
Version 3.0
Programmer’s Guide

Version 7, June 16, 2010

Ralf Hartmut Güting, Victor Teixeira de Almeida, Dirk Ansorge,

Thomas Behr, Christian Düntgen, Simone Jandt, Markus Spiekermann

Faculty for Mathematics and Computer Sience

Database Systems for New Applications

58084 Hagen, Germany

SECONDOSECONDOSECONDO

Table of Contents

1 Algebra Module Implementation . 1
1.1 The PointRectangleAlgebra . 1
1.2 Implementing Types . 3

1.2.1 Nested List Representation/Conversion . 4
1.2.2 Persistent Storage and Related Generic Functions 5
1.2.3 Kind Checking . 9
1.2.4 Type Description . 9

1.3 Implementing Operators . 10
1.3.1 Type Mapping Functions . 11
1.3.2 Selection Functions . 12
1.3.3 Generic Type Mapping and Selection Functions 12
1.3.4 Value Mapping Functions . 13
1.3.5 Operator Descriptions . 14
1.3.6 Operator Syntax and Examples . 15
1.3.7 Linking the PointRectangleAlgebra to SECONDO 16

1.4 Handling Streams . 17
2 The Relational Algebra and Tuple Streams . 24

2.1 The Relational Algebra Implementation. 24
2.2 Operators. 27
2.3 Type Mapping Functions and APPEND. 27
2.4 Value Mapping Functions. 32

3 DbArray - An Abstraction to Manage Data of Widely Varying Size 37
3.1 Overview. 37
3.2 Example . 37
3.3 Accessing Flobs Directly . 40
3.4 Interaction with the Relational Algebra . 41
3.5 Important Hint. 42

4 Kind DATA: Attribute Types for Relations . 43
4.1 Serialization . 47
4.2 Supporting the ImExAlgebra . 48
4.3 The Golden Rules for Implementing Attribute Types . 49

5 SMI - The Storage Management Interface . 50
5.1 Retrieving and Updating Records . 50
5.2 The SMI Environment . 51

6 Extending the Optimizer . 54
6.1 How the Optimizer Works . 54

6.1.1 Overview . 54
6.1.2 Optimization Algorithm . 55

6.2 Programming Extensions . 57
6.2.1 Writing a Display Predicate for a Type Constructor 58
6.2.2 Defining Operator Syntax for SQL . 59
6.2.3 Defining Operator Syntax for SECONDO . 60
6.2.4 Defining Type Mapping for SECONDO Operators 62
6.2.5 Defining Physical Index Types . 63
6.2.6 Defining Logical Index Types . 64

– 2 –

6.2.7 Writing Optimization Rules . 65
6.2.8 Writing Cost Functions . 74

7 Integrating New Types into User Interfaces . 80
7.1 Introduction. 80
7.2 Extending the Javagui . 80

7.2.1 Writing a New Viewer . 81
7.2.2 Extending the HoeseViewer . 88

7.3 Writing New Display Functions for SecondoTTY and SecondoTTYCS. 94
7.3.1 Display Functions for Simple Types . 94
7.3.2 Display Functions for Composite Types . 95
7.3.3 Register Display Functions . 96

8 Query Progress Estimation . 97
8.1 Overview. 97
8.2 Selectivity Estimation . 98
8.3 Estimation of Tuple and Attribute Sizes . 99
8.4 Pipelining . 99
8.5 Infrastructure for Progress Implementation . 100

8.5.1 New Messages and Storage Management . 100
8.5.2 Data Structures . 101
8.5.3 Interface to Request Progress Information From a Predecessor 103
8.5.4 Interface to Access Optimizer Selectivity Estimate and Predicate Cost 103

8.6 Some Example Operators . 104
8.6.1 Rename . 104
8.6.2 Project . 105
8.6.3 Filter . 110

8.7 Registering Progress Operators. 114
8.8 Testing Progress Implementations . 114

8.8.1 Tracing . 115
8.8.2 Looking at Protocol Files . 117

8.9 Implementation Techniques for Blocking Operators . 118

References . 121

A The Source for the InquiryViewer . 122

B The Source for Dsplmovingpoint . 132

C The Source for Algebra Module PointRectangle . 138

– 1 –

1 Algebra Module Implementation

In SECONDO, data types and operations are provided by algebra modules. Such modules are initial-
ized in SECONDO by the algebra manager which makes their data types and operations available in
the query processor. Figure 2 in Section 1 of the SECONDO User Manual gives a good impression of
SECONDO’s structure and how algebras are linked into the system. Generally in this Programmers’
Guide we assume that you are somewhat familiar with SECONDO’s concepts and use from the User
Manual.

Naturally, an algebra implementor first has to write the C++ code providing the data types and oper-
ations. Any such algebra must provide a set of algebra support functions, e.g. In- and Out-functions,
which convert the “internal” data type representation to the nested list representation used as an
“external” representation in SECONDO. Finally, when the implementation is done, the algebra has to
be registered with the system.

In this chapter, two examples are given about how algebras are implemented and embedded in SEC-
ONDO. First, the simple PointRectangleAlgebra is described providing two new data types and
two operations. Second, an algebra which provides operators for handling streams of int values is
presented.

The C++ code of the SECONDO system has been continously developed since 2002. For some of its
programming interfaces there exist older and more recent versions. The newer interfaces are usually
safer and more comfortable to use. On the other hand, a lot of code in the system has been written
using the older interfaces. For this reason, in the sequel we will sometimes explain old as well as
recent versions so that you are able to understand older code, but also to program with the current
versions. Note that older as well as newer interfaces work so that you can choose which one to use.

The code is a result from a prior implementation in Modula, thus it is not purely object oriented and
will have a mind of its own. From today’s point of view and the expierences made one would prefer
another design of some interfaces in order to reduce code redunandence, improve encapsulation and
to avoid type casts. However, this will need much programming time with the effort of having the
same functionality but a better readability, maintainability and flexibility of the code. We are aware
of the problems and limitations of the status quo but we try to give our best to explain a safe and
effective usage of it.

1.1 The PointRectangleAlgebra

The PointRectangleAlgebra is a simple algebra which was implemented just for the purpose of
having a small example algebra for SECONDO. It offers data types to represent a point and a rectangle
in the 2D-plane, and operations inside and intersects. The first checks whether either a point or a
rectangle lies in another rectangle. The second checks whether two rectangles intersect each other.
Formally, it has the following specification:

– 2 –

kinds SIMPLE

type constructors

→ SIMPLE xpoint, xrectangle

operators

xpoint × xrectangle → bool inside
xrectangle × xrectangle → bool inside
xrectangle × xrectangle → bool intersects

The types are named xpoint and xrectangle in order to avoid name conflicts with the more complex
types point and rectangle as implemented in the SpatialAlgebra module. Moreover, the type bool is
not implemented in this algebra module, it belongs to the so called StandardAlgebra.

The implementation of the module PointRectangleAlgebra is part of the SECONDO distribution
and is located in the directory Algebras/PointRectangle. All algebras must be located below
directory Algebras. However, not all algebras, which are present there, have to be necessarily
embedded in the system.

The file PointRectangleAlgebra.cpp can be viewed pretty printed by using PDView [Güt95], a
tool for formatting programs and documentation which is included into SECONDO. We strongly rec-
ommended to study this example carefully before starting to implement an algebra by your own. In
the following, only important and interesting parts of the code are shown and explained. The com-
plete code is provided in Appendix C.

The Typical Structure of an Algebra Implementation File

Every new algebra must be a subclass of the class Algebra. An algebra is a collection of type con-
structors and operators. For each new data type a C++-class together with some additional support
functions must be provided. For each operator basically a type mapping and a value mapping func-
tion (explained later) must be provided. Then a type will be represented by class TypeConstructor
and an operator by class Operator. The constructors of these C++ classes take the support functions
as arguments. Finally, instances of TypeConstructor and Operator msut be passed to the new
algebra manager.

In the following we will give a sketch of the overall structure of an algebra’s implementation file.
First, we need some include directives in order to import class declarations of various SECONDO

modules.

#include "Algebra.h"
#include "..."

Next, references to instances of the NestedList and the QueryProcessor classes are declared here.
They are instantiated by the processing framework of SECONDO.

– 3 –

extern NestedList* nl;
extern QueryProcessor* qp;

Now, the classes for the new data types xpoint and xrectangle are defined, followed by the
implementation of its operations. To avoid name conflicts, it is more safe to embed the algebra
implementation into a namespace.

namespace prt {

class XPoint{ ... };
...
class XRectangle { ...};
...

The algebra itself is implemented by declaring a class derived from class Algebra. Passing Opera-
tors and types to the algebra manager is done in the constructor of this class.

class PointRectangleAlgebra : public Algebra
{
 public:
 PointRectangleAlgebra() : Algebra()
 {

// code for passing type constructors and operators
// to the algebra manager
AddOperator(intersectsInfo(), intersectFun, RectRectBool);

 }
 ~PointRectangleAlgebra() {};
};
} // end of namespace prt

Finally, the implementation file must be equipped with an initialization function which must be
named by the pattern Initialize<algebra name>.

extern "C"
Algebra*
InitializePointRectangleAlgebra(NestedList* nlRef, QueryProcessor* qpRef)
{

// The C++ scope-operator :: must be used to qualify the full name
return new prt::PointRectangleAlgebra;

}

The implementation of this function will be always similar to the one above. For several implemen-
tation dependent reasons it is needed by the algebra manager. The unused arguments nlRef and
qpRef are obsolete.

1.2 Implementing Types

As explained above, each SECONDO type is represented by a C++ class. This class needs to provide
some support functions which will be used by the query processing framework. These functions will
be discussed in the following subsections.

– 4 –

1.2.1 Nested List Representation/Conversion

Every SECONDO type needs to define a nested list representation for its values. This representation is
used as an external interface, e.g. to send the value to a user interface or to store it in a file. An ele-
ment of a nested list may be either a nested list (this is why they are called “nested” lists) or an atom.
Atoms of a nested list can be only simple values of type integer, boolean, string, text or symbol
(mathematical symbols or identifiers). An algebra module must provide for each type functions
which take a nested list and create an instance of the class representing the type and vice versa. These
functions are called In- and Out-functions.

An XPoint value has two coordinates, represented by two integer values x and y. The nested list rep-
resentation can be chosen freely, here we choose

(x y)

which means that every xpoint value can be represented as a list of two integer atoms. Inside SEC-
ONDO, nested lists are represented by the C++-type ListExpr. Textual nested lists are translated by a
parser into this internal representation. Operations on type ListExpr are provided by a central
instance of class NestedList which is referenced by the pointer variable nl.

ListExpr
XPoint::Out(ListExpr typeInfo, Word value)
{
 XPoint* point = static_cast<XPoint*>(value.addr);
 return nl->TwoElemList(nl->IntAtom(point->GetX()),

nl->IntAtom(point->GetY()));

// Code example for the alternate list programming interface:
// return NList(point->GetX(), point->GetY()).listExpr();

}

Nested lists are used in XPoint::Out as follows: In the first line, argument’s attr member, which
has the generic type Word, must be converted by a type cast into a pointer of type XPoint. The type
Word has a member addr which is of type void* and thus can be a pointer of any type. Then a new
list with two elements is constructed with TwoElemList, which is a function of class NestedList.
As arguments two ListExpr values which contain simple int values, so called atoms, are passed
and inserted into the list. They are constructed using IntAtom, again a function of class NestedList.
The int values are derived from the XPoint value using GetX- and GetY-functions of class XPoint.
The use of the NestedList data structure is straightforward. Just have a look at file include/Nest-
edList.h.

Advise: More recently, an alternate nested list programming interface which simply wraps the
NestedList calls and has a less noisy syntax has been implemented in include/NList.h. The
example algebra makes also use of it for the implementation of class XRectangle. For your own
implementations we recommend to use this newer interface.

– 5 –

Word
XPoint::In(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo, bool& correct)
{
 Word w = SetWord(Address(0));
 if (nl->ListLength(instance) == 2)
 {
 ListExpr First = nl->First(instance);
 ListExpr Second = nl->Second(instance);

 if (nl->IsAtom(First) && nl->AtomType(First) == IntType
 && nl->IsAtom(Second) && nl->AtomType(Second) == IntType)
 {
 correct = true;
 w.addr = new XPoint(nl->IntValue(First), nl->IntValue(Second));
 return w;
 }
 }
 correct = false;
 cmsg.inFunError("Expecting a list of two integer atoms!");
 return w;
}

XPoint::In creates a new XPoint instance. Both int values are extracted from the nested list and
passed to the XPoint type constructor. Finally, the newly created XPoint instance is returned. Note,
that in the In-function it is necessary to check carefully and completely whether the passed list has
the correct structure. Such lists can be written by users directly (using a text editor) and may have
other structures than expected. Accessing a not existing element of a list will cause process abortion
raised by assertions inside the implementation of class NestedList.

The parameters errorPos and errorInfo can be ignored in simple cases like this one. In principle
they can be useful to provide detailed error information for types which can have big lists as repre-
sentations, e.g. type rel which represents a relation in module RelationAlgebra. Success or failure
must be indicated by setting parameter correct to its appropriate value. In case of failure an error
message is sent to the user by using the function cmsg.inFunError.

1.2.2 Persistent Storage and Related Generic Functions

A SECONDO object belongs to a database and needs to be stored persistently. Hence it needs a repre-
sentation on disk, in records of the underlying storage manager. The database maintains a catalog file
and each object is assigned to one so-called root record. These records have variable size but data
types which can grow up to sizes bigger than a few pages should organize a disk representation of
their own. To do so they have to maintain one or more files of records by itself. To keep all together
they need to store stable pointers to those files (file ids) in the root record. Additionally, some sum-
marizing or meta data may be stored there also. An example for such a type is again the type rel
which maintains two addtioanl record files.

– 6 –

To be used in query processing, an object must be opened. That is, in addition to the disk representa-
tion a main memory representation (a class instance of the class representing the object’s type) must
be created that makes it possible to access the value. Hence an object has two states:

• closed: the data is completely stored on disk and cannot be accessed, since no memory repre-
sentation is available.

• opened: a memory representation - an instance of the class representing this type - is available.

There are six generic functions for each type constructor that allow one to create and delete a value
(or SECONDO object) of the type, open and close it, save it and clone it. These operations return a
value in a particular state and are also applicable to a value in some state. The state diagram in
Figure 1 shows how operations manipulate object states.

The operations have the following meaning:

create: create an empty value in open state, i.e. create the memory part and if needed also
extra files.

delete: delete the value, i.e. remove extra files and delete the memory part (class instance).

open: given a root record, create the memory part. Afterwards the member variables of the cor-
respondig class must have the same values as they had when saved has been called the last
time.

close: release the memory part. Typically the desctructor of the representing class has to close
open files if any are used and still open.

save: propagate changes from the memory part to the root record, i.e. store all necessary mem-
ber variables which represent the current state of the class instance.

clone: make a deep copy of the object, i.e. create another class instance (copy of memory part)
and if needed create extra files and copy the contents of the files assigned to the original object.

To make life easier for the implementor of a simple data type like int or xpoint, there exists a
default mechanism for persistent storage. Here the text form of the nested list representation for the

Figure 1: Generic functions and object states

closed opened

open

close

create

delete

save

clone

– 7 –

type is stored in a record on disk. Hence to store an object, its Out function is called; the resulting list
is converted to text form and written to the record. To open an object, the text representation is read
from the record and converted to a nested list for which then the In function is called to create the
value.

This means that for a type constructor the functions create, delete, close, and clone must be
implemented. The remaining two functions open and save may be implemented. If they are not
implemented, the default persistent storage mechanism is used.

To make things yet a bit more complex, there is a variant of the default mechanism. Observe that the
In function needs to perform a complete check of the argument list to see whether it has a correct
structure and whether the value described by it is correct. For example, for the region data type in the
spatial algebra, expensive tests need to be made. To avoid this, it is possible to define an alternative
nested list structure just to be used internally for storage. In this case, the data structure (e.g. for a
region) can be directly transformed into an appropriate list structure describing the elements of this
data structure, and it is easy to recreate the data structure from this list representation.

To use such an alternative list structure, the implementor of a data type needs to provide two func-
tions called SaveToList and RestoreFromList.

Hence for persistent storage, there are three alternatives:

• If open and save are implemented, a user defined persistent implementation is used.
• Otherwise, if SaveToList and RestoreFromList are implemented, then the default mecha-

nism is used but with user defined list structure which may guarantee some properties the nor-
mal list structure expected in the In-function may not have.

• Otherwise, the default mechanism is used with the external list representation, using In- and
Out-functions.

The module PointRectangleAlgebra uses the default mechanism for the type xpoint and (for dem-
onstration) an implementation of open and save for the type xrectangle. The implementations for the
other object state transitions of xpoint are discussed below.

Word
XPoint::Create(const ListExpr typeInfo)
{
 return (SetWord(new XPoint(0, 0)));
}

This function creates a new XPoint instance. The query processor calls it if the result of an operation
is of type xpoint.

void
XPoint::Delete(const ListExpr typeInfo, Word& w)
{
 delete (XPoint*)w.addr;
 w.addr = 0;
}

– 8 –

The delete-function is called for intermediate results in a query tree, after the query has been pro-
cessed. XPoint::Delete does not need to remove any disk parts of the object since it is just a simple
type which does not have disk parts. For such types delete and close often do the same.

Here the expression (XPoint*)w.addr does a C++ type cast, telling the C++ runtime environment
that there is a pointer of type XPoint. Thus delete will call the destructor function of class XPoint. It
is only sure to do such type casts if you know that w.addr really holds a pointer of this type, which is
true here, since the create function above does so. But in general type casts are a source of pointer
errors. For that reason another syntax, as shown below, is recommended since it is more noticable.
Moreover, after deleting a pointer it is always safe to set it to null.

void
XPoint::Close(const ListExpr typeInfo, Word& w)
{
 delete static_cast<XPoint *>(w.addr;)
 w.addr = 0;
}

The close-function is called for all database objects which are involved in a query, since they were
all opened before.

Word
XPoint::Clone(const ListExpr typeInfo, const Word& w)
{

XPoint* p = static_cast<XPoint *>(w.addr;)
 return SetWord(new XPoint(*p);
}

For example, the clone-function is used by the let command which inserts the result of a query into
the currently open database. Here XPoint::Clone calls the copy constructor XPoint(const
XPoint&) to create a new instance which is a copy of the one pointed to by p. For a more complex
data type which has also a disk part, code doing a deep copy must be provided here also.

Auxiliary Functions

There are two more functions which are important in the context of persistent storage: a function
which returns the size of the type’s representing class and a function which reconstructs an object
which was loaded from disk to memory.

The SizeOfObj-function must be implemented to provide information about the object’s size.

int
XPoint::SizeOfObj()
{
 return sizeof(XPoint);
}

When types should act as attributes of relations (refer to Section 4) a so called Cast-function is
needed for the proper reconstruction of persistent C++ objects. This function would look as follows:

– 9 –

void* XPoint::Cast(void* addr) {
 return (new (addr) XPoint);
}

But it is not implemented in the example algebra, since the type is not intended to be used as an
attribute type in relations which will be. This special syntax of the C++ new operator tells the C++
runtime environment that there is an object of type XPoint at address addr. The memory pointed to
by addr must be unchanged by this operation.

Note: This can only be guaranteed if the standard constructor is an empty function. Moreover, this
function should be the only one which calls the standard constructor.

1.2.3 Kind Checking

When entering a type expression into a user interface, the query processor first does a kind checking.
This means that the structure of the argument passed to each type constructor is checked. If it is not
correct, the input is not accepted. Actually, this checking is done by so-called kind checking func-
tions implemented in the algebra. At this point we have to specify the kind checking function for the
XPoint constructor. Since it has no arguments, this is trivial.

bool
XPoint::CheckKind(ListExpr type, ListExpr& errorInfo)
{
 return (nl->IsEqual(type, XPOINT));
}

In contrast to this example, writing kind checking functions may get much more difficult for other
types such as relations in the RelationAlgebra. There for example you have to check if the type of
every attribute is a member of kind DATA.

Note: don’t mix up the symbol XPOINT (all letters capitalized) with the class XPoint here. The first
one is defined in file include/Symbols.h where every algebra should define its string symbols.

1.2.4 Type Description

At the user interface, the command list type constructors lists all type constructors of all cur-
rently linked algebra modules. The information listed is provided by each algebra module itself. To
be more precise, it is generated by the property-function of each type. Basically, this function returns
a nested list which explains the type. The basic interface for this looks as follows. In the PointRect-
angleAlgebra it is used for XPoint.

– 10 –

ListExpr
XPoint::Property()
{

 return (nl->TwoElemList(
 nl->FiveElemList(nl->StringAtom("Signature"),
 nl->StringAtom("Example Type List"),
 nl->StringAtom("List Rep"),
 nl->StringAtom("Example List"),
 nl->StringAtom("Remarks")),
 nl->FiveElemList(nl->StringAtom("-> DATA"),
 nl->StringAtom("xpoint"),
 nl->StringAtom("(<x> <y>)"),
 nl->StringAtom("(-3 15)"),
 nl->StringAtom("x- and y-coordinates must be "
 "of type int."))));
}

Basically a list has to be returned with two sublists where the first contains labels and the second
entries for these labels.

Alternatively, a more compact interface for this purpose is demonstrated below for type
XRectangle. Using this interface it can be implemented by defining a subtype of class Construc-
torInfo, e.g.

struct xrectangleInfo : ConstructorInfo {

 xrectangleInfo() : ConstructorInfo() {

 name = XRECTANGLE;
 signature = "-> " + SIMPLE;
 typeExample = XRECTANGLE;
 listRep = "(<xleft> <xright> <ybottom> <ytop>)";
 valueExample = "(4 12 8 2)";
 remarks = "all coordinates must be of type int.";
 }
};

Here again the symbols XRECTANGLE and SIMPLE are string constants defined in file include/Sym-
bols.h.

1.3 Implementing Operators

An operator implementation needs to provide the following:

1. A type mapping function, which checks, whether its argument types are correct or not. If the
arguments are correct the result type (not value) will be returned.

2. A selection function to decide for overloaded operators which of several value mapping func-
tions should be used.

3. A value mapping function, which calculates the result value of an operation.
4. An operator description, to be used by the list operators command.

– 11 –

5. A syntax specification.
6. An example query using this operator, for automatic testing.

1.3.1 Type Mapping Functions

Before the query processor builds an operator tree, the query is analyzed and annotated. During this
phase a list containing the arguments’ type expressions is passed to the operator’s type mapping
function. A type mapping function checks, whether its argument types are correct or not.

If not, the result type is a list expression consisting of the symbol typeerror which will also cause
subsequent type mappings to fail. Thus the query will be not accepted in this case, since it contains a
type mismatch. Generally it is a good idea not only to return typeerror, but also to explain what
kind of error occurred.

ListExpr
insideTypeMap(ListExpr args)
{
 if (nl->ListLength(args) != 2)
 {

cmsg.typeError("Type mapping function got a "
 "parameter of length != 2.");
 return nl->TypeError();
 }

 ListExpr arg1 = nl->First(args);
 ListExpr arg2 = nl->Second(args);

 if (nl->IsEqual(arg1, XPOINT) && nl->IsEqual(arg2, XRECTANGLE))
 return nl->SymbolAtom(BOOL);

 // second alternative of expected arguments
 if (nl->IsEqual(arg1, XRECTANGLE) && nl->IsEqual(arg2, XRECTANGLE))
 return nl->SymbolAtom(BOOL);

 if ((nl->AtomType(arg1) == SymbolType) &&
 (nl->AtomType(arg2) == SymbolType))
 {
 cmsg.typeError("Type mapping function got parameters of type "
 +nl->SymbolValue(arg1)+" and "
 +nl->SymbolValue(arg2));
 }
 else
 {
 cmsg.typeError("Type mapping function got wrong "
 "types as parameters.");
 }
 return nl->TypeError();

}

In some old type mapping functions, you may still encounter a “function“ called CHECK_COND.1 We
don’t recommend to use it any more.

– 12 –

1.3.2 Selection Functions

Operators may be overloaded. Selection functions are used to select one of several evaluation func-
tions for an overloaded operator, based on the types of the arguments. Below the selection function
for operator inside is shown.

int
insideSelect(ListExpr args)
{
 NList list(args);
 if (list.first().isSymbol(XRECTANGLE))
 return 1;
 else
 return 0;
}

Here the alternate list programming interface defined in include/NList.h is used. We will see
below that an array of value mapping functions is constructed; the returned index 0 or 1 selects the
appropriate function from that array.

1.3.3 Generic Type Mapping and Selection Functions

Many operators have very simple type mappings in the sense that their arguments and result types
are atomic. The examples above also fall into this category. To liberate the user from the burden of
implementing such type mappings, there are some generic functions called SimpleMap and Simple-
Select which can handle those simple cases.1 Examples can be found in the StandardAlgebra. For
example, the comparison operator “=” is overloaded many times but its type mappings and selection
functions can be simply implemented by the following code lines:

1. CHECK_COND is a macro, that will be extended by the preprocessor. It first evaluates its first
parameter, that must be a boolean expression. If it computes to false, it sends the error mes-
sage passed as second parameter and executes return typeerror. This finishes the type map-
ping function immediately. If the first parameter computes to true, nothing else happens
(despite of possible side effects caused by the condition - which should be avoided).

1. Those functions are part of namespace mappings.

– 13 –

const string maps_comp[6][3] =
{
 {INT, INT, BOOL},
 {INT, REAL, BOOL},
 {REAL, INT, BOOL},
 {REAL, REAL, BOOL},
 {BOOL, BOOL, BOOL},
 {STRING, STRING, BOOL}
};

ListExpr
CcMathTypeMapBool(ListExpr args)
{
 return SimpleMaps<6,3>(maps_comp, args);
}

int
CcMathSelectCompare(ListExpr args)
{
 return SimpleSelect<6,3>(maps_comp, args);
}

For non overloaded functions it is even more simple:

ListExpr
IntReal(ListExpr args)
{
 const string mapping[] = {INT, REAL};
 return SimpleMap(mapping, 2, args);
}

One only needs to define an array of mappings as shown above and to pass the array and its dimen-
sions to the generic functions.

1.3.4 Value Mapping Functions

For any operation and each allowed combination of argument types a value mapping function must
be defined. Inside of these functions usually suitable class member functions of the passed argu-
ments are called to compute the result. The resulting value then is written directly to an object pro-
vided by the query processor. Below we discuss the code for the value mapping of operator inside in
the case of xpoint × xrectangle→ bool.

– 14 –

int
insideFun_PR (Word* args, Word& result,

int message, Word& local, Supplier s)
{

XPoint* p = static_cast<XPoint*>(args[0].addr);
 XRectangle* r = static_cast<XRectangle*>(args[1].addr);

 result = qp->ResultStorage(s); //query processor has provided
 //a CcBool instance to take the result

 CcBool* b = static_cast<CcBool*>(result.addr);

 bool res = (p->GetX() >= r->GetXLeft() && p->GetX() <= r->GetXRight()
 && p->GetY() >= r->GetYBottom() && p->GetY() <= r->GetYTop());

 b->Set(true, res); //the first argument says the boolean
 //value is defined, the second is the
 //real boolean value)
 return 0;
}

The parameters message and local can be ignored here. They are only needed for operators which
process streams and are explained in Section 1.4. Pointers to the arguments of the operator are stored
in the args array and need to be type casted to pointer variables of their respective type1. The result
of this operation is a boolean value represented by the C++ class Ccbool. Apart from a bool member
variable which holds the value it has another bool member which tells whether a value for it is
defined or not. Many types offer the alternative value undefined which allows to return values of
the correct type in critical cases, e.g. division by zero.

In total there are two value mapping functions collected in an array of pointers to functions.

ValueMapping insideFuns[] = { insideFun_PR, insideFun_RR, 0 };

The implementor has to take care, that (i) this array is null terminated, (ii) the value mapping alterna-
tives are on their correct positions with respect to the operator’s selection function.

1.3.5 Operator Descriptions

For use in the list operators command, each operator needs to supply a description. This is simi-
lar to the description of type constructors explained above. We show them for the operators
intersect and inside. The latter one illustrates also the description of an overloaded operator.

1. At all casting is a dangerous technique and should be avoided whereever it is possible. It is dangerous because
there is no way to check if the argument of the cast has the right data type at runtime. For example if the type map-
ping function has a logical programming error and maps to another type than expected in the value mapping func-
tion two things can happen: 1) Secondo crashes with a segmentation fault; this is the good situation since you will
have a direct hint to the source of the problem. 2) No segementation fault happens, but the memory the pointer
points to is interpreted not correctly. Then you will have corrupted yet more or less senseless data. Unfortunately
the SECONDO framework offers currently no way to avoid such programming errors.

– 15 –

struct intersectsInfo : OperatorInfo {

 intersectsInfo() : OperatorInfo()
 {
 name = INTERSECTS;
 signature = XRECTANGLE + " x " + XRECTANGLE + " -> " + BOOL;
 syntax = "_" + INTERSECTS + "_";
 meaning = "Intersection predicate for two xrectangles.";
 }

};

struct insideInfo : OperatorInfo {

 insideInfo() : OperatorInfo()
 {
 name = INSIDE;

 signature = XPOINT + " x " + XRECTANGLE + " -> " + BOOL;
 // since this is an overloaded operator we append
 // an alternative signature here
 appendSignature(XRECTANGLE + " x " + XRECTANGLE
 + " -> " + BOOL);
 syntax = "_" + INSIDE + "_";
 meaning = "Inside predicate.";
 }
};

1.3.6 Operator Syntax and Examples

Every algebra must provide syntax and example specifications. They are defined in the following
files:

1. The .spec-file, which provides important information for the parser about the algebra’s opera-
tors.

2. The .example-file, which provides query examples for the implemented operations.

The .spec file for the PointRectangleAlgebra looks like this:

operator intersects alias INTERSECTS pattern _ infixop _
operator inside alias INSIDE pattern _ infixop _

As you can see, both available operators are listed. By convention all operators are written in lower
case. The structure of such a specification is:

operator <name> alias <ALIAS> pattern <pattern>

The ALIAS is the name of the token for the operator needed for the lexical analysis. This is needed
for operators which use a mathematical symbol, e.g. +. All other operators can simply use the capi-
talized version of their name. Then, the pattern for the operator is given. The symbol _ denotes the
places of arguments and infixop shows the position of the operator. Therefore, the operator inter-
sects would be used as a intersects b in a query. Other examples for operator specifications can

– 16 –

be found in the complete spec-file which is the concatenation of all algebra .spec-files. This file is
located in the Algebras directory.

Note, that operator names may be used in more than one algebra. It is necessary that the syntax spec-
ification of operators with the same name is identical. Otherwise, an error will be reported during the
compilation process.

The .example file is located in the directory of the respective algebra and parsed during the startup of
SECONDO. If examples are missing, you will notice error messages. This guarantees, that all exam-
ples have a correct syntax. Moreover, the examples need to specify a database on which they can be
processed together with expected results. This is done at the beginning of the file:

Database : prttest
Restore : NO

The Restore flag indicates whether the database should be restored each time anew before the fol-
lowing example queries are executed. For every operator records like the following must be defined.

Operator : inside
Number : 1
Signature: xpoint x xrectangle -> bool
Example : query p1 inside r1
Result : TRUE

In case of an overloaded operator the field Number must contain subsequent numbers. The other
fields should be self explanatory.

Example queries are executed when the command Selftest <example-file> is invoked in the
secondo/bin directory; the example file is (after a make) available in a subdirectory tmp. The com-
mand Selftest (without any parameter) executes all example queries of all activated algebras in
SECONDO. This can be used as a quick regression test to avoid side effects after implementation
changes.

1.3.7 Linking the PointRectangleAlgebra to SECONDO

To link the algebra to the SECONDO system, it has to be registered with the algebra manager and to be
plugged into the build process. Therefore it has to be entered in a configuration file and a makefile.

The first thing to do is to create a new directory in the Algebras directory of the SECONDO system.
By convention the new directory name should be the same as the algebra name omitting the suffix
“Algebra” (PointRectangle in this case). Afterwards the algebra file has to be copied to the new
directory.

Then you need a makefile for the algebra directory including information about which files have to
be compiled during the compilation process of the system. To create the makefile the easiest way is
to copy a makefile from another algebra module and adapt it to the new algebra. In most cases you
need to do nothing since there are default rules for creating .o files from .cpp files.

– 17 –

Next, the file makefile.algebras (located in the SECONDO main directory) has to be changed. This
file contains two entries for every algebra. The first defines the directory name and the second the
name of the algebra module like in the example below :

...
ALGEBRA_DIRS += PointRectangle
ALGEBRAS += PointRectangleAlgebra

ALGEBRA_DIRS += BTree
ALGEBRAS += BTreeAlgebra
...

If an algebra implementation depends on non-standard libraries, that should be linked, this must be
declared here, just like with the third line of the registration of the PictureAlgebra, that depends on
the jpeg library libjpeg:

ALGEBRA_DIRS += Picture
ALGEBRAS += PictureAlgebra
ALGEBRA_DEPS += jpeg

The last step is to register the algebra in the algebra manager. To do this it has to be added to the list
of algebras in AlgebraList.i.cfg in the Algebras/Management directory. Here, the algebra must
be entered together with its name implied by the name of the initialize-function and a unique algebra
number (just choose an unused number).

...
ALGEBRA_INCLUDE(1,StandardAlgebra)
ALGEBRA_INCLUDE(2,FunctionAlgebra)
ALGEBRA_INCLUDE(3,RelationAlgebra)
ALGEBRA_INCLUDE(4,PointRectangleAlgebra)
ALGEBRA_INCLUDE(5,StreamExampleAlgebra)
...

Now, all configuration is done for the PointRectangleAlgebra. Execute the make file in the SEC-
ONDO main directory to link the new algebra. After the process has finished, start SECONDO and type
list algebra PointRectangleAlgebra to see its operators and type constructors.

1.4 Handling Streams

The StreamExampleAlgebra is a small example demonstrating how to implement operators which
process streams of objects. For data types which may have very big representations like a relation
with millions of tuples, streaming is necessary to provide efficient implementations (otherwise big
intermediate results must be materialized) of operations. Hence this example helps to understand
much more sophisticated algebras using streams such as the RelationAlgebra.

In this example algebra, operators for the construction of streams of int values are provided together
with some operators which have such streams as arguments. In contrast to the PointRectangleAl-
gebra this algebra doesn’t have any constructors, since a new stream is constructed using an opera-
tor, not a constructor. Although the keyword stream is used in type mappings like a type constructor

– 18 –

there is no algebra module which provides such a type. Instead it is interpreted by the query proces-
sor and has effects for the construction and evaluation of the query tree. The algebra provides the fol-
lowing operators:

• intstream: int × int → stream(int)
Creates a stream of integers containing all integers from the first up to the second argument. If
the second argument is smaller than the first, the stream will be empty.

• count: stream(int) → int
Returns the number of elements in an integer stream.

• printintstream: stream(int) → stream(int)
Prints out all elements of the stream. Returns the argument stream unchanged.

• filter: stream(int) × (int → bool) → stream(int)
Filters the elements of an integer stream by a predicate.

Again, we strongly recommend to have a close look at the implementation of the algebra. Here, we
only describe the new concepts and the exciting parts of the new algebra.

Type Mapping Functions

The first thing to do is to implement the type mapping functions for the four operators. As an exam-
ple for this the mapping for intstream will serve:

ListExpr
intstreamType(ListExpr args)
{
 const string errMsg = "Type mapping function expects (int int)";

 if (nl->ListLength(args) != 2)
 ErrorReporter::ReportError(errMsg);

 ListExpr arg1 = nl->First(args);
 ListExpr arg2 = nl->Second(args);

 if (nl->IsEqual(arg1, INT) && nl->IsEqual(arg2, INT))
 return nl->TwoElemList(nl->SymbolAtom(STREAM), nl->SymbolAtom(INT));

 ErrorReporter::ReportError(errMsg);
 return nl->TypeError();
}

Note that a stream is treated like an atom in the nested list representation. Nothing more of this piece
of code should be new. The type mapping for other operators is quite similar.

Value Mapping Functions

To be able to understand how the value mapping functions work, we have to take a closer look at
stream operators in general. Stream operators manipulate streams of objects. They may consume one
or more input streams, produce an output stream, or both. For a given stream operator α, let us call

– 19 –

the operator receiving its output stream its successor and the operators from which it receives its
input streams its predecessors. Now, stream operators work as follows: Operator α is sent a REQUEST
message from its successor to receive a stream object. Operator α in turn sends a REQUEST to its pre-
decessors. The predecessors either provide an object (sending back a YIELD message) or don’t have
objects any more (sending back a CANCEL message). Figure 2 shows the protocol dealing with
streams.

The first message sent to an operator producing a stream must be OPEN. This converts the stream
from the state closed to the state open. Afterwards, either REQUEST or CLOSE messages can be sent
to the stream. Sending REQUEST means, that the successor would like to receive an object. The
response can be a YIELD message (giving the object to the successor, remaining in state open) or a
CANCEL message (no further objects are available, switching to state closed). The successor may
send a CLOSE message, which means that it does not wish to receive any further objects even though
they may be available. This also transforms the stream into state closed.

When trying to simulate stream operators by algebra functions, it can be observed that a function
need not relinquish control (terminate) when it sends a message to a predecessor. This can be treated
pretty much like calling a parameter function. However, the function needs to terminate when it
sends a YIELD or CANCEL message to the successor. This makes it necessary to write the function in
such a way that it has some local memory and that each time when it is called, it just delivers one
object to the successor.

In the following example for a value mapping function for intstream, the possible messages are
encoded by the special symbols:

OPEN, REQUEST, CLOSE, YIELD, and CANCEL

The messages are passed as parameter and in the case of an request message YIELD and CANCEL are
used as return value. The parameter local is used to store local variables that must be maintained
between calls to the stream. More information about stream operators can be found in [GFB+97].

int
intstreamFun

(Word* args, Word& result, int message, Word& local, Supplier s)

state closed state open
OPEN

CLOSE

REQUESTCLOSE

Figure 2: (a) State Diagram for Streams, (b) Execution trace

α

succ

pred

1:REQUEST

2:REQUEST
3:YIELD

4:YIELD

(a)
(b)

– 20 –

{
struct Range { // an auxiliary record type

 int current;
 int last;

 Range(CcInt* i1, CcInt* i2) {
 if (i1->IsDefined() && i2->IsDefined())
 {
 current = i1->GetIntval();
 last = i2->GetIntval();
 }
 else
 {
 current = 1;
 last = 0;
 }
 }
 };
 Range* range = 0;
 CcInt* i1 = 0;
 CcInt* i2 = 0;
 CcInt* elem = 0;

– 21 –

 switch(message)
 {
 case OPEN: // initialize the local storage

 i1 = ((CcInt*)args[0].addr);
 i2 = ((CcInt*)args[1].addr);
 range = new Range(i1, i2);
 local.addr = range;
 return 0; // no special return message

 case REQUEST: // return the next stream element

 if(local.addr)
{

range = ((Range*) local.addr)
}
else
{

return CANCEL;
}

 if (range->current <= range->last)
 {
 elem = new CcInt(true, range->current++);
 result.addr = elem;
 return YIELD;
 }
 else
 {
 result.addr = 0;
 return CANCEL;
 }

 case CLOSE: // free the local storage
 if(local.addr)

{
range = ((Range*) local.addr);
delete range;

}
 return 0;
 }
 /* should never happen */
 return -1;
}

As we can see, three different messages, namely OPEN, REQUEST and CLOSE, are handled in the func-
tion. In the section for OPEN the argument values are extracted and a value for range is set and stored
in the local variable. In the REQUEST section range is read and a new int value is computed if the
current value for range is smaller than the last stream value. In this case, YIELD is returned. Other-
wise the result is CANCEL. Finally, in the CLOSE section, the stream is closed.

The value mapping function for operator count shows how a stream is consumed:

– 22 –

...
pq->Request(args[0].addr, elem);
while (qp->Received(args[0].addr))
 {
 count++;

((Attribute*)elem.addr)->DeleteIfAllowed(); //consume stream object
 qp->Request(args[0].addr, elem);
 }
...

Note, that for any operator that produces a stream, its arguments are not evaluated automatically. To
get the argument value, the value mapping function needs to use qp->Request to ask the query
processor for evaluation explicitly. A call of Received returns TRUE, if the previous call of Request
responded with a YIELD message. If it responded with CANCEL, the result is FALSE. Together with
streaming a mechanism for reference counting is needed to avoid unnecessary in memory copies of
objects and memory leaks. The DeleteIfAllowed function deletes a stream element if it is not used
anywhere else. Section 2 will explain more details about this.

In filterFun a parameter function is used to let through only selected stream objects:

Word elem, funresult;
ArgVectorPointer funargs;

...

case REQUEST:

 // Get the argument vector for the parameter function.
 funargs = qp->Argument(args[1].addr);

 // Loop over stream elements until the function yields true.
 qp->Request(args[0].addr, elem);
 while (qp->Received(args[0].addr))
 {
 // Supply the argument for the parameter function.
 (*funargs)[0] = elem;

 // Instruct the parameter function to be evaluated.
 qp->Request(args[1].addr, funresult);

CcBool* b = static_cast<CcBool*>(funresult.addr);
bool funRes = b->IsDefined() && b->GetBoolval();

 if (funRes) // Element passes the filter condition
{

 result = elem;
 return YIELD;

}
else // Element is rejected by the filter condition
{

 // consume the stream object (allow deletion)
 static_cast<Attribute*>(elem.addr)->DeleteIfAllowed();

// Get next stream element
 qp->Request(args[0].addr, elem);

}

– 23 –

}

 // End of Stream reached
 result = SetWord(Address(0));
 return CANCEL;

– 24 –

2 The Relational Algebra and Tuple Streams

The Relational Algebra implements relations formed by a collection of tuples, which in turn contain
a collection of attributes. It also provides basic operators to interoperate between relations and tuple
streams, thus tuple streams can be created from a relation using the feed operator, while a relation
can be created by applying the consume operator to a tuple stream. In this chapter, you will learn
how to implement operators dealing with tuple streams and contained tuples and attributes.

At this point, you should be familiar with the SECONDO Relational Algebra as a user, which means
that you know how to create and query relations.

You should also know about creating algebras in detail, i.e., creating type constructors, operators,
etc. because more sophisticated concepts about type constructors and operators will be handled in
this section. You should know, which functions a SECONDO data type may inherit from class
Attribute and which of these you are required to overwrite.

It is also important that you understand the concepts in the StreamExampleAlgebra, namely data
streams and parameter functions, which are used in almost all operators in the Relational Algebra.

2.1 The Relational Algebra Implementation

The Relational Algebra provides two type constructors: rel and tuple. The structural part of the rela-
tional model can be described by the following signature:

kinds IDENT, DATA, TUPLE, REL

type constructors example typeconstructors

→ DATA int, real, string, bool

(IDENT × DATA)+ → TUPLE tuple

TUPLE → REL rel

Therefore a tuple is a list of one or more pairs <identifier, type>. A relation is built from such a tuple
type.

In the Relational Algebra, relations are files (SmiRecordFile class) containing variable length
records (SmiRecord class), each record storing one tuple. For more detail on files and records, see
Section 5.

Another important structure that is used by the Relational Algebra is the Database Array (DBArray
class). DBArrays are used to implement complex attribute types, such as region for example.

To explain its structure, we need first to explain the concept of FLOBs, which stands for Faked
Large OBjects. There is a tradeoff between storing large objects inline with tuples and in a separate
record. Not always an instance of a large object uses a large amount of storage. As an example,

– 25 –

imagine that the region type constructor has a large object to store its array of segments. Imagine
then that we have in the system a relation that stores rectangles as regions. Rectangles need to store
only four segments and then, the storage needed for rectangles is not large. Therefore, it is preferable
to store the rectangles inline with the tuple. To solve this problem, the concept of a FLOB was cre-
ated. It is an abstraction of a large object (LOB) that decides where to store the objects. If the size of
the large object is smaller than a specified threshold, then the “large” object is stored inline with the
tuple, and otherwise it is stored in a separate record.

Every relation that contains at least one attribute with FLOBs has a separate variable length record
file to store the large FLOBs. It is important to note that large FLOBs are only read from disk when
needed.

Database arrays are constructed on top of FLOBs. The difference between FLOBs and DBArrays is
that a FLOB is a sequence of bytes (in disk or in memory) without structure, and a DBArray is a
structured array implemented as a C++ template. For more detailed information about FLOBs and
DBArrays, see Section 3.

For efficient retrieval of FLOBs, a FLOB cache is used. The size of the FLOB cache can be set in the
SecondoConfig.ini configuration file. The FLOB cache is also important for better memory utili-
zation, since there is a limit of memory utilization per operator.

We are now able to present the tuple representation (Figure 3):

Figure 3: Tuple Representation in Memory

A tuple contains an array of pointers to attributes (class Attribute and its subclasses). It may be the
result of the In-function for example, where every attribute is created separately. When a tuple needs
to be written to disk (see Figure 4), the “root blocks“ of all attributes (a, b, c, d) are copied to form a
contiguous block in memory. “Small“ FLOBs (“x“ in this case) are stored also contiguously after the
attributes in a memory block called tuple-extension. Then, the complete block is moved to a “Record
File“ on disk. Large FLOBs are kept separately; they are written into a separate “FLOB File“ on
disk. When a tuple is read from disk, its compacted root record is brought into memory and the struc-
ture described by Figure 3 is reconstructed. Data from the FLOB File is only loaded, when explicitly
accessed.

(array of attribute pointers)

(attribute objects)

(FLOB data)

(FLOB member)

• • • •

• •a b c d

x y

– 26 –

Finally, to avoid copying tuples and attributes when it is not necessary, references are passed and ref-
erence counters are kept. The object data is only deleted when its reference counter is decreased to 0.
The following functions are used in order to provide this functionality:

Attribute

For attributes, reference counters are maintained automatically:

Copy

This function is used to create a new reference to an attribute, incrementing the reference counter of
the attribute. Since we use one uint16_t to store this reference counter, it is possible to overflow
this value. In this case a clone of the attribute is done using the next function. Remember, that due to
this fact, you cannot be sure, that changes to the object data of one reference will affect all “copies“
at once!

Clone

This (virtual abstract) function does a forced clone of the attribute. Each clone has its own object
data, and reference counter, starting with reference counter refs = 1.

DeleteIfAllowed

This function decreases the reference counter and, if it becomes 0, deletes the attribute.

Tuple

For each tuple, it is within the responsibility of the programmer to maintain the correct state of the
reference counters. You must keep track of every single pointer to a tuple you maintain. When creat-
ing a new tuple, the reference counter is initialized with 1.

IncReference

This function increments the reference counter and must be used when a copy of a tuple pointer has
been created, and this pointer is kept by some operation. If you call IncReference, you are obliged
to call DeleteIfAllowed when releasing the reference.

Figure 4: Tuple Representation on Disk

• •a b c d x

y

Record File

FLOB File

– 27 –

DeleteIfAllowed

This function decreases the reference counter of a tuple and deletes it if the counter becomes 0. You
must call this function, if you give up any reference to a tuple (and the tuple is not used any more). If
you hand over the tuple reference, e.g. as the result of a value mapping function, do not call Delete-
IfAllowed, unless you created further references by yourself.

CopyAttribute

This function is very important and copies an attribute from one tuple to another. It calls the Copy
function of the attribute.

In the next sections the implementation of some operators is explained in detail. If you look for the
implementation files you should know that the Relational Algebra is divided into two algebra mod-
ules called RelationAlgebra and ExtRelationAlgbra. The first one implements the rel and tuple
type constructors and basic operators like feed, project, and consume whereas the second one
implements some more special operations. There is even a third module, by historic reasons it is
called OldRelationAlgebra. It provides the type constructors mrel and mtuple, which implement
relations which stay in memory. We will not explain the OldRelationAlgebra any further here.

2.2 Operators

The most important operators in the relational algebra are described below:

• feed: produces a stream of tuples from a relation.
• consume: the contrary of feed, i.e., produces a relation from a stream of tuples.
• rename: changes only the type, not the value of a stream by appending the characters supplied

as argument to each attribute name.
• filter: receives a stream of tuples and passes along only tuples for which the parameter func-

tion evaluates to true.
• attr: retrieves an attribute value from a tuple. This is operator is called, if the dot “.”/ “..” nota-

tion is used inside some operators, like filter for example.
• project: implements the relational projection operation on streams.
• product: implements the relational cartesian product operation on streams.
• count: counts the number of tuples in a stream or in a relation.

It is important to note that most of the operators of the relational algebra run on streams of tuples
instead of directly on relations. Exceptions are the feed operator, that produces the streams, and the
count operator, that is allowed to count the number of tuples also directly on relations.

2.3 Type Mapping Functions and APPEND

Up to now, in the algebra implementation tasks, the type mapping functions of all operators were
very simple. A type mapping function takes a nested list as an argument. Its contents are type

– 28 –

descriptions of an operator’s input parameters. A nested list describing the output type of the opera-
tor is returned. The feed operator’s type mapping function, for example, can be described as

((rel x)) -> (stream x)

where x is a tuple type. This means that it receives a relation of tuples of type x as an argument and
returns a stream of the same tupletype x.

In the relational algebra we have some type mapping functions that are quite complex and use the
special keyword APPEND in the result type. We will show the need and the effects of the APPEND key-
word using the attr and project type mapping functions as examples.

Attr Type Mapping Function

The attr operator takes a tuple and retrieves an attribute value from it. The type mapping function
should be:

((tuple ((x1 t1)...(xn tn))) xi) → ti)

where xi is an attribute name, and ti is its data type, both indexed by i. The type mapping function of
the attr operator is:

ListExpr AttrTypeMap(ListExpr args)
{
if(nl->ListLength(args)!=2){
 ErrorReporter::ReportError("two arguments expected");
 return nl->TypeError();
 }
 ListExpr first = nl->First(args);
 if(!listutils::isTupleDescription(first)){
 ErrorReporter::ReportError("First arguments must be tuple(...)");
 return nl->TypeError();
 }
 ListExpr second = nl->Second(args);
 if(nl->AtomType(second)!=SymbolType){
 ErrorReporter::ReportError("second arguments ust be an attribute name");
 return nl->TypeError();
 }

 string name = nl->SymbolValue(second);
 ListExpr attrtype;
 int j = listutils::findAttribute(nl->Second(first),name,attrtype);
 if(j==0){
 ErrorReporter::ReportError("Attr name " + name +
 " not found in attribute list");
 return nl->TypeError();
 }
 return nl->ThreeElemList(nl->SymbolAtom("APPEND"),
 nl->OneElemList(nl->IntAtom(j)),
 attrtype);
}

– 29 –

The variable first contains the list (tuple ((x1 t1)...(xn tn)))and the second contains the
attribute name xi that we are interested in retrieving. The function FindAttribute receives a list of
pairs of the form ((x1 t1)...(xn tn)), an attribute name and a data type that will be filled as a
result. It then determines, whether the attribute name occurs as one of the attributes in this list. If so,
the index in the list (beginning from 1) is returned and the corresponding data type is put in the
attribute data type argument. Otherwise 0 is returned.

In this way, the value mapping function can get a tuple and an attribute name as arguments. But, in
this level it does not know about the tuple type, and therefore it would be impossible to determine the
attribute index. Moreover, it would be inefficient to compute the index once for every tuple pro-
cessed in a stream. Since we calculated the index in the type mapping function, it would be nice that
another argument should be added and used in the value mapping function. This will be done using
the APPEND keyword. The technique used is that the type mapping function returns not just the mere
result type, but a list of the form

(APPEND (<newarg1> ... <newargn>) <resulttype>)

APPEND tells the query processor to add the elements of the following list (<newarg1> ...

<newargn>) to the argument list of the operator as if they had been written in the query. Using this
approach, we can pass the attribute index as another argument to the value mapping function of the
attr operator as it is shown below.

((tuple ((x1 t1)...(xn tn))) xi) -> (APPEND (i) ti)

This resulting type mapping function will pass the tuple t, the attribute name xi and the attribute
index i to the value mapping function as arguments, and set the attribute type ti to be the result type
of the operator.

The main difference is that instead of returning only the attribute type, the type mapping function
returns a three element list containing first the keyword APPEND, then the attribute index, i.e. what we
want to be appended, and finally the attribute type, which will be the result type of the operator. The
value mapping function1 is then:

int
Attr(Word* args, Word& result, int message, Word& local, Supplier s)
{
 Tuple* tupleptr;
 int index;

 tupleptr = (Tuple*)args[0].addr;
 index = ((CcInt*)args[2].addr)->GetIntval();
 result = SetWord(tupleptr->GetAttribute(index - 1));
 return 0;
}

It takes the arguments from the array args. The first argument in position 0 is the tuple, the second
(position 1) is the attribute name which is not used in the value mapping (but was used in the Type

1. The details on Value Mapping Fuctions for tuple streams are explained in the following section. Here, we only
want to demonstrate how to use the APPENDed argument.

– 30 –

Mapping, as described before), and the third in position 2 is the attribute index passed with the
APPEND command. The function then returns the attribute value at this position pointed to by the
attribute index.

Project Type Mapping Function

Following the same idea presented above for the attr operator, the project operator also uses the
APPEND command. The project operator’s type mapping function acts like the description below.

((stream (tuple ((x1 T1) ... (xn Tn)))) (ai1 ... aik))→
(APPEND

(k (i1 ... ik))
(stream (tuple ((ai1 Ti1) ... (aik Tik)))))

which means that it receives a stream of tuples with tuple description ((x1 T1) ... (xn Tn)) and a
set of attribute names (ai1 ... aik). The type mapping function will return not only the result type,
which is a stream of tuples containing only the attributes in the argument set (ai1 ... aik), i.e., a
stream of tuples with description ((ai1 Ti1) ... (aik Tik)). It uses the APPEND command to append
a set of attribute indexes (i1 ... ik), and the number of attributes k contained in the set. The
project operator’s type mapping function is shown below:

ListExpr ProjectTypeMap(ListExpr args)
{
 bool firstcall = true;
 int noAttrs=0, j=0;

 // initialize local ListExpr variables
 ListExpr first=nl->TheEmptyList();
 ListExpr second=first, first2=first,
 attrtype=first, newAttrList=first;
 ListExpr lastNewAttrList=first, lastNumberList=first,
 numberList=first, outlist=first;
 string attrname="", argstr="";

 if(nl->ListLength(args)!=2){
 ErrorReporter::ReportError("tuplestream x arglist expected");
 return nl->TypeError();
 }
 first = nl->First(args);

 if(!listutils::isTupleStream(first)){
 ErrorReporter::ReportError("first argument has to be a tuple stream");
 return nl->TypeError();
 }

 second = nl->Second(args);

 if(nl->ListLength(second)<=0){
 ErrorReporter::ReportError("non empty attribute name list"
 " expected as second argument");
 return nl->TypeError();
 }

– 31 –

 noAttrs = nl->ListLength(second);
 set<string> attrNames;
 while (!(nl->IsEmpty(second)))
 {
 first2 = nl->First(second);
 second = nl->Rest(second);
 if (nl->AtomType(first2) == SymbolType)
 {
 attrname = nl->SymbolValue(first2);
 }
 else
 {
 ErrorReporter::ReportError(
 "Attributename in the list is not of symbol type.");
 return nl->SymbolAtom("typeerror");
 }
 if(attrNames.find(attrname)!=attrNames.end()){
 ErrorReporter::ReportError("names within the projection "
 "list are not unique");
 return nl->TypeError();
 } else {
 attrNames.insert(attrname);
 }

 j = listutils::findAttribute(nl->Second(nl->Second(first)),
 attrname, attrtype);
 if (j)
 {
 if (firstcall)
 {
 firstcall = false;
 newAttrList =
 nl->OneElemList(nl->TwoElemList(first2, attrtype));
 lastNewAttrList = newAttrList;
 numberList = nl->OneElemList(nl->IntAtom(j));
 lastNumberList = numberList;
 }
 else
 {
 lastNewAttrList =
 nl->Append(lastNewAttrList,
 nl->TwoElemList(first2, attrtype));
 lastNumberList =
 nl->Append(lastNumberList, nl->IntAtom(j));
 }
 }
 else
 {
 ErrorReporter::ReportError(
 "Operator project: Attributename '" + attrname +
 "' is not a known attributename in the tuple stream.");
 return nl->SymbolAtom("typeerror");
 }
 }
 outlist =

– 32 –

 nl->ThreeElemList(
 nl->SymbolAtom("APPEND"),
 nl->TwoElemList(
 nl->IntAtom(noAttrs),
 numberList),
 nl->TwoElemList(
 nl->SymbolAtom("stream"),
 nl->TwoElemList(
 nl->SymbolAtom("tuple"),
 newAttrList)));
 return outlist;
}

This function starts setting the first and second variables with the lists of the tuple representation
and the set of attribute names desired in the projection, respectively. The number of resulting
attributes is taken from the length of the attribute names list, and a variable first2 is used to iterate
inside the set of attribute names. The FindAttribute function is used again to retrieve the attribute
index given an attribute name and a list of these attributes indexes called numberList is constructed.
A list containing the pairs <attribute name, attribute type> is also constructed using the newAttrL-
ist variable. The return of the project operator’s type mapping function is a list of three elements,
the first containing the APPEND command, the second containing the information that will be
appended as arguments passed to the value mapping function, i.e., the set of attributes indexes and
the size of this set, and the third containing the result type of the project operator, which is a stream
of tuples containing the pairs in the newAttrList variable.

This example shows that we can pass more than one argument with the APPEND command. In this
case, we pass the number of attributes and the list containing the attribute indexes.

2.4 Value Mapping Functions

In this section, we will take a closer look into the feed, project and consume operators’ value map-
ping functions. The feed operator’s value mapping function is a good example of the stream algebra
concepts, whereas with the consume operator we can show how tuple deletion works. Finally, with
the project operator we show how attributes are copied.

Feed Operator Value Mapping Function

Let us now take a closer look on the value mapping function of the feed operator, for a review of the
stream algebra concepts:

int
Feed(Word* args, Word& result, int message, Word& local, Supplier s)
{
 GenericRelation* r;
 GenericRelationIterator* rit;

 switch (message)

– 33 –

 {
 case OPEN :
 r = (GenericRelation*)args[0].addr;
 rit = r->MakeScan();

 local = SetWord(rit);
 return 0;

 case REQUEST :
if(local.addr)
{

 rit = (GenericRelationIterator*)local.addr;
}
else
{

return CANCEL;
}

 Tuple *t;
 if ((t = rit->GetNextTuple()) != 0)
 {
 result = SetWord(t);
 return YIELD;
 }
 else
 {
 return CANCEL;
 }

 case CLOSE :
if(local.addr)
{

rit = (GenericRelationIterator*)local.addr;
 delete rit;

}
 return 0;
 }
 return 0;
}

When the message is an OPEN, the feed operator retrieves the argument relation into r, initializes the
iterator rit, and stores this iterator in a special variable called local. This local variable is used to
keep the state of the operator, i.e., it is a way to simulate the storage of local variables as static. Then,
in the REQUEST message, the feed operator gets the iterator back from the local variable, retrieves
the next tuple from it, and puts it into the result variable. If there are no more tuples available in the
iterator, then CANCEL is returned, otherwise YIELD is returned. This result variable together with the
return of the function (YIELD or CANCEL) will be used by the operator which sent the REQUEST mes-
sage to the feed operator. Finally, in the CLOSE message, the iterator is closed and 0 is returned,
which means success.

Bear in mind, that the feed operator receives the tuples from the GenericRelation object (with its
reference counter = 1). Therefore, and because it only passes on the reference to each tuple, but does
not maintain any further reference on it, we do not need to copy each tuple or call IncReference()

– 34 –

for it. But, whoever requests a tuple from a tuple stream operator (like our feed) and receives it, takes
over the responsible for finally calling DeleteIfAllowed() on it. Usually, this responsibility is
passed on from stream operator to stream operator until a “tuple sink“ operator, like consume or
count, is reached.

Consume Operator Value Mapping Function

Let us now take a closer look into the consume operator’s value mapping function:

int
Consume(Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 Word actual;

 GenericRelation* rel = (Relation*)((qp->ResultStorage(s)).addr);
 if(rel->GetNoTuples() > 0)
 {
 rel->Clear();
 }

qp->Open(args[0].addr);
 qp->Request(args[0].addr, actual);
 while (qp->Received(args[0].addr))
 {
 Tuple* tuple = (Tuple*)actual.addr;
 rel->AppendTuple(tuple);
 tuple->DeleteIfAllowed();
 qp->Request(args[0].addr, actual);
 }
 result = SetWord(rel);
 qp->Close(args[0].addr);
 return 0;
}

As mentioned before, the consume operator receives tuples from a stream and builds a relation con-
taining these tuples. Actually the relation creation is not a task of the consume operator, but of the
query processor. The query processor previously creates storage at the query tree construction time
for the type constructor’s result type returned in the type mapping function. The function
ResultStorage of the query processor returns a pointer (as a Word) to this created object.

There are special cases where the consume operator can be called inside a loop – in the loopjoin
operator for example – and the storage is created only once by the query processor. Therefore, it is
necessary to empty the relation retrieved from the query processor before proceeding.

The function then sends the stream messages OPEN and REQUEST, to retrieve the first tuple from the
stream argument. If (and while) a tuple is received, it gets the tuple from the actual variable passed
with the REQUEST message. The consume operator appends the tuple to the result relation, tries to
delete it, and asks for the next one from the stream argument. After retrieving all tuples from the
stream argument and appending them to the result relation, it closes the stream, and returns 0, mean-

– 35 –

ing success. Note that the operator does not directly delete tuple, but calls the function DeleteIfAl-
lowed.

This is, because some other operators may still hold references on certain tuples. These tuples will be
finally deleted from memory, when their reference counters have been decreased to 1 and DeleteI-
fAllowed is called once more for them. If you keep references on tuples within an operator, make
sure you call IncReference() exactly once for each copy, and release the reference when you do
not need then any more by calling DeleteIfAllowed() once per refence, again.

The value mapping reflects the „tuple sink“ nature of the consume operator: It will consume the
complete tuple stream in order to calculate its result.

Project Operator Value Mapping Function

Let us now take a closer look on the value mapping function of the project operator, in order to
show how attributes are copied.

int
Project(Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 switch (message)
 {
 case OPEN :
 {
 ListExpr resultType = GetTupleResultType(s);
 TupleType *tupleType = new TupleType(nl->Second(resultType));
 local.addr = tupleType;
 qp->Open(args[0].addr);
 return 0;
 }
 case REQUEST :
 {
 Word elem1, elem2;
 int noOfAttrs, index;
 Supplier son;

 qp->Request(args[0].addr, elem1);
 if (qp->Received(args[0].addr))
 {
 TupleType *tupleType = (TupleType *)local.addr;
 Tuple *t = new Tuple(tupleType);

 noOfAttrs = ((CcInt*)args[2].addr)->GetIntval();
 assert(t->GetNoAttributes() == noOfAttrs);

 for(int i = 0; i < noOfAttrs; i++)
 {
 son = qp->GetSupplier(args[3].addr, i);
 qp->Request(son, elem2);
 index = ((CcInt*)elem2.addr)->GetIntval();
 t->CopyAttribute(index-1, (Tuple*)elem1.addr, i);
 }

– 36 –

 ((Tuple*)elem1.addr)->DeleteIfAllowed();
 result = SetWord(t);
 return YIELD;
 }
 else return CANCEL;
 }
 case CLOSE :
 {
 ((TupleType *)local.addr)->DeleteIfAllowed();
 qp->Close(args[0].addr);
 return 0;
 }
 }
 return 0;
}

The operator starts only by retrieving the result tuple type from the query processor, in the OPEN mes-
sage. For every tuple it receives in the REQUEST message, a new resulting tuple is created and every
attribute is copied with the help of CopyAttribute, and finally the tuple is (possibly) deleted with
DeleteIfAllowed. Finally, in the CLOSE message, the argument stream is closed.

– 37 –

3 DbArray - An Abstraction to Manage Data of Widely Varying Size

3.1 Overview

The DbArray class provides an abstract mechanism supporting instances of data types of varying
size. It implements an array, whose slot size is fixed, however, the number of slots may grow dynam-
ically. DbArray is implemented as a template class and provides the following interface:

The class is derived from the class Flob with the purpose of hiding the complexity of managing large
objects. A detailed description about the interface can be found in the file DbArray.h.

A Flob (Faked Large Object) decides whether an object has to be loaded or stored on disk and how it
is distributed over different record files. Flobs were invented to improve the storage process of
tuples potentially containing large objects into records of a storage management system. Based on a
threshold value, small objects are stored within tuple records, whereas large objects are swapped out
into separate records; for details refer to [DG98]. Hence, the design of the DbArray, Flob and the
tuple representation within the relational algebra was coordinated to support a simple integration of
new data types with varying size into the relational data model with a general mechanism for achiev-
ing persistence.

3.2 Example

As an example for the usage of class DbArray, the implementation of the PolygonAlgebra [Poly02]
can be studied. It uses a class Polygon having a private member vertices of type DbArray:

struct Vertex {
...
int x;
int y;

};

Creation/Removal Access Restructure Other

DbArray Append resize Size

~DbArray Get clean GetFlobSize

Destroy Put Sort GetUsedSize

Find Restrict GetElemSize

copyFrom TrimToSize GetCapacity

copyTo

– 38 –

class Polygon {
...
void Append(const Vertex& v);
void Complete(); // set state = complete
void Destroy(); // destroy the DbArray vertices
...

 private:
 int noVertices;
 int maxVertices;
 DbArray<Vertex> vertices;
 PolygonState state;
};

void Polygon::Append(Vertex& v)
{
 assert(state == partial);
 vertices.Append(v);
}

void Polygon::Destroy()
{
 assert(state == complete);
 vertices.Destroy();
}
...

These are only some incomplete code fragments, but they demonstrate the usage of DbArray. Since
DbArray is a template class it is type safe and instantiated with parameter type Vertex, a simple
struct representing (x, y) coordinates. The assertion state == partial is just a helpful instrument
to locate errors during the development, a polygon may be in state partial or complete.

Important Note: The structure of any data type intended to be suitable as parameter type for class
DbArray is strictly required to have the following structure:

1. It must consist of a single block of memory, hence all attributes of such a class must them-
selves have fixed size (so the compiler embeds their memory blocks into the block of the class
instance). In other words, the only types that can be used as class members are scalar types like
int, float, char[], etc.

2. It is not possible to use pointer structures or classes from libraries, e.g. a binary tree or a string,
as type of member variables.

3. It is also not allowed to nest Flobs or DbArrays, e.g. DbArray<DbArray<int>> will be
accepted by the compiler but does not work at runtime.

4. A DbArray<T> cannot store instances of types, which are sybtypes of T. For example, it’s not
possible to store regions and line instances within a DbArray<Attribute>.

The algebra’s In-function expects to receive a list of structure ((x1 y1) ... (xn yn)) and will create a
new instance of class Polygon. Therefore it iterates over the nested list, which is passed to it by an
update, let or restore command. During the iteration process the Polygon::Append function is used

– 39 –

to fill the DbArray member vertices with Vertex-values. This is demonstrated in the example
below.

Word
InPolygon(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo, bool& correct)
{
 Polygon* polygon = new Polygon(0);

 ListExpr first = nl->Empty();
 ListExpr rest = instance;
 while(!nl->IsEmpty(rest))
 {
 first = nl->First(rest);
 rest = nl->Rest(rest);

 if(nl->ListLength(first) == 2 &&
 nl->IsAtom(nl->First(first)) &&

nl->AtomType(nl->First(first)) == IntType &&
 nl->IsAtom(nl->Second(first)) &&

nl->AtomType(nl->Second(first)) == IntType)
 {
 Vertex v(nl->IntValue(nl->First(first)),

nl->IntValue(nl->Second(first)));
 polygon->Append(v);
 }
 else
 {
 correct = false;

delete Polygon;
 return SetWord(Address(0));
 }
 }
 polygon->Complete();
 correct = true;
 return SetWord(polygon);
}

The function clean deletes the current content of a Flob, allowing for the instance to be reused.
Usage of Destroy completely removes all underlying records. The latter is typically done in a data
type’s delete function.

void DeletePolygon(Word& w)
{
 Polygon* polygon = (Polygon*)w.addr;

 polygon->Destroy();
 delete polygon;
}

Here polygon->Destroy calls vertices->Destroy. The Put and Get methods which are not used
in the examples above simply return or set the value for a given array index, which are numbered
from 0 to Size() − 1. If the data type of the array is ordered, one could provide a comparison func-

– 40 –

tion. Then the find method can be used to do a binary search on the persistent representation, and
the sort method will re-organize the array in sorted order.

3.3 Accessing Flobs Directly

The DbArray class provides a nice and clean abstraction mechanism to support arrays of varying
size, containing elements of fixed size. But, if the data type is not well organized in arrays, one can
use directly an object of class Flob. This would be important for a type constructor which needs to
store long and variable sized texts, for example. Texts can be viewed as an array of characters, but it
would be better to store them directly into a Flob to avoid lots of calls to Put and Get functions. The
Flob class provides an interface similar to the DbArray class, but the Put and Get functions are
replaced by read and write functions. Their interface is shown below:

void write(const char* buffer, const SmiSize length, const SmiSize offset);
void read(char* buffer, const SmiSize length, const SmiSize offset);

They read (write) into source (target), from an offset until length in bytes. Let us see an exam-
ple of the BinaryFileAlgebra, which provides the type constructor binfile. This algebra stores in a
SECONDO object the byte sequence of a file. The storage must be provided by the caller of the func-
tion sketched below:

#include “Base64.h“

class BinaryFile : public Attribute
{
 public:

...

 void Encode(string& textBytes);
 void Decode(string& textBytes);
 bool SaveToFile(char *fileName);

 private:

 Flob binData;
 bool canDelete;
};

Since SECONDO relies on textual representation of data during import and export, binary data must be
encoded in printable characters. Base 64 [BF93] is a widely used encoding format for this purpose.
The Encode and Decode functions convert binary to textual representation and vice versa. The exam-
ples below demonstrate access to a Flob object, i.e., how to use the read and write functions.

– 41 –

void BinaryFile::Encode(string& textBytes) const{
 Base64 b;
 if(!IsDefined()){
 textBytes = "";
 return;
 }
 size_t mysize = binData.getSize();
 char bytes[mysize];
 binData.read(bytes, mysize, 0);
 b.encode(bytes, mysize , textBytes);
}

Both functions use the Base64 class that provides functions for encoding binary data and decoding
Base 64 data. The Encode function first allocates some bytes for reading and then calls the function
read to read in the bytes from the Flob. These bytes are in binary format and they are passed to the
encode function of the Base64 class creating a string with characters of the Base 64 alphabet.

void BinaryFile::Decode(const string& textBytes){
 Base64 b;
 int sizeDecoded = b.sizeDecoded(textBytes.size());
 char *bytes = (char *)malloc(sizeDecoded);

 int result = b.decode(textBytes, bytes);

if(result <= sizeDecoded){
 binData.resize(result);
 binData.write(bytes, result, 0);
 SetDefined(true);
 } else {
 binData.clean();
 SetDefined(true);
 }
 free(bytes);
}

The Decode function does the contrary, it decodes a Base 64 text string into a block of binary bytes
and stores it in the Flob using the function write. Note that before copying data into the Flob its
capacity must be adjusted with the resize function.

3.4 Interaction with the Relational Algebra

The requirements for data types to be used as relation attributes are discussed in detail in the next
section, but when DbArrays or Flobs are used, two functions inherited from class Attribute must
be implemented. An example of these functions for the binfile type constructor is shown below.

– 42 –

int BinaryFile::NumOfFLOBs()
{
 return 1;
}

Flob *BinaryFile::GetFLOB(const int i)
{
 assert(i >= 0 && i < NumOfFLOBs());
 return &binData;
}

As data types can have any fixed number of Flobs, it is necessary to implement a mechanism to
access all of them. In this way, the function NumOfFLOBs must return how many Flobs the data type
has. The function GetFLOB associates each contained Flob with a unique index i, 0 ≤ i < NumOf-
FLOBs(), and returns the Flob identified by the requested index i.

3.5 Important Hint

The standard constructor of a Flob or DbArray (the one without any arguments) must only be used
within the standard constructor of an attribute type. If you want to initialize or define an object, use
the constructor taking the initial capacity as a parameter instead. The following examples illustrates
this:

correct

...
Flob a;
DbArray<int> b;
....

...
Flob a(0);
DbArray<int> b(0);
....

class MyClass{

public:
 MyClass(){

 }
private:
 Flob f;
 DbArray<X> g;

};

class MyClass{

public:
 MyClass():f(0),g(0){
 ...
 }
private:
 Flob f;
 DbArray<X> g;

};

wrong

– 43 –

4 Kind DATA: Attribute Types for Relations

When data types shall be used as attributes of a relation object, every C++ class implementing such a
type has to implement a special set of functions, which are used by operators of the relational alge-
bra. These functions include methods to compare object values, load and save them to disk, and print
them. These functions have been encapsulated into a C++ class named Attribute. Any attribute
type must inherit from this class and additionally register for the kind DATA. This is done in the Alge-
bra constructor by calling AssociateKind(“DATA“) for those types.

Additional functions needed to use indexes on attribute types (as e.g. implemented by the BTreeAl-
gebra [BTree02]) have been encapsulated into a class called IndexableStandardAttribute,
which is a specialization of class Attribute. Datatypes inheriting from this class may be registered
for kind INDEXABLE. The class hierarchy is:

Attribute → IndexableStandardAttribute.

The functions of each class are explained in more detail in the tables below:

Class Attribute (1): Functions with default implementations

Function Description

NumOfFLOBs Returns the number of Flobs (DbArrays) used in the class. Default implementa-
tion returns zero.a

GetFLOB Returns a pointer to a Flob object.

getUncon-
trolled-
FlobSize

Some Flobs play dirty tricks to speed up computation and may use memory not
controlled by the FlobManager. To accurately calculate the current storage con-
sumption of an object, add the return value of this function to the return value of
SizeOf().

Open May be used as standard method for opening a persistent object. Can be useful in
the implementation of type constructors.

Save The complementary function to Open. Makes an object persistent.

Initialize Used only by JNI-Algebras, which must provide a pointer to an object in the Java
Virtual Machine (deprecated).

Finalize Used only by JNI-Algebras (deprecated).

Print Should be implemented to print out useful information on an ostream, mainly for
debugging. But the function is also used in several generic output operators (like
the printstream operator).

operator<< Should be implemented to write an instance of this class into an ostream object.

IsDefined This function is used to indicate if the object represents a valid value or not; for
example, a division by zero results into an integer object with status “not defi-
ned”.b

SetDefined Used to set the object’s “defined” status.

– 44 –

The open and save functions should not be overwritten. They define useful standard implementa-
tions for creating or restoring persistent versions of an object with Flob1 members, hiding the com-
plexity of reading and writing data from memory into records. If the data type does not contain
members of type Flob, the functions NumOfFLOBs and GetFLOB do not need to be refined. The func-
tions Initialize and Finalize are only needed for Algebras written in Java and employing the JNI
(Java Native Interface) for integration into SECONDO.

When you need to overwrite one of the attribute functions, be careful and use the correct name and
signature. Otherwise the compiler will interpret your function as a new member function of your
subclass and at runtime the default implementation will be used which may raise serious runtime
errors.

a.Flobs are explained in the Chapter on DbArrays.
b.Since September 2008, the class Attribute maintains the defined flag, thus every subclass automatically
provides this flag. It can be accessed by the member del.isDefined (del is a struct). In older code
you may observe that subclasses provide a bool member of their own and implementations of
Isdefined and SetDefined. This is not neccessary any more.

1. Flobs are explained in the Chapter on DbArrays.

– 45 –

In contrast to all that, the following functions are purely virtual functions, hence they have no
default implementation. For these ones the compiler will remind you with an error message, since
pure virtual functions need to be implemented in the child class.

Any datatype, that inherits from Attribute may be registered with kind DATA and used as an
attribute within a relation.

Class Attribute (2): Purely virtual functions (without default implementation)

Function Description

SizeOf Returns the memory size needed to store an instance of the class. This information
is needed for calculating the size of a tuple (e.g. to calculate how many tuples fit
into a buffer). A typical implementation is to return sizeof(<class name>).
The returned size does not include the size of data kept externally within Flobs.

Compare Defines a total order. This is, for example, used by the sortby operator of the rela-
tional algebra. Returns an integer value V. If the the current instance (this) is
„smaller“ than the function’s argument, V should be negative (usually -1). If both
objects are „equal“, V becomes 0, if the argument is smaller than this, V becomes
positive (usually +1). Note, that there is a convention on how to treat undefined
values [F1].

Adjacent Decides whether the current instance (this) is adjacent to an instance of the same
type passed as argument. Examples: 2 and 3 are adjacent integers; “abc“ and “abd“
are adjacent strings. This is used by operations merging intervals.

Clone This is needed by several operators of the relational algebra. Clone will depth copy
the object. The result is a completely new object, with its own storage and refe-
rence counter.

HashValue This is a function which maps values to integers used by hash-functions. E.g. the
hashjoin operator of the relational algebra needs this information. It is a bad
design to map all instances to the same hash value.

CopyFrom Copies the value of a referenced attribute into this object. This is used by several
operators of the relational algebra. Remember, any changes may be transparent for
all references created using Attribute::Copy(), but not those, that have been
created using Attribute::Clone(). As only a limited number of references is
possible for each object, sometimes, an object will be cloned when you intend to
copy it. As a result, you should never rely on transparent changes to references to
an attribute.

Class IndexableStandardAttribute

Function Description

WriteTo Converts the value of an object into an uniqe (order preserving) key value.

SizeOfChars Length of the key value.

ReadFrom Restores an object value from its key.

– 46 –

Important Note: For a data type used as an attribute type holds the same as for types used for DbAr-
rays: Each object of that type must be represented as a single block of memory with a fixed size; it
may not contain pointer structures. It may contain a fixed number of Flobs or DbArrays. If dynamic
data structures like trees are needed they have to be embedded into Flobs, e.g. using DbArrays, with
array indices serving as pointers.

The reason for this restriction is that the mechanism for building tuple data structures with the auto-
matic placement of Flobs is based on this assumption. In addition, all “pointers” are automatically
stable regardless of how values are placed in memory.

At first glance, an algebra implementor may not understand the need for all of these functions. How-
ever, the relational algebra makes use of all of them. So, the implementation of these functions is
essential.

Refer to the DateTimeAlgebra [Date04] as an example for an algebra whose types are made avail-
able as attribute types in relations. The example below describes some parts of the C++ class
DateTime.

class DateTime : public IndexableStandardAttribute {

...

/*

The next functions are needed for the DateTime class to act as
an attribute of a relation.

*/
 int Compare(Attribute* arg);
 bool Adjacent(Attribute*);
 int Sizeof();
 bool IsDefined() const;
 void SetDefined(bool defined);
 size_t HashValue();
 void CopyFrom(StandardAttribute* arg);
 DateTime* Clone();
 void WriteTo(char *dest) const;
 void ReadFrom(const char *src);
 SmiSize SizeOfChars() const;

...
}

In the implementation of its open and save function one can see how the standard open and save
methods of class Attribute are reused. Of course, class DateTime has no FLOB members but it
would work the same way if it had some of them.

– 47 –

bool OpenDateTime(SmiRecord& valueRecord,
 size_t& offset,
 const ListExpr typeInfo,
 Word& value){
 DateTime *dt =
 (DateTime*)Attribute::Open(valueRecord, offset, typeInfo);
 value = SetWord(dt);
 return true;
}

bool SaveDateTime(SmiRecord& valueRecord,
 size_t& offset,
 const ListExpr typeInfo,
 Word& value){
 DateTime *dt = (DateTime *)value.addr;
 Attribute::Save(valueRecord, offset, typeInfo, dt);
 return true;
}

4.1 Serialization

For several reasons a more compact disk storage [Doc08] especially of naturally small datatypes like
int, real or bool is desirable. In order to support this feature, an interface for serialization was intro-
duced into class Attribute. From now on we distinguish between three flavours of attribute stor-
age types:

(a) Default-Serialization. Variable data ist managed by FLOBs and stored in the extension of
the tuple.

(b) Core-Serialization. A more compact data representation which has always a fixed size and
is stored directly in the core part of a tuple. For example an integer can always be stored by a
sequence of 5 bytes which encode the defined flag and a 4 byte value.

(c) Extension-Serialization. Variable sized data not managed by FLOBs but stored inside the
extension part. The core part will only contain 4 bytes used as offset into the extension.

To support serialization three virtual functions defined in class Attribute need to be overwritten.
Below the implementation of class CcInt for type int is shown:

// Attribute.h:
// enum StorageType { Default, Core, Extension, Unspecified };

inline virtual StorageType GetStorageType() const { return Core; }

 inline virtual size_t SerializedSize() const
 {
 return sizeof(int32_t) + 1;
 }

 inline virtual void Serialize(char* storage, size_t sz, size_t offset)

– 48 –

const
 {
 WriteVar<int32_t>(intval, storage, offset);
 WriteVar<bool>(del.isDefined, storage, offset);
 }

 inline virtual void Rebuild(char* state, size_t sz)
 {
 size_t offset = 0;
 ReadVar<int32_t>(intval, state, offset);
 ReadVar<bool>(del.isDefined, state, offset);
 }

Function SerializedSize must return the actual size of an object, a replacement for the sizeof
function. The functions Serialize and Rebuild write bytes to a byte block or read data from a byte
block given as a pointer to char. Note that the parameter sz in the function Rebuild is only of inter-
est for the default implementation, thus it is ignored here. For scalar data types the template func-
tions WriteVar and ReadVar are helpful to store and restore member variables.

Note: C++ Classes which implement serialization cannot be used to construct a DbArray over them,
since the DbArray still relies on the default serialization mechanism.

4.2 Supporting the ImExAlgebra

The ImExAlgebra provides operators supporting import and export to and from CSV (comma sepa-
rated file). The algebra can generically import any attribute types, which are members of kind
CSVIMPORATABLE and export any type which is member of kind CSVEXPORTABLE. There is
also some support for DB3 tables and SHAPE files.

The according interfaces are part class Attribute. If generic import and export should be used for a
new data type, the standard implementation of the following functions must be overwritten with type
specific implementations:

Interface for kinds CSVIMPORTABLE and CSVEXPORTABLE

Function Description

getCsvStr Returns a string representation for CSV export.

hasBox Returns true, iff the attribute has a bounding box (e.g. implements a spatial
type). Rquired for SHAPE import/ export

writeShape Writes the binary object data to a ostream object. Used for SHAPE export.

ReadFromString Restores an object from a string representation (for CSV import).

getMinX, getMaxX,
getMinY, getMaxY,
getMinZ, getMaxZ,
getMinM, getMaxM

Returns minimum and maximum values for the object’s MBR (minimum
bounding rectangle). Required for SHAPE export.

– 49 –

4.3 The Golden Rules for Implementing Attribute Types

When implementing a new attribute data type (i.e. any class derived from class Attribute) the fol-
lowing golden rules must be obeyed:

1. Always define the standard constructor (the one receiving no arguments) with an empty imple-
mentation. It is a good idea to declare it to be a private function. A non-empty implementa-
tion will clash with the persistency mechanisms and destroy attribute data!

2. Always implement a non-standard implementation (one that gets at least one argument). We
strongly advise to implement a constructor getting a boolen argument to create a defined or
undefined class instance. For attributes with a Flob or DbArray, the non-standard constructor
may set an initial size for the Flob/ DbArray.

3. Within each non-standard constructor: First call a non-standard constructor of the direct super-
class! This ensures that finally defined flags and reference counters are set up in the correct
way.

4. Never use the standard constructor in any other location than inside the Cast-Function. New
objects created by the standard constructor will contain invalid defined flags, reference
counters etc.

5. Only use call standard constructor within the Cast-Function. Any other constructor will collide
with the persistency mechanisms and destroy the attribute data!

getshpType Returns a string describing the exported SHAPE file type.

hasDB3Representation Returns true, iff the object has a DB3-Representation.

getDB3Type Returns a character indicating the exported DB3 type.

getDB3Length Returns an unsigned char desribing the length of the exported DB3 type.

getDB3DecimalCount Returns the number of decimals used in DB3 export as a unsigned char.

getDB3String Returns a string with the DB3 representation of the object. For DB3 and
SHAPE export.

– 50 –

5 SMI - The Storage Management Interface

The SMI is a general interface for reading and writing data to disk. Although this sounds simple,
implementing concepts for locking, buffering, and transaction management is a highly complex task.
Therefore, SECONDO does not have its own concepts for this purpose but uses already existing data-
base libraries. Hence, the SMI provides a collection of classes which are used as a general interface
within SECONDO to access the API of other database libraries. Currently, the code is based only on
the Open Source project Berkeley-DB. However, the interface was designed to separate the code of
the SECONDO core system and the algebra modules from interfaces of libraries which support storage
management facilities.

5.1 Retrieving and Updating Records

In this introduction an overview about the SMI classes and their interdependencies is presented. The
SMI uses the two concepts records and files. In a record a sequence of bytes can be stored. It has a
unique ID and each file can hold many records. Basically, the SMI offers operations on files and
records. An overview about all SMI classes is presented below:

More technical information about functions and their signatures is described in the file Secon-
doSMI.h. The following code examples demonstrate the usage of the SmiRecordFile and Smi-
Record classes.

Classes Description

SmiEnvironment This class provides static member functions for the startup and ini-
tialization of the storage management environment.

SmiFile Base class, a container for records.

SmiRecordFile Records are selected by their IDs.

SmiKeyedFile Records are accessed by a key value.

SmiFileIterator Base class, supports scanning of files.

SmiRecordFileIterator Iterator for files with access via record-IDs.

SmiKeyedFileIterator Iterator for files with access via keys.

SmiRecord A handle for processing records. It can be used to access all or par-
tial data of records.

SmiKey A generalization for different types of keys, such as integer, string,
etc.

PrefetchingIterator Efficient read-only iteration reducing I/O activity.

– 51 –

bool makefixed = true;
 string filename = (makeFixed) ? "testfile_fix" : "testfile_var";
 SmiSize reclen = (makeFixed) ? 20 : 0;
 SmiRecordFile rf(makeFixed, reclen);
 if (rf.Open(filename))
 {
 cout << "RecordFile successfully created/opened: "

 << rf.GetFileId() << endl;
 cout << "RecordFile name =" << rf.GetName() << endl;
 cout << "RecordFile context=" << rf.GetContext() << endl;
 cout << "(Returncodes: 1 = ok, 0 = error)" << endl;
 SmiRecord r;
 SmiRecordId rid, rid1, rid2;
 rf.AppendRecord(rid1, r);
 r.Write("Emilio", 7);
 rf.AppendRecord(rid2, r);
 r.Write("Juan", 5);
 char buffer[30];
 rf.SelectRecord(rid1, r, SmiFile::Update);
 r.Read(buffer, 20);
 cout << "buffer = " << buffer << endl;
 cout << "Write " << r.Write(" Carlos ", 8, 4);
 cout << "Read " << r.Read(buffer, 20) << endl;
 cout << "buffer = " << buffer << endl;
 r.Truncate(3);
 int len = r.Read(buffer, 20);
 cout << "Read " << len << endl;
 buffer[len] = '\0';
 cout << "buffer = " << buffer << endl;
 }

A RecordFile object can either contain records of fixed length or of variable length. This is con-
trolled by a boolean parameter passed to the constructor. Note that a new record first has to be
appended to the RecordFile; afterwards a value can be assigned using the write operation. The
write and read operations on records may have up to three parameters. The first parameter defines
a storage buffer for the data which is transferred into memory or to the record on disk. The second
parameter holds the number of bytes to transfer. Finally, the (optional) third parameter defines an
offset relative to the starting position of the record on disk.

5.2 The SMI Environment

At the startup process of SECONDO, an instance of class SmiEnvironment is created. Then if, during
the work with SECONDO, a database is opened, SmiFile objects can be used. Whenever new objects
in a SECONDO database are created or destroyed using algebra operations, information about the
involved SmiFiles and the objects types and values has to be maintained in the database catalog.
Hence the catalog does many SMI-Operations. Moreover, the query processor opens, closes, creates
and deletes objects.

– 52 –

Most data types have quite simple representations and can be stored in files using default persistence
mechanisms, but more complex data types, e.g. relations, have to organize data in their own files and
thus use SMI operations.

In order to get familiar with the SMI it is recommended to create small test programs independent
from the main SECONDO system. A framework for the startup and shutdown of the storage manager
is shown below:

SmiError rc;
 bool ok;

 string configFile = "SecondoConfig.ini"
 rc = SmiEnvironment::StartUp(SmiEnvironment::MultiUser,
 configFile, cerr);
 cout << "StartUp rc=" << rc << endl;
 if (rc == 1)
 {
 string dbname="test";
 ok = SmiEnvironment::CreateDatabase(dbname);
 if (ok) {
 cout << "CreateDatabase ok." << endl;
 } else {
 cout << "CreateDatabase failed." << endl;
 }
 if (ok = SmiEnvironment::OpenDatabase(dbname)) {
 cout << "OpenDatabase ok." << endl;
 } else {
 cout << "OpenDatabase failed." << endl;
 }
 }
 if (ok)
 {
 cout << "Begin Transaction: "

 << SmiEnvironment::BeginTransaction() << endl;

 /* SMI code */

 cout << "Commit: "

 << SmiEnvironment::CommitTransaction() << endl;

 if (SmiEnvironment::CloseDatabase()) {
 cout << "CloseDatabase ok." << endl;
 } else {
 cout << "CloseDatabase failed." << endl;
 }
 if (SmiEnvironment::EraseDatabase(dbname)) {
 cout << "EraseDatabase ok." << endl;
 } else {
 cout << "EraseDatabase failed." << endl;
 }
 }
 }
 rc = SmiEnvironment::ShutDown();
 cout << "ShutDown rc=" << rc << endl;

– 53 –

For building an executable program which offers a runtime environment for working with SmiFiles,
this code has to be linked together with the SECONDO SMI library and Berkeley-DB library. Please
refer to the file ./Tests/makefile which contains rules for linking against these libraries.

– 54 –

6 Extending the Optimizer

In this section we describe how simple extensions to the optimizer can be done. We first give an
overview of how the optimizer works in Section 6.1. We then explain in Section 6.2 how various
extensions of the underlying SECONDO system lead to extensions of the optimizer, and how these can
be programmed.

The optimizer is written in PROLOG. For programming extensions, some basic knowledge of PROLOG

is required, but also sufficient.

6.1 How the Optimizer Works

6.1.1 Overview

The current version of the optimizer is capable of handling conjunctive queries, formulated in a rela-
tional environment. That is, it takes a set of relations together with a set of selection or join predi-
cates over these relations and produces a query plan that can be executed by (the current relational
system implemented in) SECONDO.

The selection of the query plan is based on cost estimates which in turn are based on given selectivi-
ties of predicates. Selectivities of predicates are maintained in a table (a set of PROLOG facts). If the
selectivity of a predicate is not available from that table, then an interaction with the SECONDO sys-
tem takes place to determine the selectivity. More specifically, the selectivity is determined by send-
ing a selection or join query on small samples of the involved relations to SECONDO which returns
the cardinality of the result.

The optimizer also implements a simple SQL-like language for entering queries. The notation is
pretty much like SQL except that the lists occurring (lists of attributes, relations, predicates) are writ-
ten in PROLOG notation. Also note that the where-clause is a list of predicates rather than an arbitrary
boolean expression and hence allows one to formulate conjunctive queries only.

Observe that in contrast to the rest of SECONDO, the optimizer is not data model independent. In par-
ticular, the queries that can be formulated in the SQL-like language are limited by the structure of
SQL and also the fact that we assume a relational model. On the other hand, the core capability of the
optimizer to derive efficient plans for conjunctive queries is needed in any kind of data model.

The optimizer in its up-to-date version (the one running in SECONDO) is described completely in
[Güt02], the document containing the source code of the optimizer. That document is available from
the SECONDO system by changing (in a shell) to the Optimizer directory and saying

make
pdview optimizer
pdview optimizer

– 55 –

After the second call of pdview also the table of contents has been generated and included. If any
questions remain open in the sequel, refer to that document. A somewhat detailed description of opti-
mization in SECONDO can also be found in [GBA+04].

6.1.2 Optimization Algorithm

The optimizer employs an as far as we know novel optimization algorithm which is based on short-
est path search in a predicate order graph. This technique is remarkably simple to implement, yet
efficient.

A predicate order graph (POG) is the graph whose nodes represent sets of evaluated predicates and
whose edges represent predicates, containing all possible orders of predicates. Such a graph for three
predicates p, q, and r is shown in Figure 5.

Here the bottom node has no predicate evaluated and the top node has all predicates evaluated. The
example illustrates, more precisely, possible sequences of selections on an argument relation of size
1000. If selectivities of predicates are given (for p it is 1/2, for q 1/10, and for r 1/5), then we can
annotate the POG with sizes of intermediate results as shown, assuming that all predicates are inde-
pendent (not correlated). This means that the selectivity of a predicate is the same regardless of the
order of evaluation, which of course is not always true.

If we can further compute for each edge of the POG possible evaluation methods, adding a new
“executable” edge for each method, and mark the edge with estimated costs for this method, then
finding a shortest path through the POG corresponds to finding the cheapest query plan. Figure 6
shows an example of a POG annotated with evaluation methods.

Figure 5: A predicate order graph for 3 predicates

p q r
1000 500 50 10

1/2 1/10 1/5

p q r

q

r

q

p

p r

r p

q

1000

500 200100

2050 100

10

– 56 –

In this example, there is only a single method associated with each edge. In general, however, there
will be several methods. The example represents the query:

select *
from Staedte, Laender, Regiert
where Land = LName and PName = ’CDU’ and LName = PLand

for relation schemas

Staedte(SName, Bev, Land)
Laender(LName, LBev)
Regiert(PName, PLand)

Hence the optimization algorithm proceeds in the following steps (the section numbers indicated
refer to [Güt02]):

Figure 6: A POG annotated with evaluation methods

arg(1) arg(2) arg(3)

0

1 2 4

3 65

7

feed feed

product

filter[.Land=.LName]

Staedte Laender Regiert

feed

filter[.PName=”CDU”]

feed feed

product

filter[.LName=.PLand]

product

filter[.LName=.PLand]

consume

filter[.PName=”CDU”]
feed

product

filter[.LName=.PLand]

feed

product

filter[.LName=.PLand]

filter[.PName=”CDU”]

feed

product

filter[.Land=.LName]

consume

consume

filter[.Land=.LName]

product

feed

– 57 –

1. For given relations and predicates, construct the predicate order graph and store it as a set of
facts in memory (Sections 2 through 4).

2. For each edge, construct corresponding executable edges, called plan edges. This is controlled
by optimization rules describing how selections or joins can be translated (Sections 5 and 6).

3. Based on sizes of arguments and selectivities, compute the sizes of all intermediate results.
Also annotate edges of the POG with selectivities (Section 7).

4. For each plan edge, compute its cost and store it in memory (as a set of facts). This is based on
sizes of arguments and the selectivity associated with the edge and on a cost function (predi-
cate) written for each operator that may occur in a query plan (Section 8).

5. The algorithm for finding shortest paths by Dijkstra is employed to find a shortest path through
the graph of plan edges annotated with costs, called cost edges. This path is transformed into a
SECONDO query plan and returned (Section 9).

6. Finally, a simple subset of SQL in a PROLOG notation is implemented. So it is possible to enter
queries in this language. The optimizer determines from it the lists of relations and predicates
in the form needed for constructing the POG, and then invokes step 1 (Section 11).

6.2 Programming Extensions

The following kinds of extensions to the optimizer arise when the SECONDO system is extended by
new algebras for attribute types, new query processing methods (operators in the relational algebra),
or new types of indexes:

1. New algebras for attribute types:

– Write a display function for a new type constructor to show corresponding values.
– Define the syntax of a new operator to be used within SQL and in SECONDO.
– Write optimization rules to perform selections and joins involving a new operator,

including rules to use appropriate indexes.
– Define a cost function or constant for using the operator. 1

– Define type mapping predicates for new operators.
– (Optional: Define Null values for new types)

2. New query processing operators in the relational algebra:

– Define the operator syntax to be used in SECONDO.
– Define a type mapping predicates for new operators
– Write optimization rules using the new operator.
– Write a cost function (predicate) for the new operator.

3. New types of indexes:

1. In the standard version of the optimizer this is not yet done for operations on attribute types. All such operations
are assumed to have cost 1. Obviously this is a simplification and in particular wrong for data types of variable
size, e.g. region.

– 58 –

– Define the operator syntax to be used in SECONDO for search operations on the index.
– Define type mapping predicates for new operators
– Declare a new physical index type.
– Declare according logical index types.
– Write optimization rules using the according logical index types.
– Write cost functions for access operations.

One can see that the same issues arise for various kinds of SECONDO extensions. In the following
subsections we cover:

• Writing a display predicate for a type constructor
• Defining operator syntax for SQL
• Defining operator syntax for SECONDO

• Defining type mapping predicates
• Defining physical index types
• Defining logical index types
• Writing optimization rules
• Writing cost functions

6.2.1 Writing a Display Predicate for a Type Constructor

This is a relatively easy extension. Moreover, it is not mandatory. If the optimizer does not know
about a type constructor, it displays the value as a nested list (as in the other user interfaces).

In PROLOG, “functions” are implemented as predicates, hence we actually need to write a display
predicate. More precisely, for the existing predicate display we need to write a new rule. The pred-
icate is

display(Type, Value) :-

Display the Value according to its Type description.

The predicate is used to display the list coming back from calling SECONDO. For the result of a
query, this list has two elements (<type expression>, <value expression>) which are lists themselves,
now converted to the PROLOG form. These are used to instantiate the Type and Value variables. The
structure of the Type list is used to control the displaying of values in the Value list. The rule to dis-
play int values is very simple:

display(int, N) :-
 !,
 write(N).

The following is the rule for displaying a relation:

display([rel, [tuple, Attrs]], Tuples) :-
 !,
 nl,
 max_attr_length(Attrs, AttrLength),
 displayTuples(Attrs, Tuples, AttrLength).

– 59 –

It determines the maximal length of attribute names from the list of attributes Attr in the type
description and then calls displayTuples to display the value list.

displayTuples(_, [], _).

displayTuples(Attrs, [Tuple | Rest], AttrLength) :-
 displayTuple(Attrs, Tuple, AttrLength),
 nl,
 displayTuples(Attrs, Rest, AttrLength).

This processes the list, calling displayTuple for each tuple.

displayTuple([], _, _).

displayTuple([[Name, Type] | Attrs], [Value | Values], AttrNameLength) :-
 atom_length(Name, NLength),
 PadLength is AttrNameLength - NLength,
 write_spaces(PadLength),
 write(Name),
 write(' : '),
 display(Type, Value),
 nl,
 displayTuple(Attrs, Values, AttrNameLength).

Finally, displayTuple for each attribute writes the attribute name and calls display again for writ-
ing the attribute value, controlled by the type of that attribute.

For example, there is no rule to display the spatial type point, so let us add one. The list representa-
tion of a point value is [<x-coord>, <y-coord>]. We want to display a list [17.5, 20.0] as

[point x = 17.5, y = 20.0]

Hence we write a rule:

display(point, [X, Y]) :-
!,
write(’[point x = ’),
write(X),
write(’, y = ’),
write(Y),
write(’]’).

The predicate display is defined in the file auxiliary.pl (Section 1.1.4). There, we insert the new
rule at an appropriate place before the last rule which captures the case that no other matching rule
can be found.

6.2.2 Defining Operator Syntax for SQL

The SECONDO operators that can be used directly within the SQL language are those working on
attribute types such as +, <, mod, inside, starts, distance, ... In order to not get confused we
require that such operators are written with the same syntax in SQL and SECONDO. In this subsection
we discuss what needs to be done so that the operator syntax is acceptable to PROLOG within the

– 60 –

SQL (term) notation. We also need to tell the optimizer, how to translate such an operator to
SECONDO syntax. This is covered in the next subsection.

Some of these operators, for example, +, -, *, /, <, >, are also in PROLOG defined as operators with a
specific syntax, so you can write them in this syntax within a PROLOG term without further specifica-
tion. The operators above are all written in infix syntax; so this is possible also within an SQL
where-clause.

For operators that are not yet defined in PROLOG, there are two cases:

• Any operator can be written in prefix syntax, for example

length(x), distance(x, y), translate(x, y, z)

This is just the standard PROLOG term notation, so it is fine with PROLOG to write such terms.

• If an operator is to be used in infix syntax, we have to tell PROLOG about it by adding an entry
to the file opsyntax.pl. For example, to tell that adjacent is an infix operator, we write:

:- op(800, xfx, adjacent).

The other arguments besides adjacent determine operator priority and syntax as well as asso-
ciativity. For our use, please leave the other arguments unchanged.

6.2.3 Defining Operator Syntax for SECONDO

Within the optimizer, query language expressions (terms) are written in prefix notation, as usual in
PROLOG. This happens, for example, in optimization rules. Hence, instead of the SECONDO notation

x y product filter[cond] consume

a term of the form

consume(filter(product(x, y), cond))

is manipulated. For any operator, the optimizer must know how to translate it into SECONDO nota-
tion. This holds for query processing operators (feed, filter, ...) not visible at the SQL level as
well as for operators on attribute types such as <, adjacent, length, distance. There are three dif-
ferent ways how operator syntax can be defined, at increasing levels of complexity:

(1) By default. For operators with 1, 2, or 3 arguments that are not treated explicitly, there is a default
syntax, namely:

• 1 or 3 arguments: prefix syntax
• 2 arguments: infix syntax

This means, the operators length, adjacent, and translate with 1, 2, and 3 arguments, respec-
tively, are automatically written as:

length(x), x adjacent y, translate(x, y, z)

– 61 –

(2) By a syntax specification via predicate secondoOp in the file opsyntax.pl. This predicate is
defined as:

secondoOp(Op, Syntax, NoArgs) :-

Op is a SECONDO operator written in Syntax, with NoArgs arguments.

Here are some example specifications:

secondoOp(distance, prefix, 2).

secondoOp(feed, postfix, 1).
secondoOp(consume, postfix, 1).
secondoOp(count, postfix, 1).
secondoOp(product, postfix, 2).
secondoOp(filter, postfixbrackets, 2).
secondoOp(loopjoin, postfixbrackets, 2).
secondoOp(exactmatch, postfixbrackets, 3).

Not all possible cases are implemented. What can be used currently, is:

• postfix, 1, 2 or 3arguments: corresponds to _ #, _ _ # and _ _ _ #
• postfixbrackets1: A single postfix argument, one or more arguments in square brackets:

corresponds to patterns _ # [_], _ # [_ , _] and _ # [_ , _ , ...]
• postfixbrackets2: Two postfix argument, one or more arguments in square brackets:

corresponds to patterns _ _ # [_], _ _ # [_ , _] and _ _ # [_ , _ , ...]
• postfixbrackets3: Three postfix argument, one or more arguments in square brackets:

corresponds to patterns _ _ _ # [_], _ _ _ # [_ , _] and _ _ _ # [_ , _ , ...]
• prefix, 2 arguments: # (_, _)

Observe that prefix, with 1, 3 or more arguments, and infix, 2 arguments, do not need a specifica-
tion, as they are covered by the default rules mentioned above.

(3) For all other forms, a plan_to_atom rule has to be programmed explicitly. Such translation rules
can be found in Section 5.1.3 of the optimizer source code [Güt02]. The predicate is defined as

plan_to_atom(X, Y) :-

Y is the SECONDO expression corresponding to term X.

Although not necessary, we could write an explicit rule to translate the product operator:

plan_to_atom(product(X, Y), Result) :-
 plan_to_atom(X, XAtom),
 plan_to_atom(Y, YAtom),
 concat_atom([XAtom, YAtom, 'product '], '', Result),
 !.

Actually, these rules are not hard to understand: the general idea is to recursively translate the argu-
ments by calls to plan_to_atom and then to concatenate the resulting strings together with the oper-
ator and any needed parentheses or brackets in the right order into the result string.

– 62 –

An example, where an explicit rule is needed, is the translation of the sortmergejoin, which has 4
arguments:

plan_to_atom(sortmergejoin(X, Y, A, B), Result) :-
 plan_to_atom(X, XAtom),
 plan_to_atom(Y, YAtom),
 plan_to_atom(A, AAtom),
 plan_to_atom(B, BAtom),
 concat_atom([XAtom, YAtom, 'sortmergejoin[',
 AAtom, ', ', BAtom, '] '], '', Result),
 !.

In general, very little needs to be done for user level operators as they are mostly covered by
defaults, and the specification of query processing operators is also in most cases quite simple via the
secondoOp predicate.

6.2.4 Defining Type Mapping for SECONDO Operators

Some optional extensions to the optimizer rely on information about the type of expressions and the
signatures of operators used within a query or plan. To make this information available to translation
or cost rules, the kernel’s typemapping functions are modeled within the optimizer. You can find
them in file operators.pl. Typemapping is done by predicate

opSignature(+Operator, +Algebra, +ArgTypeList, -Resulttype, -Flags).

The first argument is the operator name. Infix-operators need to be enclosed in round parantheses.
The second argument is the name of the algebra defining the operator. The third argument is a PRO-
LOG list of the types of all input parameters to the operator. The fourth argument is the result type
description, the last parameter returns a list of properties associated with the according operator.
Let’s see an example:

opSignature((*), standard, [int,int], int, [comm,ass]).
opSignature((*), standard, [int,real], real, [comm,ass]).
opSignature((*), standard, [real,int], real, [comm,ass]).
opSignature((*), standard, [real,real], real, [comm,ass]).

These four lines define the four signatures for operator * as intruduced by the StandardAlgebra.
Since * is an operator in PROLOG, it needs to be enclosed in round paranthesis. The four lines corre-
spond to the following signatures:

*: int × int → int
*: int × real → real
*: real × int → real
*: real × real → real

The last arguments declare some (to humans) well known properties of the operations, namely, that
they are commutative (comm) and associative (ass). These informations can be used by the opti-
mizer, e.g. to normalize predicate expressions.

Of course, it is also possible to write more sophisticated type mappings:

– 63 –

opSignature(isdefined, standard, [T], bool, []) :- isKind(T, data).

This rule says, that isdefined from the StandardAlgebra takes a single argument of some arbitrary
type T (for this, we use a PROLOG variable). Id type T is in kind DATA, the operator returns a bool
value. No properties are assigned (therefore the empty list as the last argument). A slightly com-
plexer example is:

opSignature(getMinVal, standard, TL, T, []) :-
 isKind(T, data), is_list(TL), list_to_set(TL, [T]).

This rule defines the type mapping for operator getMinVal, that takes a list TL of arbitrary length,
where all arguments have the same type T from kind DATA. The operator will return the minimum of
that list, which is of type T. No properties are assigned.

Even stream operators find their PROLOG-style typemapping:

opSignature(symmjoin, extrelation,
[[stream,[tuple,A1]],

[stream,[tuple,A2]],
[map,[tuple,A1],[tuple,A2],bool]],[stream,[tuple,R]],

[]) :-
 append(A1,A2,R), !.

From this example we learn, that complex types are described in the same nested list format known
from the SECONDO type mapping functions. The only difference is, that round parantheses are
replaced by their square bracket counterparts, and while SECONDO kernel uses blancs to separate list
items, here we use commas. Of course, writing type mappings is much more convenient in PROLOG,
e.g. one can match complete type expressions, unify terms using the same variable, or construct
result type lists easily in a general way.

6.2.5 Defining Physical Index Types

If a datatype for an index structure is added to Secondo, and shall be made available to be used by
the optimizer, we need to make it known. This is done by defining a fact

indexType(+PhysIndexType, +TypeExpressionPattern)

in file database.pl. Here, PhysIndexType is the name of the index datatype, as used in SECONDO

(It needs to start with a lower case character, of course.). The second argument defines a pattern that
matches all nested lists decribing objects of the implemented index type within the SECONDO data-
base catalog. While PhysIndexType must be a ground term, TypeExpressionPattern may contain
variables, if this is required to match the index type expression. The following fact

indexType(btree, [[btree|_]]).

defines a physical index type called btree, where objects of that type have a type expression having
a single-element list, whose only member is a list starting with the atom btree.

– 64 –

6.2.6 Defining Logical Index Types

The optimizer does not utilize physical index types directly. Instead, it defines logical index types
based on physical index types. Therefore, a logical index can be a complicated object, e.g. compris-
ing of several physical database objects, or a specialized index, e.g. an index created in a certain way.
In database.pl we find predicates

logicalIndexType(LogicalIndexTypeCode, LogicalTypeExpr, PhysicalIndexType,
 SupportedAttributeTypeList,
 CreateIndexPattern,
 InsertIntoIndexPattern,
 DeleteFromIndexPattern,
 UpdateIndexPattern).

As an example, we look at the simplest index type, the B-tree. It is defined as follows:

logicalIndexType(btree, btree, btree,
 [int, real, string, text, point],
 ['__REL__', ' createbtree[', '__ATTR__', ']'],
 undefined,
 undefined,
 undefined).

The first argument is a code, that is used within the name of the according database object. The sec-
ond argument is the logical type expression, that is used internally by the optimizer. The third argu-
ment is the name of the physical index type employed to implement the index. This is the type the
index’ database object will have (and of course, we use a btree to implement the B-tree index). The
fourth argument is a list of SECONDO types, that can be used as key types within the logical index
type. In our example, the B-tree index can be constructed for key attributes of types int, real,
string , text and point.

The remaining four arguments: CreateIndexPattern, InsertIntoIndexPattern, DeleteFromIn-
dexPattern, and UpdateIndexPattern define patterns, that are used to create executable SECONDO

queries performing the creation of a new index, and three types of update operations, namely inser-
tions, deletions, and updates. Patterns are given as lists, that will be concatenated to the creation
query. You can refer to the indexed relation by a listelement __rel__ and to the indexed attribute by
__attr__. When creating the index, these elements will be replaced by the actual identifiers.

The current optimizer only uses CreateIndexPattern. Wherever a field is not applicable (e.g.
because updates are not supported by the index), undefined is used within the definition.

A more complex example is the spatial R-tree index built on the units of a moving object:

logicalIndexType(sptuni, spatial(rtree, unit), rtree,
 [mpoint,mregion],
 ['__REL__', ' feed projectextend[', '__ATTR__',
 ' ; TID: tupleid(.)] projectextendstream[TID; MBR: units(.',

'__ATTR__',

– 65 –

') use[fun(U: upoint) bbox2d(U)]] sortby[MBR asc] bulkloadrtree[MBR]'],
 undefined,
 undefined,
 undefined).

Here, we have a more complex expression for LogicalTypeExpr. It indicates that the index is a spa-
tial index, uses an rtree as its physical structure, and the keys are generated from the units of the
key objects, which may have type mpoint or mregion. We see, that the rule for index creation is
somewhat more complicated here.

The user-level predicate showIndexTypes will list information on all available logical index types.

6.2.7 Writing Optimization Rules

Optimization rules are used to translate selection or join predicates associated with edges of the pred-
icate order graph into corresponding SECONDO expressions. This happens in step 2 of the optimiza-
tion algorithm described in Section 6.1.2. Before we can formulate translation rules, we need to
understand in detail the representation of predicates.

Consider the query

select *
from staedte as s, plz as p
where s:sname = p:ort and p:plz > 40000

on the optimizer example database opt discussed also in the SECONDO User Manual. The optimizer
source code [Güt02] contains a rule:

example5 :- pog(
 [rel(staedte, s), rel(plz, p)],
 [pr(attr(s:sName, 1, u) = attr(p:ort, 2, u), rel(staedte, s),
 rel(plz, p)),
 pr(attr(p:pLZ, 1, u) > 40000, rel(plz, p))],
 _, _).

This rule corresponds to the query; it says that in order to fulfill the goal example5, the predicate
order graph should be constructed via calling predicate pog. That predicate has four arguments of
which only the first two are of interest now. The first argument is a list of relations, the second a list
of predicates. A relation is represented as a term, for example,

rel(staedte, s)

which says that the relation name is staedte, it has an associated variable s. Within SECONDO-SQL,
names of database objects (as relations) are generally written in lower case letters only. The opti-
mizer knows the correct spelling and uses it while building plans. A predicate is represented as a
term

pr(Pred, Rel)
pr(Pred, Rel1, Rel2)

of which the first is a selection and the second a join predicate. Hence

– 66 –

pr(attr(s:sName, 1, u) = attr(p:ort, 2, u), rel(staedte, s), rel(plz, p))

is a join predicate on the two relations Staedte and plz. An attribute of a relation is represented as a
term, for example,

attr(s:sName, 1, u)

which says that the attribute name is sName, it is an attribute of the first of the two relations men-
tioned in the predicate (1), and it should in SECONDO be written in upper case (u), hence as SName.

Therefore, when you type (after starting the optimizer and opening database opt)

example5.

the predicate order graph for our example query will be constructed. PROLOG replies just yes. You
can look at the predicate order graph by writing writeNodes and writeEdges, which lists the nodes
and edges of the constructed graph, as follows:

16 ?- writeNodes.
Node: 0
Preds: []
Partition: [arp(arg(2), [rel(plz, p)], []), arp(arg(1), [rel(staedte, s)],
[])]

Node: 1
Preds: [pr(attr(s:sName, 1, u)=attr(p:ort, 2, u), rel(staedte, s), rel(plz,
p))]
Partition: [arp(res(1), [rel(staedte, s), rel(plz, p)], [attr(s:sName, 1,
u)=attr(p:ort, 2, u)])]

Node: 2
Preds: [pr(attr(p:pLZ, 1, u)>40000, rel(plz, p))]
Partition: [arp(res(2), [rel(plz, p)], [attr(p:pLZ, 1, u)>40000]),
arp(arg(1), [rel(staedte, s)], [])]

Node: 3
Preds: [pr(attr(p:pLZ, 1, u)>40000, rel(plz, p)), pr(attr(s:sName, 1,
u)=attr(p:ort, 2, u), rel(staedte, s), rel(plz, p))]
Partition: [arp(res(3), [rel(staedte, s), rel(plz, p)], [attr(p:pLZ, 1,
u)>40000, attr(s:sName, 1, u)=attr(p:ort, 2, u)])]

Yes
17 ?-

The information about a node contains the node number which encodes in a way explained in
[Güt02] which predicates have already been evaluated; it also contains explicitly the list of predi-
cates that have been evaluated, and some more technical information (Partition) describing which
of the relations involved have already been connected by join predicates. You can observe that in
node 0 no predicate has been evaluated and in node 3 both predicates have been evaluated.

17 ?- writeEdges.
Source: 0
Target: 1
Term: join(arg(1), arg(2), pr(attr(s:sName, 1, u)=attr(p:ort, 2, u),
rel(staedte, s), rel(plz, p)))

– 67 –

Result: 1

Source: 0
Target: 2
Term: arg(2)select pr(attr(p:pLZ, 1, u)>40000, rel(plz, p))
Result: 2

Source: 1
Target: 3
Term: res(1)select pr(attr(p:pLZ, 1, u)>40000, rel(plz, p))
Result: 3

Source: 2
Target: 3
Term: join(arg(1), res(2), pr(attr(s:sName, 1, u)=attr(p:ort, 2, u),
rel(staedte, s), rel(plz, p)))
Result: 3

Yes
18 ?-

The information about edges contains the numbers of the source and target node of the POG, and the
selection or join predicate associated with this edge. The Result field has the number of the node to
which the result of evaluating the selection or join is associated; this is normally, but not always (see
[Güt02]) the same as the target node of the edge.

Note that the construction of the predicate order graph does not at all depend on the representation of
relations or attributes; it does only need to know by a representation pr(x, a, b) that this is a join
predicate on relations a and b. For example, you can type

pog([a, b, c, d], [pr(x, a), pr(y, b), pr(z, a, b), pr(w, b, c), pr(v, c,
d)], _, _).

and the system will construct a POG for the given four relations with two selection and three join
predicates. Try it!

After the somewhat lengthy introduction to this subsection we know what the predicates look like
that should be transformed by optimization rules into query plans. For example, they can be

select(arg(2), pr(attr(p:pLZ, 1, u)>40000, rel(plz, p)))

join(arg(1), res(2), pr(attr(s:sName, 1, u)=attr(p:ort, 2, u),
rel(staedte, s), rel(plz, p)))

In these terms, arg(N) refers to the argument number N in the construction of the POG, hence one of
the original relations, and res(M) refers to the intermediate result associated with the node M of the
POG. Note that an intermediate result is assumed and required to be a stream of tuples so that opti-
mization rules can use stream operators for evaluating predicates on them.

Optimization rules are given in Section 5.2 of the optimizer [Güt02]. Let us consider some example
rules.

– 68 –

Translating the Arguments

res(N) => res(N).

arg(N) => feed(rel(Name, *)) :-
 isStarQuery,
 argument(N, rel(Name, *)), !.

arg(N) => rename(feed(rel(Name, Var)), Var) :-
 isStarQuery,
 argument(N, rel(Name, Var)), !.

arg(N) => feedproject(rel(Name, *), AttrNames) :-
 argument(N, rel(Name, *)), !,
 usedAttrList(rel(Name, *), AttrNames).

arg(N) => rename(feedproject(rel(Name, Var), AttrNames), Var) :-
 argument(N, rel(Name, Var)), !,
 usedAttrList(rel(Name, Var), AttrNames).

These rules describe how the arguments of a selection or join predicate should be translated. Transla-
tion is defined by the predicate => of arity 2 which has been defined as an infix operator in PROLOG.
One might also have called the predicate translate and then written, for example

translate(res(N), res(N)).

However, the form with the “arrow” looks more intuitive; the arrow can be read as “translates into”.
The first rule above says that a term of the form res(N) is not changed by translation.

For arg(N), which is a stored relation, we check whether the query is of the form select * from
... In this case, in the analysis of the query a dynamic predicate isStarQuery was asserted. For
such a query we look up the relation name and then apply a feed and possibly an additional rename
to convert it into a stream of tuples.

If the query has a projection list of attributes, then in the analysis of the query isStarQuery was not
asserted and a list of attributes that are needed from this relation in query processing was computed.
This list can be retrieved via the predicate usedAttrList. So instead of using feed, the feed-
project operator can be applied to the base relation in order to reduce access time and tuple size.
Again, a second rule handles the case of an additional aliasinf by inserting a rename.

PROLOG is a wonderful environment for testing and debugging. We execute example5 once more
after asserting isStarQuery (because translations are done together with the construction of the
predicate order graph, and they depend on isStarQuery). We can then directly see how things trans-
late.

18 ?- assert(isStarQuery), example5.

Yes

– 69 –

19 ?- arg(1) => X.

X = rename(feed(rel(staedte, s)), s)

Yes
20 ?-

Hence, we can just pass a term as an argument to the => predicate and a variable for the result and
see the translation. We can further check how the translated term is converted into SECONDO nota-
tion:

20 ?- plan_to_atom(rename(feed(rel(staedte, s)), s), X).

X = Staedte feed {s}

Yes
21 ?-

Translating Selection Predicates

Here is a rule to translate a selection predicate:

select(Arg, pr(Pred, _)) => filter(ArgS, Pred) :-
 Arg => ArgS.

It says that a selection on argument Arg can be translated into filtering the stream ArgS if Arg trans-
lates into ArgS. A second rule covers the case that the predicate pr is a join predicate. Such select
edges on join predicates are constructed if the query contains two or more join predicates on the
same pair of relations. That is, for this select edge, the two relations have already been joined on
previous edges.

select(Arg, pr(Pred, _, _)) => filter(ArgS, Pred) :-
 Arg => ArgS.

A selection can also be translated into an exactmatch operation on a B-tree under certain conditions.
This is specified by the following four rules (we here treat only the simpler case that no projection is
needed after index access, i.e., isStarQuery holds):

– 70 –

select(arg(N), Y) => X :-
 isStarQuery, % no projection needed
 indexselect(arg(N), Y) => X.

indexselect(arg(N), pr(attr(AttrName, Arg, Case) = Y, Rel)) => X :-
 indexselect(arg(N), pr(Y = attr(AttrName, Arg, Case), Rel)) => X.

indexselect(arg(N), pr(Y = attr(AttrName, Arg, AttrCase), _)) =>
 exactmatch(dbobject(IndexName), rel(Name, *), Y)
 :-
 argument(N, rel(Name, *)),
 hasIndex(rel(Name,*),attr(AttrName,Arg,AttrCase),DCindex,IndexType),
 dcName2externalName(DCindex,IndexName),
 (IndexType = btree; IndexType = hash).

indexselect(arg(N), pr(Y = attr(AttrName, Arg, AttrCase), _)) =>
 rename(exactmatch(dbobject(IndexName), rel(Name, Var), Y), Var)
 :-
 argument(N, rel(Name, Var)), Var \= * ,
 hasIndex(rel(Name,Var),attr(AttrName,Arg,AttrCase),DCindex,IndexType),
 dcName2externalName(DCindex,IndexName),
 (IndexType = btree; IndexType = hash).

The first rule says that translation of a selection on a stored relation can be reduced to a translation of
a corresponding index selection (indexselect(Arg, Pred) is just a new term introduced by this
rule). The second rule reverses the order of arguments for an = predicate in order to find the value for
searching the index always on the left hand side. The third rule is the most interesting one. It says
that index selection with an equality predicate on a stored relation arg(N) can be translated into an
exactmatch operation after looking up the relation and checking that is has an index called Index-
Name on the relevant attribute which is a B-tree. Here, the predicate hasIndex(+Rel, +KeyAttr,
?IndexName, ?IndexType) is used to check, whether stored relation Rel has an index of the logi-
cal type IndexType on attribute KeyAttr. If so, its database object name IndexName is returned. The
predicate dcName2externalName(DCname,RealName) retrieves the internal name of a database
object DCname (lower case letters only) and returns its real object name RealName within the data-
base catalog. The last condition states, that the index type must match either btree or hash, so this
rule covers index equijoins using a B-trees and hash indexes.

Finally, the fourth rule is only a variant of the third for the case that the relation has a variable
assigned in the query and needs to be renamed.

Translating Join Predicates

Finally, let us consider some rules for translating join predicates.

join(Arg1, Arg2, pr(Pred, _, _)) => symmjoin(Arg1S, Arg2S, Pred) :-
 Arg1 => Arg1S,
 Arg2 => Arg2S.

– 71 –

Every join can be translated into a so-called symmjoin.1

join(Arg1, Arg2, pr(X=Y, R1, R2)) => JoinPlan :-
 X = attr(_, _, _),
 Y = attr(_, _, _), !,
 Arg1 => Arg1S,
 Arg2 => Arg2S,
 join00(Arg1S, Arg2S, pr(X=Y, R1, R2)) => JoinPlan.

join00(Arg1S, Arg2S, pr(X = Y, _, _)) => sortmergejoin(Arg1S, Arg2S,
 attrname(Attr1), attrname(Attr2)) :-
 isOfFirst(Attr1, X, Y),
 isOfSecond(Attr2, X, Y).

join00(Arg1S, Arg2S, pr(X = Y, _, _)) => hashjoin(Arg1S, Arg2S,
 attrname(Attr1), attrname(Attr2), 99997) :-
 isOfFirst(Attr1, X, Y),
 isOfSecond(Attr2, X, Y).

These rules specify ways for translating an equality predicate. The first rule checks whether on both
sides of the = predicate there are just attribute names (rather than more complex expressions).2 In
that case, after translating the arguments into streams, the problem is reduced to translating a corre-
sponding term which has a join00 functor. The second rule specifies translation of the join00 term
into a sortmergejoin, the third into a hashjoin, using a fixed number of 99997 buckets.

The latter two rules use auxiliary predicates isOfFirst and isOfSecond to get the name of the
attribute (among X and Y) that refers to the first and the second argument, respectively. Note also that
the attribute names passed to sortmergejoin or hashjoin are given as, for example attr-
name(Attr1) rather than Attr1 directly. The reason is that a normal attribute name of the form
attr(sName, 1, u) is converted later into the SECONDO “.” notation, hence into .SName whereas
attrname(attr(sName, 1, u)) is converted into SName.

Using Parameter Functions in Translations

In all the rules we have seen so far, it was possible to use the implicit notation for parameter func-
tions in SECONDO. Recall that the implicit form of a filter predicate is written as

... filter[.Bev > 500000]

whereas the explicit complete form would be

1. The symmjoin considers all pairs of tuples from its two argument streams, evaluates the predicate for each pair
and puts matching pairs of tuples into the result stream. Hence it works pretty much like a nested loop join, except
that it reads tuples from its two argument streams in an alternating way, joining such a tuple with a buffer from the
other stream, hence, in a symmetric manner.

2. There are other rules corresponding to the first one that allow one to translate to a hash join or a sortmergejoin,
even if one or both of the arguments to the equality predicate are expressions. The idea is to first apply an
extend operation which adds the value of the expression as a new attribute, then performing the join using the
new attribute, and finally to remove the added attribute again by applying a remove operator.

– 72 –

... filter[fun(t:TUPLE) attr(t, Bev) > 500000]

However, sometimes it is necessary to write the full form in SECONDO. For example, in the loop-
join operator’s parameter function we may need to refer to an attribute of the outer relation explic-
itly. A join as in our example query

select *
from staedte as s, plz as p
where s:sname = p:ort

could be formulated as a loopjoin:

query Staedte feed {s} loopjoin[fun(var1:TUPLE) plz feed {p} fil-
ter[attr(var1, SName_s) = .Ort_p]] consume

Although currently there are no translation rules yet in the optimizer using the explicit form, there is
support for using it. The PROLOG term representing a parameter function has the form:

fun([param(Var1, Type1), ..., param(VarN, TypeN)], Expr)

Furthermore, when writing rules involving such functions, variable names need to be generated auto-
matically. There is a predicate available

newVariable(Var)

which returns on every call a new variable name, namely var1, var2, var3, ... For the type operators
such as TUPLE that one needs to use in explicit parameter functions, a number of conversions to
SECONDO are defined by:

type_to_atom(tuple, 'TUPLE').
type_to_atom(tuple2, 'TUPLE2').
type_to_atom(group, 'GROUP').

The attr operator of SECONDO is available under the name attribute (in PROLOG) in order to
avoid confusion with the attr(_, _, _) notation for attribute names. Of course, it is converted
back to attr in the plan_to_atom rule.

Hence a PROLOG term corresponding to

Staedte feed filter[fun(t:TUPLE) attr(t, Bev) > 500000]

is

filter(feed(rel(staedte, *)),
fun([param(t, tuple)], attribute(t, attrname(attr(bev, 0, u))) > 500000))

Showing Translations

One can see the translations that the optimizer generates for all edges of a given POG by the goal
writePlanEdges. For the example5 above we get:

– 73 –

2 ?- assert(isStarQuery), example5.

Yes
3 ?- writePlanEdges.
Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} symmjoin[(.SName_s = ..Ort_p)]
Result: 1

Source: 0
Target: 1
Plan : Staedte feed {s} loopjoin[plz_Ort_btree plz exactmatch[.SName_s]

{p}]
Result: 1

Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} sortmergejoin[SName_s , Ort_p]
Result: 1

Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} hashjoin[SName_s , Ort_p , 99997]
Result: 1

Source: 0
Target: 1
Plan : plz feed {p} Staedte feed {s} hashjoin[Ort_p , SName_s , 99997]
Result: 1

Source: 0
Target: 2
Plan : plz feed {p} filter[(.PLZ_p > 40000)]
Result: 2

Source: 1
Target: 3
Plan : res(1) filter[(.PLZ_p > 40000)]
Result: 3

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) symmjoin[(.SName_s = ..Ort_p)]
Result: 3

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) sortmergejoin[SName_s , Ort_p]
Result: 3

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) hashjoin[SName_s , Ort_p , 99997]
Result: 3

– 74 –

Source: 2
Target: 3
Plan : res(2) Staedte feed {s} hashjoin[Ort_p , SName_s , 99997]
Result: 3

Yes
4 ?-

6.2.8 Writing Cost Functions

The next step in the optimization algorithm described in Section 6.1.2, step 3, is to compute the sizes
of all intermediate results and associate the selectivities of predicates with all edges. No extensions
are needed in this step. We can call for an execution of this step by the goal assignSizes (delete-
Sizes to remove them again) and see the result by writeSizes. Continuing with example5, we
have: 1

7 ?- assignSizes.

Yes
8 ?- writeSizes.

'Node' 'Size'

 1 7510.59
 2 23027.0
 3 4190.91

 'Edge' 'Selectivity' 'Predicate'

 0-1 0.00313793 attr(s:sName, 1, u)=attr(p:ort, 2, u)
 2-3 0.00313793 attr(s:sName, 1, u)=attr(p:ort, 2, u)
 0-2 0.558 attr(p:pLZ, 1, u)>40000
 1-3 0.558 attr(p:pLZ, 1, u)>40000

Yes
9 ?-

The next step is to assign costs to all generated plan edges. This step can be called explicitly by the
goal createCostEdges (removal by deleteCostEdges), and plan edges annotated with costs can be
listed by writeCostEdges. For example5, we have now:

1. Note that the numbers occurring in these examples may differ on your system, since selectivities are determined
by sampling, and samples may be different.

– 75 –

14 ?- createCostEdges.

Yes
15 ?- writeCostEdges.
Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} symmjoin[(.SName_s = ..Ort_p)]
Result: 1
Size : 7510.59
Cost : 91666.5

Source: 0
Target: 1
Plan : Staedte feed {s} loopjoin[plz_Ort_btree plz exactmatch[.SName_s]
{p}]
Result: 1
Size : 7510.59
Cost : 75944

Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} sortmergejoin[SName_s , Ort_p]
Result: 1
Size : 7510.59
Cost : 157790

Source: 0
Target: 1
Plan : Staedte feed {s} plz feed {p} hashjoin[SName_s , Ort_p , 99997]
Result: 1
Size : 7510.59
Cost : 237563

Source: 0
Target: 1
Plan : plz feed {p} Staedte feed {s} hashjoin[Ort_p , SName_s , 99997]
Result: 1
Size : 7510.59
Cost : 237563

Source: 0
Target: 2
Plan : plz feed {p} filter[(.PLZ_p > 40000)]
Result: 2
Size : 23027
Cost : 91715.9

Source: 1
Target: 3
Plan : res(1) filter[(.PLZ_p > 40000)]
Result: 3
Size : 4190.91
Cost : 12937

– 76 –

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) symmjoin[(.SName_s = ..Ort_p)]
Result: 3
Size : 4190.91
Cost : 39649.3

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) sortmergejoin[SName_s , Ort_p]
Result: 3
Size : 4190.91
Cost : 72547.4

Source: 2
Target: 3
Plan : Staedte feed {s} res(2) hashjoin[SName_s , Ort_p , 99997]
Result: 3
Size : 4190.91
Cost : 187396

Source: 2
Target: 3
Plan : res(2) Staedte feed {s} hashjoin[Ort_p , SName_s , 99997]
Result: 3
Size : 4190.91
Cost : 187396

Yes
16 ?-

Here we can see that each plan edge has been annotated with the expected size of the result at the
result (usually target) node of that edge. This is the same size as in the listing for writeSizes; it has
just been copied to the plan edges. More important is the computation of the cost for each plan edge,
which is listed in the Cost field.

The cost for an edge is computed by a predicate cost defined in Section 8.1 of the optimizer
[Güt02]. The predicate is:

cost(+Term, +Sel, +Pred, -Size, -Cost)

The cost of an executable Term representing a predicate Pred with selectivity Sel is Cost and the
size of the result is Size. Here Term, Sel, and Pred have to be instantiated (as indicated by the ’+’),
and Size and Cost are returned (indicated by the ’-’).

The predicate cost is called by the predicate createCostEdges with the following parameters: a
term (resulting from translation rules and associated with a plan edge), the selectivity, and the predi-
cate associated with that edge. The predicate is then evaluated by recursively descending into the
term. For each operator applied to some arguments, the cost is determined by first computing the
cost of producing the arguments and the size of each argument and then computing the cost and
result size for evaluating this operator.

– 77 –

Somewhere in the term is an operator that actually realizes the predicate associated with the edge.
For example, this could be the filter or the sortmergejoin operator. This operator uses the selec-
tivity Sel passed to it to determine the size of its result.

We can see the existing plan edges after constructing the POG by writing:

17 ?- planEdge(Source, Target, Term, Result).

One of the solutions listed (for example5) is

Source = 2
Target = 3
Term = symmjoin(rename(feed(rel(staedte, s)), s), res(2), attr(s:sName, 1,
u)=attr(p:ort, 2, u))
Result = 3

For each operator or argument occurring in a term there must be a rule describing how to get the
result size and cost. Let us consider some of these rules.

cost(rel(Rel, _, _), _, _, Size, 0) :-
 card(Rel, Size).

cost(res(N), _, _, Size, 0) :-
 resultSize(N, Size).

These rules determine the size and cost of arguments. In both cases the cost is 0 (there is no compu-
tation involved yet) and the size is looked up. For a stored relation it is found via a fact card(Rel,
Size) stored in the file database.pl (see the SECONDO User Manual); for an intermediate result it
was computed by assignSizes and can be looked up via predicate resultSize. The Sel and Pred
arguments passed is not used.

cost(feed(X), Sel, P, S, C) :-
 cost(X, Sel, P, S, C1),
 feedTC(A),
 C is C1 + A * S.

This is the rule for the feed operator. It first determines size S and cost C1 for the argument X. The
size of the result is for feed the same as the size of the argument (relation). The cost is determined
by using a “feed tuple constant” that describes the cost for evaluating feed on one tuple. Such con-
stants are determined experimentally and stored in a file operators.pl (see Appendix C of the opti-
mizer [Güt02]). There we find an entry

feedTC(0.4).

The cost for evaluating feed is therefore C1 (we know that is 0 by the rule above) plus 0.4 times the
number of tuples of the argument relation.

cost(rename(X, _), Sel, P, S, C) :-
 cost(X, Sel, P, S, C1),
 renameTC(A),
 C is C1 + A * S.

The rule for rename is quite similar. The operator just passes the tuple that it receives to the next
operator; the rename tuple constant happens to be 0.1. The cost is added to the cost of the argument.

– 78 –

cost(symmjoin(X, Y, _), Sel, P, S, C) :-
 cost(X, 1, P, SizeX, CostX),
 cost(Y, 1, P, SizeY, CostY),
 getPET(P, _, ExpPET), % fetch stored predicate evaluation time
 symmjoinTC(A, B), % fetch relative costs
 S is SizeX * SizeY * Sel, % calculate size of result
 C is CostX + CostY + % cost to produce the arguments
 A * ExpPET * (SizeX * SizeY) + % cost to handle buffers and collision
 B * S. % cost to produce result tuples

For the symmjoin operator, the size of the result is given by the size of the Cartesian product times
the selectivity (as for any join operator, in fact). The cost is the sum of the costs of producing the
arguments plus some cost proportional to the total number of pairs of tuples considered plus some
cost proportional to the size of the result. The latter two terms are weighted by the two constants for
symmjoin, here retrieved in A and B. Additionally, the concrete condition predicate P is used for the
first time here: getPET(P, _, ExpPET) retrieves the predicate evaluation time (ExtPET), that is the
time in milliseconds needed to compute the predicate once. Obviously, this time has impact on the
symmjoin’s cost.

We also consider the cost for a simple filter operator application:

cost(filter(X, _), Sel, P, S, C) :- % 'normal' filter
 cost(X, 1, P, SizeX, CostX),
 getPET(P, _, ExpPET), % fetch stored predicate evaluation time
 filterTC(A),
 S is SizeX * Sel,
 C is CostX + SizeX * (A + ExpPET).

The filter operator determines the cost and size for its argument. Note that it passes a selectivity 1
to the argument cost evaluation, because the selectivity is actually “used” by this operator. The result
size for filter is determined by applying the Sel factor. The cost is defined by the argument’s cost
plus the argument’s cardinality times predicate P’s ExtPET.

For the moment cost estimation is still rather simplistic, but one can see the principles.1 For example,
in the filter operator we assume a constant cost for evaluating a predicate. A refinement would be
to model the cost for all operators that can occur in predicates, and then to model the cost for predi-
cate evaluation more precisely. In addition one would need for variable size attribute data types sta-
tistics about their average size. For example, for a relation with an attribute of type region, one
should have a predicate (similar to card) stating the average number of edges for region values in
that relation. Alternatively, similar to the current selectivity determination, such statistics could be
retrieved by a query to SECONDO and then be stored for further use.

Another important aspect that has been neglected in these simple cost formulas is the use of buffers
in some operators, especially the join operators. The cost functions change dramatically when buff-
ers overflow and buffer contents need to be saved to disk.

1. This holds for the standard version of the optimizer considered in this manual. More sophisticated cost estimation
exists in other versions of the optimizer. However, it is also more difficult to explain and extend.

– 79 –

Cost estimation needs to be extended when a new operator is added that is used in translations of
predicates. From the algorithm implementing the operator one should understand how the sizes of
arguments determine the cost and write a corresponding rule. The relevant factors for the per tuple
cost need to be determined in experiments; they should be set relative to the other existing factors in
the file operators.pl. Of course, the relationship between these factors and the actual running
times depend on the machine where the experiments are run.

– 80 –

7 Integrating New Types into User Interfaces

7.1 Introduction

SECONDO can be extended with new algebras. Therefore, a user interface should be able to integrate
new display functions for the new data types defined in the newly introduced algebras. In the follow-
ing sections we show how to extend Javagui to be able to display the new data types. Afterwards, the
appropriate extension for SecondoTTY is described.

7.2 Extending the Javagui

Figure 7 Overview of Javagui

Data are exchanged between SECONDO and Javagui via TCP. In general, a main part of these data are
SECONDO objects, which are encoded in nested list format. Nested lists of SECONDO objects are sent
to the GUI in the format (<type> <value>).

Javagui

Se
co

nd
o-

Se
rv

er
O

pt
im

iz
er

-S
er

ve
r

Files

Optimizer-Interface

Secondo-Interface

ViewerControl

Command-Panel

Object-Manager Import-Manager

nested list
dbf

shp

HoeseViewer StandardViewer

Tools
nested list

...

DsplClass-1 DsplClass-2

.

.

– 81 –

There are two ways to integrate a new data type into Javagui: to write a new viewer or to extend the
HoeseViewer. Both ways have advantages and also disadvantages. When extending the Hoese-
Viewer, the developer only needs to implement how to draw or print the new object. The functional-
ities provided by the HoeseViewer (zoom etc.) can be used without writing additional code.
Unfortunately, the HoeseViewer cannot display all kinds of SECONDO objects. For instance, the
developer cannot define the drawing order for multiple objects, and it is not possible to display three-
dimensional objects. Therefore, in a lot of cases it is more reasonable to write a new viewer. Since
the HoeseViewer uses only one display function for a SECONDO object, it is not possible to have
alternative representations for objects. By writing a new viewer, the developer can decide how, when
and where an object is drawn.

The complete interface documentation of all classes can be obtained by entering make doc in the
Javagui directory. Javagui must have been compiled before this command is executed because some
classes are generated in the Javagui make process. This creates a new directory doc containing the
result of the javadoc tool.

7.2.1 Writing a New Viewer

Every viewer must be part of the viewer package. If more than one class is needed to implement a
viewer, only the main class should be in the viewer package. All other classes should be placed in a
new package. Although Javagui consists of a lot of Java classes, the developer of a new viewer only
needs to know seven of them, namely SecondoViewer, SecondoObject, ListExpr, MenuVector,
ID, IDManager, and Reporter. Furthermore, the developer should know the standard Java classes
(especially the Java Swing components). The following sections describe these seven classes. Before
a new viewer is integrated, the makefile.viewers file in the viewer directory should be changed.
The file makefile.viewers in the Javagui/viewer directory has to be extended by adding the name
of the viewer to the variable VIEWER_CLASSES and by adding the names of the packages to the
VIEWER_DIRS variable.

The ID Class

This class is used to distinguish different SECONDO objects, even though these objects may have the
same value. For instance in a viewer, the class can be used to check whether an object is already dis-
played. To do so, the equals method of the class is used.

The IDManager Class

A viewer can create new SECONDO objects. For instance, the HoeseViewer can load object values
from files and create SECONDO objects from them. Each SECONDO object must have an own id. To
get an unused id, use the getNextID method of this class.

– 82 –

The MenuVector Class

Each viewer can extend the main menu of Javagui with its own entries. The MenuVector class is
used for this purpose. Normally, a viewer developer should only use the addMenu(JMenu) method to
extend the menu. The created MenuVector is the return value of the getMenuVector method (see
Table 1).

The ListExpr Class

All objects resulting from requests to SECONDO are in nested list format. The ListExpr class is the
Java representation of such lists. A viewer should extract the desired information from the nested
list. To display a SECONDO object, the viewer needs to derive the desired data from a nested list and
create Java objects from it.

The SecondoObject Class

An instance of the SecondoObject class consists of an id, a name, a value, and some methods to
access these data. The id is used for internal identification, whereas the name identifies the object for
the user of Javagui. The value is the nested list representation of the object.

The Reporter Class

This class should be used to inform the user about errors and success of operations. All messages
should be handled and displayed using this class. This concerns both, outputs on the console and pop
up windows. Such windows are switched off automatically when Javagui runs in one of its test
modes (see SECONDO User Manual).

The SecondoViewer Class

Every viewer is a subclass of SecondoViewer. All abstract methods must be implemented. Table 1
describes all important methods in this class.

String
getName()

Gets the name of this viewer. This name is dis-
played in the Viewers menu of Javagui.

boolean
addObject(SecondoObject o)

Adds a SECONDO object. In this method the
viewer must analyse the value of o (using o’s
toListExpr method) and display it.

void
removeObject (SecondoObject o)

Removes o from this viewer.

Table 1: Methods of SecondoViewer

– 83 –

Example

In this example a viewer is described, which can display results of inquiries to SECONDO.

List Format

All results of such inquiries to SECONDO are nested lists with two elements. The first element is a
symbol atom containing the value inquiry. The second element is again a list with two elements.
The first element of this list is a symbol atom describing the kind of the inquiry. Possible values are
databases, types, objects, constructors, operators, algebras or algebra. The structure of
the second element depends on this value.

The lists for databases and algebras have the same structure. They consist of symbol atoms
describing the names of databases and algebras, respectively. Example lists are:

• (inquiry (databases (GEO OPT EUROPE)))

void
removeAll()

Removes all objects from this viewer.

boolean
canDisplay(SecondoObject o)

Normally, a viewer cannot display all objects
resulting from requests to SECONDO. This method
returns true if this viewer is able to display the
given object.

boolean
isDisplayed(SecondoObject o)

Returns true if o is contained in this viewer.
Note, that the result of this function can be true
while o is not visible, e.g. in the StandardViewer
only the currently selected of possibly many
objects is visible.

boolean
selectObject(SecondoObject O)

Selects o in this viewer. How an object is selected
can be specified by the viewer implementor.

MenuVector
getMenuVector()

Returns the menu extension for this viewer. If no
menu extension exists, null is returned.

double
getDisplayQuality(SecondoObject SO)

This method is not abstract. This means, that a
viewer implementor may but does not need to
implement this method. The result of this method
must be in the range [0,1]. 0 means, that the
viewer can’t display this object. 1 means, that this
is the best viewer to display the given object. This
feature is used when a viewer is selected for dis-
playing an object (see SECONDO User Manual).

void
enableTestmode(boolean on)

If the argument is true, all automatical user inter-
action has to be disabled.

Table 1: Methods of SecondoViewer

– 84 –

• (inquiry (algebras (StandardAlgebra RelationAlgebra SpatialAlgebra)))

The list for constructors consists of lists of three elements. Each of these lists consists of a symbol
describing the constructor name, a list with property names and a list with property values.

(inquiry (constructors (<constructor1>...<constructorn>))) where
 constructori := (name <property names> <property values>)

The lists for property names and for property values should have the same length. The element at
position x in the value list is the value for the name at the same position in the list of names. All ele-
ments in these lists are atomic (mostly string or text atoms).

The list structure for operators is the same as for constructors. Only the keyword is different.

The value list for algebra has two elements. The first element is a symbol atom describing the name
of the requested algebra. The second element is a list of two elements describing the type construc-
tors and the operators of this algebra. The format of these lists is the same as in the lists above.

The structure for types is the following:

• (inquiry (types (TYPES <type1> ... <typen>)))

Each <typei> is in format:

• (TYPE <name> <value>)

where TYPE is a keyword, <name> is a symbol and <value> describes the type. Since the possible
types depend on the currently used algebras, <value> has no fixed structure.

The lists for objects are similiar to the lists for types:

• (inquiry (objects (OBJECTS <object1> ... <objectn>)))

where <objecti> is a list built as follows:

• (OBJECT <name> <typename> <type>)

where OBJECT is a keyword, <name> a symbol containing the name of the object, <typename> is a
list containing the user defined name of the type as a symbol or an empty list if no name exists, and
<type> is a list describing the type.

Building the Viewer

The name for this viewer is “InquiryViewer”. All objects are formatted with help of html code. The
layout of this viewer is very simple. At the top, there is an option bar for selecting an object. Located
at the bottom, there is a field and a button supporting searching within the text. In the remaining area
the formatted textual representation of the selected object is shown. The package of this viewer is
viewer. Since graphical elements are used, a few imports are needed. In addition, the access to Lis-
tExpr and SecondoObject is required. (See the source code in Appendix A.)

– 85 –

The viewer has three components to manage SecondoObjects: a ComboBox containing the names of
SecondoObjects, a Vector containing the SecondoObjects and another Vector containing the
html code for SecondoObjects. The connection between the different representations of an object is
given by the indices of the objects in these containers. To extend the main menu of Javagui the
viewer has a MenuVector MV. For displaying objects a JEditorPane is used.

The getName method just returns the string “InquiryViewer”. The isDisplayed method checks
whether the given object is contained in the vector SecondoObjects or not. The method removeOb-
ject removes a given object from all of its representations. All representations can be emptied with
the removeAll method. After an object is selected from a combobox, the position of this object in
the SecondoObjects vector is determined, and then the object can be displayed. The MenuVector
built in the constructor is returned using the getMenuVector method. The code for these methods
and the code for html formatting is given in Appendix A. The remaining methods are described here
in detail.

The canDisplay method checks whether this viewer can display a given SecondoObject. This is
done by checking the list format described above. The first element of the list must be a symbol atom
with the content “inquiry”. The second element has to be a list of two elements. The first element of
this list must be again a symbol atom. The value of this symbol must be an element of the set {“data-
bases”, “constructors”, “operators”, “algebras”, “algebra”, “types”, “objects”}.

public boolean canDisplay(SecondoObject o){
ListExpr LE = o.toListExpr(); // get the nested list of o
if(LE.listLength()!=2) // the length must be two

return false;
// the first element must be an symbol atom with content "inquiry"
if(LE.first().atomType()!=ListExpr.SYMBOL_ATOM ||

!LE.first().symbolValue().equals("inquiry"))
return false;

ListExpr VL = LE.second();
// the length of the second element must again be two
if(VL.listLength()!=2)

return false;
ListExpr SubTypeList = VL.first();
// the first element of this list must be a symbol atom
if(SubTypeList.atomType()!=ListExpr.SYMBOL_ATOM)

return false;
String SubType = SubTypeList.symbolValue();
// check for supported "sub types"
// the used constants just contain the appropriate String
if(SubType.equals(DATABASES) || SubType.equals(CONSTRUCTORS) ||

SubType.equals(OPERATORS) || SubType.equals(ALGEBRA) ||
SubType.equals(ALGEBRAS) || SubType.equals(OBJECTS) ||
SubType.equals(TYPES))

return true;
return false;

}

– 86 –

Because this viewer is very good for displaying objects resulting from inquiries, the
getDisplayQuality method is overwritten.

public double getDisplayQuality(SecondoObject SO){
 if(canDisplay(SO))
 return 0.9;
 else
 return 0;
 }

The constructor of this class builds the graphical components and initializes the objects managing
the SECONDO objects. Besides, the menu is extended.

public InquiryViewer(){
// add the components
setLayout(new BorderLayout());
add(BorderLayout.NORTH,ComboBox);
add(BorderLayout.CENTER,ScrollPane);
HTMLArea.setContentType("text/html");
HTMLArea.setEditable(false);
ScrollPane.setViewportView(HTMLArea);

// build the panel for search within the text
JPanel BottomPanel = new JPanel();
BottomPanel.add(CaseSensitive);
BottomPanel.add(SearchField);
BottomPanel.add(SearchButton);
add(BottomPanel,BorderLayout.SOUTH);
CaseSensitive.setSelected(true);

// register functions to the components
ComboBox.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent evt){

showObject();
}});

SearchField.addKeyListener(new KeyAdapter(){
public void keyPressed(KeyEvent evt){

if(evt.getKeyCode() == KeyEvent.VK_ENTER)
searchText();

}});

SearchButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent evt){

searchText();
}});

// build the MenuExtension
JMenu SettingsMenu = new JMenu("Settings");
JMenu HeaderColorMenu = new JMenu("header color");
JMenu CellColorMenu = new JMenu("cell color");
SettingsMenu.add(HeaderColorMenu);
SettingsMenu.add(CellColorMenu);
ActionListener HeaderColorChanger = new ActionListener(){

public void actionPerformed(ActionEvent evt){
JMenuItem S = (JMenuItem) evt.getSource();

– 87 –

HeaderColor = S.getText().trim();
reformat();

}
};
ActionListener CellColorChanger = new ActionListener(){

public void actionPerformed(ActionEvent evt){
JMenuItem S = (JMenuItem) evt.getSource();
CellColor = S.getText().trim();
reformat();

}
};
// some colors for the menuextension
HeaderColorMenu.add("white").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("silver").addActionListener(HeaderColorChanger);
CellColorMenu.add("yellow").addActionListener(CellColorChanger);
CellColorMenu.add("aqua").addActionListener(CellColorChanger);

MV.addMenu(SettingsMenu);
}

The addObject method constructs the html-code for a new object and appends this object to all
components managing SecondoObject representations.

public boolean addObject(SecondoObject o){
// check if object is correct
if(!canDisplay(o))

return false;
// already displayed => only select
if (isDisplayed(o))

selectObject(o);
else{

// build the text and append object to all representations
ListExpr VL = o.toListExpr().second();
ObjectTexts.add(getHTMLCode(VL));
ComboBox.addItem(o.getName());
SecondoObjects.add(o);
try{

// ensure to diplay the new object
ComboBox.setSelectedIndex(ComboBox.getItemCount()-1);
showObject();

}
catch(Exception e){

if(DEBUG_MODE)
e.printStackTrace();

}
}
return true;

}

– 88 –

Don’t forget to extend the makefile.viewers file in the Javagui/viewer directory:

...
VIEWER_CLASSES := \

FormattedViewer.class \
InquiryViewer.class \
QueryViewer.class \
...

Because this viewer never expects user interaction, the method enableTestMode can remain
unchanged.

7.2.2 Extending the HoeseViewer

This viewer can display textual, graphical and temporal objects. To add a new object type to the Hoe-
seViewer, a new class in the package viewer.hoese.algebras must be implemented. The name of
this class must be Dspl<type>, where <type> is the symbol value representing the main type of the
object, e.g. for the type rel(tuple((...)(...))) the name is Dsplrel. If another class name is
chosen, the viewer can’t find this class. If no new packages are included, the makefiles don’t need to
be changed. Depending on the kind of the new object type (textual, graphical or temporal), a class
implementing different interfaces should be developed. For an easy extension, existing adapter
classes can be used.

Creating Textual Objects

In the class for a new textual object, the DsplBase interface should be implemented. There is an
adapter class DsplGeneric, which implements all methods from the DsplBase interface by default.
The easiest way to add a new textual type is to extend this class. Then only the init method has to
be overwritten.

Example: Inserting Rational Numbers

In this example, rational numbers will be displayed. The nested list structure for such objects looks
as follows:

(rational (<sign> <intpart> <numDecimal> / <denomDecimal>))

where

• <sign> can be either the symbol “+” (positive number), “-” (negative number) or nothing
(interpreted as positive)

• <intpart>, <numDecimal> and <denomDecimal> are non negative integer values with
<numDecimal> < <denomDecimal>

The output format should be rat: <sign> <numDecimal> / <demonDecimal>, where the
<intpart> from the nested list is integrated in this representation. This class is named Dsplra-
tional.

– 89 –

The display class is shown below:

package viewer.hoese.algebras;

import sj.lang.ListExpr;
import viewer.hoese.*;

public class Dsplrational extends DsplGeneric {
// returns a string representing this rational or "ERROR" if
// the format of the list is wrong
private String getValueString(ListExpr value){

int len = value.listLength();
if(len!=4 && len !=5)

return "ERROR";
String result="";
if(value.listLength()==5){ // with sign

ListExpr SignList = value.first();
if(SignList.atomType()!=ListExpr.SYMBOL_ATOM)

return "ERROR";
String sign = SignList.symbolValue();
if(sign.equals("-")) // ignore other values

result += sign +" ";
value = value.rest(); // skip the signum

}
// check the types
if(value.first().atomType()!=ListExpr.INT_ATOM ||

value.second().atomType()!=ListExpr.INT_ATOM ||
value.fourth().atomType()!=ListExpr.INT_ATOM)

return "ERROR";
int intPart = value.first().intValue();
int numDecimal = value.second().intValue();
int denomDecimal = value.fourth().intValue();
result += ""+(denomDecimal*intPart+numDecimal) + " / " + denomDecimal;
return result;

}

public void init (String name, int nameWidth,
ListExpr type, ListExpr value, QueryResult qr){

String T = name;
String V = getValueString(value);
T=extendString(T,nameWidth);
qr.addEntry(T + " : " + V);
return;

}
}

Inserting a Graphical Object

In a new display class for a graphical object, the interface DsplGraph has to be implemented. The
adapter class is named DisplayGraph. The basic idea is to convert the nested list representation into
a set of Java Shape Objects. Each element of this set has some properties which are used to display
the object. The methods of interest are:

– 90 –

int numberOfShapes()

This methods returns the number of how many Java Shape Objects are used to represent this SEC-
ONDO object. In the most cases, a single Shape is sufficient, and so the return value is set to 1 in these
cases.

boolean isPointType(int num)
boolean isLineType(int num)

The HoeseViewer uses different methods to draw lines, points, and areas. To inform the viewer about
the kind of a Shape, these functions must be overwritten (both methods return false by default).
The arguments refers to the element num within the set of Shapes.

Shape getRenderObject(int num, AffineTransform at)

This method returns the element at position num within the set of Shapes. Because this function is
called very often when temporal objects are animated, all Shapes should be precomputed if possible.
The additional argument at of type AffineTransform can be used to show an object in fixed size
independent of the currently used zoom factor.

void init(String name, int nameWidth, ListExpr type,
ListExpr value, QueryResult qr)

The init method converts the nested list passed by the parameter value into the set of Java Shapes.
To be able to handle objects with geographic coordinates (longitude, latitude), the class Projection
must be used. In contrast to textual objects, the instance of the display class itself has to be added to
the query result. The textual representation comes from the toString() method of this class.

Example: Inserting a Rectangle Type

The nested list format for a Rectangle is given by the following format:

(rect (<x1> <y1> <x2> <y2>))

where xi and yi are numeric values. Because in Java a class Rectangle2D.Double implementing
the Shape interface already exists, only the init method has to be overwritten. Here, the implemen-
tation of the class Dsplrect is shown:

package viewer.hoese.algebras;

import java.awt.geom.*;
import java.awt.*;
import sj.lang.ListExpr;
import java.util.*;
import viewer.*;
import viewer.hoese.*;
import tools.Reporter;

/**
* The displayclass for rectangles
*/

– 91 –

public class Dsplrect extends DisplayGraph {
/** The internal datatype representation */

Rectangle2D.Double rect;
/**

* Scans the numeric representation of a rectangle
*/

private void ScanValue (ListExpr v) {
if (v.listLength() != 4) {

Reporter.writeError("No correct rectangle expression:" +
" 4 elements needed");

err = true;
return;

}
Double X1 = LEUtils.readNumeric(v.first());
Double X2 = LEUtils.readNumeric(v.second());
Double Y1 = LEUtils.readNumeric(v.third());
Double Y2 = LEUtils.readNumeric(v.fourth());
if(X1==null || X2==null || Y1==null | Y2==null){

Reporter.writeError("No correct rectangle expression " +
"(not a numeric)");

err = true;
return;

}
try{

double tx1 = X1.doubleValue();
double tx2 = X2.doubleValue();
double ty1 = Y1.doubleValue();
double ty2 = Y2.doubleValue();
if(!ProjectionManager.project(tx1,ty1,aPoint)){

err = true;
} else{

double x1 = aPoint.x;
double y1 = aPoint.y;
if(!ProjectionManager.project(tx2,ty2,aPoint)){

err=true;
} else{

double x2 = aPoint.x;
double y2 = aPoint.y;
double x = Math.min(x1,x2);
double w = Math.abs(x2-x1);
double y = Math.min(y1,y2);
double h = Math.abs(y2-y1);
rect = new Rectangle2D.Double(x,y,w,h);

}
}

}catch(Exception e){
err = true;

}
}

public int numberOfShapes(){
return 1;

}

– 92 –

/** Returns the rectangle to display **/
public Shape getRenderObject(int num,AffineTransform at){

if(num<1){
return rect;

} else{
return null;

}
}

public void init (String name, int nameWidth, ListExpr type,
ListExpr value, QueryResult qr) {

AttrName = extendString(name, nameWidth);
ScanValue(value);
if (err) {

Reporter.writeError("Error in ListExpr :parsing aborted");
qr.addEntry(new String("(" + AttrName + ": GA(rectangle))"));
return;

}
else

qr.addEntry(this);
}

}

Including a Graphical Temporal Type

In a display class for a graphical temporal type the Timed interface and the DsplGraph interface have
to be implemented. To do that, only the DisplayTimeGraph class has to be extended.

Example: Including a Moving Point

A moving point is a point which changes its position over the time. The point is defined during a set
of disjoint time intervals.

The list representation for a moving point is:

(mpoint (<unit1>...<unitn>))

In a unit, the point moves from a start point to an end point. The two positions may be the same. In
this case the point is staying at its position during that time interval. A unit has the following struc-
ture:

unit := (<interval> (x1 y1 x2 y2)),

where

<interval> := (<start> <end> <leftclosed><rightclosed>)

<leftclosed> and <rightclosed> are boolean atoms, describing whether the interval contains the
appropriate end points.

<start> and <end> are of type instant, which is defined as a string in format:

– 93 –

year-month-day[-hour:minute[:second[.millisecond]]]

where the square brackets delimit optional values.

(x1, y1) defines the location of the moving point at the beginning of the time interval. (x2, y2) is
the position of the moving point at the end of the time interval. The moving point moves linearly
from (x1, y1) to (x2, y2) during the given time interval.

In the init method, the list is converted to an internal representation of a moving point. The bound-
ing box is computed as the minimum rectangle containing all endpoints from the included units.

The getRenderObject checks whether the moving point is defined at a given time instant, which
means that a unit whose interval contains the given time instant exists. If no unit is found, getRen-
derObject returns null. Otherwise the position of this moving point is computed. Around this posi-
tion a rectangle or a circle is constructed to display this point. The complete source code is given in
Appendix B. The class in the appendix additionally supports an old nested list format for moving
points. Furthermore it can be used for labeling and manipulating the appearance of graphical objects
which is described in the next sections.

Using Objects as a Label

An object can be used as a label of another object or of itself. This feature is available if the display
class of this object implements the LabelAttribute interface. This interface contains only a single
method getLabel. The parameter time is used only if the object state changes in time. Otherwise,
this argument is ignored. This methods returns a string which is used as a label for the other object.

Using Objects for Manipulating the Appearance of Other Objects

In the HoeseViewer, objects can manipulate a predefined set of properties (e.g. color) of graphical
objects. To do so, the display class has to implement the RenderAttribute interface which is
described in this section. The basic idea is to convert the current value of the object into a real (dou-
ble) value. From this number, the appropriate value of the property is derived.

Some of the methods of the RenderAttribute interface have an argument denoting the time cur-
rently displayed. If the value of the object does not depend on time, just ignore it. The isDefined
method checks whether the object has a defined value at the given point in time. The getRender-
Value method computes the value of the object and converts it into a double value. mayBeDefined
checks if the object is defined at any point in time. The methods getMinRenderValue and get-
MaxRendervalue compute the minimum (maximum) value of the object in the double representa-
tion for all points in time.

Drawing Complex Objects

Sometimes, the classes implementing the Shape interface of Java are not able to display an object in
the desired form. An example is a label class which should draw a string at given position and a

– 94 –

given angle. Such display classes must be derived from the class DisplayComplex. Its draw method
must be implemented. This function is called if the object is drawn to the screen.

Adding Special Views for Objects

The display of some objects requires a lot of space on the screen. Because the HoeseViewer has only
a small area for displaying texts, sometimes a new window is needed to display objects in a nice way.
For such objects, the interface ExternDisplay has to be implemented by the display class. This
interface contains two methods displayExtern and isExternDisplayed. The displayExtern
method is called if the user double clicks on the textual representation of the object. The reaction of
calling this function is not restricted. Usually, a new window is opened and the object is displayed in
this window. To avoid too many instances of such windows, the window should be a static instance
of the display class. Thus all objects are displayed in the same window. The method isExternDis-
played returns true if the object is already presented in such a window.

7.3 Writing New Display Functions for SecondoTTY and SecondoTTYCS

The text based user interfaces of SECONDO (SecondoTTYBDB and SecondoTTYCS) can display
objects in a formatted manner. In order to do so, display functions have to be defined. If no display
function exists for a type, the result will be printed out in a nested list format. In this section we
describe how to write and register new display functions.

To define a display function for a new type, the file DisplayTTY.cpp (in the UserInterfaces direc-
tory) has to be changed.

7.3.1 Display Functions for Simple Types

Writing a display function for a simple (non-composite) type is very easy. You have to write a sub-
class of the class DisplayFunction and to overwrite the function Display. Here, the value of the
object (given as a nested list) must be analysed and its string representation must be written into the
standard output stream. For non-composite types, the arguments type and numtype can be ignored.

Example: Display Function for the Point Type

struct DisplayPoint : DisplayFunction {

virtual void Display(ListExpr type, ListExpr numType, ListExpr value)
{

if(nl->IsAtom(value) && nl->AtomType(value) == SymbolType &&
nl->SymbolValue(value) == "undef")

{
cout << "UNDEFINED";

}
else if(nl->ListLength(value)!=2)

– 95 –

throw runtime_error(stdErrMsg);
else{

bool err;
double x = GetNumeric(nl->First(value),err);
if(err){

throw runtime_error(stdErrMsg);
}
double y = GetNumeric(nl->Second(value),err);
if(err){

throw runtime_error(stdErrMsg);
}
cout << "point: (" << x << "," << y << ")";

}
}

};

The GetNumeric function has been defined in DisplayTTY. It returns the double value of a list con-
taining an integer, a real, or a rational number. If the list does not contain a value of these types, the
err parameter will be set to true. A short output should not end with a newline, because this can
lead to conflicts when formatting composite types like relations or arrays which contain this simple
type.

7.3.2 Display Functions for Composite Types

For a composite type (e.g. relation or array), the display function is defined by recursively calling
CallDisplayFunction for the embedded types. The function CallDisplayFunction has four
parameters. The last three parameters (type, numType and value) correspond to the parameters of
display functions. The type argument contains the type description of the object as usual, e.g.
rel(tuple(...)). The numType argument contains exactly the same information. The difference is
that the contained types here are coded by the algebra id and type id, e.g. the type rel is coded by (3
2). value contains the nested list representation of the object’s value. The first parameter (idPair)
is used to identify the correct display function. For a simple type, numType and idPair are equal, but
for a composite type, idPair only contains the “main type” of the numType list.

Example: Display Function for an Array Type

The type description of an array is given as(array <arraytype>). The list <arraytype> is a
description of the embedded type, which may be simple or composite. To find the main type of the
embedded type, the list <arraytype> is traversed using depth-first-search until an integer value is
found. This integer represents the algebra number of the embedded type. The next element is an inte-
ger representing the embedded type’s constructor id. For every element of the value list, CallDis-
playFunction is invoked.

struct DisplayArray : DisplayFunction {

virtual void Display(ListExpr type, ListExpr numType, ListExpr value)
{

– 96 –

if(nl->ListLength(value)==0)
cout << "an empty array";

else{
ListExpr AType = nl->Second(type);
ListExpr ANumType = nl->Second(numType);
// find the idpair
ListExpr idpair = ANumType;
while(nl->AtomType(nl->First(idpair))!=IntType)

idpair = nl->First(idpair);

int No = 1;
cout << "*************** BEGIN ARRAY ***************" << endl;
while(!nl->IsEmpty(value)){

cout << "--------------- Field No: ";
cout << No++ << " ---------------" << endl;
CallDisplayFunction(idpair, AType,ANumType, nl->First(value));
cout << endl;
value = nl->Rest(value);

}
cout << "*************** END ARRAY ***************";

}
}

};

7.3.3 Register Display Functions

To register a new display function, just invoke Insert in the Initialize function of DisplayTTY.
The calls for the above described functions are as follows:

d.Insert("array", new DisplayArray());
d.Insert("point", new DisplayPoint());

– 97 –

8 Query Progress Estimation

8.1 Overview

For some time now SECONDO has been equipped with query progress estimation. The user interfaces
show a progress bar, indicating the fraction of the work for this query that has been completed, and
the expected remaining time. To implement progress estimation, the query processor at regular time
intervals (roughly ten times per second) sends a “progress query” to the operator at the root of the
operator tree. An operator supporting progress estimation responds to this by returning some esti-
mated quantities concerning the subtree rooted at this operator, namely:

• the total cardinality (i.e., the number of tuples to be returned)
• the tuple size in bytes
• the total time required to evaluate this subtree, in milliseconds
• the progress achieved, i.e., the fraction of work done, a number between 0 and 1

This set of quantities is not yet complete; it is refined below. To answer the question for the whole
subtree, an operator normally asks its predecessors - sons in the operator tree - for their progress
information. Based on these it derives its own progress quantities.

It is not required that all operators in SECONDO support query progress estimation. First of all, this
concerns essentially operators that produce and/or consume streams of tuples. For example, the filter
operator supports progress estimation, but the (usually atomic) operators needed to evaluate the filter
predicate do not need to support it. Even operators processing tuple streams are free to support or not
to support progress estimation. Basically, if all relevant operators in an operator tree support
progress, then the query processor will receive a valid progress estimate and report it to the user
interface. Otherwise no progress information appears.

For each operator it is individually registered within its algebra whether it supports progress. An
operator requests progress information from its predecessor calling a method of the query processor.
The query processor checks whether the predecessor operator supports progress estimation. If it does
not, the query processor returns a CANCEL message to the current operator. Normally an operator
receiving a CANCEL message from a predecessor cannot compute a reasonable progress estimate and
returns CANCEL itself. If the query processor receives CANCEL at the root of the operator tree, it does
not report progress.

Even if an operator supports progress in principle, it is not required to return valid estimates at all
times (although this is desired). An operator may return CANCEL to a progress query. Again, subse-
quent operators - higher up in the operator tree - are then likely to report CANCEL themselves and no
progress will be reported for this particular progress query. However, a bit later this operator may
yield progress information and progress will be reported at the user interface.

Assuming now that an operator and its predecessors do support progress, how does the operator
compute its progress estimate? First of all, it keeps track of the amount of work it has done such as

– 98 –

the number of tuples read from its argument streams or the number of tuples returned. For this pur-
pose, counters are inserted into the original code. Whereas observing the amount of work that has
been done seems easy, the central problem in progress estimation (as in query optimization) is to
estimate the total amount of work that needs to be done. This depends strongly on the sizes of inter-
mediate results, hence in particular on the selectivities of operations implementing selections or
joins.

8.2 Selectivity Estimation

Selectivities can be observed within an operator. For example, the filter operator can determine its
selectivity as the fraction of returned vs. read tuples. Similarly, join operators such as sortmergejoin
or symmjoin can determine their respective selectivity as the number of tuples returned relative to the
size of the Cartesian product of their input streams. Based on the observed selectivity and the sizes of
the input streams, the operator can estimate the cardinality of its output stream.

Note that this is a kind of sampling approach. Based on the fraction of qualifying tuples within the
subset that has been processed (e.g. the initial part of a stream of tuples) we estimate selectivity for
the entire set of tuples. The underlying assumption is that tuples arrive in random order (which is not
always true). Further, the sample should be large enough. For this reason, the selectivity within an
operator is only trusted after “some time”. More precisely, we assume that an estimate is stable when
a sufficient number of positive tuples (i.e., for which the predicate is true) has been seen. This con-
stant is currently set to 50.

Before an operator has seen this number of positive tuples, we call it in cold state. Afterwards it is in
warm state. The question is what estimate of cardinality an operator can return in cold state. There
are three possibilities: (1) rely on optimizer estimates, (2) use a default value, and (3) know the pre-
cise cardinality because the input stream is exhausted.

Query optimizer selectivity estimates exist if this query has been constructed by the optimizer. An
interface exists (described below) for an operator to access the optimizer estimate. One can also
access the observed predicate evaluation time and use it in the estimation of the total time needed by
this operator and subtree.

However, a query can run without the optimizer and an operator be still in cold state. In that case,
there is no other possibility than using a (stupid) default. For selection, a default selectivity of 0.1 is
used; for join a selectivity is used such that the cardinality of the smaller relation is returned, guess-
ing the somewhat frequent case that each tuple in the smaller relation connects to one tuple in the
larger one.

Finally, if the input stream is exhausted, the cardinality to be reported is precisely the number of
tuples returned by this operator.

– 99 –

8.3 Estimation of Tuple and Attribute Sizes

For the bottommost operators in the query tree, average tuple and attribute sizes are obtained from
the relations accessed, e.g. by the feed operator. They are then propagated through subsequent opera-
tors. For most operators, their effect on tuple and attribute sizes is known precisely. Many operators
leave the tuple structure unchanged or combine two tuples (join operators). Projection changes the
tuple structure, but knows all attribute sizes, hence can determine correct sizes for the output tuples.

There are a few operators that compute new attributes as the result of expressions such as extend or
groupby. For these derived attributes, sizes are initially unknown. However, the sizes of new attribute
values can be observed as they are created. Observing sizes over time should yield a reasonable esti-
mate (again assuming uniformity in the stream processed).

On the other hand, measuring attribute sizes induces some overhead. Note that this is done for each
tuple in the proper query processing, not in progress queries (of which there are only a few per sec-
ond). Therefore it is done only on an initial portion of the stream processed.

Furthermore, computing tuple sizes as the sum of attribute sizes in progress queries may also be a bit
expensive, especially for relations with very large numbers of attributes. Therefore the following
technique is used:

• Together with the sizes reported of tuples and attributes, an operator returns a boolean value
sizesChanged to indicate whether these sizes have been recomputed for the current progress
query.

• Within a progress query, tuple and attribute sizes are recomputed either if the predecessor
reports a size change or if within this operator a threshold has been passed so that observed
attribute sizes are now assumed to be stable. In this case the value sizesChanged = true is
passed to the successor.

8.4 Pipelining

For a sequence of non-blocking operators each of which consumes a constant amount of time per
tuple, e.g.

<rel> feed filter[...] project[...] consume

it is obvious that they work in a synchronized manner and their progress is the same. We say they
form a pipeline. This is not true, however, when there are blocking operators in the sequence.

In such operators, one can check whether the subtree below has blocking operators (i.e., significant
blocking time). If that is not the case, this operator can simply report the progress of its predecessor
as its own progress. This strategy is more stable in some cases, if observed selectivity estimates are
not correct or operators still in cold state.

Pipelining can be switched on as an option, by setting the constant pipelinedProgress to true in
the file include/Progress.h.

– 100 –

8.5 Infrastructure for Progress Implementation

8.5.1 New Messages and Storage Management

Recall that for stream processing the query processor sends messages to operators, namely OPEN,
REQUEST, and CLOSE. The standard protocol for processing a stream is

OPEN REQUEST* CLOSE

Usually in the OPEN part some initializations are done and data structures allocated. For each
REQUEST, a tuple is returned. In CLOSE, data structures are deallocated. In fact, it is possible that a
stream operator is called in a loop (e.g. embedded in a loopjoin), hence the protocol is more com-
pletely

(OPEN REQUEST* CLOSE)*

For progress estimation, two new messages are introduced called REQUESTPROGRESS and
CLOSEPROGRESS. With REQUESTPROGRESS, the successor asks for progress information. The
CLOSEPROGRESS message is used to deallocate data structures after completion of the entire query.

The REQUESTPROGRESS messages are sent “asynchronously” at any time within the protocol shown
above. In particular, such a message may be sent after an operator has processed its stream com-
pletely, that is, after the CLOSE message. However, the branch of the operator implementation that
answers progress queries still needs access to the operator’s data structure that manages progress
information such as counters. It follows that we must not deallocate the data structure in the CLOSE
branch. On the other hand, it is necessary to deallocate the data structure at some point to release the
storage.

For this reason, the protocol is extended to use the CLOSEPROGRESS message which is guaranteed to
be sent only once after completion of the entire query:

(OPEN REQUEST* CLOSE)* CLOSEPROGRESS

The allocation and deallocation of the operator’s data structure D with the protocol that was used so
far can be represented as follows:

OPEN create D
REQUEST
...
REQUEST
CLOSE delete D

...

OPEN create D
REQUEST
...
REQUEST
CLOSE delete D

With progress estimation, allocation and deallocation is done as follows:

– 101 –

OPEN if D exists delete D; create D
REQUEST
...
REQUEST
CLOSE

...

OPEN if D exists delete D; create D
REQUEST
...
REQUEST
CLOSE

CLOSEPROGRESS delete D

In this way it is ensured that the data structure is available for the entire evaluation time of the query.
Hence progress queries can be answered at any time. But data structures are also properly released to
avoid storage holes.

8.5.2 Data Structures

Two data structures are defined in the file include/Progress.h to support the implementation of
progress estimation in operators. The first, given in class ProgressInfo represents the various quan-
tities of progress information mentioned above. Pointers to instances of this class are passed between
operators.

class ProgressInfo
{
public:

 ProgressInfo();

 double Card; //expected cardinality
 double Size; //expected total tuple size (including FLOBs)
 double SizeExt; //expected size of tuple root and extension part
 // (no FLOBs)
 int noAttrs; //no of attributes
 double *attrSize; //for each attribute, the complete size
 double *attrSizeExt; //for each attribute, the root and extension size
 bool sizesChanged; //true if sizes have been recomputed in this request

 double Time; //expected time, in millisecond
 double Progress; //a number between 0 and 1

 double BTime; //expected time, in millisecond of blocking ops
 double BProgress; //a number between 0 and 1

 void CopySizes(ProgressInfo p); //copy the size fields

 void CopySizes(ProgressLocalInfo* pli); //copy the size fields

– 102 –

 void CopyBlocking(ProgressInfo p);//copy BTime, BProgress
//for non blocking unary op.

 void CopyBlocking(ProgressInfo p1,ProgressInfo p2);
//copy BTime, BProgress
//for non-blocking binary op. (join)

 void Copy(ProgressInfo p); //copy all fields

};

The quantities mentioned above are refined as follows. For tuple size, both the size of the core tuple
without FLOBs and the complete tuple size including FLOBs are maintained. Further, the number of
attributes and the two respective sizes for each attribute are kept. This is necessary so that operators
changing the tuple schema (e.g. projection) can recompute the size for their result tuples.

In addition to Time and Progress, an operator also estimates the blocking time BTime and and
blocking progress BProgress for the subtree of which it is the root. For example, the sort operator
first reads the entire input stream before it returns any tuple. During this time it is blocking. The time
estimated for this stage is the blocking time, and the fraction of work done within the blocking stage
is the blocking progress.

The class offers some additional methods to easily copy some of the fields.

The second data structure, called ProgressLocalInfo, provides some counters and other fields that
can be used to augment an operator’s local data structure.

class ProgressLocalInfo
{
public:

 ProgressLocalInfo();

 ~ProgressLocalInfo();

 int returned; //current number of tuples returned
 int read; //no of tuples read from arg stream
 int readFirst; //no of tuples read from first arg stream
 int readSecond; //no of tuples read from second argument stream
 int total; //total number of tuples in argument relation
 int defaultValue; //default assumption of result size, needed for

//some operators
 int state; //to keep state info if needed
 int memoryFirst,
 memorySecond; //size of buffers for first and second argument

 void* firstLocalInfo; //pointers to localinfos of first and second arg
 void* secondLocalInfo;

bool sizesInitialized;//size fields only defined if sizesInitialized;
 //initialized means data structures are allocated
 //and fields are filled
 bool sizesChanged; //sizes were recomputed in last call

– 103 –

double Size; //total tuplesize
 double SizeExt; //size of root and extension part of tuple
 int noAttrs; //no of attributes
 double *attrSize; //full size of each attribute
 double *attrSizeExt; //size of root and ext. part of each attribute

 void SetJoinSizes(ProgressInfo& p1, ProgressInfo& p2) ;

//set the sizes for a join of first and second argument
//only done when sizes are initialized or have changed

};

Not all of these fields are used by all operators. Also, it is not mandatory to use this data structure. In
fact, some operators were equipped with progress estimation before this data structure was defined.
For an operator that needs to manage its own data for regular execution, a data structure is often
introduced as a subclass of ProgressLocalInfo, for example:

class XLocalInfo: public ProgressLocalInfo
{

<further fields and methods for operator X>
}

8.5.3 Interface to Request Progress Information From a Predecessor

An operator can request progress information from one of its arguments using a method of the query
processor (defined in include/QueryProcessor.h):

bool RequestProgress(const Supplier s, ProgressInfo* p);

This evaluates the subtree s for a PROGRESS message. It returns true iff a progress info has been
received. In p the address of a ProgressInfo must be passed.

8.5.4 Interface to Access Optimizer Selectivity Estimate and Predicate Cost

If the query was produced by the optimizer, for each predicate its selectivity and predicate evaluation
cost was determined in a query on a sample. These results are stored in the operator tree at the node
of the respective filter or join operator. The implementation of such an operator can access these
quantities as follows (defined in include/QueryProcessor.h):

double GetSelectivity(const Supplier s);

From a given supplier s get the selectivity at this node.

double GetPredCost(const Supplier s);

From a given supplier s get the predicate cost at this node.

– 104 –

8.6 Some Example Operators

In this section we look at the code of some operators that provide progress estimation.

8.6.1 Rename

This is the most simple operator because it essentially does nothing, just passes a tuple from prede-
cessor to successor. In a sense, this is the “Hello, World” of progress estimation.

int
Rename(Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 Word t; Tuple* tuple;

 switch (message)
 {
 case OPEN :

qp->Open(args[0].addr);
 return 0;

 case REQUEST :
qp->Request(args[0].addr,t);

 if (qp->Received(args[0].addr))
 {
 tuple = (Tuple*)t.addr;
 result.setAddr(tuple);
 return YIELD;
 }
 else return CANCEL;

 case CLOSE :
qp->Close(args[0].addr);

 return 0;

 case CLOSEPROGRESS:
 return 0;

 case REQUESTPROGRESS:
ProgressInfo p1;

 ProgressInfo *pRes;

pRes = (ProgressInfo*) result.addr;

 if (qp->RequestProgress(args[0].addr, &p1))
 {
 pRes->Copy(p1);
 return YIELD;
 }
 else return CANCEL;

}
 return 0;
}

– 105 –

Besides the usual three branches OPEN, REQUEST, and CLOSE of a stream processing operator, this
operator has branches CLOSEPROGRESS and REQUESTPROGRESS. The operator does not allocate any
data structures, therefore nothing happens in CLOSEPROGRESS.

In REQUESTPROGRESS a local variable p1 for ProgressInfo is declared as well as a pointer to such a
variable pRes. The latter is set to result.addr which means it is assigned the address of a Pro-
gressInfo variable in the successor operator (by some slight misuse of the result parameter).

The operator then gets progress information from its predecessor args[0]. That operator will either
write such information into p1 and return YIELD which results in the query processor method
RequestProgress returning TRUE. Or it will return CANCEL upon which RequestProgress returns
FALSE.

This operator uses only a negligible amount of time itself. It also does not change tuple size or
expected cardinality. Therefore it simply copies the progress information it has received from its pre-
decessor into the structure of its successor, provided that the predecessor has delivered progress
information. In that case it returns YIELD itself. Otherwise it cannot provide progress information
and returns CANCEL.

8.6.2 Project

The original code of the project operator is shown below:

int
Project(Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 switch (message)
 {
 case OPEN :
 {
 ListExpr resultType = GetTupleResultType(s);
 TupleType *tupleType = new TupleType(nl->Second(resultType));
 local.addr = tupleType;

 qp->Open(args[0].addr);
 return 0;
 }
 case REQUEST :
 {
 Word elem1, elem2;
 int noOfAttrs, index;
 Supplier son;

 qp->Request(args[0].addr, elem1);
 if (qp->Received(args[0].addr))
 {
 TupleType *tupleType = (TupleType *)local.addr;
 Tuple *t = new Tuple(tupleType);

– 106 –

 noOfAttrs = ((CcInt*)args[2].addr)->GetIntval();
 assert(t->GetNoAttributes() == noOfAttrs);

 for(int i = 0; i < noOfAttrs; i++)
 {
 son = qp->GetSupplier(args[3].addr, i);
 qp->Request(son, elem2);
 index = ((CcInt*)elem2.addr)->GetIntval();
 t->CopyAttribute(index-1, (Tuple*)elem1.addr, i);
 }
 ((Tuple*)elem1.addr)->DeleteIfAllowed();
 result.setAddr(t);
 return YIELD;
 }
 else return CANCEL;
 }
 case CLOSE :
 {
 qp->Close(args[0].addr);
 if(local.addr)
 {
 ((TupleType *)local.addr)->DeleteIfAllowed();
 local.setAddr(0);
 }
 return 0;
 }
 }
 return 0;
}

We now discuss step by step the changes needed for the progress version.

1 class ProjectLocalInfo: public ProgressLocalInfo
2 {
3 public:
4 ProjectLocalInfo() {
5 tupleType = 0;
6 read = 0;
7 }
8
9 ~ProjectLocalInfo() {
10 tupleType->DeleteIfAllowed();
11 tupleType = 0;
12 }
13
14 TupleType *tupleType;
15 };

First a local data structure ProjectLocalInfo is declared which inherits the fields from Progress-
LocalInfo. Note that in the original version a tuple type is maintained between calls. Hence a field
tupleType is defined in this class together with constructor and destructor methods.

– 107 –

16 int
17 Project(Word* args, Word& result, int message,
18 Word& local, Supplier s)
19 {
20 ProjectLocalInfo *pli=0;
21 Word elem1(Address(0));
22 Word elem2(Address(0));
23 int noOfAttrs= 0;
24 int index= 0;
25 Supplier son;
26
27 switch (message)
28 {
29 case OPEN:{
30
31 pli = (ProjectLocalInfo*) local.addr;
32 if (pli) delete pli;
33
34 pli = new ProjectLocalInfo();
35 pli->tupleType = new TupleType(nl->Second(GetTupleResultType(s)));
36 local.setAddr(pli);
37
38 qp->Open(args[0].addr);
39 return 0;
40 }

In the OPEN branch, the ProjectLocalInfo data structure is allocated and stored in the local variable
(line 34). Observe that it is first deleted if present (line 32) as explained in Section 8.5.1.

41 case REQUEST:{
42
43 pli = (ProjectLocalInfo*) local.addr;
44
45 qp->Request(args[0].addr, elem1);
46 if (qp->Received(args[0].addr))
47 {
48 pli->read++;
49 Tuple *t = new Tuple(pli->tupleType);
50
51 noOfAttrs = ((CcInt*)args[2].addr)->GetIntval();
52 assert(t->GetNoAttributes() == noOfAttrs);
53
54 for(int i = 0; i < noOfAttrs; i++)
55 {
56 son = qp->GetSupplier(args[3].addr, i);
57 qp->Request(son, elem2);
58 index = ((CcInt*)elem2.addr)->GetIntval();
59 t->CopyAttribute(index-1, (Tuple*)elem1.addr, i);
60 }
61 ((Tuple*)elem1.addr)->DeleteIfAllowed();
62 result.setAddr(t);
63 return YIELD;
64 }
65 else return CANCEL;
66 }

The REQUEST branch is as before except that a counter for the read tuples has been inserted (line 48).

– 108 –

67 case CLOSE: {
68
69 // Note: object deletion is done in repeated OPEN or CLOSEPROGRESS
70 qp->Close(args[0].addr);
71 return 0;
72 }

Nothing is deleted in the CLOSE branch.

73 case CLOSEPROGRESS:{
74 pli = (ProjectLocalInfo*) local.addr;
75 if (pli){
76 delete pli;
77 local.setAddr(0);
78 }
79 return 0;
80 }

Instead, this is done in CLOSEPROGRESS.

81 case REQUESTPROGRESS:{
82
83 ProgressInfo p1;
84 ProgressInfo *pRes;
85 const double uProject = 0.00073; //millisecs per tuple
86 const double vProject = 0.0004; //millisecs per tuple and attribute
87
88 pRes = (ProgressInfo*) result.addr;
89 pli = (ProjectLocalInfo*) local.addr;
90
91 if (!pli) return CANCEL;
92
93 if (qp->RequestProgress(args[0].addr, &p1))
94 {
95 pli->sizesChanged = false;
96
97 if (!pli->sizesInitialized)
98 {
99 pli->noAttrs = ((CcInt*)args[2].addr)->GetIntval();
100 pli->attrSize = new double[pli->noAttrs];
101 pli->attrSizeExt = new double[pli->noAttrs];
102 }
103
104 if (!pli->sizesInitialized || p1.sizesChanged)
105 {
106 pli->Size = 0;
107 pli->SizeExt = 0;
108
109 for(int i = 0; i < pli->noAttrs; i++)
110 {
111 son = qp->GetSupplier(args[3].addr, i);
112 qp->Request(son, elem2);
113 index = ((CcInt*)elem2.addr)->GetIntval();
114 pli->attrSize[i] = p1.attrSize[index-1];
115 pli->attrSizeExt[i] = p1.attrSizeExt[index-1];
116 pli->Size += pli->attrSize[i];
117 pli->SizeExt += pli->attrSizeExt[i];

– 109 –

118 }
119 pli->sizesInitialized = true;
120 pli->sizesChanged = true;
121 }
122
123 pRes->Card = p1.Card;
124 pRes->CopySizes(pli);
125
126 pRes->Time = p1.Time + p1.Card *
127 (uProject + pli->noAttrs * vProject);
128
129 //only pointers are copied; therefore the tuple sizes do not
130 //matter
131
132 if (p1.BTime < 0.1 && pipelinedProgress) //non-blocking,
133 //use pipelining
134 pRes->Progress = p1.Progress;
135 else
136 pRes->Progress =
137 (p1.Progress * p1.Time +
138 pli->read * (uProject + pli->noAttrs * vProject))
139 / pRes->Time;
140
141 pRes->CopyBlocking(p1); //non-blocking operator
142 return YIELD;
143 }
144 else return CANCEL;
145 }
146 return 0;
147 }
148 return 0;
149 }

Lines 83, 84, and 88 are as in the previous example. In lines 85-86 two constants are defined to be
used later in time estimations. They have been obtained in experiments.

Line 91 checks whether the local data structure has been allocated and otherwise returns CANCEL.
Remember that a progress query may come at any time, possibly before the execution of this opera-
tor (i.e. the OPEN branch) has been started.

In line 93 progress information is requested from the predecessor args[0]. Again, if it is not avail-
able, CANCEL is returned (line 144).

In lines 95-121 the size fields (tuple and attribute sizes) for the result tuples are set in the local data
structure pli. Lines 97-101 allocate space and are executed only once, because in line 119 sizesIn-
itialized is set to true. In the following part attribute and tuple sizes are (re)computed. This is done
either for initialization or if the predecessor reports a change of sizes.

In lines 123-141 the various quantities for progress are computed and written into the ProgressInfo
data structure of the successor. As project does not change the number of tuples, it passes the cardi-
nality obtained from the predecessor to the successor (line 123). It copies the sizes of tuples and
attributes from the local data structure pli to the data structure of the successor (line 124).

– 110 –

The total time needed for this subtree (lines 126-127) consists of the time estimated by the predeces-
sor plus the contribution of this operator. The time needed for project itself is proportional to the
number of tuples received p1.Card. For each tuple there is a constant amount of time needed, repre-
sented by uProject, and some work required per attribute, vProject.

The progress is determined either by pipelining (see Section 8.4) or by the fraction of the time
obtained by replacing the total cardinality to be processed (p1.Card) by the number of tuples read
(pli->read) in the formula for total time, divided by the total time (lines 136-139).

As this operator is non-blocking, blocking time and progress are just passed from the predecessor to
the successor (line 136).

8.6.3 Filter

Here is the original code of the filter operator:

int
Filter(Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 bool found = false;
 Word elem, funresult;
 ArgVectorPointer funargs;
 Tuple* tuple = 0;

 switch (message)
 {

 case OPEN:

 qp->Open (args[0].addr);
 return 0;

 case REQUEST:

 funargs = qp->Argument(args[1].addr);
 qp->Request(args[0].addr, elem);
 found = false;
 while (qp->Received(args[0].addr) && !found)
 {
 tuple = (Tuple*)elem.addr;
 (*funargs)[0] = elem;
 qp->Request(args[1].addr, funresult);
 if (((StandardAttribute*)funresult.addr)->IsDefined())
 {
 found = ((CcBool*)funresult.addr)->GetBoolval();
 }
 if (!found)
 {
 tuple->DeleteIfAllowed();
 qp->Request(args[0].addr, elem);
 }
 }

– 111 –

 if (found)
 {
 result.setAddr(tuple);
 return YIELD;
 }
 else
 return CANCEL;

 case CLOSE:

 qp->Close(args[0].addr);
 return 0;
 }
 return 0;
}

Again, we discuss the changes needed to support progress estimation.

1 struct FilterLocalInfo
2 {
3 int current; //tuples read
4 int returned; //tuples returned
5 bool done; //arg stream exhausted
6 };
7

A simple local data structure is defined.

8 int
9 Filter(Word* args, Word& result, int message,
10 Word& local, Supplier s)
11 {
12 bool found = false;
13 Word elem, funresult;
14 ArgVectorPointer funargs;
15 Tuple* tuple = 0;
16 FilterLocalInfo* fli;
17
18 switch (message)
19 {
20 case OPEN:
21
22 fli = (FilterLocalInfo*) local.addr;
23 if (fli) delete fli;
24
25 fli = new FilterLocalInfo;
26 fli->current = 0;
27 fli->returned = 0;
28 fli->done = false;
29 local.setAddr(fli);
30
31 qp->Open (args[0].addr);
32 return 0;
33

The local data structure is (re)allocated and initialized.

– 112 –

34 case REQUEST:
35
36 fli = (FilterLocalInfo*) local.addr;
37
38 funargs = qp->Argument(args[1].addr);
39 qp->Request(args[0].addr, elem);
40 found = false;
41 while (qp->Received(args[0].addr) && !found)
42 {
43 fli->current++;
44 tuple = (Tuple*)elem.addr;
45 (*funargs)[0] = elem;
46 qp->Request(args[1].addr, funresult);
47 if (((StandardAttribute*)funresult.addr)->IsDefined())
48 {
49 found = ((CcBool*)funresult.addr)->GetBoolval();
50 }
51 if (!found)
52 {
53 tuple->DeleteIfAllowed();
54 qp->Request(args[0].addr, elem);
55 }
56 }
57 if (found)
58 {
59 fli->returned++;
60 result.setAddr(tuple);
61 return YIELD;
62 }
63 else
64 {
65 fli->done = true;
66 return CANCEL;
67 }
68

The code of the REQUEST branch is extended to count the numbers of tuples read and returned (lines
43 and 59) and to note when the input stream is exhausted (line 65).

69 case CLOSE:
70 qp->Close(args[0].addr);
71 return 0;
72
73 case CLOSEPROGRESS:
74 fli = (FilterLocalInfo*) local.addr;
75 if (fli)
76 {
77 delete fli;
78 local.setAddr(0);
79 }
80 return 0;
81

Deallocation is not done in CLOSE but in CLOSEPROGRESS (and in OPEN, line 23).

– 113 –

82 case REQUESTPROGRESS:
83
84 ProgressInfo p1;
85 ProgressInfo* pRes;
86 const double uFilter = 0.01;
87
88 pRes = (ProgressInfo*) result.addr;
89 fli = (FilterLocalInfo*) local.addr;
90
91 if (qp->RequestProgress(args[0].addr, &p1))
92 {
93 pRes->CopySizes(p1);
94
95 if (fli) //filter was started
96 {
97 if (fli->done) //arg stream exhausted, all known
98 {
99 pRes->Card = (double) fli->returned;
100 pRes->Time = p1.Time + (double) fli->current
101 * qp->GetPredCost(s) * uFilter;
102 pRes->Progress = 1.0;
103 pRes->CopyBlocking(p1);
104 return YIELD;
105 }
106
107 if (fli->returned >= enoughSuccessesSelection)
108 //stable state assumed now
109 {
110 pRes->Card = p1.Card *
111 ((double) fli->returned / (double) (fli->current));
112 pRes->Time = p1.Time + p1.Card * qp->GetPredCost(s) * uFilter;
113
114 if (p1.BTime < 0.1 && pipelinedProgress) //non-blocking,
115 //use pipelining
116 pRes->Progress = p1.Progress;
117 else
118 pRes->Progress = (p1.Progress * p1.Time
119 + fli->current * qp->GetPredCost(s) * uFilter) / pRes->Time;
120
121 pRes->CopyBlocking(p1);
122 return YIELD;
123 }
124 }
125 //filter not yet started or not enough seen
126
127 pRes->Card = p1.Card * qp->GetSelectivity(s);
128 pRes->Time = p1.Time + p1.Card * qp->GetPredCost(s) * uFilter;
129
130 if (p1.BTime < 0.1 && pipelinedProgress) //non-blocking,
131 //use pipelining
132 pRes->Progress = p1.Progress;
133 else
134 pRes->Progress = (p1.Progress * p1.Time) / pRes->Time;
135 pRes->CopyBlocking(p1);
136 return YIELD;
137 }

– 114 –

138 else return CANCEL;
139 }
140 return 0;
141 }

Lines 82-92 have no surprises. The filter operator does not change the tuple structure, hence it just
copies sizes from the predecessor (line 93).

Lines 95-124 treat the case that the filter operator has executed its OPEN method and the local data
structure fli exists.

Within this case, lines 97-105 handle the case that filter has also finished its work, i.e. the input
stream is exhausted. In this case, the result cardinality is just the number of tuples returned. The total
time needed for the subtree is the time needed for the predecessor subtree plus the contribution of the
filter operator itself. This operator needs time proportional to the number of tuples read. For each
tuple, the cost is the cost of predicate evaluation obtained from the optimizer times a constant uFil-
ter. (If the query did no come from the optimizer, a default cost for predicate evaluation is stored in
the operator tree.) Since in this case we are done, progress is 1.0. The filter operator does not have
blocking time, hence it just copies blocking quantities from the predecessor.

Lines 107-123 handle the case that the operator is in warm state. The result cardinality is the fraction
of returned vs. read tuples. Result time, progress, and blocking information are computed in the
obvious way.

Lines 125-137 treat the case that either the OPEN method of filter was not yet executed (hence the fli
data structure is not available) or the operator is not yet in warm state. In this case, selectivity is
obtained from the query tree, which may be either an optimizer estimate or a default. Progress is
determined by the progress of the predecessor as this operator has not yet processed any tuples.

8.7 Registering Progress Operators

Once progress estimation has been implemented for an operator, one needs to register this operator
as supporting progress by calling a method EnableProgress(). For example at the end of the file
RelationAlgebra.cpp, the operator project is registered by

relalgproject.EnableProgress();

8.8 Testing Progress Implementations

There are two main techniques to test whether operator implementations determine and propagate
progress quantities in the correct way. The first is to switch on a trace mode in the query processor.
The second is to look at the protocol files written during query processing.

– 115 –

8.8.1 Tracing

To switch on tracing, one has to modify a line in the file QueryProcessor/QueryProcessor.cpp. In
the method RequestProgress one needs to modify the line

bool trace = false; //set to true for tracing

setting variable trace to true. Obviously one then also needs to recompile SECONDO.

As a result, for every RequestProgress message that is sent from operator x to one of its predeces-
sors y, one can see the resulting quantities delivered by y. Here is an example.

Secondo => query plz feed filter[.Ort contains "x"] Orte feed {o} hash-
join[Ort, Ort_o, 99997] count
Secondo ->
RequestProgress called with Supplier = 0xbb3f870 ProgressInfo* = 0x22e490
RequestProgress called with Supplier = 0xbb3f9a8 ProgressInfo* = 0x22e2b0
RequestProgress called with Supplier = 0xbb3fae0 ProgressInfo* = 0x22e0c0
RequestProgress called with Supplier = 0xbb3fc18 ProgressInfo* = 0x22dd90
Return from supplier 0xbb3fc18
Cardinality = 41267
Size = 20
SizeExt = 20
noAttrs = 2
attrSize[i] = 5 15
attrSizeExt[i] = 5 15
sizesChanged = 1
BlockingTime = 0.001
BlockingProgress = 1
Time = 96.243
Progress = 0.0836726
=================
Return from supplier 0xbb3fae0
Cardinality = 4126.7
Size = 20
SizeExt = 20
noAttrs = 2
attrSize[i] = 5 15
attrSizeExt[i] = 5 15
sizesChanged = 1
BlockingTime = 0.001
BlockingProgress = 1
Time = 137.51
Progress = 0.0836726
=================
RequestProgress called with Supplier = 0xb80b960 ProgressInfo* = 0x22e070
RequestProgress called with Supplier = 0xb80ba98 ProgressInfo* = 0x22ddb0
Return from supplier 0xb80ba98
Cardinality = 506
Size = 42
SizeExt = 42
noAttrs = 4
attrSize[i] = 8 18 11 5
attrSizeExt[i] = 8 18 11 5
sizesChanged = 1
BlockingTime = 0.001

– 116 –

BlockingProgress = 1
Time = 1.40298
Progress = 0.998028
=================
Return from supplier 0xb80b960
Cardinality = 506
Size = 42
SizeExt = 42
noAttrs = 4
attrSize[i] = 8 18 11 5
attrSizeExt[i] = 8 18 11 5
sizesChanged = 1
BlockingTime = 0.001
BlockingProgress = 1
Time = 1.40298
Progress = 0.998028
=================
Return from supplier 0xbb3f9a8
Cardinality = 506
Size = 62
SizeExt = 62
noAttrs = 6
attrSize[i] = 5 15 8 18 11 5
attrSizeExt[i] = 5 15 8 18 11 5
sizesChanged = 1
BlockingTime = 4.79418
BlockingProgress = 1
Time = 238.482
Progress = 0.0699726
=================
Return from supplier 0xbb3f870
Cardinality = 506
Size = 62
SizeExt = 62
noAttrs = 6
attrSize[i] = 5 15 8 18 11 5
attrSizeExt[i] = 5 15 8 18 11 5
sizesChanged = 1
BlockingTime = 4.79418
BlockingProgress = 1
Time = 238.482
Progress = 0.0699726
=================
...

In the listing one can see the calls to operator nodes (identified by supplier addresses) and the
responses. The root of the tree is supplier 0xbb3f870 and the reply from it is returned as the last one
(in this round). The order in which operator nodes reply corresponds to a postorder traversal of the
operator tree. Hence the first set of answers is from the feed operator applied to plz, the next from
filter. After that, the hashjoin operator sends a request to its second argument; then replies come
from feed on Orte, then from rename, hashjoin, and count.

– 117 –

8.8.2 Looking at Protocol Files

During the execution of a query, for each progress query executed, a line is written to a protocol file
containing the following fields:

• CurrentTime - the system time passed since the start of this query, in milliseconds
• Card - the estimated cardinality
• Time - the estimated total time for the query
• Progress - the estimated progress in percent

The protocol file is called proglogt.csv and it is located in the secondo/bin directory. New proto-
col lines are always appended; to reinitialize one can simply delete the file.

To study the behaviour of progress estimation, one can load this file into an EXCEL sheet and create
xy-diagrams for the listed quantities. For example, for the query

let plz10 = plz feed ten feed product extend[Key: randint(9997)] sortby[Key
asc] remove[Key] consume

which creates a larger version of plz in randomized order, the protocol file starts

109;412670;22478; 0,86;
219;412670;22478; 1,87;
328;412670;22478; 2,91;
437;412670;22478; 3,97;
547;412670;22478; 4,99;
656;412670;22478; 6,05;
766;412670;22478; 7,12;
875;412670;22478; 8,20;
984;412670;22478; 9,14;
1094;412670;22478; 10,22;
...

One can see that there is roughly one progress query every 100 milliseconds. From the protocol one
can create e.g. the Progress diagram shown below. Diagrams for Card and Time are not interesting as
these numbers do not change in this query.

let plz10 = plz feed ten feed product extend[Key:
randint(9997)] sortby[Key asc] remove[Key] consume

0

20

40

60

80

100

120

0 5000 10000 15000 20000

– 118 –

8.9 Implementation Techniques for Blocking Operators

As a final issue we consider the implementation of blocking operators. For example, sortby first con-
sumes its entire argument stream before it returns any tuples.

Without progress estimation, a natural implementation strategy for such operators is to consume the
entire argument stream within the OPEN branch, organizing tuples within some data or file structure.
Later, for each REQUEST message, one tuple is returned.

However, with progress estimation this strategy does not work well. The reason is that in the OPEN
branches data structures for all operators are set up, including the structures needed for progress esti-
mation. If one operator spends a lot of time in its OPEN branch as with the strategy above, progress
estimation will only start to report results once that operator has finished its blocking phase.

Therefore it is mandatory that in the OPEN branch of any operator only a small, constant amount of
work is done. For a blocking operator this means that consuming the input stream(s) must be moved
into the REQUEST branch. One can do that on the first REQUEST message, remembering in a local vari-
able whether this is the first REQUEST.

A related problem is how one can convert an implementation of a blocking operator to support
progress estimation if this operator does a lot of work within the constructor of its local data struc-
ture. For example, the sortby operator in its standard implementation defines a class SortByLo-
calInfo and constructs an instance of that class within its OPEN branch:

SortByLocalInfo* li = new SortByLocalInfo(args[0], lexicographically,
 tupleCmp);

We can move this statement into the REQUEST branch to execute with the first call as discussed. How-
ever, then we need a second data structure to hold progress information, to be initialized within the
OPEN branch. Furthermore, within the constructor of SortByLocalInfo one needs to maintain
counters and therefore to access the other data structure containing the progress fields.

A solution for this problem is provided within the file Progress.h (in secondo/include) in the
form of two classes LocalInfo and ProgressWrapper.

template<class T>
class LocalInfo : public ProgressLocalInfo {

 public:
 LocalInfo() : ProgressLocalInfo(), ptr(0) {}
 ~LocalInfo() { if (ptr) delete ptr; }

 inline void deletePtr() { if (ptr) {delete ptr; ptr = 0; } }

 T* ptr;
};

The class LocalInfo provides the ProgressLocalInfo structure (Section 8.5.2) together with a
pointer to an instance of the argument class T. As an argument class one uses the existing local data
structure. Now in the OPEN branch this structure can be created:

– 119 –

li = new LocalInfo<SortByLocalInfo>;

Class LocalInfo has the fields of a ProgressLocalInfo and can be used from now on. This state-
ment terminates quickly. However, the time consuming construction of SortByLocalInfo has been
postponed. It can later be done in the first REQUEST.

In addition, within class SortByLocalInfo one needs access to li. To enable this, class SortByLo-
calInfo is declared to be a subclass of a class ProgressWrapper:

class SortByLocalInfo : protected ProgressWrapper {...}

with

class ProgressWrapper {

public:
 ProgressWrapper(ProgressLocalInfo* p) : progress(p) {}
 ~ProgressWrapper(){}

protected:
// the pointer address can only be assigned once, but

 // the object pointed to may be modified.
 ProgressLocalInfo* const progress;
};

This just adds a pointer to a ProgressLocalInfo to the existing SortByLocalInfo structure. Within
the REQUEST branch, on the first REQUEST, one can then call the time consuming constructor for
SortByLocalInfo, passing to it the pointer to the LocalInfo structure (here li):

li->ptr = new SortByLocalInfo(args[0], lexicographically, tupleCmp, li);

See the implementation of sortby in the file Algebras/ExtRelation-C++/ExtRelAlgPersis-
tent.cpp as an example.

– 120 –

– 121 –

References

[Alm03] V. T. de Almeida, Object State Diagram in the Secondo System. Fernuniversität Hagen, Praktische Infor-
matik IV, Secondo System, Directory “Documents”, file “ObjectStateDiagram.pdf”, Sept. 2003.

[BF93] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies. Chapter 5.2: Base64 Content-Transfer-
Encoding. Also known as RFC 1521, published Online, e.g. http://www.freesoft.org/CIE/RFC/1521/
index.htm. September 1993.

[BTree02] Algebra ModuleBTreeAlgebra. Fernuniversität Hagen, Praktische Informatik IV, Secondo System, Direc-
tory “Algebras/BTree”, file “BTreeAlgebra.cpp”, since Dec. 2002.

[Date04] Algebra Module DateTimeAlgebra. Fernuniversität Hagen, Praktische Informatik IV, Secondo System,
Directory “Algebras/DateTime”, file “DateAlgebra.cpp”, since April 2004.

[DG98] S. Dieker and R.H. Güting, Efficient Handling of Tuples with Embedded Large Objects. Data & Knowl-
edge Engineering 32 (2000), 247-269.

[GBA+04] Güting, R.H., T. Behr, V.T. de Almeida, Z. Ding, F. Hoffmann, and M. Spiekermann, SECONDO: An
Extensible DBMS Architecture and Prototype. Fernuniversität Hagen, Informatik-Report 313, 2004.

[GFB+97] R.H. Güting, C. Freundorfer, L. Becker, S. Dieker, H. Schenk: Secondo/QP: Implementation of a Generic
Query Processor. 10th Int. Conf. on Database and Expert System Applications (DEXA'99), LNCS 1677,
Springer Verlag, 66-87, 1999.

[Güt02] R.H. Güting, A Query Optimizer for Secondo. Description and PROLOG Source Code. Fernuniversität
Hagen, Praktische Informatik IV, Secondo System, Directory “Optimizer”, file “optimizer”, from 2002 on.

[Güt95] R.H. Güting, Integrating Programs and Documentation. Informatik Berichte 182 - 5 / 1995.
[Poly02] Algebra Module PolygonAlgebra. Fernuniversität Hagen, Praktische Informatik IV, Secondo System,

Directory “Algebras/Polygon”, file “PolygonAlgebra.cpp”, since Sept. 2002.
[Doc08] Space Minimizing Storage of Variable Sized Attribute Data in SECONDO. Directory Secondo/Documents

file StoringTuples.pdf. Since 2008.
[F04] File include/Attribute.h. Comments for function Compare. Since 2004.

– 122 –

A The Source for the InquiryViewer

package viewer;

import javax.swing.*;
import javax.swing.text.*;
import java.util.Vector;
import java.awt.*;
import java.awt.event.*;
import gui.SecondoObject;
import sj.lang.*;
import tools.Reporter;

public class InquiryViewer extends SecondoViewer{

// define supported subtypes
private static final String DATABASES = "databases";
private static final String CONSTRUCTORS="constructors";
private static final String OPERATORS = "operators";
private static final String ALGEBRAS = "algebras";
private static final String ALGEBRA = "algebra";
private static final String TYPES = "types";
private static final String OBJECTS ="objects";

private JScrollPane ScrollPane = new JScrollPane();
private JEditorPane HTMLArea = new JEditorPane();
private JComboBox ComboBox = new JComboBox();
private Vector ObjectTexts = new Vector(10,5);

 private Vector SecondoObjects = new Vector(10,5);
private SecondoObject CurrentObject=null;

private String HeaderColor = "silver";
private String CellColor ="white";
private MenuVector MV = new MenuVector();
private JTextField SearchField = new JTextField(20);
private JButton SearchButton = new JButton("Search");
private int LastSearchPos = 0;
private JCheckBox CaseSensitive = new JCheckBox("Case Sensitive");

/** create a new InquiryViewer **/
public InquiryViewer(){

setLayout(new BorderLayout());
add(BorderLayout.NORTH,ComboBox);
add(BorderLayout.CENTER,ScrollPane);
HTMLArea.setContentType("text/html");
HTMLArea.setEditable(false);
ScrollPane.setViewportView(HTMLArea);

JPanel BottomPanel = new JPanel();
BottomPanel.add(CaseSensitive);
BottomPanel.add(SearchField);
BottomPanel.add(SearchButton);
add(BottomPanel,BorderLayout.SOUTH);
CaseSensitive.setSelected(true);

– 123 –

ComboBox.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent evt){

showObject();
}});

SearchField.addKeyListener(new KeyAdapter(){
public void keyPressed(KeyEvent evt){

 if(evt.getKeyCode() == KeyEvent.VK_ENTER)
searchText();

}});

SearchButton.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent evt){

searchText();
}});

JMenu SettingsMenu = new JMenu("Settings");
JMenu HeaderColorMenu = new JMenu("header color");
JMenu CellColorMenu = new JMenu("cell color");
SettingsMenu.add(HeaderColorMenu);
SettingsMenu.add(CellColorMenu);

ActionListener HeaderColorChanger = new ActionListener(){
public void actionPerformed(ActionEvent evt){

JMenuItem S = (JMenuItem) evt.getSource();
HeaderColor = S.getText().trim();
reformat();

}
};
ActionListener CellColorChanger = new ActionListener(){

public void actionPerformed(ActionEvent evt){
JMenuItem S = (JMenuItem) evt.getSource();
CellColor = S.getText().trim();
reformat();

}
};

HeaderColorMenu.add("white").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("silver").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("gray").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("aqua").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("blue").addActionListener(HeaderColorChanger);
HeaderColorMenu.add("black").addActionListener(HeaderColorChanger);
CellColorMenu.add("white").addActionListener(CellColorChanger);
CellColorMenu.add("yellow").addActionListener(CellColorChanger);
CellColorMenu.add("aqua").addActionListener(CellColorChanger);
CellColorMenu.add("lime").addActionListener(CellColorChanger);
CellColorMenu.add("silver").addActionListener(CellColorChanger);

MV.addMenu(SettingsMenu);
}

/** returns the html formatted string representation for an atomic list */
private String getStringValue(ListExpr atom){

int at = atom.atomType();

– 124 –

String res = "";
switch(at){

case ListExpr.NO_ATOM : return "";
case ListExpr.INT_ATOM : return ""+atom.intValue();
case ListExpr.BOOL_ATOM : return atom.boolValue()?"TRUE":"FALSE";
case ListExpr.REAL_ATOM : return ""+atom.realValue();
case ListExpr.STRING_ATOM: res = atom.stringValue();break;
case ListExpr.TEXT_ATOM: res = atom.textValue();break;
case ListExpr.SYMBOL_ATOM: res = atom.symbolValue();break;
default : return "";

}

res = replaceAll("&",res,"&");
res = replaceAll("<",res,"<");
res = replaceAll(">",res,">");
return res;

}

/** replaces all occurences of what by ByWhat within where*/
private static String replaceAll(String what, String where,

String ByWhat){
StringBuffer res = new StringBuffer();
int lastpos = 0;
int len = what.length();
int index = where.indexOf(what,lastpos);
while(index>=0){

if(index>0)
res.append(where.substring(lastpos,index));

res.append(ByWhat);
lastpos = index+len;
index = where.indexOf(what,lastpos);

}
res.append(where.substring(lastpos));
return res.toString();

}

/** searchs the text in the textfield in the document and
* marks its if found
*/

private void searchText(){
String Text = SearchField.getText();
if(Text.length()==0){

Reporter.showInfo("no text to search");
return;

}
try{

Document Doc = HTMLArea.getDocument();
String DocText = Doc.getText(0,Doc.getLength());
if(!CaseSensitive.isSelected()){

DocText = DocText.toUpperCase();
Text = Text.toUpperCase();

}
int pos = DocText.indexOf(Text,LastSearchPos);
if(pos<0){

Reporter.showInfo("end of text is reached");

– 125 –

LastSearchPos=0;
return;

}
pos = pos;
int i1 = pos;
int i2 = pos+Text.length();
LastSearchPos = pos+1;
HTMLArea.setCaretPosition(i1);
HTMLArea.moveCaretPosition(i2);
HTMLArea.getCaret().setSelectionVisible(true);

} catch(Exception e){
Reporter.debug(e);
Reporter.showError("error in searching text");

}
}

/** returns the html string for a single entry for
* type constructors or operators
*/

private String formatEntry(ListExpr LE){
if(LE.listLength()!=3){

Reporter.writeError("InquiryViewer : error in list"+
"(listLength() # 3");

return "";
}
ListExpr Name = LE.first();
ListExpr Properties = LE.second();
ListExpr Values = LE.third();
if(Properties.listLength()!= Values.listLength()){

Reporter.writeWarning("InquiryViewer : Warning: lists "+
"have different lengths ("+Name.symbolValue()+")");

}

String res =" <tr><td class=\"opname\" colspan=\"2\">" +
Name.symbolValue() + "</td></tr>\n";
while(!Properties.isEmpty() & ! Values.isEmpty()){

res = res + " <tr><td class=\"prop\">" +
getStringValue(Properties.first())+"</td>" +
"<td class=\"value\">" +
getStringValue(Values.first())+"</td></tr>\n";

Properties = Properties.rest();
Values = Values.rest();

}

// handle non empty lists
// if the lists are correct this never should occur
while(!Properties.isEmpty()){

res = res + " <tr><td class=\"prop\">" +
getStringValue(Properties.first())+"</td>" +
"<td> </td></tr>\n";

Properties = Properties.rest();
}
while(!Values.isEmpty()){

res = res + " <tr><td> </td>" +
"<td class=\"value\">" +
getStringValue(Values.first())+"</td></tr>\n";

– 126 –

Values = Values.rest();
}

return res;
}

/** create the html head for text representation
* including the used style sheet
*/

private String getHTMLHead(){
StringBuffer res = new StringBuffer();
res.append("<html>\n");
res.append("<head>\n");
res.append("<title> inquiry viewer </title>\n");
res.append("<style type=\"text/css\">\n");
res.append("<!--\n");
res.append("td.opname { background-color:"+HeaderColor+

 "; font-family:monospace;"+
"font-weight:bold; "+
"color:green; font-size:x-large;}\n");

res.append("td.prop {background-color:"+CellColor+
"; font-family:monospace; font-weight:bold; color:blue}\n");

res.append("td.value {background-color:"+CellColor+
"; font-family:monospace; color:black;}\n");

res.append("-->\n");
res.append("</style>\n");
res.append("</head>\n");
return res.toString();

}

/** get the html formatted html Code for type contructors
*/

private String getHTMLCode_Constructors(ListExpr ValueList){
StringBuffer res = new StringBuffer();
if(ValueList.isEmpty())

return "no type constructors are defined
";
res.append("<table border=\"2\">\n");
while(!ValueList.isEmpty()){

res.append(formatEntry(ValueList.first()));
ValueList = ValueList.rest();

}
res.append("</table>\n");
return res.toString();

}

/** returns the html-code for operators */
private String getHTMLCode_Operators(ListExpr ValueList){

if(ValueList.isEmpty())
return "no operators are defined
";

// the format is the same like for constructors
return getHTMLCode_Constructors(ValueList);

}

– 127 –

/** returns the html for an Algebra List */
private String getHTMLCode_Databases(ListExpr Value){

// the valuelist for algebras is just a list containing
// symbols representing the database names
if(Value.isEmpty())

return "no database exists
";
StringBuffer res = new StringBuffer();
res.append("\n");
while (!Value.isEmpty()){

res.append(" "+Value.first().symbolValue() + " ");
Value = Value.rest();

}
res.append("");
return res.toString();

}

/** returns the html code for objects */
private String getHTMLCode_Objects(ListExpr Value){

ListExpr tmp = Value.rest(); // ignore "SYMBOLS"
if(tmp.isEmpty())

return "no existing objects";
StringBuffer res = new StringBuffer();
res.append("<h2> Objects - short list </h2>\n ");
res.append("\n");
while(!tmp.isEmpty()){

res.append(" "+tmp.first().second().symbolValue()+ " \n");
tmp = tmp.rest();

}
res.append("
<hr>
");
res.append("<h2> Objects - full list </h2>\n");
res.append("<pre>\n"+Value.rest().writeListExprToString() +"</pre>");
return res.toString();

}

/** returns the html code for types */
private String getHTMLCode_Types(ListExpr Value){

ListExpr tmp = Value.rest(); // ignore "TYPES"
if(tmp.isEmpty())

return "no existing type";
StringBuffer res = new StringBuffer();
res.append("<h2> Types - short list </h2>\n ");
res.append("\n");
while(!tmp.isEmpty()){

res.append(" "+tmp.first().second().symbolValue()+ " \n");
tmp = tmp.rest();

}
res.append("
<hr>
");
res.append("<h2> Types - full list </h2>\n");
res.append("<pre>\n"+Value.rest().writeListExprToString() +"</pre>");
return res.toString();

}

/** returns a html formatted list for algebras */
private String getHTMLCode_Algebras(ListExpr Value){

// use the same format like databases
if(Value.isEmpty())

– 128 –

return "no algebra is included
 please check"+
" your Secondo installation
";

return getHTMLCode_Databases(Value);
}

/** returns the formatted html code for a algebra inquiry */
private String getHTMLCode_Algebra(ListExpr Value){

// the format is
// (name ((constructors) (operators)))
// where constructors and operators are formatted like in the
// non algebra version
StringBuffer res = new StringBuffer();
res.append("<h1> Algebra "+Value.first().symbolValue()+" </h1>\n");
res.append("<h2> type constructors of algebra: "+

Value.first().symbolValue()+" </h2>\n");
res.append(getHTMLCode_Constructors(Value.second().first()));
res.append("
\n<h2> operators of algebra: "+

 Value.first().symbolValue()+"</h2>\n");
res.append(getHTMLCode_Operators(Value.second().second()));
return res.toString();

}

/** returns the html code for a given list */
private String getHTMLCode(ListExpr VL){

StringBuffer Text = new StringBuffer();
Text.append(getHTMLHead());
Text.append("<body>\n");
String inquiryType = VL.first().symbolValue();
if (inquiryType.equals(DATABASES)){

Text.append("<h1> Databases </h1>\n");
Text.append(getHTMLCode_Algebras(VL.second()));

} else if(inquiryType.equals(ALGEBRAS)){
Text.append("<h1> Algebras </h1>\n");
Text.append(getHTMLCode_Algebras(VL.second()));

} else if(inquiryType.equals(CONSTRUCTORS)){
Text.append("<h1> Type Constructors </h1>\n");
Text.append(getHTMLCode_Constructors(VL.second()));

} else if(inquiryType.equals(OPERATORS)){
Text.append("<h1> Operators </h1>\n");
Text.append(getHTMLCode_Operators(VL.second()));

} else if(inquiryType.equals(ALGEBRA)){
Text.append(getHTMLCode_Algebra(VL.second()));

} else if(inquiryType.equals(OBJECTS)){
Text.append("<h1> Objects </h1>\n");
Text.append(getHTMLCode_Objects(VL.second()));

} else if(inquiryType.equals(TYPES)){
Text.append("<h1> Types </h1>\n");
Text.append(getHTMLCode_Types(VL.second()));

}
Text.append("\n</body>\n</html>\n");
return Text.toString();

}

/* adds a new Object to this Viewer and display it */

– 129 –

public boolean addObject(SecondoObject o){
if(!canDisplay(o))

return false;
if (isDisplayed(o))

selectObject(o);
else{

ListExpr VL = o.toListExpr().second();
ObjectTexts.add(getHTMLCode(VL));
ComboBox.addItem(o.getName());
SecondoObjects.add(o);
try{

ComboBox.setSelectedIndex(ComboBox.getItemCount()-1);
showObject();

} catch(Exception e){
 Reporter.debug(e);

}
}
return true;

}

/** write all htmls texts with a new format */
private void reformat(){

int index = ComboBox.getSelectedIndex();
ObjectTexts.removeAllElements();
for(int i=0;i<SecondoObjects.size();i++){

SecondoObject o = (SecondoObject) SecondoObjects.get(i);
ListExpr VL = o.toListExpr().second();
String inquiryType = VL.first().symbolValue();
ObjectTexts.add(getHTMLCode(VL));

}
if(index>=0)

ComboBox.setSelectedIndex(index);
}

/* returns true if o already exists in this viewer */
public boolean isDisplayed(SecondoObject o){

return SecondoObjects.indexOf(o)>=0;
}

/** remove o from this Viewer */
public void removeObject(SecondoObject o){

int index = SecondoObjects.indexOf(o);
if(index>=0){

ComboBox.removeItem(o.getName());
SecondoObjects.remove(index);
ObjectTexts.remove(index);

}
}

/** remove all containing objects */
public void removeAll(){

ObjectTexts.removeAllElements();
ComboBox.removeAllItems();
SecondoObjects.removeAllElements();
CurrentObject= null;
if(VC!=null)

– 130 –

VC.removeObject(null);
showObject();

}

/** check if this viewer can display the given object */
public boolean canDisplay(SecondoObject o){

ListExpr LE = o.toListExpr();
if(LE.listLength()!=2)

return false;
if(LE.first().atomType()!=ListExpr.SYMBOL_ATOM ||

!LE.first().symbolValue().equals("inquiry"))
return false;

ListExpr VL = LE.second();
if(VL.listLength()!=2)

return false;
ListExpr SubTypeList = VL.first();
if(SubTypeList.atomType()!=ListExpr.SYMBOL_ATOM)

return false;
String SubType = SubTypeList.symbolValue();
if(SubType.equals(DATABASES) || SubType.equals(CONSTRUCTORS) ||

SubType.equals(OPERATORS) || SubType.equals(ALGEBRA) ||
SubType.equals(ALGEBRAS) || SubType.equals(OBJECTS) ||
SubType.equals(TYPES))

return true;
return false;

}

/** returns the Menuextension of this viewer */
public MenuVector getMenuVector(){

return MV;
}

/** returns InquiryViewer */
public String getName(){

return "InquiryViewer";
}

public double getDisplayQuality(SecondoObject SO){
if(canDisplay(SO))

return 0.9;
else

return 0;
}

/* select O */
public boolean selectObject(SecondoObject O){

int i=SecondoObjects.indexOf(O);
if (i>=0) {

ComboBox.setSelectedIndex(i);
showObject();
return true;

}else //object not found
return false;

}

private void showObject(){

– 131 –

String Text="";
int index = ComboBox.getSelectedIndex();
if (index>=0){

HTMLArea.setText((String)ObjectTexts.get(index));
} else {

// set an empty text
HTMLArea.setText(" <html><head></head><body></body></html>");

}
LastSearchPos = 0;

}
}

– 132 –

B The Source for Dsplmovingpoint

package viewer.hoese.algebras;

import java.awt.geom.*;
import java.awt.*;
import viewer.*;
import viewer.hoese.*;
import sj.lang.ListExpr;
import java.util.*;
import gui.Environment;
import tools.Reporter;

/**
* A displayclass for the movingpoint-type (spatiotemp algebra),
* 2D with TimePanel
*/

public class Dsplmovingpoint extends DisplayTimeGraph
implements LabelAttribute, RenderAttribute {

Point2D.Double point;
Vector PointMaps;
Rectangle2D.Double bounds;
double minValue = Integer.MAX_VALUE;
double maxValue = Integer.MIN_VALUE;
boolean defined;
static java.text.DecimalFormat format =

new java.text.DecimalFormat("#.#####");

public int numberOfShapes(){
return 1;

}

/** Returns a short text usable as label **/
public String getLabel(double time){

if(Intervals==null || PointMaps==null){
return null;

}
int index = IntervalSearch.getTimeIndex(time,Intervals);
if(index<0){

return null;
}
PointMap pm = (PointMap) PointMaps.get(index);
Interval in = (Interval)Intervals.get(index);
double t1 = in.getStart();
double t2 = in.getEnd();
double Delta = (time-t1)/(t2-t1);
double x = pm.x1+Delta*(pm.x2-pm.x1);
double y = pm.y1+Delta*(pm.y2-pm.y1);
return "("+format.format(x)+", "+ format.format(y)+")";

}

/**
* Gets the shape of this instance at the ActualTime
* @param at The actual transformation, used to calculate

– 133 –

* the correct size.
* @return Rectangle or Circle Shape if ActualTime is defined
* otherwise null.
* @see Source
*/

public Shape getRenderObject (int num,AffineTransform at) {
if(num!=0){

return null;
}
if(Intervals==null || PointMaps==null){

return null;
}
if(RefLayer==null){

return null;
}
double t = RefLayer.getActualTime();
int index = IntervalSearch.getTimeIndex(t,Intervals);
if(index<0){

return null;
}

PointMap pm = (PointMap) PointMaps.get(index);
Interval in = (Interval)Intervals.get(index);
double t1 = in.getStart();
double t2 = in.getEnd();
double Delta = (t-t1)/(t2-t1);
double x = pm.x1+Delta*(pm.x2-pm.x1);
double y = pm.y1+Delta*(pm.y2-pm.y1);
point = new Point2D.Double(x, y);
double ps = Cat.getPointSize(renderAttribute,CurrentState.ActualTime);
double pixy = Math.abs(ps/at.getScaleY());
double pix = Math.abs(ps/at.getScaleX());
Shape shp;
if (Cat.getPointasRect())

shp = new Rectangle2D.Double(point.getX()- pix/2,
point.getY() - pixy/2, pix, pixy);

else {
shp = new Ellipse2D.Double(point.getX()- pix/2,

point.getY() - pixy/2, pix, pixy);
}
return shp;

}

/**
* Reads the coefficients out of ListExpr for a map
* @param le ListExpr of four reals.
* @return The PointMap that was read.
* @see Source
*/

private PointMap readPointMap (ListExpr le) {
Double value[] = {null, null, null, null};
if (le.listLength() != 4)

return null;
for (int i = 0; i < 4; i++) {

value[i] = LEUtils.readNumeric(le.first());
if (value[i] == null)

– 134 –

return null;
le = le.rest();

}
double x1, y1;

double v0 = value[0].doubleValue();
double v1 = value[1].doubleValue();
double v2 = value[2].doubleValue();
double v3 = value[3].doubleValue();
if(minValue>v0) minValue=v0;
if(maxValue<v0) maxValue=v0;
if(minValue>v2) minValue=v2;
if(maxValue<v2) maxValue=v2;

if(!ProjectionManager.project(value[0].doubleValue(),
value[1].doubleValue(),aPoint)){

return null;
}
x1 = aPoint.x;
y1 = aPoint.y;
if(!ProjectionManager.project(value[2].doubleValue(),

value[3].doubleValue(),aPoint)){
return null;

}
return new PointMap(x1,y1,aPoint.x,aPoint.y);

}

/**
* Scans the representation of a movingpoint datatype
* @param v A list of start and end intervals with ax,bx,ay,by values
* @see sj.lang.ListExpr
* @see Source
*/

private void ScanValue (ListExpr v) {
err = true;
if (v.isEmpty()){ //empty point

Intervals=null;
PointMaps=null;
err=false;
defined = false;
return;

}
while (!v.isEmpty()) {

ListExpr aunit = v.first();
ListExpr tmp = aunit;
int L = aunit.listLength();
if(L!=2 && L!=8){

Reporter.debug("wrong ListLength in reading moving point unit");
defined = false;
return;

}
// deprecated version of external representation
Interval in=null;
PointMap pm=null;
if (L == 8){

Reporter.writeWarning("Warning: using deprecated external" +

– 135 –

"representation of a moving point !");
in = LEUtils.readInterval(ListExpr.fourElemList(aunit.first(),

aunit.second(), aunit.third(), aunit.fourth()));
aunit = aunit.rest().rest().rest().rest();
pm = readPointMap(ListExpr.fourElemList(aunit.first(),

aunit.second(),aunit.third(), aunit.fourth()));
}
// the corrected version of external representation
if(L==2){

in = LEUtils.readInterval(aunit.first());
pm = readPointMap(aunit.second());

}

if ((in == null) || (pm == null)){
Reporter.debug("Error in reading Unit");
Reporter.debug(tmp.writeListExprToString());
if(in==null){

Reporter.debug("Error in reading interval");
}
if(pm==null){

Reporter.debug("Error in reading Start and EndPoint");
}
defined = false;
return;

}
Intervals.add(in);
PointMaps.add(pm);
v = v.rest();

}
err = false;
defined = true;

}

public boolean isPointType(int num){
return true;

}

public void init (String name, int nameWidth, ListExpr type,
ListExpr value, QueryResult qr) {

AttrName = extendString(name, nameWidth);
int length = value.listLength();
Intervals = new Vector(length+2);
PointMaps = new Vector(length+2);
ScanValue(value);
if (err) {

Reporter.writeError("Dsplmovingpoint Error in ListExpr:" +
"parsing aborted");

qr.addEntry(new String("(" + AttrName + ": GTA(mpoint))"));
return;

}else
qr.addEntry(this);

bounds = null;
TimeBounds = null;
if(Intervals==null) // empty moving point

return;

– 136 –

for (int j = 0; j < Intervals.size(); j++) {
Interval in = (Interval)Intervals.elementAt(j);
PointMap pm = (PointMap)PointMaps.elementAt(j);
Rectangle2D.Double r = new Rectangle2D.Double(pm.x1,pm.y1,0,0);
r = (Rectangle2D.Double)r.createUnion(

new Rectangle2D.Double(pm.x2,pm.y2,0,0));
if (bounds == null) {

bounds = r;
TimeBounds = in;

}else {
bounds = (Rectangle2D.Double)bounds.createUnion(r);
TimeBounds = TimeBounds.union(in);

}
}

}

/**
* @return The overall boundingbox of the movingpoint
* @see Source
*/

public Rectangle2D.Double getBounds () {
return bounds;

}

/** returns the minimum x value **/
public double getMinRenderValue(){

return minValue;
}
/** returns the maximum x value **/
public double getMaxRenderValue(){

return maxValue;
}
/** returns the current x value **/
public double getRenderValue(double time){

if(Intervals==null || PointMaps==null){
return 0;

}
int index = IntervalSearch.getTimeIndex(time,Intervals);
if(index<0){

return 0;
}
PointMap pm = (PointMap) PointMaps.get(index);
Interval in = (Interval)Intervals.get(index);
double t1 = in.getStart();
double t2 = in.getEnd();
double Delta = (time-t1)/(t2-t1);
double x = pm.x1+Delta*(pm.x2-pm.x1);
return x;

}

public boolean mayBeDefined(){
return defined;

}

public boolean isDefined(double time){
if(!defined){

– 137 –

return false;
}
int index = IntervalSearch.getTimeIndex(time,Intervals);
return index>=0;

}

class PointMap {
double x1,x2,y1,y2;

public PointMap (double x1, double y1, double x2, double y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

}

public String toString(){
return ("[x1,y1 | x2,y2] = ["+x1+","+y1+" <> "+x2+","+y2+"]");

}
}

}

– 138 –

C The Source for Algebra Module PointRectangle

/*
1 Preliminaries
1.1 Includes
*/

#include "Algebra.h"
#include "NestedList.h"
#include "NList.h"
#include "LogMsg.h"
#include "QueryProcessor.h"
#include "ConstructorTemplates.h"
#include "StandardTypes.h"

/*
The file "Algebra.h" is included, since the new algebra must be a subclass
of class Algebra. All of the data available in Secondo has a nested list rep-
resentation. Therefore, conversion functions have to be written for this
algebra, too, and "NestedList.h" is needed for this purpose. The result of
an operation is passed directly to the query processor. An instance of "Que-
ryProcessor" serves for this. Secondo provides some standard data types,
e.g. "CcInt", "CcReal", "CcString", "CcBool", which is needed as the result
type of the implemented operations. To use them "StandardTypes.h" needs to
be included.
*/

extern NestedList* nl;
extern QueryProcessor *qp;

/*
The variables above define some global references to unique system-wide
instances of the query processor and the nested list storage.

1.2 Auxiliaries

Within this algebra module implementation, we have to handle values of four
different types defined in namespace ~symbols~: ~INT~ and ~REAL~, ~BOOL~ and
~STRING~. They are constant values of the C++-string class.

Moreover, for type mappings some auxiliary helper functions are defined in
the file "TypeMapUtils.h" which defines a namespace ~mappings~.
*/

#include "TypeMapUtils.h"
#include "Symbols.h"

using namespace symbols;
using namespace mappings;

#include <string>
using namespace std;

/*
The implementation of the algebra is embedded into a namespace ~prt~ in
order to avoid name conflicts with other modules.*/

– 139 –

namespace prt {

/*
2 Type Constructor ~xpoint~

In this section we describe what is needed to implement the Secondo type
~xpoint~. Here the more traditional programming interfaces are shown. Some
more recent alternatives are presented in the next section.

2.1 Data Structure - Class ~XPoint~
*/

class XPoint
{
 public:
/*
Constructors and destructor:

*/
 XPoint(int x, int y);
 XPoint(const XPoint& rhs);
 ~XPoint();

 int GetX() const;
 int GetY() const;
 void SetX(int x);
 void SetY(int y);

 XPoint* Clone();

/*
Below the mandatory set of algebra support functions is declared. Note that
these functions need to be static member functions of the class. Their
implementations do nothing which depends on the state of an instance.
*/
 static Word In(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo,
 bool& correct);

 static ListExpr Out(ListExpr typeInfo, Word value);

 static Word Create(const ListExpr typeInfo);

 static void Delete(const ListExpr typeInfo, Word& w);

 static void Close(const ListExpr typeInfo, Word& w);

 static Word Clone(const ListExpr typeInfo, const Word& w);

 static bool KindCheck(ListExpr type, ListExpr& errorInfo);

 static int SizeOfObj();

 static ListExpr Property();

 private:

– 140 –

 inline XPoint() {}
/*
Warning: Never do initializations in the default constructor! It will be
used in a special way in the cast function which is needed for making a class
persistent when acting as an attribute in a tuple. In order to guarantee
this, we make this constructor private. One always needs to provide at least
a second constructor, here "XPoint(int x, int y)" in order to construct an
instance.

Moreover, avoid declarations like "XPoint p1;" since these will create an
uninitialized class instance. Instead you should use only properly initial-
ized variables like "XPoint(0,0) p1;"
*/

 int x;
 int y;

};

/*
We recommend to separate class declarations from their implementations. This
makes life easier if you want to use the type provided in one algebra in
another algebra. Only for the sake of a compact presentation, we did not
move the declarations to special header files in this example algebra.
*/

XPoint::XPoint(int X, int Y) : x(X), y(Y) {}

XPoint::XPoint(const XPoint& rhs) : x(rhs.x), y(rhs.y) {}

XPoint::~XPoint() {}

int XPoint::GetX() const { return x; }
int XPoint::GetY() const { return y; }

void XPoint::SetX(int X) { x = X; }
void XPoint::SetY(int Y) { y = Y; }

/*
2.2 List Representation

The list representation of an xpoint is

(x y)

2.3 ~In~ and ~Out~ Functions

The ~In~-function gets a nested list representation of an ~xpoint~ value
passed in the variable "instance". It is represented by the C++ type "Lis-
tExpr". Moreover, there is a global pointer variable "nl" which points to
the (single) instance of class ~NestedList~. This class provides a set of
functions which can investigate and manipulate nested lists. For details
refer to the file "NestedList.h".

The parameter "errorInfo" can be used to return specific error information
if the retrieved list is not correct. In the latter case, the boolean param-

– 141 –

eter "correct" needs to be set to false.

The return value of the function is of type ~Word~ which can simply be
regarded as a pointer. The query processor operates with this type-less
abstraction for objects. If all integrity checks are correct we will return
a pointer to a new instance of class ~XPoint~.
*/

Word
XPoint::In(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo, bool& correct)
{
 Word w = SetWord(Address(0));
 if (nl->ListLength(instance) == 2)
 {
 ListExpr First = nl->First(instance);
 ListExpr Second = nl->Second(instance);

 if (nl->IsAtom(First) && nl->AtomType(First) == IntType
 && nl->IsAtom(Second) && nl->AtomType(Second) == IntType)
 {
 correct = true;
 w.addr = new XPoint(nl->IntValue(First), nl->IntValue(Second));
 return w;
 }
 }
 correct = false;
 cmsg.inFunError("Expecting a list of two integer atoms!");
 return w;
}

/*
The ~Out~-function will get a pointer to an ~XPoint~ representation. Before
we can use a member function of class ~XPoint~, we need to do a type cast in
order to tell the compiler about the object's type.

Note: At this point we can be sure that it is a pointer to type ~XPoint~,
hence it is safe to do it. But in general, type casts can be a source for
~strange~ errors, e.g. segmentation faults, if you cast to a type which is
not compatible to the object that the pointer belongs to.
*/

ListExpr
XPoint::Out(ListExpr typeInfo, Word value)
{
 XPoint* point = static_cast<XPoint*>(value.addr);

return nl->TwoElemList(nl->IntAtom(point->GetX()),
 nl->IntAtom(point->GetY()));
}

/*
2.4 Support Functions for Persistent Sorage
*/

Word
XPoint::Create(const ListExpr typeInfo)

– 142 –

{
 return (SetWord(new XPoint(0, 0)));
}

void
XPoint::Delete(const ListExpr typeInfo, Word& w)
{
 delete static_cast<XPoint*>(w.addr);
 w.addr = 0;
}

void
XPoint::Close(const ListExpr typeInfo, Word& w)
{
 delete static_cast<XPoint*>(w.addr);
 w.addr = 0;
}

Word
XPoint::Clone(const ListExpr typeInfo, const Word& w)
{
 XPoint* p = static_cast<XPoint*>(w.addr);
 return SetWord(new XPoint(*p));
}
/*
Here, a clone simply calls the copy constructor, but for other types, which
may have also a disk part, some code for copying the disk parts would be
needed also. Often this is implemented in a special member function
"Clone()".
*/

int
XPoint::SizeOfObj()
{
 return sizeof(XPoint);
}

/*
2.4 Type Description

At the user interface, the command ~list type constructors~ lists all type
constructors of all currently linked algebra modules. The information listed
is generated by the algebra module itself, to be more precise it is gener-
ated by the ~property~-functions.

Generally, a property list consists of two sublists providing labels and
contents. Currently a structure like the one below has been established to
be the standard.
*/

ListExpr
XPoint::Property()
{

 return (nl->TwoElemList(
 nl->FiveElemList(nl->StringAtom("Signature"),

– 143 –

 nl->StringAtom("Example Type List"),
 nl->StringAtom("List Rep"),
 nl->StringAtom("Example List"),
 nl->StringAtom("Remarks")),
 nl->FiveElemList(nl->StringAtom("-> DATA"),
 nl->StringAtom("xpoint"),
 nl->StringAtom("(<x> <y>)"),
 nl->StringAtom("(-3 15)"),
 nl->StringAtom("x- and y-coordinates must be "
 "of type int."))));
}

/*
This is an older technique for creating property lists. A more recent tech-
nique is shown below for type ~XRectangle~.

2.5 Kind Checking Function

This function checks whether the type constructor is applied correctly.
Since type constructor ~xpoint~ does not have arguments, this is trivial.
*/

bool
XPoint::KindCheck(ListExpr type, ListExpr& errorInfo)
{
 return (nl->IsEqual(type, XPOINT));
}

/*
2.6 Creation of the Type Constructor Instance

*/
TypeConstructor xpointTC(
 XPOINT, // name of the type in SECONDO
 XPoint::Property, // property function describing signature
 XPoint::Out, XPoint::In, // Out and In functions
 0, 0, // SaveToList, RestoreFromList functions
 XPoint::Create, XPoint::Delete, // object creation and deletion
 0, 0, // object open, save
 XPoint::Close, XPoint::Clone, // close, and clone
 0, // cast function
 XPoint::SizeOfObj, // sizeof function
 XPoint::KindCheck); // kind checking function

/*
3 Type Constructor ~xrectangle~

To define the Secondo type ~xrectangle~, we need to (i) define a data struc-
ture, that is a class, to (ii) decide about a nested list representation,
and (iii) write conversion functions from and to nested list representation.
The function for converting from the list representation is the most
involved one, since it has to check that the given list structure is
entirely correct.
After we have described the traditional programming interface in the previ-
ous section, here in some places we use more recent alternative programming
interfaces for implementing a type.

– 144 –

3.1 Data Structure - Class ~XRectangle~
*/

class XRectangle
{
 public:
 XRectangle(int XLeft, int XRight, int YBottom, int YTop);
 XRectangle(const XRectangle& rhs);
 ~XRectangle() {}

 int GetXLeft() const;
 int GetXRight() const;
 int GetYBottom() const;
 int GetYTop() const;

 bool intersects(const XRectangle& r) const;

/*
Here we will only implement the following three support functions, since the
others have default implementations which can be generated at compile time
using C++ template functionality.
*/
 static Word In(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo, bool& correct
);

 static ListExpr Out(ListExpr typeInfo, Word value);

 static Word Create(const ListExpr typeInfo);

/*
In contrast to the example above, we will implement specific ~open~ and
~save~ functions instead of using the generic persistent mechanism.
*/

 static bool Open(SmiRecord& valueRecord,
 size_t& offset, const ListExpr typeInfo,
 Word& value);

 static bool Save(SmiRecord& valueRecord, size_t& offset,
 const ListExpr typeInfo, Word& w);

 private:
 XRectangle() {}
 // Since we want to use some default implementations we need
 // to allow access to private members for the class below.
 friend class ConstructorFunctions<XRectangle>;

 int xl;
 int xr;
 int yb;
 int yt;

};

– 145 –

XRectangle::XRectangle(int XLeft, int XRight, int YBottom, int YTop)
{
 xl = XLeft; xr = XRight; yb = YBottom; yt = YTop;
}

XRectangle::XRectangle(const XRectangle& rhs)
{
 xl = rhs.xl; xr = rhs.xr; yb = rhs.yb; yt = rhs.yt;
}

int XRectangle::GetXLeft() const { return xl; }
int XRectangle::GetXRight() const { return xr; }
int XRectangle::GetYBottom() const { return yb; }
int XRectangle::GetYTop() const { return yt; }

/*
3.2 Auxiliary Functions for Operations

To implement rectangle intersection, we first introduce an auxiliary func-
tion which tests if two intervals overlap.
*/

bool overlap (int low1, int high1, int low2, int high2)
{
 if (high1 < low2 || high2 < low1)
 return false;
 else
 return true;
}

bool
XRectangle::intersects(const XRectangle& r) const
{
 return (overlap(xl, xr, r.GetXLeft(), r.GetXRight())
 && overlap(yb, yt, r.GetYBottom(), r.GetYTop()));
}

/*
3.3 List Representation and ~In~/~Out~ Functions

The list representation of an xrectangle is

(XLeft XRight YBottom YTop)

In contrast to the code examples above, we use here the class ~NList~
instead of the static functions "nl->f(...)". Its interface is described in
file "NList.h". It is a simple wrapper for calls like "nl->f(...)" and pro-
vides a more object-oriented access to a nested list.

This class was implemented more recently; hence there is a lot of code which
uses the older interface. But as you can observe, the code based on ~NList~
is more compact, easier to read, understand, and maintain. Thus we recommend
to use this interface.
*/

– 146 –

Word
XRectangle::In(const ListExpr typeInfo, const ListExpr instance,
 const int errorPos, ListExpr& errorInfo, bool& correct)
{
 correct = false;
 Word result = SetWord(Address(0));
 const string errMsg = "Expecting a list of four integer atoms!";

 NList list(instance);
 // When you check list structures it will be a good advice to detect
 // errors as early as possible to avoid deep nestings of if statements.
 if (list.length() != 4) {
 cmsg.inFunError(errMsg);
 return result;
 }

 NList First = list.first();
 NList Second = list.second();
 NList Third = list.third();
 NList Fourth = list.fourth();

 if (First.isInt() && Second.isInt()
 && Third.isInt() && Fourth.isInt())
 {
 int xl = First.intval();
 int xr = Second.intval();
 int yb = Third.intval();
 int yt = Fourth.intval();

 if (xl < xr && yb < yt)
 {
 correct = true;
 XRectangle* r = new XRectangle(xl, xr, yb, yt);
 result.addr = r;
 }
 }
 else
 {
 cmsg.inFunError(errMsg);
 }
 return result;
}

ListExpr
XRectangle::Out(ListExpr typeInfo, Word value)
{
 XRectangle* rectangle = static_cast<XRectangle*>(value.addr);
 NList fourElems(
 NList(rectangle->GetXLeft()),
 NList(rectangle->GetXRight()),
 NList(rectangle->GetYBottom()),
 NList(rectangle->GetYTop()));

 return fourElems.listExpr();
}

– 147 –

/*
4.4 Storage Management: ~Open~, ~Save~, and ~Create~

The ~open~ and ~save~ functions need an ~SmiRecord~ as argument which con-
tains the binary representation of the type, starting at the position indi-
cated by ~offset~. The implementor has to read out or write in data there and
adjust the offset. The argument ~typeinfo~ is needed only for complex types
whose constructors can be parameterized, e.g. rel(tuple(...)).
*/

bool
XRectangle::Open(SmiRecord& valueRecord,
 size_t& offset, const ListExpr typeInfo,
 Word& value)
{
 //cerr << "OPEN XRectangle" << endl;
 size_t size = sizeof(int);
 int xl = 0, xr = 0, yb = 0, yt = 0;

 bool ok = true;
 ok = ok && valueRecord.Read(&xl, size, offset);
 offset += size;
 ok = ok && valueRecord.Read(&xr, size, offset);
 offset += size;
 ok = ok && valueRecord.Read(&yb, size, offset);
 offset += size;
 ok = ok && valueRecord.Read(&yt, size, offset);
 offset += size;

 value.addr = new XRectangle(xl, xr, yb, yt);

 return ok;
}

bool
XRectangle::Save(SmiRecord& valueRecord, size_t& offset,
 const ListExpr typeInfo, Word& value)
{
 //cerr << "SAVE XRectangle" << endl;
 XRectangle* r = static_cast<XRectangle*>(value.addr);
 size_t size = sizeof(int);

 bool ok = true;
 ok = ok && valueRecord.Write(&r->xl, size, offset);
 offset += size;
 ok = ok && valueRecord.Write(&r->xr, size, offset);
 offset += size;
 ok = ok && valueRecord.Write(&r->yb, size, offset);
 offset += size;
 ok = ok && valueRecord.Write(&r->yt, size, offset);
 offset += size;

 return ok;
}

– 148 –

Word
XRectangle::Create(const ListExpr typeInfo)
{
 return (SetWord(new XRectangle(0, 0, 0, 0)));
}

/*
4.5 Type Description

The property function is deprecated. Instead this is done by implementing a
subclass of ~ConstructorInfo~.
*/

struct xrectangleInfo : ConstructorInfo {

 xrectangleInfo() {

 name = XRECTANGLE;
 signature = "-> " + SIMPLE;
 typeExample = XRECTANGLE;
 listRep = "(<xleft> <xright> <ybottom> <ytop>)";
 valueExample = "(4 12 8 2)";
 remarks = "all coordinates must be of type int.";
 }
};

/*
4.6 Creation of the Type Constructor Instance

Here we also use a new programming interface. As you may have observed, most
implementations of the support functions needed for registering a Secondo
type are trivial to implement. Hence, we offer a template class ~Construc-
torFunctions~ which will create many default implementations of functions
used by a Secondo type. For details refer to "ConstructorFunctions.h". How-
ever, some functions need to be implemented since the default may not be
sufficient. The default kind check function assumes that the type construc-
tor does not have any arguments.
*/

struct xrectangleFunctions : ConstructorFunctions<XRectangle> {

 xrectangleFunctions()
 {
 // re-assign some function pointers
 create = XRectangle::Create;
 in = XRectangle::In;
 out = XRectangle::Out;

 // the default implementations for open and save are only
 // suitable for a class which is derived from class ~Attribute~, hence
 // open and save functions must be overwritten here.

 open = XRectangle::Open;
 save = XRectangle::Save;
 }

– 149 –

};

xrectangleInfo xri;
xrectangleFunctions xrf;
TypeConstructor xrectangleTC(xri, xrf);

/*
5 Creating Operators

5.1 Type Mapping Functions

A type mapping function checks whether the correct argument types are sup-
plied for an operator; if so, it returns a list expression for the result
type, otherwise the symbol ~typeerror~. Again we use interface ~NList.h~ for
manipulating list expressions.
*/

ListExpr
RectRectBool(ListExpr args)
{
 NList type(args);
 if (type != NList(XRECTANGLE, XRECTANGLE)) {
 return NList::typeError("Expecting two rectangles");
 }

 return NList(BOOL).listExpr();
}

ListExpr
insideTypeMap(ListExpr args)
{
 NList type(args);
 const string errMsg = "Expecting two rectangles "

 "or a point and a rectangle";

 // first alternative: xpoint x xrectangle -> bool
 if (type == NList(XPOINT, XRECTANGLE)) {
 return NList(BOOL).listExpr();
 }

 // second alternative: xrectangle x xrectangle -> bool
 if (type == NList(XRECTANGLE, XRECTANGLE)) {
 return NList(BOOL).listExpr();
 }

 return NList::typeError(errMsg);
}

/*
5.2 Selection Function

A selection function is quite similar to a type mapping function. The only
difference is that it doesn't return a type but the index of a value mapping
function being able to deal with the respective combination of input parame-
ter types.

– 150 –

Note that a selection function does not need to check the correctness of
argument types; this has already been checked by the type mapping function.
A selection function is only called if the type mapping was successful. This
makes programming easier as one can rely on a correct structure of the list
~args~.
*/

int
insideSelect(ListExpr args)
{
 NList type(args);
 if (type.first().isSymbol(XRECTANGLE))
 return 1;
 else
 return 0;
}

/*
5.3 Value Mapping Functions

5.3.1 The ~intersects~ predicate for two rectangles

*/
int
intersectsFun (Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 XRectangle *r1 = static_cast<XRectangle*>(args[0].addr);
 XRectangle *r2 = static_cast<XRectangle*>(args[1].addr);

 result = qp->ResultStorage(s);
 //query processor has provided
 //a CcBool instance for the result

 CcBool* b = static_cast<CcBool*>(result.addr);
 b->Set(true, r1->intersects(*r2));
 //the first argument says the boolean
 //value is defined, the second is the
 //real boolean value)
 return 0;
}

/*
4.3.2 The ~inside~ predicate for a point and a rectangle

*/
int
insideFun_PR (Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 //cout << "insideFun_PR" << endl;
 XPoint* p = static_cast<XPoint*>(args[0].addr);
 XRectangle* r = static_cast<XRectangle*>(args[1].addr);

 result = qp->ResultStorage(s);
 //query processor has provided

– 151 –

 //a CcBool instance for the result

 CcBool* b = static_cast<CcBool*>(result.addr);

 bool res = (p->GetX() >= r->GetXLeft()
 && p->GetX() <= r->GetXRight()
 && p->GetY() >= r->GetYBottom()
 && p->GetY() <= r->GetYTop());

 b->Set(true, res); //the first argument says the boolean
 //value is defined, the second is the
 //real boolean value)
 return 0;
}

/*
4.3.3 The ~inside~ predicate for two rectangles

*/
int
insideFun_RR (Word* args, Word& result, int message,
 Word& local, Supplier s)
{
 //cout << "insideFun_RR" << endl;
 XRectangle* r1 = static_cast<XRectangle*>(args[0].addr);
 XRectangle* r2 = static_cast<XRectangle*>(args[1].addr);

 result = qp->ResultStorage(s);
 //query processor has provided
 //a CcBool instance for the result

 CcBool* b = static_cast<CcBool*>(result.addr);

 bool res = true;
 res = res && r1->GetXLeft() >= r2->GetXLeft();
 res = res && r1->GetXLeft() <= r2->GetXRight();

 res = res && r1->GetXRight() >= r2->GetXLeft();
 res = res && r1->GetXRight() <= r2->GetXRight();

 res = res && r1->GetYBottom() >= r2->GetYBottom();
 res = res && r1->GetYBottom() <= r2->GetYTop();

 res = res && r1->GetYTop() >= r2->GetYBottom();
 res = res && r1->GetYTop() <= r2->GetYTop();

 b->Set(true, res); //the first argument says the boolean
 //value is defined, the second is the
 //real boolean value)
 return 0;
}

/*
4.4 Operator Descriptions

Similar to the ~property~ function of a type constructor, an operator needs

– 152 –

to be described, e.g. for the ~list operators~ command. This is now done by
creating a subclass of class ~OperatorInfo~.
*/
struct intersectsInfo : OperatorInfo {

 intersectsInfo()
 {
 name = INTERSECTS;
 signature = XRECTANGLE + " x " + XRECTANGLE + " -> " + BOOL;
 syntax = "_" + INTERSECTS + "_";
 meaning = "Intersection predicate for two xrectangles.";
 }

}; // Don't forget the semicolon here. Otherwise the compiler
 // returns strange error messages

struct insideInfo : OperatorInfo {

 insideInfo()
 {
 name = INSIDE;

 signature = XPOINT + " x " + XRECTANGLE + " -> " + BOOL;
 // since this is an overloaded operator we append
 // an alternative signature here
 appendSignature(XRECTANGLE + " x " + XRECTANGLE
 + " -> " + BOOL);
 syntax = "_" + INSIDE + "_";
 meaning = "Inside predicate.";
 }
};

/*
5 Implementation of the Algebra Class
*/

class PointRectangleAlgebra : public Algebra
{
 public:
 PointRectangleAlgebra() : Algebra()
 {

/*
5.2 Registration of Types
*/

 AddTypeConstructor(&xpointTC);
 AddTypeConstructor(&xrectangleTC);

 //the lines below define that xpoint and xrectangle
 //can be used in places where types of kind SIMPLE are expected
 xpointTC.AssociateKind(SIMPLE);
 xrectangleTC.AssociateKind(SIMPLE);

/*
5.3 Registration of Operators

– 153 –

*/

 AddOperator(intersectsInfo(), intersectsFun, RectRectBool);

 // the overloaded inside operator needs an array of function pointers
 // which must be null terminated!
 ValueMapping insideFuns[] = { insideFun_PR, insideFun_RR, 0 };

 AddOperator(insideInfo(), insideFuns, insideSelect, insideTypeMap);
 }
 ~PointRectangleAlgebra() {};
};

/*
6 Initialization

Each algebra module needs an initialization function. The algebra manager
has a reference to this function if this algebra is included in the list of
required algebras, thus forcing the linker to include this module. The alge-
bra manager invokes this function to get a reference to the instance of the
algebra class and to provide references to the global nested list container
(used to store constructor, type, operator and object information) and to
the query processor.
The function has a C interface to make it possible to load the algebra dynam-
ically at runtime (if it is built as a dynamic link library). The name of the
initialization function defines the name of the algebra module. By conven-
tion it must start with "Initialize<AlgebraName>".
To link the algebra together with the system you must create an entry in the
file "makefile.algebra" and to define an algebra ID in the file "Algebras/
Management/AlgebraList.i.cfg".
*/

} // end of namespace ~prt~

extern "C"
Algebra*
InitializePointRectangleAlgebra(NestedList* nlRef,
 QueryProcessor* qpRef)
{
 // The C++ scope-operator :: must be used to qualify the full name
 return new prt::PointRectangleAlgebra;
}

/*
7 Examples and Tests

The file "PointRectangle.examples" contains for every operator one example.
This allows one to verify that the examples are running and to provide a
coarse regression test for all algebra modules. The command "Selftest
<file>" will execute the examples. Without any arguments, the examples for
all active algebras are executed. This helps to detect side effects, if you
have touched central parts of Secondo or existing types and operators.
In order to setup more comprehensive automated test procedures one can write
a test specification for the ~TestRunner~ application. You will find the
file "example.test" in directory "bin" and others in the directory "Tests/

– 154 –

Testspecs". There is also one for this algebra.
Accurate testing is often treated as an unpopular daunting task. But it is
absolutely inevitable if you want to provide a reliable algebra module.
Try to write tests covering every signature of your operators and consider
special cases, as undefined arguments, illegal argument values and critical
argument value combinations, etc.
*/

