

AEGIS_Modbus

Ethernet TCP

CONTENTS

1. Overview

- 2. Address Contents
- 2.1 Current Values of Sensors, Meters, Contact Sets
- 2.2 Current Values of ON/OFF Relays and Frequency Control Outputs
- 2.3 Current State of Sensors, Meters, Contact Sets
- 2.4 Current State of ON/OFF Relays and Frequency Control Outputs
- 2.5 Control State of ON/OFF Relays and Frequency Control Outputs
- 3. Aegis_Modbus Client
- 4. Socket & Packet Structures
- 4.1 TCP Packets
- 4.2 Floating Point & Integer-to-Bit Conversion

1. Overview

Ethernet Modbus TCP implementation of a Modbus slave @ Modbus address 1, on the default Modbus port number 502 using the static IP address user set for the Aegis controller, defaulted to 10.10.6.106.

Supports Modbus command 0x03, 'Read Holding Registers', where each register returns a 16 bit, 2 byte integer, in 'big endian' format, most significant byte first.

The address space for command 0x03, 'Read Holding Registers' defines 4 byte floating point return values so each controller value must be read as 2 sequential addresses and converted by the client application to a IEEE 754 32 bit floating point (IEC1131, Intel single precision real), 1 bit sign, 8 bit exponent and 23 bit value/mantissa. The 4 byte, 2 register floating point number is sent 'big endian'.

Details of the Modbus TCP-IP message header (www.modbus.org/specs.php) and the binary-tofloat conversion and error handling are typically handled by the Modbus client for your EMS/DCS HMI.

The implementation returns either the requested holding register values using the Modbus Ethernet message format or one of the following exception codes:

Exception	Name	Cause
0x01	Illegal Function	Command not supported by controller
0x02	Illegal Data Address	Start or Span address out of range
0x06	Busy	Controller busy with another request.

User Configured: Disabled I/O, Sensor Driver Cards, Digital Inputs

Aegis controller users may elect to disable unused I/O to remove clutter from the controller LCD display and to simplify using the browser HMI. To prevent exceptions due to reading disabled I/O, each disabled I/O returns a defined, default value out of the range of possible values for enabled I/O. Zero is a possible value for enabled I/O.

Aegis controllers may have a variety of sensor driver cards installed in the **C-D** and **E-F** driver slots. Some controllers may use these slots for pH & ORP, others for corrosion rate, others for 4-20mA outputs The Modbus response to reading these values is in the units of the driver card; ORP in mV, corrosion rate in mpy, temperature in C or F, conductivity is uS.....

The 12 Aegis digital inputs '**O**' to '**Z**' may be user configured as contact set inputs or volume measurement inputs. Contact sets return the time closed in seconds and volume inputs return the volume from midnight.

2. Address Contents

Address spans are separated by function.

Address Span	Total # of 16 bit Registers	Format	Usage
100 to 151	52	Float	Input Values Sensor, Volume and Contact set current values. Read to update current state displays.
200 to 217	18	Float	Output Values Relay ON times and Frequency control rates. Read to update current state displays.
300 to 325	26	2 Byte UInt16	Input State-Status: Enabled, Alarmed 4-20mA Output Cards: Interlocked, Loop Open & Manual Mode
400 to 408	9	2 Byte UInt16	Output State-Status: Enabled, Alarmed, Events Exist
500 to 508	9	2 Byte UInt16	Output Control State: Configuration & Operational state information

2.1 Current Values of Sensors, Meters, Contact Sets

Addresses 100 to 151 inclusive, Request 52 registers starting @ 100 to get all current values

Address	# of 16bit	Format	Туре	Notes
/ 10	Registers			
100 / A	2	Float	Sensor, Conductivity	1
102 / B	2	Float	Sensor, Temperature	2
104 / C	2	Float	Sensor, Varies with driver	3,
106 / D	2	Float	Sensor, Varies with driver	3
108 / E	2	Float	Sensor, Varies with driver	3
110 / F	2	Float	Sensor, Varies with driver	3
112 / G	2	Float	Sensor, 4-20mA Input	4
114 / H	2	Float	Sensor, Varies, phantom	3, 5
116 / I	2	Float	Sensor, Varies, phantom	3, 5
118 / J	2	Float	Sensor, Varies, phantom	3, 5
120 / K	2	Float	Sensor, Varies, phantom	3, 5
122 / L	2	Float	Sensor, Varies, phantom	3, 5
124 / M	2	Float	Sensor, Varies, phantom	3, 5
126 / N	2	Float	Sensor, Varies, phantom	3, 5
128 / O	2	Float	Volume or Contact Set	3, 6
130 / P	2	Float	Volume or Contact Set	3, 6
132 / Q	2	Float	Volume or Contact Set	3, 6
134 / R	2	Float	Volume or Contact Set	3, 6
136 / S	2	Float	Volume or Contact Set	3, 6
138 / T	2	Float	Volume or Contact Set	3, 6
140 / U	2	Float	Volume or Contact Set	3, 6
142 / V	2	Float	Volume or Contact Set	3, 6
144/ W	2	Float	Volume or Contact Set, phantom	3, 6, 7
146 / X	2	Float	Volume or Contact Set, phantom	3, 6, 7
148 / Y	2	Float	Volume or Contact Set, phantom	3, 6, 7
150 / Z	2	Float	Volume or Contact Set, phantom	3, 6, 7

2.1 Current Values of Sensors, Meters, Contact Sets cont.

	Notes:
1.	Controller input 'A' is a fixed conductivity sensor measured in uS.
2.	Controller input 'B' is a fixed temperature sensor. Units are either 'F' or 'C' depending on system level units selection of 'metric' or 'US units'.
3.	Sensor driver cards may be installed in slots C-D and E-F. Conductivity, temperature, pH, ORP 4-20mA input & output and corrosion rate cards are currently available.
4.	Controller input 'G' is a fixed 4-20mA input. User defines units of value represented by the current loop input.
5.	Phantom sensor inputs 'H' to 'N' don't physically exist within the controller. They are used for Manual and Calculated values like ppm and Inventory and are displayed and used as other sensor values.
6.	Controller inputs 'O' to 'Z' may be user configured as Volume (Water meter) or Contact Sets (Flowswitches & Interlocks). If Volume, value is volume from midnight. If Contact Set, value is time closed where time closed is zeroed each time the contact set opens.
7.	Phantom volume-contact set inputs 'W' to 'Z' don't physically exist within the controller. They are used for Calculated values like 'sum','copy' and 'mirror' and are displayed and used as other volume-contact set values.
all	Disabled inputs return -100000

2.2 Current Values of ON/OFF Relays and Frequency Control Outputs

Addresses 200 to 217 inclusive,

Request 18 registers starting @ 200 to get all current values

Address	# of 16bit	Format	Туре	Notes
/ 10	Registers			
200 / 1	2	Float	Relay, Seconds ON	1
202 / 2	2	Float	Relay, Seconds ON	1
204 / 3	2	Float	Relay, Seconds ON	1
206 / 4	2	Float	Relay, Seconds ON	1
208 / 5	2	Float	Relay, Seconds ON	1
210/6	2	Float	Frequency, Rate 0-100%	2
212/7	2	Float	Frequency, Rate 0-100%	2
214/8	2	Float	Frequency, Rate 0-100%	2
216/9	2	Float	Frequency, Rate 0-100%	2

	Notes:
1.	Relay ON time in seconds this actuation. $0 = OFF$.
	Reset to zero @ controller clock (site time) midnight.
	Range 0 to 86400.
	Refer to Diagnostic addresses for status & current state
	(Blocked, Interlocked, Alarmed).
2.	Current rate 0.00 to 100.00%. 0 = OFF.
	Refer to Diagnostic addresses for status & current state
	(Blocked, Interlocked, Alarmed).
3.	
	Disabled outputs return -100000

2.3 Current State of Sensors, Meters, Contact Sets

Addresses 300 to 325 inclusive, Request 26 registers starting @ 300 to get all current states

Address	# of 16bit	Format	Туре	Notes
/ 10	Registers			
300 / A	1	16 bit	Sensor, Conductivity	1
301 / B	1	16 bit	Sensor, Temperature	1
302 / C	1	16 bit	Sensor, Varies with driver	1,2
303 / D	1	16 bit	Sensor, Varies with driver	1,2
304 / E	1	16 bit	Sensor, Varies with driver	1,2
305 / F	1	16 bit	Sensor, Varies with driver	1,2
306 / G	1	16 bit	Sensor, 4-20mA Input	1
307 / H	1	16 bit	Sensor, Varies, phantom	1
308 / I	1	16 bit	Sensor, Varies, phantom	1
309 / J	1	16 bit	Sensor, Varies, phantom	1
310 / K	1	16 bit	Sensor, Varies, phantom	1
311 / L	1	16 bit	Sensor, Varies, phantom	1
312 / M	1	16 bit	Sensor, Varies, phantom	1
313 / N	1	16 bit	Sensor, Varies, phantom	1
314 / O	1	16 bit	Volume or Contact Set	1,3
315 / P	1	16 bit	Volume or Contact Set	1,3
316 / Q	1	16 bit	Volume or Contact Set	1,3
317 / R	1	16 bit	Volume or Contact Set	1,3
318 / S	1	16 bit	Volume or Contact Set	1,3
319 / T	1	16 bit	Volume or Contact Set	1,3
320 / U	1	16 bit	Volume or Contact Set	1,3
321 / V	1	16 bit	Volume or Contact Set	1,3
322/ W	1	16 bit	Volume or Contact Set, phantom	1,3
323 / X	1	16 bit	Volume or Contact Set, phantom	1,3,
324 / Y	1	16 bit	Volume or Contact Set, phantom	1,3
325 / Z	1	16 bit	Volume or Contact Set, phantom	1,3

	Notes:
1.	Enabled 0x01, Bit 0 =1, Alarmed 0x02, Bit 1 =1, Used for Captured Sample Controls 0x40, Bit 6=1 Unused Bits 2,3 & 5 to 15
2.	4-20mA Outputs Cards Only Interlocked 0x01, Bit 1 = 1, Loop Open 0x40, Bit 6 =1, Manual Mode 0x80, Bit 7=1

2.4 Current State of ON/OFF Relays and Frequency Control Outputs

Addresses 400 to 408 inclusive, Request 9 registers starting @ 400 to get all current states

Address	# of 16bit	Format	Туре	Notes
/ 10	Registers			
400 / 1	1	16 bit	ON/OFF Relay,	1
401 / 2	1	16 bit	ON/OFF Relay,	1
402/3	1	16 bit	ON/OFF Relay,	1
403 / 4	1	16 bit	ON/OFF Relay,	1
404 / 5	1	16 bit	ON/OFF Relay,	1
405 / 6	1	16 bit	Variable Frequency	1
406 / 7	1	16 bit	Variable Frequency	1
407 / 8	1	16 bit	Variable Frequency	1
408 / 9	1	16 bit	Variable Frequency	1

	Notes:
1.	Enabled 0x01, Bit 0 =1,
	Alarmed 0x02, Bit 1 =1,
	Events Exist 0x08, Bit 3 =1
	(Timed event for Relays 15. Volume feed events for Variable Frequencies 69)
	Unused Bits 2 & 4 to 15

2.5 Control State of ON/OFF Relays and Frequency Control Outputs

Addresses 500 to 508 inclusive, Request 9 registers starting @ 500 to get all control states

Address	# of 16bit	Format	Туре
/ 10	Registers		
500 / 1	1	16 bit	ON/OFF Relay,
501 / 2	1	16 bit	ON/OFF Relay,
502/3	1	16 bit	ON/OFF Relay,
503 / 4	1	16 bit	ON/OFF Relay,
504 / 5	1	16 bit	ON/OFF Relay,
505 / 6	1	16 bit	Variable Frequency
506 / 7	1	16 bit	Variable Frequency
507 / 8	1	16 bit	Variable Frequency
508 / 9	1	16 bit	Variable Frequency

Bit /Value	Control State	Control State
0 / 0x01	ON =1	Current state of Relay ON OFF
		or Variable frequency drive
1 / 0x02	Interlocked =1	Turned OFF by one or more contact sets opening.
2 / 0x04	Limited =1	Exceeds Relay ON time limit of feed volume limit.
3 / 0x08	Varying Cycles = 1	Control typically on a ratio of conductivities and limited by
		a maximum conductivity.
4 / 0x10	Unused	
5 / 0x20	Off-On-Alarm = 1	Turns OFF when Limited
6 / 0x40	Blocked = 1	Turned OFF when one or more other outputs turns ON
7 / 0x80	Unused	
8 / 0x100	Special Control =1	Controlled by a 'Special Control' Captured Sample,
		Base Feed
9 / 0x200	Sequential Control =1	2nd phase of an Q:P sequential volume control;
		ON for 'P'
10 / 0x400	Forced ON =1	Prebleed has turned output ON. Bypass setpoint ON/OFF
		but update control value.
11 / 0x800	Owed =1	Time or Volume owed. Count down if not blocked,
		interlocked, limited
12/0x1000	Unused	
13 / 0x2000	Blocking =1	Output is blocking another output, used with 'Blocked' to
		resolve sequential & circular blocks.
14 / 0x4000	Midnight Reset =1	Output is reset at midnight if limited.
15 / 0x8000	Fused =1	Relay output OFF, AC fuse OPEN

3. Aegis_Modbus Client

Aegis_Modbus is a lightweight support and demonstration client for the Modbus TCP services embedded in the Aegis controller.

Aegis_Modbus can be installed on a Windows XP or Vista PC or notebook. It communicates with Aegis controllers via the site Ethernet LAN or by using a cross-over cable.

Client Service	Function	Usage
Verify Aegis IP & HTTP Server	HTTP connects to the Aegis with user defined IP & password. Displays the system XML response file.	Verifies IP and Ethernet communications, controller powered up, running and communicating Identifies the Aegis controller by serial number so you know you're talking to the correct controller. Valid Aegis password required to use Aegis_Modbus.
Single & Timed Repeat Commands.	User defined start address & span. Client enforces valid addresses. Client deconstructs Modbus response packet showing both byte sets and resulting I/O values.	Used for byte order conversion and bit extraction problems. Shows you byte order, byte content and converted values,
Force Fault	Executes user selected fault and displays deconstructed response packet.	Aegis_Modbus auto-corrects Address and span. You client may get fault responses & Force Fault shows you the error packet.

Sidebar: A 'Client' is a software application that consumes the services of a 'Server' application. Your browser is a 'Client' for the HTTP 'Servers' accessed via the Internet.

Your site's building automation system or distributed control system includes a Modbus

'Client' used to talk to Modbus TCP Servers embedded in controllers like the Aegis.

TCP

4. Socket & Packet Structures

This section is of interest to users with Modbus client application problems.

IP: The Aegis uses the same IP address for both HTTP/browsing and Modbus. Modifying the Aegis IP address for your network changes the address for browsing, Trackster and Modbus.

Sockets: The Aegis can support concurrent browser-Trackster and Modbus users on separate sockets. Modbus requires a TCP socket and a binary (non-ASCII) data stream. If you are required to set the socket RX/TX buffers, use a minimum of 512 bytes. Internally the Aegis limits the Modbus RX/TX buffers to 255 bytes. Typically, your OS will set socket buffers much larger than 512.

Port: Modbus is fixed at port 502, the default, assigned port for TCP Modbus. Modifying the Aegis port changes the HTTP browsing & Trackster access port but not the Modbus port.

Client: Aegis_Modbus verifies an HTTP functioning Aegis controller at the target IP and captures both the HTTP and Modbus responses. Use the Aegis_Modbus client to verify an Ethernet connection and TCP communication between controller and PC. Modbus clients send the Modbus slave a byte set & receive a byte set in return.

4.1 TCP Packets

Wireshark (or your preferred Ethernet sniffer) with your filter set to '**tcp.port == 502**' and you'll see the following bytes set as '**data**' in the **PSH** packets. **SYN**/client, **SYN-ACK**/Aegis & **ACK**/client packets should precede the first **PSH** packet, indicating that a port 502 socket has been established

Command (From your client application to the Aegis) The **data** in the first **PSH** packet is always 12 bytes.

Bytes	Content	Function	Notes
(in hex)			
0-1	00 01	Sequence	Ignored by Aegis; echoed
2-3	00 00	Protocol	Always 0x0000. Ignored by Aegis; echoed
4-5	00 06	Message size in bytes	Big endian, MSB first. Bytes following byte 5
6	01	Controller Address	0x01 Default, Aegis also accepts Address=0xFF
7	03	Modbus Command	Always 0x03,
8-9	00 64	Start address/register	Big endian, MSB first. 0x0064 = 100
			Start of analog sensors, 'A'
10-11	00 1C	Quantity of registers	Big endian, MSB first. 0x001C = 28
		from Start	End of analog sensors, 'N', 'A' to 'N' - 14 values.
			Each register returns 2 bytes.
			The Aegis uses a set of 4 bytes or 2 registers to
			represent a 32 bit floating point value.

Modbus command 0x03 returns the value of a16 bit register. There is no Modbus command, which returns a float (a look-back to simpler times) so users co-opt the 0x03 command.

4.1 TCP Packets cont.

Normal Response (From the Aegis to your client)

The **data** in the second **PSH** packet is always the 2 bytes $+ 2 \times \text{Quantity}$ from Start value. If Start Address= 100 & Quantity = 28, the data set would be 58 bytes plus the leading 6 bytes.

Unlike serial Modbus, there is no CRC since the Ethernet tcp/ip protocol provides this service.

Bytes	Co	ntent	Function	Notes
	(III	nex)		
0-1	00	01	Sequence	Echoed from the Command
2-3	00	00	Protocol	Echoed from the Command
4-5	00	3A	Message size in bytes	Big endian, MSB first. Bytes following byte 5
				0x003A = 58 bytes
6	01		Controller Address	Always 0x01.
7	03		Modbus Command	Always 0x03.
8	38		Byte count	Number of requested addresses/registers x 2
				Echo of 'Qty of Registers' x 2
9-12	01	02	Start floating point data	Big endian, MSB first. 0x0064 = 100
	03	04	in 4 byte chunks	Start of analog sensors, 'A'
13-60			Requested address	If Quantity = 28, 54 bytes representing 14, 4
			Data, 4 bytes per value	byte values would be included in the response
61-64	01	02	End floating point data	Big endian, MSB first. 0x001B = 127
	03	04		End of analog sensor 'N'

Error Response (From the Aegis to your client)

If you issue a command other than 0x03 and/or request invalid addresses-registers you'll get an error response.

Bytes	Content (in hex)	Function	Notes
0-1	00 01	Sequence	Echoed from the Command
2-3	00 00	Protocol	Echoed from the Command
4-5	00 03	Message size in bytes	Big endian, MSB first. Bytes following byte 5 0x0003 = 3 bytes A message size of 3, ' data ' size = 9, indicates an error.
6	01	Controller Address	Always 0x01.
7	83	Modbus Command with bit 7 set	Always 0x03 'or'ed with 0x80 = 0x83 Byte 7 greater than 127 decimal indicates an error.
8	02	Error codes	 0x01: Modbus Command not 0x03 0x02: Start Address/Register or Quantity out of range. 0x06: Busy, dealing with another request. An unlikely error.

4.2 Floating Point & Integer-to-Bit Conversion

Conversion detail is usually hidden from you by your Modbus client application which correctly aligns the incoming byte stream with 32 bit-to-floating point or 16 bit integer-to-bit conversions.

Floating point data is transmitted from the Aegis in 4 byte chunks, MSB first (Big-Endian) using IEEE 754, 32bit, single precision format.

If you are faulting on the floating point conversion, preview the byte order using the Aegis_Modbus client. Intercept the byte stream and reverse the order of the floating point byte sets. This is how Aegis_Modbus converts the BigEndian byte sequence to a Windows OS floating point.

If your bit conversions-to-state information are faulting, use Aegis_Modbus to verify that you are getting the correct bytes and then switch the byte order of each 16 bit field prior to bit-state extraction.

LittleEndian & BigEndian

When Modbus was new, computers were BigEndain & the Modbus spec reflected this, sending byte level data in BigEndian format, most significant byte first. It was easy to convert byte sets to signed integers.

Windows systems are LittleEndian, like the Aegis' microcontroller.

With luck, this distinction will be obscured by your Modbus client which will convert the BigEndian byte stream back to LittleEndian prior to converting byte streams to floats & 16 bit integers (ushort).

Your client may require you to set an option defining the Endian preference. If the Modbus client values don't match the Aegis LCD display values, switch the Endian preference in your client.