any associated trajectory and frame data in the current model.

For example:

cleartrajectory () ;

firstframe

Syntax:

void firstframe ()
Select the first frame from trajectory of current model.

For example:

firstframe () ;

249

lastframe

Syntax:

volid lastframe ()
Select last frame in trajectory of current model.

For example:

lastframe () ;

loadtrajectory

Syntax:

int loadtrajectory (string filename)

Associate trajectory in £i1lename with the current model. An integer value of 1" is returned if
the association was successful, or '0" otherwise.

For example:
int success = loadtrajectory("/home/foo/md/water.HISf");

opens and associated the formatted DL_POLY trajectory file ‘water.HISf' with the current
model.

nextframe

Syntax:

void nextframe ()
Select next frame from trajectory of current model.

For example:

nextframe () ;

prevframe

Syntax:
void prevframe ()
Select the previous frame from the trajectory of the current model.

For example:
250

previrame () ;

seekframe

Syntax:
volid seekframe (int frameno)
Seeks to the frame number specified.

For example:

seekframe (10) ;

seeks to the 10th frame of the current trajectory.

9.31. Transform Commands

Commands to transform the current selection of the model.

axisrotate

Syntax:
void axisrotate (atom|int i, atom|int i, double theta)

void axisrotate (atom|int i, atom|int i, double theta, double ox,
double oy, double oz)

void axisrotate (double x, double y, double z, double theta)

void axisrotate (double x, double y, double z, double theta, double
ox, double oy, double oz)

Rotate the current selection by an angle theta (in degrees) about an axis defined either by
the vector between two atom IDs or the vector components provided. If supplied, the rotation
is performed using the coordinate origin specified by ox, oy, and oz, otherwise {0,0,0} is
assumed.

For example:

axisrotate(4, 5, 90.0);

rotates the current selection 90 degrees about the axis formed by the vector between atom ids
4 and 5 (4->5).

axisrotate (0, 1, 0, -52.0);

251

rotates the current selection -52 degrees about the y-axis.

axisrotate(0, 1, 0, -52.0, 4.0, 4.0, 4.0);

rotates the current selection -52 degrees about the y-axis, but with the rotation centre at
{4.0,4.0,4.0}.

centre

Syntax:

void centre (double x, double y, double z, bool lockx = FALSE bool
locky = FALSE bool lockz = FALSE)

Centre the current atom selection at the specified coordinates. The three optional arguments
lockx, locky, and Iockz specify one or more atomic coordinates that are to remain
unchanged during the transformation.

For example:

centre (0.0, 0.0, 15.0);

centres the current selection at the coordinates (0 0 15).

flipx

Syntax:
void f£flipx ()
Flip (negate) the x-coordinates of the current selection.

For example:

£lipx () ;

flipy

Syntax:

void flipy ()
Flip (negate) the y-coordinates of the current selection.

For example:

252

flipy () s

flipz

Syntax:
void flipz ()
Flip (negate) the z-coordinates of the current selection.

For example:

flipz ()

matrixconvert

Syntax:

void matrixconvert (int I sx, int j sx, int 1 sy, int j sy, int
i sz, int j sz, int 1 tx, int j tx, int i ty, int j ty, int 1 tz,
int j tz)

void matrixconvert (int I sx, int j sx, int 1 sy, int j sy, int
i sz, int j sz, int 1 tx, int j tx, int i ty, int j ty, int 1 tz,
int j tz, double oy, double oz, double oz)

void matrixconvert (double s ax, double s ay, double s az, double
s bx, double s by, double s bz, double s cx, double s cy, double

s cz, double t ax, double t ay, double t az, double t bx, double

t by, double t bz, double t cx, double t cy, double t cz)

void matrixconvert (double s ax, double s ay, double s az, double
s bx, double s by, double s bz, double s cx, double s cy, double

s cz, double t ax, double t ay, double t az, double t bx, double

t by, double t bz, double t cx, double t cy, double t cz, double oy,

double o0z, double oz)

From a defined frame of reference (i.e. a set of axes defining the spatial orientation), rotate the
current selection from this frame into the second frame, using the coordinate origin supplied
or {0,0,0} by default. In the first form six pairs of atom IDs define each matrix, with the
vectors taken to be i->j in all cases (normalised to 1.0), and specifying the X, y, and z axes in
turn. In the second, the matrices are given as two sets of nine numbers that define the vectors
of the axes.

When supplying atom IDs, the x axis is taken to be absolute, the y-axis is orthogonalised
w.r.t. the x-axis, and the z-axis is taken as the cross product between the x and y axes. Note
that providing the definition of the z axis is still important, however, since the vector cross
product is adjusted (if necessary) to point along the same direction as this supplied z-axis.
When supplying the complete matrices no orthogonalisation or normalisation of the axes is
performed (permitting arbitrary scale and shear operations).

253

For example:

matrixconvert(l, 2, 1, 3, 1, 4, 10, 11, 12, 13, 14, 15);

defines a the current selection’s frame of reference as (in terms of atom 1Ds) X=(1->2), Y=(1-
>3), and Z=(1->4), which will be rotated such that it corresponds to the new frame of
reference (again defined by atom IDs) X=(10->11), Y=(12->13), and Z=(14->15).

matrixconvert (-0.7348, -0.0192, -0.678, 0.4979, 0.6635, -0.5584, 0.4606, -0.7479,
-0.47801, 1, 0, 0, O, 1, O, O, O, 1)

defines a the current selection's frame of reference as the vectors X={-0.7348, -0.0192, -
0.678}, Y={0.4979, 0.6635, -0.5584}, and Z={0.4606, -0.7479, -0.47801}, which will be
rotated into the standard reference frame.

matrixtransform

Syntax:

void matrixtransform (double ax, double ay, double az, double bx,
double by, double bz, double cx, double cy, double cz)

void matrixtransform (double ax, double ay, double az, double bx,
double by, double bz, double cx, double cy, double cz, double ox,
double oy, double oz)

Transform the current selection by applying the defined matrix to each coordinate, operating
about the supplied origin (or {0,0,0} by default). No orthogonalisation or normalisation of the
defined axes is performed.

For example:
matrixtransform(1, O, O, O, 1, 0, O, 0, 1);

does absolutely nothing (multiplying by the identity matrix).

matrixtransform(1, O, O, 0, 1, 0, 0, 0, -1);

mirrors the current selection in the xy plane.

matrixtransform(0.5, 0, 0, 0, 0.5, 0, 0, 0, -1);

scales the x and y-coordinates of all selected atoms by 0.5, leaving the z coordinates intact.

reorient

254

Syntax:

void reorient (atom|int I sx, atom|int j sx, atom|int I sy,
atom|int j sy, atom|int i sz, atom|int j sz, double t ax, double
t ay, double t az, double t bx, double t by, double t bz, double
t cx, double t cy, double t cz)

void reorient (atom|int I sx, atom|int j sx, atom|int I sy,

atom|int j sy, atom|int i sz, atom|int j sz, double t ax, double
t ay, double t az, double t bx, double t by, double t bz, double
t cx, double t cy, double t cz, double ox, double oy, double oz)

Operates in exactly the same manner as matrixtransform except that the source matrix is
defined from atoms (or their IDs) and the destination matrix is provided as a matrix.

setangle

Syntax:

void setangle (atom|int i, atom|int j, atom|int k, double angle)
Adjusts the angle made between atoms i-5-k so that it becomes the target value, moving
the atom x and all its direct and indirectly-bound neighbours (except i and). The
coordinates of atom i and 7 remain unaffected.

This operation can only be performed when atoms 5 and k are not present in the same cyclic
structure. The atoms 1, 5, and k do not have to be bound, so it is possible to move separate
fragments relative to each other using this method.

For example:

setangle(10,11,12,109.5);

sets the angle made between atoms 10, 11, and 12 to be 109.5°.

setdistance

Syntax:

void setdistance (atom|int i atom|int 7, double dist)

Shifts the atom 5 and all its direct and indirectly-bound neighbours (except 1) so that the
distance between i and 7 is dist. The coordinates of atom i remain unaffected.

This operation can only be performed for atoms which are not present in the same cyclic
structure, e.g. trying to set the distance of two atoms in a benzene ring is not allowed.
However, note that the two atoms i and 7 do not have to be bound, so it is possible to move
separate fragments further apart by this method.

For example:

255

setdistance(1,4,4.9);

sets the distance between atoms 1 and 4 to be 4.9 A.

translate

Syntax:
void translate (double dx, double dy, double dz)
Translates the current selection by the specified vector.

For example:

translate (1, 0, 0);

moves the current selection 1 A along the x axis.

translateatom

Syntax:

void translateatom (double dx, double dy, double dz)
Translates the current atom by the specified vector.

For example:

translateatom(l, 0, -1);

translates the current atom 1 A along x and -1 A along z.

translatecell

Syntax:

void translatecell (double fracx, double fracy, double fracz)

Translates the current selection by the fractional cell vectors specified. The model must have a
unit cell for this command to work.

For example:

translatecell (0, 0.5, 0);

translates the current selection by an amount equivalent to half of the current cell's B vector.

256

translateworld

Syntax:

void translateworld (double dx, double dy, double dz)

Translates the current selection by the A amounts specified, with the XY plane parallel to the
monitor screen.

For example:

translateworld (0, 0, 10);

translates the current selection 10 A 'into' the screen.

mirror

Syntax:

void mirror (string axis)
Mirror the current selection in the specified plane about its geometric centre.

For example:

mirror ("y");

mirrors the current selection about the y axis.

257

9.32. View Commands

Commands to change the current model's view.

axisrotateview

Syntax:

void axisrotateview (double ax, double ay, double az, double angle

)

Rotate the current view angle degrees about an axis defined between the supplied point
{ax,ay,az} and the origin.

getview

Syntax:

void getview ()

Outputs the rotation matrix elements and position vector of the camera for the current model.
The list of numbers may be passed directly to the setview command to re-create the view

exactly.

For example:

getview () ;

orthographic

Syntax:
void orthographic ()
Set the view for all models to be an orthographic projection.

For example:

orthographic () ;

perspective

Syntax:

void perspective ()

Set the view for all models to be a perspective projection.
258

For example:

perspective () ;

resetview

Syntax:
vold resetview ()
Resets the view rotation and zoom for the current model.

For example:

resetview () ;

rotateview

Syntax:

void rotateview (double rotx, double roty)

Rotates the current view by rotx degrees around the x axis and roty degrees around the y
axis.

For example:

rotateview (10.0, 0.0);

setview

Syntax:

void setview (double ax, double ay, double az, double bx, double
by, double bz, double cx, double cy, double cz, double x, double y,
double z)

Sets the rotation matrix and position vector of the camera for the current model. The output of
getview can be passed to setview to recreate an existing camera rotation and position.

For example:

setview(1, 0, 0 ,0, 0, 1, O, -1, O, 0.0, 0.0, -10.0);

sets a view with the z axis pointing up, and the y axis normal to the screen (i.e. rotated 90
degrees around the x axis)

259

speedtest

Syntax:

void speedtest (int nrenders = 100)
Performs a quick speed test based on rendering of the current model and general view.

For example:

speedtest () ;

spins the current model for the default of 100 rendering passes.

speedtest (2000) ;

spins the current model for 2000 rendering passes.

translateview

Syntax:

void translateview (double x, double y, double z)
Translates the camera viewing the current model.

For example:

translateview (0.0, 0.0, 1.0);

viewalong

Syntax:
void viewalong (double x, double y, double z)
Sets the current view so that it is along the specified vector.

For example:

viewalong (0, 0, -1);

view the current model along the negative z-axis.

viewalongcell

260

Syntax:

void viewalongcell (double x, double y, double z

Sets the current view so that is along the specified cell vector.

For example:

viewalongcell (1, 0, 0);

view the current model along the cell's x axis.

zoomview

)

Syntax:

vold zoomview (double dz)
Zooms the view by the specified amount.

For example:

zoomview (10.0) ;

moves the camera 10 A forwards along the z-direction.

zoomview (=5) ;

moves the camera 5 A backwards along the z-direction.

261

10. Topics of Interest

10.1. Colourscales

TODO

262

10.2. Glyphs

A ‘glyph’ in Aten is any of a series of primitives (or shapes, or objects) that can be rendered
in addition to the components that make up a standard model (i.e. atoms, bonds, and unit cell).
These can be used to illustrate points of interest in a system, illustrate some vector quantity, or
draw whole new objects from scratch. Glyphs can be drawn at fixed positions within a model,
or can have their vertices linked to existing atoms, enabling them to be moved in conjunction
with the model's atoms. Some glyphs can also be rotated about their current position.

A glyph requires from one to four vertices to be set, depending on the type. A different colour
may be assigned to each vertex enabling, for example, each corner of a triangle to possess a
different colour. The available glyph types and the roles of the four possible coordinates are:

Table 10-1 Glyph Types

Glyph Rot? rl r2 r3 r4

arrow No Tail coords Head coords

cube Yes Centroid XYZ scaling factors

ellipsoid

ellipsoidxyz

line No Start coords End coords

quad No Vertex1 Vertex 2 Vertex 3 Vertex 4
sphere Yes Centroid XYZ scaling factors

svector No

tetrahedron Yes Vertex 1 Vertex 2 Vertex 3 Vertex 4
text No Mid-left anchor of text

text3d No Mid-left anchor of text

triangle No Vertex1 Vertex 2 Vertex 3

tubearrow No Tail coords Head coords

vector No Centroid Pointing vector

263

10.3. Patterns

Patterns in Aten represent collections of molecules of the same type, and are used primarily in
the forcefield engine where they allow the construction of compact descriptions of systems
where many similar molecules exist (e.g. liquids). A set of patterns describing the contents of
a model is often referred to as a pattern description. Such a description is generated
automatically as and when required by Aten, and so in most cases should not need to be
defined manually by the user. When Aten fails to find a suitable pattern for a model this is
often an indication that a bond is missing (perhaps the bond tolerance is too low?) or the
atoms present in the system are not in exactly the order you think they are. When Aten fails
to find a proper pattern definition for a system, some operations will not be performed (e.g.
folding molecules back into the cell with Model—Fold Molecules). In these cases it is best
to take a careful look at the ordering of atoms and their bonds within a system to try and fix
the cause of the problem, but a default pattern can be enforced if absolutely necessary through
the main menu’s Forcefield—Add Default Pattern option. This description adds in a simple
pattern that encompasses all atoms in the model, and therefore always succeeds, at the
expense of inefficiency.

A collection of atoms can live quite happily on its own in Aten, and can be moved around,
rotated, deleted and added to at will. However, if you want to calculate the energy or forces of
a collection of atoms (or employ methods that use such quantities) then a description of the
interactions between the atoms is required. Creating a suitable expression is the process of
taking a system of atoms and generating a prescription for calculating the energy and/or
forces arising from these interactions from any standard classical forcefield available.

Patterns describe systems in terms of their constituent molecular units. For an N-component
system (a single, isolated molecule is a 1-component system) there are N unique molecule
types which are represented as, ideally, a set of N patterns. Forcefield sub-expressions can
then be created for each pattern and applied to each molecule within it, allowing the
expression for the entire system to be compact and efficient. Each pattern contains a list of
intramolecular terms (bonds, angles etc.), atom types, and van der Waals parameters for a
single molecule that can then be used to calculate the energy and forces of M copies of that
molecule.

10.3.1. Determination of Patterns

From the atoms and the connectivity between them Aten will automatically determine
patterns for systems of arbitrary complexity. The ordering of atoms is important, however,
and the atoms belonging to a single molecule must not be interspersed by those from others.
In other words, the atoms belonging to one instance of a molecule must be listed
consecutively in the model. There are also many ways to represent the same system of atoms,
all of which (from the point of view of the program) are equivalent and will produce the same
total energies and atomic forces.

Consider the following examples:

Table 10-2 Pattern Examples

Atom Ordering Automatic Pattern

264

1 H1 02 H3 HOH (3)
(o5
W e s H4 05 H6
o=
/ H7 08 HO
H:"
HE-
/
H-I__D:l
2 H1 C12 HC1l (1) HOH(2)
cIF
H1,-= 7 H3 04 H5
\Ha H6 O7 HS8
a
H\\\Oqu':!
3 H1 02 H3 HOH (1) HC1l (1) HOH(1)
cI®
H4/ Hee o7 H4 C15
1\Hsr H6 O7 HS8
HY H2
“‘\\ 1"'""’
e
4 H1 02 H3 HOH (1) H(1) HHO (1) C1(1)
o
H4,f Hee ot H4
Ht\\\‘\ I,_-'Hg Cl8
o

In 1) the three water molecules are identical with respect to the ordering of the atoms, so our
description consists of a single pattern describing one HOH moiety. Obvious, huh? The two-
component system illustrated in 2) has all molecules of the same type one after the other,
giving a simple two-term pattern. However, in 3) the two water molecules are separated (in
terms of their order) by the HCI, and so a three-term pattern results. In 4) there are, from the
point of view of the program, three distinct molecules, since the ordering of atoms in the two
water molecules is different, and so three terms are again necessary in the pattern description.

There are likely to be many possible pattern descriptions for systems, some of which may be
useful to employ, and some of which may not be. Take the well-ordered system 1) — four
different ways to describe the system are:

HOH (3)

HOH (1) HOH(1) HOH(1)
265

HOH (2) HOH (1)
HOH (1) HOH(2)
All are equivalent and will give the same energies / forces. Sometimes it is useful to treat

individual molecules as separate patterns in their own right since it allows for calculation of
interaction energies with the rest of the molecules of the system.

10.3.2. Pattern Granularity

Patterns work on the basis of bound fragments/molecules, and a molecule cannot be split up
smaller than this — for instance in the examples above water cannot be represented by ‘HO (1)
H (1)’ since this would ‘neglect’ a bond. However, there is nothing to stop a pattern
‘crossing’ individual molecules. Consider again the example 1) above. Three further
(reiterating the point, equivalent) ways of writing the pattern description are:

HOHHOH (1) HOH (1)
HOH (1) HOHHOH (1)
HOHHOHHOH (1)

Here, we have encompassed individual molecular entities into supermolecular groups, and as
long as there are no bonds 'poking out' of the pattern, this is perfectly acceptable. Although
this coarse-graining is a rather counter-intuitive way of forming patterns, it nevertheless
allows them to be created for awkward systems such as that in 4) above. We may write the
following valid patterns for this arrangement of atoms:

HOHHHOHC1 (1)

HOH (1) HHOHCI (1)

HOHHHO (1) HC1 (1)

Note that, when automatically creating patterns, if Aten stumbles across a situation that
confuses it, the default pattern of one supermolecule will be assumed, i.e. X(1) where X" is all

atoms in the model. This will work fine in subsequent energy calculations etc., but will result
in rather inefficient performance.

266

11. Filters

Filters determine the model/trajectory, grid/surface, and forcefield expression formats that
Aten can read and write. They are essentially small programs written in Aten’s internal
command language (based syntactically on C) and are stored as plain text files. These files are
parsed and ‘compiled’ when Aten starts up. This has several advantages:

e Users may add support for their own particular formats at will.
e No recompilation of Aten is necessary when adding new filters or adjusting old ones
e Potentially any file format can be supported, even binary formats

With this flexibility, of course, come some modest disadvantages:

e Speed - the C-style code contained within filters is, strictly speaking, interpreted, it is
by no means as fast as properly compiled code

e File formats that need particularly awkward operations requiring a more ‘complete’ C
language may be difficult to implement

These two points aside, though, filters make Aten a powerful and flexible tool, adaptable to
conform to many different program/code input and output formats.

As mentioned, the programming language used by filters is essentially a subset of C,
implemented with the same syntax and style (see the command language overview in Chapter
9 for a description), but includes several hundred custom commands to control Aten in order
to build up atoms in models, access data etc. So, if you already know C or C++, writing a
filter should be a breeze. If you don’t, it’s not too difficult to pick up, and there are plenty of
filters already written to use as worked examples.

When a filter is called in order to write out data, no references to any of the current (i.e.
displayed or selected) data are sent directly to the filter itself. Instead, this must be probed by
using the aten master reference available to all scripts, commands and filters. Within aten
the currently displayed model may be deduced, as well as the current frame (if a trajectory is
associated). In most cases for model export filters, the path ‘aten.frame’ should be used to
determine the model data that should be written.

11.1.1. Filter Contents

A filter is a plain text file containing one or more C-style programs that permit the input or
output of data in a specific format. For example, a purely model-oriented filter file may
contain two filters, one to read in files of the specified format, and one to write the data out
again. Each individual filter is given a short nickname, a shell-style glob, and possibly several
other bits of data that allow files to be recognised (if the file extensions defined for it are not
enough).

Different filters that recognise the same file type may be provided if necessary, each
performing a slightly different set of import or export commands (if it is not convenient to do
so within a single filter), and all will appear in the drop-down list of filters in file dialogs
within the program. Note that in batch, command-line, or scripting mode, filters are either
selected automatically based on the filename, extension, or contents, or picked by matching

267

only the associated nickname. In the former case, the first filter that matches the extension is
used.

11.1.2. Filter Locations

A basic stock of filters is provided with Aten and installed with the program - several default
locations are searched for these filters on startup. Alternatively, if Aten fails to find these
filters, or you wish to point it to a suitable directory by hand, either the SATENDATA
environment variable may be set to the relevant path (on Windows, this variable is set by the
installer) or the --atendata command-line option may be used to provide the path.

Additional filters may be placed in a user’s .aten directory, e.g. ~bob/.aten/filters/.

11.1.3. Overriding Existing Filters

Filters that possess the same ID or nickname as other filters of the same type may be loaded
simultaneously, with the last to be loaded taking preference over the other. Thus, an
importmodel filter nicknamed xyz from Aten’s installed filter stock will be overridden by one
of the same nickname present in a user’s .aten/filters (Or aten/filters on Windows)
directory. Similarly, both these filters will be overridden by one of the same nickname loaded
by hand from the command line (with the --£ilter switch). Note that this only holds true
for filters referenced by nickname or determined automatically by Aten when loading data -
from the GUI all filters are available in the file dialogs.

11.1.4. Filter Definitions

Filter definitions are made in a filter file in a similar way to declaring a user subroutine or
function (see Section 8.1.7). The £ilter keyword marks the start of a filter definition, and
contains a list of properties in parentheses that define the subsequent filter, its name, and how
to recognise the files (from their filenames and/or contents) that it is designed for. The
definition of the filter to import XYZ-style model data is as follows:

filter (type="importmodel", name="XMol XYZ Coordinates", nickname="xyz",
extension="xyz", glob="*.xyz", id=3)
{

commands

The comma-separated list of properties defines the type of filter (‘t ype="importmodel™’)
and how to recognise files of that type (e.g., ‘extension="xyz""), amongst other things.

268

The full list of possible properties is as follows:

Table 11-1 Filter Definition Keyword Summary

Property Description

exact Comma-separated list of filenames that are of this type

extension Comma-separated list of filename extensions that indicate files of this type

glob Shell-style glob to use in file fialogs in order to filter out files of the described
type

id Numerical ID of the filter to enable partnering of import/export filters for files
of the same type

name Descriptive name for the filter, shown in file dialogs etc.

nickname Short name used by commands in order to identify specific filters

search Provides a string to search for in the file. If the string is found, the file is

identified as being readable by this filter type. The number of lines searched is
governed by the within property

type Defines the kind of filter that is described (i.e. if it loads/saves, acts on
models/grid data etc.) so that Aten knows when to use it. Must always be
defined!

within Specifies the number of lines to search for any supplied search strings

zmap Determines which zmapping style to employ when converting atom names
from the file

exact

Syntax:

”

exact="namel, name2, ...
Occasionally (and annoyingly) files have no extension at all, instead having short, fixed
names, which must be checked for literally when probing files. This command defines one or
more explicit filenames that identify files targeted by this filter. Multiple names may be given,
separated by commas or whitespace. Exact filename matching is case-insensitive.

For example:

exact="coords"

associates any file called ‘coords’ to this filter.

exact="results,output"”

associates any files called ‘results’ or ‘output’ to this filter.

extension

Syntax:
269

extension="extensionl,extension2...”

Sets the filename extension(s) that identify files to be read / written by this filter. When files
are being probed for their type, in the first instance the filename is examined and the
extension (everything after the last “.”) is compared to those defined in filter sections by this
command. Multiple file extensions may be given, separated by commas or whitespace. File
extension matching is case-insensitive.

For example:

extension="xyz"

means that files with extension ‘. xyz’ will be recognised by this filter.

extension="xyz,abc, foo"

means that files with extensions ‘. xyz’, ‘. abc’, and . foo” will be recognised by this filter.

glob

Syntax:

glob="*| *.ext”

Sets the file dialog filter extension to use in the GUI, and should be provided as a shell-style
glob.

For example:

glob="*.doc"

filters any file matching ‘*.doc’ in the relevant GUI file selector dialogs.

id

Syntax:
id=n

When separate import and export filters for a given file type have been provided it is prudent
to associate the pair together so that Aten knows how to save the data that has just been
loaded in. Each filter has a user-definable integer 1D associated with it that can be used to link
import and export filters together. For example, if a model import filter has an ID of 7, and a
model export filter also has this ID, then it will be assumed that the two are linked, and that a
model saved with export filter 7 can be subsequently loaded with import filter 7. If the 1D for
a filter is not set it defaults to -1, and it is assumed that no partner exists and the file cannot be
directly saved back into this format.

270

For example:

id=13

See the list of supported formats in Table 1-1 to Table 1-4 to find which ids are currently in
use.

name

Syntax:

name="1ong name of filter”

Sets the long name of the filter, to be used as the filetype description of files identified by the
filter. This name will appear in the file type lists of file dialogs in the GUI, and also in the

program output when reading / writing files of the type.

For example:

name="SuperHartree Coordinates File"

nickname

Syntax:

nickname="short name of filter”

Sets a nickname for the filter, which allows it to be identified easily in the command language
and, importantly, from the command line. It should be a short name or mnemonic that easily
identifies the filter. No checking is made to see if a filter using the supplied nickname already
exists.

For example:

nickname="shart"

sets the nickname of the filter to ‘shart’.

nickname="zyx"

sets the nickname of the filter to ‘zyx’.

search

Syntax:

search="string to search”

271

Occasionally, checking the contents of the file is the easiest way to determining its type, and
is probably of most use for the output of codes where the choice of filename for the results is
entirely user-defined. For example, most codes print out a whole load of blurb and references
at the very beginning, and usually searching for the program name within this region is
enough to identify it. For files that are only easily identifiable from their contents and not
their filename, plain text searches within files can be made to attempt to identify them.
Individual strings can be given to the search keyword, and may be specified multiple times.
The default is to search the first 10 lines of the file for one or more of the defined search
strings, but this can be changed with the within property.

For example:

search="UberCode Version 20.0"

matches the filter to any file containing the string ‘UberCode Version 20.0° within its
first 10 lines (the default).

search="SIESTA"

searches the first 10 lines of the file for the string ‘sTESTA’.

search=""GAMESS VERSION = 11 APR 2008 (R1)"

attempts to identify output from a specific version of GAMESS-US.

type

Syntax:
type="filtertype”

The 'type' keyword must be provided an all filter definitions - an error will be raised if it is
not. It specifies which class of data the filter targets (e.g. models, grid data etc.) and whether it
is an import or export filter. A given filter may only have one type specified, for which the
possible values are:

Table 11-2 Filter Types

exportexpression Describes how to export forcefield descriptions (expressions) for
models

exportgrid Describes how to export grid-style data

exportmodel Describes how to write out model data

exporttrajectory Filter suitable for the export of trajectory data

importexpression Describes how to load in forcefield-style expressions

importgrid Describes how to read gridded volumetric or surface data from files.
Any grids created in these sections must have the finalisegrid
command called on them, otherwise they will not be registered

272

properly within the program.

importmodel Describes how to import model data, including atoms, cell and
spacegroup data, bonds, glyphs etc. Any models created in
‘importmodel’ filters must have the f£inalisemodel command
called on them, otherwise they will not be registered properly within
the program.

importtrajectory Read frames from trajectory files. See the section on trajectories
(Section 11.2) for additional information on how trajectories are
handled within Aten.

For example:

type="importgrid"

type="exportmodel"

within

Syntax:
within=n

Defines the maximum number of lines at the beginning of the file that will be searched for
string definitions (default is 10).

For example:

within=50

specifies that the first 50 lines should be searched for identifying strings.

zmap

Syntax:
zmap="zmaptype”

By default, it is assumed that the commands which create new atoms will be given a proper
element symbol from which to determine the atomic number. Case is unimportant, so na, Na,
and N2 will all be interpreted as atomic number 11 (sodium). Where element symbols are not
used in the model file, there are several alternative options that tell these commands how to
convert the element data they are passed into atomic numbers. For example, the £ style is
particularly useful when loading in coordinate files which contain forcefield atom type names
that do not always correspond trivially to element information (e.g. DL_POLY
configurations).

For example:

273

zmap="numeric"

indicates that atomic numbers are provided in place of element names and no conversion
should be performed. See Table 16-16 for a list of available z-mapping methods.

11.1.5. Filter Options

When writing data, in many cases all the information that the filter wants to write is contained
within the current model, for example when outputting simple file formats such as xyz or
Aten’s own akf format. In other cases ther may be additional data for which would be nice to
have some control over, and which lays beyond atoms and bondes. The best example is
probably the input formats for nearly all ab initio codes which contain (as well as the atomic
coordinates) statements and additional data necessary to control the running of the code itself.
It is not a problem to write out static lines of control commands from the output filter, but it
would of course also be nice to be able to tailor this output from within the GUI (or from the
command-line). This can be achieved by assigning values to variables in the filter through the
use of filter options.

Any number of options can be defined, and some relatively simple but useful control over the
layout of the related GUI controls is possible.

Defining Options

A filter option is defined in the following way within a filter file:

vartype var = option(string name, string type, ...);

The specified name is the text that will appear next to the control in the GUI. The type of
control governs the type of GUI widget that will appear (see the list of types in Table 11-3
below). Following these two mandatory specifications, any required values must then be
given in the correct order, after which any other non-control-specific options may be given,
each surrounded by quote marks and in the format option or option=value. All of these
are to do with the layout of controls (see the option layout section).

For example, we we can set a string variable with one of several possible values using a
combo box control in the GUI. When saving a file in a new format (or by selecting Export
Options from the File menu) a dialog is shown in the GUI which contains all of the defined
controls in the relevant filter, from which options can be set before the file is written. This
would be written as follows in the filter file:

string runtype = option("Run Type", "combo", "check,run,restart,analyse", 2);

Note that when the filter code actually runs, the target variable runtype will be set with
whatever value the control holds in the GUI (or the default if running from the command-line)
— no questions are asked interactively at the points at which the option statements exist. So,
the variable here will be guaranteed to take on one of the four possible values specified —
either ‘check’, ‘run’, ‘restart’, or ‘analyse’.

274

Setting Options

All variables set from an option Statement are guaranteed to take on at least the default value
of the control when the filter or script executes. From the GUI it is possible to change the
values of defined options, since an options dialog is presented once load/save filenames are
selected and immediately before the filter actually executes. From the command line it is also
possible to set options within the filter — whenever a filter nickname is provided, e.g. as for
the first argument to the savemodel command, a list of variables and the value they should
take can be provided as part of the string. Let us assume that there is a filter whose definition
is as follows:

filter (type="exportmodel”, extension="crd”, nickname="crd”)

{
Define some options..
int n = option (“Number”, “intspin”, 0, 10, 1, 2);
string type = option(“Style”, “combo”, “alpha,beta,gamma”, 1);

Saving a file in this format (without setting any of the options) would be done with the
following command:

savemodel (“crd”, “my_file.crd");

The two variables n and type can be set to different values in the following way:

savemodel (“crd, n=6, type=beta”, “my file.crd”);

Option Types

All available control types are listed in the following table. Note that all of the required data
items must be given as arguments following the control type string in the option command.

Table 11-3 Option Types

Type Required Data ~ Description

check int state A checkbox whose state is either off or on. Returns
an integer value (‘1 if the control is ticked, ‘0’
otherwise). The initial state (‘0’ or 1°) is supplied

combo string items A combobox is a drop-down list of predefined

int default items, supplied as a comma-separated list. The

default item selection should be provided as in
integer index. The text of the selected item is

returned.
doublespin double min Control allowing a real number to be input, strictly
double max within the min/max range, and with start value
double step specified. Up/down arrows to the side of the
double start control adjust the current value by the 'step’ value.

275

A real number is returned.

edit string value
intcombo string items Exactly the same as the ‘combo’ control above, but
int default instead returns an integer value corresponding to
the index of the selected entry.
intspin int min Control allowing an integer number to be input,
int max strictly within the min/max range, and with start
int step value specified. Up/down arrows to the side of the
int start control adjust the current value by the 'step' value.
An integer number is returned.
label None. A simple text label, with no associated value.
radio string group A radio control is part of a set of checkable items,
int checked of which only one can be selected at any one point.
The parent group does not need to be created
beforehand - if the named group does not currently
exist, it will be created. Note that the group widget
itself is not visible, and so many contain any
number of radio buttons spread over many tabs
and pages.
radiogroup None. A radio group is a collection of radio buttons, of

which only one can be selected at any one time. A
radiogroup only provides the means to collect a set
of radio buttons together, and it not itself visible.
The index of the selected item is returned.

Same as ‘radiogroup’, except that the text label of
the selected item is returned.

stringradiogroup None.

Option Layout

The layout of specified GUI controls is done in as simplistic a manner as possible, while still
offering reasonable control over the positioning of elements. If no layout options are
specified, all defined controls will be added one after the other in a single row, left-to-right,
possibly stretching further than the screen can handle. At the very least, the newline
command should be used to force a control option to start a new row of controls in the GUI.
All controls are added into a grid (Qt’s QGridLayout) so that controls always line up nicely. It
is also possible to group controls together in tabbed widgets and group boxes.

All controls (except the plain label) are two ‘units’ wide on the grid, and this should be borne
in mind when stretching a single control to be the same width as a set of controls on a
different row.

Table 4.8. Layout Commands

Option Value
centre none

Description

By default, all labels are right-aligned so they sit next

to their associated controls. This forces the label to be

aligned in the centre instead.

All controls are enabled by default. Specifying

disabled will gray-out the control.

To place controls inside a groupbox instead of just

adding them to the window the group property can be

set. For instance, to add a control to a group box called
276

disabled none

group name

labelspan

left

newline

parentspan

span

state

tab

ncols

none

none

ncols

ncols

value@name?action

page@name

‘Run Options' you can specify ”group=Run
Options” as an argument. Note that the group name is
displayed as the title of the group in the GUI. If the
named group box does not exist then it is created in the
next available position (i.e. after the last created
control). Otherwise, the control is added to the existing
group box in the next available position.

A label takes up a single column by default. The
labelspan property can be set to override this. For
example, adding 1abelspan=4 to the list of
arguments will force the label to span four columns
instead of one.

By default, all labels are right-justified so they sit next
to their associated controls. This forces the label to be
aligned to the left instead.

All controls are added to the immediate right of the last
control created, unless the 'newline’' command is given.
Then, the control will be added at the beginning of a
New row.

A group box or tab control takes up a single column by
default. The 'parentspan’ property can be set to override
this at the time of creation of the group/tab control. For
example, adding parentspan=2 to the list of
arguments will force the group box or tab widget to
span two columns instead of one.

All controls take up a single column by default. The
'span’ property can be set to override this. For example,
adding span=5 to the list of arguments will force the
control to span five columns instead of one. The
associated label will still use only one column, unless
this is overridden by the 1abelspan property.

Some control over the states / content of other controls
is possible using the state command. The ‘value’ part
indicates when the change detailed in ‘action’ is
performed on the control ‘name’. Since a direct
equality comparison between the current value of the
control and the state-change ‘value’ is made, only
integer and string values make sense here. The control
‘name’ is the target control for the specified ‘action’,
where ‘action’ is one of ‘checked’, ‘disable’, ‘enable’,
‘items’, ‘minimum’, ‘maximum?’, ‘originalitems’,
‘step’, or ‘value’. For those actions that take a property
value (e.g. ‘checked’) the format of the line is then
‘value@name?action=property’.

Similar to the group command, this adds the widget to
an existing page in an existing tab widget, or creates
one or both and adds it there. For example, to add a
control to a page named "Extra" in a tab widget called
"My Tabs", you can specify tab=Extra@My Tabs as
an argument.

277

278

11.2. Trajectory Files

Trajectory files usually mean one of two things — either a sequence of frames from a
molecular dynamics simulation trajectory, or a sequence of configurations from a geometry
optimisation of some kind. Either way, both boil down to the same thing from Aten's
perspective, that is a set of models in a sequence. In terms of displaying such a set of models,
either they may be loaded as individual models (i.e. having a separate tab in the GUI) or the
sequence of models may be associated to a single "parent' model. Most commonly, the latter is
the preferred method (especially when large numbers of models are present in the trajectory).

There are two related ways to get this data into Aten. From the perspective of molecular
dynamics simulations, the parent model or configuration and the trajectory frames are stored
in separate files. In this case, the model can be loaded first, and then the trajectory file
attached or associated to this model afterwards. From the perspective of geometry
optimisations, for example, the parent configuration (i.e. the starting point of the optimisation)
and the sequence of coordinates are most often stored in the same output file. In this case, the
importmodel filter can detect the presence of the additional trajectory frames and manually
attach them to the parent model. The following sections explain the details of how both
methods work.

11.2.1. Trajectories in Separate Files

DL_POLY, being a molecular dynamics code, stores its configuration and trajectory data in
separate files. Filters are supplied with Aten that read in DL_POLY trajectories, and so this
example will revolve around those filters.

Necessity for a Master Configuration?

Thus far, it has been implicity stated that the 'master’ configuration and the trajectory files
come necessarily as a pair - the master configuration is read in, and then the trajectory
associated to it. This implies that the trajectory file is somehow tied to the master
configuration - perhaps the trajectory file does not contain information such as the number of
atoms or element data, and so a ‘reference’ configuration is necessary? Of course, this may
not always be the case, and it is possible that some trajectory formats will store all the
necessary information needed in order to fully generate the trajectory configurations.
DL_POLY trajectories do, in fact, contain all the necessary data, but even so the master
configuration is still used as a template for the trajectory data, and is used to check that the
correct number of atoms are present etc. It comes down to a matter of preference as to
whether the master configuration should be demanded, or whether the trajectory can itself be
associated to any (even an empty) model. Remember, importtrajectory filters always
attach the trajectory data to an existing model.

ImportTrajectory Filters

An importtrajectory filter is written in a slightly different way to other filter types. Since

trajectory files may contain header data which is written once at the beginning of the file,

preceeding the frame data, there are potentially two separate sets of data to read from

trajectory files - header data and (individual) frame data. So, rather than putting the code to

read this data directly in the main body of the filter, two functions should be defined instead,
279

one for reading the header (which must be called readheader), and one for reading an
individual frame (which must be called readframe). Note that, if a given trajectory format
does not contain a header, the corresponding function may be left empty, but must still be
defined and should return a value of ‘1°. Both functions take no arguments, and must return
an integer. A template for an importtrajectory filter is thus:

filter (type="importtrajectory”, name="Example Filter Template")

{

int readheader ()

{
// Code to read header data goes here

}

int readframe ()

{

// Code to read frame data goes here

}

The functions must take responsibility for informing Aten when the desired data cannot be
read. Both should return a value of ‘1’ if the data was read successfully, and should return ‘0’
if an error is encountered.

Header Data

When opening a trajectory file with an importtrajectory filter, the first thing Aten does is
attempt to read any header information from the file by calling the readheader function
defined in the filter. Since a trajectory file may not contain a header, and consists simply of
individual frames back to back, in these situations the readheader function defined in the
filter should not read any data. The filter definition then becomes simply:

filter (type='"importtrajectory', name="Example Filter Template")

{

int readheader ()

{

// No header, so just return
return 1;

}

int readframe ()

{

// Code to read frame data goes here

}

Here, the readheader function always succeeds, so Aten always thinks it has successfully
read a header.

Frame Data
If readheader is successful, Aten proceeds to read the first frame (by calling the
readframe function) in order to get an idea of the size of an individual frame, and hence the

total number of frames in the trajectory. Of course, this assumes that all frames take up the
same number of bytes in the file, and may not always be the case, especially for plain-text

280

trajectory files. Thus, the frame estimate output by Aten should not necessarily be taken as
gospel.

Unless an error is encountered when reading the test frame (i.e. readframe returns '0' or
FALSE) the trajectory file is then rewound to the end of the header section (start of the frame
data). One of two things then happens. Since trajectory files are typically enormous (hundreds
or thousands of megabytes) then it is unwise to try and load the whole trajectory into memory
at once. Aten knows this, and from the estimated frame size also knows roughly how big the
whole trajectory is. If the total trajectory file size is greater than an internally-defined limit
(the "trajectory cache size") then only a single frame is stored at any one point. If the total size
is smaller then this limit, the whole trajectory is cached in memory. Both have their
advantages and disadvantages, as listed in the following sections.

Uncached Frames

If the trajectory is too big to be stored in memory, Aten only holds a single frame in memory
at any one time. This means that:

e Memory use is minimised since only a single frame is loaded at any time

e Performance is slower — moving between frames means data must be read from disk

o Edits are forgotten — changes (both atomic and stylistic) made to the loaded frame are
forgotten when a different frame is read

Aten tries to minimise the seek time between frames by storing file offsets of frames it has
already read in. However, since trajectory frames can be different sizes Aten never tries to
'jump’ ahead in the file based on the size of a single frame. Skipping immediately to the final
frame in the trajectory will, thus, read all frames along the way and store file offsets for all
frames. Then, seeking to any individual frame is a much quicker process.

Although style and editing changes are forgotten between frames, the overall camera view of
the model is linked to that of the master configuration and so is retained between frames. If
the trajectory cannot be cached and you require changes (edits or styles) to be made to each
frame (e.g. for the purposes of making a movie of the trajectory) then a script is the way to go
(load frame, apply edits, save image, etc.).

Cached Frames

If the trajectory is small enough to be stored in memory, Aten reads in all frames at once. This
means that:

e Memory use is increased
e Performance is optimal - speed of moving between frames is fast because all frames
are in memory

e Edits are retained - edits can be made to individual frames and will be remembered on
moving to a different frame

The size of the cache can be adjusted either from the command line with the --cachelimit
switch or by setting the cachelimit member of the prefs variable within aten. No check
is made of the new cache limit with respect to the memory available on the machine on which
Aten is running, so use with care.

281

In the current versions of Aten, the total trajectory size is determined from the size of the
frame on disk, whereas it would be more appropriate to use the size of the frame in memory.
This will change in a future release.

282

11.3. Reading and Writing

Formatted output in Aten is based largely on string formatting in C, so if you're familiar with
C then this should be a breeze. If you’re a Soldier of Fortran, then the principles are very
similar. If you're familiar with neither, then now's the time to learn.

11.3.1. Formatted Output

Formatted output corresponds to output to either the screen or to files, and is used in the
following commands:

Table 11-4 Formatted Output Commands

error Write a message to the screen and immediately terminate execution of the
current script / filter / command structure

printf Write a message to the screen

verbose Write a message to the screen, provided verbose output mode is on

writelinef Write a formatted line to the current output file
writevarf Write a formatted string to a variable (equivalent to the C 'sprintf' command)

Basic Strings
Formatting a string for output, as mentioned elsewhere on numerous occasions, works the
same as for C. The C print£f command (equivalent to the command of the same name in

Aten) takes a character string as its first argument, and at its simplest, this is all that is
required:

printf ("Hello");

This prints ‘Hello’ to the screen (minus the quotes). Importantly, however, a newline
character is not printed, meaning that the next thing you try and print£ will appear on the
same line. For instance:

printf ("Hello");
printf ("There.");

would output:

HelloThere.

The end of a character constant in the printf command does not implicitly mean ‘and this is
the end of the line’ - you must indicate the end of the line yourself by placing "\n' at the point
where you wish the line to end. So:

283

printf ("Hello\n") ;
printf ("There.");

would output:

Hello
There.

Newlines (\n) are an example of escaped characters - the backslash *\’ indicates that the
following character, in this case ‘n’, is not to be treated as a normal ‘n’, but instead will take
on its alternative meaning, in this case a newline character. There are one or two other
escaped characters recognised - see Escaped Characters for a list. Note that the newline token
can appear anywhere in the string, and any number of times. So:

printf ("Hello\nThere\n.") ;

would output:

Hello
There

11.3.2. Printing Data

Being able to print simple text strings is good, but not nearly enough. The first argument to
the 'printf' command must always be a character string, but any number of additional
arguments may be provided. Now, these additional arguments may be number constants,
other character strings, variables, etc., and may be output in the resulting string by referencing
them with ‘specifiers’ placed within the first example. One example of a specifier is $i which
is shorthand for saying ‘an integer value’ — if used within the character string provided to
printf, the command will expect an integer constant or variable to be provided as an additional
argument. For example:

printf ("This number is %i.\n", 10);
will print

This number is 10.

Similarly,

int value = 1234;
printf ("Constant is %i, variable is %i.\n", 10, value);

284

will print
Constant is 10, variable is 1234.

There are other specifiers suitable for different types of data — see Section 11.3.4. The way
data is presented by the specifier in the final output can also be controlled (e.g. for numerical
arguments the number of decimal places, presence of exponentiation, etc., can be defined).

11.3.3. Formatted Input

Formatted input corresponds to input from either files or string variables, and is used in the
following commands:

Table 11-5 Formatted input commands

Command Function
readlinef Read a formatted line from the current input file
readvarf Read a formatted string from a variable

Note that the meaning of the formatting string changes slightly here - in essence, the type and
formats of the specifiers are used to break up the supplied string into separate arguments,
which are then placed in the provided corresponding variable arguments. When reading in
string data, note that blank characters are significant and will be retained. To strip trailing
blank characters (spaces and tabs) when reading a fixed-length string in a format, supply the
length as a negative number.

11.3.4. Specifiers

The list of allowable variable specified corresponds more or less exactly to that found in C,
with some small omissions and minor inclusions. For a full list see the reference page at
cplusplus.com or cppreference.com. The list of printf features that are not (currently)
supported in Aten are as follows:

e The pointer specifier %p is not supported. To print out reference addresses, use %1 i
e The single-character specifier $c is not supported
e Output of long doubles by prefixing a specifier with . (e.g. $Le) is not supported

11.35. Extra Specifiers Within Aten

As well as the mostly complete standard set of specifiers provided by C, Aten also includes
some other useful specifiers that may be used in formatted input and output.

Table 11-6 Extra read/write specifiers

Specifier Meaning
G* Relevant to formatted input only. Discard the next item, regardless of its type. A

285

http://www.cplusplus.com/reference/clibrary/cstdio/printf/
http://www.cppreference.com/wiki/c/io/printf

corresponding variable argument need not be provided

Read characters (starting from the next delimited argument) until the end of the
input line is encountered (i.e. ‘rest-of-line’ specifier). A corresponding string
variable should be provided

o\°
[n

11.3.6. Escaped Characters

Table 11-7 Escaped characters in format strings

\n Print newline (next character will appear on the next line)
\r Carriage return
\t Tab character

11.3.7. Delimited Reading and Writing

Formatting strings (or ‘format specifiers’) can be used to specify the layout of data items on a
line when reading or writing data, but if the data are separated by whitespace characters such
as spaces or tabs (or, alternatively, commas), such delimited data can be read in more easily.
In such cases, it is not necessary to know beforehand the number of characters taken up by
each item on the line, since the delimiters separate adjacent data items. A simplified method
for reading and writing can be employed in these cases.

Commands providing delimited reading and writing are:

Table 11-8 Delimited read/write commands

Command Function

readline Read delimited items from a source file, placing into the variables provided

readnext Read the next delimited item from a source file, placing into the variable
provided

readvar Read delimited items from a source variable, placing into the variables
provided

writeline Write the supplied items to a single line in the output file, separating them with
whitespace

writevar Write the supplied items to a supplied string variable, separating them with
whitespace

Note that all are called the same as their formatted counterparts, but minus the 'f' at the end of
the name.

Delimited Data Example

Consider this example datafile:

Na 0.0 1.0 0.0
Cl 1.0 0.0 0.0
Na 0.0 =150 0.0

286

Since the data items (element type and coordinates) are separated by whitespace, we need
only provide the target variables to the relevant command - a formatting string, as is
demanded by the print£ command, is not required. Using the readline command, the
following code will parse this data correctly:

double x,y,z;
string el;
while (!eof()) { readline(el,x,y,z); newatom(el,x,v,z); }

The variables e1, %, v, and z will, at any one time, contain the element type and coordinates
from one line of the file. In an analogous manner, the data may be written out again with the
corresponding writeline command:

for (atom i = aten.model.atoms; i; ++i) writeline(i.symbol,i,rx,i.ry,i.rz);

Each line will have the individual data items separated by a single space.

The readnext command reads in a single delimited item from a source file, preserving the
remainder of the input line for subsequent operations. If there is no data left on the current
line, a new line is read and the first delimited item is returned. The example above might be
written in a slightly clunkier form as:

double x,vy,z;
string el;
while (!eof ())
{

readnext (e
readnext (x
readnext (y
(z
el

1);
)
)i
readnext (z) ;

newatom(el,x,v,z);

For all delimited reading operations, items of data read from the line are converted
automatically into the type of the destination variable. So, the atom coordinates read in above,
which are put into doub1e-type variables, could equally well be put into string variables.
Standard C routines are used to convert data items in this way, and only some conversions
make sense. For instance, attempting to read an item which is a proper character string (such
as element symbol/name data) into a double or integer variable does not make sense. No error
message will be raised, and the variables will likely be set to a value of zero (or whatever
passes for 'zero' in the context of the type).

For all delimited writing operations, a suitable standard format specifier is chosen with which
to write out the data.

11.3.8. Unformatted Reading and Writing

TODO
287

288

12. Forcefields and Typing

12.1. Overview

If you're doing anything interesting with a model or a molecule, a suitable forcefield
description of the system is a must. A forcefield contains lists of parameters that describe the
interactions between atoms, for example bonds, angles, and van der Waals interactions. More
specifically, a forcefield contains parameters to describe many such interactions in many
different types of molecule or chemical environment. An ‘expression’, referred to throughout
the manual, should be thought of as the subset of terms from a given forcefield necessary to
describe all the interactions within a model.

Aten has its own free format for forcefield files, described in the following sections. Once
loaded in, the energy and forces in Models can then be calculated, and allows energy
minimisation etc. More so, once a set of forcefield parameters has been read in and used to
describe a model, this expression can be written out using a custom format ready for input
into something else.

12.1.1. File Format

The basic forcefield file format is designed to be as readable as possible by both machine and
user. Lines are free format, meaning that any number of tabs, commas, and spaces may
separate items. Text items should be enclosed with either double or single quotes if they
themselves contain these delimiters (in particular, this applies to NETA descriptions). There is
no terminating symbol at the end of a line, c.f. the command language where a *;’ typically
ends every command.

The majority of data is contained within blocks in the file. Blocks begin with a specific
keyword (e.g. inter), contain one or more lines of definitions, and are terminated by an ‘end’
keyword. Forcefield files may contain many blocks of the same type, permitting terms of the
same type but with differing functional forms to be defined easily.

More advanced forcefields may contain generator sections and functions that enable them to
either generate all their parameters on the fly from a basic set of data, or fill in missing terms
that are not defined in any blocks.

12.1.2. Example - SPC Water

The format is keyword-based and as simple as possible. Most input is enclosed within blocks,
beginning with a keyword and terminated after several lines of data with and 'end' statement.
As an example of the overall structure of a forcefield, consider the simple point charge (SPC)
forcefield for water as is provided with Aten:

name "SPC Water"

units kj

types

1 HW H "nbonds=1"
2 Oow) W=igl, =kl™

289

end

inter 1j

1 HW 0.41 0.0 0.0
2 oW -0.82 0.650 3.166
end

bonds constraint
HW oW 4184.0 1.000
end

angles bondconstraint
HW ow HW 4184.0 1.62398
end

After giving the forcefield a name and defining the energy units used for the parameters, the
two types of atom described by the forcefield (ow and #w) are listed. A unique id, type name,
base element, and type description are provided, providing Aten with all it needs to be able to
recognise and type these atoms within a model. For each of these types the van der Waals data
are provided in the Lennard-Jones style (inter 17)—again, the type id and type name are
specified, followed by the atomic charge and the epsilon and sigma values. Note here that
there are default combination rules set for each functional form - see VDW functional forms
for a list. Finally, the single bond and angle within the molecule are defined. The type names
involved in the interactions are given, followed by the necessary parameters for the functional
form specified (‘constraint’ for the bond, and ‘bondconstraint’ for the angle). And that's it.
Detailed explanations of each section follow. A more complete test forcefield supplied with
Aten can be found in data/ff/test. ff.

12.2. Supplied Forcefields

A handful of forcefields ready-formatted for import into Aten are provided with the code and
are listed here. It should be a relatively straightforward process to convert others, unless the
functional forms used are not yet implemented (but sure, if you ask then I will add them). If
you export an expression from Aten, please check the parameters in the file are what you
actually want. Aten is designed to ease the pain of setting up a simulation in this manner, but
is not intended as a black box.

12.2.1. Canongia-Lopes & Padua lonic Liquids (cldp-il.ff)

All-atom ionic liquids forcefield of Canongia Lopes et al. covering various cation/anion
combinations.

References

o J.N. Canongia Lopes, A. A. H. Padua, J. Phys. Chem. B, 110 (39), 19586-19592
(2006)

o J.N. Canongia Lopes, A. A. H. Padua, J. Phys. Chem. B, 108 (43), 16893-16898
(2004)

o J. N. Canongia Lopes, J. Deschamps, A. A. H. Padua, J. Phys. Chem. B, 108 (30),
11250 (2004)

o J. N. Canongia Lopes, J. Deschamps, A. A. H. Padua, J. Phys. Chem. B, 108 (6),
2038-2047 (2004)

290

12.2.2. Youngs, Kohanoff, & Del Pépolo [dmim]CI (dmimcl-fm.ff)

Force-matched model for the ionic liquid dimethylimidazolium chloride only. Integer charges
on ions.

References

o T.G.A. Youngs, J. Kohanoff, and M. G. Del Pépolo, J. Phys. Chem. B, 110 (11),
5697-5707 (2006)

12.2.3. Youngs & Hardacre [dmim]CI (dmimcl-fm2.ff)

Second force-matched model for the ionic liquid dimethylimidazolium chloride only. Non-
integer charges on ions.

References

o T.G.A. Youngs and C. Hardacre, ChemPhysChem, 9 (11), 1548-1558 (2008)

12.2.4. Jorgensen at al. OPLS-AA (oplsaa.ff)

Original OPLS-AA forcefield of Jorgensen et al. Thanks to W. Jorgensen for supplying the
parameter data.

References

o W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225-
11236 (1996).

W. L. Jorgensen and N. A. McDonald, Theochem 424, 145-155 (1998).

W. L. Jorgensen and N. A. McDonald, J. Phys. Chem. B 102, 8049-8059 (1998).

R. C. Rizzo and W. L. Jorgensen, J. Am. Chem. Soc. 121, 4827-4836 (1999).

M. L. Price, D. Ostrovsky, and W. L. Jorgensen, J. Comp. Chem. 22 (13), 1340-1352
(2001).

o E.K.Watkins and W. L. Jorgensen, J. Phys. Chem. A 105, 4118-4125 (2001).

O O O O

Note: NETA definitions have been written for a large number of types in the forcefield, but
not all.

12.25. Berensen et al. Simple Point Charge Water (spc.ff)
Rigid, simple point charge model for water
References

o H.J.C. Berendsen, J. P. M. Postma, W. F. van Gunsteren and J. Hermans, in
Intermolecular Forces, B. Pullman (ed.), Reidel, Dordrecht, 1981, p331.

12.2.6. Berensen et al. Extended Simple Point Charge Water (spce.ff)
291

Simple point charge model for water, modified to reproduce molecular dipole in the liquid
phase.

References

o J.C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem. 91, 6269-6271
(1987)

12.2.7. Rappe et al. Universal Forcefield (uff.ff)
Universal forcefield for the whole periodic table by Rappe et al.
References

o A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Ill, and W. M. Skiff, J. Am.
Chem. Soc. 114, 10024-10039 (1992)

Notes:

Generated terms should be checked by hand if forcefield expressions are exported.
Detection of some atomtypes, namely transition metals, is imperfect.

Warning: Generation of terms (especially angles) needs to undergo proper testing! If
you wish to help, please contact me.

12.2.8. Mayo, Olafson & Goddard Il's Generic Forcefield
(testing/dreiding.ff)

Universal forcefield for the whole periodic table.
References

o S.L. Mayo, B.D. Olafson, and W.A. Goddard Ill, J. Phys. Chem. 94, 8897-8909
(1990).

Notes:

o dreiding.ff currently lives in the testing/ directory since it is a rule-based forcefield and
is currently being rewritten.
Generated terms should be checked by hand if forcefield expressions are exported.
Detection of some atomtypes, namely transition metals, is imperfect.
Warning: Generation of terms (especially angles) needs to undergo proper testing! If
you wish to help, please contact me.

12.2.9. General Amber Forcefield (testing/gaff.ff)

General Amber forcefield containing precalculated terms for most intramolecular terms, and
generator section for any that are missing.

References
292

o J.Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, J. Comp. Chem.
25, 1157-1174 (2004)

Notes:

o gaff.ff currently lives in the testing/ directory since it's rule-based part has not been
implemented yet.

12.2.10. Liu, Wu & Wang's United-Atom lonic Liquids Forcefield (lww-il.ff)
United atom ionic liquids forcefield for a handful of cations and anions.
References

o X.Zhang, F. Huo, Z. Liu, W. Wang, W. Shi, and E. J. Maginn, J. Phys. Chem. B 113,

7591-7598 (2009)
o Z.Liu, X. Wu, and W. Wang, Phys. Chem. Chem. Phys. 8, 1096-1104 (2006)

12.3. Keyword Reference

12.3.1. General Keywords
General keywords are simple keywords that take single items of data as arguments.

name

Syntax:

name "name of forcefield"
Sets the name of the forcefield as it appears in the program.

For example:

name "Test Forcefield"

sets the name of the forcefield to "Test Forcefield".

units

Syntax:

units energyunit

Specifies the units of energy used for energetic forcefield parameters. Any energetic
parameters specified in the forcefield are converted from the units specified here into the
internal units of energy once loading of the forcefield has completed.

293

For example:

units kcal

indicates that any energetic values supplied in the forcefield are in kilocalories per mole.

convert

Syntax:

convert name ...

Only relevant if a data block exists, the convert keyword takes a list of parameter names
defined in the data block(s), and marks them as being (or containing) a unit of energy. When
Aten converts between energy units, these marked parameters will be converted also.

For example:

convert Dij e sep

indicates that the defined data variables Dij and e sep are energy-based and should be
converted when necessary.

12.3.2. Block Keywords

All lists of terms, types, and extraneous data are specified in the form of blocks. Each
keyword in this section marks the start of block, and must at some point be terminated by an
end keyword. Blocks contain one or more lines of data, the contents of which is detailed in
each section. In addition each keyword may take one or more (optional or required) values.

angles

Syntax:
angles form
typename 1 typename j typename k datal [dataz ...]

end

Definitions of intramolecular angle terms are given in angles blocks. Multiple angles
blocks may exist, each defining a subset of terms, and each possessing a different functional
form, specified by the formargument (see Section 13.3 for a list of valid forms).

The three typenames identify the particular angle to which the parameters are relevant. Note

that typenames given for an angle i-5-k will also match an angle k-5-1. Data parameters
should be provided in the required order for the specified form.

294

For example:

angles harmonic
HT CT HT 80.0 109.4
end

provides parameters for an H-C-H angle using the harmonic potential.

bonds

Syntax:
bonds form
typename 1 typename j datal [dataZ...]

end

Definitions of intramolecular bond terms are given in bonds blocks. Multiple bonds blocks
may exist, each defining a subset of terms, and each possessing a different functional form,
specified by the form argument (see Section 13.2 for a list of valid forms)

The two typenames identify the particular bond to which the parameters are relevant. Note
that typenames given for a bond i-7 will also match a bond j-1i. Data parameters should be
provided in the required order for the specified form.

For example:

bonds constraint
HT CT 4000.0 1.06
end

provides parameters for an H-C bond using the constraint potential.

data

Syntax:

"

data "type name,
typeid typename datal [datal ...]

end

The data block defines additional generic data for each atom type. The additional data can be
accessed through the datad, datai, and datas members of the £ fatom type.

The quoted argument supplied to the block defines the data types and names to be expected
for each specified atom type, and furthermore stricly defines the order in which they must be
given. Any of the standard simple variable types int, double, and string may be used.

295

Following the identifying typeidand typename data items are given one after the other and
in the order they are declared in the block keyword argument.

For example:

data "string dogtype, int bridge, int likespasta, double numtoes"

1 ow "redsetter" 1 0 9
2 HW "dalmation" 1 1 64
end

This defines a quartet of extra data (albeit random, odd data...) for each of the specified atom
types.

For forcefields which rely on functions to generate the necessary function data, the data
block should be used to define additional data for each atom type. For example, the GAFF
forcefield is able to generate extra intramolecular terms if the relevant definitions are not
already defined in the forcefield, and the UFF and DREIDING forcefields contain no pre-
defined intramolecular terms whatsoever.

defines

Syntax:
defines
definename "NETA string"

end

The defines block makes it possible to state commonly-used or lengthy chunks of NETA
that do not belong to any specific atom type, and which can then be reused multiple times in
many different atom type descriptions. Each definition in the block is given an identifying
unique name which allows it to be referenced with the ‘s’ symbol.

The NETA descriptions provided for each definition must be valid, or the forcefield will not
be loaded. In subsequent NETA definitions for atom types the definitions may be inserted by
stating sdefinename. For example:

defines
water oxygen.."-0(nh=2,nbonds=2)"
end

types
1 HW2 H "nbonds=1, $Swater oxygen" "Water hydrogen"
end

equivalents

Syntax:

296

equivalents
alias typename |[typename ...]

end

In forcefields, the most detailed information provided is typically the short-range
intermolecular and charge parameters, with different values (or at least different charges)
given to each individual atom type. Usually, intramolecular terms are more general and don't
depend so much on the exact atom type. For example, given a tetrahedral carbon cT and three
different aliphatic hydrogens H1, H2, and H3, the bond between the carbon and any of the
three hydrogen types will likely be the same with respect to the force constant, equilibrium
distance etc.

So, the forcefield will have to contain three intramolecular bond definitions covering cT-H1,
CT-H2, and cT-H3, each having the same parameters, right? Not necessarily. While this is
perfectly acceptable, for large forcefields the number of redundant terms may become quite
large, and even for small forcefields with only a handful of terms, adding in duplicate data
might irk the more obsessive amongst us. On these occasions, atomtype equivalents can be
defined, which effectively link a set of atomtypes to a single identifying name that can then be
used in any intramolecular parameter definitions.

In the waffle above, aliasing the three hydrogens 11, H2, and H3 to a single typename H1 can
be done as follows:

equivalents
H1 H2 H3
end

Note that the aliased name does not have to be an atomtype name already defined in a types
section.

function

Syntax:

function

type functionname (argument list)
{

}

end

The function block contains all the function definitions relevant to rule-based forcefields
(Section 1.1). The function(s) should be written in the standard command language style
(Section 8.1.1).

For example:

297

function

int generatebond (ffbound data, atom i, atom j)

{
Calculate bond potential parameters between supplied atoms i and j
data.form = "morse";
return 1;

end

defines the function to be used when generation of a bond term is required. Only functions
with certain names will be recognised and used properly by Aten. See the functions section
(12.4.1) in rule-based forcefields for more information and a list of valid function declarations
that may be made.

generator

Syntax:

generator "type name, ..."
The generator block is defunct as of code revision 1267. Use the data block instead.

inter

Syntax:
inter form
typeid typename charge datal[datal ...]

end

Intermolecular van der Waals parameters and the charge associated with each atom type
belong in the inter section. There may be multiple inter sections within the same
forcefield file, but parameters for an individual atomtype may be defined only once.

The inter keyword begins a block of intermolecular parameter definitions, and the single
argument form should specify the functional form of the intermolecular interactions
contained within. typeidand typename refer to a single type defined in a types section,
charge Is the atomic charge of this atomtype, and then follows the data describing the
interaction. The order of the values given should correspond to the order of parameters
expected for the specified functional form (see Section 13.1 for a list of valid forms and their
parameters).

For example, the Lennard-Jones potential takes two parameters — ‘epsilon’ and ‘sigma’, in
that order. For a chloride atomtype with ID 24, if ‘epsilon’ = 0.5, ‘sigma’ equals 3.0, and the
charge on the atomtype is -1 e, the corresponding entry in the inter block will be:

24 Cl -1.0 0.5 3.0

298

Some functional forms have default values for some parameters used in the functional form,
and need not be specified (if there are any, these are shown in Section 13.1). For this reason, it
IS important not to add any unnecessary extra data to the entries in the 'inter' block, since this
may overwrite a default parameter that results in literal chaos.

torsions

Syntax:
torsions form [escale vscale]
typename 1 typename j typename k typename 1 datal [dataZ...]

end

Definitions of intramolecular torsion terms are given in torsions blocks. Multiple
torsions blocks may exist, each defining a subset of terms, and each possessing a different
functional form, specified by the form argument (see Section 13.4 for a list of valid forms).
For torsions the electrostatic and VDW 1-4 interactions (i.e. those between atoms i and 1 in a
torsion i-4-k-1) are scaled by some factor between 0.0 and 1.0. The optional escale and
vscale arguments specify these scaling factors — if they are not provided, they both default
to 0.5.

The four typenames identify the particular torsion to which the parameters are relevant.
Note that typenames given for a torsion i-j-k-1 will also match a torsion 1-k-5-i. Data
parameters should be provided in the required order for the specified form.

For example:

torsions cos
HT CT OC HO 3.0 5.0 0.0
end

provides parameters for an H-c-0-H torsion using the cosine potential.

torsions cos3 0.8333333 0.25
CT CT CT O1 1.0 -2.0 0.
CT CT CT O2 0.5 -1.4 1.
end

0
0

defines two c-c-c-o0 torsions of the triple cosine form, and with custom scale factors.

types

Syntax:
types

typeid typename element NETA [description]

299

end

The core of the forcefield file is the types section, listing the ids, names, and elements of the
different atom types present in the forcefield, as well as a description telling Aten how to
recognise them.

The typeidis an integer number used to identify the type. It should be positive, and must be
unique amongst all those defined in a single forcefield. typename is the actual name of the
atom type (ow, C1, N_ar etc.), and is referred to in the other sections of the forcefield file, and
element is the type’s element symbol as found in the periodic table (o, ¢, N, etc.). The string
NETA defines how Aten should recognise this particular type (in quotes if necessary),
optionally followed by a short text description of the type (which appears in lists within
the program to help identify particular types). Atom types may be defined over multiple
types blocks within the same file if necessary, but while more than one types block may
exist, but all type IDs must be unique over all such blocks.

For example:

types
35 CT C "nbonds=4" "Simple tetrahedral carbon"
end

describes a bog-standard tetrahedral carbon called cT, and assigns it an 1D of 35.

uatypes

Syntax:
uatypes
typeid typename element mass NETA [description]

end

The uatypes section contains exactly the same information as the types block except that a
mass must also be provided. In the types block it is assumed that the character element of
the type also implicitly defines the mass (as would be expected). In the case of united-atom
forcefields, this is not necessarily the case. Thus, the uatypes block allows a mass to be
associated in order to account for the light atoms subsumed into the heavy atom’s mass. This
information can be accesses through the mass member of the £ fatom variable type.

For example:

uatypes
10 CH2 C 14.0265 '"nbonds=2,nh=0" "United atom methylene carbon"
end

describes a united-atom methylene carbon, with mass of 14.0265 (C+2H).

ureybradleys

300

Syntax:
ureybradleys form
XXXX

end

12.3.3. Wildcards

In any of the typenames given in the specification of intramolecular interactions, a wildcard
character ‘*” may be used to ‘finish off’ any or all of the typenames (or replace individual
typenames entirely). In doing so, a single definition is able to match more than one set of
typenames.

For example:

bonds harmonic
CT H* 4184.0 1.06
end

will describe bonds between cT and any other atom beginning with an H.

Using a * on its own will match any typename in that position. As an extreme example:

angles harmonic
& & & 418.4 109.4
end

will match any angle. Be careful - when Aten is creating expressions and searching for
specific interactions between atom types, as soon as an intramolecular definition is found that
matches it is used, and no further searching is done. So, loose definitions involving wildcards
should be put near to the end of the block in which they occur.

301

12.4. Rule-Based Forcefields

Forcefields exist where individual intramolecular parameter definitions (i.e. those provided by
the bonds, angles, and torsions blocks) are not necessary. Instead, such parameters are
constructed as and when necessary using a set of parameters that depend only on the
atomtypes involved. These forcefields are so-called ‘rule-based’, and are often able to
describe enormously varied systems from a small set of defining parameters.

Rule-based forcefields are defined in exactly the same way as normal forcefields, save for the
lack of blocks that define intramolecular terms. Instead, the per-atomtype parameters must be
provided instead, and for all atomtypes defined in the types section(s). This generator data is
then used by the equations defined within the code to construct the necessary intramolecular
terms when required. One or more data blocks should be used to define this data for each
atomtype.

12.4.1. Functions

In a rule-based forcefield all the useful function declarations which calculate the correct
parameters (usually from values supplied in a data block) must be made within a single
function block in the forcefield file. When calling the functions, Aten provides the
necessary structure in which the generated parameters should be stores. In the case of the
VDW-generating function, the actual atomtype structure which is missing the data is passed
(see the ffatom variable type). In the case of intramolecular interactions, Aten creates and
passes a new, empty f fbound container in which the functional form of the interaction and
the relevant data values should be set. A number of £ fatom references are also provided,
corresponding to the atom types involved in the bound interaction, and from which the
necessary data values may be retrieved using the relevant data accessors. For bound
interactions it is not necessary to set the equivalent names of the involved atom types since
this is done automatically.

The recognised function names and their arguments are as follows:

anglegenerator

Syntax:

int anglegenerator (ffbound newdata, atom i, atom 7, atom k)

Called whenever function data for an unrecognised angle (between the atom types currently
assigned to atoms i, 7, and k) is needed. Generated parameters should be store in the passed

newdata structure

bondgenerator

Syntax:

302

int bondgenerator (ffbound newdata, atom i, atom 7)

Called whenever function data for an unrecognised bond (between the atom types currently
assigned to atoms i and 7) is needed. Generated parameters should be store in the passed
newdata Structure

torsiongenerator

Syntax:

int torsiongenerator (ffbound newdata, atom i, atom 7, atom k, atom
1)

Called whenever function data for an unrecognised torsion (between the atom types currently
assigned to atoms i, 7, k, and 1) is needed. Generated parameters should be store in the
passed newdata structure

vdwgenerator

Syntax:

int vdwgenerator (ffatom data)

Called whenever descriptive VDW data is missing from an atom type (which is passed into
the function and should have the correct data placed in it)

303

12.5. Typing

We are all familiar with talking about atoms being chemically different depending on the
functional group in which they exist - e.g. ether, carbonyl, and alcoholic oxygens - and this
categorisation of atoms forms basis of forcefield writing. That is, a large number of different
molecules and types of molecule should be described by a small set of different atoms, i.e.
atom types. At the simplest level, the connectivity of an atom is enough to uniquely identify
its specific type.

Some methods to use this information to uniquely assign types to atomic centres involve
deriving a unique integer from the local connectivity of the atom (e.g. the SATIS method REF
XXX), but including information beyond second neighbours is rather impractical. Others use
a typing 'language’ to describe individual elements of the topology of atoms in molecules, and
are flexible enough to be able to describe complex situations in a more satisfactory way (e.g.
that employed in Vega ref XXX). Aten uses the latter style and provides a clear, powerful,
and chemically-intuitive way of describing atom types in, most importantly, a readable and
easily comprehended style.

Type descriptions are used primarily for assigning forcefield types, but also make for an
extremely useful way to select specific atoms as well.

12.5.1. Language Examples

Type descriptions in Aten use connectivity to other atoms as a basis, extending easily to rings
(and the constituent atoms), lists of allowable elements in certain connections, atom
hybridicities, and local atom geometries. Descriptions can be nested to arbitrary depth since
the algorithm is recursive, and may be re-used in other atom's type descriptions to simplify
their identification. Time to jump straight in with some examples. Note that these examples
only serve to illustrate the concepts of describing chemical environment at different levels.
They may not provide the most elegant descriptions to the problem at hand, don't take
advantage of reusing types (see Section 12.5.4), and certainly aren’t the only ways of writing
the descriptions.

Example 1 - Water

o
Hff RMH

Consider a water molecule. If you were describing it in terms of its structure to someone who
understands the concept of atoms and bonds, but has no idea what the water molecule looks
like, you might say:

A water molecule contains an oxygen that is connected two hydrogen atoms by
single bonds

..oreven...

304

It's an oxygen atom with two hydrogens on it

Given this degree-level knowledge, to describe the individual oxygen and hydrogen atoms in
the grand scheme of the water molecule exactly, you might say:

A 'water oxygen' is an oxygen atom that is connected to two hydrogen atoms
through single bonds

...and...

A 'water hydrogen' is a hydrogen that is connected by a single bond to an oxygen
atom that itself is connected by a single bond to another (different) hydrogen
atom

The extra information regarding the second hydrogen is necessary because otherwise we
could apply the description of the 'water hydrogen' to the hydrogen in any alcohol group as
well. Similarly, we might mistake the oxygen in the hydroxonium ion [Hz0]" as being a
‘water oxygen’, when in fact it is quite different. In this case, we could extend the description
to:

A 'water oxygen' is an oxygen atom that is connected to two hydrogen atoms
through single bonds, and nothing else

An atom description in Aten is a string of comma-separated commands that describe this kind
of information. So, to tell the program how to recognise a water oxygen and a water
hydrogen, we could use the following type descriptions (written in the proper forcefield input
style for the types block:

1 ow 0 "nbonds=2, -H, -H" # Water oxygen
2 HW H "-0 (nbonds=2,-H,-H)" # Water hydrogen

Aten now recognises that a water oxygen (ow) is ‘an oxygen atom that has exactly two bonds
& is bound to a hydrogen & is bound to another hydrogen’. Similarly, a water hydrogen (Hw)
is ‘a hydrogen bound to an oxygen atom that; has two bonds to it, and is bound to a
hydrogen, and is bound to another hydrogen’. In the type descriptions above the dash ‘- is
short-hand for saying ‘is bound to’, while the bracketed part after ‘-0’ in the water hydrogen
description describes the required local environment of the attached oxygen. Using brackets to
describe more fully the attached atoms is a crucial part of atom typing, and may be used to
arbitrary depth (so, for example, we could add a bracketed description to the hydrogen atoms
as well, if there was anything left to describe). If necessary, descriptions can be written that
uniquely describe every single atom in a complex molecule by specifying completely all other
connections within the molecule. This should not be needed for normal use, however, and
short descriptions of atom environment up to first or second neighbours will usually suffice.

305

Example 2 - 3-hydroxypropanoic acid

Assuming that the OH group in the carboxylic acid functionalisation will have different
forcefield parameters to the primary alcohol at the other end of the molecule, here we must
describe the first and second neighbours of the oxygen atoms to differentiate them.

To begin, we can describe the carbon atoms as either two or three different types — either
methylene/carboxylic acid, or carboxylic acid/adjacent to a carboxylic acid/adjacent to
alcohol. For both, we only need describe the first neighbours of the atoms. For the first:

3 C(H2) C "nbonds=4,-H,-H,-C" # Methylene Carbon
4 C cbx C "nbonds=3, -0 (bond=double) , -0, -C" # Carboxylic Acid C

Note the ordering of the oxygen connections for the carboxylic acid carbon, where the most
qualified carbon is listed first. This is to stop the doubly-bound oxygen being used to match -
0, subsequently preventing a successful match. This is a general lesson — bound atoms with
the most descriptive terms should appear at the beginning of the type description (as it is read
left-to-right) and those with the least left until the end.

Where all three carbons need to be identified separately, we may write:

5 C(OH) C "nbonds=4,-H,-H,-C,-0" # CH2 adjacent to OH
6 C (COOH) C "nbonds=4,-H,-H,-C,-C" # CH2 adjacent to COOH
7 C cbx C "nbonds=3, -0 (bond=double) , -0, -C" # Carboxylic Acid C

Let us now assume that the hydrogens within the alcohol and carboxylic acid groups must
also be seen as different types. In this case, the second neighbours of the atoms must be
considered:

8 HO H "-O(-C(-H,-H))" # Alcoholic H
9 H cbx H "-0(-C (-0 (bond=double)))" # Carboxylic acid H

The assignment is thus based entirely on the nature of the carbon atom to which the OH group
is bound since this is the next available source of connectivity information. The determination
of the three different oxygen atoms is similar:

10 OH 0 "-H,-C(-H,-H)" # Alcoholic O
11 O cbx O "-C(-O(-H))" # Carboxylic acid =0
12 OH cbx O "-H, -C (-0 (bond=double))" # Carboxylic acid O(H)

Of course, we could just have specified nbonds=1 for the doubly-bound oxygen of the
carboxylic acid group, but this ‘hides’ information as to the true connectivity of the atom.

306

Example 3 - N,N,2,5-tetramethylpyridin-4-amine

At last, a proper problem - an asymmetric substituted pyridine. Lets assume that we need to
distinguish between every non-hydrogen atom — we’ll skip describing the hydrogen atoms for
now, but note that this is most easily achieved by specifying directly the atomtype that the H
is bound to (see later on). Let’s start with the pyridine nitrogen. We basically need to say that
its in a 6-membered aromatic ring:

13 N py N "ring(size=6,aromatic)" # Pyridine N

TODO

12.5.2. Description Depth

Many subtleties related to the form of type descriptions are perhaps evident from the
examples given above. It is useful to think of type descriptions as having many different
‘depths’, loosely corresponding to the number of bonds followed away from a central atom
(the target atom, or the one currently being tested against the type description). The target
atom of the type description is the root of the description since all connections are defined
relative to this atom. A type description requiring specific connections to this target atom is
using the target atom’s bonds in order to identify it - atoms to a depth of 1 bond are being
used to describe the atom. If these bound atoms are in turn described by their bound
neighbours then atoms to a depth of two bonds are being used.

For example:

Table 12-1 NETA Descript Depth Examples

Example Description Effective Depth

nbonds=4 Zero - contains specifications relevant to the root atom
only

nbonds=4, -H, -C 1 - root commands and first bound neighbours

nbonds=4, -H,-C(-H(n=3)) 2 -root commands, first and second bound neighbours

Any depth of description can be handled by Aten, becoming as complex as is necessary to
uniquely identify the target atom.

12.5.3. Type Scores

307

In a forcefield with many defined types, more than one type may match an atom in a
molecule. In order to best assign types to atoms, Aten scores each type description according
to the number of terms defined within it, one point for each term satisfied. Once a matching
type for an atom is located in the forcefield it is assigned to that atom, but the search for a
better-scoring type continues. If a match with a higher score is found it replaces the
previously-assigned type. If a match with the same score is found, the previous type is not
replaced.

Non-Matching Types (Score = -1)

When a type description is tested for a given atom, it accumulates points for each term in the
description that is satisfied by the environment of the atom. As soon as a term is found that is
not satisfied, however, the score is reset to -1 and the match will fail. All terms in a type
description must be satisfied in order for the type to be assigned to an atom.

Empty Types (Score = 1)

A type description containing no terms has a maximum score of 1 (coming from a match of
the element type). Hence:

99 Cgen C " # Generic carbon

matches any carbon in any system, but will be replaced fairly easily by other types since it has
such a low score.

Normal Types (Score > 1)
For a type in which all terms are matched successfully, one point is scored for each individual

term. All of the following types have a potential maximum score of 3 (don't forget, one point
comes from matching the element):

100 C1l C "nbonds=2, linear" # Carbon A
101 Cc2 C "-c,-Cc" # Carbon B
102 Cc3 C "-C(n=2)" # Carbon C
102 c4 C "=C" # Carbon D

Moreover, they all potentially match the same atom (for example the central carbon in 1,2-
propadiene). Since they have the same score, the first type c1 will match and persist over the
other three, since only types with higher (not equivalent) scores can replace it.

12.5.4. Reusing Types

Once a complex NETA definition has been made for a given atom type, it is often useful to be
able to reference this type in order to save repeating the same description for a closely-bound
atom. The ampersand symbol allows you to do this, and specifies an integer type id to match
rather than an element. As an example, consider the following definitions for trifluoroethanol
from the OPLS-AA forcefield where the environment for each atom is described in full for
each type:

308

160
161
162
163
164
165

CT
CT
OH
HO

HC

oI O QO

"_HI_HI O(

V=il =C (ma=2, =C (=
V=@ (= (nh 2 —C(

"~C(~F (n=

H),

"-C(nh=2, —o<

_C(
"-F(n=3),-C(nh=2, —O(H
3)
)

F(n 3)
(nh 2,-0(-H

()"

3)
))
))"
)"

C(-F(n=3

))
))

"CH2 in trifluoroethanol"
"CF3 in trifluoroethanol"
"OH in trifluoroethanol"
"HO in trifluoroethanol"
"F in trifluoroethanol"
"H in trifluoroethanol"

For each atom type, the whole of the trifluoroethanol molecule is described, but each type
tends to share a common chunk of NETA definitions with the other types. As an alternative,
then, we can define one or two of the involved types explicitly as above, and then specify the
rest of the types relative to this one:

160
161
162
163
164
165

CT
CT
OH
HO

HC

OO Ne!

"_Hr -H, -0 (
"-§160"
"-§160"

"-0(-&160) "
"-C(-5&160)"

"-5160"

_H) ’

=€ (

-F(n=3))"

"CH2 in trifluoroethanol"
"CF3 in trifluoroethanol"
"OH in trifluoroethanol"
"HO in trifluoroethanol"
"F in trifluoroethanol"
"H in trifluoroethanol"

Much neater! Or should that be ‘not much NETA’? Hmmm. Anyway, reusing types in this
way is a powerful way to reduce the complexity of type descriptions required for a given
molecule or fragment. Typically it is advisable to pick an atom that is fairly central to the
molecule and bears a lot of connections, and provide an unambiguous type description.

309

12.6. NETA Reference

This section lists all the available commands that may make up a type description. Many
keywords only make sense within the bracketed parts of keywords that expand the depth of
the description. For instance, it is meaningless to specify the connection type with the bond
keyword in the root of a typing command since no connections are relevant at this point.

~X (any bond to X)

~X specifies that a connection to x must exist, but makes no demand of the type (bond order)
of the connection. x may be an element symbol, an id for another type specifier, or a list in
square brackets containing one or both of these to allow more flexible specifications.
Specifying an unknown connection with ~X is often useful in, for example, aromatic rings or
conjugated systems where the connection might be either a double or single bond.

Table 12-2 NETA ‘~X’ Keyword Examples

Command Meaning

~C Any bond to a carbon atom

~&101 Any bond to an atom which matches type ID 101 (see Reusing Types in section
12.5.4)

~[N, S, P] Any connection to either nitrogen, sulfur, or phosphorous

'~0 Explicitly states that there should not be a bond to an oxygen atom

—X (single bond to X)

-x specifies that a single bond to x must exist. x may be either an element symbol, an id for
another type specifier, or a list containing one or both of these to allow more flexible
specifications. If used inside the bracketed part of a ring description this only indicates that
the atom/type should be present within the cycle — the connection to the target atom is
unimportant. If used in a chain keyword the connection type is honoured.

Table 12-3 NETA ‘X’ Keyword Examples

-H A single bond to a hydrogen atom

-&120 A single bond to an atom which matches type ID 120 (see Reusing
Types in section 12.5.4)

-[C,N] A single bond to either a carbon or a nitrogen

-[F,Cl,Br, I,At] A single bond to any halogen atom

-[&10,&11,&18,-Kr] Asingle bond to an atom with type ID 10, 11, or 18, or a krypton
atom

=X (double bond to X)

310

=X specifies that a double bond to x must exist. Equivalent to writing ~X (bond=double) . X
may be either an element symbol, an id for another type specifier, or a list containing one or
both of these to allow more flexible specifications. If used inside the bracketed part of a ring
description this only indicates that the atom/type should be present within the cycle — the
connection to the target atom is unimportant. If used in a chain keyword the connection type
is honoured.

Table 12-4 NETA =X’ Keyword Examples

Command Meaning

=0 A double bond to an oxygen atom

=&4 A double bond to an atom which matches type ID 4 (see Reusing Types in
section 12.5.4)

bond

The bond keyword defines the specific type of the connection (see Bond Types in Section
16.2) required for a bound atom. The keyword should be used inside bracketed parts of bound
atom descriptions. It is important to note that the bond keyword should only be used in
conjunction with the ~x (any bond to) specifier, since the specific connection demanded by
the -x and =x specifiers will override any bond declarations.

Table 12-5 NETA 'bond*' Keyword Examples

Command Meaning

~0 (bond=double) A double bond to an oxygen atom (equivalent to =0)

~&55 (bond=triple) A triple bond to an atom which matches type ID 55 (see Reusing
Types in section 12.5.4)

~C (bond=single) A single bond to a carbon atom (a very explicit way of writing
simply -c)

chain

The chain command provides an easy was of specifying a linear sequence of atoms from the
current atom forward. Within the bracketed part, a sequence of connections are listed in the
order in which they are to appear. Atoms in the chain are specified in the same way as other
connections (e.g. -C (nbonds=2)) but should not be separated by commas. The repeat
keyword n may also be specified at some point in the bracketed part to define that more than
one of the defined chains is required. Note that, if all atoms specified for the chain are
matched, but the actual chain in the model is longer, a positive match will be returned. Thus,
it is usually a good idea to define the last atom in the chain more explicitly to prevent false
matches.

Table 12-6 NETA ‘chain’ Keyword Examples

Command Meaning
chain (-C-C-C-C) Specifies a (minimum) four-carbon chain of any

311

degree of saturation
chain (-C(nh=2) -C (nh=2) - Explicity specifies an all-atom butyl chain
C(nh=2) -C (nh=3))

The n keyword, when placed in the bracketed parts of bound atom, ring, and chain
descriptions requires that they are matched a number of times rather than just once.

Table 12-7 NETA ‘n’ Keyword Examples

-C(n=4,-H(n=3)) Describes the central carbon in neopentane (2,2-
dimethylpropane) which is bound to four methyl
groups

ring(size=4,n=3) Specifies that the target atom should be present

in three unique four-membered rings
chain (-C-C-C~N(bond=triple),n=4) Requests that the atom has four cyanoethyl
groups hanging off it

nbonds

nbonds specifies the exact number of connections that an atom must possess.

Table 12-8 NETA “nbonds’ Keyword Examples

Command Meaning

nbonds=2 Demand that the atom has exactly two connections

~N (nbonds=1) Describes a nitrogen with only one bond, perhaps an spl nitrogen with a
triple bond

nh

The nh keyword is shorthand for explicitly specifying the number of attached hydrogens to
the target atom or a bound atom. It is equivalent to stating -H (n=m) .

Table 12-9 NETA “nh’> Keyword Examples

Command Meaning
-C(nh=2) Atom is bound to a methylene carbon with exactly two hydrogens on it

aromatic

312

aromatic indicates either that an atom must be present in an aromatic environment (e.g. in
an aromatic ring), or that a ring should itself be aromatic.

Table 12-10 NETA ‘aromatic’ Keyword Examples

Command Meaning

~N (aromatic) Specifies a nitrogen connected by any bond which is present in an
aromatic environment

-C(ring (aromatic)) Single bond to a carbon atom which is in an aromatic ring

noring

noring indicates that the atom must not be present in any rings.

Table 12-11 NETA ‘noring’ Keyword Examples

Command Meaning
-0 (noring) Single bond to an oxygen which is not present in a ring
planar

The planar keyword specifies that the atom target should be planar, which is to say no bond
from the atom may be more than 15° out of the plane formed by the first two bonds to the
atom)

Table 12-12 NETA ‘planar’ Keyword Examples

Command Meaning
-C(planar) Single bond to a carbon atom which is roughly planar
ring

ring denotes that the target atom (if specified in the root of the description) or a bound atom
(if used inside the associated bracketed part) should be present in a ring structure of some
kind. The ring keyword alone simply demands that the atom is present inside a ring of some
size, but may take an optional bracketed part describing more fully the number of atoms in the
ring, and the individual nature of each of these atoms. Within the bracketed part, bound atoms
may be specified as usual in the contained neta, but the connection type is irrelevant as it is
only the presence of those particular atoms within the ring that is considered important.

Bound atom descriptions given inside the bracketed part should again be listed in order of

decreasing complexity. Multiple rings may be specified with separate ring keywords,
allowing the location of fused ring atoms.

313

Table 12-13 NETA ‘ring’ Keyword Examples

Command Meaning
ring(size=6,~C(n=6),aromatic) Benzene-style carbon
-C(ring(size=6,-C(n=6,nh=2))) Carbon atom in cyclohexane
size

Only relevant in the bracketed part of a ring keyword, size requests the exact number of
atoms comprising the cycle. Note that this may be used independently of the implicit size
suggested by the number of atom descriptions supplied, or in conjunction with a partial list of
atoms.

Table 12-14 NETA ‘size’ Keyword Examples

Command Meaning
ring(size=7) Specifies a 7-membered ring

12.6.1. Geometries

These keywords requests that the target atom (if specified in the root of the type description)
or a bound atom (if used inside the associated bracketed part) should possess a certain
physical geometry in terms of its connections. The number of bonds to the target atom and the
angles between them are used to determine the geometry.

Note that, for some geometry types, there are several ways for the atom to have this geometry.

unbound

An unbound atom, i.e. one with zero bonds to other atoms. Only makes sense when used in
the root of a type description.

onebond

onebond requests that the atom has exactly one bond (of any type).

linear

Two bonds to the atom in a 1inear arrangement (angle i-5-k > 170°).

tshape

Three bonds to the atom in a tshape geometry (with two bonds making an angle > 170°).

trigonal

314

Three bonds in a trigonal planar arrangement, with the largest of the three angles between
115 and 125°.

tetrahedral

tetrahedral geometries are possible for atoms with; exactly two bonds making an angle
between 100 and 115°; exactly three bonds with the largest of the angles between 100 and
115°, and; exactly four bonds to the atom, with the average of the angles laying between 100
and 115°.

sqplanar

Four bonds to the atom in a square planar (sqplanar) arrangement, with the average of the
angles laying between 115 and 125°.

tbp

Five bonds to the atom are assumed to be trigonal bipyramidal (tbp) geometry.

octahedral

Six bonds to the atom are assumed to be in an octahedral arrangement.

315

13. Functional Forms

All forcefield term functional forms are listed in the following sections, along with their

parameters (default values for which follow in brackets, if they exist).

13.1. VDW Functional Forms

Table 13-1 VDW Functional Forms

Name
Lennard-Jones 12-6

Lennard-Jones 12-6
(Geometric rules)
Inverse Power

Lennard-Jones AB

UFF Lennard-Jones
12-6

Buckingham exp6

Morse

Keyword
13

ljgeom

inversepower

1jab

uffly

buck

morse

Form
Uij=4€e((or)l12-or
6)
Uij=4€e((or)l12-or
6)

Uij=€e(rrij)n

Uij=Ar12-Br6

Uij=Dij((or)12-n
ore6)

Uij=A(-rijB)-Crij
6

Uij=EO0((1l-exp(-k
(rij-r0)))2-1)

Param

(1.0)

xow}:qgw}:*mqmqm
’-'N\ —
(=]
~

r0
EO

Rule
Geom
Arith
Geom
Geom
Geom
Arith
Arith
Geom
Geom
Geom
Geom
Arith
Geom
Geom
Geom
Geom
Arith
Geom

! Combination rule used to generate cross-terms — either Geometric or Arithmetic.

316

13.2. Bond Functional Forms

Table 13-2 Bond Functional Forms

Name Keyword Form Param
Ignore ignore
Constraint constraint Uij=k2(r-r0)2 k

ro
Harmonic harmonic Uij=k2(r-r0)2 k

ro
Morse morse Uij=EO((Ll-exp(-B(rij-r0)))2) B

ro

EO

317

13.3. Angle Functional Forms

Name
Ignore
Harmonic

Cosine

Double Cosine

Harmonic Cosine

Constraint (1-3 Bond)

Table 13-3 Angle Functional Forms

Keyword
ignore
harmonic

COs

cos?2

harmcos

bondconstr
aint

Form
Uij=k2(6-600)2

Uik=k(1+scos(nb-00))

Uijk=k(CO0+Clcos(0)+C2
cos(20))

Uij=k2(cos(0)-cos(060)2

Uij=k2(r-r0)2

Param
00
00
s (1.0)
CO
C1
C2

00

ro

318

13.4. Torsion Functional Forms

Name
Cosine

Triple Cosine

Quadruple
Cosine

Triple Cosine
+ Constant

Cosine
Product

Dreiding
Cosine

Keyword

COs

cos3

cos4

cos3c

COSCOS

dreiding

Table 13-4 Torsion Functional Forms

Form Param
Up=k(l+scos(np-@eq)) E
Peq
s (1.0)
Up=12[k1(l+cos(p))+k2(1l-cos(2®) :g
)+k3(1+cos(3@))] k3
Up=12[k1l(Ll+cos(®))+k2(1-cos(2) t;
)+k3(1l+cos(3@))+kd(1l-cos(4®))] K3
k4
Up=k0+12[k1(1+cos(q))+k2(1-cos(E‘i
2))+k3(1l+cos(3®))] K2
k3
Up=12k(1l-cos(neeq)cos(ny)) E
Peq
U@=12k(1-cos(n(®-peq))))
Peq

319

14. External Programs

TODO
14.1. Movie Generation

14.2. MOPAC

320

15. Methods

Some things in Aten are implemented from existing routines and algorithms. Some have been
written from scratch, even when existing algorithms were available, either as an attempt to
improve those existing algorithms or simply to learn more by working out how best to go
about solving a given problem. A selection of algorithms are detailed in the following pages,
grouped into those that were re-used from the literature, and those that were written
specifically for Aten.

It should be pointed out that, in the eventuality that somebody notices that one of Aten’s
‘custom’ algorithms is actually a reproduction of an existing method, then fair enough - send
me the reference and I'll be happy to move it to the proper section.

15.1. Custom Algorithms

15.1.1. NETA

NETA stands for the Nested English Typing Algorithm — a fairly dull acronym, all said and
done, but with the advantage that it is ‘Aten’ backwards. NETA is an attempt to provide a
descriptive atom typing language that is:

e Easily readable
e Easily written from a small subset of keywords
e Recursive and able to describe complex molecules

It's closest relative that I'm aware of in the literature is the ATDL as implemented in Vega-
ZZ,[[1] but was (genuinely) conceived without prior knowledge of that system. NETA tries to
keep the language simple enough that it can almost be read aloud an make sense, given one or
two special syntactic tokens, rather than needlessly use numerical codes and spurious symbols
to signify certain quantities or create an ultra-compact language. The former destroys
readability and the latter promotes convolution, neither of which help when trying to interpret
old rules or write new ones. So, for the most part NETA is keyword-based, with a limited
number of fairly 'natural’ symbols employed to denote common terms.

Typing begins from a provided set of atoms and bonds (i.e. the chemical graph). The
connectivity between atoms must be 'set’ prior to typing, either by automatic calculation of
bonds based on distance criteria, manually adding them by hand, or reading them from the
input model file. The typing algorithm itself makes no additions or changes to the
connectivity of the input structure.

NETA requires a knowledge of species/molecule types in the model is required. For single
molecule systems there is 1 distinct molecule (species) and 1 occurrence of it. For condensed
phases, e.g. liquids, there are 1 or more species each with many copies of the molecule. In the
interests of efficiency for the following routines, Aten attempts to generate a valid pattern
description of the system if one is not present already. This essentially picks out the individual
species and the number of molecules of each, and permits the typing routines to consider only
one molecule of each species when determining atom types etc. The assumption here is that,

321

since all molecules in a given species will have the same chemical graph, atom types can be
worked out for a single molecule and then duplicated on all of the others.

Following detection of a suitable pattern description, several tasks are then performed:
Cycle Detection

Firstly, any cyclic structures within a single molecule are detected up to a maximum
(adjustable) ring size. This is achieved from a series of simple recursive searches beginning
from each atom with more than one bond. A sequence of 'walks' along bonds are made in
order to form a path of some specified length (i.e. ring size). If the final atom in this path
shares a bond with the starting atom, a cycle has been found. If not, the final atom is removed
and replaced with another. If there are no more atoms to try in this final position, the
preceeding atom in the path is removed and replaced with another, and so on. Each unique
ring (its size and pointers to the sequence of constituent atoms) is stored in the pattern.

Assignment of Atom Environment

From the list of bound neighbours, each atom is assigned a simple hybridicity based on the
character of the bonds it is involved in, mainly used for the determination of aromatic cycles
in the next step.

Ring Types

Once atom hybridicities have been assigned, ring types can be determined. Rings are classed
as either aliphatic, aromatic, or non-aromatic (i.e. a mix of resonant and aliphatic bonds that is
not itself aromatic.

Now, working only with the representative molecule of each pattern, associated (or current)
forcefield(s) are searched for types that match the contained atoms. Each NETA description
whose character element is the same as a given atom is tested, and a score is obtained. If this
score is non-zero and positive then the atomtype is a match and is assigned to the atom if it
has no previous type, or if the score is higher than the previous one. See atom type scoring in
Section 12.5.3 for more information.

[1] Pedretti, A.; Villa, L.; Vistoli, G. "Theoretical Chemistry Accounts”, 109, 229-232 (2003).

15.1.2. Augment

Augmentation of bonds, as far as Aten is concerned, means to take a collection of atoms with
basic connectivity (i.e. all single bonds, as per the result of rebonding) and assign multiple
bonds where necessary. The method is based loosely on previously described algorithms.[1]

The basis of the method involves modifying the bond order of a particular connection to best
satisfy the bonding requirements of the two involved atoms, for example making sure all
carbon atoms possess an optimal total bond order of 4. However, many atoms (in particular S
and P) happily exist with more than one total bond order (e.g. P) - the methodology borrowed
from [1] solves this problem by scoring the total bond order for each particular element
ranging from zero (meaning ‘natural’ or ‘no penalty’) to some positive number. The higher
the positive number, the more ‘unhappy’ the element is with this number of bonds. For
example, hydrogen atoms score O for a total bond order of 1, a small positive number (2) for

322

no bonds (hydrogen ion) and a very large positive value (here, 32) for any other bond order.
In this way we penalise the total bond orders that an atom does not naturally take on, and
always tend towards the lowest score (i.e. the natural total bond order) wherever possible.
When modifying the bond order of a particular connection, the total bond order scores of both
atoms are calculated once for the current connection and again for the potential new bond
order of the connection. If the new score is lower, the change of bond order is accepted.

Pattern Detection

As with many other routines in Aten, a suitable pattern description is first detected for the
system in order to isolate individual molecular species and make the algorithm as efficient as
possible.

Augmentation of Terminal Bonds

Bonds that involve a heavy (i.e. non-hydrogen) atom connected to no other atoms (e.g. C=0
in a ketone) are treated before all others. The bond order is modified such that the total bond
order score for both atoms is as low as possible.

Augmentation of Other Bonds

Following optimisation of terminal bonds, all other bonds are modified using exactly the same
procedure.

Second Stage Augmentation

The above two steps are enough to correctly determine multiple bonds in a chemically-correct
molecule, provided no cyclic moities are present in the system. The second stage is designed
to correct improper augmentations within cycles, or shift existing augmentations around
cycles such that other (missing) multiple bonds may be created.

For each existing multiple bond in each cyclic structure in each pattern's molecule, a simple
re-augmentation of the constituent bonds is first attempted in order to try and lower the total
bond order score for the whole ring (i.e. the sum of the individual bond order scores of every
atom present in the cycle). Then, each bond in the ring is considered in sequence. If the bond
is a double bond, then we attempt to convert this into a single bond and make the two adjacent
bonds in the ring double bonds in an attempt to ‘aromaticise' the ring. The total bond order
score is checked and, if lower than the previous score, the change is accepted. If not, the
change is reversed and the next bond is considered. By performing these secondary
adjustments the double-bond pattern of many complex (poly)aromatics can be correctly (and
fully automatically) detected.

[1] "Automatic atom type and bond type perception in molecular mechanical calculations”, J.

Wang, W. Wang, P. A. Kollman, and D. A. Case, "Journal of Molecular Graphics and
Modelling", 25 (2), 247-260 (2006).

15.1.3. Autoellipsoids

TODO

323

15.1.4. Autopolyhedra

TODO

15.1.5. Rebond

The most common means of determining connectivity between a collection of atoms is based
on simple check of the actual distance between two atoms and the sum of their assigned radii:

{img align="center" src=show_image.php?id=116}

The two "sigma"s represent the radii of atoms i and j which have coordinates "xi", "yi", "zi"
and "xj", "yj", "zj". The parameter "alpha" is an adjustable tolerance value to enable fine-
tuning, and using Aten's set of built-in radii[[1] usually lays between 1.0 and 2.0. For
molecules or periodic systems of modest size the method can be used as is, but for large

systems of many atoms the use of a double loop over atoms results in a very slow algorithm.

Aten overcomes this slowdown for larger systems by partitioning the system up into a series
of overlapping "cuboids". For a system of N particles in a periodic box (or an isolated system
with an orthorhombic pseudo-box determined by the extreme positions of atoms), the volume
is partitioned into a number of subvolumes of some minimum size in each direction. The
minimum size of any one of the subvolume's dimensions is chosen relative to the maximum
bond length possible given the largest elemental radius and the current bond tolerance "alpha”.
A single loop over atoms is then performed to associate them to these subvolumes. Each atom
belongs to at least one cuboid, determined by its absolute position in the system, and
commonly belongs to one other cuboid, determined by adding half of the cuboids dimensions
on to the atoms position. While a little counterintuitive, potentially adding atoms to a
neighbouring cuboid along this diagonal vector allows the final calculation of distances
between pairs of atoms to consider only eight 'neighbouring’ (more correctly ‘overlapping’)
subvolumes rather than the 26 needed if each atom belongs exclusively to only one cuboid.
For atoms that exist in subvolumes along the edges of the whole volume, these are also added
to the subvolume(s) on the opposite side(s) to account for minimum image effects in periodic
systems.

Once the effort has been made to assign atoms to cuboids, the final loops to calculate
distances runs over a much reduced subset of atom pairs owing to the partitioning. A loop
over cuboids is performed, first considering all atom pairs within the same cuboid, and then
extending this to consider distances between a particular atom of this central cuboid and its
eight 'overlapping' neighbours.

There is some redundancy of atom pairs since the same pair may be considered twice when
taking into account the overlapping cuboids. However, in the interests of facile book-keeping
this is not checked for explicitly during the running of the algorithm.

[1] "Covalent radii revisited", B. Cordero, V. Gémez, A. E. Platero-Prats, M. Revés, J.
Echeverria, E. Cremades, F. Barragan and S. Alvarez, Dalton Trans., (2008) (DOI:
ihttp://dx.doi.org/10.1039/b801115j)

324

http://dx.doi.org/10.1039/b801115j

15.2. Literature Methods

The following table lists common literature methods implemented in Aten, noting any
implementation differences etc.

Table 15-1 Literature Methods

Name Description / Notes

Ewald Sum Electrostatic energy and forces for periodic systems. Implemented as
described in: XXX

Conjugate Gradient

Marching Cubes Isosurface generation from regular gridded data. No pathological cases
are accounted for. See implementation details in: XXX

Steepest Descent

325

16. Enumerations

The following tables list sets of keywords relevant to various data (e.g. bond types), to be
used when setting or checking such values.

16.1. Basis Shell Types

A list of recognised types of basis shell recognised by the basisshell type.

Table 16-1 Basis shell type keywords

Value Description nCartesians
S Standard S-shell 1
L Combined S/P shell 4
P Standard P-shell 3
D Standard D-shell 5
F Standard F-shell 7

16.2. Bond Types

A bond between atoms is of one of the following types:

Table 16-2 Bond type keywords

Value Description

any Special case, never assigned to an actual bond but used in bond-matching
functions

single A single bond

double A double bond

triple A triple bond

aromatic An aromatic bond, assigned automatically by the atom typing routines

16.3. Bound Types

Possible intramolecular bound interaction types are:

Table 16-3 Bound type keywords

Value Description

angle A normal angle interaction between three bound atoms

bond A normal bond interaction between two bound atoms
improper An improper torsion between four (not necessarily bound) atoms
torsion A proper torsion interaction between four bound atoms

326

ub A Urey-Bradley 1,3 term between two atoms at the extreme of a related angle

16.4. Cell Types

A model’s unit cell is, at any given time, one of the following:

Table 16-4 Cell type keywords

Value Description

none The model has no unit cell (i.e. it is non-periodic)

cubic The model's unit cell is cubic, with A=B=C and alpha=beta=gamma=90

orthorhombic The model's unit cell is an orthorhombus, with any cell lengths and
alpha=beta=gamma=90

parallelepiped The model's unit cell is monoclinic or triclinic, with any cell lengths and
angles

16.5. Colour Schemes

Available atomic colouring schemes are:

Table 16-5 Colour scheme keywords

Value Description

charge Atoms and connected bonds are coloured according to their charge

element Atoms and connected bonds are coloured according to their element

force Atoms and connected bonds are coloured according to the force acting on the
atom

velocity Atoms and connected bonds are coloured according to the velocities of the atoms

custom Atoms and connected bonds are coloured according to the custom colours set on
individual atoms

16.6. Combination Rules

Combination rule equations as used when combining similar Lennard Jones parameters.

Table 16-6 Combination rules

arithmetic The arithmetic mean of two values : a = 0.5*(b*c)
geometric The geometric mean of two values : a = sgrt(b*c)
customl Custom combination rule
custom?2 Custom combination rule

327

custom3 Custom combination rule

16.7. Drawing Styles

Available drawing styles for individual atoms are:

Table 16-7 Draw style keywords

Value Description

stick Atoms and connected bonds are drawn using simple lines

tube Atoms and connected bonds are drawn using ‘capped’ cylinders

sphere Atoms and connected bonds are drawn using spheres and cylinders, with all atoms
the same size

scaled Atoms and connected bonds are drawn using spheres and cylinders, with all atoms
sized according to their atomic radius set in the preferences

16.8. Energy Units

A list of energy units supported by Aten

Table 16-8 Energy unit keywords

Value Description Joule Equivalent

] Joules per mole (J/mol) 1.0

k] KiloJoules per mole (kJ/mol) 1000.0

cal Calories per mole (cal/mol) 4.184

kcal KiloCalories per mole (kcal/mol) 4184.0

K Kelvin (K) 1.0/ (503.2166 / 4184.0)
ev Electronvolts per mole (eVV/mol) 96485.14925

ha Hartrees per mole (Ha/mol) 2625494.616

16.9. Glyph Types

Available glyph types (drawing objects) are:

Table 16-9 Glyph type keywords

Value Description

arrow Simple arrow
cube A cuboid
ellipsoid An ellipsoid, oriented by face and edge vectors

ellipsoidxyz An ellipsoid, oriented by an explicit set of provided axes

328

line A line between two points

quad A quad (made up of two triangles)

sphere A sphere or spheroid

svector A sense vector

tetrahedron Regular tetrahedron

text Text rendered at 2D screen coordinates

text3d Text rendered at 3D model coordinates

triangle Regular triangle

tubearrow A fully 3D arrow

vector An arrow centred on a point and pointing along a specified local vector

16.10. Grid Styles

Available drawing styles for surface/grid data:

Table 16-10 Grid style keywords

Value Description

grid All data points are drawn as simple dots at their coordinate positions (the cutoff
value is ignored)

points Data points above the cutoff are drawn as simple dots at their coordinate
positions

triangles A triangulated wireframe isosurface is drawn between points above the cutoff
value

solid A trangulated solid isosurface is drawn between points above the cutoff value

16.11. Grid Types

Available grid types:

Table 16-11 Grid type keywords

Value Description

regularxy Two-dimensional surface data on a regularly-spaced XY grid. The grid size
must be specified on creation (with the gridsize command).

regularxyz Three-dimensional volumetric data on a regularly spaced XYZ grid. The grid
size must be specified on creation (with the gridsize command).

freexyz Three-dimensional data not restricted to a regular grid. No grid size
specification is necessary.

16.12. Label Types

329

Valid label types are as follows:

Table 16-12 Label type keywords

Value Description

charge Atomic charge currently assigned to the atom

element Element symbol of the atom

ffequiv Forcefield equivalent name from the assigned forcefield atom type (or the
forcefield atom type name if no equivalent applies)

id Integer atom ID

type Assigned forcefield atom type name (if any)

16.13. Output Types

Valid output types (or debug modes) are as follows:

Table 16-13 Output type keywords

Value Description

all Enable output of all types listed in this table
calls Print out entrances and exits to most subroutines to enable quick tracing of crash
locations

commands Trace execution of commands in command lists (e.qg. filters) and print
information on variable access paths

gl Debug OpenGL calls and graphics capabilities as best as is possible

parse Debug file-reading and argument parsing routines

typing Print (lots of) information regarding setting and matching of atom type
descriptions

verbose Enable a little extra output (but not much)

16.14. Parse Options

These options determine how general parsing of plain text files proceeds, as well as
controlling delimited argument parsing.

Table 16-14 Parse option keywords

Value Description

usequotes Phrases enclosed in quotes will be parsed as single arguments
skipblanks Blank lines (or those containing comments) are automatically skipped
stripbrackets Normal parentheses are automatically stripped from the input file
noescapes Treat backslash as a normal character

330

16.15. Read Success Integers

Integer return values for many read/write operations.

Table 16-15 Read/write return values

Value Description

1 Success - no errors encountered
0 The read/write operation failed before it was completed
-1 End-of-file was encountered during read operation||

16.16. ZMapping Types

Table 16-16 Map type keywords

Value Description

alpha Convert based on the alpha part of the name only. Leading or trailing
numbers and symbols are discarded. The alpha part is assumed to be an
element symbol

auto Attempts several of the other conversions of increasing complexity until a
match is found
ff Search through the names of atomtypes in currently-loaded forcefields,

assigning elements based on matches found
firstalpha Convert based on the first alpha part of the name only (i.e. until a non-alpha
character is found). The alpha part is assumed to be an element symbol

name The name is assumed to be an actual element name, and is converted to the
relevant element number
numeric Use the numeric part of the name as the element number

singlealpha Convert based on the first alphabetic character encountered - useful only
when single-character element symbols are likely to be found (e.g. for pure
organic CHON systems)

331

batch processing, 46, 47, 51, 52

Command Line Switches

--atendata, 45
-b, 45

--batch, 46
--bohr, 45
--bond, 46

-C, 46
--cachelimit, 46
--centre, 47
--command, 46
-d, 47

--debug, 47
--double, 47
--export, 47
--exportmap, 47
--expression, 48
-f, 48

--ff, 48

--filter, 48
--fold, 48
--format, 48

-g, 48

--grid, 48

-h, 48

--help, 48

332

-i, 48

--int, 49
--interactive, 48
-k, 49
--keepnames, 49
--keeptypes, 49
--keepview, 49
-m, 49

--map, 49

-n, 50

--nobond, 50
--nocentre, 50
--nofold, 50
--nofragmenticons, 50
--nofragments, 50
--noincludes, 50
nolists, 50
--nolists, 50
--nopack, 50
--nopartitions, 50
--nogtsettings, 50
--pack, 51

--pipe, 51
process, 51
quiet, 51

-5, 51

--script, 51
--string, 51

-t, 51
--trajectory, 51
-u, 51
--undolevels, 51
-v, 51

vbo, 52

--vbo, 52
--verbose, 51
-Z, 52

--zmap, 52

Command Line Switches:, 51

commands
abs, 197
addframe, 249
addgridpoint, 187
addhydrogen, 141
addnextgridpoint, 187
addpoint, 155
addreadoption, 219
adjustcell, 148
afterstr, 241
angledef, 170
atof, 241

atoi, 241

333

atomstyle, 131
augment, 137
autoconversionunit, 170
autoellipsoids, 181
autopolyhedra, 181
axisrotate, 251
axisrotateview, 258
beforestr, 242

bohr, 141

bonddef, 170
bondtolerance, 137
cell, 148

cellaxes, 148

centre, 252
cgminimise, 205
chain, 142

charge, 153
chargeff, 153
chargefrommodel, 153
chargepatom, 154
chargetype, 154
clearbonds, 137
clearcharges, 154
clearexportmap, 171
clearexpression, 171

clearlabels, 196

clearmap, 171
clearmeasurements, 200
clearpatterns, 217
clearpoints, 155
clearselectedbonds, 138
cleartrajectory, 249
contains, 242
converge, 205

copy, 159

cos, 197
createatoms, 209
createexpression, 172
createpatterns, 217
currentatom, 131
currentmodel, 209
currentpattern, 217
cut, 159

debug, 246

delete, 159

deleteff, 172
deletemodel, 210
deselect, 230
deselectf, 231
deselectfor, 231
deselecttype, 231

disorder, 158

334

do, 165
dotproduct, 197
ecut, 161

elec, 161
endchain, 142
eof, 219
equivalents, 172
error, 203

exp, 197
expand, 232
exportmap, 172
ffmodel, 173
ffpattern, 173
filterfilename, 220
finaliseff, 173
finalisegrid, 187
finalisemodel, 210
find, 220
firstframe, 249
firstmodel, 210
fix, 131

fixtype, 174
flipx, 252

flipy, 252

flipz, 253

fold, 149

foldmolecules, 149
for, 165
frameenergy, 161
frameforces, 180
free, 132

ftoa, 243
geometry, 200
getatom, 132
getcombinationrule, 174
getenv, 246
getenvf, 246
getenvi, 247
getff, 175
getline, 220
getmodel, 211
getpattern, 218
getsite, 239
getview, 258
glyphatomf, 182
glyphatomr, 182
glyphatomsf, 183
glyphatomsr, 183
glyphatomsv, 183
glyphatomv, 182
glyphcolour, 184

glyphdata, 184

335

glyphsolid, 184
glyphtext, 185
gridalpha, 188
gridaxes, 188
gridcolourprimary, 188
gridcolourscale, 189
gridcoloursecondary, 189
gridcubic, 189
gridcutoff, 190
gridcutoffsecondary, 190
gridlooporder, 190
gridorigin, 191
gridortho, 191
gridstyle, 191
gridusez, 192
gridvisible, 192

gui, 247

help, 247

hide, 132

if, 167

info, 210

initgrid, 192

interdef, 175

invert, 232

itoa, 243

label, 196

lastframe, 250
lastmodel, 211
linetol, 205
listcomponents, 158
listmeasurements, 200
listmodels, 211
listpatterns, 218
listscales, 155
listscripts, 229
listsites, 239

In, 197

loadff, 175
loadgrid, 193
loadmodel, 212
loadscript, 229
loadtrajectory, 250
locate, 143

log, 197

lowercase, 243
map, 175
matrixconvert, 253
matrixtransform, 254
mcaccept, 215
mcallow, 215
mcmaxstep, 215
mcminimise, 206

336

mentrials, 216
measure, 201
measureselected, 201
millercut, 149
mirror, 257
modelenergy, 162
modelforces, 180
modeltemplate, 212
mopacminimise, 206
move, 143
movetoend, 143
movetostart, 143
newatom, 144
newatomfrac, 144
newbasisshell, 207
newbond, 138
newbondid, 139
neweigenvector, 207
newff, 176
newglyph, 185
newgrid, 193
newmodel, 212
newpattern, 218
newsite, 239
newvibration, 208

nextarg, 221

nextframe, 250
nextmodel, 213
nint, 198
normalise, 198
null, 247
orthographic, 258
pack, 150
parentmodel, 213
paste, 159
peekchar, 221
peekchari, 221
perspective, 258
prevframe, 250
prevmodel, 213
printcell, 150
printelec, 162
printenergy, 163
printewald, 162
printf, 203
printforces, 180
printinter, 162
printintra, 163
printmc, 216
printsetup, 176
printsummary, 163

printvdw, 163

337

printzmatrix, 208
quit, 248

random, 198
randomi, 198
readchars, 222
readdouble, 222
readdoublearray, 222
readint, 223
readintarray, 223
readline, 224
readlinef, 224
readnext, 224
readvar, 225
readvarf, 225
rebond, 139
rebondpatterns, 139
rebondselection, 140
recreateexpression, 176
redo, 160
removecell, 151
removelabel, 196
removepoint, 156
removereadoption, 226
removestr, 244
reorder, 145

reorient, 254

replacechars, 243 selectf, 233

replacestr, 244 selectfftype, 233
replicate, 150 selectfor, 233
resetview, 259 selectinsidecell, 233
return, 168 selectionaddhydrogen, 146
rewind, 226 selectioncog, 234
rotateview, 259 selectioncom, 234
rotx, 145 selectline, 234

roty, 145 selectmiller, 235
rotz, 146 selectmolecule, 235
rules, 177 selectnone, 235
runscript, 229 selectoutsidecell, 236
savebitmap, 194 selectoverlaps, 236
saveexpression, 177 selectpattern, 236
savemodel, 214 selectradial, 237
savemovie, 194 selecttree, 237

scale, 151 selecttype, 237
scalemolecules, 151 setangle, 255
scalename, 156 setcell, 152
scalevisible, 156 setcharge, 133
sdminimise, 206 setcombinationrule, 177
searchcommands, 248 setcoords, 133

seed, 248 setdistance, 255
seekframe, 251 setelement, 133
select, 232 setforces, 133
selectall, 233 setfx, 134

338

setfy, 134

setfz, 134

setid, 134
sethame, 214
setpoint, 157
setpointcolour, 157
setpointvalue, 157
setrx, 134

setry, 135

setrz, 135
setvelocities, 135
setview, 259
setvx, 135

setvy, 135

setvz, 135
shiftdown, 146
shiftup, 146
show, 136
showall, 214

sin, 198

siteaxes, 240
skipchars, 226
skipline, 226
spacegroup, 152
speedtest, 260

sprintf, 244

339

sqrt, 199
stripchars, 245
tan, 199

toa, 245
torsiondef, 177
translate, 256
translateatom, 256
translatecell, 256
translateview, 260
translateworld, 257
transmute, 147
typedef, 178
typemodel, 178
typetest, 178
undo, 160

units, 179
uppercase, 245
vecut, 164

vdw, 179
verbose, 203
viewalong, 260
viewalongcell, 260
while, 169
writeline, 227
writelinef, 227

writevar, 228

writevarf, 228

zoomview, 261

forcefield keywords

angles, 294
bonds, 295
convert, 294
data, 295
defines, 296
equivalents, 297
function, 297
generator, 298
inter, 298

name, 293
torsions, 299
types, 299
uatypes, 300
units, 293
NETA keywords
any bond to, 310
aromatic, 313
bond, 311
chain, 311
double bond to, 311
linear, 314

n, 312

nbonds, 312

340

nh, 312

noring, 313
octahedral, 315
onebond, 314
planar, 313
ring, 313
single bond to, 310
size, 314
sgplanar, 315
thp, 315
tetrahedral, 315
trigonal, 315
tshape, 314

unbound, 314

Patterns, 15, 264

Default, 264

types

aten, 100

atom, 101
basisprimitive, 102
basisshell, 103
bond, 103

bound, 104
colourscale, 104
colourscalepoint, 105

eigenvector, 105

element, 106
energystore, 106
ffatom, 106
ffbound, 108
forcefield, 108
glyph, 111

glyphdata, 112

341

grid, 112
measurement, 113
model, 113
pattern, 123

prefs, 124
unitcell, 128

vector, 129

