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Abstract

Two aspects of parallelism as related to symbolic computing are presented: (1) the

implementation of parallel programs for the factorization of polynomials, and (2) the au-

tomatic derivation and generation of parallel codes for finite element analysis. The former

illustrates the use of parallel programming to speed up symbolic manipulation. The latter

shows how symbolic systems can help create parallel software for scientific computation.

Through these two case studies, the promise of parallelism in symbolic computation is

demonstrated.

1. Introduction

Significant development in parallel processing hardware have taken place in recent

years. There are a wide variety of parallel architectures. A number of parallel pro-

cessors are now available commercially at different price ranges. These parallel systems

include message passing computers, shared-memory multiprocessors, systolic arrays, mas-

sive SIMD machines, as well as multiprocessing supercomputers. Together they promise

to further speed up computations, especially through explicit parallel programming. How-

ever, the full potential of such systems can not be realized without similar advances in

parallel software.

At Kent we have been interested in symbolic computation and in applying parallelism

to realistic problems. Here, we will examine two such efforts: parallel polynomial fac-

torization, and automatic generation of parallel programs for finite element analysis. By

these two case studies, we hope to show that parallelism can speed up symbolic compu-

tations and, on the other hand, symbolic computing techniques can help create parallel
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software. More details can be found in [16] and [17], respectively.

Our presentation focuses on work at Kent. However, the application of parallelism

is a very active research area within the symbolic computation community. The reader

is referred to the proceedings of the International Workshop on Computer Algebra and

Parallelism for more information [6].

2. Parallel Factoring

2.1 Strategy Outline

Consider factoring a univariate polynomial U(x) of degree n > 0 with integer coeffi-

cients into irreducible factors over the integers Z. Without loss of generality, we assume

that U(x) is primitive (gcd of coefficients is 1) and squarefree (no repeated factors) [14].

U(x) is NOT assumed monic and applying a monic transformation on U(x) is not advis-

able. Instead, leading coefficient handling techniques are applied. This speeds up consid-

erably the factoring of non-monic polynomials which occur often in practice, especially

when univariate factoring is used as a sub-algorithm for multivariate factorization.

The polynomial U(x) is first factored modulo a suitably selected small prime p.

U (x) = u1 (x) u2 (x) ... ur (x) mod p (1)

where ui(x) are distinct irreducible polynomials over Zp . We know that r ≥ t, the number

of irreducible factors of U(x) over Z. If U(x) is irreducible mod p, i.e. r = 1, than it is

irreducible over Z. If r > 1, the factors of U(x) mod p are lifted to factors of U(x) mod pe

for e sufficiently large. The actual factors of U(x) over Z can then be derived from these

lifted factors.

If r > t then there are extraneous factors mod p that do not correspond to factors over

Z. Extraneous factors complicate and slow down the lifting process and the recovery of

actual factors.

It is advisable to use a prime that gives a value of r as close to t as possible. The fastest

sequential implementation uses several primes to reduce r. We suggest to compute (1) for

several primes in parallel and to use the information obtained to reduce the number of

factors for the later stages of the factoring process. Factorization modulo each different
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prime is also parallelized by using a parallel Berlekamp algorithm.

Once (1) is computed, we go into the parallel EEZ lifting algorithm using multiple

processes to compute the correction coefficients and to update all factors. Early detection

of true factors will be included with correct handling of the leading coefficient. When

processes are available, the polynomial arithmetic operations required in parallel EEZ

lifting can also be parallelized. After lifting, actual factors can be found in parallel by

simultaneous test divisions and grouping of extraneous factors.

A parallel package called PFACTOR has been implemented in C. PFACTOR takes

an arbitrary univariate polynomial with integer coefficients of any size and produces

• A prime p

• A set of irreducible factors ui(x) mod p

• Information on grouping of extraneous factors for lifting

The output is much simpler if U(x) is found to be irreducible.

To illustrate the parallel operations, the parallel extraction of factors through gcd

operations in the parallel Berlekamp algorithm is presented. Timing data obtained on

the Sequent Balance are also presented. But before we can do that, a few words on the

parallel machines used are in order.

2.2 Shared-Memory Multiprocessors

The PFACTOR package has been implemented on the shared-memory multiprocessor

(SMP) Encore Multimax and later ported to the SMP Sequent Balance. Performance

tests and timing experiments have been conducted on both parallel computers. These

SMPs are relatively common and should be familiar to most students of parallel systems.

Therefore, we will describe them only briefly.

The Encore Multimax at Kent consists of 12 National Semiconductor NS32032 process-

ing elements, each a 32-bit processor capable of executing 0.75 MIPS. The main memory

of 32 MB is shared by all processors. The Multimax has architectural features for fast

memory access and for avoiding bus contention. The Sequent Balance is very similar but

offers 26 processors.
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The Multimax runs under the Umax 4.2 operating system which is compatible with

Berkeley 4.2bsd (and most of 4.3bsd). In addition to all the usual UNIX facilities, Umax

provides multiprocessing, employing all the CPUs available to support concurrent pro-

cesses by running up to 12 (in our case) of them simultaneously. The processors are shared

by all system and user processes.

The C language is extended with parallel features [18] and augmented by parallel

library routines. Programming primitives for allocating shared memory, synchroniza-

tion and timing of parallel processes are provided. An interactive debugger dealing with

multiple processes also exists. The Sequent Balance runs under Dynix, a dual-universe

operating system combining Berkeley 4.2bsd and AT&T system V. The Balance operates

under the same principles while providing a somewhat different set of parallel library

functions.

For both SMPs, parallel activities are initiated in a program by creating child processes

that execute independently but simultaneously with the parent process. Each process is

essentially a separately running program. Communication among a group of cooperating

parallel processes is achieved through shared memory. Data stored in shared memory by

one process are accessible by all related processes with the same shared address space

(Fig. 1). A program can generate many child processes. But if they are going to be

executed in parallel, the total number of processes is limited to the total available CPU’s.

2.3 Parallel Factoring Modulo Different Primes

To obtain factors modulo an appropriate prime in preparation for the EEZ lifting

stage, PFACTOR uses several different primes and performs the following three major

parallel steps in sequence. The output of PFACTOR is the shortest list of factors modulo

the largest prime used.

1. Parallel choice of small primes and load balancing

2. Parallel Berlekamp algorithm on each prime simultaneously

3. Parallel reconciliation of factors

PFACTOR keeps a list of small primes from which several are chosen in parallel to
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Figure 1: Private and Shared Address Spaces

satisfy two conditions: (i) the prime does not divide the leading coefficient of U(x) and

(ii) U(x) stays squarefree modulo the prime. The parallel Berlekamp algorithm involves

• Parallel formation of the (n× n) matrix Q−I [10].

• Parallel triangularization of Q−I to produce a basis of its null space.

• Parallel extraction of factors with greatest common divisor (gcd) computations.

The dimension of the null space of Q−I is r, the number of irreducible factors mod p.

Because r ≥ t, U(x) is irreducible over Z if r = 1. If this is the case for any prime used,

then all other parallel activities are aborted and the entire algorithm terminates.

After the factors are obtained for several different primes in parallel, the results can

be put through a degree compatibility analysis which can infer irreducibility and deduce

grouping of extraneous factors.

2.4 Parallel Implementation of PFACTOR

PFACTOR consists of eight modules written in the C language with parallel exten-

sions, system and library calls on the SMP used. Two input parameters are important in

controlling the parallel activities of PFACTOR.

• procs: the total number of parallel processes to use.
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• k: the total number of primes to use.

For example procs = 9, k = 3 means “factor U(x) mod three different primes, all in

parallel with nine processes”. The primes to use can be specified in the input or generated

by PFACTOR. For simultaneous execution of the processes to take place, the parameter

procs is limited by the number of actual processing elements available to the user. If

procs = 1 then sequential processing is forced which is useful for comparative timing and

debugging purposes. The following cases are considered.

1. If procs = k then procs factorizations are performed in parallel each with one process

and a different prime.

2. If procs < k then the first procs factorizations are performed in parallel each with

one process; then k is set to k − procs. In this case k must be an integral multiple

of procs.

3. If procs > k then all k factorizations are carried out in parallel each with one or

more processes (Fig. 2).

Let us consider case 3 further. If k = 1 then all processes are used for the parallel

Berkekamp algorithm with the given prime. If k > 1, the number of processes assigned

to each finite field factorization is made proportional to the amount of work required in

the Berlekamp algorithm which is roughly pi n
2 log n+n3. Thus, the number of processes

psi used to carry out factoring mod pi is set to the maximum of 1 and
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round

(
(n+ pi) procs

k n+
∑k
i=1 pi log n

)
(2)

for all but the largest prime which gets all the remaining processes. For example, dis-

tributing 11 processes for the four primes 7, 11, 23, and 37, with n = 8 under this scheme

results in 1, 2, 3, and 5 processes for each prime factoring respectively.

2.5 Finding Factors in Parallel

In the parallel Berlekamp algorithm, we first form Q− I and obtain a basis for its null

space in parallel. This is followed by the parallel extraction of factors by gcd operations.

It is this last operation that we will discuss in some detail.

Coming into this part of the computation are a prime p, the polynomial u(x) =

U(x) mod p of degree n, ps the number of processes to use, the dimension r of the null

space which is the number of factors to be found. If r = 1 all parallel processes will

terminate.

At this stage we have a set of r > 1 basis polynomials vi(x), 1 ≤ i ≤ r, in increasing

degree with v1 = 1 and we are ready to perform the gcd computations

gcd (f (x) , vj (x)− s) (3)

for f(x) a divisor of u(x), all vj(x), 1 < j ≤ r and all 0 ≤ s < p. Such computations

are performed until the r irreducible factors of u(x) are found. There are two ways to

parallelize computations for (3).

In the dynamic scheduling scheme, each process can take an f(x) and a vj(x) and

perform all the gcd computations for the different s values. In the beginning, one process

takes on f(x) = u(x) and v2(x) and breaks up u(x) into two factors: a gcd g(x) and a

quotient h(x). The task [g(x), v3(x)] is put on a shared task queue to be picked up by

a second process while the first process continues with gcd operations on h(x). When a

process is finished with its task, it goes back to pick up another on the task queue. If the

task queue is empty, the process has to wait. The job is done when all r factors are found.

This scheme works pretty well when there are many factors to find. The only draw back

is that not enough parallelism is applied in the beginning. It degrades to a sequential
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algorithm if u(x) has only two factors.

Alternatively, the computations required by (3) can be computed by employing all ps

processes for the prime p all the time. In this parallel scheme two lists, facs and nfacs, of

factors of u(x) are kept in shared memory. Initially facs contains only u(x) and nfacs is

empty. For each basis polynomial vj, j > 1 the following is done.

One factor, called the current factor, is removed from facs. Each of the ps processes

computes gcd’s of the current factor (initially u(x)) with the current vj(x)−s for a distinct

subset of s values in parallel. The union of the subsets covers all possible s values. Any

factors found are deposited in the shared list nfacs until either the current factor is reduced

to 1 or all ps processes are finished. By the end of this procedure, one or more factors

whose product is equal to the current factor will have been put on nfacs. Now if facs

is not empty then a new current factor is removed from facs and the procedure repeats.

Otherwise, if facs is empty, then the values of facs and nfacs are interchanged and used

with the next vj(x). The entire process is repeated until r factors are found.

To further illustrate this parallel procedure, we set forth the essential parts of the

parallel C program in the following pseudo code. The code is executed in parallel by

each of the ps processes. Every process has a unique integer process ID, 0 ≤ pid < ps.

Variables in all upper case letters are shared.

par_findfacs(u(x),v1(x),v2(x),...,vr(x),r,pid,ps)

NFACS=(u(x));

FACS=();

foreach v in (v1 ... vr)

{ if (all r factors found) then

break out of foreach loop;

interchange(FACS,NFACS);

par_gcd(FACS,NFACS,v,r,pid,ps);

}

return(concatenate(FACS,NFACS));

par_gcd(FACS,NFACS,v,r,p,id,ps)
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while (FACS not empty)

{ if ( all r factors found ) then return;

cf = remove first factor from FACS;

n = deg(cf); NDEG = 0;

if (cf linear) then { put cf on NFACS; NDEG = NDEG +1; }

else

{ s = p - pid - 1;

while(s >= 0)

{ if (NDEG == n) break out of while loop;

g = gcd(cf,v - s);

if (g != 1) then

{ put g on NFACS; NDEG = NDEG + deg(g);

if (NDEG == n) break out of while loop;

cf = cf/g;

}

s = s - ps;

} /* end of inner while */

} /* end of else */

}

The simplified pseudo code does not show the synchronization or mutual exclusion nec-

essary in a working program. The roles of the shared variables FACS and NFACS are clear.

The shared variable NDEG keeps a running total of the degrees of factors inserted onto

NFACS. When NDEG is equal to n, the original degree of cf, then the current factor is

finished and it is time to process a new cf.

2.6 Performance of PFACTOR

To test the performance of PFACTOR, the degree 40 polynomial, f40(x), in SIGSAM

problem 7 is used [9]. Over Z, f40(x) has four irreducible factors
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a1 (x) = 8192 x10 + 20480 x9 + 58368 x8 − 161792 x7 + 198656 x6

+ 199680 x5 − 414848 x4 − 4160 x3 + 171816 x2 − 48556 x+ 469

a2 (x) = 8192 x10 + 12288 x9 + 66560 x8 − 22528 x7 − 138240 x6

+ 572928 x5 − 90496 x4 − 356032 x3 + 113032 x2 + 23420 x− 8179

a3 (x) = 4096 x10 + 8192 x9 + 1600 x8 − 20608 x7 + 20032 x6

+ 87360 x5 − 105904 x4 + 18544 x3 + 11888 x2 − 3416 x+ 1

a4 (x) = 4096 x10 + 8192 x9 − 3008 x8 − 30848 x7 + 21056 x6

+ 146496 x5 − 221360 x4 + 1232 x3 + 144464 x2 − 78488 x+ 11993

Table 1 and 2 show the timing results obtained by factoring polynomials of increasing

degrees using different number of primes and processes on the Sequent Balance with 26

processors. (See [18] for Encore timings.)

In Table 1 f20 = a1 (x) a2 (x), f30 = a1 (x) a2 (x) a3 (x). Factoring a1(x) mod 11

and 13 yields its irreducibility over Z through degree reconciliation. The primes used are

automatically selected by PFACTOR.

TABLE 1: PFACTOR Timing Results

Polynomial Degree No. factors Primes No. processes Time (secs.)

a1(x) 10 1 11,13 1 0.733075

10 1 11,13 2 0.537024

10 1 11,13 4 0.532023

10 1 11,13 8 0.616446

f20(x) 20 4 (11) 11,13,17 1 4.123983

20 4 (11) 11,13,17 3 1.957521

20 4 (11) 11,13,17 4 1.447737

20 4 (11) 11,13,17 5 1.323721

20 4 (11) 11,13,17 7 1.236876

20 4 (11) 11,13,17 8 1.183241

20 4 (11) 11,13,17 9 1.273457

The effect of additional processes on the speed depends on the size of n, the prime, and

the way a particular problem yields factors in the gcd process. Because of the overhead
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of creating and managing parallel processes together with associated shared memory the

speed gain for small problems is negligible or even negative. Table 2 shows that as the

problem gets larger, the effect of additional parallel processes becomes considerable. But,

because of the large grain size and the available parallelism in the factoring problem, as

programmed, a point is soon reached beyond which adding more processes will not help

much or even slow down the solution. In the timing tables the number of factors and the

prime returned by PFACTOR are indicated.

TABLE 2: PFACTOR Timing Results

Polynomial Degree No. factors Primes No. processes Time (secs.)

f30(x) 30 4 (19) 11,13,17,19 2 8.667184

30 4 (19) 11,13,17,19 4 4.907284

30 4 (19) 11,13,17,19 6 4.076474

30 4 (19) 11,13,17,19 8 3.475885

30 4 (19) 11,13,17,19 9 3.304873

30 4 (19) 11,13,17,19 12 2.837887

30 4 (19) 11,13,17,19 16 2.421841

30 4 (19) 11,13,17,19 20 2.359714

30 4 (19) 11,13,17,19 23 2.242413

40 5 (19) 11,19,29,83 4 24.733351

40 5 (19) 11,19,29,83 8 12.573750

40 5 (19) 11,19,29,83 10 9.283978

40 5 (19) 11,19,29,83 15 6.081470

40 5 (19) 11,19,29,83 16 6.152311

PFACTOR can also be used to simply supply a parallel Berlekamp algorithm on a single

prime by simply specifying the prime and the number of processes to use. TABLE 3

shows the timings of factoring f40 mod (83).
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TABLE 3: Parallel Berlekamp Performance

Polynomial Degree No. factors Prime No. processes Time (secs.)

f40(x) 40 13 83 1 23.161704

40 13 83 2 13.516763

40 13 83 3 10.212376

40 13 83 4 7.960593

40 13 83 5 6.577850

40 13 83 10 4.474641

40 13 83 15 3.831011

40 13 83 20 3.795774

40 13 83 21 3.877265

3. Symbolic Generation of Parallel Programs

Having examined how parallel programs can help speed up polynomial factoring, one

of the central computations in symbolic and algebraic computation, we now turn our

attention to the topic of how symbolic systems can help create parallel software through

automatic program generation.

3.1 Background

Computer scientists and engineers at Kent State and Akron Universities have been

involved in an interdisciplinary investigation of advanced computing techniques for engi-

neering applications. A major focus of this collaboration has been finite element analysis

(FEA) which, of course, has many applications.

Symbolic computation is employed to derive formulas used in FEA. The derived for-

mulas can be automatically fabricated into numeric codes which are readily combined

with existing FEA packages such as NFAP [3] and NASTRAN [5]. The objectives are to

reduce routine but tedious formula manipulations, to avoid mistakes in manual compu-

tations, and to provide flexibility in situations where new formulations, new materials or

new solution procedures are required. The techniques developed however is general and

can be applied to generate programs in many other areas.
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An area of great promise is the development of techniques to exploit parallelism in

engineering computations. For the well-defined area of FEA, our approach to employ par-

allelism is to automatically generate the desired parallel programs based on the problem

formulation. This approach can make parallel software much easier to create for many

specific areas in science and engineering. By building the expertise needed to take ad-

vantage of parallelism into a software system, it is hoped that the powers of advanced

parallel computers can be brought to a larger number of engineers and scientists.

Extending our efforts in the automatic generation of sequential FEA codes, a system

can be built to map key FEA computations onto a given parallel architecture and generate

efficient parallel routines for these computations. For our investigations, we have exper-

imented with the Warp systolic array computer as well as the SMPs. The availability of

these computers at Kent made our research much easier.

Because many FEA problems in practice require super-computing speeds, we have

also extended our investigations to generating Cray Fortran codes to take advantage of

the vectorization and parallel processing capabilities of the multiprocessor Cray comput-

ers. A free-standing code generator, GENCRAY, has been constructed to take derived

formulas and render them into correct CFT77 codes. The GENCRAY system defines an

input language that also allows the specification of parallel executions.

3.2 Generating Parallel FEA Codes

We have access to different types of parallel computers: the Warp [1] systolic array

computer, the SMPs, and the 8-processor CRAY-YMP. We are investigating parallel FEA

on all these machines. Here we will focus the work on the Warp.

The Warp

The Warp machine is a high-performance systolic array computer designed for computation-

intensive applications such as those involving substantial matrix computations. A systolic

array architecture is characterized by a regular array of processing elements that have a

nearest neighbor interconnection pattern. The Warp we used consists of a SUN-3 host

connected, through an interface cluster processor, to a linear systolic array of 10 iden-

tical cells, each of which is a programmable processor capable of performing 10 million
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floating-point-operations per second (10 MFLOPS). A 10-cell Warp, therefore, has a peak

performance of 100 MFLOPS. The Sun-3 host runs under UNIX and provides a parallel

operating and debugging environment [2] for the Warp array. A Pascal-like high-level lan-

guage called W2 [7] is used to program Warp. The language is supported by an optimizing

compiler.

All cells can execute the same program (homogeneous) or different programs (hetero-

geneous). Aside from the per-cell instructions, a cell program also specifies the inter-cell

communication through the use of the send and receive primitives. A send statement

outputs a 32-bit word to the next cell while a receive statement inputs a 32-bit word from

the previous cell. There are two I/O channels X and Y between each pair of neighboring

cells. The first cell can use receive to obtain parameters passed by the host program and

the last cell can use send to return results to the host program. An overview of the Warp

system is shown in Fig. 3.
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Interface
Unit

Host
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Figure 3: Overview of Warp System

Finite Element Analysis on the Warp

We can map key portions of finite element computations onto the Warp array. The

generated cellprograms run under the control of a C program that is also generated. At

run time, the C program initiates Warp executions when requested by a generated f77

code module that is invoked by a large existing finite element analysis package, NFAP.
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We have ported NFAP to run under the SUN-3. The generated f77 module prepares input

data that are passed to the cellprograms through the C program. Results computed by the

cellprograms are passed back through the C program as well. Fig. 4 shows the relations

between these program modules.

Cellprogram 1 . . . Cellprogram n

Generated C
module

Generated f77
module

NFAP

- --

�

?

6

?

6

Figure 4: Program Interfaces

Finite element analysis is computation-intensive. It involves repetitions of the same

algorithm for all the elements covering a given problem domain. Major computational

tasks include discretization of the problem domain into many finite elements, comput-

ing the strain-displacement matrix and the stiffness matrix for each element, assembling

the global stiffness matrix and its subsequent solution. We have selected the strain-

displacement and the stiffness computations as our first targets for parallelization on the

Warp.

Given the Warp architecture, we examined various parallel algorithms to compute the

strain-displacement and the stiffness matrices. The required W2 code is generated to-

gether with the necessary f77 module and the C module to control cellprogram execution.

A software system P-FINGER, a parallel extension of FINGER, is constructed to derive

the necessary sequential and parallel code modules. An extension to GENTRAN [7],

GENW2 [13], is also made to fabricate W2 codes. Generated cell programs may involve

declarations, I/O statements, flow control, data distribution, subroutines, functions and
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macros.

Timing Experiments on the Warp

Two timing tables are presented here. Each row entry represents a complete stiffness

computation involving Two-D Four-node elements in the isoparametric formulation. Each

run involves a number of Warp invocations. For our timing experiment, each invocation

processes only 100 elements. Thus, for example, the 2000-element entry involves 20 Warp

invocations. The total time for all Warp invocations is accumulated using a timing mech-

anism written in C. The sequential timing is obtained by using one Warp cell to run the

equivalent sequential code. Times given are in seconds and do not include times used on

the Sun-3 host.

TABLE 4: Homogeneous Parallel Processing

Timings for actual Warp Executions

Two Dimensional Four-Node Elements

No. of Sequential SIMD Speed Up Efficiency

Elements WARP Monitor

100 2.36 0.60 3.9 39

300 7.10 1.56 4.6 46

500 11.64 2.72 4.3 43

1000 22.64 4.67 4.8 48

2000 45.16 8.86 5.0 50

3000 68.20 14.14 4.8 48

4000 89.17 18.79 4.8 48

5000 116.12 24.52 4.8 48

TABLE 5:Heterogeneous Parallel Processing

Timings for actual Warp Executions
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Two Dimensional Four-Node Elements

No. of Sequential MIMD Speed Up Efficiency

Elements WARP Monitor

100 2.36 0.64 3.7 37

300 7.10 1.42 5.0 50

500 11.64 2.10 5.5 55

1000 22.64 4.14 5.4 54

2000 45.16 7.38 6.1 61

3000 68.20 11.60 5.8 58

4000 89.17 14.82 6.0 60

5000 116.12 18.38 6.3 63

3.3 A CFT77 Code Generator for the CRAY

Many compute-intensive scientific and engineering problems require supercomputing

speeds. Thus, it is also important to generate programs that runs on a Cray. We have im-

plemented a new code translator/generator called GENCRAY. The output of GENCRAY

is f77 or Cray Fortran-77 (CFT77) code with vectorization and parallel features. CFT77

is a superset of f77 and is the standard Fortran available on Cray supercomputers.

One of the outstanding features of GENCRAY is to allow parallel specifications in the

input and to generate codes that take advantage of the vectorization and parallel features

on multi-processor Cray systems

The C language is used to implement GENCRAY so that it is readily portable to

any computer systems with a standard C compiler. GENCRAY also defines its own input

language so it can interface with formulas and procedures derived by any symbolic system.

3.4 Generating Vectorizable/Parallel Code in CFT77

The Cray CFT77 compiler is a vectorizing compiler. Much computing power can

be derived from vectorization if the loops in the program are written so that they are

vectorizable. Properties such as data dependencies across iterations, breaks in flow control

(exiting the loop prematurely), and so on, can prevent vectorization. Also the CFT77
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compiler only attempts to vectorize the innermost loop. It is up to the programmer

to analyze the structure of nested loops and to arrange them so that vectorizing the

innermost loop reaps the most benefit.

To make it easier to produce vectorizable code, GENCRAY provides several high-level

vectorization macros for matrix/vector computations:

• mmult - matrix multiplication

• madd - matrix addition

• msub - matrix subtraction.

In the generated code these macros expand inline to do loops that are vectorizable and

optimal for the natural algorithms used. For example, consider the matrix multiplication

macro:

(mmult a b c 100 400 250)

The code generated for this is:

c *** BEGIN GENERATED CODE ***

integer m0

integer m1

integer m2

c ** BEGIN MATRIX MACRO EXPANSION **

do 1001 m0=1,250

do 1002 m1=1,100

c(m1,m0)=a(m1,1)*b(1,m0)

1002 continue

1001 continue

c

do 1003 m0=1,250

do 1004 m1=1,100

do 1005 m2=2,400

c(m1,m0)=c(m1,m0)+(a(m1,m2)*b(m2,m0))
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1005 continue

1004 continue

1003 continue

c ** END MATRIX MACRO EXPANSION **

c *** END GENERATED CODE ***

The Cray YMP is a family of shared memory parallel computers. Each processor is

basically a Cray processor. For instance, the Cray YMP at the Ohio Supercomputer

Center is an eight-processor system. It is, therefore, important for GENCRAY to also

provide easy-to-use facilities for generating CFT77 programs that take advantage of the

parallelism offered by multiple processors. Thus, in addition to vectorization macros,

GENCRAY provides several high-level parallel constructs for generating parallel programs

that use the multiple processors.

The idea is to provide access to the Cray multitasking library primitives through a set

of very high level statements that are much easier to use for specifying a number of useful

parallel executions. GENCRAY can translate these high-level statement into multitasked

programs for the Cray. The following capabilities are provided:

1. Multitasking: The pexec macro is used to specify the parallel execution of several

tasks. Logically, when control flow reaches pexec, it splits into several indepen-

dently running threads each to execute one of the parallel tasks. When all of its

parallel tasks are done then pexec is finished. The pexec macro is suitable for

actions of relatively coarse granularity due to the overhead involved in setting up

and synchronizing the tasks. The macro can be used, for example, to call several

subroutines in parallel. GENCRAY does not check for data dependencies in the

tasks which can invalidate the parallel execution. It is the user’s responsibility to

ensure that no such dependencies exist.

2. Pipelining: The macro pipe specifies a coarse-grain pipeline program that organizes

multiple processors into an assembly line. It provides a simple way to specify the

stages of a computation and the data transfer from one stage to the next. For

example, pipe can be used to specify a pipeline of forward FFT, element-wise
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multiplication, and then inverse FFT. GENCRAY translates the pipe macro and

generates CFT77 codes for each stage of the pipeline with correct data transfer and

synchronization.

3. parallel do loop: Also supported by GENCRAY is the macro doall. The different

statements in a doall are executed independently and simultaneously. The doall

can be used to specify parallel tasks with a finer granularity than that in the pexec

construct. Doall is best used in nested loops so that the innermost loop can be

vectorized while the outer loop iterations are executed in parallel.

4. On-going and Future Work

Parallel polynomial factorization work on the SMPs is continuing at Kent. Strategy

details are being ironed out and parallel C codes are being written for the lifting and the

true-factors phases. A package called BigNum [11] developed in France is used to supply

the extended precision integer arithmetic required in lifting. Parallel polynomial arith-

metic routines are also implemented to allow additional speed up in the right situations.

The new codes will be combined with PFACTOR to serve as the base of future work on

parallel multivariate factorization.

Another focus of our on-going research is to parallelize many key FEA computations

on SMPs and automatically generate such parallel programs. We will not only extend our

work on the Warp to the SMP but also look into the parallel solution of the global matrix.

Element-by-element (EBE) iterative schemes using preconditioned conjugate gradient are

promising on SMP’s. The EBE scheme works well with many cases in linear analysis. On

the other hand, it encounters difficulties in other cases especially for nonlinear analysis.

When it is applicable, the EBE scheme can be a very efficient parallel method.

A software package is also being developed to generate parallel FEA codes for the

SMPs [12]. This package will feature a way for the engineering user to specify basic com-

putations using familiar notations. These basic numeric computations can be mapped

onto a particular parallel architecture and executed in parallel. The load balancing and

synchronization details will be handled by the derived code.

5. Conclusions
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Parallel computers are here to stay and to provide important speed up for many dif-

ferent kinds of computations. As more people apply parallel programs to solve problems,

the gap between the highly developed parallel architectures and the primitive parallel

programming tools and operating environments becomes increasingly clear. We are at

a point in parallel software development that sequential programming was before FOR-

TRAN. Much work lay ahead in the parallel software area.

1. High-level parallel programming languages and tools to make parallel software much

easer to write and test.

2. Program portability to make a parallel program usable across a set of parallel com-

puters.

3. Parallel language features to better accommodate the needs of parallel algorithm

designers.

4. Closer collaboration among language, operating system, and architecture specialists

to develop machine features to support the development and execution of parallel

software.

5. Closer collaboration between computer professionals and applications people to tar-

get parallel features for practical use.

6. Symbolic computation can benefit from parallelism and can help produce parallel

software.

It is hoped that the mutually beneficial relations between symbolic computation and

parallel software continue to develop and strengthen, and will play an important part in

the overall advancement of parallel computation.
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