
3APL Platform
User Guide

Mehdi Dastani

16th November 2006

CONTENTS CONTENTS

Contents
1 3APL Platform 3

2 Software Requirements 3

3 Installation 3

4 User Interface 3
4.1 Messages window . 5
4.2 Agent properties . 5
4.3 Sniffer . 6
4.4 Message sender . 7
4.5 Template agents . 8

5 Getting Started 8
5.1 Loading and Executing a Simple Agent . 9

5.1.1 Program Structure . 9
5.1.2 Loading a Program . 10
5.1.3 Executing a Program . 11
5.1.4 External Prolog Files . 11
5.1.5 List Manipulation in 3APL . 13

5.2 Goal Dynamics . 13
5.3 Communicating Agents . 14

5.3.1 Agent Communication . 14
5.3.2 Service Directory Facilitator . 15

5.4 Shared Environment and External Actions . 17

6 Plugin Developers Guide 19
6.1 Anatomy of a plugin . 19

6.1.1 Overview . 20
6.1.2 Details of Plugin (factory) . 20
6.1.3 Details of Instance (product) . 20
6.1.4 Details of Method . 21

6.2 Example plugin . 21
6.2.1 Description . 21
6.2.2 Sourcecode . 21

2

4 USER INTERFACE

1 3APL Platform
The 3APL platform is an experimental tool, designed to support the development, implementation,
and execution of 3APL agents [2]. It provides a graphical interface through which a user can
develop and execute 3APL agents using several facilities, such as a syntax-colored editor and
several debugging tools. The platform allows communication among agents. The platform can
run on several machines connected in a network such that agents hosted on 3APL platforms can
communicate with each other. More detailed information on the 3APL platform can be found
in [5].

2 Software Requirements
3APL platform has been tested on Windows 98, Windows NT and Windows XP, as well as Linux
and Unix (Solaris). 3APL is written in Java 2 JDK 1_5_0_06, and makes use of the Prolog
engine of JIProlog, which is also written in java. The 3APL package consists of a .jar file that
contains all the class files needed, as well as some examples of 3APL programs. The package needs
approximately 850 KB.

3 Installation
In order to install 3APL Platform you need to follow the next procedure:

• Download the 3apl.zip file from the following URL:

http : //www.cs.uu.nl/3apl/download.html

• Extract the contents of the ZIP-file into a directory. The content consists of a 3apl.jar file
and a directory called example. This directory contains a number of examples that will be
discussed and explained in section 5 of this user guide.

• To start the 3APL platform on Windows, double click the file 3apl.jar, or alternatively,
type java -jar 3apl.jar in a Command Prompt window at the 3apl directory.

• To start the 3APL platform in Mac OS X, double click the file 3apl.jar.

• To start the 3APL platform in Unix or Linux, type java -jar 3apl.jar to a prompt in
the 3apl directory.

The implementation documentation of the 3APL platform can be found at:

http : //www.cs.uu.nl/3apl/docs/aplp− refman/index.html

4 User Interface
When the 3APL platform is started, the user is presented with the window shown in figure 1.
The user should select whether the application is intended to act as a server or as a client. The
server option must be selected the first time the 3APL platform is run. If the user selects the
server option, the application starts a new instance of the name server, which is a part of the JAS
library. The client option can be selected only if the 3APL platform is running as a server already.
When the user selects the client option, the IP of the server with which the (client) platform
should connect must be filled in. Once the choice has been made the application continues and
the user is presented with two windows. The first appearing window with the name blockworld
is a shared environment in which agents can perform actions. This window will be discussed in
details in section 5. The second window is the 3APL platform main window, shown in figure 2.

3

4 USER INTERFACE

Figure 1: The startup dialog

Figure 2: The main window

Left of the main window is a visual tree which represents the agents hosted on this platform.
The leaves of the tree show the names of the agents that are running on the platform. The Agent
Management System (AMS), which is responsible for registration of the hosted agents on the
platform, is also listed. However, AMS is not a real agent, i.e. it cannot be controlled or inspected
by the user. Initially, there are no agents on the platform (except the AMS). On the righthand
side of the name of an agent is an icon displaying the status of this agent. The possible status of
an agent and their representing icons are illustrated in figure 3.

Icon Meaning

3APl program is compiled successfully and the agent is ready.

Agent’s deliberation process is started.

Agent’s deliberation process is stopped.

Agent’s deliberation process is ended.

3APL program cannot be compiled because a syntax error has occurred.

Figure 3: Status icons of agents.

An icon displaying the status of an agent may contain the description of the agent if the agent
has reported its description to the AMS when it is executed. The agent can report its descriptions
to AMS by sending an inform message to it. For instance, a seller agent may inform the AMS

4

4.1 Messages window 4 USER INTERFACE

that he is a seller by performing the following communication action (in the next sections, we will
explain agent communication in more details):

Send(ams, inform, description(seller));

The last icon in Figure 3 can only appear if the 3APL program of the agent is saved after a
modification through which a syntax error is created. Note that the agent has already been loaded
on the platform (see section 4.2 for modifying 3APL programs on the platform). The fact that the
agent was loaded already implies that the program was correctly complied before modification. An
erroneous agent program cannot be loaded on the 3APL platform. The System Messages tab will
display the error message. This tab is generally used to display information about the platform.

4.1 Messages window
If an agent sends a message to another agent or to the AMS, the message will be displayed in the
Communication tab. If the message is addressed to an agent which is also located on the platform,
no HAP (Home Agent Platform) is displayed. The HAP is shown on the Communication tab
whenever an agent receives a message from an agent on another platform, e.g. seller@10.0.0.12.
The System Messages tab is shown in figure 4.

Figure 4: The Communication tab of the 3APL platform.

4.2 Agent properties
The user can select an agent by clicking on the agent’s name (in the visual tree). The “Agent
properties” tab shows the current belief base, goal base, plan base, capabilities, goal planning
rules, and plan revision rules of the agent. If the agent is running, the inference log is filled with
the reasoning steps. The reasoning step includes selection and applications of rules and selection
and execution of plans. These steps form the so-called agent’s deliberation cycle [3]. The Agent
properties tab is shown in figure 5. On the left side of this panel, the control buttons for the
selected agent are located. The functionalities of the control buttons are listed in figure 6.

If the user selects the first button, the agent’s deliberation process commences. The second
button is the same as the first except that the deliberation process commences only for one
deliberation cycle. The user can select the third button to halt the deliberation process at any
time. Editing 3APL programs on the platform can be done by selecting the fourth button. A
syntax highlighting text editor is opened displaying the contents of the agent program. The user

5

4.3 Sniffer 4 USER INTERFACE

Figure 5: The Agent properties panel.

Icon Meaning

Execute the selected agent.

1 Execute the selected agent for one deliberation cycle.

Stop the execution of the selected agent.

Edit the 3APL program of the selected agent.

Recompile the program of the selected agent.

Remove the selected agent from the platform.

Figure 6: Agent status icons.

can now change the program. The changes can then be saved and applied if the 3APL program is
parsed correctly; otherwise a parse errors is generated. If the user wants to reset the configuration
of the agent (i.e., its initial bases are set as specified by the agent program), the user can select
the recompile button which is the fifth button. Finally, the sixth button closes the selected agent
and removes it from the platform. Similar buttons on the top of the window have similar meaning
for multi-agent cases (see section 5.3).

4.3 Sniffer
One of the tools, which can be activated to observe the communication between agents, is the
Sniffer tool. It can be executed by clicking the Sniffer icon located at the top of the main
window. This tool produces an output like displayed in figure 7.

This tool is used to visualize the conversations between the agents on the platform. On the
left side of the sniffer window the loaded agents as well as the AMS are shown. Every message
produces an arrow, with its origin starting at the position of the sender, and its head ending at the
receiver of the message. A performative (speech acts such as inform and request [6]) is displayed
on every arrow. If a user double clicks this performative, the content of the message appears in
an additional message box, as illustrated in figure 8. This message box displays the contents of
the message. We have chosen this form to avoid clutter on the sniffer output window.

6

4.4 Message sender 4 USER INTERFACE

Figure 7: An example output of the Sniffer tool.

Figure 8: An example output of the message box.

4.4 Message sender
Another platform tool available to the user is the custom message sender. Using this tool, the
user can send a message to an agent loaded on the platform. The custom message sender tool is
illustrated in figure 9.

Figure 9: The message sender tool with example data entered.

All message parameters must be filled in by the user, i.e., the sender and the receiver of the
message, which can be selected from a list of agents currently on the platform, the performative
of the message, and the content of the message, which is a belief formula. When the user press on
the SEND button, a confirmation dialog will be displayed if the message is successfully sent. The
user can then send other messages or use the CANCEL button to close this tool. Whether a message
sent to the agent will actually be handled depends on several factors. The most important one is
if the agent is running. If it is not, then the message is stored in its message buffer until the agent
becomes active again.

7

4.5 Template agents 5 GETTING STARTED

4.5 Template agents
If the user selects Add New Agent in the Project menu, a window is shown which is illustrated
in figure 10.

Figure 10: The “Add New Agent” dialog.

The list shown in the Templates window is taken from the templates directory. The templates
are 3APL programs which implement agents with some common abilities, for example seller or
customer. If the user has given a name for the new agent and has selected a template, the agent
will be added to the platform with the chosen name. The agent program is a copy of the selected
template program with the exception of the first instruction which is program NAME instruction.
This has been filled with the name of the agent the user has given in the agent name field. Users
can add their own templates. In order for this to work, the template program must be placed
in the templates directory. A copy of the template will be created. The name of the new agent
is taken from the Agent name field as shown above in figure 10. This name will replace every
occurrence of "%1" in the program. This means that a template must have a first sentence such
as: program "%1".

5 Getting Started
In this section we show by examples how the 3APL platform can be used. In particular, we discuss
simple examples of 3APL programs to show the meaning of the control buttons, manipulations of
the agent’s belief base, goal base, and plan base. Also, we discuss an example of a multi-agent
system where the use of communication action Send, the way to request services of other agents
through the AMS (Agent Management System) agent, and the use of a so called project file are
explained. Finally, we discuss how a shared environment for 3APL agents can be implemented
using external Java programs. The 3APL agents can then execute actions, including sensing
actions, in the shared environment.

It should be noted that we do not present the formal syntax and semantics of the 3APL pro-
gramming language in this user guide. In fact, we assume that the reader is familiar with the
3APL programming language and its formal semantics. A detailed presentation of the 3APL pro-
gramming language and its semantics can be read in [1]. More information on 3APL programming
language can be found in [2–4].

8

5.1 Loading and Executing a Simple Agent 5 GETTING STARTED

5.1 Loading and Executing a Simple Agent
In this section we explain how to write a simple 3APL program.

5.1.1 Program Structure

An example of a simple 3APL program is shown in figure 11. As you can see, this program consists
of five fields, i.e. PROGRAM, CAPABILITIES, BELIEFBASE, GOALBASE, PLANBASE, PG-RULES and
PR-RULES. These words are 3APL dedicated instructions. The basic action names start with
capital letters, goals and beliefs are prolog-like terms, and punctation are used in specific way.
The BNF specification of 3APL programming language can be found at 3APL webpage:

http : //www.cs.uu.nl/3apl/bnf.html

PROGRAM "cleaning"

CAPABILITIES{
{ pos(P) } Goto(R) { NOT pos(P) , pos(R) },
{ pos(P) AND dirty(R) } Vacuum(R) { NOT dirty(R) },
{ pos(P1) AND box(P1)} Movebox(P1,P2) { NOT pos(P1), NOT box(P1), pos(P2), box(P2)},
{TRUE} IsClean() {clean()},
{TRUE} Transported() {transport()}

}

BELIEFBASE{
dirty(room1).
dest(room1).
box(room2).
pos(room3).

}

GOALBASE{ clean(), transport() }

PLANBASE{ }

PG-RULES{
clean() <- dirty(Room) |

{ Goto(Room);
Vacuum(Room);
if not dirty(R) then IsClean()

},
transport() <- box(Room) AND dest(Dest) |

{ Goto(Room);
Movebox(Room,Dest);
if box(Dest) then Transported()

}
}

PR-RULES{}

Figure 11: A simple 3APL program example.

belief base This contains the information of the agent including its general information about
the world as well as specific information about its environment. Beliefs are stored as Prolog
clauses. For example pos(room1) can be used to indicate that the agent believes its current
position is room1. The belief base can be extended with a Prolog program using the LOAD
option (see section 5.1.4 below).

9

5.1 Loading and Executing a Simple Agent 5 GETTING STARTED

capabilities These are mental actions that an agent can perform. The execution of a mental
action updates the agent’s belief base. Capabilities are of the form

{Pre} Capability(t) {Post}

A mental action can be executed if the belief base entails the beliefs corresponding to their
pre-conditions. Like in Prolog, the NOT operator in pre- and post-conditions is interpreted
as negation as failure. The execution of the mental actions implies that the belief base will
entail the beliefs that correspond to their post-conditions after the execution. For example,
the mental action Goto(R) can be executed if the agent is at a position pos(P). After the
execution of the mental action, the position of the agent is not pos(p) anymore, but pos(R).

goal base This contains a set of goals separated by a comma. A goal denotes a state that the
agent wants to achieve. For example, clean() , transport() indicates two goals clean()
and transport(). The first goal indicates that the agent wants to clean the rooms and the
second goal indicates that the agent wants to transport boxes to their destinations. These
are just two examples of basic goals, also called atomic goals. Complex goals can be formed
by conjunction of atomic goals.

plan base The plan base contains a list of plans that the agents wants to perform. Agents can
start with an initial set of plans, but new plans can also be generated during agent executions.
These plans are generated to achieve the agent’s goals. In this example, the initial plan base
is empty.

pg-rule base This rule base contains a list of planning rules, called PG-rules, each indicates
which plan should be generated to achieve a goal. Each pg-rule is of the form

Head ← Guard | Body

If the head of the rule matches an agent’s goal and the belief base of the agent entails the
guard of the rule, then the body of the rule, which is a plan, will be added to the plan base.
In the PG-rules of Figure 11, the accolades { and } are used to indicate the body of the rule.

5.1.2 Loading a Program

Use the menu item Open File to load a 3APL file (see Figure 12). Choose and load the file
cleaning.3apl from the example directory. There are three possibilities after loading a 3APL

Figure 12: Loading a 3APL program program

10

5.1 Loading and Executing a Simple Agent 5 GETTING STARTED

Figure 13: Agent Properties Panel

program. If the program can be parsed successfully, you will see the Agent properties panel, as
in figure 13. Now you can edit the program or execute it directly. However, if there is a syntax
error in the program, the program will not load. Error messages appear in the System Messages
panel. There is also a small possibility that the 3APL program cannot be parsed, without specific
syntax error messages being provided. In that case you must carefully recheck the syntax of your
program.

5.1.3 Executing a Program

If the program cleaning.3apl is loaded successfully, you can execute it by pressing the run button
I on the left hand side of the Agent properties panel. Similar buttons on the top of the window
have similar meaning for multi-agent cases (see section 5.3). You will now see various things
moving. It is best to focus on the plan base. Press the ¥ button to stop the program running.
The button I1 will execute only one deliberation cycle at a time. After execution, you can trace
the execution by means of the Inference Log window at the bottom part of the Agent properties
panel. After a PG-rule is selected, the body of the rule is added to the plan base. After that,
the first basic action is executed. This process of selection and execution continues until all plans
have been executed and no rules are applicable anymore.

If you want to run the program again, you will have to reset the belief base, goal base, and
the plan base. To reset, use the |J button. You can edit the program by clicking the yellow
rr button. After editing, the command Save and recompile in the edit window will reset and
reload the program. The¤ button can be used to remove a program from the Agent properties
panel.

5.1.4 External Prolog Files

External Prolog files can be loaded into the 3APL belief base by means of the LOAD command at
the beginning of a 3APL program. In this way the belief base of an agent is extended with the
clauses defined in that file. These additional clauses will be used to execute test actions and
to check the pre-conditions of mental actions, the guards of the rules, or the conditions of while
loops and if-then-else statements. Since we use JIProlog [8] (a prolog engine written in JAVA),
the standard JIProlog predicates and commands are also directly available in 3APL (see JIProlog

11

5.1 Loading and Executing a Simple Agent 5 GETTING STARTED

user manual [8] for more details).
In order to implement a 3APL agent which employs an external Prolog file, load in the 3APL

platform the file arithmetics.3apl from the examples directory. This program is illustrated in
Figure 14. Execute this 3APL program and observe that the agent has an initial plan, which is a
sequence of three abstract plans. These abstract plans are subsequently refined by applying the
corresponding PR-rules. As you can see, after the application of the first PR-rule, the plan is
refined and executed. The test action times(X,Y,Z)? is then executed, which provides substitu-
tions for the variables X,Y and Z. Note that the predicate times(X,Y,Z) is defined in the external
file cal.pl which is loaded by the LOAD statement. In this (Prolog) file, which is also included in
the examples directory, two other predicates are defined as well: plus and min (see figure 15).

PROGRAM "externalProlog"

LOAD "cal.pl"

CAPABILITIES{

{ TRUE } Multiplies(X,Y,Z) { multiplies(X,Y,Z) },
{ TRUE } Addition(X,Y,Z) { addition(X,Y,Z) },
{ TRUE } Subtraction(X,Y,Z) { substraction(X,Y,Z) }

}

BELIEFBASE{
num1(10).
num2(43).

}

GOALBASE{}

PLANBASE{
{ multiply();add();subtract() }

}

PG-RULES{}

PR-RULES{
multiply() <- num1(X) AND num2(Y) |

{ times(X,Y,Z)?;
Multiplies(X,Y,Z)

},
add() <- num1(X) AND num2(Y) |

{ plus(X,Y,Z)?;
Addition(X,Y,Z)

},
subtract() <- num1(X) AND num2(Y) |

{ min(X,Y,Z)?;
Subtraction(X,Y,Z)

}
}

Figure 14: Arithmetic 3APL program using external Prolog file

Although the Prolog clauses from an external file are part of the belief base, they are not shown
explicitly in the belief base window of the Agent properties panel. The reason for this is method-
ological. External Prolog file will typically contain utilities, like general rules for some problem

12

5.2 Goal Dynamics 5 GETTING STARTED

plus(A,B,C) :- C is A + B.
min(A,B,C) :- C is A - B.
times(A,B,C) :- C is A * B.

Figure 15: Prolog file cal.pl

domain. We expect that these Prolog clauses remain unchanged during execution. The Agent
properties panel is meant to trace changes to the belief base for debugging purposes. Therefore we
decided not to clutter the belief base window with external Prolog clauses which are not meant to
change. For this reason, we consider it bad practice to store dynamic beliefs as part of an external
Prolog file.

5.1.5 List Manipulation in 3APL

The 3APL language does not provide common data-structures like arrays or records. Instead of
records, 3APL uses Prolog facts, which represent data in the belief base of the agent. For example,
an address can be stored as follows:

address(john_baley,15, oxford_road, islington, uk).

Instead of arrays or vectors, 3APL uses Prolog lists. By definition, a list is either an empty list [
], or a complex list such as [H|T],[H1,H2|T] and [[H1|T1],[H2|T2]]. In general, you cannot
access the elements of a list directly. Instead you have to decompose it step-by-step. There are
many possible ways to do this, for example through PR-rules or while construct, as shown in
Figure 16 . The use of PR-rules to access the elements of a list employs two PR-rules: one that
recognizes the empty list, and one that reduces the list. To use while goals for repetition, we must
somehow store the progress of the loop in the belief base of the agent. In this example, this is
achieved by deleting elements from the belief base. If none are left, the loop is done. In order to
run this example, load the 3APL program list.3apl from the examples directory and execute
it. Observe the changes in the belief base and plan base.

5.2 Goal Dynamics
There are five actions in 3APL operating on the goal-base. These actions are designed to add and
remove goals to/from the goal base and test if the goal base entails a goal. The syntax of these
actios are follows:

goalaction ::=
“AdoptGoal(” goal “)” |
“DropGoal(” goal “)” |
“DropAllGoals(” goal? “)” |
goal “!” |
goal “!!”

“AdoptGoal” takes as an argument a grounded goal and adds that goal to the end of the goal-base.
Execution blocks if not all variables in the goal argument have been substituted. “DropGoal” takes
as an argument a goal which may contain free variables. The first goal in the goal-base which is
equivalent with the goal argument is then removed. Execution blocks if such a goal cannot be
found. “DropAllGoals” also takes as an argument a goal which may contain free variables. All
goals in the goal-base that entail the goal argument are removed from the goal-base. If no goal
argument is given to DropAllGoals, the entire goal-base is emptied. DropAllGoals never blocks.
The exclamation marks are used to test the goal-base, just as the question mark is used to test
the belief-base. The variables contained in the test goal are bounded by the terms in the first
matching goal in the goal-base. A double exclamation mark forces an exact match, whereas a

13

5.3 Communicating Agents 5 GETTING STARTED

PROGRAM "list"

CAPABILITIES{
{ list1([H|T]) } Extract([H|T]) { NOT list1([H|T]),list1(T) },
{ TRUE } Add(H) { elem(H)}

}

BELIEFBASE{
list1([john,mary,sue,ellen,bill]).
empty([]).

}

GOALBASE{}

PLANBASE{
{ prloop(); whileloop() }

}

PG-RULES{}

PR-RULES{
prloop() <- list1(L) | loop(L),
loop(L) <- (L = []) | SKIP,
loop(L) <- (L =[H|T]) | { Add(H);loop(T)},
whileloop() <- TRUE |

{
WHILE list1(L) AND NOT empty(L) DO

{Extract(L)}
}

}

Figure 16: List manipulations in 3APL by PR-rules or while goal

single exclamation mark allows the matched goal in the goal-base to contain additional subgoals.
Execution blocks if a match cannot be found.

5.3 Communicating Agents
In multi-agent systems, individual agents must be able to do two things: they must be able to find
other agents that offer some service and they must be able to communicate with one another. To
this end, the 3APL multi-agent platform supports a service directory and communication facilities.
Both of these facilities are implemented as functionalities of AMS.

5.3.1 Agent Communication

Messages from one agent to another agent are delivered by the underlying transport layer, as
shown in 17. The messages themselves have a specific structure, which is compliant with the
FIPA standards for agent communication [6]. The following fields are necessary elements of a
message.

• Receiver (String): identity of the receiving agent
• Performative (String): communicative act type (inform, request, ...)
• Content (WFF): formula that expresses the content of the message

Messages can be sent by the dedicated 3APL capabilities

Send(Receiver, Performative, Content)

14

5.3 Communicating Agents 5 GETTING STARTED

Figure 17: Multi-agent platform architecture

Agents can receive a message in their belief base at each moment in time. When an agent sends
a message to a second agent, then the belief base of the sender is updated with the formula

sent(Receiver, Performative, Content)

and the belief base of the receiver is updated with the formula

received(Sender, Performative, Content)

An example of two agents capable of saying hello to each other is shown in figure 18. These agents
are called harry and sally. Now load both 3APL programs harry and sally from the examples
directory. If you run them, they will start by saying hello and respond to each other’s hello with a
thanks. The process of the message passing can be followed, by two tools provided in the platform,
i.e., the Communication panel tool as shown in figure 4 and the Sniffer tool as shown in figure
7. To see the content of a message, you can double click the message labels.

In the previous example, the agents Harry and Sally were loaded separately. In order not to
load all agents one by one for the next time they are needed, one can save a set of agents as a
project such that they (i.e., the project) can be loaded simultaneously next time. A number of
agents that are loaded on the platform can be saved as a project by the command Save Project
or Save Project As ... under the File menu.

5.3.2 Service Directory Facilitator

In general, a directory facilitator provides yellow page services to agents on a platform. It maintains
a searchable list of services of agents which have been registered. Agents can search the directory
to find another agent that offers a service. A full directory facilitator has not yet been implemented
in the 3APL platform. However, agents can use the agent management system to simulate the
functionality of a directory facilitator.

To register a service, an agent can send an inform message to the AMS, of which the content is a
simple expression of the from description(Service) that describes the service to be announced.
To unregister, the same procedure is used, with NOT added before the description. To request a list
of agents that provide a particular service, an agent can send a query message to the AMS, with
a service description in the content. Suppose we have an agent seller, that wishes to announce to
the AMS that it can sell computers. This agent will execute the communication action:

Send(ams, inform, description(sellcomp))

When the agent seller has no more computers to sell, it can notify the AMS by the action:

15

5.3 Communicating Agents 5 GETTING STARTED

PROGRAM "harry"

BELIEFBASE{
me(harry).
you(sally).

}

GOALBASE{
hello()

}

PLANBASE {}

PG-RULES{
hello() <- you(You) AND NOT sent(You,inform,hello(You)) |

{ Send(You, inform, hello(You)) },
<- me(Me) AND received(You, inform, hello(Me)) AND

NOT sent(You,inform,thanks(You)) |
{ Send(You, inform, thanks(You)) }

}

PR-RULES{}

==
PROGRAM "sally"

BELIEFBASE{
me(sally).
you(harry).

}

GOALBASE{
hello()

}

PLANBASE{}

PG-RULES{
hello() <- you(You) AND NOT sent(You,inform,hello(You)) |

{ Send(You, inform, hello(You)) },
<- me(Me) AND received(You, inform, hello(Me)) AND

NOT sent(You,inform,thanks(You)) |
{ Send(You, inform, thanks(You))}

}

PR-RULES{}

Figure 18: Communicating agents in 3APL

16

5.4 Shared Environment and External Actions 5 GETTING STARTED

Send(ams, inform, NOTdescription(sellcomp))

On the other hand, an agent that wants to buy computers and is therefore looking for a computer
seller, can use a message like:

Send(ams, query, description(sellcomp))

If the AMS finds agents with the required description, it returns a message with a list of agent
names in its content. In the example, this will be a list consisting of one element: [seller]. So
the sender of the query will get the following fact in its belief base:

received(ams, reply, name([seller]))

If the AMS cannot find an agent with the required description, it will return the empty list.

5.4 Shared Environment and External Actions
As explained, 3APL agents can either perform mental actions to update their beliefs or perform
communication actions to communicate with other agents. In addition to mental and communi-
cation actions, 3APL agents can perform external actions with respect to an environment. The
environment of 3APL agents is assumed to be implemented as a Java program. In particular, the
actions that can be performed in this environment are determined by the methods of the Java
program (i.e. the methods specify the effect of those actions in that environment) and the state
of the environment is represented by the data structures of the Java program (i.e. either public or
private). The external actions that can be performed by 3APL agents have the following general
form:

Java(”CLASSNAME”,METHOD,LIST)

where CLASSNAME is the name of the Java Class that implements the environment, METHOD
is the actual action to be performed in the environment, and LIST is a list of returned values. It
is important to note that METHOD is a parameterized method of the java class CLASSNAME
and that LIST is a list of values returned by the METHOD. An example of an external action
is as follows:

Java(”BlockWorld”, east(), L)

where the external action east() is performed in the environment BlockWorld. The effect of this
action is that the positions of the agent in the block world environment is shifted one slot to the
right.

In order to illustrate the use of 3APL external actions consider the 3APL agent envAgent.3apl
shown in figure 19. This agent performs external actions in the "BlockWorld" environment. This
environment is the first window that pops up when the 3APL platform is started (see section 6
for more details on how the environment part of the platform works). The initial plan of this
agent is to enter the block world followed by the abstract plan start. The entering part of the
plan can be achieved by performing the external action enter(4,1,-1), which has the effect that
the agent enters the block world at position (4, 1). The last parameter of the enter action is to
indicate the time-out of the action. The value -1 indicates that the time-out for the action is
infinite; a positive integer would indicate the time-out in milliseconds (see the specification of the
environment actions under the Library item of the Tools menu of the 3APL platform.). The
start abstract plan can be achieved by sensing at each row of the block world for bombs (starting
from the the first row). If there is a bomb on its right block, then the bomb will be moved to its
left block. The sensing action is accomplished by the senseBombs action resulting in the list of
perceivable bombs. The list is then examined to find out if there is a bomb on the right block.
This is done through the Prolog clause called bombAt.pl. If there a bomb on its right block, then
a sequence of external actions are performed in order to go to the bomb, pick it up, going twice
to the left side, dropping the goal there, and going back to the original position. The agent then
moves to the next row and starts the process of moving bombs again.

17

5.4 Shared Environment and External Actions 5 GETTING STARTED

PROGRAM "envAgent"

BELIEFBASE{
bombAt(X,Y,[[X,Y]|T]).
bombAt(X,Y,[[X1,Y1]|T]):-

bombAt(X,Y,T).
}

GOALBASE{}

PLANBASE{
{ Java("BlockWorld", enter(4,1,-1), L) ; start(1) }

}

PG-RULES{}

PR-RULES{
start(Y) <- TRUE |

{
Java("BlockWorld", senseBombs(), BOMBS);
IF bombAt(5,Y,BOMBS) THEN

{
Java("BlockWorld", east(), L);
Java("BlockWorld", pickup(), L);
Java("BlockWorld", west(), L);
Java("BlockWorld", west(), L);
Java("BlockWorld", drop(), L);
Java("BlockWorld", east(), L)

};
Java("BlockWorld", south(), L);
start(Y+1);

}
}

Figure 19: External Actions in BlockWorld environment

Load the 3APL agent envAgent from the examples directory. Load a block world configuration
through the Load from File button under the World menu of the block world environment and
select the blockworld.world from the examples directory (see Figure 20). Execute the 3APL
agent and observe the behavior of the agent. The blue circle around the agent in the environment
indicates the range of its sense actions, i.e., which blocks of the environment the agent can perceive
if it performs a senseBombs action. The sense range can be modified by the Sense Range button
of the block world environment. The list of all actions that the 3APL agents can perform in this
block world is as follows:

void enter(X,Y,C) : Create a agent representation in the environment at position (X,Y). The
time-out of this action is indicated by C milliseconds (or -1 for infinite time).

boolean north() : Move agent on block north.
boolean east () : Move agent on block east.
boolean south () : Move agent on block south.
boolean west () : Move agent on block west.
boolean pickup () : Attempt to take bomb at agents’ current location.
boolean drop () : Attempt to drop bomb at agents’ current location.
ListPar senseTrap () : Sense the position of the bomb trap.
ListPar sensePosition () : Sense the position of the agent.

18

6 PLUGIN DEVELOPERS GUIDE

Figure 20: Block World Window

ListPar senseBombs () : Sense for bombs in the visible area.
ListPar senseStones () : Sense for stones in the visible area.
ListPar senseAgents () : sense for agents in visible area

6 Plugin Developers Guide
The motivation for introducing Plugins to the 3APL platform is to extend the capabilities of the
agents running on the platform with Java programs (external shared environment). The Plugin is a
systematic way to achieve this goal by using it as an interface between the 3APL platform and Java
programs. In particular, the Plugin facilitates the interaction between individual agents running
on the platform and the Java programs. These interactions include method calls from agents to
Java programs and event notification from the platform GUI. The implementation documentation
of a plugin example (i.e. blockworld plugin) can be found at:

http : //www.cs.uu.nl/3apl/docs/blockworld− refman/index.html

6.1 Anatomy of a plugin
Plugins are Java methods, grouped together under a single name: the plugin name. These methods
are callable from the 3apl agent. The agent can pass arguments to these functions and they in
turn can return values.

To create a plugin you need to implement three interfaces.

1. ics.TripleApl.Plugin: factory class

2. ics.TripleApl.Instance: product class

3. ics.TripleApl.Method: plugin method (function).

19

6.1 Anatomy of a plugin 6 PLUGIN DEVELOPERS GUIDE

6.1.1 Overview

At startup, the platform loads all Plugin-implementing classes from the plugins/ directory. It
then queries the found plugin classes for their external functionalities (Java methods) they provide
to individual agents. This is done by the platform through invocation of the method getMethods
of the Plugin interface. The idea behind the plugin is to systematize the relation between agent
platform and external functionalities that can be used by the agents. In particular, the external
functionalities should be linked to the individual agents running on the platform such that the
effect of any change on individual agents (create, reset or remove) on the platform can be realized
on and passed to the corresponding external functionalities. For example, consider a blockworld
as an external functionality in which the agents running on the platform can be present and move
around. In such a case, if the user create, reset or remove an agent on the platform, the agent
should be added to, reset (moved to initial position), or removed from the blockworld environment,
respectively. The effects of the mentioned events (on the platform) are realized by the platform
through invocation of one of the methods in the Plugin interface: createInstance, resetInstance,
and removeInstance.

6.1.2 Details of Plugin (factory)

public interface Plugin {
public List getMethods();
public String toString();
public String getDescription();
public Instance createInstance(String agentName);
public void resetInstance(Instance i);
public void removeInstance(Instance i);

}

List getMethods() This method is called by the platform at startup to get the methods this
plugin provides. It must return a Collection containing Method objects.

String toString() This method must return the name of the Plugin.

String getDescription() This method must return the description of the Plugin.

Instance createInstance(String agentName) This method is called by the platform every
time an agent is added. It must create a new Instance object. That object refers/belongs to the
agent identified by the argument agentName. Note that this name is unique.

void resetInstance(Instance i) Called by the platform when the agent this instance refers to
is reset (that is, the user pressed the “recompile agent” button).

void removeInstance(Instance i) Called by the platform when the agent this instance refers
to is about to be removed from the platform. The instance must take care that all listeners etc
are removed so that it can be garbage collected.

6.1.3 Details of Instance (product)

public interface Instance {
public String toString();

}

String toString() This method should return the agent’s name this instance refers to.

20

6.2 Example plugin 6 PLUGIN DEVELOPERS GUIDE

6.1.4 Details of Method

public interface Method {
public String getName();
public String getDescription();
public List getArguments();
public ListPar execute(Instance instance, ListPar params);

}

String getName() Get the function name. The returned function name is assumed to be unique
across all methods listed by Plugin.getMethods. This method is used by the platform in order to
form an appropriate Java call. For example the name ’sense’, from plugin ’Blockworld’ would map
to a 3APL Java call like this: Java("Blockworld",sense(arg1,arg2,argN),RETURN_VALUE);.

String getDescription() Get function description. This is used to display additional help
information to the user in the 3APL platform interface.

List getArguments() Returns a collection of strings describing the arguments that should be
passed to this method. The number of strings in this list is important as it is used to match the
function calls based on their footprint, e.g. two string will only match a 3APL Java(. . .) call with
two arguments. If less or more arguments are given and no other method with the given number
of arguments exists, the platform will give a “Function not found” exception.

ListPar execute(Instance instance, ListPar params) Called by the platform to execute
this method. The arguments passed are in params, documentation for the ListPar type can be
found in the platform Javadoc generated documentation.

6.2 Example plugin
In this section, the use of the plugin system is illustrated by an example. The implementation is
best understood by examining the source code (see section 6.2.2).

6.2.1 Description

The example is a simple window plugin. It allows each agent to open (at maximum) one window,
write text to it, and close it again. Additionally, we want to hide the window if the agent is reset
or removed. We need three methods:

• windowOpen() If hidden, show the window.

• windowClose() If shown, close the window.

• windowWriteLn(String line) Write a single text line to the window.

Apart from printing “Hello World”, this plugin can actually be somewhat usefull for debugging.

6.2.2 Sourcecode

package windowplugin;

import Javax.swing.*; import Java.awt.BorderLayout; import
Java.util.*; import ics.TripleApl.*;

/************* Plugin *************/ public class WindowPlugin

21

6.2 Example plugin 6 PLUGIN DEVELOPERS GUIDE

implements Plugin
{

Vector _methods = new Vector();

public WindowPlugin() {
_methods.add(new WindowMethod_writeLn());

}

// return a Collection of Method objects this plugin
// provides
public List getMethods () {

return _methods;
}

// return the name of the Plugin
public String toString () {

return "WindowPlugin";
}

// return the description of the Plugin
public String getDescription () {

return "A Window where agents can write text to";
}

// Create a new Instance, the instance refers/belongs
// to a specific agent, identified by that agents name.
public Instance createInstance (String agentName) {

return new WindowInstance(agentName);
}

// Called by the interpreter when the agent this
// instance refers to is reset.
public void resetInstance (Instance agent) {

((WindowInstance)agent).hide();
}

// Called by the interpreter when the agent this
// instance refers to is about to be remove from
// the platform.
public void removeInstance (Instance agent) {

((WindowInstance)agent).dispose();
}

}

/************* Instance *************/
class WindowInstance extends

JFrame
implements Instance

{
// widget to write text into
JTextArea _textArea = new JTextArea();

22

6.2 Example plugin 6 PLUGIN DEVELOPERS GUIDE

// string reference to (unique) agent name
String _agentName;

public WindowInstance(String agentName) {
// set the window title and size
super("Agent ’" + agentName + "’");
setSize(200,200);

// store agent name
_agentName = agentName;

// add textarea (wrapped in scrollpane) to center
getContentPane().setLayout(new BorderLayout());
getContentPane().add(new JScrollPane(_textArea),

BorderLayout.CENTER);

// by default show agent
show();

}

// write line to window
public void writeLn(String line) {

System.out.println("Window writeLn called!");
// add text + newline character
_textArea.append(line + "\n");

// if the window is hidden, show it
show();

}

// get this instance’s agent name
public String toString() {

return _agentName;
}

}

/************* Method *************/ class WindowMethod_windowOpen
implements Method

{
Vector _arguments = new Vector();

public List getArguments () {
// no arguments
return _arguments;

}

public String getName() {
return "windowOpen";

}

public String getDescription () {
return "If hidden, show the window";

}

23

6.2 Example plugin 6 PLUGIN DEVELOPERS GUIDE

public ListPar execute (Instance instance, ListPar arg) {
((WindowInstance)instance).show();

// no return value
return null;

}
}

/************* Method *************/ class
WindowMethod_windowClose

implements Method
{

Vector _arguments = new Vector();

public List getArguments () {
// no arguments
return _arguments;

}

public String getName() {
return "windowClose";

}

public String getDescription () {
return "If shown, close the window";

}

public ListPar execute (Instance instance, ListPar arg) {
((WindowInstance)instance).hide();

// no return value
return null;

}
}

/************* Method *************/ class WindowMethod_writeLn
implements Method

{
Vector _arguments = new Vector();
public WindowMethod_writeLn() {

_arguments.add("The line to write");
}

public List getArguments () {
return _arguments;

}

public String getName() {
return "writeLn";

}

24

REFERENCES REFERENCES

public String getDescription () {
return "Write a single line to the text window.";

}

public ListPar execute (Instance instance, ListPar arg) {
final String string = arg.get(0).toString();
((WindowInstance)instance).writeLn(string);

// no return value
return null;

}
}

/************* Method *************/ class WindowMethod_ readLn
implements Method

{
Vector _arguments = new Vector();
public List getArguments () {

// no arguments
return _arguments;

}

public String getName() {
return "readLn";

}

public String getDescription() {
return "Read text from the text window.";

}

public ListPar execute (Instance instance, ListPar arg) {
final String text = ((WindowInstance)instance).readLn();
final ListPar p = new ListPar();
p.add(new ConstSymPar(text));
return p;

}
}

References
[1] M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-agent systems in

3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin, 2005.

[2] Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, John-Jules Meyer A Programming Lan-
guage for Cognitive Agents: Goal Directed 3APL Proceedings of the First Workshop on Pro-
gramming Multi-agent Systems: Languages, frameworks, techniques, and tools (ProMAS03),
Mehdi Dastani, Jurgen Dix, Amal El Fallah-Seghrouchni (eds.), LNAI 3067, Springer, Berlin,
2004.

[3] Mehdi Dastani and Frank de Boer and Frank Dignum and John-Jules Meyer Programming
Agent Deliberation: An Approach Illustrated Using the 3APL Language Proceedings of The
Second Conference on Autonomous Agents and Multi-agent Systems (AAMAS’03), Melbourne,
Australia, 2003

25

REFERENCES REFERENCES

[4] Mehdi Dastani and Jeroen van der Ham and Frank Dignum Communication for Goal Directed
Agents In Communication in Multi-agent Systems - Agent Communication Languages and
Conversation Policies, Marc-Philippe Huget (ed.), 239-252, LNCS, 2003.

[5] Eric ten Hoeve 3APL Platform Master thesis computer science, Utrecht University, 2003
http://www.cs.uu.nl/3apl/thesis/tenhoeve/EricTenHoeve.pdf

[6] FIPA. FIPA ACL Message Structure Specification. Foundation for Intelligent Physical
Agents,XC00061,2001.

[7] FIPA. FIPA Contract Net Interaction Protocol Specification. Foundation for Intelligent Phys-
ical Agents,SC00029H,2002.

[8] Ugo Chirico. Java Internet Prolog. http://www.ugosweb.com/jiprolog/index.shtml.

26

