
Compositional Verification of a Network of CSP Processes:
using FDR2 to verify refinement in the event of interface

difference

Jonathan Burton

Department of Computing Science, University of Newcastle,
Newcastle upon Tyne NE1 7RU, U.K.

j.i.burton@ncl.ac.uk

Abstract. The paper [5] presented an implementation relation formalising what it means for one
process to “implement” another in the CSP (Communicating Sequential Processes, [15]) framework
in the event that the two processes have different interfaces. An improved version of the relation
appears in [6] and allows for compositional verification of a network of CSP processes.
The model checker FDR2([15]) may be used to check CSP refinement in the event that speci-
fication and implementation processes have the same interface. In this paper, we show how to
transform the problem of checking the conditions from [6], where the specification and implemen-
tation processes have different interfaces, into one where the specification and implementation
processes have the same interface. This allows us to take advantage of the existing tool FDR2 and
allows automatic, compositional verification using the relation developed.

Keywords: Compositional verification, communicating sequential processes, behaviour abstrac-
tion.

1 Introduction

We first give some motivating detail behind the implementation relation scheme presented in [6] and
reproduced in section 3 before going on to describe the results presented in this paper.

Consider the situation that we have a specification network, PNet , composed of n processes Pi, where
all interprocess communication is hidden. Consider an implementation network, QNet , also composed
of n processes, again with all interprocess communication hidden. Assume that there is a one-to-one
correspondence between component processes in PNet and those in QNet . Intuitively, Pi is intended to
specify Qi. Finally, assume that the interface of QNet , in terms of externally observable actions, is the
same as that of PNet .

In process algebras, such as those used in [12, 15], the notion that a process QNet implements a
process PNet is based on the idea that QNet is more deterministic than (or equivalent to) PNet in terms
of the chosen semantics. We then say that (the behaviour of) QNet refines (the behaviour of) PNet .
Moreover, the interface of QNet (the implementation process) must be the same as that of PNet (the
specification process) to facilitate comparison.

What if we wish to approach this verification question compositionally? What if we want to verify
that QNet implements PNet simply by verifying that Qi implements Pi, for each 1 ≤ i ≤ n. In general,
this is only possible if Qi and Pi have the same communication interface. Thus, Qi may implement Pi

by describing its internal (and so hidden) computation in a more concrete manner, but it may not do
so by refining its external interface, at least if we wish to carry out compositional verification.

Yet in deriving an implementation from a specification we will often wish to implement abstract,
high-level interface actions at a lower level of detail and in a more concrete manner. For example, the
channel connecting Pi to another component process Pj may be unreliable and so it may need to be
replaced by a data channel and an acknowledgement channel. Or Pi itself may be liable to fail and so its

2 J.Burton

behaviour may need to be replicated, with each new component having its own communication channels
to avoid a single channel becoming a bottleneck. Or it may simply be the case that a high-level action of
Pi has been rendered in a more concrete, and so more implementable, form. As a result, the interface of
an implementation process may end up being expressed at a lower (and so different) level of abstraction
to that of the corresponding specification process. In the process algebraic context, where our interest
lies only in observable behaviour, this means that verification of correctness must be able to deal with
the case that the implementation and specification processes have different interfaces.

The relation between processes detailed in [6] and given in section 3 enjoys two crucial properties
that allow us to carry out compositional verification in the event that Qi and Pi have different interfaces.
The first is that of compositionality, meaning that the implementation relation distributes over system
composition. Thus, a specification composed of a number of connected systems may be implemented by
connecting their respective implementations and so we may verify compositionally that QNet implements
PNet according to our implementation relation scheme simply by verifying that each Qi implements Pi.

Moreover, although in general Qi and Pi do not have the same interface, we know that, when all
of the components Qi have been composed, the result — namely QNet — will have the same interface
as the corresponding specification process — namely PNet . By the compositionality property, we know
that QNet implements PNet according to the scheme presented here. We then impose the requirement
that the implementation relation presented here reduces to a standard notion of behaviour refinement
in the CSP framework in the event that the implementation and specification processes have the same
interface. This allows us to verify compositionally that QNet implements PNet .

In order to apply the implementation relation described above to non-trivial examples, it is necessary
that we have some means for its automatic verification. The approach taken in this paper is to transform
the verification question presented here into one which may be answered by an existing, industrial
strength tool. In a sense, we create a new “tool”, but one which inherits a level of robustness and
maturity of development that only comes after a number of years of use and modification.

The tool which is used here is FDR2 [13–15] developed for the purposes of model-checking CSP. As
implied above, FDR2 takes as input two processes, one a specification and the other an implementation,
which must have the same interface. The implementation relation described in section 3 takes as input
a specification process and an implementation process, with possibly different interfaces, along with
a means of interpretation — called extraction patterns and described in section 3 — which acts as a
parameter to the relation. We show here how to transform this set of inputs into a set of inputs acceptable
to FDR2, using only the syntatic operators of the CSP language, such that a set of refinement checks
within FDR2 are successful if and only if the conditions from the implementation relation are met. This
then gives automatic, compositional verification of a network of CSP processes.

It turns out there are a number of different ways in which this problem may be approached, the
most fundamental distinction perhaps being whether we choose to work at the level of abstraction of
the implementation process or at that of the specification process. For we must transform syntactically
one of the processes so that it has the same interface as the other (it is this transformation which allows
us to use FDR2). It seems that different approaches may work better in different contexts.

For example, working at the level of abstraction of the specification means that we can make the
inputs supplied to FDR2 as small as possible, which allows us to verify larger processes. However, this
can cause problems when we approach debugging, since all counter-examples are generated at this higher
level of abstraction and it is more difficult to relate them to the behaviours of the implementation.

In the future, it is likely that different approaches will be implemented and a choice will be made
between them by the user as appropriate. For the momement, however, in the absence of the necessary
experimental data, the rationale followed in this report has been to make the inputs to FDR2 as small
as possible: this is because reducing the size of processes seems unlikely to lead to significant, if any,
slowdown, while allowing us to work with a greater range of, possibly quite large, examples.

The remainder of the paper is organised as follows. In the next section we present some preliminary
definitions. In section 3 we describe the device of extraction patterns, introduce the implementation
relation and give the results which allow us to use it for the purposes of compositional verification.

Compositional Verification using FDR2 3

Section 3 also introduces a running example which will be used to illustrate how the verification method
works in practice. Section 4 describes the preprocessing which must be carried out on an implementation
process before verification can begin and the subsequent sections detail the manner in which the indi-
vidual conditions of the implementation relation are checked. Finally, we give some concluding remarks
in section 10.

2 Preliminaries

In this section, we first recall those parts of the CSP theory which are needed throughout the paper.

2.1 Actions and traces

Communicating Sequential Processes (CSP) [2, 3, 10, 15] is a formal model for the description of concur-
rent computing systems. A CSP process can be regarded as a black box which may engage in interaction
with its environment. Atomic instances of this interaction are called actions and must be elements of
the alphabet of the process. The alphabet of a process P is denoted αP . A trace of the process is a finite
sequence of actions that a process can be observed to engage in. In this report, structured actions of
the form b.v will be used, where v is a message and b is a communication channel. b.v is said to occur
at b and to cause v be exchanged between processes communicating over b. For every channel b, µb is
the message set of b - the set of all v such that b.v is a valid action. We define αb = {b.v | v ∈ µb} to be
the alphabet of channel b. It is assumed that µb is always finite and non-empty. For a set of channels B,
αB =

⋃
b∈B αb.

The following notation is similar to that of [10] (below t, u, t1, t2, . . . are traces; b, b′, b′′ are channels;
B1, . . . , Bn, B are disjoint sets of channels; a is an action; A is a set of actions; and T, T ′ are non-empty
sets of traces):

– t = 〈a1, . . . , an〉 is the trace whose i-th element is ai, and whose length, |t|, is n.
– t ◦ u is the trace obtained by appending u to t.
– A∗ is the set of all traces of actions from A, including the empty trace, 〈 〉.
– Aω is the set of all infinite traces of actions from A.
– T ∗ is the set of all traces t = t1 ◦ · · · ◦ tn (n ≥ 0) such that t1, . . . , tn ∈ T .
– ≤ denotes the prefix relation on traces, and t < u if t ≤ u and t 6= u.
– Pref (T) = {u | ∃t ∈ T : u ≤ t} if the prefix-closure of T ; T is prefix-closed if T = Pref (T).
– t[b′/b] is a trace obtained from t by replacing each action b.v by b′.v.
– t � B is obtained by deleting from t all the actions that do not occur on the channels in B; for

example, 〈b′′.3, b.1, b′′.2, b.3, b′.3, b′′.6, b′.2〉 � {b, b′} = 〈b.1, b.3, b′.3, b′.2〉.
– t � A is obtained by deleting from t all the actions that do not appear in A.
– An infinite sequence t1, t2, . . . is an ω-sequence if t1 ≤ t2 ≤ . . . and limi→∞ |ti| = ∞.
– A mapping f : T → T ′ is monotonic if t, u ∈ T and t ≤ u implies f(t) ≤ f(u); f is strict if 〈 〉 ∈ T

and f(〈 〉) = 〈 〉; and f is a homomorphism if t, u, t ◦ u ∈ T implies f(t ◦ u) = f(t) ◦ f(u).
– A family of sets X is subset-closed if Y ⊂ X ∈ X implies Y ∈ X .

2.2 CSP operators

We now give a brief description of the CSP operators which we shall use. We use deterministic choice,
P Q, non-deterministic choice P u Q, and prefixing, a → P . Parallel composition P‖Q models syn-
chronous communication between processes in such a way that each of them is free to engage indepen-
dently in any action that is not in the other’s alphabet, but they have to engage simultaneously in all
actions that are in the intersection of their alphabet. The operators 2, u and ‖ are all commutative and
associative and may be indexed over finite sets.

4 J.Burton

Let P be a process and A be a set of events; then P\A is a process that behaves like P with the
actions from A made invisible. (Note that the operator \ is overloaded since it is also used to denote set
subtraction.) Hiding is associative in that (P\A)\A′ = P\(A ∪ A′). If t is a trace of a process P , then
t \A = t � (αP \A).

Let R be a relation and P a process. Then P [R] is a process that behaves like P except that every
action a has been replaced by R(a); note that the relation R does not need to be total over the alphabet
of P and if a is not in the domain of R, we assume that R(a) = a. R(a) will return a set of values and
so wherever the action a might have been enabled in P , each of the events in R(a) will be enabled in
its place in P [R]. The definition of R extends to traces and sets in the obvious way. We define R∗ as
follows: 〈a1, . . . , an〉R∗〈bi, . . . , bm〉 ⇔ n = m ∧ ∀i ≤ n, aiRbi. And R(A) =

⋃
a∈A R(a). The semantic

definitions of the above operators may be found in section A in the appendix.
We now give details of the process models we will use. In what follows, let P and Q be CSP process

terms: that is, syntactic definitions of CSP processes. (Note that the word process may denote either a
syntactic term or a semantic object. In what follows, the description process will be suitably qualified
where the context requires it.)

The simplest model of behaviour in CSP is the traces model, where a process term P is modelled by
a pair (αP, τP). τP or the traces of P is the set of finite sequences of visible actions which that process
may execute. In the stable failures model, a process term P is modelled by a triple (αP, τP, φP), where
φP — the stable failures of P — is a subset of αP ∗×2αP . If (t, R) ∈ φP then P is able to refuse R after
t. Intuitively, this means that if the environment only offers R as a set of possible events to be executed
after t, then P can deadlock when placed in parallel with the environment. In the failures divergences
model, a process term P is modelled as a triple, (αP, φ⊥P, δP), where δP — divergences — is a subset
of αP ∗ and φ⊥P — failures — is a subset of αP ∗ × 2αP . If t ∈ δP then P is said to diverge after t.
In the CSP model this means the process behaves in a totally uncontrollable way. Such a semantical
treatment is based on what is often referred to as ‘catastrophic’ divergence whereby the process in a
diverging state is modelled as being able to accept any trace and generate any refusal. When verifying
a given property, we shall always use the simplest model in which it is expressible, since this simplifies
proofs and the tool FDR2 is more efficient when used with simpler models [15].

In the rest of this paper, we deal with specification and implementation processes, along with pro-
cesses defined to facilitate refinement checking using FDR2. If W is either a specification or implemen-
tation process, we associate with W a set of communication channels and denote this set χW . χW
may be partitioned into input channels (in W) and output channels (out W). We identify the alphabet
of such a process W with the alphabet of χW and stipulate that αW =

⋃
b∈χW αb. As a result, the

alphabet of such a process W is taken as a given, while the alphabet of any other process may be derived
compositionally according to the rules in section A in the appendix. These two ways of deriving the
alphabet of a process are not inconsistent: process alphabets are only used to calculate the semantics
of processes defined using the parallel composition operator, ‖, and, in FDR2, we can effectively give a
process any alphabet we want when using the parallel composition operator (see below).

Processes W1, . . . ,Wn form a network if no channel is shared by more than two Wi’s. We define
W1 ⊗ · · · ⊗ Wn to be the process obtained by taking the parallel composition of the processes and
then hiding all interprocess communication, i.e., the process (W1‖ · · · ‖Wn)\αB, where B is the set of
channels shared by at least two different processes Wi. Note that for i 6= j, if c ∈ (χWi ∩ χWj), then
c ∈ in Wi and c ∈ out Wj , or c ∈ out Wi and c ∈ in Wj .

In CSP, that a process Q implements a process P is denoted by P vX Q, where X denotes the
model in which we are working. (T denotes the traces model, F the stable failures model and FD the
failures divergences model.) P vT Q if and only if τQ ⊆ τP . P vF Q if and only if τQ ⊆ τP and
φQ ⊆ φP . P vFD Q if and only if δQ ⊆ δP and φ⊥Q ⊆ φ⊥P . Note that the alphabet component plays
no role here.

It is the case that, for any process term P , φ⊥P = φP ∪ {(t, R) | t ∈ δP ∧ R ⊆ αP}. In addition,
we define τ⊥P , {t | (t, R) ∈ φ⊥P} and observe that τ⊥P = τP ∪ δP , where τP is the meaning of

Compositional Verification using FDR2 5

P in the traces model. Finally, we define minδ(P) , {t | t ∈ δP ∧ (∀u < t) u 6∈ δP} and have that
τP = minδ(P) ∪ {t | (t, R) ∈ φP} [15].

[[P]]X denotes the semantic meaning of P in the model X ∈ {T, F,FD}, while P =X Q if and only
if [[P]]X = [[Q]]X . From the above definitions of the failures divergences and stable failures models
respectively, it is easy to see that if δP = ∅ then φP = φ⊥P and τ⊥P = τP = {t | (t, R) ∈ φP)}. We
use DIV to denote the immediately diverging process and observe that [[DIV]]F = ({〈 〉}, ∅) (note that
we have omitted the alphabet component here) [15]. In FDR2, deadlock freedom is checked in the stable
failures model. A process P is deadlock-free if and only if, for every (t, R) ∈ φP , R is a proper subset of
αP .

All inputs to FDR2 must be supplied in the machine-readable syntax of CSP. (See [15] or the
FDR2 manual ([7]) for details.) Although we will define processes syntactically in this paper using the
standard CSP syntax, all of the operators used have a direct equivalent in the machine-readable syntax.
Note, however, that the operator in the machine-readable syntax which represents parallel composition
must be provided explicitly with the events on which synchronization is to occur: to mimic the parallel
composition operator used here it is simply necessary to provide the set of events in the intersection of
the alphabets of the two processes to be composed.

3 Extraction patterns and the implementation relation

3.1 Extraction patterns

In this section, we first explain the basic mechanism behind our modelling of behaviour abstraction —
extraction patterns — and then provide a formal definition of these objects. The example given here,
which is used as a running example in the remainder of the paper, is deliberately very simple, in order
to better convey the basic ideas, rather than to demonstrate a wider applicability of the approach.

Sendspec Bufspecin mid out---

(a)

Sendimple Bufimplein
data

ack
out

(b)

Fig. 1. A simple specification network and its implementation

Consider a pair of specification or base processes, Send spec and Buf spec , shown in figure 1(a). Send spec

generates an infinite sequence of 0s or an infinite sequence of 1s, depending on the signal (0 or 1) received
on its input channel, in, at the very beginning of its execution. Buf spec is a buffer process of capacity
one, forwarding signals received on its input channel, mid . In terms of CSP, we have:

Send spec , i∈{0,1} in.i → Si and Buf spec , i∈{0,1} mid .i → Bi

where Si , mid .i → Si and Bi , out .i → Buf spec , for i = 0, 1.
Suppose that the communication on mid is liable to fail and has therefore been implemented using

two channels, data and ack , where data is a data channel, and ack is a feedback channel used to pass
acknowledgements. It is assumed that a given message is sent at most twice since a re-transmission
always succeeds. This leads to a simple protocol which can be incorporated into suitably modified
original processes. The resulting implementation processes shown in figure 1(b), Sendimple and Bufimple ,
are given by:

Sendimple , i∈{0,1} in.i → Si

Bufimple , i∈{0,1} data.i → (ack .yes → B′
i u ack .no → B)

6 J.Burton

where B, Si and B′
i (i = 0, 1) are auxiliary processes defined thus:

Si , data.i → (ack .yes → Si ack .no → data.i → Si)

B , i∈{0,1} data.i → B′
i

B′
i , out .i → Bufimple

Suppose we wish to show that Bufimple is a valid implementation of Bufspec . We need some way of
relating behaviour over channels data and ack to that over mid . Firstly, we must relate traces and do
this using a mapping extr , which in this case, for example, would need to relate traces over data and
ack to those over mid . For example,

〈 〉 7→ 〈 〉
〈data.v〉 7→ 〈 〉

〈data.v, ack .yes〉 7→ 〈mid .v〉
〈data.v, ack .no〉 7→ 〈 〉

〈data.v, ack .no, data.v〉 7→ 〈mid .v〉

Note that the mapping extr has a well-defined domain here: it is only defined for traces where
message transmission was successful in the first place or where retransmission must succeed We call
this domain Dom. Observe also that some of the traces in Dom may be regarded as incomplete. For
example, 〈data.v〉 is such a trace since we know that the event data.v must be followed by an event on
channel ack . The set of all other traces in Dom — i.e. those which in principle may be complete — will
be denoted by dom.1 For our example, dom will contain all traces in Dom where we know that the last
value communicated on channel data has been transmitted (or retransmitted) successfully.

We also need a device to relate the refusals (and so failures) of Bufimple to those of Bufspec . This
comes in the form of another mapping, ref , constraining the possible refusals a process can exhibit, after
a given trace t ∈ Dom2, on channels which will be hidden when the final implementation network is
composed. More precisely, a sender process can admit a refusal disallowed by ref (t) only if the extracted
trace extr(t) admits in the specification process the refusal of all communication on the corresponding
channel and, moreover, the trace t itself is complete, i.e., t ∈ dom. For example, in the process described
above, if Sendimple has just communicated data.v then its behaviour cannot be complete and so it
cannot refuse anything on the channel ack : i.e. it must be ready to receive either a positive or a negative
acknowledgement. And if behaviour is complete — i.e. t ∈ dom — in Bufimple , it can, for example,
refuse an event on channel data only if Bufspec can refuse everything on channel mid after performing
extr(t).

The refusal bounds given by ref may be thought of as ensuring a kind of liveness or progress condition
on sets of channels upon which composition will occur when implementation components are composed
to build a full implementation system QNet (introduced in section 1). Since these channels are to be
composed upon and so hidden, the progress enforced manifests itself in the final system as the occurrence
of an invisible transition and states in which an invisible transition is enabled do not contribute a (stable)
failure of QNet . Conversely, if we may not enforce progress after a complete behaviour, then it is possible
that the relevant state reached will contribute to a failure, (t, R), of QNet . Since, in the stable failures
model of CSP3, if QNet ‘implements’ PNet then φQNet ⊆ φPNet , we must ensure that the relevant
failure, (t, R), also occurs in PNet . We do this by ensuring that progress will not be possible on the

1 In general, Dom = Pref (dom), meaning that each interpretable trace has, at least in theory, a chance of being
completed.

2 In general, we will only be interested in traces belonging to Dom.
3 We are able to work only in the stable failures model since we assume the divergence freeness of any specifi-

cation component and also, with a slight qualification, require the divergence freeness of the implementation
component.

Compositional Verification using FDR2 7

corresponding channel in the specification component. Here, lack of progress on internal channels leads
to the fact that the relevant state will give rise to a failure of PNet .

Finally, it should be stressed that ref (t) gives a refusal bound on the sender side (more precisely,
the process which implements the sender specification process). But this is enough since, if we want to
rule out a deadlock in communication between the sender and receiver (on a localised set of channels),
it is now possible to stipulate on the receiver side that no refusal is such that, when combined with any
refusal allowed by ref (t) on the sender side, it can yield the whole alphabet of the channels used for
transmission.

3.2 Formal definition

The notion of extraction pattern relates behaviour on a set of channels in an implementation process to
that on a channel in a specification process. An extraction pattern is a tuple ep = (B, b, dom, extr , ref)
satisfying the following:

EP1 B is a non-empty set of channels, called sources and b is a channel, called target.
EP2 dom is a non-empty set of traces over the sources; its prefix-closure is denoted by Dom.
EP3 extr is a strict, monotonic mapping defined for traces in Dom; for every t, extr(t) is a trace over

the target.4

EP4 ref is a mapping defined for traces in Dom such that, for every t ∈ Dom, ref (t) is a non-empty
subset-closed family of proper subsets of αB and, if a ∈ αB and t◦〈a〉 6∈ Dom, then R∪{a} ∈ ref (t),
for all R ∈ ref (t).

As already mentioned, the mapping extr interprets a trace over the source channels B (in the
implementation process) in terms of a trace over a channel b (in the base or specification process) and
defines functionally correct (i.e., in terms of traces) behaviour over those source channels by way of its
domain Dom. The mapping ref is used to define correct behaviour in terms of failures as it gives bounds
on refusals after execution of a particular trace sequence over the source channels. dom contains those
traces in Dom for which the communication over B may be regarded as complete; the constraint on
refusals given by ref is only allowed to be violated for such traces. The intuition behind this requirement
is that we cannot regard as correct a situation where deadlock occurs in the implementation process when
behaviour is incomplete, since, if regarded as correct behaviour, this would imply that the specification
process could in some sense deadlock while in the middle of executing a single (atomic) action.

The extraction mapping is monotonic as receiving more information cannot decrease the current
knowledge about the transmission. αB 6∈ ref (t) will be useful in that for an unfinished communication
t we do not allow the sender to refuse all possible transmission. The second condition in EP4 is a
rendering in terms of extraction patterns of a condition imposed on CSP processes that impossible
events can always be refused (see SF4 and FD3 in section A in the appendix).

We note that not all channels require all components of an extraction pattern to interpret their be-
haviour. We shall denote these channels uninterpreted or identity channels and their extraction patterns
identity extraction patterns. Intuitively, these channels have the same interface in both implementa-
tion and specification. In particular, all channels which remain visible in the final compositions of the
implementation and specification components respectively — for example QNet and PNet — are of
this type. For an extraction pattern ep, let b = c be an uninterpreted channel. Then B = {c} and
Dom = dom , (αc)∗. If t ∈ Dom, then extr(t) = t. That is, the extraction mapping for such channels is
the identity mapping: i.e. behaviour over them does not require further interpretation. Finally, no ref
component is specified for such an extraction pattern.

4 For the purposes of this report, we assume that |extr(t ◦ 〈a〉)| ≤ |extr(t)| + 1.

8 J.Burton

Twice extraction pattern For the example given here, in order to demonstrate that Sendimple and
Bufimple are implementations of respectively Sendspec and Bufspec , we will need an extraction pattern
eptwice . We also observe that the channels in and out are uninterpreted.

For the eptwice extraction pattern, B = {data, ack} are the source channels and b = mid is the target
channel; moreover µmid = µdata = {0, 1} and µack = {yes,no}. The remaining components of eptwice

are defined in the following way, where t ∈ dom and t ◦ u ∈ Dom:

dom , {〈data.0, ack .yes〉, 〈data.0, ack .no, data.0〉, 〈data.1, ack .yes〉, 〈data.1, ack .no, data.1〉}∗

extr(t ◦ u) ,


〈 〉 if t ◦ u = 〈 〉
extr(t) ◦ 〈mid .v〉 if u = 〈data.v, ack .yes〉

or u = 〈data.v, ack .no, data.v〉
extr(t) if u = 〈data.v〉 or u = 〈data.v, ack .no〉

ref (t ◦ u) ,


2αdata if u = 〈data.v〉
{R ∈ 2αdata∪αack | αdata 6⊆ R} if u = 〈〉
{R ∈ 2αdata∪αack | data.v 6∈ R} if u = 〈data.v, ack .no〉 .

Here, intuitively, we can extract 〈mid .0〉 from two sequences of communications: 〈data.0, ack .yes〉 and
〈data.0, ack .no, data.0〉 (and similarly for 〈mid .1〉). A valid trace in Dom is one which is a concatenation
of a series of ‘complete’ segments of this kind, possibly followed by an initial fragment of one of them.
Any trace for which the latter is true is incomplete and belongs to Dom \ dom; otherwise it belongs to
dom.

3.3 Additional notations

The various components of the extraction patterns can be annotated (e.g. subscripted) to avoid ambi-
guity. In what follows, different extraction patterns will have disjoint sources and distinct targets.

For notational convenience, we lift some of the notions introduced to finite sets of extraction patterns.
Let ep = {ep1, . . . , epn} be a non-empty set of extraction patterns, where epi = (Bi, bi, domi, extr i, ref i).
Moreover, let B = B1 ∪ . . . ∪Bn. Then:

EP5 domep = {t ∈ αB∗ | ∀i ≤ n : t � Bi ∈ domi}.
EP6 Domep = {t ∈ αB∗ | ∀i ≤ n : t � Bi ∈ Domi}.
EP7 extrep(〈 〉) = 〈 〉 and, for every t ◦ 〈a〉 ∈ Domep with a ∈ αBi, extrep(t ◦ 〈a〉) = extrep(t) ◦u where

u is a (possibly empty) trace such that extr i(t � Bi ◦ 〈a〉) = extr i(t � Bi) ◦ u .

Note that u in EP7 is well defined since extr i is monotonic.

3.4 The implementation relation

We present here the relation from [6], which is a slightly modified version of that in [5]. All proofs of
results in the remainder of this section can be found in [6].

Suppose that we intend to implement a base process P using another process Q with a possibly
different communication interface (in what follows, P and Q denote process expressions). The correctness
of the implementation Q will be expressed in terms of two sets of extraction patterns, ep and ep′. The
former (with sources in Q and targets in P) will be used to relate the communication on the input
channels of P and Q, while the latter (with sources out Q and targets out P) will serve a similar purpose
for the output channels.

Let P be a base process as in figure 2, and epi = (Bi, bi, domi, extr i, ref i) be an extraction pattern,
for every i ≤ m + n. We assume that the Bi’s are mutually disjoint channel sets, and denote ep =
{ep1, . . . , epm} and ep′ = {epm+1, . . . , epm+n}. We then take a process Q such that in Q = B1∪. . .∪Bm

Compositional Verification using FDR2 9

P
b1

bm

bm+1

bm+n
-

-

-

-ppp ppp Q
B1

Bm

Bm+1

Bm+n
-

-

-

-ppp ppp
Fig. 2. Base process P and its implementation Q.

and out Q = Bm+1∪ . . .∪Bm+n, as shown in figure 2, and denote by τDomQ the set of all t ∈ τ⊥Q which
belong to Domep∪ep′ . Similarly, φDomQ and φdomQ will be the sets of those failures in φ⊥Q in which
the trace component belongs to Domep∪ep′ and domep∪ep′ respectively. Intuitively, τDomQ — which is
subsequently referred to as the domain of Q — is the set of t ∈ τ⊥Q which are of actual interest and,
consequently, φDomQ is the set of (t, R) ∈ φ⊥Q of actual interest too.

In what follows, we denote the uninterpreted channels of P as bid . Note that these are also the
uninterpreted channels of Q. The interpreted channels of P are denoted bnid and the interpreted channels
of Q are denoted Bnid . This means that αQ = αBnid ∪ αbid and αP = αbnid ∪ αbid . We define also
I , {i | bi ∈ bnid} — intuitively, I means “interpreted” — and then epI , {epi | i ∈ I}. We then write
extr I for extrepI

, DomI for DomepI
and so on.

We will say that a channel bi of P is blocked at a failure (t, R) in Q if either bi is an input channel
and αBi − R ∈ ref i(t � Bi), or bi is an output channel and αBi ∩ R 6∈ ref i(t � Bi) (blocking is not
defined for any channel c ∈ bid). Note that in both cases this signifies that the refusal bound imposed
by the ref i has been breached.

We then call Q an implementation of P w.r.t. extraction patterns ep and ep′, denoted Q �ep
ep′ P , if

the following six conditions are satisfied.

DP If t ∈ τ⊥Q is such that t � in Q ∈ Domep , then t ∈ τDomQ.
DF τDomQ ∩ δQ = ∅.
TE extrep∪ep′(τDomQ) ⊆ τ⊥P .
GE If . . . , ti, . . . is an ω-sequence in τDomQ, then . . . , extrep∪ep′(ti), . . . is also an ω-sequence.
LC If bi ∈ bnid and bi is a channel of P blocked at (t, R) ∈ φDomQ, then t � Bi ∈ domi.
RE If (t, R) ∈ φdomQ then (extrep∪ep′(t), αB ∪ (R ∩ αbid)) ∈ φ⊥P , where B ⊆ bnid is the set of all

channels of P blocked at (t, R).

We interpret the above conditions in the following way. DP expresses the domain preservation prop-
erty, which says that if a trace of Q projected on the input channels can be interpreted by ep, then it
must be possible to interpret the projection on the output channels by ep′. Note that such a condition
is a simple rely/guarantee property in the sense of [8]. DF can be interpreted as divergence freedom
within the domain of Q (recall that CSP divergences signify totally unacceptable behaviour). TE simply
states that within the domain of Q we insist on generating P ’s traces after extraction. GE states that an
unboundedly growing sequence of traces in the domain of Q is a sequence of traces unboundedly growing
after extraction (notice that we place no restriction on the relative growth of the ω-sequences . . . , ti, . . .
and . . . , extrep∪ep′(ti), . . .). LC means that going outside the bounds of allowed refusals indicates that
the communication on a given (interpreted) channel may be considered as locally completed. Finally, RE
states a condition for refusal extraction, which means that if a trace is locally completed on all channels,
any local blocking of an (interpreted) channel of P in Q is transformed into the refusal of its whole
alphabet in P ; moreover, the refusals on the uninterpreted channels in Q should be matched in P .

A direct comparison of an implementation process Q with the corresponding base process P is only
possible if there is no difference in the communication interfaces. This corresponds to the situation that
all of the channels of Q (and of P) are uninterpreted. In such a case, we simply denote Q � P and then
we can attempt to directly compare the semantics of the two processes in question.

Theorem 1. If Q � P then P vFD Q (i.e. δQ ⊆ δP and φ⊥Q ⊆ φ⊥P).
N.B. The latter implies that τ⊥Q ⊆ τ⊥P as it suffices to take R = ∅.

10 J.Burton

The next result states that the implementation relation is compositional in the sense that it is
preserved by the network composition operation. Taken with the previous result, we have met both of
the restrictions stated in section 1 and so have a means of compositional verification in the event that
corresponding specification and implementation component processes have different interfaces.

Theorem 2. Let K and L be two base processes whose composition is non-diverging, as in figure 3,
and let c, d, e, f , g and h be sets of extraction patterns whose targets are respectively the channel sets
C, D, E, F , G and H. If M �c∪h

d∪e K and N �d∪f
g∪h L then M ⊗N �c∪f

e∪g K ⊗ L .

C

F

G

E

D

H
K L-

-

�
�

-

-

-

-
6 6 ? ?ppp pppppp pppppp ppp
p p p p p p

Fig. 3. Base processes used in the formulation of the compositionality theorem.

Hence the implementation relation is preserved through network composition and the only restriction
is that the network of the base processes should be designed in a divergence-free way. This means, of
course, that the base processes themselves must be divergence-free and so we assume δP = ∅ for the
base process P described above. However, this is a standard requirement in the CSP approach (recall
again that divergences are regarded as totally unacceptable).

3.5 Remainder of the report

Each of the subsequent sections deals with checking the conditions of the implementation relation given
here, showing how this can be carried out using a standard notion of what it means for one process
to implement another in CSP. As a result, this allows us to use FDR2 to verify the implementation
relation. Each section defines various syntactic terms which are used either directly, or as components
in larger terms, to define the inputs supplied to FDR2. Where appropriate, the example given in this
section is used to provide a concrete example of how those syntactic terms would be used in practice:
this gives both an illustration of the method at work and also allows us to verify automatically and
compositionally that (Sendspec ⊗ Bufspec) vFD (Sendimple ⊗ Bufimple).

Although we will define such syntactic terms using the standard CSP syntax, all of the operators
used have a direct equivalent in the machine-readable syntax. Also, as a final point, it is worth noting
that the immediately diverging process does not have a distinguished syntactic representation in the
way that, for example, the immediately deadlocking process does (i.e. STOP). As a result, we define
the auxiliary process X , a → X and define the immediately diverging process DIV , X \ {a}.

4 Preprocessing the implementation process

Note that throughout this section we work within the full failures divergences model. Since none of the
various components of the implementation relation we are to verify are interested in traces which, when
projected on the input channels of Q, are not found in the set of valid traces over the input channels as
defined by Domep , it is necessary to remove them before proceeding with the verification proper. For
example, imagine that t ∈ τQ but t � in Q 6∈ Domep . Condition DP places no restrictions on t and,
in subsequent conditions, we take no notice of it since we only interest ourselves in traces in τDomQ.
However, if we do not remove such traces from our implementation process, they will remain when we

Compositional Verification using FDR2 11

come to carry out refinement checks using FDR2 and may cause a particular refinement check to fail,
despite the fact that the relevant condition has been met.

As a result, we remove these traces from Q, creating a process Q̂, such that t ∈ τQ∧t � in Q ∈ Domep

if and only if t ∈ τQ̂ (we refer here to τQ rather than τ⊥Q since we are not interested in traces which
are only present due to the presence of divergence). Although this preprocessing affects the failures of
Q, it does not do so in such a way that the answer to the verification question is different for Q than it
is for Q̂ (see theorem 6).

In order to carry out this preprocessing on Q, we simply compose it in parallel with a component
process for each of the extraction patterns which deal with an interpreted input channel (i.e. the ex-
traction pattern is not an identity extraction pattern). Each of these processes is capable of performing
exactly the traces from the Dom component associated with the relevant extraction pattern. Note that
it is unnecessary to include identity extraction patterns in our preprocessing, since Domi for such an
extraction pattern epi simply allows the execution of any trace over αbi.

We first define a mapping Next i : Domi → 2αBi such that Next i(t) , {a | t ◦ 〈a〉 ∈ Domi}. This
mapping is used throughout the report and gives the possible extensions to a trace such that the resulting
trace remains a member of the domain Domi. We also define the complement of Next i as NotNext i, where
NotNext i : Domi → 2αBi and NotNext i(t) , {a | t ◦ 〈a〉 6∈ Domi}. Let Γ , {i | epi ∈ ep ∧ bi ∈ bnid}.
We then define NotNextΓ ,

⋃
i∈Γ NotNext i. We then have that PPi , PPi(〈〉) and5

PPi(t) , 2a∈Nexti(t)a → PPi(t ◦ 〈a〉)

where PPi is a component process to be composed in parallel with Q during preprocessing. We finally
define

PPΓ , ‖i∈Γ PPi and Q̂ , Q ‖ PPΓ

where Q̂ is Q after preprocessing has been applied.

Lemma 3 The following hold of Q̂:

1. αQ̂ = αQ.
2. δQ̂ = {t ◦ u | t ∈ minδQ ∧ t � in Q ∈ Domep ∧ u ∈ (αQ̂)∗}.
3. φ⊥Q̂ = φQ̂ ∪ {(t, R) | t ∈ δQ̂}, where φQ̂ = {(t, R) | (∃(t, X) ∈ φQ, Y ⊆ NotNextΓ (t)) t � in Q ∈

Domep ∧ R ⊆ X ∪ Y }.

Proof. (1) The proof is immediate since αPPΓ =
⋃

i∈Γ αBi ⊆ αQ (we assume that, if a process can
execute exactly the traces of Domi, then its alphabet is αBi).

(2) We first observe that δPPi = ∅ and so δPPΓ = ∅. The proof follows from the above, the fact that
t � Bi ∈ Domi is met trivially if epi is an identity extraction pattern, and the divergence semantics of the
parallel composition operator. With respect to the latter, note that, since δPPΓ = ∅ and αPPΓ ⊆ αQ,
if w ∈ δQ̂ there exists v ∈ minδQ̂, v ≤ w, such that v � in Q ∈ Domep and v � αQ = v ∈ δQ. It follows
that v ∈ minδQ, since otherwise v 6∈ minδQ̂.

(3) We first observe that φ⊥PPi = φPPi = {(t, R) | t ∈ Domi ∧ R ⊆ NotNext i(t)} and that
φ⊥PPΓ = φPPΓ = {(t, R) | R ⊆ NotNextΓ (t) ∧ (∀i ∈ Γ) t � Bi ∈ Domi}. The proof follows from the
above and the fact that Domi = (αBi)∗ if bi ∈ bid . ut
5 Processes supplied to FDR2 as input must be such that they can be represented operationally by a finite

(variant of a) labelled transition system. Although generic process definitions in this and subsequent sections
— such as PPi(t) — may appear to be parameterized by labels from possibly infinite sets, we assume that there
is a finite equivalence relation over these labels, such that if two processes are parameterized by equivalent
labels then they are semantically equivalent. In fact, the concrete inputs provided to FDR2 will not be
parameterized in such a way — i.e. they will not be parameterized by a particular trace — since the user will
define a single distinct process name to represent the set of processes parameterized by equivalent labels.

12 J.Burton

Corollary 4 The following hold:

1. τ⊥Q̂ ⊆ τ⊥Q.
2. δQ̂ ⊆ δQ.
3. If t ∈ (τ⊥Q \ τ⊥Q̂) then t � in Q 6∈ Domep.
4. If (t, R) ∈ φQ and t � in Q ∈ Domep, then (t, R) ∈ φQ̂.
5. If (t, R) ∈ φQ̂ then there exists (t, X) ∈ φQ such that:

(a) X ⊆ R.
(b) R ∩ αout Q = X ∩ αout Q.
(c) (R ∩ αin Q) \ (X ∩ αin Q) ⊆ NotNextΓ (t).
(d) R ∩ αbid = X ∩ αbid .

We now give a supporting result before giving the main result of this section, that Q meets all of
the conditions of the implementation relation if and only if Q̂ does.

Lemma 5 Let (t, R) and (t, X) be as characterised in corollary 4(5). If bi ∈ bnid is blocked at (t, R)
then it is blocked at (t, X).

Proof. Let bi be blocked at (t, R). We consider each of two cases in turn.
Case 1: bi ∈ out Q̂. By corollary 4(5)(b) we know that R ∩ out Q̂ = X ∩ out Q. Since we know that

αBi ∩R 6∈ ref i(t � Bi) it follows that αBi ∩X 6∈ ref i(t � Bi) and so bi is blocked at (t,X).
Case 2: bi ∈ in Q̂. In this case, if a ∈ (R∩αBi)\(X∩αBi) then t � Bi◦〈a〉 6∈ Domi by corollary 4(5)(c)

and the definition of NotNextΓ . By EP4, we know that if Z ∈ ref i(t � Bi) then Z ∪ {a} ∈ ref i(t � Bi).
Since bi is blocked at (t, R), we know that αBi \ R ∈ ref i(t � Bi). It follows from the above that
αBi \X ∈ ref i(t � Bi) and so bi is blocked at (t, X). ut

Theorem 6. Let P be a specification process. Then Q �ep
ep′ P if and only if Q̂ �ep

ep′ P .

Proof. We first note that if (t, R) ∈ φ⊥Q̂ and (t, X) ∈ φ⊥Q, (t, R) ∈ φDomQ̂ if and only if (t, X) ∈
φDomQ. Likewise, (t, R) ∈ φdomQ̂ if and only if (t, X) ∈ φdomQ.

(=⇒) Let Q �ep
ep′ P . We establish that Q̂ �ep

ep′ P by considering each of the conditions in turn.
DP,GE,TE: The proof follows from corollary 4(1).
DF: The proof follows from corollary 4(2). It follows that φDomQ̂ ⊆ φQ̂ and also φdomQ̂ ⊆ φQ̂. This is
important because corollary 4(5) only refers to stable failures of Q̂.
LC: We consider each bi ∈ bnid in turn and show that if condition LC is not violated in Q by bi then
neither is that condition violated by bi in Q̂. Let (t, R) ∈ φDomQ̂, (t,X) ∈ φDomQ be as characterised
in corollary 4(5) and let bi ∈ bnid . We consider each of two cases in turn.

Case 1: bi is not blocked at (t,X) in Q. It follows from the contrapositive of lemma 5 that bi is not
blocked at (t, R) in Q̂.

Case 2: bi is blocked at (t,X) in Q. In this case it follows that t � Bi ∈ domi and the proof is
immediate.
RE: Let (t, R) ∈ φdomQ̂. We know that (t, R) ∈ φQ̂. Let (t,X) ∈ φQ be as characterised in corollary 4(5).
We also have that (t, X) ∈ φdomQ. By definition of condition RE, it suffices to show that any channel
bi ∈ bnid is blocked at (t, X) in Q if it is blocked at (t, R) in Q̂ and also that R∩αbid = X∩αbid . That the
former requirement is met follows from lemma 5. The latter requirement is met due to corollary 4(5)(d).

(⇐=) Let Q̂ �ep
ep′ P . We establish that Q �ep

ep′ P by considering each of the conditions in turn.
DP,GE,TE: The proof follows from corollary 4(1) and 4(3).
DF: The proof follows from corollary 4(2) and 4(3). It follows that φDomQ ⊆ φQ and also φdomQ ⊆ φQ.
This is important because corollary 4(4) only refers to stable failures of Q.
LC,RE: We prove a contradiction. Assume that (t, R) ∈ φDomQ ((t, R) ∈ φdomQ) is a failure at which
condition LC (RE) is violated in Q. We then have that (t, R) ∈ φQ. By corollary 4(4), we have that
(t, R) ∈ φQ̂ and so (t, R) ∈ φDomQ̂ ((t, R) ∈ φdomQ̂). As a result, condition LC (RE) would be violated
at (t, R) in Q̂ and so we have a contradiction. ut

Compositional Verification using FDR2 13

As a result of the above theorem, we are able to verify that Q is a valid implementation of P
according to the scheme presented here by instead verifying that Q̂ is a valid implementation of P .

Although in the proofs above we have assumed that all of the PPi are composed in parallel before
being combined with Q to generate Q̂, in practice we would compose each PPi with Q in turn, which
is possible due to the associativity of the parallel composition operator. This is desirable since it avoids
the state explosion which might result from composing the (disjoint) PPi in parallel first.

5 Checking conditions DP and DF

We are now in a position to begin checking the first two conditions, DP and DF, which are as follows
(according to theorem 6, we may substitute Q̂ for Q):

DF δQ ∩ τDomQ = ∅.
DP If t ∈ τ⊥Q and t � in Q ∈ Domep then t ∈ τDomQ.

Although the checking of subsequent conditions will allow us to abstract the behaviour of Q̂ and
interpret it in terms of the interface of the specification process P , conditions DP and DF are checked
at the level of abstraction at which Q̂ is expressed. (Condition LC is similar since it, too, makes no
reference to the behaviour of Q̂ after extraction.)

Two checks are carried out to ensure that Q̂ meets conditions DP and DF. The first is a divergence-
freeness check on Q̂, obviously carried out in the failures divergences model. The other check needs
to ensure that τ⊥Q̂ ⊆ Domep∪ep′ . However, since we know by this point that δQ̂ = ∅, we are able to
simply check that τQ̂ ⊆ Domep∪ep′ . As we will construct the processes to represent Domep∪ep′ to be
divergence-free, we can carry out the relevant check in the traces model.

Rather than define a process with the traces of Domep∪ep′ and use it as the specification process in
a refinement check with Q̂, we take the following approach, based on the way in which Domep∪ep′ is
defined in EP6 according to each Domi. As a result, we carry out a refinement check for each relevant
extraction pattern in turn, rather than carrying out a single refinement check. (Note that we need only
carry out the refinement check for non-identity extraction patterns referring to output channels.)

Theorem 7. Q̂ meets conditions DP and DF if and only if δQ̂ = ∅ and, for every t ∈ τQ̂ and every
epi ∈ ep′ such that bi ∈ bnid , t � Bi ∈ Domi.

Proof. (=⇒) Since Q̂ meets conditions DP and DF, we have immediately that if t ∈ τ⊥Q̂ and t � in Q̂ ∈
Domep , then t 6∈ δQ̂. By lemma 3(2), it follows that δQ̂ = ∅. Since δQ̂ = ∅, τQ̂ = τ⊥Q̂ and it follows
by lemma 3(3) that if t ∈ τQ̂, then t � in Q̂ ∈ Domep . Since Q̂ meets condition DP, it follows that if
t ∈ τQ̂ then t ∈ τDomQ̂. By EP6, we have that if t ∈ τQ̂, then, for every epi ∈ ep′, t � Bi ∈ Domi. The
proof follows from the above.

(⇐=) Since δQ̂ = ∅, it follows trivially that Q̂ meets condition DF. It also follows that τQ̂ = τ⊥Q̂.
By this fact, EP6 and the fact that Domi = (αBi)∗ if bi ∈ bid , we have that if t ∈ τ⊥Q̂, then t � out Q̂ ∈
Domep′ . It follows by EP6 and the definition of DP that Q̂ meets condition DP. ut

Corollary 8 If Q̂ meets conditions DP and DF, then τQ̂ = τ⊥Q̂.

We define a separate specification process for each epi ∈ ep′ such that bi ∈ bnid and carry out a
refinement check in the traces model between that specification and Q̂ with all events hidden which are
not in αBi.

We denote the specification process for each epi as DPi and define it as DPi , DPi(〈 〉), where
DPi(t) , 2a∈Next(t)a → DPi(t ◦ 〈a〉). The following result then lets us check conditions DF and DP
using FDR2.

14 J.Burton

Theorem 9. Q̂ meets conditions DP and DF if and only if δQ̂ = ∅ and, for every epi ∈ ep′ such that
bi ∈ bnid , DPi vT Q̂ \ (αQ̂ \ αBi).

Proof. We first observe that τDPi = Domi by a straightforward induction on the traces of DPi (re-
spectively Domi). The proof follows from the above, theorem 7 and the fact that, in the traces model,
{w � Bi | w ∈ τQ̂} = τ(Q̂ \ (αQ̂ \ αBi)). ut

6 Checking condition TE

The condition to be checked is as follows:

TE extrep∪ep′(τDomQ) ⊆ τ⊥P .

When checking this condition, we first assume that Q̂ has already successfully passed the verification
checks for conditions DP and DF. This allows us to derive the following results, appealed to in the
checking of condition TE.

Lemma 10 Assume that Q̂ meets conditions DP and DF. Then τ⊥Q̂ = τQ̂ = τDomQ̂.

Proof. By theorem 7, δQ̂ = ∅ and so τ⊥Q̂ = τQ̂. The proof follows from lemma 3(3) and the fact that
Q̂ meets condition DP. ut

Corollary 11 Q̂ meets condition TE if and only if extrep∪ep(τQ̂) ⊆ τP .

Remember that we assume δP = ∅ and so τ⊥P = τP . Corollary 11 allows us to check condition TE
working only in the traces model and so all results and proofs in the remainder of this section assume
we are working in that model. By virtue of that same corollary, we must generate an implementation
process to be supplied as an input to a refinement check in FDR2 such that it has precisely the extracted
traces of Q̂. This means that we must generate a process context in which to place Q̂ such that the
context encodes the extraction function extr (a function from traces to traces). We show exactly how
to do this below.

Intuitively, the approach is similar to that employed to extract traces in the algorithms given in [4].
For each extraction pattern epi, we define a process TEi, such that, in a sense, each event in the alphabet
of TEi is a pair. One of the events of the pair comes from αBi — i.e. the events from the implementation
alphabet which are interpreted by epi — and the other is either 〈 〉 or an event from αbi — i.e. the
events from the specification which epi can interpret as having occurred after extraction. If we project
the traces from TEi — using renaming — onto the left-hand event of each pair, then we get the traces
of Domi. If we project — using hiding and renaming — onto the right-hand event of each pair then we
get the traces representing extr i(Domi). (Note that the notions of left-hand and right-hand event are
used purely for ease of expression and have no other significance.)

Since CSP has no operator itself which allows direct definition of a function from traces to traces,
then the user must define the process TEi explicitly, rather than simply applying some operator to a
process which encodes Domi (where bi ∈ bnid): that is, the user has to encode the extraction function
explicitly.

6.1 Extraction pattern construction

We now show how to construct the process TEi. The main problem to address is the nature of the events
that will be used — necessarily within the syntax of machine-readable CSP — to represent the pairs of
events described informally above. In machine-readable CSP, events are of the form channelname.dataval,
where dataval is a value of type datatype and datatype is the type of the channel channelname. Note

Compositional Verification using FDR2 15

that datatype may be an empty data type — leaving the channel name as a simple event (in this case,
dataval is not used) — a simple data type or a tuple combining a number of data types. In the event that
the right-hand event of a pair is 〈 〉 then we can simply leave the event as it was originally. However, if
this is not the case, a pair of events have to be encoded by a single event occurring on a single channel.
As a result, we are required to define a number of new channels, with corresponding new data type
extensions: the new data type will represent the data values which may be sent on the original channel,
along with both the channel name and data type of events which may form the right-hand component
of a pair. In general, the approach to be taken will be as follows.

We take a channel from Bi on which an event occurs that forms the left-hand event of a pair as
described above. Assume that this channel has the form chan.dat, where chan is the name of the channel
and dat is the type of the data that it carries. The event which is the right-hand event of the pair will
occur on channel bi and we assume that this event has the form bi.specDat (again, bi is the name of
the channel and specDat is the type of the data that it carries). Then we create a new channel, called
extractchan , where the name of the original channel may be derived from the subscript of the new name.
The data type of this new channel is dat.name.specDat — a data tuple is defined in FDR2 using dot
notation — where name is a data type containing a single value, namely the label of the channel bi.6

If we consider the running example and eptwice introduced in section 3, the trace 〈data.0, ack .yes〉
extracts to 〈mid .0〉, where bi is the channel mid . If it were possible to use the notion of event pairs
directly, we could encode this using the trace 〈(data.0, 〈 〉), (ack .yes,mid .0)〉. Since we cannot use
such pairs directly, in the representation of the extraction pattern this trace would become 〈data.0,
extractack .yes.mid .0〉. (Notice that data.0 remains as the original event since the right-hand component
of the pair of which it was the left-hand component is simply 〈 〉.) As another example, consider the
trace 〈data.0, ack .no, data.0〉, also extracting to mid .0. In this case, using event pairs, we would have
〈(data.0, 〈 〉), (ack .no, 〈 〉), (data.0,mid .0)〉 In the extraction pattern representation the trace would be-
come 〈data.0, ack .no, extractdata .0.mid .0〉. Note that we have both an occurrence of the unchanged
data.0 and also an occurrence of data.0 modified to allow the extraction function to be encoded. Note
also that in machine-readable CSP we cannot have channel names containing subscripts: we use the
device here for the purposes of presentation and, in practice, would have to define channels such as, for
example, extractchan or extractdata.

Renaming functions We now give the renaming functions7 which can be used to reclaim Domi

and extr i(Domi) respectively from τTEi. The renaming domaini will return Domi and extracti will
return extr i(Domi). The functions domaini and extracti are both partial, defined only for those events
which have a non-empty right-hand component. In what follows, we assume that x has the form ex-
tractchan .data.bi.val, where data and val are specific instances of data values; moreover, chan∈ Bi. The
type of extracti is extracti : αTEi ⇀ αbi and it is defined as extracti(x) , bi.val . The type of domaini

is domaini : αTEi ⇀ αBi and it is defined as domaini(x) , chan.data. (Note that these functions are
defined only for values of the form of x and not for values in αBi. However, as with all relations, we
assume that partial functions are extended by the identity mapping for all elements of the domain for
which the function is undefined.)

Defining TEi For each epi such that bi ∈ bnid we encode the extraction function as a process TEi,
where TEi , TEi(〈〉) and

TEi(t) , 2a∈πi(t)a → TEi(t ◦ domaini(a)).

6 Note that the textual representations of the channel name bi as a value of type name and as a channel identifier
are the same; whenever the label is used in what follows, the type of value which it denotes will be clear from
the context.

7 Although, in the general case, we use renaming relations, it happens that these are functions.

16 J.Burton

For ease of expression, the function πi is used here to encode the modifications that must be made
to the events of αBi, although its effects must be implemented directly in any input supplied to FDR2,
since it cannot be encoded as such in CSP (see the example below in section 6.2). We have πi(t) ,
{λi(a, t) | a ∈ Next i(t)}, where

λi(a, t) ,


a if extr i(t) = extr i(t ◦ 〈a〉)

extractchan .data.bi.val if extr i(t) ◦ 〈e〉 = extr i(t ◦ 〈a〉), where
a = chan.data and e = bi.val.

Observe that λi(a, t) simply returns a if the extraction of t is identical to the extraction of t ◦ 〈a〉.
In this case, the relevant event pair in τTEi would have a as the left-hand component and 〈 〉 as the
right-hand component. In the other case — namely that the extraction of t is a strict prefix of the
extraction of t ◦ 〈a〉 — we are effectively encoding the fact that a is the left-hand component of the
event pair and e is the right-hand component.

We now give a lemma which formalises the fact that τ(TEi[domaini]) = Domi and τ((TEi[extracti])\
αBi) = extr i(Domi).

Lemma 12 The following results hold:

1. If w ∈ τTEi then domaini(w) ∈ Domi.
2. If t ∈ Domi, there exists w ∈ τTEi such that domaini(w) = t.
3. If w ∈ τTEi, then (extracti(w)) \ αBi = extr i(domaini(w)).

Proof. (1) The proof is a straightforward induction on the length of w using the definitions of πi and
domaini.

(2) The proof in this case is a straightforward induction on the length of t using the definitions of
πi and domaini.

(3) The proof is once more a straightforward induction on the length of w, this time using the
definitions of πi, domaini and extracti. In addition, extr i(domaini(w)) is well-defined by part (1) of the
lemma. ut

We now define renaming functions domain and extract as follows:

domain ,
⋃
i∈I

domaini and extract ,
⋃
i∈I

extracti.

Note that domain and extract are well-defined by the disjointness of αBi and αBj when i 6= j. It is
unnecessary to define processes TEi for the identity extraction patterns epi, where bi ∈ bid , since for
traces over events in αBi = αbi, the extraction mapping, extr i, is simply the identity mapping. We thus
define TEI as:

TEI ,‖i∈I TEi.

Although it may not be immediately obvious, the alphabets of distinct TEi are disjoint. This dis-
jointness — which is due to the disjointness of the αBi and also the disjointness of the αbi — can be
easily observed from the following lemma.

Lemma 13 αTEi = A1 ∪A2, where:

– A1 , {a | a ∈ αBi ∧ ((∃t) t ◦ 〈a〉 ∈ Domi ∧ extr i(t) = extr i(t ◦ 〈a〉))} and
– A2 , {extractchan .data.bi.val | (∃a = chan.data ∈ αBi, e = bi.val ∈ αbi, t ∈ Domi) t ◦ 〈a〉 ∈

Domi ∧ extr i(t) ◦ e = extr i(t ◦ 〈a〉)}.

Proof. The proof is immediate from the definitions above of πi and λi. ut

Corollary 14 If i 6= j then αTEi ∩ αTEj = ∅.

Compositional Verification using FDR2 17

Extracting the traces of Q̂ Once TEI has been defined, we wish to compose it in parallel with Q̂
before applying the hiding and renaming which will mimic the application of the extraction mapping.
In order for Q̂ to synchronize with TEI , we have to rename its events: each event of Q̂ is renamed to all
those events in αTEI of which it might form the left-hand component. If an event may only form the
left-hand component of an event pair where the right-hand component is the empty trace, then we do
not need to rename that event at all.

We now define the renaming, prep : αBI × αTEI , which is applied to Q̂ (see section 6.2 for the
renaming prep used when verifying condition TE for the processes which appear in the running example).
If a ∈ αBi:

prep(a) , {extractchan .data.bi.val | a = chan.data ∧ extractchan .data.bi.val ∈ αTEi} ∪ ({a} ∩ αTEi).

The final clause of the above definition is simply to ensure that any event a is also renamed to itself
where necessary.

We now give the definition of the process, INTERP, which, in the traces model, has exactly the
traces of Q̂ after extraction:

INTERP , ((Q̂[prep] ‖ TEI)[extract]) \ αBnid .

Lemma 15 (Q̂[prep] ‖ TEI)[domain] =T Q̂.

Proof. (⊆) Let t ∈ τ(Q̂[prep] ‖ TEI)[domain]. Then there exists w ∈ τ(Q̂[prep] ‖ TEI) such that
domain(w) = t. Since αTEI ⊆ αQ̂[prep], we have that w ∈ τQ̂[prep]. It follows by definition of prep
that domain(w) = t ∈ τQ̂.

(⊇) Let t ∈ τQ̂. We know that t ∈ Domep∪ep′ by lemma 10. By lemma 12(2) and EP6, there
exists w ∈ τTEI such that domain(w) = t � Bnid . By definition of prep, it follows that there exists
u ∈ τ(Q̂[prep] ‖ TEI) such that domain(u) = t. ut

Lemma 16 Let w ∈ τ(Q̂[prep] ‖ TEI) and domain(w) = t. Then extract(w) \ αBnid = extrep∪ep′(t).

Proof. By lemma 12(3), extracti(w � αTEi) \ αBi = extr i(domaini(w � αTEi)), for each i ∈ I. By
definition of αTEi and domain, we observe that domain(αTEi) = αBi. From the fact that domaini and
domainj have disjoint ranges for i 6= j, we then have domain(w � αTEi) = domain(w) � domain(αTEi) =
domain(w) � αBi = t � αBi. It follows that extracti(w � αTEi) \ αBi = extr i(t � αBi). Moreover, for all
1 ≤ j ≤ m+n such that j 6∈ I — i.e. bj ∈ bid — we know that extr j(w � αBj) = w � αBj by definition of
the extraction mapping for uninterpreted channels and also that (extract(w) \αBnid) � αBj = w � αBj .
The proof follows from the above and EP7. ut

We are now able to give the final theorem showing how we may check condition TE using FDR2.

Theorem 17. Q̂ meets condition TE if and only if P vT INTERP.

Proof. By corollary 11 we need only prove that extrep∪ep′(τQ̂) ⊆ τP if and only if P vT INTERP.
(=⇒) Assume that extrep∪ep′(τQ̂) ⊆ τP . Let t ∈ τINTERP. Then there exists w ∈ τ(Q̂[prep] ‖ TEI)

such that extract(w) \ αBnid = t. By lemma 15, we have that domain(w) = u ∈ τQ̂. By lemma 16,
t = extrep∪ep′(u). It follows that t ∈ τP and so P vT INTERP.

(⇐=) Assume that P vT INTERP. Let t ∈ τQ̂. By lemma 15, we know there exists w ∈ τ(Q̂[prep] ‖
TEI) such that domain(w) = t. By lemma 16, we know that extract(w) \ αBnid = extrep∪ep′(t)
and so extrep∪ep′(t) ∈ τINTERP. Since P vT INTERP we have that extrep∪ep′(t) ∈ τP and so
extrep∪ep′(τQ̂) ⊆ τP . ut

For ease of expression and manipulation, the above results imply that we would compose the extrac-
tion pattern representations TEi such that i ∈ I in parallel and then compose the result with Q̂. This
would be inefficient, since the composition of the extraction pattern processes, all of which are disjoint,
could be very large indeed. As a result, we would compose each such process with Q̂ individually. We
are able to do this since parallel composition is associative.

18 J.Burton

6.2 Example

Here we show how to apply the results in this section to verify that Bufimple meets condition TE
with respect to Bufspec . (Note that the components defined here could be used equally well without
modification to verify that Sendimple meets condition TE with respect to Sendspec , since condition TE is
not concerned with whether channel bi for extraction pattern epi is an input or an output channel. This
contrasts with condition LC, for example, which does distinguish between input and output channels.)
Let Q̂ be Bufimple after the application of the necessary preprocessing. Let ep1 be eptwice . (Note that
B1 = {data, ack}.) We define the process TE1 as follows:

TE1 , 2x∈{0,1}data.x → ((extractack .yes.mid .x → TE1) 2 (ack .no → extractdata .x.mid .x → TE1)).

We then give the concrete renamings prep and extract1 used in this example:

prep ,


{(ack .yes, extractack .yes.mid .0), (ack .yes, extractack .yes.mid .1),

(data.0, data.0), (data.1, data.1), (ack .no, ack .no),

(data.0, extractdata .0.mid .0), (data.1, extractdata .1.mid .1)}

extract1 ,

{(extractack .yes.mid .0,mid .0), (extractack .yes.mid .1,mid .1),

(extractdata .0.mid .0,mid .0), (extractdata .1.mid .1,mid .1)}

Note that here extract = extract1 and Bnid = B1. Using the process expressions defined here, we were
able to define INTERP as above and verify automatically using FDR2 that Bufimple meets condition
TE with respect to Bufspec .

7 Checking condition GE

The condition to be checked is:

GE If . . . , ti, . . . is an ω-sequence in τDomQ, then . . . , extrep∪ep′(ti), . . . is also an ω-sequence.

Once again we assume that we have successfully verified conditions DP and DF. Checking condition
GE simply requires that we check INTERP for divergence-freeness (and so obviously we work in the
failures divergences model).

Lemma 18 δTEI = ∅, where TEI is as defined in section 6.

Proof. We first have that δTEi = ∅ for i ∈ I since neither the deterministic choice operator nor the
prefix operator can introduce divergence. The proof then follows from the above and the fact that the
parallel composition operator cannot introduce divergence. ut

Theorem 19. Q̂ meets condition GE if and only if δINTERP = ∅.

Proof. In what follows, we extend the renaming relations domain and extract and the mapping extr to
infinite traces in the usual way. (Remember that we assume our input processes are finite state and so
finitely non-deterministic.)

(=⇒) We prove a contradiction. Let t ∈ minδ(INTERP). Since δQ̂ = ∅ by theorem 7, δTEI = ∅
by lemma 18 and neither renaming nor parallel composition can introduce divergence, it follows that
δ((Q̂[prep] ‖ TEI)[extract]) = ∅. It follows that there exists w ∈ τ(Q̂[prep] ‖ TEI) such that w = u◦v and

Compositional Verification using FDR2 19

extract(v) = v ∈ (αBnid)ω (note that domain(w) ∈ τQ̂ by lemma 15). As a result, domain(w) ∈ (αQ̂)ω

while extract(w) \ αBnid is finite and so extrep∪ep(domain(w)) is finite by lemma 16. This means that
condition GE is not met by Q̂ and so we have a contradiction.

(⇐=) Since δINTERP = ∅, we know that there does not exist a trace w ∈ τ(Q̂[prep] ‖ TEI) such
that w = u ◦ v and extract(v) = v ∈ (αBnid)ω. It follows from the above and lemmas 15 and 16 that for
every t ∈ (αQ̂)ω ∩ τQ̂, extrep∪ep′(t) is of infinite length. ut

8 Checking condition LC

The condition to be checked is as follows:

LC If bi ∈ bnid and bi is a channel of P blocked at (t, R) ∈ φDomQ, then t � Bi ∈ domi.

We again assume that conditions DP and DF have been verified successfully by this point. From
this and theorem 7 we can deduce that δQ̂ = ∅ and so φQ̂ = φ⊥Q̂. Below, we transform the check for
condition LC into a check for deadlock freedom on a process derived from Q̂. Since deadlock freedom is
checked in the stable failures model, we are only able to effect this transformation due to the fact that
φQ̂ = φ⊥Q̂ (that is, we do not lose any information on failures by only working in the stable failures
model).

The means used to check condition LC is derived directly from the rationale behind the condition
and is similar in some respects to the use of tester processes in [1], where the question of whether one
process implements another is transformed into a question of deadlock-freedom of the implementation
composed in parallel with the tester process. We first explain what it means that condition LC is met
by a process or processes.

If we take two (implementation) processes M and N which meet condition LC with respect to a
channel bi and compose them in parallel on the channel set Bi, then at any state reachable in the
resulting composed process by a trace t such that t � Bi 6∈ domi, at least one event from Bi will be
synchronized upon and so enabled, meaning that deadlock will not result on that channel set. This is
achieved in the following way. A set of refusal bounds are defined for the process M which is notionally a
sender process with respect to the channels Bi. When behaviour over the channels Bi is incomplete, then
the events refused by M must be contained within one of a set of refusal bounds (the ref i component
of the extraction pattern epi). Or, to put it another way, there are sets of events to be offered and M
must offer all the events in at least one of the sets. The receiver process N must then guarantee that
it offers at least one event from each of the sets of events one of which must be offered in its entirety
by M . This guarantees that the sender (M) and receiver (N) processes (remember that these notions
of sender and receiver are defined here only with respect to the channel set Bi) will synchronize on at
least one event and deadlock will not arise across Bi.

Conversely, if either M or N fails to meet condition LC with respect to the channel set Bi, then
deadlock may arise across Bi when the two processes are composed in parallel. We therefore create a
tester process such that, if our implementation process fails to meet condition LC, then deadlock will
arise across the channel set Bi, in the parallel composition of the tester and the implementation, at some
point where behaviour is incomplete with respect to domi. Finally, in order that we may transform the
checking of condition LC into a check for deadlock freedom across a process as a whole, we must isolate
the refusals of the implementation process with respect to the channel set Bi. This latter fact means
that we check the condition for each extraction pattern in turn — although once more we need not
check the condition for identity extraction patterns — which allows for greater compression since we
hide all events not on the channels Bi.

Transforming the implementation process We now show how to transform the implementation
process Q̂ such that its failures are projected onto αBi (that is, if (t, R) ∈ φQ̂, then (t � Bi, R ∩ αBi) is

20 J.Burton

a failure of the transformed process). Since we may work in the stable failures model, we are able to use
the process DIV, the immediately diverging process, to obscure failures in which we are not interested
without adding behaviours to the resulting process. We are able to do this in the following way.

Let P be a process expression. Then φ(P 2 DIV) = {(t, R) ∈ φP | t 6= 〈 〉}. That this is the case
follows from the definition of 2 in the stable failures model and the fact that the meaning of DIV in
this model is ({〈 〉}, ∅) (the alphabet component is omitted here). In particular, we are able to obscure
failures derived from states where behaviour is complete over the channel set Bi, since condition LC
places no restriction on what may be refused in those situations. This aproach of working in the stable
failures model and (crucially) using DIV is also used in the checking of condition RE.

The following process, PROCi, is such that after any trace we may non-deterministically arrive at
a state which offers all events in αQ̂ but which does not contribute to a failure of PROCi due to the
appearance of DIV in that state. Alternatively, we may arrive at a state which offers all events in αBi

and then takes us to a state that is simply immediately divergent whichever event from αBi we follow.

PROCi , ((2a∈αQ̂a → PROCi) 2 DIV) u (2a∈αBi
a → DIV).

We then compose Q̂ in parallel with PROCi, with the result that, for every failure (t, R) ∈ φQ̂, the
refusal R has αQ̂ \ αBi added to it. This means that the refusal R ∩ αBi will survive the hiding of the
events in αQ̂ \ αBi. This gives us the following process:

Q̂i , (Q̂ ‖ PROCi) \ (αQ̂ \ αBi).

Note in part (2) of the following lemma that (w,X) ∈ φ⊥Q̂, rather than simply φQ̂. This means
that we can look at the meaning of the process expression Q̂ in the stable failures model rather than
in the failures divergences model and yet we will not lose any failures information by doing so (recall
that the conditions of the implementation relation itself are defined in terms of the failures divergences
model). This is the fact that allows us to work only in the stable failures model and thus to transform
the checking of condition LC into a check for deadlock-freedom.

Lemma 20 The following hold of Q̂i:

1. αQ̂i = αBi.
2. φQ̂i = {(t, R) | (∃(w,X) ∈ φ⊥Q̂) t = w � Bi ∧ R ⊆ αBi ∩X}.
3. τQ̂i = {t | w ∈ τQ̂ ∧ t = w � Bi}.

Proof. (1) We observe that αPROCi = αQ̂ and the proof of this part follows immediately.
(2) By theorem 7 and the fact that conditions DP and DF have been met, δQ̂ = ∅ and so φQ̂ = φ⊥Q̂.

We observe that φPROCi = {(t, R) | R ⊆ αQ̂ \αBi}. From this we have that φ(Q̂ ‖ PROCi) = {(t, R) |
(∃(t, X) ∈ φ⊥Q̂) R ⊆ (αQ̂ \ αBi) ∪ (αBi ∩X)}. The proof of this part follows from the above.

(3) We first observe that τPROCi = (αQ̂)∗ and from this we have that τ(Q̂ ‖ PROCi) = τQ̂. The
proof of this part follows from the above. ut

Before going on to define the tester process which will be composed with Q̂i to give a process which
will deadlock if and only if Q̂ does not meet condition LC with respect to channel bi, we first give some
preliminary definitions and results.

8.1 Preliminary definitions and results

The following results and definitions will be used in giving the semantic characterisation of the process
to be composed with Q̂i and to show that it does indeed encode exactly the properties we wish. These
definitions will also be used when we come to consider condition RE. In what follows, the set of maximal

Compositional Verification using FDR2 21

refusal bounds for a particular extraction pattern epi and trace t ∈ Domi is denoted as RM i
t , {R |

R ∈ ref i(t) ∧ (∀R′ ∈ ref i(t)) R ⊆ R′ ⇒ R = R′}.
The mapping Offi : Domi → 2αBi is used to define the possible sets of events one of which must be

offered in its entirety by a receiver process on the channel set Bi after a trace t, t � Bi 6∈ domi, if it is to
meet condition LC with respect to channel bi. That is, it gives all possible sets of events which include
a single event from each set of events one of which must be offered by a sender process over Bi when
its refusals are constrained by ref i. We define

Offi(t) , {Y | Y ⊆ αBi ∧ (∀R ∈ RM i
t)(∃a ∈ Y) a 6∈ R}.

and impose the restriction that all sets in Offi(t) are minimal under the subset ordering.
The mapping RefSetsi : Domi → 2αBi gives the set of events which the tester process to be composed

with Q̂i may refuse after the trace t. Essentially, the set of sets of events returned if bi is an input channel
gives all possible valid refusals for a sender implementation process on the channels Bi after the trace
t has been executed on those channels (where t 6∈ domi) if that implementation process is to meet
condition LC for the channel bi. Likewise, the set of sets of events returned if bi is an output channel
gives all possible valid refusals for a receiver implementation process. We define

RefSetsi(t) ,

{
ref i(t) if bi ∈ in P
{X | (∃Y ∈ Offi(t)) X ⊆ αBi \ Y } if bi ∈ out P

The reason for defining RefSetsi in this way is that, if one composes Q̂i in parallel with a process
with all the traces of Domi and all possible refusals defined by RefSetsi, then the composition will
deadlock if and only if Q̂ fails to meet condition LC with respect to channel bi. Essentially, we check to
see if condition LC is met by placing Q̂i in parallel with a process which refuses as much on the channel
set Bi as may any valid process which meets LC and then see if the circumstances have arisen which
condition LC is specifically designed to prevent: i.e. we see if deadlock has occurred on a channel set Bi

when behaviour over those channels is incomplete.
The following lemma formalises the points from the previous paragraph.

Lemma 21 Let bi be such that bi ∈ bnid . Then bi is blocked at the failure (w,X) if and only if there
exists Z ∈ RefSetsi(w � Bi) such that (αBi ∩X) ∪ Z = αBi.

Proof. In what follows, let t = w � Bi.
(=⇒) Let bi be blocked at (w,X).
Case 1: bi ∈ out P . We know that αBi ∩ X 6∈ ref i(t). Therefore, for every S ∈ ref i(t) there exists

a ∈ αBi ∩ X such that a 6∈ S. It follows that there exists Y ∈ Offi(t) such that Y ⊆ αBi ∩ X. By
definition of RefSetsi we know that Z ∈ RefSetsi(t), where Z = αBi \ (αBi ∩X) ⊆ αBi \ Y . It follows
that Z ∪ (αBi ∩X) = αBi.

Case 2: bi ∈ in P . We know that αBi \X ∈ ref i(t) and so Z ∈ RefSetsi(t) where Z = αBi \X. It
follows that Z ∪ (αBi ∩X) = αBi.

(⇐=) Suppose that there exists Z ∈ RefSetsi(t) such that (αBi ∩X) ∪ Z = αBi. We therefore have
that αBi \X ⊆ Z.

Case 1: bi ∈ out P . Z is such that Z ⊆ αBi\Y for some Y ∈ Offi(t). It follows that αBi\X ⊆ αBi\Y
and so Y ⊆ αBi∩X. By definition of Offi we have that αBi∩X 6∈ ref i(t) and so bi is blocked at (w,X).

Case 2: bi ∈ in P . It follows by definition of RefSetsi(t) that Z ∈ ref i(t) and so αBi \X ∈ ref i(t),
meaning that bi is blocked at (w,X). ut

The next two results are used to relate the failures of the tester process defined in section 8.2 to
RefSetsi.

Lemma 22 Let bi ∈ in P . Then
⋃

R∈RMi
t
{R′ | R′ ⊆ R} = {S | S ∈ RefSetsi(t)}.

22 J.Burton

Proof. The proof follows from the the definition of RefSetsi(t) and the fact that ref i(t) is the subset-
closure of RM i

t . ut

Lemma 23 Let bi ∈ out P . Then
⋂

R∈RMi
t
(
⋃

a∈αBi\R{X ⊆ αBi | a 6∈ X}) = {S | S ∈ RefSetsi(t)}.

Proof. (⊆) Let X ∈
⋂

R∈RMi
t
(
⋃

a∈αBi\R{X | a 6∈ X}). It follows that for every R ∈ RM i
t , there exists

a ∈ αBi \R such that a 6∈ X. As a result, there exists Y ∈ Offi(t) such that Y ∩X = ∅. It follows that
X ⊆ αBi \ Y and so X ∈ RefSetsi(t).

(⊇) Let S ∈ RefSetsi(t). We have that S ⊆ αBi \ Y for some Y ∈ Offi(t). We therefore have that
S ∩ Y = ∅ and so for every R ∈ RM i

t , there exists a 6∈ R such that a ∈ Y and so a 6∈ S. It follows that
for every R ∈ RM i

t there exists a ∈ αBi \ R such that a 6∈ S. The proof in this direction follows from
the above. ut

8.2 The tester process for channel set Bi

We now define the tester process, LCEPi, which has exactly the traces of Domi and exactly the refusals
allowed by RefSetsi. After a trace t 6∈ domi in LCEPi we may arrive non-deterministically at one of two
types of state. At the first are enabled all events which are valid extensions of t with respect to Domi.
This ensures that τLCEPi contains all of the traces of Domi. That this type of state does not contribute
to a failure of LCEPi is ensured by the appearance of DIV as an argument to the deterministic choice
operator. The other type of state is used to generate the refusals which are allowed by RefSetsi(t); after
an event has been executed from one of these second type of state, we proceed to a state which is
equivalent to the immediately diverging process. This means that the second type of state contributes
to a refusal of LCEPi after t but that it contributes no more than that (recall the meaning of DIV in
the stable failures model).

In the event that bi is an input channel, it is relatively straightforward to generate the necessary
refusal sets after t 6∈ domi: to generate a single, maximal refusal set we simply offer the complement of
a maximal set from ref i(t). We then use the non-deterministic choice operator indexed over the set of
maximal sets from ref i(t) to make sure that all of the necessary refusal sets are generated.

In the event that bi is an output channel, we wish to offer, at each relevant state, an event from the
complement of each maximal set in ref i(t): as a result, we index the deterministic choice operator with
the set of maximal sets from ref i(t) and then use the non-deterministic choice operator to pick an event
from the complement of a maximal set.

We first give the definition of LCEPi when bi is an input channel. In this case, LCEPi , LCEPin
i (〈 〉).

LCEPin
i (t) ,


(2a∈Nexti(t)a → LCEPin

i (t ◦ 〈a〉)) 2 DIV if t ∈ domi

((2a∈Nexti(t)a → LCEPin
i (t ◦ 〈a〉)) 2 DIV) u if t ∈ Domi \ domi

(uR∈RMi
t
(2a∈(αBi\R)a → DIV))

We now give the the definition of LCEPi when bi is an output channel. In this case, LCEPi ,
LCEPout

i (〈 〉).

LCEPout
i (t) ,


(2a∈Nexti(t)a → LCEPout

i (t ◦ 〈a〉)) 2 DIV if t ∈ domi

((2a∈Nexti(t)a → LCEPout
i (t ◦ 〈a〉)) 2 DIV) u if t ∈ Domi \ domi

(2R∈RMi
t
(ua∈(αBi\R)a → DIV))

Lemma 24 The following hold of LCEPi:

1. αLCEPi = αBi.
2. φLCEPi = {(t, R) | t ∈ Domi \ domi ∧ R ∈ RefSetsi(t)}.

Compositional Verification using FDR2 23

3. τLCEPi = Domi.

Proof. (1) The proof is immediate.
(2) We consider each of two cases in turn.
Case 1: bi ∈ in P .
Case 1a: t ∈ domi. In this case,
φLCEPin

i (t) = {(〈a〉 ◦ s,X) | a ∈ Next i(t) ∧ (s,X) ∈ φLCEPin
i (t ◦ 〈a〉)}.

Case 1b: t ∈ Domi \ domi. In this case,
φLCEPin

i (t) = {(〈a〉◦s,X) | a ∈ Next i(t) ∧ (s,X) ∈ φLCEPin
i (t◦〈a〉)} ∪

⋃
R∈RMi

t
{(〈 〉, R′) | R′ ⊆ R}.

Case 2: bi ∈ out P .
Case 2a: t ∈ domi. In this case,
φLCEPout

i (t) = {(〈a〉 ◦ s,X) | a ∈ Next i(t) ∧ (s,X) ∈ φLCEPout
i (t ◦ 〈a〉)}.

Case 2b: t ∈ Domi \ domi. In this case,
φLCEPout

i (t) = {(〈a〉 ◦ s,X) | a ∈ Next i(t) ∧ (s,X) ∈ φLCEPout
i (t ◦ 〈a〉)} ∪⋂

R∈RMi
t
(
⋃

a∈αBi\R{(〈 〉, X) | a 6∈ X}).
The proof of this part follows from the above by a straightforward induction on the length of traces

using the definition of Next i, and lemmas 22 and 23.
(3) We consider each of two cases in turn.
Case 1: bi ∈ in P .
Case 1a: t ∈ domi. In this case, we have
τLCEPin

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ Next i(t) ∧ s ∈ τLCEPin
i (t ◦ 〈a〉)}.

Case 1b: t ∈ Domi \ domi. In this case,
τLCEPin

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ Next i(t) ∧ s ∈ τLCEPin
i (t ◦ 〈a〉)} ∪ {〈a〉 | (∃R ∈ RM i

t) a 6∈ R}.
Case 2: bi ∈ out P .
Case 2a: t ∈ domi. In this case we have
τLCEPout

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ Next i(t) ∧ s ∈ τLCEPout
i (t ◦ 〈a〉)}.

Case 2b: t ∈ Domi \ domi. In this case,
τLCEPout

i (t) = {〈 〉}∪ {〈a〉 ◦ s | a ∈ Next i(t) ∧ s ∈ τLCEPout
i (t ◦ 〈a〉)}∪ {〈a〉 | (∃R ∈ RM i

t) a 6∈ R}.
The proof of this part follows from the above by a straightforward induction on the length of traces

using the definition of Next i, the definition of RM i
t and EP4. ut

Note in the above result that we have no stable failure with a trace component t such that t ∈ domi.
This is because condition LC is not interested in what is refused when behaviour over a channel set Bi

is complete.
We are now in a position to define the process, FINALIMPLEi, upon which the check for deadlock-

freedom will be carried out.

FINALIMPLEi , Q̂i ‖ LCEPi.

Theorem 25. Q̂ meets condition LC with respect to channel bi if and only if FINALIMPLEi is deadlock-
free.

Proof. By lemma 24(2) and lemma 20(2) we have that φFINALIMPLEi = {(t, R) | (∃(w,X) ∈ φ⊥Q̂, Y ∈
RefSetsi(t)) t = w � Bi ∧ t 6∈ domi ∧ R ⊆ (αBi ∩X) ∪ Y }. The proof follows immediately from the
above and lemma 21. ut

Corollary 26 Q̂ meets condition LC if and only if, for every epi such that bi ∈ bnid , FINALIMPLEi

is deadlock-free.

The above result allows us to proceed to automatic verification of condition LC.

24 J.Burton

8.3 Example

We now show how to define the relevant process expressions used to verify that Bufimple and Sendimple

respectively meet condition LC. Note that, in both cases, we need only check the condition with respect
to channel mid . We assume ep1 is eptwice (it follows that B1 = {data, ack}).

Verifying Bufimple : In this case, b1 is an input channel. Assume that Q̂ is Bufimple after the application
of preprocessing as described in section 4 and so αQ̂ = αdata ∪ αack ∪ αout . Assume that PROC1

is as defined above, where αB1 = αdata ∪ αack and αQ̂ = αdata ∪ αack ∪ αout . We then have
that Q̂1 , (Q̂ ‖ PROC1) \ αout . We then define the tester process LCEP1 for the extraction pattern
ep1 = eptwice in terms of two auxiliary processes LCEP′1(x) and LCEP′′1(x):

LCEP1 , (2x∈{0,1}(data.x → LCEP′1(x)) 2 DIV

LCEP′1(x) , ((ack .yes → LCEP1 2 ack .no → LCEP′′1(x)) 2 DIV) u
(uR∈{αdata}(2y∈(αB1\R) y → DIV))

LCEP′′1(x) , ((data.x → LCEP1) 2 DIV) u (uR∈{αB1\data.x}(2y∈(αB1\R) y → DIV)).

From these process expressions, we were able to define FINALIMPLE1 for ep1 = eptwice when b1 is
an input channel and check it for deadlock freedom using FDR2, as a result of which we have checked
condition LC for Bufimple .

Verifying Sendimple : In this case, b1 is an output channel. Assume that Q̂ is Sendimple after pre-
processing and so αQ̂ = αdata ∪ αack ∪ αin. Assume that PROC1 is as defined above, where
αB1 = αdata ∪αack and αQ̂ = αdata ∪ αack ∪ αin. We then have that Q̂1 , (Q̂ ‖ PROC1)\αin. We
define the tester process LCEP1 for this extraction pattern in terms of two auxiliary processes LCEP′1(x)
and LCEP′′1(x):

LCEP1 , (2x∈{0,1}(data.x → LCEP′1(x)) 2 DIV

LCEP′1(x) , ((ack .yes → LCEP1 2 ack .no → LCEP′′1(x)) 2 DIV) u
(2R∈{αdata}(uy∈(αB1\R) y → DIV))

LCEP′′1(x) , ((data.x → LCEP1) 2 DIV) u (2R∈{αB1\data.x}(uy∈(αB1\R) y → DIV)).

From these process expressions, we were able to define FINALIMPLE1 for ep1 = eptwice when b1 is
an output channel and check it for deadlock freedom using FDR2, as a result of which we have checked
condition LC for Sendimple .

9 Checking condition RE

Finally we consider how to check condition RE. We assume that, by this stage, all other conditions of
the implementation relation have been successfully verified for Q̂. The condition to be met is as follows:

RE If (t, R) ∈ φdomQ then (extrep∪ep′(t), αB ∪ (R ∩ αbid)) ∈ φ⊥P , where B ⊆ bnid is the set of all
channels of P blocked at (t, R).

Compositional Verification using FDR2 25

From theorem 7 and the fact that conditions DP and DF have been met, we can deduce that δQ̂ = ∅
and so φQ̂ = φ⊥Q̂. Since we require δP = ∅, then we also have that φ⊥P = φP . These two facts allow
us to check condition RE while working only in the stable failures model: they guarantee that we do not
lose any information on the failures of either P or Q by working in that model as opposed to working
in the failures divergences model (remember that the implementation relation itself — and so condition
RE — is defined in the failures divergences model).

According to this condition, there are three major things which we need to do to the implementation
process: we need to extract its traces, identify in some way the channels that are blocked and, finally,
preserve refusals on channels which are uninterpreted. As before, we will convert blocking of a channel
bi into a local deadlock on channel set Bi. This time, however, we cannot isolate the refusals on Bi and
the resulting deadlock will remain local: i.e. it will be a deadlock across a restricted channel set rather
than a deadlock of a process as a whole. Processes similar to the LCEPi defined in section 8 will be used
to convert blocking of channels in P into (local) deadlock across channel sets in Q̂, although there are
two main differences. The first is that the new processes defined here incorporate the features necessary
to extract the traces of Q̂: to do this, they use the approach of section 6 and the processes TEi.

The second difference is to do with making sure that too much is not refused if a channel bi is
not blocked. The following should explain this a little more. We are transforming the process Q̂ so
that it is expressed at the level of abstraction of the specification process P and wish the resulting
abstracted process to refine P (in the stable failures model) if and only if Q̂ meets condition RE. Since
RE stipulates no requirements for refusals on channels bi ∈ bnid if bi is not blocked in Q̂, we need to
make sure that our abstracted implementation process refuses as little as the specification might refuse
on bi after any particular trace. This means that the abstracted implementation process needs to offer
all events which are valid extensions according to τP of the extracted trace which brought us to this
point (in the abstracted implementation). To do this would be rather difficult and there is a much easier
way to proceed, which is taken here.

We first modify the specification process P — yielding P̂ ′ — using the approach of section 8 of
combining DIV with the non-deterministic choice operator to give two types of state, one to give the
traces of the new process P̂ ′ and the other to give the failures. At each state contributing to the failures
of the process, we simply need to know whether or not everything is refused on any channel bi such that
bi ∈ bnid . We therefore rename any event offered on such a bi to a distinguished event, di. (We define
dI , {di | i ∈ I}.) As a result, rather than offering or refusing events on bi, the process simply refuses or
accepts the event di. However, in order for this renaming to di to be carried out without interfering with
the events which contribute to the traces of the new specification process, the events from αbi which
give the refusals of the specification are primed and it is these primed events which are renamed.

As a consequence of this, rather than having to ensure that our (modified) implementation process
either refuses everything on Bi if bi is blocked or otherwise offers as much on bi as is consistent with the
traces of the specification, we either refuse the event di if bi is blocked or offer di otherwise. This also
means that we must prime events in the implementation in the same way as in the specification.

In addition, we make sure that every t ∈ τP can be extended by any event di, since otherwise the
traces of our constructed implementation process may fail to be contained in those of our constructed
specification: this is because if a channel bi is not blocked in Q̂ then it is ignored by condition RE, while
this fact of non-blocking will give rise to the occurrence of an event di in the constructed implementation
process.

9.1 Preprocessing the specification

We first show how the specification process P must be preprocessed in order that it has the necessary
semantic characterisation. To do this, we define two renaming relations which will be used to “prime”
events, along with one to rename primed events on either αBi or αbi such that bi ∈ bnid to di.

The relations p and prime are defined for events a such that a ∈ αBi or a ∈ αbi, where bi ∈ bnid .

26 J.Burton

prime(a) , a′ and p(a) , {a, a′}.

If a ∈ prime(αBi) or a ∈ prime(αbi), where bi ∈ bnid :

m(a) , di.

The act of priming an event cannot be done directly in (machine-readable) CSP and so the approach
taken is as follows. We take the event to be primed and define a new channel with the same type as
the original and whose name is a concatenation of the original name and some other “reserved” word,
such as prime. The new event will then occur on the new channel, whilst communicating the same
data value as the old event. For example, if we were to “prime” the event data.0, the result could
be dataprime .0 (see section 9.5 for further examples). Note, of course, that we would not be able to
use channel names containing subscripts in machine-readable CSP: they are used here simply for the
purposes of presentation and, in practice, we would use something like dataprime.

The specification process is redefined as P̂ using p:

P̂ , P [p].

The process PROC is then defined which will be composed in parallel with P̂ in order to separate
its states into those which contribute traces and those which contribute failures in the stable failures
model.

PROC , ((2a∈αbnid
a → PROC)) 2 DIV) u (2a∈prime(αbnid)a → DIV)

u ((2y∈dI
y → DIV) 2 DIV).

PROC is then composed in parallel with P̂ , with the result having the renaming function m applied
to it to give the process NEWSPEC. This process will be used as a specification process in the refinement
check used to check condition RE.

P̂ ′ , P̂ ‖ PROC and NEWSPEC , P̂ ′[m].

For X such that (t, X) ∈ φ⊥P for some t, we define D(X) , {di ∈ dI | αbi ⊆ X}. Note by definition
of dI that if di ∈ D(X) then bi ∈ bnid .

Lemma 27 The following hold of NEWSPEC:

1. αNEWSPEC = αP ∪ dI .
2. φNEWSPEC = {(t, R) | (∃(t, X) ∈ φ⊥P) R ⊆ (X ∩ αbid) ∪D(X) ∪ αbnid}.
3. τNEWSPEC = τP ∪ {t ◦ 〈di〉 | t ∈ τP ∧ di ∈ dI}.

Proof. (1) We have that αP̂ = αP ∪ prime(αbnid) and αPROC = αbnid ∪ prime(αbnid) ∪ dI . From this
we have that αP̂ ′ = αP ∪ prime(αbnid)∪ dI and the proof of this part follows from the definition of m.

(2) We first have that
φP̂ = {(t, R) | (∃ (w,X) ∈ φP) p−1(t) = w ∧ R ⊆ X ∪ prime(X ∩ αbnid)}. We then observe that

– φ((2a∈αbnid
a → PROC) 2 DIV) = {(〈a〉 ◦ s,R) | a ∈ αbnid ∧ (s,R) ∈ φPROC}.

– φ(2a∈prime(αbnid)a → DIV) = {(〈 〉, R) | R ⊆ αbnid ∪ dI}. (In order to determine the events which
are refused here, we assume that α(2a∈prime(αbnid)a → DIV) = αPROC.)

– φ((2y∈dI
y → DIV) 2 DIV) = ∅.

Compositional Verification using FDR2 27

It follows that φPROC = {(t, R) | t ∈ (αbnid)∗ ∧ R ⊆ αbnid ∪ dI}. From the above we have that
φP̂ ′ = {(t, R) | (∃(t, X) ∈ φP) R ⊆ (X ∩ αbid) ∪ prime(X ∩ αbnid) ∪ αbnid ∪ dI}. The proof of this
part follows by the definition of m, the semantic definition of the renaming operator (see section A in
the appendix and recall that m−1(di) = prime(αBi) ∪ prime(αbi)) and the fact that φ⊥P = φP since
δP = ∅.

(3) We first have that τP̂ = {t | p−1(t) ∈ τP}. We then observe that

– τ((2a∈αbnid
a → PROC) 2 DIV) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ αbnid ∧ s ∈ τPROC}.

– τ(2a∈prime(αbnid)a → DIV) = {〈 〉} ∪ {〈a〉 | a ∈ prime(αbnid)}.
– τ((2y∈dI

y → DIV) 2 DIV)) = {〈 〉} ∪ {〈a〉 | a ∈ dI}.

It follows that
τPROC = (αbnid)∗ ∪ {t ◦ 〈a〉 | t ∈ (αbnid)∗ ∧ a ∈ prime(αbnid)}

∪ {t ◦ 〈di〉 | t ∈ (αbnid)∗ ∧ di ∈ dI}.
From the above we have that
τP̂ ′ = τP ∪ {t ◦ 〈a〉 | t ◦ 〈b〉 ∈ τP ∧ b ∈ αbnid ∧ a = prime(b)}

∪ {t ◦ 〈di〉 | t ∈ τP ∧ di ∈ dI}.
The proof of this part follows by the definition of m. ut

9.2 Preprocessing the implementation

It is also necessary to preprocess the implementation Q̂, firstly so that the events in αQ̂ are primed as
necessary and secondly so that they are renamed — i.e. with prep defined in section 6 — in preparation
for the syntactic manipulation that allows the extraction function to be encoded. We therefore define:

Q̂′ , Q̂[p] and Q̂′′ , Q̂′[prep].

9.3 Extracting traces and detecting blocking

We now define a process REi for each non-identity extraction pattern epi, the set of which processes
will be combined with Q̂′′ — the renaming of the implementation process for the purpose of carrying
out the extraction of traces — in order to extract the traces of the implementation and to convert the
blocking, after any trace t ∈ domi, of any channel bi ∈ bnid to a refusal of the event di.

In the first case, we give the definition of the process REi when bi ∈ in P . In this case, REi =
REin

i (〈 〉):

REin
i (t) =


(2x∈πi (t)x → REin

i (t ◦ domain(x))) 2 DIV if t ∈ Domi \ domi

((2x∈πi (t)x → REin
i (t ◦ domain(x))) 2 DIV) u if t ∈ domi

(uR∈RM i
t
(2x∈primei (αBi\R)x → DIV))

We now give the definition of the process REi when bi ∈ out P . In this case, REi = REout
i (〈 〉):

REout
i (t) =


(2x∈πi (t)x → REout

i (t ◦ domain(x))) 2 DIV if t ∈ Domi \ domi

((2x∈πi (t)x → REout
i (t ◦ domain(x))) 2 DIV) u if t ∈ domi

(2R∈RM i
t
(ux∈primei (αBi\R)x → DIV))

We now define the composition in parallel of all of the processes REi such that bi ∈ bnid :

REI ,‖i∈I REi.

28 J.Burton

Lemma 28 The following hold of REI :

1. αREI = prime(αBnid) ∪ prep(αBnid).
2. φREI = {(t, R) | domain(t) ∈ domI ∧ extract(t) \ αBnid = extr I(domain(t))

∧ ((∀i ∈ I)(∃R′ ∈ RefSetsi(domain(t) � Bi)) R ∩ prime(αBi) = prime(R′)}.
3. τREI = {t | domain(t) ∈ DomI ∧ extract(t) \ αBnid = extr I(domain(t))} ∪

{t ◦ prime(a) | (∃bi ∈ bnid) extract(t) \ αBnid = extr I(domain(t))
∧ a ∈ αBi ∧ domain(t) � Bi ∈ domi ∧ domain(t) ◦ 〈a〉 ∈ DomI}.

Proof. (1) The proof follows from the fact that αREi = primei(αBi) ∪ prep(αBi).
(2) We begin by considering each of two cases in turn.
Case 1: bi ∈ in P .
Case 1a: t ∈ Domi \ domi. In this case, we have that
φREin

i (t) = {(〈a〉 ◦ s,X) | a ∈ πi(t) ∧ (s,X) ∈ φREin
i (t ◦ domain(a))}.

Case 1b: t ∈ domi. In this case we have that
φREin

i (t) = {(〈a〉 ◦ s,X) | a ∈ πi(t) ∧ (s,X) ∈ φREin
i (t ◦ domain(a))} ∪⋃

R∈RMi
t
{(〈 〉, R′) | R′ ⊆ prep(αBi) ∪ primei(R)}.

Case 2: bi ∈ out P .
Case 2a: t ∈ Domi \ domi. In this case, we have that
φREout

i (t) = {(〈a〉 ◦ s,X) | a ∈ πi(t) ∧ (s,X) ∈ φREout
i (t ◦ domain(a))}.

Case 2b: t ∈ domi. In this case, we have that
φREout

i (t) = {(〈a〉 ◦ s,X) | a ∈ πi(t) ∧ (s,X) ∈ φREout
i (t ◦ domain(a))} ∪⋂

R∈RMi
t
(
⋃

a∈primei(αBi\R){(〈 〉, X) | a 6∈ X ∧ X ⊆ prep(αBi) ∪ primei(αBi)}).
From a straightforward induction on the length of traces using the above two cases and the definitions

of extracti and πi, and lemmas 22 and 23, we have that
φREi = {(t, R) | domain(t) ∈ domi ∧ extract(t) \ αBi = extr i(domain(t))

∧ (∃R′ ∈ RefSetsi(domain(t))) R ⊆ prep(αBi) ∪ prime(R′)}.
The proof of this part follows from the above and EP5, EP6 and EP7.
(3) We begin by considering each of two cases in turn.
Case 1: bi ∈ in P .
Case 1a: t ∈ Domi \ domi. In this case, we have that
τREin

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ πi(t) ∧ s ∈ τREin
i (t ◦ domain(a))}.

Case 1b: t ∈ domi. In this case, we have that
τREin

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ πi(t) ∧ s ∈ τREin
i (t ◦ domain(a))} ∪

{〈primei(a)〉 | (∃R ∈ RM i
t) a 6∈ R}.

Case 2: bi ∈ out P .
Case 2a: t ∈ Domi \ domi. In this case we have that
τREout

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ πi(t) ∧ s ∈ τREout
i (t ◦ domain(a))}.

Case 2b: t ∈ domi. In this case we have that
τREout

i (t) = {〈 〉} ∪ {〈a〉 ◦ s | a ∈ πi(t) ∧ s ∈ τREout
i (t ◦ domain(a))} ∪

{〈primei(a)〉 | ∃R ∈ RM i
t .a 6∈ R}.

From a straightforward induction on the length of traces using the above two cases and the definitions
of extracti and πi, along with the third clause given in cases 1b and 2b respectively and EP4, we have
that

τREi = {t | domain(t) ∈ Domi ∧ extracti(t) \ αBi = extr i(domain(t))} ∪
{t ◦ prime(a) | domain(t) ∈ domi ∧ extracti(t) \ αBi = extr i(domain(t))
∧ domain(t) ◦ 〈a〉 ∈ Domi}.

The proof of this part follows from the above and EP5, EP6 and EP7. ut

We now define the process FINALIMPLE which will constitute the implementation process supplied
to the refinement check in FDR2 which will check whether or not Q̂ meets condition RE with respect

Compositional Verification using FDR2 29

to P . It is defined in terms of an auxiliary process PREIMPLE simply to make clearer the presentation
of proofs below and also for the purposes of the readability of the definition itself:

PREIMPLE , ((Q̂′′ ‖ REI)[extract]) \ αBnid .

FINALIMPLE , PREIMPLE[m].

We define block(w,X) , {di ∈ dI | bi is blocked at (w,X)}. Remember that if di ∈ dI then bi ∈ bnid .

Lemma 29 The following hold of FINALIMPLE:

1. αFINALIMPLE = αP ∪ dI .
2. φFINALIMPLE = {(t, R) | (∃(w,X) ∈ φdomQ̂) extrep∪ep′(w) = t

∧ R ⊆ (X ∩ αbid) ∪ block(w,X) ∪ αbnid}.
3. τFINALIMPLE = extrep∪ep′(τQ̂) ∪

{t ◦ 〈di〉 | (∃w ◦ 〈a〉 ∈ τQ̂, bi ∈ bnid) extrep∪ep′(w) = t
∧ a ∈ αBi ∧ w � Bi ∈ domi}.

Proof. (1) We observe that αQ̂′ = αQ ∪ prime(αBnid), from which we have that αQ̂′′ = αbid ∪
prime(αBnid) ∪ prep(αBnid). From this and lemma 28(1), we have that α(Q̂′′ ‖ REI) = αbid ∪
prime(αBnid)∪ prep(αBnid). From the above and by definition of extract we have that αPREIMPLE =
αP ∪ prime(αBnid). The proof of this part follows from the above by definition of m.

(2) We first observe that
φQ̂′ = {(t, R) | (∃(w,X) ∈ φ⊥Q̂) p−1(t) = w ∧ R ⊆ X ∪ prime(X ∩ αBnid)}
(remember that φQ̂ = φ⊥Q̂ since δQ̂ = ∅). We then have that
φQ̂′′ = {(t, R) | (∃(w,X) ∈ φ⊥Q̂) p−1(domain(t)) = w

∧ R ⊆ (X ∩ αbid) ∪ prime(X ∩ αBnid) ∪ prep(X ∩ αBnid)}.
From the above, the fact that the extraction mapping is the identity mapping and domi = (αbi)∗ if epi

is such that bi ∈ bnid , and lemma 28(2), we have that
φ(Q̂′′ ‖ REI) = {(t, R) | (∃(w,X) ∈ φ⊥Q̂, Z ⊂ αBnid)

domain(t) = w ∈ domep∪ep

∧ extract(t) \ αBnid = extrep∪ep′(w)
∧ ((∀i ∈ I) Z ∩ αBi ∈ RefSetsi(w � Bi))
∧ R ⊆ (X ∩ αbid) ∪ prime(X ∩ αBnid) ∪ prep(αBnid) ∪ prime(Z)}.

From the above and by definition of extract we have that
φPREIMPLE = {(t, R) | (∃(w,X) ∈ φ⊥Q̂, Z ⊂ αBnid)

w ∈ domep∪ep′

∧ t = extrep∪ep′(w)
∧ ((∀i ∈ I) Z ∩ αBi ∈ RefSetsi(w � Bi))
∧ R ⊆ (X ∩ αbid) ∪ prime(X ∩ αBnid) ∪ αbnid ∪ prime(Z)}.

By lemma 21 and the definition of primei, we have that, if bi ∈ bnid , bi is blocked at (w,X) if and only
if there exists Z ∈ RefSetsi(w � Bi) such that primei(X ∩ αBi) ∪ primei(Z) = primei(αBi). The proof
of this part follows from the above, the definition of m and the semantic definition of the renaming
operator (see section A in the appendix and recall that m−1(di) = prime(αbi) ∪ prime(αBi)).

(3) We first observe that τQ̂′ = {t | p−1(t) ∈ τQ̂}. From this we have that τQ̂′′ = {t | p−1(domain(t)) ∈
τQ̂}. From the above, the fact that the extraction mapping is the identity mapping if epi is such that
bi ∈ bnid and lemma 28(3) we have that
τ(Q̂′′ ‖ REI) = {t | domain(t) ∈ τQ̂ ∧ extract(t) \ αBnid = extrep∪ep′(domain(t))} ∪

{t ◦ prime(a) | (∃w ◦ 〈a〉 ∈ τQ̂, bi ∈ bnid) domain(t) = w
∧ extract(t) \ αBnid = extrep∪ep′(w)
∧ a ∈ αBi ∧ w � Bi ∈ domi}.

30 J.Burton

From the above we have that
τPREIMPLE = extrep∪ep′(τQ̂) ∪

{t ◦ prime(a) | (∃w ◦ 〈a〉 ∈ τQ̂, bi ∈ bnid) extrep∪ep′(w) = t
∧ a ∈ αBi ∧ w � Bi ∈ domi}.

The proof of this part follows from the above. ut

Note from the above result that, if (t, R) ∈ φFINALIMPLE, then t = extrep∪ep′(w) for some trace
w of Q̂ such that w ∈ domep∪ep′ . This is because, due to the definition of condition RE, we are not
interested in what is refused in Q̂ after traces which are not complete.

We now give the final result which lets us check condition RE using FDR2.

Theorem 30. Q̂ meets condition RE if and only if NEWSPEC vF FINALIMPLE.

Proof. (=⇒) We assume that Q̂ has been shown to meet condition RE and prove that NEWSPEC vF

FINALIMPLE under this assumption. Since we know that Q̂ meets condition TE, we know that
extrep∪ep′(τQ̂) ⊆ τP and so it follows from lemma 27(3) and lemma 29(3) that τFINALIMPLE ⊆
τNEWSPEC. We simply have to show, therefore, that φFINALIMPLE ⊆ φNEWSPEC.

Let (t, R) ∈ φFINALIMPLE. By lemma 29(2), there exists (w,X) ∈ φdomQ̂ such that t =extrep∪ep′(w),
R ∩ αbid ⊆ X ∩ αbid and if di ∈ R then bi ∈ bnid is blocked at (w,X). Since Q̂ meets condition RE, we
know that there exists (t, Y) ∈ φ⊥P such that Y ∩ αbid = X ∩ αbid — that is, R ∩ αbid ⊆ Y ∩ αbid —
and if bi ∈ bnid is blocked at (w,X), then αbi ⊆ Y . By lemma 27(2), there exists (t, Z) ∈ φNEWSPEC
such that R ∩ αbid ⊆ Y ∩ αbid = Z ∩ αbid , di ∈ Z if αbi ⊆ Y (that is, if bi is blocked at (w,X)
then di ∈ Z) and αbnid ⊆ Z. It follows from the above and SF3 (see section A in the appendix) that
(t, R) ∈ φNEWSPEC.

(⇐=) We assume that NEWSPEC vF FINALIMPLE and prove that Q̂ meets condition RE under
this assumption. Let (w,X) ∈ φdomQ̂. By lemma 29(2) there exists (t, R) ∈ φFINALIMPLE such that
t = extrep∪ep′(w), R ∩ αbid = X ∩ αbid and di ∈ R if bi ∈ bnid is blocked at (w,X). Since we assume
that φFINALIMPLE ⊆ φNEWSPEC, we have that (t, R) ∈ φNEWSPEC. It follows from lemma 27(2)
that there exists (t, Y) ∈ φ⊥P such that X ∩ αbid = R ∩ αbid ⊆ Y ∩ αbid and if di ∈ R — that is, if
bi ∈ bnid is blocked at (w,X) — then αbi ⊆ Y . The proof in this direction follows from the above and
SF3 (see section A in the appendix). ut

The above result allows us to proceed to automatic verification of condition RE.

9.4 Verification in practice

It is possible to construct the process FINALIMPLE in such a way in practice that we avoid the state
explosion which may arise from first composing in parallel the disjoint processes REi to give REI and
then composing REI in parallel with Q̂′′ (we use this order of composition above for simplicity of
reasoning). By associativity of the parallel composition operator, we have that Q̂′′ ‖ REI = (. . . ((Q̂′′ ‖
RE1) ‖ RE2) ‖ . . .) ‖ RE|I| (where processes, channel sets and renamings are subscripted, it is assumed
that the subscript is taken from the set I and |I| is used to denote the cardinality of I). Due to the way
extract is defined in terms of extracti and since extracti refers only to events in REi, we may push the
extracti components inwards as far as possible over the parallel composition. We may do the same with
the hiding of αBnid and the renaming using m for the same reason and thus have the following result:

(((Q̂′′ ‖ REI)[extract]) \ αBnid)[m] =

((((. . . ((((((((Q̂′′ ‖ RE1)[extract1]) \ αB1)[m]) ‖ RE2)[extract2]) \ αB2)[m]) ‖ . . .)

‖ RE|I|)[extract|I|]) \ αB|I|)[m]

This new order of composition of the necessary component processes means that we keep down the
size of the intermediate processes constructed by FDR2 as FINALIMPLE itself is constructed.

Compositional Verification using FDR2 31

9.5 Example

We now show how the results given above can be used to define inputs to FDR2 to verify automatically
that Bufimple (respectively Sendimple) meets condition RE with respect to Bufspec (respectively Sendspec).

In both cases, let ep1 be eptwice . This is the only non-identity extraction pattern and dI = {d1}.
Also, Bnid = B1 = {data, ack}. We define new channels dataprime , ackprime and midprime with the
same types as data,ack and mid respectively on which will occur the primed events. Note that, in the
definition of PROC (which is the same whichever of the two processes we are checking here), the deter-
ministic choice operator is indexed by x ∈ prime(αmid): although, in this syntactic definition, the set of
events is given and then primed, in practice we would index the operator directly with x ∈ αmidprime

to give an equivalent effect. The renaming prime is defined as:

prime , {(mid .0,midprime .0), (mid .1,midprime .1), (data.0, dataprime .0),
(data.1, dataprime .1), (ack .yes, ackprime .yes), (ack .no, ackprime .no)}.

The renaming p is defined as:

p , {(mid .0,mid .0), (mid .0,midprime .0), (mid .1,mid .1),
(mid .1,midprime .1), (data.0, data.0)(data.0, dataprime .0),
(data.1, data.1), (data.1, dataprime .1), (ack .yes, ack .yes),
(ack .yes, ackprime .yes), (ack .no, ack .no), (ack .no, ackprime .no)}.

The renaming m is defined as:

m , {(midprime .0, d1), (midprime .1, d1), (dataprime .0, d1),
(dataprime .1, d1), (ackprime .yes, d1), (ackprime .no, d1)}.

Using the detail above, NEWSPEC could be constructed for both Bufspec and Sendspec .
In the definition of REi in section 9.3, a choice operator is indexed by R ∈ RM i

t and then a
subsequent choice operator is indexed by x ∈ prime(αBi \R). In practice, as shown below, we actually
index the first operator by prime(R) such that R ∈ RM i

t and the subsequent choice operator is indexed
by x ∈ prime(αBi)\R. This is not important as the two ways of proceeding are equivalent: the former is
used in definitions for ease of expression whilst the latter is used in practice since, in machine-readable
CSP, we cannot actually apply the renaming operator to a set (which is being used to index a choice
operator).

Below, let X , αackprime ∪ {dataprime .0} and Y , αackprime ∪ {dataprime .1}.

Verifying Bufimple : In this case, b1 is an input channel and RE1 for the extraction pattern ep1 = eptwice

is defined in terms of two auxiliary processes RE′1(x) and RE′′1(x):

RE1 , ((2x∈{0,1}data.x → RE′1(x)) 2 DIV) u
(uR∈{X,Y }(2y∈((αdataprime∪αackprime)\R) y → DIV)).

RE′1(x) , (extractack .yes.mid .x → RE1 2 ack .no → RE′′1(x)) 2 DIV.

RE′′1(x) , (extractdata .x.mid .x → RE1) 2 DIV.

Verifying Sendimple : In this case, b1 is an output channel and RE1 for the extraction pattern
ep1 = eptwice is defined in terms of the following two auxiliary processes RE′1(x) and RE′′1(x):

32 J.Burton

RE1 , ((2x∈{0,1}data.x → RE′1(x)) 2 DIV) u
(2R∈{X,Y }(uy∈((αdataprime∪αackprime)\R) y → DIV)).

RE′1(x) , (extractack .yes.mid .x → RE1 2 ack .no → RE′′1(x)) 2 DIV.

RE′′1(x) , (extractdata .x.mid .x → RE1 2 DIV).

Using the components defined above and the renamings extract and prep as described in section 6.2,
we were able to define the necessary process expressions. By supplying them as inputs to FDR2, we
were then able to verify automatically that Bufimple (respectively Sendimple) meets condition RE with
respect to Bufspec (respectively Sendspec).

10 Concluding remarks

We have developed a verification method that allows for automatic compositional verification of networks
of CSP processes in the event that corresponding specification and implementation processes have
different interfaces. Most importantly, we have built that method of verification on top of an existing
industrial strength tool, with all the benefits which that accrues.

Although the approach may seem somewhat unwieldy if a user is required to provide explicitly the
various components used to produce the inputs to FDR2, it is relatively straightforward to automate
production of these inputs from the input which the user must necessarily supply. In other words,
the user supplies the original specification and implementation components, the necessary extraction
pattern representations (not incorporating refusal bound information), the refusal bounds as separate
sets labelled with the state at which they are applied and perhaps an explicit statement of the alphabets
of the various Bi; from these the necessary inputs to FDR2 can be generated automatically. This can
be done by simple processsing of text files, since the inputs to FDR2 are text files. As an example, to
check condition LC, if we are given a process encoding Domi, along with refusal bound information, we
may effectively lay the template provided by process LCEPi over the top of this process encoding Domi

and substitute for any RM i
t in (the syntactic definition of) LCEPi the relevant set of sets denoting the

refusal bounds.
The method presented in this report is currently being used to verify the correctness of asynchronous

communication mechanisms (ACMs) (see, for example, [16]) and, in particular, is being used to help
derive abstract specifications for such mechanisms. Such specifications are useful in reasoning about
systems implemented using ACMs but traditionally only exist in vague forms. Since the method pre-
sented here is compositional, we can use it to verify the correctness of a particular ACM independently
of any context in which it is to be placed, while still basing our notion of correctness on the fact that
the meaning of a process is its meaning when placed in context. This is especially relevant when, as is
the case with ACMs, none of the behaviour of the component will be directly visible once it has been
placed in a system and all internal communication hidden.

Acknowledgements This work was supported by EPSRC studentship no. 99306462. Thanks are also
due to Maciej Koutny for reading numerous drafts of this report and suggesting many useful improve-
ments.

References

1. E.Brinksma: A Theory for the Derivation of Tests. In: Protocol Specification, Verification and Testing, VIII,
S. Aggarwal and K. Sabnani(Eds.). North-Holland (1988) 63–74.

2. S.D.Brookes, C.A. R. Hoare and A. W. Roscoe: A Theory of Communicating Sequential Process. Journal of
ACM 31 (1984) 560–599.

Compositional Verification using FDR2 33

3. S.D.Brookes and A.W.Roscoe: An Improved Failures Model for Communicating Sequential Processes. Proc.
of Seminar on Concurrency, S.D.Brookes, A.W. Roscoe and G. Winskel (Eds.). Springer-Verlag, Lecture
Notes in Computer Science 197 (1985) 281–305.

4. J. Burton, M.Koutny and G.Pappalardo: Verifying Implementation Relations in the Event of Interface
Difference. Proc. of FME 2001: Formal Methods for Increasing Software Productivity, J. N.Oliveira and
P. Zave (Eds.). LNCS 2021 (2001) 364–383.

5. J. Burton, M.Koutny and G.Pappalardo: Implementing Communicating Processes in the Event of Interface
Difference. Proc. of ACSD 2001: Second International Conference on Application of Concurrency to System
Design, A.Valmari and A.Yakovlev (Eds.). IEEE Computer Society (2001) 87–96.

6. J. Burton, M.Koutny and G.Pappalardo: Compositional Verification of a Network of CSP Processes. Tech-
nical Report 757, Dept. of Computing Science, University of Newcastle upon Tyne (2002).

7. FDR2 User Manual : Available at: http : //www.formal.demon.co.uk/fdr2manual/fdr2manual toc.html

8. P.Collette and C.B. Jones: Enhancing the Tractability of Rely/Guarantee Specifications in the Development
of Interfering Operations. Technical Report CUMCS-95-10-3, Department of Computing Science, Manchester
University (1995).

9. M.C.B.Hennessy: Algebraic Theory of Processes. MIT Press (1988).

10. C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall (1985).

11. M.Koutny, L.Mancini and G.Pappalardo: Two Implementation Relations and the Correctness of Commu-
nicated Replicated Processing. Formal Aspects of Computing 9 (1997) 119–148.

12. R.Milner: Communication and Concurrency. Prentice Hall (1989).

13. A.W.Roscoe: Model-Checking CSP. In: A Classical Mind, Essays in Honour of C.A.R. Hoare. Prentice-Hall
(1994) 353–378.

14. A.W.Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J. R. Hulance, D. M. Jackson and J.B. Scattergood:
Hierarchical Compression for Model-checking CSP, or How to Check 1020 Dining Philosophers for Dead-
lock. Proc. of Workshop on Tools and Algorithms for The Construction and Analysis of Systems, TACAS,
U.H. Engberg, K.G. Larsen and A. Skou (Eds.). BRICS Notes Series NS-95-2 (1995) 187–200.

15. A.W.Roscoe: The Theory and Practice of Concurrency. Prentice-Hall (1998).

16. H.R. Simpson: Four-slot Fully Asynchronous Communication Mechanism. IEE Proceedings 137, Pt E(1)
(January 1990) 17–30.

A Operator definitions

We first show how the alphabet of a process may be derived from the alphabets of its components.

α(a → P) = {a} ∪ αP.
α(P 2 Q) = αP ∪ αQ.
α(P u Q) = αP ∪ αQ.
α(P ‖ Q) = αP ∪ αQ.
α(P \A) = αP \A.
α(P [R]) = R(αP).

The traces model In order for a set of execution sequences to be considered a valid process in the
traces model, they must meet a consistency condition:

T1 τP is non-empty and prefix-closed.

The semantics of a process term in the traces model may be derived recursively from the semantics
of its components and the semantic definition accorded to the various operators used to combine those
components.

34 J.Burton

τ(a → P) = {〈 〉} ∪ {〈a〉 ◦ s | s ∈ τP}.
τ(P 2 Q) = τP ∪ τQ.
τ(P u Q) = τP ∪ τQ.
τ(P ‖ Q) = {t | t � αP ∈ τP ∧ t � αQ ∈ τQ}.
τ(P \A) = {t \A | t ∈ τP}.
τ(P [R]) = {t | (∃u ∈ τP) uR∗t}.

The stable failures model The set of failures and traces representing a process in the stable failures
model have to meet the following consistency conditions:

SF1 τP is non-empty and prefix-closed.
SF2 (t, R) ∈ φP ⇒ t ∈ τP .
SF3 (t, R) ∈ φP ∧ S ⊆ R ⇒ (t, S) ∈ φP .
SF4 (t, R) ∈ φP ∧ t ◦ 〈a〉 6∈ τP ⇒ (t, R ∪ {a}) ∈ φP .

The necessary semantic definitions of the various operators in the stable failures model are as follows
(note that the effect of the various operators on the trace component of the model is as described for
the traces model above).

φ(a → P) = {(〈 〉, X) | a 6∈ X} ∪ {(〈a〉 ◦ s,X) | (s,X) ∈ φP}.
φ(P u Q) = φP ∪ φQ.
φ(P 2 Q) = {(〈 〉, X) | (〈 〉, X) ∈ φP ∩ φQ} ∪ {(s,X) | (s,X) ∈ φP ∪ φQ ∧ s 6= 〈 〉}.
φ(P ‖ Q) = {(u, Y ∪ Z) | (∃s, t) (s, Y) ∈ φP ∧ (t, Z) ∈ φQ ∧ s = u � αP ∧ t = u � αQ}.
φ(P \X) = {(t \X, Y) | (t, Y ∪X) ∈ φP}.
φ(P [R]) = {(s′, X) | (∃s) sR∗s′ ∧ (s,R−1(X)) ∈ φP}.

The failures divergences model The set of failures and divergences representing a process in this
model have to meet the following consistency conditions:

FD1 τ⊥P is non-empty and prefix-closed.
FD2 (t, R) ∈ φ⊥P ∧ S ⊆ R ⇒ (t, S) ∈ φ⊥P .
FD3 (t, R) ∈ φ⊥P ∧ t ◦ 〈a〉 6∈ τ⊥P ⇒ (t, R ∪ {a}) ∈ φ⊥P .
FD4 s ∈ δP ∧ t ∈ (αP)∗ ⇒ s ◦ t ∈ δP .
FD5 t ∈ δP ⇒ (t, R) ∈ φ⊥P .

The definitions of the operators in the failures divergences model are as follows:

φ⊥(a → P) = {(〈 〉, X) | a 6∈ X} ∪ {(〈a〉 ◦ s,X) | (s,X) ∈ φ⊥P}.
δ(a → P) = {〈a〉 ◦ s | s ∈ δP}.
φ⊥(P u Q) = φ⊥P ∪ φ⊥Q.
δ(P u Q) = δP ∪ δQ.
φ⊥(P 2 Q) = {(〈 〉, X) | (〈 〉, X) ∈ φ⊥P ∩ φ⊥Q} ∪ {(s,X) | (s,X) ∈ φ⊥P ∪ φ⊥Q ∧ s 6= 〈 〉}

∪ {(〈 〉, X) | 〈 〉 ∈ δP ∪ δQ}.
δ(P 2 Q) = δP ∪ δQ.
φ⊥(P ‖ Q) = {(u, Y ∪ Z) | (∃s, t)(s, Y) ∈ φ⊥P ∧ (t, Z) ∈ φ⊥Q ∧ s = u � αP ∧ t = u � αQ}

∪ {(u, Y) | u ∈ δ(P ‖ Q)}.
δ(P ‖ Q) = {u ◦ v | (∃s ∈ τ⊥P, t ∈ τ⊥Q) u � αP = s ∧ u � αQ = t ∧ (s ∈ δP ∨ t ∈ δQ)}.
φ⊥(P \X) = {(s \X, Y) | (s, Y ∪X) ∈ φ⊥P} ∪ {(s,X) | s ∈ δ(P \X)}.
δ(P \X) = {(s \X) ◦ t | s ∈ δP} ∪ {(u \X) ◦ t | u ∈ (αP)ω ∧ (u \X) is finite

∧ (∀s < u) s ∈ τ⊥P}.
φ⊥(P [R]) = {(s′, X) | (∃s) sR∗s′ ∧ (s,R−1(X)) ∈ φ⊥P} ∪ {(s,X) | s ∈ δP [R]}.
δ(P [R]) = {s′ ◦ t | (∃s ∈ δP) sR∗s′}.

