Table of Contents

LI &Y 10T (1= = T 1
L I O] =T o T o T PRSP P P OPURROPRN 1
1.2 Wiki? What Wiki?...... o1
1.3 Intended Audience.... |
L = L Lo IR (A I =T o R PRSP POPUROPRN 1
P72 10T o T LT oo T 2
P2 B Vo V2 T - Lo =TSSP UP PP RPRO 2
R oo g (] T TR YA€ L T 0 (=Y 3
O T Y= 0 £SO UP S UPR PR 3
OIS TH o] oo o APPSR TSP RPRO 3
3.3 Maintenance.... .3
3.4 Robustness......... .3
3.5 Time-to-Market.... .3
L IS 1= 1= o g o T T =Y 4
LI € 7= (] 4T RS €= (= o 5
5.1 System Setup.. .5
5.2 The Emulator....... .5
5.3 Expert Settings.............. .5
5.4 RUNNING ON HAIAWATE ...ttt ettt a e e bt ea st ekt ee 2t e a8 e 442 b £ e eR e £ £ ot e e o h bt e b e e 4o s £ e bt e £a bt e b et e bt e ehe e e bt e eab e e beeenbeeeneesmteeneas 7
LSO 0 11T oo =T 4T T A= Y 8
025 5T T o T8 - 9
7.1 Whatis .NET?. .9
7.2 What is C#2..oooveeiiiiieeieee .9
7.3 ?Main? is the Starting Point.... .9
7.4 COomMmMENtS......ooveeieienieeieeene .9
7.5 What ASSEMDIES T0 AGU?. ...ttt ettt ekt o2t e e e h e et £ e H et oAb e e ea b4 22 s e e £ e bt e b o4 e H bt e ohs e e bt e h bt e bt e ea bt e bt e nabeebeeenbeenaneentee e 13
E 2T =TT 10 B0 11 1 o] U 16
L I 1y = @ U1 o £SO PPURRPRPP 16
2 o1y - LN 3o LU £SO PP PRSPPI 17
Lo O T T o TN - - S 20
L B = oL = g Y T =T o)L= ST PPP PRSPPI 20

LS T2 | =1 (= 0 41T 1 SO PRSSPS
9.3 if-else-statements

LY =Y (Lo Eg T lo I Vo [0 =T) £SO PPPUPRPRPR 22
LR T O =TT SO PPP PSPPSR 23
L SR U o] o g1V LSRR PPP PRSPPI 24
LS - V(oYL T g To g - Lo ST PUPUPRPRPP 24
LR T 00 4 - U) SR UPUPRPRRPP 24
LR I =00 =Y - o] o TSR PPPUPRPRRPPI 24
10 AsSEeMDbIY/FirMWAare MAtChiNG.......ocoiiciicerisirs i rrs s e e s a e e s £ s e £ R £ e e £ AR £ E e £ AE £ AR £ RRE £ A AR £ A AR £ R £ R AR £ RS RRREARe R anEnmnnnnnennns 26
LR I = o T U o 1Y T Vo [PPSR 26
11 PUISE Width MOAUIALION......ceciiiieiiiiiiiiiisn i b e s R R e R e R RS E R R R R e R R R AR R R AR AR R AR A AR R R SR AR R RS R AR R R R R AR AR R R AR AR R R AR AR R AR AR R R e R Re S 27
B ST 1 0= LT T AT RSP PTURRPI 28
11.2 Servo MOtOrs @nd PUISE CONTIOL......eiiiiiieii ittt b et bt st e ekt e e e bt e he £ ea bt e bt e et e e Re e e bt e eae e et e e e nb e e bt e enbeennneenbeeanne s 28
7 1= T 29
B T3 I Y 30
B YL 1 Lo T TR T T oL L 30T U {1 Y 31
L I Y =1 Lo To [T o 10 - TSP PP O PRROPI 31
L N =1L To J @ 1T (01U (USSP P PSPPI 31
BT € = 14 o T T 0T oY o (o Y 33
15.1 Dispose

R TR C IO @ 10 (oW 1Y [T T Lo =T USSP P PSP 34

16:2 (6] =TSSR SUPSRPTSPN 35

Table of Contents

16 C-Sharp Level3
L T Y - | PRSP 35
16.4 String

17:4 One Wire....

LIS T O A PO ST U ST PR UPPPPSORURN
18 LOAAING RESOUICES......coiiuiiimirisisseiiisssss s sssssasssrss e s e s s as £ s £a s s £ e £ S ae £ A ae S £ R £ R £ £ AR £ R R £ AR £ AR £ R £ A e £ A AR £ £ AR £ AR A A AR £ ERE £ A AR £ A AR E R AR £ A RAE SRR ERERnEamnsranenmnnnannnnns 45
B O LU 1T 070 43T o - (- 47
20 1= o] F- £ Y 49
P20 IO =T Tox (=T gl D 1] o = SO SPPP PRSPPI 49
PO T o] gl or= L DI o =)£ TSR PPPUPRPRPP 49
P28 B 0 T= TR T o
21.1 Real Time Clock...
P2 2 I T =Y £ S SO SPPP PRSPPI
7272 11 = 30 o 56
P2 B 11 B T o= S PO SPPPUPRPRPP 56
22.2 SEHIAI DBVICES ... etttk h e at ettt ea bt ekt e o Rt e e oh et oA £ £ oAbt oAb £t R £ 4o R £ e oAb e e R e e oAbt e oh et oA £ e e oA et e Rt e eh e e e bt e eab e e abe e et e e nnneereea 57
P2 I (Y - TS (o =T 1= TSSO UPUPRPRPP 58
22 B0 1 == (= 1

23.1 SD Cards.

1= 01T 1 '
24.1 USBizi Network Support...
24.2 Raw TCP/IP vs. Sockets...
24.3 Standard .NET Sockets.....

244 WI-FT (80211)ittt ettt sttt etttk ekt h bt h b8 e 8t e st e h £ e b £ b€ b e 8o e e R £ SR £ R £ R e £ e e e R £ LR £ b€ AR £ R e e R e R £ R e £ e et h e bt bt bbb
24.5 GPRS and 3G MODIlIE NEIWOTKS.........oiuiiiiiiieie ettt st e e r et e e a e et e et e st e et e et e e e eae et e emeesaeeseenneeneeneereeas 67
B2 0 T o (o T |- 1 /L 69
P2 O 11 = NSO ST TT ST O PP PP O PORPPR 69
P2 S NSO T TSSOSO P TP PP POPPPR 69
72 71
PSR Tg T I T To oSS PP PRSPPI 71
P2 O (Y=g To 14 L ST UP PRSPPI 71
PG TR I 1= To [T DY/ PO PPPURRPRPPN 73
747 =5 o T- 1 Lo 11 e 0 0 T
27.1 Digital......
27.2 Analog
72 1L = 01 76
Pt I IS T o (@1 @ 1Y) I 1= o T T [T ST SPUP PRSPPI 76
P2t T2 I LI T (F o NPT UP PRSPPI 76
28.3 MOUSE, the PEITECE PraNKcoiiiieiieiiee ettt et et e h e e s e e a e et e e Rt e et e e Rt e e e e et e et e e e e et e et e meeeneemeennesneeneareens 77

P2t T (=1 o o= Lo ISP PP PRSPPI 78
28.5 CDC - VIFTUAI SEIIAL ... vtttk b e et b e e e et e e e h e e ae e e Rt e s e e m e e st e e R e e et e R e e ee e Rt e et e et e e e et e ne e naeene e neeneereereen 78
28.6 USB Debugging With Virtual COM CRanNEl........c..eiiiiiiiiie ettt b et ehe e et e e he e e bt e eae e e bt e et e e abeeenbeenaneantee e 79

Pt I\ TSRS (o =T 1= TSSO UPURRPRPP 80

P2L ST T Oy (o] 44 I D11 (oY SRR 80

Table of Contents

R O o3 1= F= T O 1T (o 4 =T T oY 87
o I I\ = Ta o oYy T o o O U] (o gl o 1= T o TSR PUPUPRPRPP 87
31.2 Large Bitmaps

B 721 T =Y 1= S
32.1 Zigbee (802.15.4).
1G22 = 1 TUT =1 (o T} PSSP
1C 72 T o o oSSR

B 1P 0 =T =T I Y 91
10 R B U Y=o TU T (] SRR SSRR 91

B I 11143 S 1 L
34.1 Memory Utilization...
34.2 Object Allocation.....
1O G I |V 1113 To T o] oo SR UPURRUPRRPP

BT TR o o 96
1oL T I U (g LT 1T To 1 o BSOSO PP PRSPPI 96

36 LiCENSE & DiSCIAIMEE....ceiiiceeiirerreisnrrsssnsrassnesssssnssssssnnssssssnsssssrasssessssnseesssnssessnnssassnsssassmsssnssnsssaasnssessnssssssnnnssssssnsssntsessnnssessnnsnessnssssssnsssnsnnessssnnsssssnnnn 97

1 About the Book

Beginners Guide ta
(=]
andl
JMET Micro Framowark

August 37 DA
B 183

Tequrcts & 1 G Carrorias WG
art el B F TR R

em TE A
Wy s AR

Sz 8.

1

E-Book

1.1 Change Log

Please keep this up to date so book translations can be updated as well.

1.1.1 Rev 1.00

e |nitial version

1.2 Wiki? What Wiki?
This book is automatically generated from the NETMF wiki. This allows anyone to make changes on the book and will help in book translation.

For details, visit http://www.microframeworkprojects.com/index.php?title=Category:Beginner_Guide_ebook

1.3 Intended Audience

This book is for beginners wanting to learn .NET Micro Framework. No prior knowledge is necessary. The book covers .NET Micro Framework,Visual
C# and even covers C#! If you're a programmer, a hobbyist or an engineer, you will find a good deal of info in this book. This book makes no
assumption about what you, the reader, knows so everything is explained extensively.

I have used my personal free time (if that is ever available!) to make this book. Expect a lot of typos and grammar errors, but please report them on the
forum so | can enhance this book.

1.4 Translating the Book

This is a book given to the community in an efforts to make NETMF easier for all users. If you think you can translate the book to other languages then
we would love see your contribution.

With the book being on wiki at http://www.microframeworkprojects.com/index.php?title=Category:Beginner_Guide_ebook you can easily copy/paste
chapters and stat translating in new pages. Note that code snippets and images will always the same so you do not have to do much for code and
images.

Here are the simple steps:

1. Make a new page that has the same chapter name but append the name with your language name. So change this link from
http://www.microframeworkprojects.com/index.php?title=USB_Host to
http://www.microframeworkprojects.com/index.php?title=French_USB_Host

2. Open the 2 pages and copy paste everything from English to French

3. Important: Change the Category from Beginner_Guide_ebook to French_Beginner_Guide_ebook

4. Start translating the text

5. Add more chapters till all is done

Please get started even if you are not going to complete the whole book. Others will help as well.

1

http://www.microframeworkprojects.com/index.php?title=File:EBook.jpg
http://www.microframeworkprojects.com/index.php?title=File:EBook.jpg
http://www.microframeworkprojects.com/index.php?title=Category:Beginner_Guide_ebook
http://www.microframeworkprojects.com/index.php?title=Category:Beginner_Guide_ebook
http://www.microframeworkprojects.com/index.php?title=USB_Host
http://www.microframeworkprojects.com/index.php?title=French_USB_Host

2 Introduction

Have you ever thought of some great idea for a product but you couldn't bring it to life because technology wasn't on your side? Or maybe thought,
?there's got to be an easier way!? Maybe you are a programmer that wanted to make a security system but then thought using PCs are too expensive to
run a simple system? The answer is Microsoft's .NET Micro Framework!

Here is a scenario, you want to make a pocket-GPS-data-logger that saves positions, acceleration, and temperatures on a memory card and displays
them on a small display. GPS devices can send position data over a serial port so you can easily write some code on a PC to read the GPS data and
save it on a file. But a PC wouldn't fit in your pocket! Another problem is how would you measure temperature and acceleration on a PC? If you make
this project using classic microcontrollers, like AVR, or PIC micro, all this can be done but then you need a compiler for the micro you choose (probably
not free), a week to learn the processor, a week to write serial driver, a month or more to figure out the FAT file system and more time for memory
cards...etc. Basically, it can be done in few weeks of work.

Another option is utilizing simpler methods (BASIC STAMP, PICAXE, Arduino, etc). All these products simplify a design but each one has its limitation.
Only a couple of them have debugging capabilities. Finally, these devices are not normally suited for mass production usually.

2.1 Advantages
If you are using .NET Micro Framework then there are many advantages:

. It runs on Microsoft's Visual C# Express, free and and high-end IDE.

. .NET Micro Framework is open-source and free.

. Your code will run on all these devices with almost no changes.

. Full debugging capabilities. (Breakpoints, stepping in code, variables...etc.)

. Has been tested in many commercial products so quality is assured.

. Includes many bus drivers.(SPI, UART , 12C...etc.)

. No need to use processors datasheets because of the standard framework.

. If you are already a PC C# programmer then you are already an embedded system developer with NETMF!

ONOOAWND =

3 Porting vs GHI's Offers

There are two sides of working with NETMF, porting it and using it. For example, writing a JAVA game on a cell phone is much easier than placing the
JAVA virtual machine (JVM) on a phone. The phone manufacture did all the work of porting JAVA to their phone and game programmers can use it with
less effort. NETMF works the same way, porting is not easy but using it is very easy. When using a GHI NETMF product, you are not just using a
NETMF device but you are receiving unlimited features, support, maintenance, robustness and time-to-market. Let's cover these in detail.

3.1 Features

GHI NETMF products include many exclusive features, such as USB Host, USB Device, one-wire, CAN, PPP, WiFi; too many to list here. All these are
included at no additional cost. GHI continues to adds exclusive features via updates free of charge!

3.2 Support
Our world-class support is free. The same engineers that invented these devices are monitoring the forums, emails and phone to provide superior

support. We're here to assist you every step of the way until your product is on the market as soon as possible. We would love for you to visit our forum
and ask other customers how satisfied they are with GHI support.

3.3 Maintenance

Every few months, Microsoft releases a new NETMF version. GHI works very closely with Microsoft on any new possible issues and does all the work
required to update all GHI's NETMF devices. For GHI customers, this is a five minute FREE firmware update and GHI takes care of the rest.

3.4 Robustness

There are thousands of GHI's NETMF devices used around the world in most markets. This vast usage guarantees quality and stability of GHI
Electronics products. You can use any of the GHI Electronics products with ease of mind.

3.5 Time-to-Market

Using GHI Electronics' NETMF products will speed up development. Your design is almost done as soon as you add one of the GHI NETMF products.
We have seen customers that create full products in a week! You can for example, take a FEZ Rhino starter kit, write a little code over a few days, add
your company's logo-sticker on top and you have your own product. You will probably spend most of your time designing/ordering the logo-sticker than
you would spend on the hardware design!

4 Selecting a Device

GHI offers wide range of devices.

FEZ Cobro FEL Béming FET Miad

Please visit http://www.ghielectronics.com for commercial modules and development systems

TINYCLR Hardware Holp Downloads Forem Commumity

Welcome to Tin YCLR. ¥ourguide to embeddod systems.

Jump start your tirst JNET Micrao Fra L project with
the CH Language and Vitual S8 2016 % Editian in
LS

Sharing code for .NET Micro
was never so Fun and

[k in Prearsd) Seasen ferer|

ey [lZIE]ENE]D - [GE] nee

e - Parallax PIR Sensor

By, | Actad 3y 0P dus ags by Anchites
it Fivs pram ple shoses hiwe i s Pasd b Fas e infored Bain Seraor Tre ames warks ach ary
i B S W it piE I el 1At Aol P BSGE G fd ol gl £de 0 mdn Bag Brdsd

intorugt iy il oo pedeind By o din

| evarmoie 7| svpat =] it 1% | sengor 2|

By the way, do not forget about http://www.fezzer.com which includes hundreds of drivers and code snippets.

http://www.microframeworkprojects.com/index.php?title=File:FEZComparison.jpg
http://www.ghielectronics.com
http://www.microframeworkprojects.com/index.php?title=File:TinyClr01.jpg
http://www.TinyCLR.com
http://www.microframeworkprojects.com/index.php?title=File:Fezzer.jpg
http://www.fezzer.com

5 Getting Started

Important note: If you have just received your hardware or you are not sure what firmware is loaded on it, you MUST update the firmware. The
documentation (manual or tutorial) of your device shows you how to update the firmware. This is a required step. Also, make sure you read the
firmware/assembly matching? section in this book.

5.1 System Setup
Before we try anything, we want to make sure the PC is setup with needed software.

e First download and install Visual C# express 2010 (VS2008 or older will not work) http://www.microsoft.com/express/vcsharp/
¢ Now, download and install .NET Micro Framework 4.1 SDK (not the porting kit).

http://www.microsoft.com/downloads/details.aspx?displaylang=en&Family|D=cff5a7b7-c21c-4127-ac65-5516384da3a0
If link above didn't work, search for ?.NET Micro Framework 4.1 SDK?
e Finally, install the GHI NETMF SDK. You can get the SDK from:

http://www.tinyclr.com/dl/

5.2 The Emulator

NETMF includes an emulator that allows the running of NETMF applications right on the PC. For our first project, we will use the emulator to run a very
simple application.

5.3 Expert Settings

There are things we want to access in Visual C# Express 2010 that are hidden by default. To enable all features, you need to enable "Expert Settings"

Tools—> Settings->Expert Settings

5.3.1 Create a Project

Open Visual C# Express and, from the menu, select file -> New Project. The wizard now should have ?Micro Framework? option in the left menu. Click
on it, and from the templates select ?Console Application?.

| Pona Bagas 5 — I

| -
|| it rryie =a

Tadiln
B Pty

peme S am e

Click the ?0K? button and you will have a new project that is ready to run. The project has only one C# file, called Program.cs, which contains very few
lines of code. The file is shown in ?Solution Explorer? window. If this window is not showing then you can open it by clicking ?View->Solution Explorer?
from the menu.

using System;
using Microsoft.SPOT;
namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
Debug.Print (
Resources.GetString (Resources.StringResources.Stringl));

}
For simplicity change the code as it look like the listing below

using System;
using Microsoft.SPOT;

http://www.microsoft.com/express/vcsharp/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=cff5a7b7-c21c-4127-ac65-5516384da3a0
http://www.tinyclr.com/dl/
http://www.microframeworkprojects.com/index.php?title=File:Start01.jpg

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
Debug.Print ("Amazing!");
}
}
}

5.3.2 Selecting Transport

Don't worry if you do not understand the code. | will explain it later. For now, we want to run it on the emulator. Let us make sure you have everything
setup properly. Click on ?Project->Properties? from the menu. In the new showing window, we want to make sure we select the emulator. On the left
side tabs, select ?.NET Micro Framework? and make sure the window looks like the image below. Transport: Emulator

o o . e -
N Waahfakama 1 g P v e

Device: Microsoft Emulator Make sure the output window is visible, click on ?View->Output?

5.3.3 Executing

Finally, we are ready to run our first application. Press F5 key on the computer. This is a very useful shortcut and you will be using it a lot to run your
applications. After you press F5, the application will be compiled and loaded on the emulator and in couple seconds everything will stop! That is because
our program had finished execution so fast that we didn't see much.

We want to ?debug? the code now. Debugging means that you are able to step in the code and see what it is doing. This is one of the greatest values of
NETMEF. This time use F11 instead of F5, this will ?step? in the application instead of just running it. This will deploy the application on the emulator and
stop at the very first line of the code. This is indicated by the yellow arrow.

Eimerespace Xrlzzacleapplicezical

gublic ¢la32

I
pUblic 23a%ic void M
1

W7 Sompds Bkt

| traen s Bear

e Ordne ("ixad|

!

C# applications always start from a method called Main and this is where the arrow had stopped. Press F11 again and the debugger will run the next
line of code, which is the line you changed before. You probably have guessed it right, this line will print ?Amazing!? to the debug window. The debug
window is the output window on Visual C# Express. Make sure Output window is visible like explained earlier and press F11 one more time. Once you
step on that line, you will see the word ?Amazing!?, showing in the output window.

pablic atatis void Hein}h
| [
| CebugePrine (SAmazing ! by

b

Fl =
[Crtpen 30
| Show ezt freme Drbug 3 |l

1 'Hicrosalt SSOT-.:EI:I::II'JD\.I;.5l:l:|l'.i.il.:l:p'.;.tl'.l.:¢:.u+ -
‘Hlocopafi ST . Erulator . Sarple Sarpisloulstoc. saw
Hicroanfs 2T Eealaner dample Jasplelelacor. e
Tz thresd Jxi mss saiced with code O (%30 .
Anarkogl

|
]
I

[1-_'.“_-,:415:.-.;'.- Ermeradiane Worvcko | T Costpret [v Uit

If you now press F11 again, the program will end and the emulator will exit.

5.3.4 Breakpoints

Breakpoints are another useful feature when debugging code. While the application is running, the debugger checks if execution has reached a
breakpoint. If so, the execution will pause. Click the bar right to the left of the line that prints ?Amazing!? This will show a red dot which is the breakpoint.

http://www.microframeworkprojects.com/index.php?title=File:Start02.jpg
http://www.microframeworkprojects.com/index.php?title=File:Start03.jpg
http://www.microframeworkprojects.com/index.php?title=File:Start04.jpg

public stetic woid Maial)

D Debaasy. Print ("Amazing!®)?

Now press F5 to run the software and when the application reaches the breakpoint the debugger will pause it as showing in the image below

public static word Masa()
{
o petag. Puine ("heazingi®)
' }

Now, you can step in the code using F11 or continue execution using F5.

5.4 Running on Hardware

Running NETMF applications on hardware is very simple. Instructions can be very slightly different on every hardware. This book uses FEZ for
demonstration purposes but any other hardware will work similarly.

5.4.1 MFDeploy can Ping!

Before we use the hardware, let us make sure it is properly connected. The NETMF SDK comes with software from Microsoft called MFDeploy. There
are many good uses for MFDeploy but for now we only need it to ?ping? the device. Basically, ?ping? meas MFDeploy will say ?Hi? to the device and
then checks if the device will respond with ?Hi?. This is good to make sure the device connected properly and transport with it has no issues.

Open MFDeploy and connect FEZ using the included USB cable to your PC. If this is the first time you plug in FEZ, Windows will ask for drivers. Supply
the driver from the SDK folder and wait till windows is finished.

In the drop-down menu, select USB. You should see USBizi showing in the device list. You will see USBizi because FEZ is based on USBizi chipset.
Select USBizi and click the ?Ping? button. You should now see back TinyCLR.

T W Aok Dogirecen Tad st o
| Tamgel Tpfesd Medp
[Corscn
(147 = T = Frg | eme
wags f

[91&;:.1; .- Tamplld
| FIRJIA . .- Tampill
| |Eemae .. Tiacia

5.4.2 Deploying to Hardware

Now that we checked that the hardware is connected using MFDeploy, we need to go back to Visual C# express. From the project properties, select
USB for transport and USBizi for the device. Make sure your setup looks similar to the image below.

St Paie - iopuciorin | Pnomcn Mmool iophon

Aopinyicn

1yl

B .
wres
i = pr——
Catug taer
Bt EATHET
HrHn
L Coarafn vy findin i il ettty

g

Bairrt perem i At it e
Ecfrapraly Frity

A et L L LT T

Pressing F5 will now send our simple application to FEZ and it will run right inside the real hardware. Switching from emulator to real hardware is that
simple!

Try the steps we did with the emulator, like setting breakpoints and using F11 to step in the code. Note that ?Debug.Print? will still forward the debug
messages from the hardware to the output window on Visual C# Express.

http://www.microframeworkprojects.com/index.php?title=File:Start05.jpg
http://www.microframeworkprojects.com/index.php?title=File:Start06.jpg
http://www.microframeworkprojects.com/index.php?title=File:Start07.jpg
http://www.microframeworkprojects.com/index.php?title=File:Start08.jpg

6 Component Drivers

FEZ components (LEDs, buttons, temp-sensor, relays, servo-driver...etc.) and FEZ shields (Ethernet, LCD, motor-driver...etc.) come with example
drivers. Those drivers assume you know nothing about hardware. For example, to blink a LED, you simply command the driver to do so. It doesn't talk
about processor pins and how to change the pin state...etc. On the other hand, this book teaches the basics. Use the component drivers to get started
and then use this book to understand what the driver is actually doing.

All component drivers hundreds more are available on http://www.fezzer.com

Sharing code for .NET Micro
was never so Fun and

[i e Sebren: ool

poev [RHZAEEN[5] . [id] et

i - Parallax PIR Sensor

1 At T iy 1F s s by architost
i Fivs pram ple shosas howe i o Pasd b Fas e infored Ban Seraor Tre ames warks ach 2ry
it B M T s I el it el B B0 10 i o el e S o B Bl

intorugt iy il pa peieind By T din

[varmpie 7| svpat =5]| s 1] | sangor 2 |

http://www.fezzer.com
http://www.microframeworkprojects.com/index.php?title=File:Fezzer.jpg

7 C-Sharp Leveld

This book is not meant to teach C# but we will cover most of basics to help you get started.

So learning C# is not boring, | will divide it into different levels so we will go on to do more fun things with NETMF then come back to C# when
necessary.

7.1 What is .NET?

Microsoft developed .NET Framework to standardize programming. (Note that | am talking about the full .NET Framework and not the Micro
Framework.) There are a set of libraries that developers can use from many programming languages. The .NET Framework run on PCs and not on
smaller devices, because it is a very large framework. Also, the full framework has many things that wouldn't be very useful on smaller devices. This is
how .NET Compact Framework was born. The compact framework removed unneeded libraries to shrink down the size of the framework. This smaller
version runs on Windows CE and smart phones. The compact framework is smaller than the full framework but it is still too large for mini devices
because of its size and because it require an operating system to run.

.NET Micro Framework is the smallest version of those frameworks. It removed more libraries and it became an OS independent. Because of the
similarity among these three frameworks, almost same code can now run on PCs and small devices, with little or no modifications.

For example, using the serial port on a PC, WinCE device or FEZ (USBizi) works the same way, when using .NET.

7.2 What is C#?

C and C++ are the most popular programming languages. C# is an updated and modern version of C and C++. It includes everything you would expect
in a modern language, like garbage collector and run-time validation. It is also object-oriented which makes programs more portable and easier to debug
and port.

Although C# puts a lot of rules on programming to shrink down the bug-possibilities, it still offers most of the powerful features C/C++ have.

7.3 ?Main? is the Starting Point

Like we seen before, programs always start at a method called Main. A method is a little chunk of code that does a certain task. Methods start and finish
with open/close curly bracket. In our first program, we only had one line of code in between the curly brackets. The line was

Debug.Print ("Amazing!");

You can see how the line ends with a semicolon. All lines must end the same way. This line calls the Print method that exists in the Debug object. It calls
it while passing the string ?Amazing!?

Confused? Let's try to clear it out a bit. Let's say you are an object. You also have multiple methods to control you, the object. One method can be ?Sit?
and another can be ?Run?. Now what if | want you to ?Say? amazing? | will be calling your speak method with the sentence (string) ?Amazing!?. So the
code will look like

You.Say (?Amazing!?);

Now why do we need the quotes before and after the word Amazing? That is because C# doesn't know if the text you are writing is actually command or
it is actually text (strings). You can see how it is colored in red when you add quotes, which makes reading code easier for us, humans.

7.4 Comments

What if you want to add comments/notes/warnings in your code? Those comments will help you, and others, understand what the code means. C#
completely ignores these comments. There are 2 ways to create comments, line comments and block comments. Comments (Ignored text) are shown in
green.

To comment a line, or part of a line, add // before the comment text. The color of the text will change to green indicating that the text is now comment
and is ignored by C#.

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
// This is a comment
Debug.Print ("Amazing!");//this is a comment too!

}

You can also comment a whole block. Start the comment with /* and then end it with */ symbols

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{

public class Program

{

public static void Main()
{
/* This is a comment
it it still a comment
the block will end now */
Debug.Print ("Amazing!");

7.4.1 while-loop

It is time for our first keyword, ?while?. The while-loop start and end with curly brackets to contain some code. Everything inside will continuously run
while a statement is true. For example, | can ask you to keep reading this book ?while? you are awake!

So, let's make the program that continuously print 7Amazing!? endlessly. This endless loop has no ending so it will always be ?true?.

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl

{
public class Program
{
public static void Main ()
{
while (true)
{
Debug.Print ("Amazing!");
}

}

In the code above, execution will start at ?Main? method as usual and then it will go to the next line which is the while-loop. The while-loop is telling the
run time to execute the code inside its brackets while the statement is ?true?. Actually, we do not have a statement there but we have ?true? instead
which means this loop will always run.

Do not hit F5 to run the program or you will flood the output window with the word ?Amazing!?. Instead, hit F11 and step in the code to understand how
the loop works. Note that this program will never end so you will need to force stop using shift+F5.

Note: You can reach all these debug shortcuts from the menu under Debug.

7.4.2 Variables

Variables are places in memory reserved for your use. The amount of memory reserved for you depends on the type of the variable. | will not cover
every single type here but any C# book will explain this in details. We will be using int variable. This type of variable is used to hold integer numbers.

Simply saying
int MyVar;

will tell the system that you want some memory to be reserved for you. This memory will be referenced to as MyVar. You can give it any name you like
as long as the name doesn't contain spaces. Now you can put any integer number in this memory.

MyVar = 1234;
You can also use mathematical operations to calculate numbers
MyVar = 123 + 456;

or you can increment the number by one

10

MyVar++;
or decrement it by one

MyVar- -;

With all that, can we make a program that prints the word 'Amazing!' three times? Here is the code

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{

public class Program

{
public static void Main()
{
int MyVar;
MyVar = 3;
while (MyVar>0)
{
MyVar—-;
Debug.Print ("Amazing!");

Note: how the while-loop statement is not always ?true? anymore but it is MyVar>0. This is saying, keep looping as long as MyVar value is more than 0.

In the very first loop MyVar is 3. Inside every loop, we decrement MyVar by one. This will result in the loop running exactly three times and therefore
printing ?Amazing!? three times.

Let's make things more interesting. | want to print numbers 1 to 10. OK, we know how to make a variable and we know how to increment it but how to
print a number on the debug output window? Simply giving MyVar to Debug.Print will give you error and it won't work. This is because Debug.Print will
only accept strings, not integers. How do we convert integer variable ?ToString?? It is very simple, call MyVar.ToString(). That was easy!

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
int MyVar;
MyVar = 0;
while (MyVar<10)
{
MyVar++;
Debug.Print (MyVar.ToString());

Last thing to add is that we want to make the program print

Count: 1
Count: 2

Count: 9
Count:10

This can be easily done by adding strings. Strings are added using the + symbol just like how you would add any numbers. Try the following code

using System;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
int MyVar;
MyVar = 0;
while (MyVar<10)
{

11

MyVar++;
Debug.Print ("Count: " + MyVar.ToString());

7.4.3 Assemblies

Assemblies are files containing compiled (assembled) code. This allows developer to use the code but they don't have access to the source code. We
had already used Debug.Print before. Who made the Debug class/object and who made the Print method that is in it? Those calls are made by NETMF
team at Microsoft. They compile the code and give you an assembly to use it. This way, users are not messing with the internal code but they can use it.

At the top of the code used before, we see using Microsoft. SPOT; This tells C# that you want to use the ?namespace? Microsoft.SPOT. Okay, then
what is a namespace? Programs are split into regions ?spaces?. This is very important when programs are very large. Every chunk of code or library is
assigned a ?name? for its ?space?. Programs with the same ?namespace? see each other but if the name space is different then we can optionally tell
C# to ?use? the other name space.

The ?name? for our program's ?space? is namespace MFConsoleApplication1 To ?use? other name space like "Microspft. SPOT" you need to add
using Microsoft.SPOT;

What is SPOT anyways? Here is a short story! A few years ago, Microsoft privately started a project called SPOT. They realized that this project was a
good idea and wanted to offer it to developers. They decided to change the product name to .NET Micro Framework but they kept the code the same
way for backward compatibility. In short SPOT is NETMF!

Back to coding, now try to remove or comment out using Microsoft. SPOT; and your code will not work anymore

Here is the error message showing after | commented out using Microsoft.SPOT;
| ffuaing Hicroaofs, SECT?

B nasesracse MPCamsolehppliicariand
| %
= public &lass Prégres

[
B pablia azazie woid Main|)
L
| Dpbug. Praas (“Amazing
| '

|

Emar List
[L Ervo || (0 Wamings | (510 Meisages
Descriplion File Lim
1 Thensme Debug does not et i the Fresgeam 10
aument senbod

We used the assemblies but where are they added? Uncomment the code and make sure it still works. Now take a look at ?Solution Explorer? window.
Click the little + sign by the word ?References? and you should see two assemblies.

Blam
_; Solution ‘MEConseledpplication’ (L pmjs:l:t}
= B3 MFCansaleAppEation
[Properies
[oBMEed Referance:
-3 Micresoft.2P0OT.Mative
=2 mgcarlib
] Programi.cs
- 3 Resources.ress

Now, right-click on ?Microsoft. SPOT.Native? then click ?Remove?
-~ 2 MFConsoleApplication
¥ =4 Properties
- ¥ References

.-::..;] Pro '_I p[ﬂpenies_ |
- = Resooreomrem———r!

Our program still be exactly the same as before but now it is missing a very important assembly. Try to run it and you will see something like this

12

http://www.microframeworkprojects.com/index.php?title=File:CS1_01.jpg
http://www.microframeworkprojects.com/index.php?title=File:CS1_02.jpg
http://www.microframeworkprojects.com/index.php?title=File:CS1_03.jpg

|- vaing Kicxepess -SEOT!
|

E na=sspacs

J !

L

T: :

HEConzeleApplicetionl

= public clase Program

[t
public spanis woid Main(h

L]

'&mrUﬂ

[L Erar]| 410 Wermings | ()0 Messages

Desapteon

1 Thetype o namespace name 'Microsoft! H
could nict be feund {are you missing a using
directive or an assernbly reference?)

Let's add it back and make sure our program still runs. Right click on the work ?References? and select ?Add Reference...?

=~ §# MFConsoleApplication

(- 4] Properties
., Pr—

235

Add Reference...
Add Service Reference...

- i3 Resources.resx

In the new window, select ?.NET? tab and then select ?Microsoft. SPOT.Native? and click OK.

i R Refreescn 2]
T 1
|37 Prijols | Relos | Bseric
| Lergeraat Hire T 1
|| bt PO it EET |
Mot I T Hordearet BtraPon PR
Wz rowaft 1) B Heard e, Lisl sl
VR L ek rarea
L et {10 B) Riizbid
Wi icofy | L Han HIFIEA
LLELE RS R po b]
| Whzipolf WD B ol gy FIFIHA
| Vst [| Ern{arw Eaid
| FERied
| sy Rarued
. ' i
{ [|| fanamt

Try the program to make sure its still running. If you have any errors, please go back and read more to fix it before moving on.

7.5 What Assemblies to Add?

Throughout this book, | provide many examples but | do not tell you what assemblies | am using. This is really easy to figure out from the documentation

but you may find

it difficult sometimes. Why not just add them all? As a beginner, your applications are still very small so you will have a lot of memory

even if you add all of the assemblies, even if you are not using them. The assemblies below are most commonly used. Add them for all of your projects
for now. Once you know where everything belongs, you can start removing the ones you don't need.

GHIElectronics.
GHIElectronics.
GHIElectronics.
Microsoft.SPOT.
Microsoft.SPOT.
Microsoft.SPOT.
Microsoft.SPOT.

mscorlib
System
System. IO

NETMF .Hardware
NETMF . IO

NETMF . System
Hardware

Native
Hardware.SerialPort
I0

Don't forget about using one of the following according to what device you are using. These contain the pin definitions.

FEZMini_GHIElectronics.NETMF.FEZ
FEZDomino_GHIElectronics.NETMF.FEZ.

7.5.1 Threading

This can be a very advanced topic. Note that only very basic information is covered here.

13

http://www.microframeworkprojects.com/index.php?title=File:CS1_04.jpg
http://www.microframeworkprojects.com/index.php?title=File:CS1_05.jpg
http://www.microframeworkprojects.com/index.php?title=File:CS1_06.jpg

Processors/programs only run one instruction at once. Remember how we stepped in the code? Only one instruction got executed and then the flow
went on to the next instruction. Then how is it possible that your PC can run multiple programs at the same time? Actually, your PC is never running
them a once! What it is doing is running every program for a short time, then it stops it and goes on to run the next program.

Generally, threading is not recommended for beginners but there are things that can be done much easier using threads. For example, you want to blink
an LED. It would be nice to blink an LED in a separate thread and never have to worry about it in the main program.

Also, adding delays in the code require the threading namespace. You will understand this better in coming examples.

By the way, LED stands for Light Emitting Diodes. You see LEDs everywhere around you. Take a look at any TV, DVD or electronic device and you will
see a little Red or other color light bulb. These are LEDs.

FEZ comes with with a LED library to simplify this even further. This book explains how to directly control pins/devices.
Add ?using System.Threading? to your program.

using System;
using Microsoft.SPOT;
-using System.Threading;

That is all we need to use threads! It is important to know that our program itself is a thread. On system execution start-up, C# will look for ?Main? and
run it in a thread. We want to add a delay in our thread (our program), so it will print the word 'Amazing!' once every second. To delay a ?thread?, we put
it to ?Sleep?. Note that this Sleep is not for the whole system. It will only ?Sleep ? the ?thread?.

Add Thread.Sleep(1000);
The ?Sleep? method takes time in milliseconds. So for 1 second we will need 1000 milliseconds.

using System;
using Microsoft.SPOT;
using System.Threading;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
while (true)
{
Debug.Print ("Amazing!");
Thread.Sleep (1000);

}

Try to run the program and look at the output window. If you've tried it on the emulator and it wasn't exactly 1 second, don't worry about it. Try it on real
hardware (FEZ) and it will be very close to 1 second.

Let's create a second thread (our first was automatically created, remember?) We will need to create a new thread object handler (reference) and name
it something useful, like MyThreadHandler. And create a new local method and name it MyThread. Then, run the new thread.

We are not using the ?Main? thread anymore so | will put it in endless sleep. Here is the code listing. If you don't understand it then don't worry about it.
All is needed at this point is that you know how to ?Sleep? a thread.

using System;
using Microsoft.SPOT;
using System.Threading;

namespace MFConsoleApplicationl
{
public class Program
{
public static void MyThread()
{
while (true)
{
Debug.Print ("Amazing!");
//sleep this thread for 1 second
Thread.Sleep (1000);
}
}
public static void Main ()
{
// create a thread handler
Thread MyThreadHandler;

14

http://www.microframeworkprojects.com/index.php?title=File:CS1_07.jpg

// create a new thread object

//and assign to my handler
MyThreadHandler = new Thread(MyThread) ;
// start my new thread
MyThreadHandler.Start () ;

L1700 700007770077 777077777777
// Do anything else you like to do here
Thread.Sleep (Timeout.Infinite);

15

8 Digital Input & Output

On processors, there are many ?digital? pins that can be used as inputs or outputs. When saying ?digital? pins we mean the pin can be ?one? or
?zero?. Important note: Static discharge from anything including human body will damage the processor. You know how sometimes you touch someone
or something and you feel a little electronic discharge? This little discharge is high enough to kill electronic circuits. Professionals use equipments and
take precautions handling the static charged in their body. You may not have such equipment so just try to stay from touching the circuit if you don't
have to. You may also use an Anti-static wrist band.

NETMF supports digital input and output pins through ?Microsoft. SPOT.Hardware? assembly and name space.

Go ahead and add the assembly and namespace like we learned before.

We are now ready to use the digital pins.

8.1 Digital Outputs

We know that a digital output pin can be set to zero or one. Note that one doesn't mean it is 1 volt but it means that the pin is supplying voltage. If the
processor is powered off of 3.3V then the state 1 on a pin means that there is 3.3V on the output pin. It is not going to be exactly 3.3V but very close.
When the pin is set to zero then it is voltage is very close to zero volts.

Those digital pins are very weak! They can't be used to drive devices that require a lot of power. For example, a motor may run on 3.3V but you can
NOT connect it directly to the processor's digital pin. That is because the processor output is 3.3V but with very little power. The best you can do is drive
a small LED or ?signal? 1 or 0 to another input pin.

All FEZ boards have a LED connected to a digital pin. We want to blink this led. Digital output pins are controller through OutputPort object. We first
create the object handler (reference), and then we make a new OutputPort object and assign it to our handler. When creating a new OutputPort object,
you must specify the initial state of the pin, 1 or 0. The one and zero can be referred to high or low and also can be true for high and false for low. We
will make the pin true (high) in this example to turn on our LED by default.

Here is the code using the pin number 4, FEZ Domino on-board LED.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
OutputPort LED;
LED = new OutputPort ((Cpu.Pin)4, true);

Thread.Sleep (Timeout.Infinite);

}

FEZ SDK comes with ?FEZMini_GHIElectronics.NETMF.FEZ? and ?FEZDomino_GHIElectronics. NETMF.FEZ? assemblies. Add the appropriate
assembly to your program then also adds ?FEZ_GHIElectronics. NETMF.System?. Now modify the code by adding ?using GHIElectronics. NETMF.FEZ?
at the top of your code. Here is the code, this time using the FEZ pin enumeration class.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()

{
OutputPort LED;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);

16

http://www.microframeworkprojects.com/index.php?title=File:CS1_08.jpg

Thread.Sleep (Timeout.Infinite);

}
See how much it is much easier? We really do not need to know where the LED is connected.

Run the program and observe the LED. It should be lit now. Things are getting more exciting!

8.1.1 Blink an LED

To blink an LED, we need to set the pin high and delay for some time then we need to set it low and delay gain. Its important to remember to delay
twice. Why? It's because our eyes are too slow for computer systems. If the LED comes on and then it turns back off very fast, your eyes will not see
that is was on for a very short time. What do we need to blink a LED? ... We learned how to make a while-loop, we know how to delay, and we need to
know how to set the pin high or low. This is done by calling Write method in the OutputPort object. Note that you can't use ?OutputPort.Write? This is
very wrong because what output ports you are referring to? Instead, use ?LED.Write? which make complete scene. Here is the code to blink the
on-board LED on FEZ

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{

public class Program

{

public static void Main()
{
OutputPort LED;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
while (true)
{
LED.Write (!LED.Read());

Thread.Sleep (200);

}
This is another way, simpler way, to blink an LED.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program

{
public static void Main ()

{
OutputPort LED;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
while (true)
{
LED.Write (true);
Thread.Sleep (200);

LED.Write (false);
Thread.Sleep (200);

}

Let see if you can change the sleep time to make the LED blink faster or slower. Also, try to use a different value for its state so it is on for long time and
then it is off for short time.

Important note: Never connect two output pins together. If they are connected and one is set to high and the other is set to low, you will damage the
processor. Always connect an output pin to an input, driving circuit or a simple load like an LED.

8.2 Digital Inputs

Digital inputs sense if the state of its pin is high or low. There is limitation on these input pins. For example, the minimum voltage on the pin is 0 volts. A
negative voltage may damage the pin or the processor. Also, the maximum you can supply to the pin must be less than the processor power source

17

voltage. All GHI Electronics boards use processors that run on 3.3V so the highest voltage the pin should see is 3.3V. This is true for ChipworkX but for
Embedded Master and USBizi, those processors are 5V-tolerant. This means that even though the processor runs on 3.3V, it is capable of tolerating up
to 5V on its inputs. Most digital chips that you would be interfacing to are 5V. Being 5V tolerant allows us to use any of those digital circuits with our
processor.

Note: FEZ is based on USBizi and so it is 5V tolerant.
Important note: 5V-tolerant doesn't mean the processor can be powered off 5V. Always power it with 3.3V. Only the input pins can tolerate 5V on them.

InputPort object is used to handle digital input pins. Any pin on the processor GHI uses can be input or output, but of course, not both! Unconnected
input pins are called floating. You would think that unconnected input pins are low but this is not true. When a pin is an input and is not connected, it is
open for any surrounding noise which can make the pin high or low. To take care of this issue, modern processors include and internal weak pull-down
or pull-up resistors, that are usually controlled by software. Enabling the pull-up resistor will pull the pin high. Note that the pull-up resistor doesn't make
a pin high but it pulls it high. If nothing is connected then the pin is high by default.

There are many uses for input ports but the most common is to connect it to a button or a switch. FEZ already includes an on-board button connected to
the loader pin. The loader pin is used on power up to enter the boot loader but we can still use this pin at run-time. The button is enumerated as ?LDR?
or ?Loader?.

The button will connect between ground and the input pin. We will also enable the pull-up resistor. This means that the pin will be high (pull-up) when
button is not pressed and low (connected to ground) when the button is pressed. We will read the status of the button and pass its state to the LED.
Note that the pin is high when the button is not pressed (pulled-high) and it is low when the button is pressed. This means the LED will turn off when the
button is pressed.

The code:

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
OutputPort LED;
InputPort Button;

LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp) ;
while (true)
{
LED.Write (Button.Read());
Thread.Sleep(10);

}

Creating the InputPort object included ?false? in it. This is used for glitch filter. This will be explained later. Also, it maybe is confusing how we passed
the state of an InputPort to set an OutputPort. We will revisit this in the next section.

8.2.1 Interrupt Port

If we want to check the status of a pin, we will always have to check its state periodically. This wastes processor time on something not important. You
will be checking the pin, maybe, a million times before it is pressed! Interrupt ports allows us to set a method that will be executed when the button is
pressed (when pin is low for example).

We can set the interrupt to fire on many state changes on the pin, when pin is low or maybe when it is high. The most common use is the ?on change?.
The change from low to high or high to low creates a signal edge. The high edge occurs when the signal rises from low to high. The low edge happen
when the signal falls from high to low.

In the example below, | am using both edges so our method ?IntButton_Onlinterrupt? will automatically run whenever the state of our pin changes.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
// this moved out here so it can be used by other methods
static OutputPort LED;

18

public static void Main()
{
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
// the pin will generate interrupt on high and low edges
InterruptPort IntButton =
new InterruptPort ((Cpu.Pin)FEZ_Pin.Interrupt.LDR, true,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeBoth);

// add an interrupt handler to the pin
IntButton.OnInterrupt +=
new NativeEventHandler (IntButton_OnInterrupt);

//do anything you like here
Thread.Sleep (Timeout.Infinite);
}

static void IntButton_OnInterrupt (uint port, uint state,
DateTime time)

{
// set LED to the switch state
LED.Write (state == 0);

Note: Not all pins on the processor support interrupts, but most of them do. For easier identification of the interrupt pins, use the enumeration for
?Interrupt? instead of ?Digital?, as shown in earlier code.

8.2.2 Tristate Port

If we want a pin to be an input and output, what can do? A pin can never be in and out simultaneously but we can make it output to set something and
then make it input to read a response back. One way is to ?Dispose? the pin. We make an output port, use it and then dispose it. Then we can make the
pin input and read it.

NETMF supports better options for this, through Tristate port. Tristate means three states; that is input, output low and output high. One minor issue
about tristate pins is that if a pin is set to output and then you set it to output again then we will receive an exception. One way to come around this is by
checking the direction of the pin before changing it. The direction of the pin is in its property ?Active? where false means input and true is output. |
personally do not recommend the use of Tristate ports unless absolutely necessary.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
static void MakePinOutput (TristatePort port)
{
if (port.Active == false)
port.Active = true;
}
static void MakePinInput (TristatePort port)
{
if (port.Active == true)
port.Active = false;
}
public static void Main()
{
TristatePort TriPin =
new TristatePort ((Cpu.Pin)FEZ_Pin.Interrupt.LDR, false,
false, Port.ResistorMode.PullUp);
MakePinOutput (TriPin);// make pin output
TriPin.Write (true);
MakePinInput (TriPin); // make pin input
Debug.Print (TriPin.Read () .ToString());

Note: Due to internal design, TristatePort will only work with interrupt capable digital pins. Important Note: Be careful not to have the pin connected to a
switch then set the pin to output and high. This will damage the processor. | would say, for beginner applications you do not need a tristate port so do
not use it till you are comfortable with digital circuits.

19

9 C-Sharp Level2

9.1 Boolean Variables

We learned how integer variables hold numbers. In contrast, Boolean variables can only be true or false. A light can only be on or off, representing this
using an integer doesn't make a lot of sense but using Boolean, it is true for on-state and false for off-state. We have already used those variables to set
digital pins high and low, LED.Write(true);

To store the value of a button in a variable we use

bool button_state;
button_state = Button.Read();

We also used while-loops and we asked it to loop forever, when we used true for the statement

while (true)
{

//code here
}

Take the last code we did and modify it to use a boolean, so it is easier to read. Instead of passing the Button state directly to the LED state, we read the
button state into button_state boolean then we pass the button_state to set the LED accordingly.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
OutputPort LED;
InputPort Button;
bool button_state;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);

Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp) ;

while (true)

{
button_state = Button.Read();
LED.Write (button_state);
Thread.Sleep(10);

Can you make an LED blink as long as the button is pressed?

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
OutputPort LED;
InputPort Button;

LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp);
while (true)
{
while (Button.Read() == false)//Button is false when pressed
{
LED.Write (true);
Thread.Sleep(300);
LED.Write (false);
Thread.Sleep (300);

20

Important note: The == is used to check for eqality in C#. This is different from = which is used to assign values.

9.2 if-statement

An important part of programming is checking some state and takes action accordingly. For example, ?if? the temperature is over 80, turn on the fan. To
try the if-statement with our simple setup, we want to turn on the LED ?if? the button is pressed. Note this is the opposite from what we had before.
Since in our setup, the button is low when it is pressed. So, to achieve this we want to invert the state of the LED from the state of the button. If the
button is pressed (low) then we want to turn the LED on (high). LED need to be checked repeatedly so we will do it once every 10ms.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
OutputPort LED;
InputPort Button;
bool button_state;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp) ;
while (true)
{
button_state = Button.Read()

if (button_state == true)
{

LED.Write (false);
}

if (button_state == false)
{

LED.Write (true);
}

Thread.Sleep(10);

9.3 if-else-statements

We learned how if-statement works. Now, we want to use else-statement. Basically, ?if? a statement is true, the code inside the if-statement runs or
?else? the code inside else-statement will run. With this new statement, we can optimize the code above to be like this

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
OutputPort LED;
InputPort Button;
bool button_state;
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp) ;
while (true)
{
button_state = Button.Read()

if (button_state == true)
{

LED.Write (false);
}

21

else
{

LED.Write (true);
}

Thread.Sleep(10);

I will let you in on a secret! We only used if-statement and else-statement in this example for demonstration purposes only. We can write the code this
way.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
OutputPort LED;
InputPort Button;

LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp);
while (true)
{
LED.Write (Button.Read() == false);
Thread.Sleep (10);

Or even this way!

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{

public class Program

{

public static void Main()

{
OutputPort LED;
InputPort Button;

LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, false,
Port.ResistorMode.PullUp) ;
while (true)
{
LED.Write (!Button.Read());
Thread.Sleep(10);

Usually, there are many way to write the code. Use what makes you comfortable and with more experience, you will learn how to optimize the code.

9.4 Methods and Arguments

Methods are actions taken by an object. It can also be called a function of an object. We have already seen methods and have used them. Do you
remember object Debug which has Print method? We have already used Debug.Print many times before, where we gave it a ?string? to display in the
output window. The ?string? we passed is called an argument.

Methods can take one or more optional arguments but it can only return one optional value.

The Print method in Debug object only takes one string argument. Other method may not require any arguments or may require more than one
argument. For example, a method to draw a circle can take four arguments, DrawCircle(posx, posy, diam, color). An example for returning values can

22

be a method that returns temperature.

So far, we have learned of three variable types, int, string and bool. Will cover other types later but remember that everything we talk about here apply to
other variable types.

The returned value can be an optional variable type. If no returned value is used then we replace the variable type with ?void?. The ?return? keyword is
used to return values at the end of a method.

Here is a very simple method that ?returns? the sum of two integers.

int Add(int varl, int var2)
{
int var3;
var3 = varl + var2;
return var3;

}

We started the method with the return value type, ?int? followed by the method name. Then we have the argument list. Arguments are always grouped
by parenthesis and separated by commas.

Inside the Add method, a local integer variable has been declared, that is var3. Local variables are created inside a method and die once we exit the
method. After that, we add our two variables and finally return the result.

What if we want to return a string representing the sum of two numbers? Remember that a string containing number 123 is not the same as an integer
containing 123. An integer is a number but a string is an array or characters that represent text or numbers. To humans these are the same things but in
computer world this is totally different.

Here is the code to return a string.

string Add(int varl, int var2)
{

int wvar3;

var3 = varl + var2;

string MyString;
MyString = var3.ToString();

return MyString;
}

You can see how the returned type was changes to string. We couldn't return var3 because it is integer variable and so we had to convert it to a string.
To do that, we create a new variable object named MyString. Then convert var3 "ToString" and place the new string in MyString.

The question now is how come we called a "ToString" method on a variable of type interger? In reality, everything in C# is an object even the built in
variable types. This book is not going into these details as it is only meant to get you started.

This is all done in multiple steps to show you how it is done but we can compact everything and results will be exactly the same.

string Add(int varl, int var2)
{

return (varl+var2) .ToString();
}

| recommend you do not write code that is extremely compact, like the example above, till you are very familiar with the programming language. Even
then, there should be limits on how much you compact the code. You still want to be able to maintain the code after sometime and someone else may
need to read and understand your code.

9.5 Classes

All objects we talked about so far as actually ?classes? in C#. In modern object oriented programming languages, everything is an object and methods
always belong to one object. This allows for having methods of the same name but they can be for completely different objects. A ?human? can ?walk?
and a ?cat? can also ?walk? but do they walk the same way?When you call ?walk? method in C# then it is not clear if the cat or the human will walk but
using human.walk or cat.walk makes it clearer.

Creating classes is beyond the scope of this book. Here is a very simple class to get you started

class MyClass
{
int Add(int a, int b)
{
return a + b;

}

23

9.6 Public vs. Private

Methods can be private to a class or publicly accessible. This is useful only to make the objects more robust from programmer misuse. If you create an
object (class) and this object has methods that you do not anyone to use externally then add the keyword ?private? before the method return type;
otherwise, add the ?public? keyword.

Here is a quick example

class MyClass
{
public int Add(int a, int b)
{
// the object can use private methods
// inside the class only
DoSomething () ;
return a + b;
}
private void DoSomething ()
{
}

9.7 Static vs. non-static

Some objects in life have multiple instances but others only exist once. The objects with multiple instances are non-static. For example, an object
representing a human doesn't mean much. You will need an ?instance? of this object to represent one human. So this will be something like

human Mike;

We now have a ?reference? called Mike of type human. It is important to note that this reference is at this point not referencing to any object (no
instance assigned) just yet, so it is referencing NULL.

To create the ?new? object instance and reference it from Mike
Mike = new human();
We now can use any of the human methods on our ?instance? Mike

Mike.Run (distance);
Mike.Eat ();
bool hungry = Mike.IsHungry();

We have used those non-static methods already when we controlled input and output pins.

When creating a new non-static object, the ?2new? keyword is used with the ?constructor? of the object. The constructor is a special type of method that
returns no vale and it is only used when creating (construction) new objects.

Static methods are easier to handle because there is only one object that is used directly without creating instances. The easiest example is our Debug
object. There is only one debug object in the NETMF system so using its methods, like Print, is used directly.

Debug.Print (?string?);

I may not have used the exact definitions of static and instances but | wanted to describe it in the simplest possible way.

9.8 Constants

Some variables may have fixed values that never change. What if you accidentally change the value of this variable in your code? To protect it from
changing, add the ?const? keyword before the variable declaration.

const int hours_in_one_day = 24;

9.9 Enumeration

An Enumeration is very similar to constant. Let's say we have a device that accepts four commands, those are MOVE, STOP, LEFT, RIGHT. This
device is not a human and so these commands are actually numbers. We can create constants (variables) for those four commands like the following

const int MOVE
const int STOP 2;
const int RIGHT = 3;
const int LEFT = 4;

24

//now we can send a command...
SendCommand (MOVE) ;
SendCommand (STOP) ;

The names are all upper case because this is how programmers usually name constants. Any other programmer seeing an upper case variable would
know that this is a constant.

The code above is okay and will work but it will be nicer if we can group those commands

enum Command
{

MOVE = 1,
STOP = 2,
RIGHT = 3,
LEFT = 4,

}

//now we can send a command...
SendCommand (Command.LEFT) ;
SendCommand (Command.STOP) ;

With this new approach, there is no need to remember what commands exist and are the command numbers. Once the word ?Command? is typed in,
Visual Studio will give you a list of available commands.

C# is also smart enough to increment the numbers for enumerations so the code can be like this listing and will work exactly the same way

enum Command
{

MOVE = 1,

STOP ,

RIGHT,

LEFT ,
}
//now we can send a command...
SendCommand (Command.LEFT) ;
SendCommand (Command. STOP) ;

25

10 Assembly/Firmware Matching

NETMF devices usually include extended features. Those extended features require an extra assembly/library to be added to the C# projects so a user
can make use of the new features. For example, NETMF doesn't support Analog pins but FEZ and other hardware from GHI does support analog pins.
To use the analog pins, you need to add an assembly/library provided by GHI then you have new classes/objects that can be used to access those new
features. Important Note: The firmware will fail to run if the version of the assembly/library that used in the project does not match the version of the
firmware.

This is very common issue that users run into when updating the firmware where the application just stop working and debugging seem to fail. Here is
what happens:

Scenario #1: A developer had received a new device. This device happens to have firmware version 1.0 on it. Then the developer went to the website
and downloaded the latest SDK. The SDK had firmware version 1.1 in it. When trying to upload a project, VS2010 will fail to attach to the device with no
indication why! The developer will now think the new device is not functioning, actually, the device is just fine but, in this example, the firmware is version
1.0 and the assembily is version 1.1 so the system will refuse to run. To fix the issue, update the firmware on the device to match the firmware in the
SDK.

Scenario #2: A developer has a perfectly working system that, for example, uses firmware version 2.1. Then a new SDK comes out with firmware
version 2.2, so the developer installs the new SDK on the PC then uploads the new firmware to the device (FEZ). When rebooting the device, it stops
working because the new loaded firmware is version 2.2 but the user application still uses assembly version 2.1. To fix this issue, open the project that
has the user application and remove any device-specific assemblies. After they are removed, go back and add them back. With this move the new files
will be fetched from the new SDK.

10.1 Boot-up Messages

We can easily see why the system is not running using MFDeploy. NETMF outputs many useful messages on power up. Should the system become
unresponsive, fails to run or for any other debug purposes, we can use MFDeploy to display these boot up messages. Also, all ?Debug.Print? messages
that we usually see on the output window are visible on MFDeploy.

To display the boot up messages, click on ?Target->Connect? from the menu then reset the device. Right after you reset the device in one second, click
on ?ping?. MFDeploy will freeze for a second then display a long list of messages.

£ _MET Micre Framewssk Deglayment Tasl
T =
Target | Optians Help

hpplieation Deployment 3
Marage Device Keys I
Configuration r

Device Capabilities Crels Shift=C

Connect F5
Discannect Ctri=F5

Note that on FEZ Domino the reset button is available on the board. For FEZ Mini, you need to connect a switch to the reset pin or if you have FEZ Mini
in the starter kit or robot kit then you can use the reset button on the board.

1 1 By e et Pl =

| mwpm s Ve Ay

26

http://www.microframeworkprojects.com/index.php?title=File:CS2_01.jpg
http://www.microframeworkprojects.com/index.php?title=File:CS2_02.jpg

11 Pulse Width Modulation

PWM is a way of controlling how much power is provided to a device. Dimming a LED or slowing down a motor is best done using a PWM signal. If we
apply power to a LED it comes completely on and if we shut off the power then it is completely off. Now, what if we turn the LED on for 1ms and then off
for 1ms? In reality it is blinking on and off very fast but our eyes would never see it blinking that fast causing our eyes to see the LED to be dimmer than
before. We calculate this using (on/(off+on))x100= 50%. So, the LED is only getting half the energy.

So if we turn the LED on for 1ms and off for 9ms we will end up with (1/(1+9))x100=10% energy, so the LED is very dimmed.

PWM is very simple to generate but if we are going to toggle a pin few hundred or thousand times a second then we are wasting a lot of processor
power. There are devices that generate PWM signals more efficiently. Also, many processors include a built-in circuitry needed to generate PWM in
hardware. This means, we can setup the PWM hardware to generate a PWM signal and then it is done automatically without the need for processor
interaction.

FEZ included few pins that can serve as PWM pins. The FEZ library includes everything needed to activate PWM on any one of those pins.
Here is an example that creates a PWM object that sets the PWM to 10 Khz (10,000 clocks/sec) and the duty cycle to 50 (50% energy)

PWM pwm = new PWM((PWM.Pin) FEZ_Pin.PWM.LED);
pwm.Set (10000, 50);

FEZ includes an enumeration of what pins have PWM hardware. Using the PWM enumeration, we can easily find the PWM pins on your device. Visual
studio will give you a list of them while you are typing your code, just like this image.

t
Mgy = omew FM((byTe)FEZ_Pan,
pa=.Soc (10000, £0);

From the list above, you can see that the LED is connected to a PWM signal. Instead of blinking LED, what about we fade it in and out? This will make it
look so much cooler! Here is the code.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
sbyte dirr = 1;
byte duty = 40;
PWM pwm = new PWM((PWM.Pin)FEZ_Pin.PWM.LED);
while (true)
{
pwm.Set (10000, duty);
duty = (byte) (duty + dirr);
if (duty > 90 || duty < 10)
{
dirr *= -1;

}

Thread.Sleep(10);

}

The code will loop while incrementing the energy of the LED to 90% and then goes back and decrement it to 10% and so on.

Important: PWM will be perfect to control how fast your robot will move or how fast a fan is spinning. A pin with PWM signal can power an LED just fine.
This is not the case if we are controlling something with high power demands, like a motor or a light bulb. In this case, we would need to use the PWM
signal to control a circuitry and that circuitry will supply the needed power to the device. For example, H-bridge circuits are most commonly used to
control the speed and direction of motors.

Important note: All hardware PWM signals share the same clock. Changing the frequency on one will change it on other channels, but duty cycle is
independent.

27

http://www.microframeworkprojects.com/index.php?title=File:CS2_03.jpg

11.1 Simulating PWM

PWM pins are controlled internally inside the processor using a special PWM hardware. This means, the hardware internally will toggle the pin. The
processor only needs to set some registers and then no processor interaction is needed at all to generate the PWM signal.

GHI's NETMF devices provide an OutputCompare class. Through this class a user can generate about any signal, including PWM. Note that this is done
in software so it is better to use the PWM class is possible. Why? When you use the PWM class then the signal for PWM is generated using hardware
and the processor doesn't need to do anything. On the other hand, when you use OutputCompare to generate PWM then the processor need to keep
track of time and toggle the PWM pin at specific time constants.

The servo motor example provided on www.TinyCLR.com uses OutputCompare. The advantage of this is that you can use any pin to control a servo. It
is better to use PWM to control the servo but then you will only be able to use the PWM specific pins.

11.2 Servo Motors and Pulse Control
We have learned how to control the amount of energy using PWM. There are other good uses for PWM, such as controlling servos. The PWM class

provides two methods Set and SetPulse methods. Earlier, we utilized PWM. Set which very well suited for setting energy levels. For controlling servos,
using SetPulse is more suitable.

So how do servos work? This is best explained in this image | found on www.pc-control.co.uk

o J____J____ L350 me: Metatral @

You can control the position of a servo by providing it with a pulse (see image above). If the pulse width is about 1.25ms then the servo is at 0 degrees.
Increasing the pulse to 1.50ms will move the servo to 90 degrees (neutral). A wider pulse of 1.75ms will move the servo to 180 degrees. Okay, those is
easy to generate using PWM but are still missing one piece of info. The image tells us how wide (in time) is the ?high pulse? but what about the ?low
time?? Servos expect a pulse every 20ms to 30ms but this is not very critical to servos. So, we now have everything we need. Before | proceed, | want
to explain what the ?period? is. A period of a frequency (signal) is the high time plus the low time. Now we are ready for some code.

The method PWM.SetPulse needs the high time and the period of the signal. Since our servo low time is not critical, can be 20ms to 30ms then | will just
use a period of 20ms. This will result in a low time that will vary slightly but again, this is not important to servos. What is important is the high pulse
which must be between 1.25ms to 1.75ms.

One last thing and we are done! SetPulse accepts value in nanoseconds but we have value in milliseconds. One millisecond is the equivalent of
1,000,000 (a million) nanoseconds.

Finally, here is the example.

using System;
using System.Threading;
using Microsoft.SPOT;
using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.FEZ;
class Program
{
public static void Main ()
{
PWM servo = new PWM((PWM.Pin)FEZ_Pin.PWM.Di5);
while (true)
{
// 0 degrees. 20ms period and 1.25ms high pulse
servo.SetPulse (20 * 1000 * 1000, 1250 * 1000);
Thread.Sleep(1000);//wait for a second

// 90 degrees. 20ms period and 1.50ms high pulse
servo.SetPulse (20 * 1000 * 1000, 1500 * 1000);
Thread.Sleep(1000);//wait for a second

// 180 degrees. 20ms period and 1.75ms high pulse
servo.SetPulse (20 * 1000 * 1000, 1750 * 1000);
Thread.Sleep(1000);//wait for a second

}

Thread.Sleep(-1);

28

http://www.microframeworkprojects.com/index.php?title=File:CS2_04.jpg

12 Piezo

Piezoelectric devices are a low cost way of adding tones and beeps to your design. They generate sounds one supplied with a frequency. PWM
hardware is perfect for generating frequencies and so they can be perfect to activate a Piezo. We will always use duty cycle of 50% but we will change
the frequency to get different tones.

When connecting a Piezo, make sure that it its polarity is correct, plus goes to PWM signal and minus goes to ground. See the FEZ Piezo speaker
component on www.TinyCLR.com This is a project that decodes a MIDI file from a SD card then plays the main tone on a piezo.

http://www.microframeworkprojects.com/index.php?title=PWM_MIDI_Player

29

http://www.microframeworkprojects.com/index.php?title=PWM_MIDI_Player

13 Glitch filter

When we used the button earlier (section 9.2), we set it up so when it is pressed, the pin value is low; otherwise, it is high. When you flip a witch or press
a button, the button or switch can bounce when it is pressed. In other words, the button generates few on and off before it is settled. This will make it
look like if the button was pressed few times. Those few on/off bounces come for a very short time. To eliminate them in hardware, we can add a
capacitor between the pin and ground. To handle this in software, we check the time between button presses, if it is a short time then this is a ?glitch?
and so it needs to be ignored. A user can press the button on and off maybe every 200 ms. So, if the time between presses is 10ms then we know the
user couldn't have possible pressed it so fast, and for that, this is a glitch and we need to ?glitch filter? it.

Luckily, NETMF includes a glitch filter built internally so we never need to worry about this. When we enable an input pin, we have the option of enabling
the glitch filter. The second argument when creating an ?InputPort? is a boolean indicating if the glitch filter to be enabled or not. For using switches, you
probably would want this to always be true

Button = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.LDR, true, Port.ResistorMode.PullUp);

The glitch filter time can be changed as follows

TimeSpan ts = new TimeSpan(0, 0, 0, 0, 200);//200ms
Microsoft.SPOT.Hardware.Cpu.GlitchFilterTime = ts;

Important note: Glitch filter only works on interrupt-capable pins. If you try to use InputPort with glitch filter is set to true and you see an exception then
most likely you are using a pin that is not interrupt capable.

30

14 Analog input & output

Analog pins are usually multiplexed with digital pins. Some of the processor pins can be digital and analog as well but not both at the same time.

14.1 Analog Inputs

Digital input pins can only read high and low (one or zero) but analog pins can read the voltage level. There are limitations on voltages that can be
applied to analog inputs. For example, FEZ analog input can read voltages anywhere between zero and 3.3V. When the pins are digital they are tolerant
of 5V but when the same pin is set to analog only up to 3.3V can be used. This limitation of analog inputs is not a big issue usually because most analog
signals are conditioned to work with the analog inputs. A voltage divider or an op-amp circuit can be used to get a fraction of the actual signal, scale the
signal. For example, if we want to measure the battery voltage, which is 6V, then we need to divide the voltage in half, using a voltage divider resistor(s),
so the analog pin will only see half the voltage, which is 3V max. In software, we know we have the voltage divided in half so any voltage we see will
need to be multiplied by 2 to give us the actual voltage we are trying to measure.

Luckily, GHI implementation of analog inputs already handles signal scaling. When constructing a new analog input object, optionally, you can set the
scaling.

The internal reference is 0V to 3.3V so everything you measure needs to take this in mind. The easiest is to set the scale to 0 to 3300. You can think of
this as millivolts. If we read 1000 then the input voltage is 1 volt.

AnalogIn BatteryVoltage = new AnalogIn((AnalogIn.Pin)FEZ_Pin.AnalogIn.AnO);
BatteryVoltage.SetLinearScale (0, 3300);
int voltage = BatteryVoltage.Read();

Remember to use the analog pin enumeration to determine what pins can be used as analog. To print the analog value to the debug output in volts, we
would need to convert the value to volts and then to a string.

AnalogIn BatteryVoltage = new AnalogIn((AnalogIn.Pin) FEZ_Pin.AnalogIn.AnO);
BatteryVoltage.SetLinearScale (0, 3300);

int voltage = BatteryVoltage.Read();

Debug.Print ("Voltage = " + (voltage / 1000).ToString() + "." + (voltage % 1000).ToString());

We divide by 1000 to get the voltage and then we use the modules to get the fraction.

14.2 Analog Outputs

Analog outputs are like digital outputs where they have limits on how much power they can provide. Analog outputs are even weaker than digital
outputs. They are only capable of providing a very little signal to drive the power circuit, maybe drive a power amplifier.

Digital outputs can only be high or low but analog input can be set to any voltage between 0 and 3.3V. GHI implementation for analog outputs allows for
automated scaling. You can give it a min, max and the actual value. An easy test would be to set the min to zero and max to 330V (3.3Vx100) then the
value to 100 (1Vx100). This will give us 1V on the pin. We will connect this pin to another analog input to measure the value to verify it is 1V. It may not
be exactly 1V but will be very close.

The analog output is multiplexed with analog input 3. When using the analog output, the analog input can' be used on this pin but we can use any other
analog input on other pins.

using System;

using Microsoft.SPOT;

using System.Threading;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
AnalogOut VoltLevel =
new AnalogOut ((AnalogOut.Pin)FEZ_Pin.AnalogOut.An3);
VoltLevel.SetLinearScale (0, 3300);
VoltLevel.Set (1000);

AnalogIn PinVoltage =
new AnalogIn((AnalogIn.Pin)FEZ_Pin.AnalogIn.AnO)
PinvVoltage.SetLinearScale (0, 3300);

while (true)
{
int voltage = PinVoltage.Read()
Debug.Print ("Voltage = " + (voltage / 1000).ToString() +

31

"." + (voltage % 1000).ToString());

Thread.Sleep (200);

}

Connect a wire between An0 and AOUT (An3) and then run this program. Note if no wire is connected then the analog pin is floating and can be of any
value. Try touching AINO and see how the numbers change then connect to AOUT to see if you get back 1V. If you have a volt meter, connect it to

AOUT to verify we have 1V. Note that it is not going to be exactly 1V but very close.

14.2.1 Audio Playback

GHI devices can play audio on the analog output. ...to be continued...

32

15 Garbage Collector

When programming in older languages like C or C++, programmers had to keep track of objects and release them when necessary. If an object is
created and not released then this object is using resources from the system that will never be freed. The most common symptom is memory leaks. A
program that is leaking memory will contentiously use more memory till the system run out of memory and probably crash. Those bugs are usually very
difficult to find in code.

Modern languages have garbage collector that keeps track of used objects. When the system runs low on memory resources, the garbage collector
jumps in and search through all objects and frees the one with no ?references?. Do you remember how we created objects before using the ?new?
keyword and then we assigned the object to a ?reference?? An object can have multiple references and the garbage collector will not remove the object
till it has zero references.

// new object

OutputPort Refl = new OutputPort (FEZ_Pin.Digital.LED, true);
// second reference for same object

OutputPort Ref2 = Refl;

// lose the first reference

Refl = null;

// Our object is still referenced

// it will not be removed yet

// now remove the second reference

Ref2 = null;

// from this point on, the object is ready to be
// removed by the garbage collector

Note that the object is not removed immediately. When needed, the Garbage collector will run and remove the object. This can be an issue in some rare
cases because the garbage collector needs some time to search and remove objects. It will only be few milliseconds but what if your application can't
afford that? If so, the garbage collector can be forced to run at a desired anytime.

//force the garbage collector
Debug.GC (true) ;

Losing Resources The garbage collector ease object allocation but it can also cause problems if we are not careful. A good example will be on using
digital output pins. Lets say we need a pin to be high. We create an OuputPort object and set the pin high. Later on we lose the ?reference? for that
object for some reason. The pin will still be high when the reference is lost so all is good so far. After few minutes, the garbage collector kicks in and it
finds this unreferenced object, so it will be removed. Freeing an OutputPort will case the pin to change its state to input. Now, the pin is not high
anymore!

// Turn the LED on

OutputPort LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
LED = null;

// we have lost the reference but the LED is still lit

//force the garbage collector

Debug.GC (true) ;

// The LED is now off!

An important thing to note is that if we make a reference for an object inside a method and the method returns then we have already lost the reference.
Here is an example

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

namespace Test
{
public class Program
{
static void TurnLEDOn ()
{
// Turn the LED on
OutputPort LED =
new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
}
public static void Main()
{
TurnLEDOnN () ;
// we think that everythign is okay but it is not
// run the GC
Debug.GC (true) ;
// is LED still on?

To solve this, we need a reference that is always available. Here is the correct code
using System;

33

using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

namespace Test
{
public class Program
{
static OutputPort LED;
static void TurnLEDOn ()
{
// Turn the LED on
LED = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.LED, true);
}
public static void Main()
{
TurnLEDOnN () ;
// run the GC
Debug.GC (true) ;
// is the LED on?

}

Another good example is using timers. NETMF provide a way to create timers that handle some work after a determined time. If the reference for the
timer is lost and the garbage collector had run, the timer is now lost and it will not run as expected. Timers are explained in later chapter.

Important note: If you have a program that is working fine but then right after you see the GC running in the ?Output Window? the program stops

working or raises an exception then this is because the GC had removed an object that you need. Again, that is because you didn't keep references to
the object you want to keep alive.

15.1 Dispose

The garbage collector will free objects at some point but if we need to free one particular object immediately? Most objects have a Dispose method. If an
object needs to be freed at anytime, we can ?dispose? it.

Disposing object is very important in NETMF. When we create a new InputPort object, the assigned pin is reserved. What if we want to use the same pin
as an output? Or even use the same pin as an analog input? We will first need to free the pin and then create the new object.

OutputPort OutPin = new OutputPort ((Cpu.Pin)FEZ_Pin.Digital.Di5, true);
OutPin.Dispose () ;

InputPort InPort = new InputPort ((Cpu.Pin)FEZ_Pin.Digital.Di5, true,
Port.ResistorMode.PullUp) ;

15.2 GC Output Messages

When the garbage collector runs, it outputs a lot of useful information to the output window. These messages give you an idea of what is using
resources in the system. Although not recommended, you may want to disable those messages to free up the output window for your own usage. This is
easily achievable using this line of code.

Debug.EnableGCMessages (false);

34

16 C-Sharp Level3

This section will cover all C# materials we wanted to include in this book. A good and free eBook to continue learning about C# is available at
http://www.programmersheaven.com/2/CSharpBook

16.1 Byte

We learned how int are useful to store numbers. They can store very large numbers but every int consumes four bytes of memory. You can think of a
byte as a single memory cell. A byte can hold any value from 0 to 255. It doesn't sound like much but this is enough for a lot of things. In C# bytes are
declared using ?byte? just like how we use ?int?.

byte b = 10;
byte bb = 1000;// this will not work!

The maximum number that a byte can hold is 256 [0..255], What?s going to happen if we increment it to over 255? Incrementing 255 by one would
overlap the value back to zero.

You will probably want to use int for most of your variables but we will learn later where bytes are very important when we start using arrays.

16.2 Char

To represent a language like English, we need 26 values for lower case and 26 for upper case then 10 for numbers and maybe another 10 for symbols.
Adding all these up will give us a number that is well less than 255. So a byte will work for us. If we create a table of letters, numbers and symbols, we
can represent everything with a numerical value. Actually, this table already exists and it is called ASCII table.

So far a byte is sufficient to store all ?characters? we have in English. Modern computer systems have expanded to include other languages, some used
very complex non-Latin characters. The new characters are called Unicode characters. Those new Unicode characters can be more than 255 and so a
byte is not sufficient and an integer (four bytes) is too much. We need a type that uses 2-bytes of memory. 2-bytes are good to store numbers from 0 to
over 64,000. This 2-bytes type is called ?short?, which we are not using in this book.

Systems can represent characters using 1-byte or using 2-bytes. Programmers decided to create a new type called char where char can be 1-byte or

2-bytes, depending on the system. Since NETMF is made for smaller systems, its char is actually a byte! This is not the case on a PC where a char is a
2-byte variable! Do not worry about all this mess, do not use char if you do not have to and if you use it, remember that it is 1-byte on NETMF.

16.3 Array

If we are reading an analog input 100 times and we want to pass the values to a method, it is not practical to pass 100 variables in 100 arguments.
Instead, we create an ?array? of our variable type. You can create an array of any object. We will mainly be using byte arrays. When you start
interfacing to devices or accessing files, you will always be using byte arrays.

Arrays are declared similar to objects.
byte[] MyArray;

The code above creates a ?reference? of an object of type ?byte array?. This is only a reference but it doesn't have any object yet, it is null. If you forgot
what is a reference then go back and read more in C# Level 2 chapter.

To create the object we use ?new? keyword and then we need to tell it the size of our array. This size is the count of how many elements on the type we
will have in a n array. Our type is a byte and so the number is how many bytes we are allocating in memory.

byte[] MyArray;
MyArray = new byte[10];

We have created a byte array with 10 elements in it. The array object is referenced from ?MyArray?.
We now can store/read any of the 10 values in the array by indicating which ?index? we want to access.

byte[] MyArray;
MyArray = new byte[10];

MyArray[0] = 123;// first index
MyArray[9] = 99;// last index
MyArray[10] = 1;// This is BAD...ERROR!!

A very important note here is that indexes start from zero. So, if we have an array of size 10 then we have indexes from 0 to 9. Accessing index 10 will
NOT work and will raise an exception. We can assign values to elements in an array at the time of initialization. This example will store the numbers 1 to
10 in indexes 0 to 9.

byte[] MyArray = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

To copy an array, use the Array class as follows

35

http://www.programmersheaven.com/2/CSharpBook

byte[] MyArrayl = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
byte[] MyArray2 = new byte[1l0];
Array.Copy (MyArrayl, MyArray2, 5);//copy 5 elements only

One important and useful property of an array is the Length property. We can use it to determine the length of an array.

byte[] MyArrayl = new byte[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
byte[] MyArray2 = new byte[1l0];
Array.Copy (MyArrayl, MyArray2, MyArrayl.Length);//copy the whole array

16.4 String

We have already used strings in many places. We will review what we have learned and add more details.

Programs usually need to construct messages. Those messages can be a human readable text. Because this is useful and commonly used feature in
programs, C# supports strings natively. C# knows if the text in a program is a string if it is enclosed by double-quotes.

This is a string example.

string MyString = "Some string";
string ExampleString = "string ExampleString";

Whatever inside the double quotes is colored in red and considered to be a string. Note how in the second line | purposely used the same text in the
string to match what | used to assign the string. C# doesn't compile anything in quote (red text) but only take it as it is as a string. You may still have
confusion on what is the difference between a integer variable that have 5 in it and a string that have 5 in it. Here is an example code

string MyString = "5" + "5";
int MyInteger = 5 + 5;

What do you think the actual value of the variables now? For integer, it is 10 as 5+5=10. But for string this is not true. Strings do not know anything
about what is in it, text or numbers make no difference. When adding two strings together, a new string is constructed to combine both. And so
?5?+757=?55? and not 10 like integers.

Almost all objects have a ToString method that converts the object information to a printable text. This demonstration shows how ToString works

int MyInteger = 5 + 5;
string MyString = "The value of MyInteger is: " + MyInteger.ToString();
Debug.Print (MyString);

Running the above code will print
The value of MyInteger is: 10

Strings can be converted to byte arrays if desired. This is important if we want to use a method that only accepts bytes and we want to pass our string to
it. If we do that, every character in the string will be converted to its equivalent byte value and stored in the array

using System.Text;

byte[] buffer = Encoding.UTF8.GetBytes ("Example String");

16.5 For-Loop

Using the while-loop is enough to serve all our loop needs but for-loop can be easier to use in some cases. The simplest example is to write a program
that counts from 1 to 10. Similarly, we can blink an LED 10 times as well. The for-loop takes three arguments on a variable. It needs the initial value,
how to end the loop and what to do in every loop

int 1i;
for (i = 0; 1 < 10; i++)
{
//do something
}

We first need to declare a variable to use. Then in the for-loop, we need to give it three arguments (initial, rule, action). In the very first loop, we asked it
to set variable ?i? to zero. Then the loop will keep running as long as the variable ?i? is less then 10. Finally, the for-loop will increment variable i in
every loop. Let us make a full program and test it.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{

public class Program

{

36

public static void Main()
{
int i;
for (i = 0; 1 < 10; i++)
{
Debug.Print ("i= " + i.ToString());
}

If we run the program above, we will see that it is printing i from 0 to 9 but not 10. But, we wanted it to run from 1 to 10 and not 0 to 9! To start from 1
and not 0, we need to set i to 1 in the initial loop. Also, to run to 10, we need to tell the for-loop to turn all the way to 10 and not less than 10 so we will
change the less than (?<?) with less than or equal (?7<=7?)

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
int 1i;
for (i = 1; 1 <= 10; i++)
{
Debug.Print ("i= " + i.ToString());
}

Can we make the 'for' loop count only even numbers (increment by two)?

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
int i;
for (i = 2; i <=10; i =1 + 2)
{
Debug.Print ("i= " + i.ToString());
}

The best way to understand for-loops is by stepping in code and seeing how C# will execute it.

Switch Statement You will probably not use switch statement for beginner application but you will find it very useful when making large programs,
especially when handling state-machines. The switch-statement will compare a variable to a list of constants (only constants) and make an appropriate
jump accordingly. In this example, we will read the current ?DayOfWeek? value and then from its value we will print the day as a string. We can do all
this using if-statement but you can see how much easier switch-statement is, in this case.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
DateTime currentTime = DateTime.Now;
int day = (int)currentTime.DayOfWeek;
switch (day)
{
case 0:
Debug.Print ("Sunday") ;
break;
case 1:
Debug.Print ("Monday") ;
break;
case 2:
Debug.Print ("Tuesday") ;

37

break;

case 3:
Debug.Print ("Wednsday") ;
break;

case 4:
Debug.Print ("Thursday") ;
break;

case 5:
Debug.Print ("Friday");
break;

case 6:
Debug.Print ("Saturday");
break;

default:
Debug.Print ("We should never see this");
break;

One important note about switch-statement is that it compares a variable to a list of constants. After every ?case? we must have a constant and not a
variable. We can also change the code to switch on the enumeration of days as the following.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
DateTime currentTime = DateTime.Now;
switch (currentTime.DayOfWeek)
{
case DayOfWeek.Sunday:
Debug.Print ("Sunday") ;
break;
case DayOfWeek.Monday:
Debug.Print ("Monday") ;
break;
case DayOfWeek.Tuesday:
Debug.Print ("Tuesday") ;
break;
case DayOfWeek.Wednesday:
Debug.Print ("Wednsday") ;
break;
case DayOfWeek.Thursday:
Debug.Print ("Thursday") ;
break;
case DayOfWeek.Friday:
Debug.Print ("Friday");
break;
case DayOfWeek.Saturday:
Debug.Print ("Saturday");
break;
default:
Debug.Print ("We should never see this");
break;

Try to step in the code to see how switch is handled in details.

38

17 Serial Interfaces

There are many serial interfaces available for data transfer between processors. Each interface has its advantages and disadvantages. | will try to cover
them in enough details so you can use them with NETMF.

Even though there are many serial interfaces, when we say we talk about serial, we mean UART or RS232. Other interfaces, like CAN and SPI, still
transmit its data serially but they are not serial ports!!

If further details are needed, consult the web, especially http://www.wikipedia.org/

17.1 UART

UART is one of the oldest and most common interfaces. Data is sent out on a UART TXD pin in a sequence at a predefined speed. When the
transmitter sends out zeros and ones, the receiver is checking for incoming data on RXD at the same speed that the transmitter is sending. The data is
sent one byte at the time. This is one direction for data. To transfer the data in the opposite direction, a similar circuit is constructed at the opposite side.
Transmit and receive are completely separate circuits and they can work together or independently. Each side can send data at any time and can also
receive data at anytime.

The predefined speed of sending/receiving data is called baud rate. Baud rate is how many bits are transmitted in one second. Usually, one of the
standard baud rates are used, like 9600, 119200, 115200 or others.

Through UART, two processors can connect directly by connecting TXD on one side to RXD on the other side and vice versa. Since this is just a digital
10 on the processor, the voltage levels on UART TXD/RXD pins will be OV (low) and 3.3V or 5V (high).

In industrial systems or when long wires are used, 3.3V or even 5V doesn't provide enough room for error. There are standards that define how we can
take UART standard signal and convert it to higher voltages or differential signal to allow data transfer with better reliability. The most common one is
RS232. Almost all computers are equipped with RS232 port. With RS232, data is simply UART but the voltage levels are converted from TTL (0V to
3.3V) to RS232 levels (-12V to +12V). One important fact about RS232 is that the voltage level is inverted from how we would logically think of it. When
the signal is logically low, the voltage is at +12V and when the signal is logically high, the voltage is at -12V.There are many ready chips that convert
TTL levels to RS232 levels, like MAX232 and MAX3232.

When we need to interface a processor using UART to a computer's serial port, we need to convert the UART TTL level to RS232 using some circuitry.
For beginners or a quick hack, there are companies who provide ready circuits that convert RS232 to UART.

This is just an example: http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html

In the PC world, USB is more popular than serial ports. Newer computers, especially laptops, do not have serial ports but every computer and laptop
does have a USB interface. For that reason, many companies have created a USB to UART chipset. USB<->RS232 cable is a very common device
available at any computer store. An interesting product from FTDI is a USB cable with UART interface, note that it is TTL UART not RS232 on the other
side of USB, which means it can be connected directly to your processor's TTL UART. The product number for this cable is ?TTL-232R-3V3?.

To summarize all above, you can interface two processors by connecting UART pins directly. To interface a processor to a PC, you need to convert the
UART signals to RS232 or USB using one of the ready circuits like MAX232 for RS232 and FT232 for USB.

NETMF supports serial ports (UART) in the same way the full .NET framework on the PC is supported. To use the Serial port, add
?Microsoft. SPOT.Hardware.SerialPort? assembly and add ?using System.|O.Ports? at the beginning of your code.

Note that serial ports on PC's and on NETMF are named COM ports and they start from COM1. There is no COMO on computer systems. This can
cause a little confusion when we want to map the COM port to the UART port on the processor because the processor usually start with UARTO not
UART1. So, COM1 is UARTO and COM2 is UART1...etc.

PCs have terminal programs that open the serial ports to send/receive data. Any data received will be displayed on the terminal software and any data
typed in the terminal will be sent out on the serial port. Teraterm is one of common and free software that we recommended. Following is a program that
sends a counter value every 10 times a second. The data is sent at 115200 so make sure the terminal is setup the same way. This program sends the
data on COM1 of your NETMF device. This COM number has nothing to do with COM number on your PC. For example, you may have a USB serial
port on your PC that maps to COM8 and so you need to open COM8 on your PC, not COM1 but the NETMF program will still use COM1 because it
uses UARTO (COMT1).

using System.Threading;
using System.IO.Ports;
using System.Text;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
SerialPort UART = new SerialPort ("COM1", 115200);
int counter=0;
UART.Open () ;
while (true)

39

http://www.wikipedia.org/
http://www.nkcelectronics.com/rs232-to-ttl-converter-board-33v232335.html

// create a string

string counter_string = "Count: " + counter.ToString() +
"\r\n";

// convert the string to bytes

byte[] buffer = Encoding.UTF8.GetBytes (counter_string);

// send the bytes on the serial port

UART.Write (buffer, 0, buffer.Length);

// increment the counter;

counter++;

//wait...

Thread.Sleep (100);

Note how we ended the string with 2\r\n?. The ?\r? is code to tel the terminal to ?return? back to the beginning of the line and ?\n? is to add ?new? line.
When data is received on UART, it is automatically queued a side so you wouldn't lose any data. Note that there is limit on how much data the system
can buffer so if you are debugging or not reading the data then close the serial port; otherwise, the system will become very slow and
debugging/execution will be very unreliable and slow. Ideally, events will be used so we are automatically receiving data. We will cover events later.

This example will wait till byte is received then it prints back some string telling you what you have typed in (transmitted).

using System.Threading;
using System.IO.Ports;
using System.Text;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
SerialPort UART = new SerialPort ("COM1", 115200);
int read_count = 0;
byte[] rx_byte = new byte[l];

UART.Open () ;
while (true)
{

// read one byte
read_count = UART.Read(rx_byte, 0, 1);
if (read_count > 0)// do we have data-?
{
// create a string
string counter_string =
"You typed: " + rx_byte[0].ToString() + "\r\n";
// convert the string to bytes
byte[] buffer = Encoding.UTF8.GetBytes (counter_string);
// send the bytes on the serial port
UART.Write (buffer, 0, buffer.Length);
//wait...
Thread.Sleep(10);

This last example is a loop-back. Connect a wire from TX to RX on your board and it will send data and make sure it is receiving it correctly.

using System.Threading;
using System.IO.Ports;
using System.Text;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
SerialPort UART = new SerialPort ("COM1", 115200);
int read_count = 0;
byte[] tx_data;
byte[] rx_data = new byte[1l0];
tx_data = Encoding.UTF8.GetBytes ("FEZ");
UART.ReadTimeout = 0;
UART.Open () ;

while (true)
{

40

// flush all data
UART.Flush({();
// send some data
UART.Write(tx_data, 0, tx_data.Length);
// wait to make sure data is transmitted
Thread.Sleep (100);
// read the data
read_count = UART.Read(rx_data, 0, rx_data.Length);
if (read_count != 3)
{
// we sent 3 so we should have 3 back
Debug.Print ("Wrong size: " + read_count.ToString());
}
else
{
// the count is correct so check the values
// I am doing this the easy way so the code is more clear

if (tx_data[0] == rx_datal0])
{
if (tx_data[l] == rx_datall])
{
if (tx_data[2] == rx_datal2])

{
Debug.Print ("Perfect datal!");
}

}
}
Thread.Sleep(100);

17.2 SPI

SPI uses three or four wires for transferring data. In UART, both sides need to have a predetermined baud rate. This is different on SPI where one of the
nodes will send a clock to the other along with data. This clock is used to determine how fast the receiver needs to read the data. If you know
electronics, this is a shift register. The clock is always transmitted from the master device. The other device is a slave and it doesn't send a clock but
receives a clock from the master.

So, the master will transmit a clock on a SCK (serial clock) pin and will simultaneously transmit the data on MOSI (Master Out Slave In) pin. The slave
will read the clock on SCK pin and simultaneously read the data from MOSI pin. So far, this is a one way communication. While data is transmitted in
one direction using MOSI another set of data is sent back on MISO (Master In Slave Out) pin. This is all done simultaneously, clock send and receive. It
is not possible to only send or only receive with SPI. You will always send a byte and receive a byte back in response. Other data sizes are possible but
bytes are most common. NETMF supports 8-bit (byte) and 16-bit (short) data transfers. Because of this master/slave scheme, we can add multiple
slaves on the same bus where the master selects which slave it will swap the data with. Note | am using the word swap because you can never send or
receive but you can send and receive (swap) data. The master selects the slave using SSEL (Slave Select) pin. This pin can be called CS (Chip Select)
as well. In theory, the master can have unlimited slaves but it can only select one of them at any given time. The master will only need 3 wires (SCK,
MISO, MOSI) to connect to all slaves on the bus but then it needs a separate SSEL pin for each one of the slaves. Some SPI devices (slaves) can have
more than one select pin, like VS1053 MP3 decoder chip that uses one pin for data and one pin for commands but both share the 3 data transfer pins
(SCK, MOSI, MISO).

SPI needs more wires than other similar buses but it can transfer data very fast. A 50Mhz clock is possible on SPI, that is 50 million bits in one second.
NETMF devices are always SP| masters. Before creating a SPI object, we would need a SPI configuration object. The configuration object is used to set
the states of the SPI pins and some timing parameters. In most cases, you need the clock to be idle low (false) with clocking on rising edge (true) and
with zero for select setup and hold time. The only thing you would need to set is the clock frequency. Some devices may accept high frequencies but
others do not. Setting the clock to 1000Khz (1Mhz) should be okay for most getting started projects.

This example is sending/receiving (swapping, if you will) 10 bytes of data on SPI channel 1. Note that NETMF start numbering SPI channels (module)
from 1 but on processors, the channels start from 0. So, using SPI1 in code is actually using SPI0 on the processor.

using System.Threading;

using System.Text;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
SPI.Configuration MyConfig =
new SPI.Configuration((Cpu.Pin)FEZmini.Pin.Di2x,
false, 0,0, false,true,1000,SPI.SPI_module.SPI1);
SPI MySPI = new SPI (MyConfig);

byte[] tx_data = new byte[10];
byte[] rx_data = new byte[10]

41

MySPI.WriteRead(tx_data, rx_data);

Thread.Sleep(100);

17.3 12C

12C was developed by Phillips to allow multiple chipsets to communicate on a 2-wire bus in home consumer devices, mainly TV sets. Similar to SPI, 12C
have a master and one or more slaves on the same data bus. Instead of selecting the slaves using a digital pin like SPI, I12C uses software addressing.
Before data is transferred, the master sends out a 7-bit address of the slave device it want communicate with. It also sends a bit indicating that if the
master wants to send or receive data. The slaves that see its address on the bus will acknowledge its presence. At this point, the master and
send/receive data. The master will start data transfers with ?start ? condition before it sends any address or data and then end it with ?stop? condition.

12C NETMF driver is based on transactions. If we want to read from a register on a sensor, we would need to send it the register number and then we
need to read the register. Those are two transactions, write then read.

This example will send communicate with 12C device address 0x38. It will write two (register number) and read back the register value

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

namespace Test
{
public class Program
{
public static void Main ()
{
//create I2C object
I2CDevice.Configuration con =
new I2CDevice.Configuration (0x38, 400);
I2CDevice MyI2C = new I2CDevice (con);

//create transactions (we need 2 in this example)
I2CDevice.I2CTransaction[] xActions =
new I2CDevice.I2CTransaction[2];

// create write buffer (we need one byte)

byte[] RegisterNum = new byte[l] { 2 };

xActions[0] = I2CDevice.CreateWriteTransaction (RegisterNum);
// create read buffer to read the register

byte[] RegisterValue = new byte[l];

xActions[1] = I2CDevice.CreateReadTransaction (RegisterValue);

// Now we access the I2C bus and timeout in one second
// if no response
MyI2C.Execute (xActions, 1000);

Debug.Print ("Register value: " + RegisterValue[0].ToString());

17.4 One Wire

GHI exclusively supports one wire devices on NETMF. Dallas semiconductor's one wire devices, like temperature sensors or EEPROMs, use only a
single wire for data transfers. Multiple devices can be connected and controlled on a single wire. The one wire class, provide many methods to read and
write bytes from one wire devices. It also includes the one wire CRC calculation method as well.

This example will read the temperature from DS18B20 one wire digital thermometer. Note that this is a GHI exclusive feature and so it requires adding
the GHI assembly to the build.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.FEZ;

namespace Test

{
public class Program

{

public static void Main()

{
// Change this your correct pin!
Cpu.Pin myPin = (Cpu.Pin)FEZ_Pin.Digital.Di4;

42

OneWire ow = new OneWire (myPin);
ushort temperature;

// read every second
while (true)
{

if (ow.Reset ())

{

ow.WriteByte (0xCC) ; // Skip ROM

ow.WriteByte (0x44); // Start temperature conversion
while (ow.ReadByte() == 0) ; // wait while busy
ow.Reset () ;

ow.WriteByte (0xCC) ; // skip ROM

ow.WriteByte (0xBE) ; // Read Scratchpad

temperature = ow.ReadByte () ; // LSB
temperature |= (ushort) (ow.ReadByte() << 8); // MSB
Debug.Print ("Temperature: " + temperature / 16);

Thread.Sleep(1000) ;
}
else
{

Debug.Print ("Device is not detected.");

}

Thread.Sleep (1000);

17.5 CAN

Controller Area Network is a very common interface in industrial control and automotive. CAN is very robust and works very well in noisy environments
at high speeds. All error checking and recovery methods are done automatically on the hardware. TD (Transmit Data) and RD (Receive Date) are the
only two pins needed. These pins carry out the digital signal that need to be converted to analog before it is on the actual wires using the physical layer.
Physical layers are sometimes called transceivers.

There are many kinds of physical layers but the most commonly used is high-speed-dual-wire that uses twisted pair for noise immunity. This transceiver
can run at up to 1Mbps and can transfer data on very long wires if low bit-rate is used. Data can be transferred between nodes on the bus where any
node can transfer at any time and all other nodes are required to successfully receive the data. There is no master/slave in CAN. Also, all nodes must
have a predefined bit timing criteria. This is much more complicated that calculating a simple baud rate for UART. For this reason, many CAN bit rate
calculators are available.

The CAN peripheral of Embedded Master is same as the popular SJA1000. A quick Internet search for SUA1000 should result in more than one free
calculator.

In short, this is a simple way to calculate the bit timing:

1. Divide the system clock (72Mhz) to get an appropriate clock for the CAN peripheral (this is NOT the baud rate) This is called the BRP.
2. Figure out how many clocks you need to make up one bit. Usually this is 24 or 16. This is called TQ.
3. Assign values to T1 and T2 where T1+T2+1=TQ

Let us assume we need 250Kbps.

1. From 72Mhz system clock, | want the CAN clock to be 6Mhz so | need to divide by 12 (BRP=12).
2. 6Mhz/250kbps = 24 TQ (we usually want 16 or 24).
3.T1 =15, T2 = 8 will give us 15 + 8 + 1 = 24 and this is what we need.

| got the T1 and T2 values from: http://www.kvaser.com/can/protocol/index.htm | picked the first value and subtracted 1 from T1 because the calculator
included the sync bit

Here is the code with detailed comments

using System.Threading;

using Microsoft.SPOT;

using System;

using GHIElectronics.Hardware;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
// These numbers were calculated using the
// calculator on this link:
// http://www.kvaser.com/can/protocol/index.htm

43

http://www.kvaser.com/can/protocol/index.htm

// We used the very first value from the calculator output
J111T007 70777077007 777 777707777 77777777777777777777717777777
// Bitrate 250Kbps

// CLK = 72 Mhz, with BRP = 12 -> 6Mhz CAN clock

// 6Mhz/250Kbps = 24 TQ

// Tl = 16 minus 1 for sync = 15

// T2 =8

// 15 + 1 + 8 = 24 TQs which is what we need

[1117177 707770777077 777777777777777777771777777777771777777
const int BRP = 12;

const int Tl = 15;

const int T2 = 8;

// For 500Kbps you can use BRP=6 and for 1Mbps you can use BRP=3
// and for 125Kbps use BRP=24...and so on

// Keep Tl and T2 the same to keep the sampling pint

// the same (between 70% and 80%)

// Initialize CAN channel, set bit rate
CAN canChannel = new CAN(CAN.CANChannel.Channel_1,
((T2 = 1) << 20) | ((T1 - 1) << 16) | ((BRP = 1) << 0));
// make new CAN message
CAN.CANMessage message = new CAN.CANMessage();
// make a message of 8 bytes
for (int 1 = 0; 1 < 8; i++)
message.datal[i] = (byte)i;
message.DLC = 8; // 8 bytes
message.ArbID = 0xAB; // ID
message.isEID = false; // not extended ID
message.isRTR = false; // not remote
// send the message
canChannel.PostMessage (message) ;
// wait for a message and get it.
while (canChannel.GetRxQueueCount () == 0) ;
// get the message using the same message object
canChannel.GetMessage (message) ;
// Now "message" contains the data, ID,
// flags of the received message.

44

18 Loading Resources

A resource is a file that is included with the application image. If our application depends on a file (image, icon, sound) then we may want to add this file
to the application resources. Application can read the file from the file system but then the application becomes dependent on the file system to run.

Resources can also be strings, like a copyright text. This way, we need to update the copyright text, we would only need to update the resources and do
nothing in the program code.

Always know how much memory is reserved for the application space. Adding large file will result deploying errors and VS2010 will not tell you it is
because the files are too large.

Looking in the ?Solution Explorer? window, we see the ?Resource.resx? and if we expand it we see ?Resources.Designer.cs?

[Eglution Explorer - Solution ‘MFConsale.. + T
RleE RS

[Selution "MFConseledpplication’ (L project])
= §# MFConsolefpplication
@ Hdl Properties
&~ = References
] Programn.cs
SR Fesourcesres
M Resources.Designesnds

Visual Studio automatically generate the ?resources designer? file. Never try to modify this file manually. Instead, double click ?Resources.resx? to edit
the resources using a tool.

fincurcenrent Programa® | MFComsiele plication] v x

| e Rings v) Add Beitanie » XK Tamine Beioone ([- 3

Naroe ~ YPje Cammest

¥

On the resource editor window, the first drop-down list on the left is to select what type of resources we want to edit. You notice how there is already one
?string resource? named ?String_1? With its ?value? set to ?Hello World!? Click right below ?String_1? and add a new string resource as shown in
image below.

rese® | Programcs | MFConsatelgph])

M %rng: «) AddRescurce » X Remove Bescurce

Name “ Vahue Commen
Sungl Helio Weda
) (Suegk Thig % geent|

We now have two string resources. Let us use them

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
Debug.Print (
Resources.GetString (Resources.StringResources.Stringl));
Debug.Print (

Resources.GetString (Resources.StringResources.String2));

}

Try modifying the string resource text and observe how the output changes. Let us add a file. Create a text file on your desktop and put some text in it.
Select ?files? from the left drop-down menu then clock on ?Add Resource...?

45

http://www.microframeworkprojects.com/index.php?title=File:Resource01.jpg
http://www.microframeworkprojects.com/index.php?title=File:Resource02.jpg
http://www.microframeworkprojects.com/index.php?title=File:Resource03.jpg

S i
U3 Files ~ |] Add Resource » %

Since this is a text file, Visual Studio is smart enough to add this in a similar way to strings. So to use this resource file, we access it the same way we
access a string.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
Debug.Print (
Resources.GetString (Resources.StringResources.SomeFile));

N Files - '1) Add Besounce = 0 Bernove Besouce | G -

The file is about 33Kb. Which is small in the computer world but for embedded systems it is not small. The example below will work on devices with a lot
of RAM, like ChipworkX and Embedded Master. On USBizi and FEZ, it may or may not work. We can still access large files with USBizi and FEZ but
instead or reading the whole file at once, we only read some if it, send it to decoder, then we come back and read more. Details and instructions come
later.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
byte[] file_data =
Resources.GetBytes (Resources.BinaryResources.labamba) ;
Debug.Print ("File Size is " + file_data.Length.ToString());

46

http://www.microframeworkprojects.com/index.php?title=File:Resource04.jpg
http://www.microframeworkprojects.com/index.php?title=File:Resource05.jpg

19 Output Compare

This exclusive GHI feature allows developers to generate all kind of digital signals on any of the digital IOs. For example, OutputCompare can be used
to generate a UART signal. Or, generate a signal to control a 38Khz infrared transmitter to simulate a TV remote control.

One very good example is the driver of 2x16 character serial display found on www.TinyCLR.com. The display is controlled by UART. Also, the display
doesn't send any data back. All you need is to send some simple control commands serially to the display. Now, we can just connect the display to one
of the available serial ports. But then we will lose the port over something so simple plus the UART serial interface uses 2 pins, for transmit and for
receive. But, the display doesn't send any data back so basically you will lose the receive pin. The right way to control this serial display is by using
OutputCompare. You will only need one pin and you can use any of the digital pins.

So how does OutputCompare work? Basically, you provide the method with an array of time values between each pin toggle. The OutputCompare then
goes through the array of time values and generate the signal on the requested pin. So if are going to generate UART, we first need to pre-calculate the
values needed to represent the transmitted byte and then provide that to the OutputCompare object.

The example driver should explain how this is done. This is a copy of the driver found on www.TinyCLR.com for the serial LCD driver

using System;
using System.Threading;
using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.Hardware;
namespace GHIElectronics.NETMF.FEZ
{
public static partial class FEZ_Components
{
public class SerialLCD : IDisposable
{

const byte DISP_ON = 0xC; // Turn visible LCD on
const byte CLR_DISP = 0x01; // Clear display
const byte CUR_HOME = 2; // Move cursor home

// and clear screen memory
const byte SET_CURSOR = 0x80; // SET_CURSOR + X :
// Sets cursor position to X
const byte Move_CURSOR_LEFT = 0x10;

OutputCompare oc;
const int MAX_ TIMINGS_BUFFER_SIZE = 10;
uint [] buffer = new uint [MAX_TIMINGS_BUFFER_SIZE];
const int BAUD_RATE = 2400;
const int BIT_TIME_US = 1 * 1000 * 1000 / BAUD_RATE;
readonly int BYTE_TIME_MS;
public void Dispose ()
{
oc.Dispose();
buffer = null;
}
private void SendByte (byte b)
{
bool currentPinState;
int currentBufferIndex = 0;
uint currentStateTiming;
// start bit
currentPinState = false;
currentStateTiming = BIT_TIME_US;
// data bits

for (int i = 0; i < 8; 1i++)
{
bool neededState = (b & (1 << 1)) != 0;
if (neededState != currentPinState)
{
buffer[currentBufferIndex] = currentStateTiming;
currentStateTiming = BIT_TIME_US;
currentPinState = neededState;

currentBufferIndex++;
}
else
{
currentStateTiming += BIT_TIME_US;
}
}
// stop bit
if (currentPinState != true)
{
buffer[currentBufferIndex] = currentStateTiming;
currentBufferIndex++;
}
oc.Set (false, buffer, 0, currentBufferIndex, false);
// wait till data is sent
Thread.Sleep (BYTE_TIME_MS) ;
}
public void PutC(char c)

47

SendByte ((byte)c);

private void SendCommand (byte cmd)
{
SendByte (0xXFE) ;
SendByte (cmd) ;
}
public void Print (string str)
{
for (int i = 0; 1 < str.Length; i++)
PutC(str[i]);
}
public void ClearScreen()
{
SendCommand (CLR_DISP) ;
}
public void CursorHome ()
{
SendCommand (CUR_HOME) ;
}
public void SetCursor (byte row, byte col)
{
SendCommand ((byte) (SET_CURSOR | row << 6 | col));
}
public void MoveLeft ()
{
SendCommand (Move_CURSOR_LEFT) ;
}
public SerialLCD(FEZ_Pin.Digital pin)
{
BYTE_TIME_MS = (int)Math.Ceiling((double)BIT_TIME_US
MAX_TIMINGS_BUFFER_SIZE / 1000);
oc = new OutputCompare ((Cpu.Pin)pin, true,
MAX_TIMINGS_BUFFER_SIZE) ;
// Initilaize LCD
SendCommand (DISP_ON) ;
SendCommand (CLR_DISP) ;

48

20 Displays

20.1 Character Displays

Most character displays use the same interface. Those displays are mostly 2-lines by 16-characters, commonly known as 2x16 character displays. The
display can be controlled using 8-bit or 4-bit interface. The 4-bit option is more favorable since it requires less 10s.

The interface uses RS (Data/Instruction), RW(Read/Write), E (Enable) and 4-bit data bus. The display manual is the best resource of information but this
is a simple example class to get the display running quick.

GHI offers an alternative to this display. The SerialLCD display offered on www.TinyCLR.com will work on any single pin on FEZ. The included driver
makes using these displays even easier.

Using the display driver
using GHIElectronics.NETMF.FEZ;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
FEZ_Components.SeriallCD LCD =
new FEZ_Components.SeriallCD(FEZ_Pin.Digital.Di5);

LCD.ClearScreen();
LCD.CursorHome () ;
LCD.Print ("FEZ Rocks!");

20.2 Graphical Displays

20.2.1 Native support

NETMF, with its bitmap class, can handle graphics very well. The bitmap class supports images from BMP, JPG and GIF file types. The images can be
obtained from the file system or the network but an easier option is to include the image in a resource. The bitmap object can be used to draw images or
shapes and to draw text using a font. NETMF supports creating fonts using TFConvert tool. | will not cover the use of TFConvert so we will use one of
the available fonts. When we draw using a bitmap object, we are actually drawing on the object (on memory) nothing is visible on the screen. To transfer
a bitmap object from memory to the screen, we need to ?flush? the bitmap object. An important note here is that flush will only work if the size of the
bitmap is exactly the same size of the screen. If you have an image size 128x128 pixels and want to display it on the screen, we first need to create a
new bitmap object with the size of the screen, then create a second bitmap object for the smaller image. Draw the smaller image on the large one and
then flush! To eliminate confusion, | always have a one bitmap object called LCD and then everything gets drawn on this object. We will run all these
tests on the emulator instead of hardware as your hardware may not support native graphics.

using System.Threading;

using Microsoft.SPOT;

using System;

using Microsoft.SPOT.Presentation;

using Microsoft.SPOT.Presentation.Media;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()

{
Bitmap LCD = new Bitmap (SystemMetrics.ScreenWidth,
SystemMetrics.ScreenHeight) ;

//clears the memory and not the display
LCD.Clear();

//draw on memory

LCD.DrawLine (Colors.Green, 1, 10, 10, 40, 40);
//transfer the bitmap memory to the actual display
LCD.Flush{();

}

The code above requires Microsoft. SPOT.TinyCore assembly to run. Then we need to use the presentation namespace so we can get the
?SystemMetrics?.

49

Run the code and you will see a green line on the emulator.

2L o A pteationt Frogum
T 62 sample tmoni

heat /Lt

Try to use what we learned on for-loop to create multiple lines.

using System.Threading;

using Microsoft.SPOT;

using System;

using Microsoft.SPOT.Presentation;

using Microsoft.SPOT.Presentation.Media;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
Bitmap LCD = new Bitmap (SystemMetrics.ScreenWidth,
SystemMetrics.ScreenHeight) ;

//clears the memory and not the display
LCD.Clear();
int i;
for (1 = 10; 1 < 200; 1 += 4)
{
//draw on memory
LCD.DrawlLine (Colors.Green, 1, 10, i, i, 200);

}
//transfer the bitmap memory to the actual display
LCD.Flush();

To draw text, we would need to have a font resource first. Add a new resource to the project. You can use one of the resource files coming with NETMF
SDK examples. The samples at ...\Documents\Microsoft .NET Micro Framework 3.0\Samples\ | used ?NinaB.tinyfnt? font file. Add the file to your
resources like explained in previous chapter. We can now run this code to print on the LCD.

sing System.Threading;

using Microsoft.SPOT;

using System;

using Microsoft.SPOT.Presentation;

using Microsoft.SPOT.Presentation.Media;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main ()
{
Bitmap LCD = new Bitmap (SystemMetrics.ScreenWidth,
SystemMetrics.ScreenHeight);
Font MyFont = Resources.GetFont (Resources.FontResources.NinaB);

//clears the memory and not the display
LCD.Clear();
int i;
for (i = 10; 1 < 200; 1 += 4)
{
//draw on memory
LCD.DrawLine (Colors.Green, 1, 10, i, i, 200);

50

http://www.microframeworkprojects.com/index.php?title=File:Display01.jpg
http://www.microframeworkprojects.com/index.php?title=File:Display02.jpg

// print some text on the screen

LCD.DrawText ("Still Amazing!", MyFont, Colors.Red, 100, 20);
//transfer the bitmap memory to teh actual display
LCD.Flush{();

20.2.2 Non-native support

Many small graphical displays use SPI bus to receive images from the host. NETMF devices usually support large TFT displays that use a special bus
to operate, like FEZ Cobra (EMX). But, even if the system doesn't support those displays, like FEZ Rhino (USBizi), user can connect an SPI-based
display and display graphics this way. It is also possible to have two displays on system that support native TFT interface. A large display will run on the
TFT interface and the smaller display will run on a SPI bus. Even tough SPI is very fast, displays can have millions of pixels so we need to take this
under consideration when selecting a display. Www.TinyCLR.com offers many displays, SPI or TFT that are ideal to work with GHI offers. Below is one
of the example. Also check the standard SPI-based display for FEZ Rhino on the website mentioned earlier.

20.2.3 Non-native support

A better option is to use the bitmap class to draw text, draw shapes and then transfer the bitmap to your display. You can only use this if Bitmap
(graphics) is supported on your device, USBizi doesn't support graphics. This code will display some data on the F-51852 128x64 pixel display found on
the old non-TFT Embedded Master development system.

using System;

using System.Text;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Presentation;

using Microsoft.SPOT.Presentation.Media;
using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.System;

public class Program
{
static SPI.Configuration conf = new SPI.Configuration((Cpu.Pin)33,
false, 0, 0, false, true, 1000, SPI.SPI_module.SPI2);
static SPI SPI_port = new SPI (conf);
static OutputPort RST = new OutputPort ((Cpu.Pin)9, true);
static OutputPort DC = new OutputPort ((Cpu.Pin)1l5, true);
static byte[] _ba = new byte[l];
static void OPTREX_SSD_WriteCmdByte (byte b)
{
DC.Write (false);

Thread.Sleep(1l);

51

http://www.microframeworkprojects.com/index.php?title=File:Display03.jpg
http://www.microframeworkprojects.com/index.php?title=File:Display04.jpg

SPI_port.Write(_ba);

static void OPTREX_SSD_WriteByte (byte b)

{

}

DC.Write (true);
Thread.Sleep (1) ;

_bal0] = b;
SPI_port.Write(_ba);

static void OPTREX_Locate (int x, int y)

{

}

if (y > 7)
y =7;

if (x > 127)
x = 127;

OPTREX_SSD_WriteCmdByte ((byte) (0X10 | (x >> 4)));//col up
OPTREX_SSD_WriteCmdByte ((byte) (0X00 | (x & O0xF)));//col down

OPTREX_SSD_WriteCmdByte ((byte) (0XBO | y));//page addr

public static void Main ()

{

OPTREX_SSD_WriteCmdByte (0XA2);//bias
OPTREX_SSD_WriteCmdByte (0XAl); //adc inverse
OPTREX_SSD_WriteCmdByte (0Xc0);//common dir...normal
OPTREX_SSD_WriteCmdByte (0X40);//initial line
OPTREX_SSD_WriteCmdByte (0X81);//evr set
OPTREX_SSD_WriteCmdByte (0X20);
OPTREX_SSD_WriteCmdByte (0X29);//2B we have -10V........
//wait for stable voltage
Thread.Sleep (10);
OPTREX_SSD_WriteCmdByte (0XA4);//turn all on
OPTREX_SSD_WriteCmdByte (0XE7) ; //driver
OPTREX_SSD_WriteCmdByte (0XAF);//lcd on

//OPTREX_SSD_WriteCmdByte (0XA7);//inverse
OPTREX_SSD_WriteCmdByte (0XA6);//no inverse

OPTREX_SSD_WriteCmdByte (0XB0);//page addr
OPTREX_SSD_WriteCmdByte (0X10);//col
OPTREX_SSD_WriteCmdByte (0X00);//col

int x = 20;
int y = 50;
int dx = -2;
int dy = -3;

Bitmap bb = new Bitmap (128, 64);
byte[] bitmapbytes;
Font fnt = Resources.GetFont (Resources.FontResources.small);
byte[] vram = new byte[128 * 64 / 8];
byte[] singleline = new byte[128];
while (true)
{
bb.Clear();
bb.SetPixel (0, 0, Color.White);
bb.SetPixel (0, 2, Color.White);
bb.SetPixel (2, 0, Color.White);
bb.SetPixel (2, 2, Color.White);
bb.DrawText ("Rocks!", fnt, Color.White, 20, 45);
bb.DrawEllipse (Color.White, x, vy, 5, 3);

x += dx;

y += dy;

if (x <0 || x > 128)
dx = -dx;

if (y <0 || y > 64)
dy = -dy;

bitmapbytes = bb.GetBitmap();
Util.BitmapConvertBPP (bitmapbytes, vram,
Util.BPP_Type.BPP1_x128);

for (int 1 = 0; 1 < 8; 1++)
{
OPTREX_Locate (0, 1);
DC.Write (true);
Array.Copy (vram, 1 * 128, singleline, 0, 128);
SPI_port.Write(singleline);
}
Thread.Sleep(1l);

52

53

21 Time Services

In computer systems, time can mean two things. The system time, which is the processor ticks, is used to handle threads timing and all timing
management in the system. On the other hand, the real time clock is used to time human time, like minutes, hours and even dates.

21.1 Real Time Clock

All GHI NETMF devices have a built in RTC

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
// set the time to 9/9/2010 at 9:09:09
DateTime time = new DateTime (2010, 9, 9, 9, 9, 9);
Utility.SetLocalTime (time) ;
while (true)
{
Debug.Print (DateTime.Now.ToString());
Thread.Sleep(100);

To use the RTC hardware, we first need to check if the RTC hardware has the valid time or not. Maybe this is a new battery or the new system and the
RTC has not been set yet. If RTC has a valid time then we can read the RTC (hardware) and use that to set the NETMF system time (software). If time
is not valid, then you will need to set the RTC to the correct time.

using System;
using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.Hardware;

public class Program

{
public static void Main()
{
// To keep track of time,
// set it at the beginning of your application from the RTC.
// If it was NOT set before and currently running using
// the battery (not exhausted), set it to a fixed time.
if (RealTimeClock.IsTimeValid == false)
RealTimeClock.SetTime (new DateTime (2010, 03, 01, 12, 0, 0, 0));

Utility.SetLocalTime (RealTimeClock.GetTime ());

21.2 Timers

Micro Framework includes 2 timer classes, Timer and ExtendedTimes. Timer class is the same one included in full framework where ExtendedTimer is
specific to NETMF with extra functionality. For basic beginner projects, | suggest you keep on using threading before getting into timers. | will only
provide an example in this book. Our example will create a timer that will run after five seconds and then it will keep firing every second.

using System.Threading;
using Microsoft.SPOT;
using System;

namespace MFConsoleApplicationl
{
public class Program
{
static void RunMe (object o)
{
Debug.Print ("From timer!");
}
public static void Main ()
{
Timer MyTimer =
new Timer (new TimerCallback (RunMe), null, 5000, 1000);
Debug.Print (
"The timer will fire in 5 seconds and then fire
priodically every 1 second")

54

Thread.Sleep (Timeout.Infinite);

55

22 USB Host

There is almost always confusion between USB host and USB device. The USB host is the system that connects to multiple USB devices. For example,
the PC is a USB host and it can connect to multiple USB devices like mice, keyboards and mass storage devices. Implementing a USB device is rather
simple but implementing a host is far more complicated.

USB host is an exclusive feature from GHI Electronics. With this exclusive feature, you can connect almost any USB device to GHI's NETMF products
(USBizi, Embedded Master, ChipworkX). This feature opens new possibilities for embedded systems. Your product can now connect to a standard USB
keyboard and can also access files on a USB thumb drive! USB is a hot pluggable system which means any device can be connected or disconnected
any time. There are events generated when devices are connected or disconnected. The developer should subscribe to these events and handle
devices accordingly. Since this is a beginner book, | will assume that the device will always be connected to the system.

With USB HUB support, devices can be connected directly to the USB host port or a user may connect multiple USB devices through a USB hub. First,
let us detect what devices are connected. The first thing to do is start the system manager then we can get a list of available devices. Remember that
we need to add the GHI library assembly to our resources.

using System;
using System.Threading;
using Microsoft.SPOT;

using GHIElectronics.NETMF.USBHost;

namespace Test
{
class Program
{
public static void Main ()
{
// Subscribe to USBH events.
USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;
USBHostController.DeviceDisconnectedEvent += DeviceDisconnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);
}

static void DeviceConnectedEvent (USBH_Device device)
{

Debug.Print ("Device connected...");
Debug.Print ("ID: " + device.ID + ", Interface: " +
device.INTERFACE_INDEX + ", Type: " + device.TYPE);

}

static void DeviceDisconnectedEvent (USBH_Device device)
{
Debug.Print ("Device disconnected...");
Debug.Print ("ID: " + device.ID + ", Interface: " +
device.INTERFACE_INDEX + ", Type: " + device.TYPE);

When we detect a device, we can communicate with it directly. This requires a lot of knowledge on USB devices. Fortunately, most devices fall under
standard classes and GHI already provide drivers for them.

22.1 HID Devices

Human Interface Devices like mice, keyboards and joysticks are directly supported. Using HID is event based. Events are methods you create and then
you subscribe them to a certain event. When that event fires, your method will get executed automatically.

using System;

using System.Threading;

using Microsoft.SPOT;

using GHIElectronics.NETMF.USBHost;

namespace Test
{
public class Program
{
static USBH_Mouse mouse;
public static void Main ()
{
// Subscribe to USBH event.
USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);

}

static void DeviceConnectedEvent (USBH_Device device)
{

56

if (device.TYPE ==
{

USBH_DeviceType.Mouse)

Debug.Print ("Mouse Connected");
mouse = new USBH_Mouse (device);
mouse.MouseMove += MouseMove;
mouse .MouseDown += MouseDown;

}

static void MouseMove (USBH_Mouse sender,
{
Debug.Print (" (x, y) = (" + sender.Cursor.X + ",
sender.Cursor.Y + ")");
}

static void MouseDown (USBH_Mouse sender,
{

Debug.Print ("Button down number:
}

"

+

USBH_MouseEventArgs args)

USBH_MouseEventArgs args)

" + args.ChangedButton);

Accessing Joysticks is very similar. Here is the example modified to work with joysticks

using System;

using System.Threading;

using Microsoft.SPOT;

using GHIElectronics.NETMF.USBHost;
namespace Test

{

public class Program

{

static USBH_Joystick j;
public static void Main()
{
// Subscribe to USBH event.

USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);
}

static void DeviceConnectedEvent (USBH_Device device)

{
if (device.TYPE ==
{

USBH_DeviceType.Joystick)

Debug.Print ("Joystick Connected");
j = new USBH_Joystick (device);
j.JoystickXYMove += JoystickXYMove;

j.JoystickButtonDown += JoystickButtonDown;

}

static void JoystickButtonDown (USBH_Joystick sender,

USBH_JoystickEventArgs args)

{
Debug.Print ("Button Pressed:
}

static void JoystickXYMove (USBH_Joystick sender,

" + args.ChangedButton);

USBH_JoystickEventArgs args)

{
Debug.Print (" (x, y) = (" + sender.Cursor.X + ",
sender.Cursor.Y + ")");

22.2 Serial Devices

"

+

Serial (UART) communication is a very common interface. There are many companies that create chips that convert USB to serial. GHI supports
chipsets from FTDI, Silabs and Prolific. Also,there is a standard USB class defined for serial communication called CDC (Communication Device Class).
This class is supported as well. Note here that the USB chipsets are made to be somewhat customized. So a company can use a FTDI chip to make
their product run on USB and they will change the strings in USB descriptors so when you plug in their device to a PC you will see the company name
not FTDI name. They can also change the USB VID/PID, vendor ID and product ID. A good example is a USB GPS device. Almost all those USB GPS
devices use prolific chip, which is supported by GHI. Many of the interface products on the market use FTDI chipset.

using
using
using

using

using

System;
System.Text;
System.Threading;
Microsoft.SPOT;

GHIElectronics.NETMF.USBHost;

57

namespace Test
{
class Program
{
static USBH_SerialUSB serialUSB;
static Thread serialUSBThread; // Prints data every second

public static void Main(

{
// Subscribe to USBH event.
USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);

static void DeviceConnectedEvent (USBH_Device device)
{

Debug.Print ("Device connected");

switch (device.TYPE)
{
case USBH_DeviceType.Serial FTDI: // FTDI connected
serialUSB = new USBH_SerialUSB(device, 9600,
System.IO.Ports.Parity.None, 8,
System.IO.Ports.StopBits.One);
serialUSB.Open();
serialUSBThread = new Thread(SerialUSBThread);
serialUSBThread.Start () ;

break;

case USBH_DeviceType.Unknown: // Silabs but not recognized

// force SiLabs

USBH_Device silabs = new USBH_Device (device.ID,
device.INTERFACE_INDEX,
USBH_DeviceType.Serial_Silabs, device.VENDOR_ID,
device.PRODUCT_ID, device.PORT_NUMBER) ;

serialUSB = new USBH_SerialUSB(silabs, 9600,
System.IO.Ports.Parity.None, 8,
System.IO.Ports.StopBits.One);

serialUSB.Open();

serialUSBThread = new Thread(SerialUSBThread);

serialUSBThread.Start () ;

break;

static void SerialUSBThread/()
{
// Print "Hello World!" every second.
byte[] data = Encoding.UTF8.GetBytes ("Hello World!\r\n");
while (true)
{
Thread.Sleep (1000);

serialUSB.Write (data, 0, data.Length);

22.3 Mass Storage

Storage devices like USB hard drives and USB thumb memory drives use the same USB class, MSC (Mass Storage Class). GHI library directly support
those devices. USB only defines how to read/write raw sectors on the media. The operating system then handles the file system. NETMF supports
FAT32 and FAT16 file system. To access the files on a USB media, we first need to detect it then we need to mount the media.

using System;

using System.IO;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.IO;

using GHIElectronics.NETMF.IO;
using GHIElectronics.NETMF.USBHost;

namespace Test
{
class Program
{
public static void Main()
{
// Subscribe to RemovableMedia events
RemovableMedia.Insert += RemovableMedia_Insert;
RemovableMedia.Eject += RemovableMedia_Eject;

58

// Subscribe to USB events
USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);

static void DeviceConnectedEvent (USBH_Device device)

{

if (device.TYPE == USBH_DeviceType.MassStorage)
{
Debug.Print ("USB Mass Storage detected...");
VA
VYA

The next section explains how to access the files on the USB memory.

59

23 File System

File system is supported starting in NETMF 3.0. GHI adds more functionality to the standard support. For example, a SD card can be mounted to the file
system or mounted to the USB device MSC service. When mounted to the filer system, developers can access the files. But, when mounted to the USB
device MSC, a PC connected to the USB port will see a USB card reader with SD card. This is good for creating data logger for example. The device will
log data on the SD card and when the device is plugged to a PC, the device will become a card reader for the same SD memory card. GHI's persistent
storage class is used to handle mounting devices on the system.

This section will only cover using persistent storage device with internal file system.

23.1 SD Cards

First we need to detect the SD card insertion. SD card connectors usually have a little switch internally that closes when a card is inserted. In this
example, | will assume the card is always inserted and there is no need to look for detection. The example will list all files available in the root directory.

using System;
using System.IO;
using System.Threading;

using Microsoft.SPOT;
using Microsoft.SPOT.IO;

using GHIElectronics.NETMF.IO;

namespace Test
{
class Program
{
public static void Main()
{
/..
// SD Card is inserted
// Create a new storage device
PersistentStorage sdPS = new PersistentStorage ("SD");

// Mount the file system
sdPS.MountFileSystem() ;

// Assume one storage device is available, access it through
// Micro Framework and display available files and folders:
Debug.Print ("Getting files and folders:");
if (VolumeInfo.GetVolumes () [0].IsFormatted)
{
string rootDirectory =
VolumeInfo.GetVolumes () [0] .RootDirectory;
string[] files = Directory.GetFiles (rootDirectory);
string[] folders = Directory.GetDirectories (rootDirectory);

Debug.Print ("Files available on " + rootDirectory + ":");
for (int i = 0; i < files.Length; i++)
Debug.Print (files[i]);

Debug.Print ("Folders available on " + rootDirectory + ":");
for (int i = 0; 1 < folders.Length; i++)
Debug.Print (folders[i]);
}
else

{
Debug.Print ("Storage is not formatted. Format on PC with

FAT32/FAT16 first.");
}

// Unmount
sdPS.UnmountFileSystem();

There is more than one way to open files. | will only cover FileStream objects. This example will open a file and write a string to it. Since FileStream will
only take byte arrays, we need to convert our string to byte array.

using System.Threading;

using System.Text;

using Microsoft.SPOT;

using System.IO;

using Microsoft.SPOT.IO;

using GHIElectronics.NETMF.IO;

namespace MFConsoleApplicationl

{

public class Program

60

static void Main ()

{
// ... check if SD is inserted

// SD Card is inserted
// Create a new storage device
PersistentStorage sdPS = new PersistentStorage ("SD");

// Mount the file system
sdPS.MountFileSystem() ;

// Assume one storage device is available,
// access it through NETMF
string rootDirectory = VolumelInfo.GetVolumes () [0].RootDirectory;
FileStream FileHandle = new FileStream(rootDirectory +
@"\hello.txt", FileMode.Create);

byte[] data =

Encoding.UTF8.GetBytes ("This string will go in the file!");
// write the data and close the file
FileHandle.Write (data, 0, data.Length);
FileHandle.Close();

// if we need to unmount
sdPS.UnmountFileSystem() ;

/.
Thread.Sleep (Timeout.Infinite);

Verify the file if it is on the card using a PC and memory card reader if you like. Now, we want to open the same file and read the string we stored earlier.

using System.Threading;

using System.Text;

using Microsoft.SPOT;

using System.IO;

using Microsoft.SPOT.IO;

using GHIElectronics.NETMF.IO;

namespace MFConsoleApplicationl
{
public class Program
{
static void Main ()

{
// ... check if SD is inserted

// SD Card is inserted
// Create a new storage device
PersistentStorage sdPS = new PersistentStorage ("SD");

// Mount the file system
sdPS.MountFileSystem() ;

// Assume one storage device is available,

// access it through NETMF

string rootDirectory = VolumelInfo.GetVolumes () [0].RootDirectory;

FileStream FileHandle = new FileStream(rootDirectory +

@"\hello.txt", FileMode.Open, FileAccess.Read);

byte[] data = new byte[100];

// write the data and close the file

int read_count = FileHandle.Read(data, 0, data.Length);

FileHandle.Close();

Debug.Print ("The size of data we read is: " +

read_count.ToString());

Debug.Print ("Data from file:");

Debug.Print (new string(Encoding.UTF8.GetChars (data), O,
read_count)) ;

// if we need to unmount
sdPS.UnmountFileSystem() ;

/]
Thread.Sleep (Timeout.Infinite);

61

23.2 USB Mass Storage

Files are handled on USB exactly the same way it is done on SD. The only difference is in how we detect a USB device and mount it. For SD, we could
use an input pin to detect the card. On USB, we use events to detect a new media.

using System;

using System.IO;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.IO;

using GHIElectronics.NETMF.IO;
using GHIElectronics.NETMF.USBHost;

namespace Test

{
class Program
{

// Hold a static reference in case the GC kicks in and disposes it
// automatically, note that we only support one in this example!
static PersistentStorage ps;

public static void Main()

{
// Subscribe to RemovableMedia events
RemovableMedia.Insert += RemovableMedia_Insert;
RemovableMedia.Eject += RemovableMedia_Eject;

// Subscribe to USB events
USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;

// Sleep forever
Thread.Sleep (Timeout.Infinite);

static void DeviceConnectedEvent (USBH_Device device)

{

if (device.TYPE == USBH_DeviceType.MassStorage)
{
Debug.Print ("USB Mass Storage detected...");
ps = new PersistentStorage (device);

ps.MountFileSystem() ;

static void RemovableMedia_Insert (object sender, MediaEventArgs e)
{
Debug.Print ("Storage \"" + e.Volume.RootDirectory +
"\" is inserted.");
Debug.Print ("Getting files and folders:");
if (e.Volume.IsFormatted)
{
string[] files = Directory.GetFiles (e.Volume.RootDirectory);
string[] folders =
Directory.GetDirectories (e.Volume.RootDirectory);

Debug.Print ("Files available on " +
e.Volume.RootDirectory + ":");
for (int i = 0; i < files.Length; i++)
Debug.Print (files[i]);

Debug.Print ("Folders available on " +
e.Volume.RootDirectory + ":");
for (int i = 0; i < folders.Length; i++)
Debug.Print (folders[i]);
}
else
{
Debug.Print ("Storage is not formatted. Format on PC with
FAT32/FAT16 first.");

static void RemovableMedia_Eject (object sender, MediaEventArgs e)

{
Debug.Print ("Storage \"" + e.Volume.RootDirectory +
"\" is ejected.");

You can see from the code above how after we mount the USB drive to the file system, everything work exactly the same as SD cards.

62

23.3 File System Considerations

NETMF support for FAT File System is only capable of FAT32 and FAT16. A media formatted as FAT12 will not work. This shouldn't be an issue since
FAT12 is no longer in use.

The file system does a lot of data buffering internally to speed up the file access time and to increase the life of the flash media. When you write data to
a file, it is not necessary that the data is written on the card. It is probably saved somewhere in the internal buffers. To make sure the data is stored on
the media, we need to ?flush? the data. Flushing or closing a file is the only way to guarantee that the data you are trying to write are now on the actual
media. That is on file level. On media level, there are also information that may not take immediate effect. For example, if you delete a file and remove
the card from the system, the file is probably not actually erased. To guarantee the file is erased (media is updated) you need to run
Volumelnfo.FlushALL

Ideally, you would unmounted the media before it is removed from the system. This may not be always possible and so a flush on a file or a FlushAll on
media will guarantee your data is saved so there is no lost data if the media was removed at some point.

63

24 Networking

Networks are an essential part of our work and living. Aimost every home is connected to a network (internet) and most businesses can't function
without an internal network (LAN or WiFi) that is connected to an external network (internet). All these networks have a standard way for communication,
they all use TCP/IP protocol. There are actually a few protocols that handle different tasks in the network DNS, DHCP, IP, ICMP, TCP, UDP, PPP...and
many more! NETMF supports TCP/IP networks through standard .NET sockets. A socket is a virtual connection between 2 devices on a network.

GHI extended the TCP/IP support to cover PPP and WiFi. Through PPP, two devices can connect through serial connection. Serial connection can be a
phone-line modem or a 3G/GPRS modem. With PPP, NETMF devices can connect to the internet using 3G cell-phone networks. It is also possible to
connect two NETMF devices through wired or wireless (XBee/Bluetooth/others) serial connection. Also, with WiFi support, NETMF devices can connect
to standard secure or unsecured wireless networks.

NETMF also support SSL for secure connection.

The support for networks is standard and complete (HTTP, SSL, Sockets...etc.) on EMX, Embedded Master and for ChipworkX.

24.1 USBizi Network Support

When it comes to ram-hungry networking, USBizi will require some external support. For example, USBizi wired networking is done through Wiznet
W5100 Hardwired TCP/IP chip. When USBizi want to make a network connection, all it has to do is send a request to Wiznet W5100 of the connection
an then the chip will do the rest. Same as for data transfer, where USBizi will hand the data to W5100 and then this chip will take care of the rest.

GHI Provide complete commercially-supported drivers for Wiznet W5100. The drivers have the same interface as standard .NET sockets.
Here is a TCP example

using System;
using System.Text;
using System.Threading;

using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;

using GHIElectronics.NETMF.Net;

using GHIElectronics.NETMF.Net.Sockets;

using GHIElectronics.NETMF.Net.NetworkInformation;

using Socket = GHIElectronics.NETMF.Net.Sockets.Socket;

/// <summary>
/// This is a simple web server. Given a request, it returns an HTML document.
/// The same document is returned for all requests and no parsing of
/// the request is done.
/// </summary>
public static class MySocketServer
{

public static void Main ()

{

const Int32 c_port = 80;

bytel] ip = { 192, 168, 0, 200 };

byte[] subnet = { 255, 255, 255, 0 };
byte[] gateway = { 192, 168, 0, 1 };
bytel[] mac = { 43, 185, 44, 2, 206, 127 };

WIZnet_W5100.Enable (SPI.SPI_module.SPI1,
(Cpu.Pin)FEZ_Pin.Digital.DilO0,
(Cpu.Pin)FEZ_Pin.Digital.Di9, true);

NetworkInterface.EnableStaticIP (ip, subnet, gateway, mac);
NetworkInterface.EnableStaticDns (new byte[] { 192, 168, 0, 1 });

Socket server = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

IPEndPoint localEndPoint = new IPEndPoint (IPAddress.Any, c_port);

server.Bind (localEndPoint);
server.Listen (1) ;

while (true)

{
// Wait for a client to connect.
Socket clientSocket = server.Accept();

// Process the client request. true means asynchronous.
new ProcessClientRequest (clientSocket, true);
}
}
/// <summary>

64

/// Processes a client request.
/// </summary>
internal sealed class ProcessClientRequest
{
private Socket m_clientSocket;
/// <summary>
/// The constructor calls another method to handle the request,
/// but can optionally do so in a new thread.
/// </summary>
/// <param name="clientSocket"></param>
/// <param name="asynchronously"></param>
public ProcessClientRequest (Socket clientSocket,
Boolean asynchronously)

m_clientSocket = clientSocket;
if (asynchronously)
// Spawn a new thread to handle the request.
new Thread(ProcessRequest) .Start ();
else ProcessRequest ();
}
/// <summary>
/// Processes the request.
/// </summary>
private void ProcessRequest ()
{
const Int32 c_microsecondsPerSecond = 1000000;
// 'using' ensures that the client's socket gets closed.
using (m_clientSocket)
{
// Wait for the client request to start to arrive.
Byte[] buffer = new Byte[1024];
if (m_clientSocket.Poll(5 * c_microsecondsPerSecond,
SelectMode.SelectRead))
{
// If 0 bytes in buffer,
// then the connection has been closed,
// reset, or terminated.
if (m_clientSocket.Available == 0)
return;
// Read the first chunk of the request
// (we don't actually do anything with it).
Int32 bytesRead = m_clientSocket.Receive (buffer,
m_clientSocket.Available, SocketFlags.None);

// Return a static HTML document to the client.
String s =
"HTTP/1.1 200 OK\r\nContent-Type: text/html; charset=utf-8\r\n\r\n<html><head><title>.NET Micro Framework Web Server on U
+ "<body><bold>Learn more about the .NET Micro Framework with FEZ by clicking here</a
byte[] buf = Encoding.UTF8.GetBytes(s);
int offset = 0;
int ret = 0;
int len = buf.Length;
while (len > 0)
{

ret = m_clientSocket.Send(buf, offset, len,

SocketFlags.None) ;

len —-= ret;

offset += ret;
}
m_clientSocket.Close();

Here is a UDP example

using
using
using
using
using
using
using
using
using
using

{

System;

System.Threading;

Microsoft.SPOT;
Microsoft.SPOT.Hardware;
GHIElectronics.NETMF.FEZ;
GHIElectronics.NETMF.Net;
GHIElectronics.NETMF.Net.Sockets;

GHIElectronics.NETMF.Net.NetworkInformation;

System.Text;

Socket = GHIElectronics.NETMF.Net.Sockets.Socket;
namespace FEZ_Panda_UDP

public class Program

{

public static void Main()

{

1

] subnet = { 255, 255,
byte[] gateway = { 192, 168,

] mac = { 43, 185, 44,

ip = { 192, 168, 0, 200 };

65

// WIZnet interface on FEZ Panda

WIZnet_W5100.Enable (SPI.SPI_module.SPI1,
(Cpu.Pin)FEZ_Pin.Digital.DilO,
(Cpu.Pin)FEZ_Pin.Digital.Di9, true);

NetworkInterface.EnableStaticIP (ip, subnet, gateway, mac);
NetworkInterface.EnableStaticDns (new byte[] { 192, 168, 0, 1 });

Socket serversocket = new Socket (AddressFamily.InterNetwork,
SocketType.Dgram,
ProtocolType.Udp) ;

EndPoint remoteEndPoint = new IPEndPoint (IPAddress.Any, 2000);
serversocket.Bind (remoteEndPoint) ;
int 1 = 1;
while (true)
{
if (serversocket.Poll (-1, SelectMode.SelectRead))

{
byte[] inBuf = new byte[serversocket.Available];
int count = serversocket.ReceiveFrom(inBuf,
ref remoteEndPoint);
Debug.Print (new String(Encoding.UTF8.GetChars (inBuf)));

}

Or see, http://www.tinyclr.com/downloads/Shield/Broch_EthernatShield.pdf

24.2 Raw TCP/IP vs. Sockets

This is an area when most designers miss few important points. When selecting a WiFi or GPRS/3G module, there are two main module categories to
select from. Modules with sockets and modules with raw TCP/IP. The modules with sockets handle all TCP/IP work internally and give you a high level
socket access. This means that all the work is being done already inside the module. Once you set your IP and port number, all you have to do is send
and receive data from the module. The catch is, this is very limited. The module will have many limitations, like socket count. Even if your system is very
powerful, with megabytes of RAM, you still is limited by the module's features. For this reason, using these high level modules is ideal for small systems.

Let me give you an example, Roving Networks provides a module called WiFly. This module has a built in TCP/IP stack and only one socket support.
Using the module is very easy as you only need to connect it to one of the serial ports on your system then, with simple serial commands, you can
read/write data from the one available socket. This is enough to make a simple web server or telnet connection, for configuration or data transfer. This is
perfect for small systems with limited memory and low resources, like USBizi (FEZ). The module does everything for you, just send and receive data
serially.

If you are implementing a web server that provides some values like temperature and humidity then this is all you need and can be easily implemented
using USBizi (FEZ) at a very low cost. An easy prototype is done by connecting the WiFly shield to FEZ Domino. The SparkFun WiFly shield is showing
in the image to the right.

The negative side about using these simple modules is that you are limited very few sockets, very few connections. What if you need more? What if you
want to implement SSL (secure sockets)? For those, you will need a WiFi module that doesn't handle TCP/IP internally. The TCP/IP work will need to be
done outside the module. This is where devices like EMX and ChipworkX come in. These devices are powerful, with a lot of resources. They have built
in TCP/IP stack with SSL/HTTP/DHCP...etc. So connecting module like ZeroG to EMX or ChipworkX will empower the device with full blown and secure
WiFi connection.

66

http://www.tinyclr.com/downloads/Shield/Broch_EthernatShield.pdf
http://www.microframeworkprojects.com/index.php?title=File:Networking01.jpg

What about GPRS and 3G modems? The same applies to these modules. Some have built in sockets like SM5100B but others work over PPP just like
any PC modem, like Telit modules for example. If you need a real network connection with full blown TCP/IP stack then you need EMX or ChipworkX
with a standard PPP modems, just like how would your PC connect to the internet using a standard modem. If you need a simple and low-cost
connection then USBizi (FEZ) can be used with SM5100B. The SparkFun Cellular Shield showing on the right, plugs right into FEZ Domino.

24.3 Standard .NET Sockets

The socket supported on NETMF is very similar to the full .NET Framework. The NETMF SDK includes many examples for using sockets, client and
server. Also, many projects are available showing the different possibilities

Twitter client: http://www.microframeworkprojects.com/index.php?title=MF Twitter

Google maps: http://www.microframeworkprojects.com/index.php?titte=GoogleMaps

RSS client: http://www.microframeworkprojects.com/index.php?title=RSS_n_Weather

MP3 internet radio: http://www.microframeworkprojects.com/index.php?title=ShoutcastClient

Web server: http://www.microframeworkprojects.com/index.php?title=WebServer

24.4 Wi-Fi (802.11)

WiFi is the most common way for computer networking. It allows secure data transfers at high rates to multiple connections. WiFi allows connections
between two nodes, called Ad-Hoc. The more common way is to connect multiple computers to an access point. WiFi is not simple and not designed to
be embedded friendly. GHI Electronics is the only company that offers WiFi option for its NETMF devices. WiFi is designed to work with TCP/IP stacks
(network sockets on NETMF) and so it can only be used with systems that already support TCP/IP, like EMX and ChipworkX.

GHI's WiFi support uses ZeroG's ZG2100 and ZG2101 that use internal or external antennas respectively. For prototyping, the WiFi expansion board is
a good start.

As explained in earlier section, USBizi (FEZ) can be used with modules with built in TCP/IP stack and socket support like the SparkFun shield with WiFly
modules from Roving Networks.

24.5 GPRS and 3G Mobile Networks

EMX and ChipworkX have built in TCP/IP stack and PPP support. You can connect any standard modem and use it with few simple steps. As far as
USBizi, a connection can be made to a mobile network using modems with built in TCP/IP like SM5100B. SparkFun Cellular shield with SM5100B is
shown below.

67

http://www.microframeworkprojects.com/index.php?title=File:Networking02.jpg
http://www.microframeworkprojects.com/index.php?title=MFTwitter
http://www.microframeworkprojects.com/index.php?title=GoogleMaps
http://www.microframeworkprojects.com/index.php?title=RSS_n_Weather
http://www.microframeworkprojects.com/index.php?title=ShoutcastClient
http://www.microframeworkprojects.com/index.php?title=WebServer
http://www.microframeworkprojects.com/index.php?title=File:Networking03.jpg
http://www.microframeworkprojects.com/index.php?title=File:Networking04.jpg

68

http://www.microframeworkprojects.com/index.php?title=File:Networking02.jpg

25 Cryptography

Cryptography has been an important part of technology for long years. Modern cryptography algorithms can be very resource hungry. Since NETMF is
made with little devices in mind, the NETMF team had to be careful selecting what algorithms to support. The algorithms are XTEA and RSA.

25.1 XTEA

XTEA, with its 16byte (128bit) key, is considered to be very secure and at the same time it doesn't require a lot of processing power. Originally, XTEA
was designed to work on chunks of eight bytes only. This can be a problem if encrypting data that it size is not multiple of 8. The implementation of
XTEA on NETMF allows for encrypting data of any size. Encrypting and decrypting data is straight forward. Here is an example:

using System;
using System.Text;
using Microsoft.SPOT;
using Microsoft.SPOT.Cryptography;
public class Program
{
public static void Main ()
{
// l6-byte 128-bit key
byte[] XTEA_key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 };
Key_TinyEncryptionAlgorithm xtea =
new Key_TinyEncryptionAlgorithm(XTEA_key) ;
// The data we want to encrypt
string original_string = "FEZ is so easy!";
//must be more than 8 bytes

//convert to byte array
byte[] original_data = UTF8Encoding.UTF8.GetBytes (original_string);

//Encrypt the data

byte[] encrypted_bytes = xtea.Encrypt (original_data, O,
original_data.Length, null);

//Decrypt the data

byte[] decrypted_bytes = xtea.Decrypt (encrypted_bytes, 0,
encrypted_bytes.Length, null);

//print the decrypted data

string decrypted_string =

new string(Encoding.UTF8.GetChars (decrypted_bytes));
Debug.Print (original_string);
Debug.Print (decrypted_string);

}

The encrypted data has the same size as the unencrypted data.

25.1.1 XTEA on PCs

Now you can share data between NETMF devices securely using XTEA but what about sharing data with a PC or other systems? The book ?Expert
.NET Micro Framework?, Second Edition by Jens Kuhner includes source examples showing how to implement XTEA on a PC. Using Jen's code, you
can encrypt data then send to any NETMF device or vice-versa. Even if you do not own the book, the source code is online, found in chapter 8.

Download the source code from here http://apress.com/book/view/9781590599730

25.2 RSA

XTEA is very secure but has an important limitation, a key must be shared. For example, in order for any two systems to share encrypted data, they first
both must share the same key. If a system tried to send the key to the other system then anyone spying on the data can get the key and use it to
decrypt the data. Not very secure anymore!

RSA overcomes this problem by providing a private and public key combination. This may not make sense but the key used for encryption can't be used
to decrypt the data. A different key is needed to decrypt the data. Lets say system 'A’' needs to read some secure data from system 'B'. The first thing
system 'A’ will do is send a public key to system 'B'. System 'B' will now encrypt the data using the public key and send the encrypted data to the PC. A
hacker can see the encrypted data and can see the public key but without the private key, decrypting the data is near impossible. Finally, system 'A' can
decrypt the data with its private key.

By the way, this is how secure websites work.
NETMF devices can't generate keys. The keys are generated on a PC using a tool called MetaDataProcessor. Open the command prompt and enter
this command cd ?C:\Program Files (x86)\Microsoft .NET Micro Framework\v4.0\Tools? Note that you may need to change this folder depending on

where you have installed .NET Micro Framework.

Generate the keys using the following:

69

http://apress.com/book/view/9781590599730

MetadataProcessor.exe -create_key_pair c:\private.bin c:\public.bin
The keys are in binary but the tool can convert the keys to readable text using these commands

MetadataProcessor.exe -dump_key c:\public.bin >> c:\public.txt
MetadataProcessor.exe —-dump_key c:\private.bin >> c:\private.txt

Now, copy the key to our example program.

Note that the public key always starts with 1,0,1 and the rest are zeros. We can use this info to optimize our code as showing.

using System;
using System.Text;
using Microsoft.SPOT;
using Microsoft.SPOT.Cryptography;
public class Program
{

public static void Main ()

{

//this is shared between public and private keys

byte[] module = new byte[] { 0x17, Oxe5, 0x27, 0x40, Oxa9, 0x1l5, Oxbd, Oxfa, Oxac,
//the private key...for dycrypting
byte[] private_key = new byte[] { 0xb9, 0xlc, 0x24, Oxca, 0Oxc8, 0xe8, 0x3d, 0x35,

// the public key, always starts with 0x01, 0x00, 0x01,...
// and the reast are all zeros

byte[] public_key = new byte[128];

public_key[0] = public_key[2] = 1;

Key_RSA rsa_encrypt = new Key_RSA (module, public_key);
Key_RSA rsa_decrypt = new Key_RSA (module, private_key);

// The data we want to encrypt
string original_string = "FEZ is so easy!";
//convert to byte array
byte[] original_data = UTF8Encoding.UTF8.GetBytes (original_string);
//Encrypt the data
byte[] encrypted_bytes =
rsa_encrypt.Encrypt (original_data, 0, original_data.Length, null)
//Decrypt the data
byte[] decrypted_bytes =
rsa_decrypt.Decrypt (encrypted_bytes, 0, encrypted_bytes.Length,
null);
//print the decrypted data
string decrypted_string =
new string(Encoding.UTF8.GetChars (decrypted_bytes));

Debug.Print ("Data Size= " + original_string.Length +
" Data= " + original_string);

Debug.Print ("Encrypted Data size= " + encrypted_bytes.Length +
" Decrypted Data= " + decrypted_string);

RSA encrypted data size is not the same as the raw data size. Keep this in mind when planning on transferring or saving RSA encrypted data.

0xb8,

0x76,

Oxel,

0xb5,

0x7d,

0x71,

oxf7,

0x49,

0x8b,

Oxa5,

Ox6c,

0x0e,

RSA is far more processor intensive than XTEA which can be a problem for small systems. My suggestion is to start an RSA session to exchange XTEA

key and some security info and then switch to XTEA.

70

0x!

0xd

26 XML

26.1 XML in Theory

Extensible Markup Language (XML) is a standard for containing electronic data. When you want to transfer some info between two devices, you can set
some rules on how the data is to be packed and sent from device A. On the other side, device B receives the data and knows how to unpack it. This
created some difficulties in the past before XML. What if you were sending the data to a system implemented by different designer? You will have to
explain the other designer how you have packed your data so he/she can unpack it. Now, designers can select to use XML to pack and unpack the data.

XML is extensively used daily in many ways. For example, when a website's shopping cart wants to know how much will be the shipping cost on a
certain package, you will need to pack your shipment details in XML format and then send to FedEx (for example). Then FedEx website will read the info
and send the cost info back in XML format as well.

The usefulness of XML can also be utilized in other ways. Let's say you are designing a data logger. Let's also assume the end users will need to
configure the data logger to fit their needs. When a user configures the device, you need to store the info internally somehow. You can save the data
with your own format which requires extra coding and debugging, or better just use XML. All GHI Electronics NETMF devices have built in XML reader
and writer (packer and un-packer).

Here is an example XML file that will help in our data logger design.

<?xml version="1.0" encoding="utf-8" 2>
<NETMF_DatalLogger>
<FileName>Data</FileName>
<FileExt>txt</FileExt>
<SampleFreg>10</SampleFreqgq>
</NETMF_DatalLogger>

The previous XML example includes a root element and three child elements. | chose for the file to look that way but you can, for example, make all info
to be root elements. XML is very flexible, sometimes too flexible actually! Back to our example, the root element "NETMF_Datalogger" contains three
pieces of info that are important for our logger. It contains the file name, the file extension and a frequency of our saved data. With this example, the
logger will create a file called Data.txt and then will log data into that file 10 times every second.

Other important use for us "Embedded developers" is sharing data with the big system, | mean your PC. Since PCs with all operating systems do
support XML in a way or another, you can send/receive data from the PC using XML.

Spaces and layout do not mean anything to XML, we (humans) need them to make things easier to read. The previous example can be stored without
the spaces and layout like this.

<?xml version="1.0" encoding="utf-8" 2>
<NETMF_DatalLogger>
<FileName>Data</FileName>
<FileExt>txt</FileExt>
<SampleFreg>10</SampleFreqgq>
</NETMF_DatalLogger>

See why spaces are important to us human being! You can also add comments inside XML files, comments do not mean anything to XML but can help
in manual reading of the files

<?xml version="1.0" encoding="utf-8" 2>

<NETMF_DataLogger>
<FileName>Data</FileName>
<FileExt>txt</FileExt>
<SampleFreqg>10</SampleFreqg>

</NETMF_DataLogger>

Finally, XML support attributes. An attribute is an extra info given to an element. But why do you need an attribute if you can add another element to
describe this extra information? You really do not need to use attributes and | would say if you do not have a good reason then just do not use them. |
will not be explaining attributes in this book

26.2 Creating XML

GHI Electronics' NETMF devices support reading and writing XML format. Reading and writing XML files work over streams which means any stream
you already have or implement can work with XML. For example, we will use the built in MemoryStream and FileStream but you can create your own
stream as well, which is not covered in this book.

This code shows how to make an XML document in memory. The code represent the our earlier XML example

using System.IO;
using System.Xml;
using System.Ext.Xml;
using Microsoft.SPOT;

public class Program
{

public static void Main ()

71

MemoryStream ms = new MemoryStream();
XmlWriter xmlwrite = XmlWriter.Create (ms);

xmlwrite.WriteProcessingInstruction ("xml",
"version=\"1.0\" encoding=\"utf-8\"");
xmlwrite.WriteComment ("This is just a comment");
xmlwrite.WriteStartElement ("NETMF_Datalogger");//root element
xmlwrite.WriteStartElement ("FileName");//child element
xmlwrite.WriteString ("Data");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteStartElement ("FileExt");
xmlwrite.WriteString ("txt");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteStartElement ("SampleFeq");
xmlwrite.WriteString ("10");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteEndElement ();//end the root element

xmlwrite.Flush();

xmlwrite.Close();

//////// display the XML data ///////////

byte[] byteArray = ms.ToArray();

char[] cc = System.Text.UTF8Encoding.UTF8.GetChars (byteArray);
string str = new string(cc);

Debug.Print (str);

Important note: On NETMF, XML writer and XML reader libraries are available from two different libraries. The XML reader comes from assembly
"System.Xml" but the XML writer comes from "MFDpwsExtensions"! If you want to know why then you need to check with Microsoft! Also, the XML
reader is in the "System.Xml" namespace but the XML writer is in "System.Ext.XmlI". To make life easier, just include "System.Xml" and
MFDpwsExtensions" assemblies whenever you need to get started with XML. Also your code should include the two needed namespaces just like | did
in previous example.

Note: When you try to add an assembly you will notice that there are two assemblies for XML, the "System.XmlI" and "System.Xml.Legacy". Never use
the "legacy" driver, it is slow and needs a lot of memory. It is there for older systems that doesn't have a built in support for XML. All GHI Electronics;
NETMF devices have a built in XML support (very fast!) and so you should always use "System.Xml|"

When running the example above, we will see the output XML data at the end. The data is correct but it is not formatted to be "human" friendly. Note
that we are reading and writing XML files on a very small system so the less info (spaces/formatting) the better it is. So it is actually better not to have
any extra spaces or formatting but for the sake of making things look pretty, we will add new lines as follows

using System.IO;
using System.Xml;
using System.Ext.Xml;
using Microsoft.SPOT;

public class Program

{
public static void Main ()
{

MemoryStream ms = new MemoryStream();
XmlWriter xmlwrite = XmlWriter.Create (ms);

xmlwrite.WriteProcessingInstruction ("xml",
"version=\"1.0\" encoding=\"utf-8\"");
xmlwrite.WriteComment ("This is just a comment");
xmlwrite.WriteRaw ("\r\n");
xmlwrite.WriteStartElement ("NETMF_DataLogger");//root element
xmlwrite.WriteString ("\r\n\t");
xmlwrite.WriteStartElement ("FileName");//child element
xmlwrite.WriteString ("Data");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n\t");
xmlwrite.WriteStartElement ("FileExt");
xmlwrite.WriteString ("txt");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n\t");
xmlwrite.WriteStartElement ("SampleFeq");
xmlwrite.WriteString("10");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n");
xmlwrite.WriteEndElement ();//end the root element

xmlwrite.Flush();
xmlwrite.Close();

//////// display the XML data ///////////

byte[] byteArray = ms.ToArray();

char[] cc = System.Text.UTF8Encoding.UTF8.GetChars (byteArray) ;
string str = new string(cc);

Debug.Print (str);

72

26.3 Reading XML

Creating XML files is actually easier than parsing (reading) them. There are many ways to read the XML file but basically you can just go through the file
and read one piece at the time till you reach the end. This code example creates an XML data and it reads it back.

using System.IO;
using System.Xml;
using System.Ext.Xml;
using Microsoft.SPOT;

public class Program

{
public static void Main ()
{

MemoryStream ms = new MemoryStream();
XmlWriter xmlwrite = XmlWriter.Create (ms);

xmlwrite.WriteProcessingInstruction ("xml",
"version=\"1.0\" encoding=\"utf-8\"");
xmlwrite.WriteComment ("This is just a comment");
xmlwrite.WriteRaw ("\r\n");
xmlwrite.WriteStartElement ("NETMF_DatalLogger");//root element
xmlwrite.WriteString ("\r\n\t");
xmlwrite.WriteStartElement ("FileName");//child element
xmlwrite.WriteString ("Data");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n\t");
xmlwrite.WriteStartElement ("FileExt");
xmlwrite.WriteString ("txt");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n\t");
xmlwrite.WriteStartElement ("SampleFeq");
xmlwrite.WriteString("10");
xmlwrite.WriteEndElement () ;
xmlwrite.WriteRaw ("\r\n");
xmlwrite.WriteEndElement ();//end the root element

xmlwrite.Flush();
xmlwrite.Close();

//////// display the XML data ///////////

byte[] byteArray = ms.ToArray();

char[] cc = System.Text.UTF8Encoding.UTF8.GetChars (byteArray) ;
string str = new string(cc);

Debug.Print (str);

//////1/////read xml
MemoryStream rms = new MemoryStream(byteArray);

XmlReaderSettings ss = new XmlReaderSettings();
ss.IgnoreWhitespace = true;
ss.IgnoreComments = false;
//XmlException.XmlExceptionErrorCode.
XmlReader xmlr = XmlReader.Create (rms,ss);
while (!xmlr.EOF)
{

xmlr.Read();

switch (xmlr.NodeType)

{

case XmlNodeType.Element:

Debug.Print ("element: " + xmlr.Name);
break;

case XmlNodeType.Text:
Debug.Print ("text: " + xmlr.Value);
break;

case XmlNodeType.XmlDeclaration:
Debug.Print ("decl: " + xmlr.Name + ", " + xmlr.Value);
break;

case XmlNodeType.Comment:
Debug.Print ("comment " +xmlr.Value);
break;

case XmlNodeType.EndElement:
Debug.Print ("end element");
break;

case XmlNodeType.Whitespace:
Debug.Print ("white space");
break;

case XmlNodeType.None:
Debug.Print ("none") ;
break;

default:
Debug.Print (xmlr.NodeType.ToString());
break;

73

27 Expanding 10s

An application may require more digital pins or more analog pins than what is available on the processor. There are ways to expand what is available.

27.1 Digital

The easiest way to expand digital pins is by using a shift register. The shift register will then connect to the SPI bus. Using SPI, we can send or get the
state of its pins. Shift registers can be connected in series so in theory we can have unlimited digital pins.

Shift registers usually have eight digital pins. If we connect three of them to a device over SPI, we will have 24 new digital pin but we only use the SPI
pins on the processor.

Another good example is the 1040 board that runs on 12C bus. Also, this board can be chained for a maximum of 320 10s!

381 I.I.H.I.I-

I:IFII:I'IIII'r

Fraurid’ Cog”

- T
i
[= wnl
CIDEE

27.1.1 Button Matrix

Devices like microwave ovens have many buttons on the front. A user will never need to press two buttons at the same time so we can ?matrix? those
buttons. If we have 12 buttons on our system then we will need 12 digital inputs from the processor to read them all. Connecting these buttons in a 4x3
matrix will still give us 12 buttons but we are only using seven pins from the processor instead of 12. There are many off-the-shelf button matrix that can
be integrated in your product.

To connect buttons in a matrix, we will wire our circuit so there are rows and columns. Each button will connect to one row and one column. That is all
for hardware! Note how if we are not using a matrix then the button will connect to an input pin and ground.

To read the buttons state, make all processor pins connecting to rows outputs and the ones connecting to columns inputs. Set one and only one of the
rows high and the rest of all rows to low. We are now selecting what row of buttons we will read. Now, read the state of all buttons in that row (you are
reading the columns now). When complete, set the one row back to low and then go to the next one and set it high then go back to read the columns.

Keep repeating until every row have been set to high once.

This example assumes we have a matrix with these connections. three rows connected to pins (1, 2, 3) and three columns connected to pins (4, 5, 6)

using System.Threading;

using System;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
static OutputPort[] Rows = new OutputPort[3];
static InputPort[] Colms = new InputPort[3];

static bool ReadMatrix (int row, int column)

{

bool col_state;

//select a row

Rows [row] .Write (true);

//read the column

col_state = Colms[column].Read();
// deselectt the row

Rows [row] .Write (false);

return col_state;

74

http://www.microframeworkprojects.com/index.php?title=File:ExpIO.jpg

static void Main ()
{
// initialize rows to outputs and low

Rows [0] = new OutputPort ((Cpu.Pin)l, false);
Rows[1l] = new OutputPort ((Cpu.Pin)2, false);
Rows [2] = new OutputPort ((Cpu.Pin)3, false);

//initialize inputs with pull down

Colms[0] = new InputPort ((Cpu.Pin)4, true,
Port.ResistorMode.PullDown) ;
Colms[1l] = new InputPort((Cpu.Pin)5, true,
Port.ResistorMode.PullDown) ;
Colms[2] = new InputPort ((Cpu.Pin)6, true,

Port.ResistorMode.PullDown) ;

while (true)
{
bool state;

// read the button on the first row and first column
state = ReadMatrix (0, 0);//we count from zero
Debug.Print ("Buton state is: " + state.ToString());

// read the button on the third row and second column
state = ReadMatrix (2, 1);//we count from zero

Debug.Print ("Buton state is: " + state.ToString());

Thread.Sleep(100);

27.2 Analog

There are hundreds or thousands of analog chipsets available that run on SPI, 12C, one wire...etc. Some read 0V to 5V and other read -10V to +10V.
Basically, there are too many options for reading more analog inputs to your device. Some chips have specific tasks. If we need to measure
temperature, we can connect a temperature sensor to an analog pin and then read the analog value and convert that to temperature. That is an option
but a better option will be to use a digital temperature sensor that run on 12C, one wire or SPI. This will give us a more accurate temperature reading and
will also save an analog input for other uses.

27.2.1 Analog Buttons

One trick to connect many buttons using a single pin is by using an analog pin. The buttons will be connected to resistors. This allows each button to set
out a different voltage if pressed. That voltage can then be measured to determine which button has been pressed.

75

28 USB Client

| want to start this section by pointing out that this is a little advanced topic. If you just started out with NETMF then you may want to save it for later.

28.1 Serial (COM) Debugging

By default, all GHI's NETMF devices use USB for deploying and debugging. Optionally, a developer may want to use the USB client (not the host) for
something other than debugging. This is actually supported by NETMF and GHI adds much functionality making it very easy to setup.

Important note: You can't use the USB client port for both debugging and something else. Once you decide you want to use the USB client port for your
own use then you no longer can use the USB port for debugging. By the way, GHI did support debugging and customizing the USB interface
simultaneously through using multiple interfaces on the same USB interface but this caused a huge load of support due to improper use and so
simultaneous use support was dropped.

Let me give you an example on the USB client usage. Let us say you are making a device that that reads temperature and humidity...etc. and logs all
this data on an SD card. Also, this device can be configured, like to set the time or give file names...etc. You want the device to be configured over USB.
So when your device plugs into a USB port, you want it to show as a virtual serial port. This way, anyone can open a terminal software (like TeraTerm)
to connect to your device to configure it. This is where USB client becomes very useful. There is no need to add extra cost to the design but adding
additional RS232 serial ports or USB<->serial chipsets. The built-in USB client port can be configured to act as a CDC device, virtual COM port. But,
there is a catch! The catch is, you still need to connect the PC to your device serially for debugging and deploying applications since the USB client port
is used by your end application. The good news is that you only need the serial interface in the development stage but, when you deploy the product,
the serial port is no longer needed. For example, you may use the RS232 shield on FEZ Domino in development stage but then you do not need it when
you are done debugging.

Now, you have COM1 connected to your device and want to use that for debugging instead of USB. The next step is to configure the device to use
serial for debugging. This is a device specific so you need to check your device's user manual. For example, if you are using FEZ Domino, there is
jumper labeled MODE that you can place to select serial debugging. If you are using FEZ Cobra then the pin LMODE need to be connected to 3.3V to
select serial debugging. Remember that once you connect the pin high or low then you can no longer use it in your application. For example, the MODE
pin on FEZ Domino is the same pin used for LED and it is also a PWM pin. Once you short the pin to ground (through the jumper), you should never
attempt to use this pin, never try to use the LED or you may damage your device!

28.2 The Setup

Okay, enough talking and let us set up. | am using FEZ Domino with RS232 shield but you can use any device of your choice. | have the RS232 shield
plugged into FEZ Domino and also connected to my PC using an RS232<->USB cable (no serial port on my PC). | also did place the MODE jumper and
connected the USB cable from domino to this PC as well. After, placing the MODE jumper, connecting the USB cable from FEZ Domino to a PC will not
load any drivers on windows (you will not hear the ?USB connect? sound).

Finally, we want to make sure we can ping the device using MFDeploy tool. We did that before using USB and now we want to use serial. Note that

even though | have FEZ Domino+RS232 shield connected to my PC's USB port through the RS232<->USB cable, this is COM and not USB, it is a
virtual COM to be exact.

So, open MFDeploy and select COM and then you will have a list of the available serial ports. Select the one connected to your device and click ping.
You should see ?TinyCLR? back. If you don't then go back and check your setup.

76

http://www.microframeworkprojects.com/index.php?title=File:Usb01.jpg

% HET Wimms Framsewsik Deplepmatt
Toge Opluns Fogein Help
Levia

I

hsgs Ha

M R

i L T

Finging... Lanpiid
Finzine. .. Timeddd

=

28.3 Mouse, the Perfect Prank

Here is the master plan! You want to prank someone, get it video taped and then send me the funny video. This is how you do it. Setup your FEZ to
emulate a USB mouse then make the mouse move in a circle every few minutes. | bet you it will feel like there is a ghost on your machine. The good
news is that windows can have multiple mouse devices so FEZ will be hidden in the back.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.USBClient;
using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.FEZ;

public class Program
{
public static void Main ()
{
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.Di3);
led.StartBlinking (100, 200);

// Check debug interface
if (Configuration.DebugInterface.GetCurrent () == Configuration.DebugInterface.Port.USB1)
throw new InvalidOperationException("Current debug interface is USB. It must be changed to something else before proceeding. Refe

// Start Mouse
USBC_Mouse mouse = USBClientController.StandardDevices.StartMouse();

// Move pointer in a swirl

const int ANGLE_STEP_SIZE = 15;

const int MIN_CIRCLE_DIAMETER = 50;
const int MAX_CIRCLE_DIAMETER = 200;
const int CIRCLE_DIAMETER_STEP_SIZE = 1;

int diameter = MIN_CIRCLE_DIAMETER;

int diameterIncrease = CIRCLE_DIAMETER_STEP_SIZE;
int angle = 0;

int factor;

Random rnd = new Random();

int 1 = 0;

while (true)

{
// we want to do it every sometime randomely
i = rnd.Next (5000) + 5000;//between 5 and 10 seconds
Debug.Print ("Delaying for " + i + " ms");
Thread.Sleep(i);
i = rnd.Next (200) + 100;//do it for a short time
Debug.Print ("Looping " + i + " times!");

while (i-- > 0)
{
// Check if connected to PC
if (USBClientController.GetState() ==
USBClientController.State.Running)

// Note Mouse X, Y are reported as change in position
// (relative position, not absolute)
factor = diameter * ANGLE_STEP_SIZE *

(int) System.Math.PI / 180 / 2;

int dx = (-1 * factor *
(int)Microsoft.SPOT.Math.Sin (angle) / 1000);
int dy = (factor *

(int)Microsoft.SPOT.Math.Cos (angle) / 1000);

angle += ANGLE_STEP_SIZE;
diameter += diameterIncrease;

77

http://www.microframeworkprojects.com/index.php?title=File:Usb02.jpg

if (diameter >= MAX_CIRCLE_DIAMETER |
diameter <= MIN_CIRCLE_DIAMETER
)

diameterIncrease *= -1;
// report mouse position
mouse.SendData (dx, dy, 0, USBC_Mouse.Buttons.BUTTON_NONE) ;
}

Thread.Sleep (10) ;

28.4 Keyboard

Emulating a keyboard is as easy as emulating a mouse. The following example will create a USB Keyboard and send "Hello world!" to a PC every
second.

using
using
using
using

using
using

System;
System.Threading;
Microsoft.SPOT;
Microsoft.SPOT.Hardware;

GHIElectronics.NETMF.USBClient;
GHIElectronics.NETMF.Hardware;

public class Program

{

public static void Main ()

{

// Check debug interface
if (Configuration.DebugInterface.GetCurrent () ==
Configuration.DebugInterface.Port.USB1)
throw new InvalidOperationException ("Current debug interface is USB.
It must be changed to something else before proceeding.
Refer to your platform user manual to change the debug interface.");
// Start keyboard
USBC_Keyboard kb = USBClientController.StandardDevices.StartKeyboard();
Debug.Print ("Waiting to connect to PC...");
// Send "Hello world!" every second
while (true)
{
// Check if connected to PC
if (USBClientController.GetState() ==
USBClientController.State.Running)

// We need shift down for capital "H"
kb.KeyDown (USBC_Key.Leftshift);
kb.KeyTap (USBC_Key.H) ;
kb.KeyUp (USBC_Key.LeftShift);
// Now "ello world"
kb.KeyTap (USBC_Key.E
kb.KeyTap (USBC_Key.L
kb.KeyTap (USBC_Key.L
kb.KeyTap (USBC_Key.O) ;
kb.KeyTap (USBC_Key.Space) ;
kb.KeyTap (USBC_Key.W) ;
(
(
(
(
"

7

)
)
)
)

W) ;
kb.KeyTap (USBC_Key.O) ;
kb.KeyTap (USBC_Key.R) ;
L)
D)

7

kb.KeyTap (USBC_Key.
kb.KeyTap (USBC_Key.
// The "!"
kb.KeyDown (USBC_Key.Leftshift);
kb.KeyTap (USBC_Key.D1) ;
kb.KeyUp (USBC_Key.LeftShift);
// Send an enter key

kb.KeyTap (USBC_Key.Enter) ;

7

}
Thread.Sleep (1000);

28.5 CDC - Virtual Serial

Serial ports are the most common interface, especially on the embedded system world. This is an ideal solution for devices to transfer data between
PCs and embedded devices (FEZ). To combine the popularity and usefulness of USB with the easiness of serial, we have virtual USB devices. To
windows applications or to devices, a virtual serial port works just like a serial port but, in reality, it is actually a USB port. One important thing | want to
mention here is that, usually, CDC drivers handle one transaction in every frame. The max EP size on USB is 64 bytes and there 1000 frames/seconds
on full-speed USB. This means, the maximum transfer rate for CDC drivers is 64KB/sec. | think, Microsoft realized the needs for CDC and higher

78

transfer rate and did enhance this limitation. Last time | tested the transfer speed on my win7 machine, | was able to see about 500KB/sec. The

following will create a USB CDC and send "Hello world!" to PC every second.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.USBClient;
using GHIElectronics.NETMF.Hardware;

public class Program
{
public static void Main ()
{
// Check debug interface
if (Configuration.DebugInterface.GetCurrent () ==
Configuration.DebugInterface.Port.USB1)
throw new InvalidOperationException ("Current debug interface is USB.
It must be changed to something else before proceeding.
Refer to your platform user manual to change the debug interface.");

// Start CDC
USBC_CDC cdc = USBClientController.StandardDevices.StartCDC();

// Send "Hello world!"™ to PC every second. (Append a new line too)
byte[] bytes = System.Text.Encoding.UTF8.GetBytes ("Hello world!\r\n");
while (true)
{
// Check if connected to PC
if (USBClientController.GetState() !=
USBClientController.State.Running)
{
Debug.Print ("Waiting to connect to PC...");
}
else
{
cdc.Write (bytes, 0, bytes.Length);
}
Thread.Sleep (1000);

28.6 USB Debugging with Virtual COM Channel

There are cases where developers may prefer to use the same USB cable for deploying/debugging, and at the same time, enable CDC (Virual Serial)

port on the same USB interface. GHI exclusively supports just that.

When running the code below, windows will ask for new driver, which are found at
http://www.ghielectronics.com/downloads/NETMF/Library%20Documentation/GHI_NETMF _Interface_with_CDC.zip

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.USBClient;
using GHIElectronics.NETMF.Hardware;

namespace USBClient_Example
{
public class Program
{
public static void Main()
{

// Check debug interface
if (Configuration.DebugInterface.GetCurrent () != Configuration.DebugInterface.Port.USB1)
throw new InvalidOperationException("Interface must be USB.");

// Start CDC
USBC_CDC cdc = USBClientController.StandardDevices.StartCDC_WithDebugging();

// Send "Hello world!"™ to PC every second. (Append a new line too)
byte[] bytes = System.Text.Encoding.UTF8.GetBytes ("Hello world!\r\n");
while (true)
{
// Check if connected to PC
if (USBClientController.GetState() != USBClientController.State.Running)
{
Debug.Print ("Waiting to connect to PC...");
}
else

{
cdc.Write (bytes, 0, bytes.Length);

79

http://www.ghielectronics.com/downloads/NETMF/Library%20Documentation/GHI_NETMF_Interface_with_CDC.zip

}

Thread.Sleep(1000);

28.7 Mass Storage

One of the great GHI unique features of USB client is supporting Mass Storage Class (MSC). This feature allows access to the connected media right
from USB. Let me explain this through some example. A data logger application needs to save data to an SD card or USB memory. When the user is
done collecting data, they can plug the USB data logger to the PC and now the PC can detect the device as a mass storage device. The user can then
transfer the files using standard operating system. Think of the device as a memory card reader. We can even enhance our logger where the USB client
interface can be CDC to configure the device and later dynamically switch to MSC to transfer files.

Once very common question on GHI support is ?Why can't | access the media while the media is also accessed externally (from windows)??. | will try to
explain this better. A media is accessed though a class called PersistentStorage. The PersistentStorage object can then be accessed by the internal file
system or externally through the USB MSC. Okay, but why not both? It can't be both because files systems cash a lot of info about the media to speed
up file access time. Accessing the media simultaneously will definitely cause corruption to the media and therefor, simultaneous access is not allowed.
Note that you can easily switch back and forth between internal file system and USB MSC.

This example code assumes an SD card is always plugged in. It enables MSC showing the device (I am using FEZ Domino) as a card reader.

using System;

using System.IO;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.USBClient;
using GHIElectronics.NETMF.IO;
using GHIElectronics.NETMF.Hardware;

namespace USBClient_Example
{
public class Program
{
public static void Main ()
{
// Check debug interface
if (Configuration.DebugInterface.GetCurrent () ==
Configuration.DebugInterface.Port.USB1)
throw new InvalidOperationException ("Current debug interface is
USB. It must be changed to something else before proceeding.
Refer to your platform user manual to change the debug
interface.");

// Start MS
USBC_MassStorage ms =
USBClientController.StandardDevices.StartMassStorage () ;

// Assume SD card is connected
PersistentStorage sd;

try
{
sd = new PersistentStorage ("SD");
}
catch
{
throw new Exception("SD card not detected");
}
ms.AttachLun(0, sd, " ", " ");

// enable host access
ms.EnableLun (0) ;

Thread.Sleep (Timeout.Infinite);

28.8 Custom Devices

The GHI USB client Support even allows you to control the USB client in anyway you like. This feature require good knowledge of USB. If you do not
know what is EndPoint and Pipe then do not attempt to create custom devices. Also, it is very important to have the device configured correctly the first
time it is plugged into windows. This is important because windows stores a lot of information in its registry. So, if you change the configuration of your
device after you had it plugged into windows the first time then windows may not see the changes since it will be using the old configuration from its

80

registry.

Basically, stay away from USB Client Custom Devices unless you really have good reason to use them and you have very good knowledge in USB and
in windows drivers.

| am not going to explain Custom Devices any further but just wanted to clear out why | decided not to do so. The standard built in classes, explained
earlier, should be enough to cover most of your needs.

81

29 Low Power

Battery powered devices must limit power usage as much as possible. Devices may lower the power consumption in many ways:

1. Reduce processor clock

2. Shutdown the processor when system is idle (keep peripherals and interrupts running)
3. Shutdown specific peripherals

4. Hibernate the system

A NETMF device may optionally support any of these methods. Consult with your device's user manual to learn more about what is directly supported.
In general, all GHI NETMF devices shutdown the processor when in idle state. For example, this will reduce the power on FEZ Rhino by about 45mA.
You really do not have to do anything special, as soon as the system is idle, the processor is automatically shut off while interrupts and peripherals are
still active. Also, all peripherals (ADC, DAC, PWM, SPI, UART...) are disabled by default to lower power consumption. They are automatically enabled
once they are used. If all that is not enough, you can completely hibernate the system. Just remember that when the system is hibernating, it is not
executing and peripherals are not functional. For example, data coming in on UART will NOT wake up the system. You will simply lose the incoming
data. Waking up from hibernate is a system dependent feature, but usually specific pin(s) can be toggled to wake the system up.

Note: GHI realized that the standard NETMF power mode is not suitable for hibernate so a GHI specific method is implemented to handle the system
hibernation.

Important Note: When the device is in hibernation, USB stops working. You can't step in code or access the device. If your program always puts the
device in sleep then you will not be able to load a new program. Basically, lock out the device. You need to enter the boot loader to erase all to unlock
the device from its hibernation!

Important Note: When you hibernate, the system clock stops (not RTC) so the NETMF time will be off. You will need to read the time from RTC and set
the NETMF sytsem time after waking up from hibernation. Waking up from hibernate is only possible on few events. Check your device user manual or
the library documentation for details. An easy way to wake up from hibernate is by using the alarm feature (when available). For example, FEZ Rhino
includes the 32Khz clock needed for the built in RTC/alarm but FEZ Mini doesn't. See this link for more details

http://www.tinyclr.com/compare

In this example, | set the RTC to some random but valid time and then | blink an LED. Every three seconds, the device sets the alarm to wake up in 10
seconds and then it put the device into hibernation. The device will be completely dead (again, no USB debugging) but you should be able to see this on
the LED. When the device wakes up, it continue on blinking the LED. At the end, the LED will blink for 3 seconds and then stops for 10 seconds.

using System;

using System.Threading;

using Microsoft.SPOT;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program
{
public static void Main ()
{
//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//set to any random but valid time
RealTimeClock.SetTime (new DateTime (2010, 1, 1, 1, 1, 1));
while (true)
{
Thread.Sleep (3000);//blink LED for 3 seconds
RealTimeClock.SetAlarm(RealTimeClock.GetTime () .AddSeconds (10));
Debug.Print ("Going to sleep for 10 seonds!");
// sleep for 10 seconds
Power.Hibernate (Power.WakeUpInterrupt .RTCAlarm) ;

Debug.Print ("Good Morning!");

}

Another option is to wake up on interrupt port. You have to be careful with this because any interrupt on any pin will cause this wake up. For example,
the WiFi module on FEZ Cobra internally uses one of the interrupt pins and so this will wake up the system. You need to disable WiFi before
hibernating. This is not the only trick that you need to be aware of! Look at the following or try it. It will not work!

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program

{

public static void Main ()
{

82

http://www.tinyclr.com/compare

//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//setup the interrupt pin
InterruptPort LDR = new InterruptPort ((Cpu.Pin)0,false,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeLow) ;
while (true)
{
Thread.Sleep (3000);//blink LED for 3 seconds
// sleep
Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs);
//we get here when we wakeup

Why did the example above not work? When you create an interrupt (or input) pin, interrupts are enabled only if glitch filter is used or if an event handler
is installed. So, to make the work above work, you only need to enable the glitch filter. Here is the code that works.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program
{
public static void Main ()
{
//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//setup the interrupt pin with glitch filter enableled
InterruptPort LDR = new InterruptPort ((Cpu.Pin)0, true,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeLow) ;
while (true)
{
Thread.Sleep (3000);//blink LED for 3 seconds
// sleep
Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs);
//we get here when we wakeup

Another option is to install an event handler for the button like the following.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program
{
public static void Main ()
{
//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//setup the interrupt pin
InterruptPort LDR = new InterruptPort ((Cpu.Pin)0, false,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeLow) ;
LDR.OnInterrupt += new NativeEventHandler (LDR_OnInterrupt);

while (true)
{
Thread.Sleep (3000);//blink LED for 3 seconds
// sleep
Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs);
//we get here when we wakeup

static void LDR_OnInterrupt (uint datal, uint data2, DateTime time)
{
// empty for now!

83

Please note that using InputPort is as good as using the InterruptPort since, internally, the interrupts are used when glitch filter is enabled. Here is the
example using InputPort instead of InterruptPort.

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program
{
public static void Main ()
{
//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//setup the interrupt pin
InterruptPort LDR = new InterruptPort ((Cpu.Pin)0, false,
Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeLow) ;
LDR.OnInterrupt += new NativeEventHandler (LDR_OnInterrupt);

while (true)
{
Thread.Sleep(3000);//blink LED for 3 seconds
// sleep
Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs);
//we get here when we wakeup

}

static void LDR_OnInterrupt (uint datal, uint data2, DateTime time)

{
// empty for now!

This example will blink an LED when up and then when the LDR button is pressed, the system will go into deep sleep for 10 se This is an example for

using System;

using System.Threading;

using Microsoft.SPOT;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;

using GHIElectronics.NETMF.Hardware.LowLevel;

using GHIElectronics.NETMF.FEZ;
public class Program
{
public static void Main ()
{
//blink LED
FEZ_Components.LED led = new FEZ_Components.LED(FEZ_Pin.Digital.LED);
led.StartBlinking (100, 100);
//setup the interrupt pin
InputPort LDR = new InputPort ((Cpu.Pin)0, true,
Port.ResistorMode.PullUp);
while (true)
{
Thread.Sleep (3000);//blink LED for 3 seconds
// sleep
Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs);
//we get here when we wakeup

Finally, you can wake up on more than one events. For example, you can wake up if a button is pressed or the alarm is fired.

Power.Hibernate (Power.WakeUpInterrupt.InterruptInputs |
Power.WakeUpInterrupt.RTCAlarm) ;

84

30 Watchdog

In embedded system world, devices are usually always running and with no user interaction. So if something went wrong, it would be very beneficial if
we have an automatic reset button. Watchdog is your reset button!

30.1 System Execution Recovery

Assume you are making a smart vending machine that reports its inventory over the network. If your code raises an exception that wasn't handled
properly then your program will end. Program ended means the vending machine no longer work. Someone will have to drive to the vending machine to
reset it, or better, just use watchdog.

When you enable the watchdog, you give it a timeout to reset after. Then, you keep resetting the watchdog timer periodically. If the system locks up then
the watchdog counter will reach the timeout, which in turn, will reset the system. Important note: GHI realized that the built-in watchdog in NETMF is not
what customers need; therefore, GHI implemented its own version of watchdog. Do not use the watchdog from Microsoft. SPOT.Hardware, instead, use

the watchdog from GHIElectronics.NETMF.Hardware.LowLevel. If both namespaces must be used then you will have ambiguity errors and so you need

to specifically call out the full path of the watchdog you need. For example, instead of using Watchdog.Enable(timeout), use

GHIElectronics.NETMF.Hardware.LowLevel.Watchdog.Enable (timeout) .

This example shows how to set the watchdog to 5 seconds timeout and create a thread to clear the watchdog every 3 seconds. Should anything go
wrong, the device will reset in 5 seconds.

Important Note: Once you enable the Watchdog, it cannot be disabled. So you have to keep resetting the timeout. This is done to assure that no system
corruption will disable watchdog accidentally.

using System;
using System.Threading;
using GHIElectronics.NETMF.Hardware.LowLevel;

public class Program
{
public static void Main ()
{
// Timeout 5 seconds
uint timeout = 1000 * 5;

// Enable Watchdog
Watchdog.Enable (timeout) ;

// Start a time counter reset thread
WDTCounterReset = new Thread (WDTCounterResetLoop) ;
WDTCounterReset.Start () ;

/)

// your program starts here

// 1f we exit the program,
// the thread will stop working and the system will reset!
Thread.Sleep (Timeout.Infinite);

}

static Thread WDTCounterReset;
static void WDTCounterResetLoop ()
{
while (true)
{
// reset time counter every 3 seconds
Thread.Sleep (3000);

Watchdog.ResetCounter () ;

}

You may be thinking, if the software locked up then how would the code that handles watchdog ever run? On low level, the watchdog is supported in
hardware not software. This means that the counter and the and reset mechanism is done inside the processor, without the need for any software.

30.1.1 Limiting Time-Critical Tasks

Back to our vending machine example, but this time we want to handle a different possible problem. Since NETMF is not real time, tasks can take longer
than expected. If a person stepped up to the vending machine and entered what they want to buy, the machine will now turn a motor on which in turn will
push the item out to the user. Let us say this was timed so the motor has to be on for one second. Now, what if it happened that at the same time the
motor is running another thread started using the SD card. Let us also assume that the card had some problem which caused 3 second delay in reading
the SD card. The 3 seconds delay while the motor is running will result in 3 items being pushed out to the buyer, but we only wanted to push one! If we
used watchdog and set it to one second, then the user will have one item and when time is exceeding one second, the vending machine will reset, which
will stop the motor from pushing more items out. Here is a simple example.

85

//
//
// Timeout 1 second
uint timeout = 1000;

//....user buys something

// Enable Watchdog

Watchdog.Enable (timeout) ;

//turn motors on

/.

//stop motors

/)

// We don't need Watchdog anymore, we have to keep resetting the timeout
Watchdog.Enable (Watchdog.MAX_TIMEOUT) ;

WDTCounterReset.Start () ; // See this in the earlier example

//
// your program starts here
//
//

30.1.2 Detecting Watchdog Cause

In some cases, you need to know if the system did reset because of a watchdog to log this info or run some recovery procedures. This is how it works

using System;

using System.Threading;

using Microsoft.SPOT;

using GHIElectronics.NETMF.Hardware.LowLevel;

public class Program
{
public static void Main ()
{
// you can read this flag ***ONLY ONCE*** on power up
if (Watchdog.LastResetCause == Watchdog.ResetCause.WatchdogReset)
{
Debug.Print ("Watchdog did Reset");
}

else
{
Debug.Print ("Reset switch or system power");

86

31 Objects in Custom Heap

Note that this topic is about very large memory allocation and so it doesn't apply to USBizi.

Managed systems like NETMF requires very complex memory management. To limit the overhead on small systems, NETMF heap only supports
allocating objects up to 700KBs. Larger objects are not possible. Beginning in NETMF version 4.0, larger buffers can be allocated using a separate heap
called custom heap. Now, you can create very large buffers and very large bitmaps. Internally, these objects are not in the standard managed heap but
they are in custom heap. This introduced a new important question. How much memory is reserved for custom heap and how much for managed heap?

GHI provides APIs allowing you to set the size of each heap, custom and managed.

using System;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;
class Program

{

public static void Main ()
{
// set the heap size to 4MB
if (Configuration.Heap.SetCustomHeapSize (4 * 1024 * 1024))
{
// this will only take effect after resetting the system
PowerState.RebootDevice (false);

/]
// you can now use large objects up to 4MB

31.1 Management of Custom Heap

Unlike the regular heap which is fully managed, the custom heap is managed but with few important points that need to be considered. In order for
objects in custom heap to be cleared automatically, you must fulfill three requirements: The object reference must be lost. (This is all you need for
regular objects). The garbage collector must run, you probably need to force it. The system must come idle in order for finalize to run and ?Dispose?
object. | will not go into detail on garbage collectors, dispose, or finalizer...etc. What you need to know is that large object that are on custom heap are
not easily cleared from the system so you must always dispose the object when you are done using it.

This is how you can dispose large objects

using System;

using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.Hardware;
class Program

{

public static void Main ()
{
// allocate a 1MB buffer
LargeBuffer 1b = new LargeBuffer (1024 * 1024);
// use the buffer
1b.Bytes[5] = 123;
//
// when done, dispose the object to empty the memory
1b.Dispose () ;

The better option is to use the ?using? statement. This statement will automatically call dispose once the execution is leaving the ?using? curly brackets.

using System;
using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.Hardware;
class Program
{
public static void Main ()
{
// allocate a 1MB buffer
using (LargeBuffer 1lb = new LargeBuffer (1024 * 1024))
{
// use the buffer
1b.Bytes[5] = 123;
//
}
// Dispose was called automatically
//

87

31.2 Large Bitmaps

Bitmaps larger than 750KB/2 are automatically allocated on the custom heap. For example, a 800x480 bitmap will need 800x480x4 bytes, that is about
1.5MB. This large bitmap is on the custom heap and so you should always dispose it when you are done using it, or utilize the ?using? statement.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Presentation.Media;
class Program
{
public static void Main ()
{
using (Bitmap largeBitmap = new Bitmap (800,480))
{
// assumign we have a display that is 800x480
// draw a circle
largeBitmap.DrawEllipse (Colors.Green, 100, 100, 10, 10);
// draw other things
/] ...
largeBitmap.Flush();//flush the Bitmap object to the display
}
// once we are here largeBitmap Dispose was automatically called

//

31.3 LargeBuffer

We already used LargeBuffer in earlier example. Only use this if you need to allocate a buffer that is larger than 750KB. On an embedded system, you
shouldn't need or use such very large buffers. Although not recommended, this is available in case it is needed.

using System;
using Microsoft.SPOT.Hardware;
using GHIElectronics.NETMF.Hardware;
class Program
{
public static void Main ()
{
// allocate a 1MB buffer
using (LargeBuffer lb = new LargeBuffer (1024 * 1024))
{
// use the buffer
1b.Bytes[5] = 123;
byte b = 1lb.Bytes[5];
}
// Dispose was called automatically

//

88

32 Wireless

Wireless technologies are becoming an essential part of our life. Some applications require high rate data transfer, others require very low power. Some
require a point to point connection, others require a mesh network. The biggest challenge when designing a wireless device is certification. Not only this
needs to be done for different countries, it is very costly. You can easily spend 50,000 USD on certifying a wireless device. Fortunately, there are
companies who offer certified wireless modules. When using a certified module, your product may not need any certification or the certification will be
much easier.

32.1 Zigbee (802.15.4)

Zigbee is designed to be used in low-power battery-operated sensors. Many sensors can connected on one Zigbee network. Also, it requires very low
power but data transfer rate is not very fast.

One very common implementation of Zigbee is XBee modules offered from Digi. There are many types of XBee modules. Some are very low power and
other provides a very high output capable of transferring data up to 15 miles! Those modules are also offered on on-board antenna or with a connector
for external antenna. The modules have a very simple interface that runs on UART. With UART, the modules can be interfaced to any NETMF device. If
creating a connection between two modules then XBee modules establish a connection automatically. If connecting multiple nodes then we would need
to send some serial commands to configure our network. | suggest you start with automatic point-to-point connection.

Connecting XBee to FEZ Mini or FEZ Domino can be easily done using the Xbee expansion component.

32.2 Bluetooth

Almost every cellphone has everything needed to connect to Bluetooth devices. Bluetooth technology defines multiple profiles for connections. The
audio profile is useful to connect the Bluetooth ear-piece to the phone. For data transfers, SPP (Serial Port Profile) is used to establish a connection that
simulates a serial connection. This is very similar to how XBee modules connect. Most phones have Bluetooth but most do not implement SPP so
creating a serial connection from your phone is probably not possible.

On windows, we can create a serial Bluetooth connection with few clicks.

1. Find ?Bluetooth Devices? in ?Control Panel?

2. Click on ?Bluetooth Settings?

3. View the 2COM ports? tab

4. If you have COM ports installed then you already have SPP enables on your PC.
5. To add new ports, click on ?Add...?

6. Create one port for incoming data and one for outgoing.

89

http://www.microframeworkprojects.com/index.php?title=File:Wireless01.jpg
http://www.microframeworkprojects.com/index.php?title=File:Wireless02.jpg

Windows creates two ports, one for incoming and one for outgoing data. This can be confusing to Windows users because they can't use the same port
to send and receive data!

e DA Cismain

! A Bk Fala Pt -

ISP, T Y |
s, [T ==
Pk bt it B 00 o il D,
dame i enered 3 L p rad B e g 1
P s s e % Seaa

m s e

|
0 R DA I i

il AR FarT T et

ferdi S o O il o Ul |
[T B ‘

On the embedded side, there are many serial modules that already include Bluetooth hardware and software, including SPP (Serial Port Profile). Those
can easily connect to any NETMF device's serial port.

Connecting Bluetooth to FEZ Mini or FEZ Domino can be easily done using the Bluetooth interface component.

32.3 Nordic

Nordic semiconductor created it own digital wireless chips, NRF24L01. These low-power chips use 2.4Ghz which is a free band in many countries.
Nordic wireless chips allow point-to- point or multi-point wireless connections.

Olimex offers breakout boards for NRF24L01. Those boards can connect directly to most GHI's NETMF boards.

This is a project (and video) showing two NETMF devices using NRF24L01 http://www.microframeworkprojects.com/index.php?title=SimpleWireless

90

http://www.microframeworkprojects.com/index.php?title=File:Wireless03.jpg
http://www.microframeworkprojects.com/index.php?title=File:Wireless04.jpg
http://www.microframeworkprojects.com/index.php?title=File:Wireless05.jpg
http://www.microframeworkprojects.com/index.php?title=SimpleWireless

33 Managed Drivers

All NETMF devices provided by GHI have register access class for complete control over the underlaying hardware. But what is a "register"?

A register is a memory location (not memory) that is used to control a specific task. For example, there is a register for UART transmit. Whenever you
write something in the UART transmit register, that data you write gets transfered out on the UART TX pin.

Let's say we have a power control register called PCONP and it is located at 0xE01FCO0C4. Each bit of this register controls internal power to one of the
internal peripherals. A logic one means the power is on. We want to also assume that we want to turn on timer2 and timer3 which are located at bits 22
and 23 (each register is 32-bit). My code should look like this

Register PCONP = new Register (0xE01FCOC4);
PCONP.SetBits ((1 << 22) | (1 << 23));//enable timer2 and timer3

But why (1<<22)?

If I say the first bit then it is obvious it is 0x01 and the second would be 0x02...third 0x04. This is easy but what about 0x00400000? Which bit is this
one? | do not want to even think about it. Instead, let the compiler do the work.

(1<<3) 1is exactly the same as (0x08)

33.1 Pulse counter
NETMF doesn't have a way to count pulses nor does GHI add such feature so how can | count pulses?

The processor used on most FEZ devices includes counters that can be controlled from an 10. | can use this hardware to count pulses. All | have to do
is setup some registers then | can read the pulse count easily.

You need these files:

e Manual: http://www.keil.com/dd/docs/datashts/philips/lpc23xx_um.pdf
¢ Datasheet: http://www.nxp.com/documents/data_sheet/LPC2478.pdf
e EMX pinout: http://www.ghielectronics.com/downloads/EMX/EMX_Broch_Pinout.pdf

First, select a free timer. | know GHI used timer0 and possibly timer1 so 2 and 3 should be free. | will just use 3 and leave 2 for a sec.

Now, we need to select what pin on the processor to use for timer3 pin capture feature. According to datasheet, the pins are same as analog0 and
analog1 but these are used for touch screen on FEZ Cobra(EMX). These pins would be perfect for Domino so maybe keep 2 options in your class
where the user will select to use these pins on those devices.

Now for cobra, we will need to check timer2 which looks like it is connected to P0.4 and p0.5. What a good luck we have as P0.4 (100) is connected to
the down button on FEZ Cobra. This means | can use the button to test what | am writing.

Take a look at the code below the processor user manual above to understand what registers can do and how they are controlled.

using System;
using System.Threading;
using Microsoft.SPOT;

using GHIElectronics.NETMF.Hardware.LowLevel;
using GHIElectronics.NETMF.Hardware;

namespace MFConsoleApplicationl
{
public class Program
{
public static void Main()
{
Register PCONP = new Register (0xEQ01FCO0C4);
PCONP.SetBits (1 << 22);//enable timer2

// Select I0O0 on EMX CAP2.0
Register PINSELO = new Register (0xE002C000) ;
PINSELO.SetBits ((3 << 8));//set bits 8 and 9

// To enable timer/counter

Register T2TCR = new Register (0xE0070004);
T2TCR.Write (1) ;

// set prescale to 0

Register T2PR = new Register (0xE007000C) ;
T2PR.Write (0);

Register T2CTCR = new Register (0xE0070070);
T2CTCR.Write(2 << 0 | 0 << 2);//count on falling edge and use CAPn.0

// should be 0 for a counter

91

http://www.keil.com/dd/docs/datashts/philips/lpc23xx_um.pdf
http://www.nxp.com/documents/data_sheet/LPC2478.pdf
http://www.ghielectronics.com/downloads/EMX/EMX_Broch_Pinout.pdf

Register T2CCR = new Register (0xE0070028);
T2CCR.ClearBits (0x07) ;

// Don't do anything on match
Register T2MCR = new Register (0xE0070014);
T2MCR.Write (0) ;

// To reset the counter
T2TCR.SetBits ((1 << 1));
T2TCR.ClearBits ((1 << 1));

// To read
Register T2TC = new Register (0xE0070008);
while (true)
{
uint count = T2TC.Read();

Debug.Print ("Total count: " + count);

Thread.Sleep (1000);

34 Thinking Small

Many NETMF developers come from the PC world. They are used to write code that runs fine on a PC but then it will not run efficiently on an embedded
device. The PC can be 4GHz with 4GB of RAM. NETMF devices have less than 1% of the resources available on a PC. | will cover different areas
where you should always think small.

34.1 Memory Utilization

With limited RAM, developers should only use what they really need. PC programmers tend to make a large buffer to handle the smallest task.
Embedded Developers study what they need and only allocate the needed memory. If | am reading data from UART, | can very well use 100 byte buffer
to read the data and 1000 byte buffer will work as well. While | am analyzing the code, | noticed that | always read about 40 bytes from UART in my
program loop. | do send a large buffer but | only get back 40 bytes. So, why would | want to use a buffer larger than 40 bytes? Maybe | will make it a bit
large just in case but defiantly not 1000 bytes!

On some drivers, the NETMF system does a lot of buffering internally. For example, file system, UART, USB drivers all have internal buffers in native
code, to keep the data ready until the developer uses the data from managed code. If we need a 1 megabyte file, we do not need a large buffer at all.
We create a small buffer and then send the data in chunks to the file system. To play a 5 megabyte MP3 file, we only need 100 byte buffer that will read
chunks from the file and pass to the MP3 decoder.

34.2 Object Allocation

Allocating and freeing objects is very costly. Only allocate objects when you really needs them. Also, you are making an embedded device; therefore, a
lot of objects that you will be using are always used. For example, you will always use the LCD or always use the SPI. Consider the following code

using System.Threading;

using System;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
static void WriteRegister (byte register_num, byte value)
{
SPI _spi = new SPI (new
SPI.Configuration (Cpu.Pin.GPIO_NONE, false, 0,0, false,
true, 1000, SPI.SPI_module.SPIl));

byte[] buffer = new byte[2];
buffer[0] = register_num;
buffer([1l] = value;
_spi.Write (buffer);

}

public static void Main()

{
WriteRegister (5, 100);

}

}

In order for me to write a single byte to a register on a SPI-chip, | had allocated SPI object, SPI.Configuration object and a byte array. Three objects for
sending one byte! This is okay if you only need to do this a few times at initialization stage but if you are continuously using the WriteRegister method
then this is not the right way. For starters, this method will run very slow so you wouldn't be able to ?WriteRegister? fast enough. Maybe this is sending
graphics to the display or sending MP3 data to a decoder. This means that our function will be called few thousand times every second. As second
problem is that these objects are created used and then left for the garbage collector to remove. The garbage collector will have to jump in and remove
all these unused objects from memory which will stop the program execution for few milliseconds. Here is the code modified to test the method when
called 1000 times.

using System.Threading;

using System;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
static void WriteRegister (byte register_num, byte value)
{
SPI _spi =
new SPI(new SPI.Configuration (Cpu.Pin.GPIO_NONE,
false,0,0,false,
true, 1000, SPI.SPI_module.SPIl));
byte[] buffer = new byte[2];
buffer[0] = register_num;
buffer[1l] = value;
_spi.Write (buffer);

93

_spi.Dispose () ;
}
public static void Main ()
{
long ms;
long ticks = DateTime.Now.Ticks;
for (int i = 0; i < 1000; i++)
WriteRegister (5, 100);
ticks = DateTime.Now.Ticks - ticks;
ms = ticks / TimeSpan.TicksPerMillisecond;
Debug.Print ("Time = " + ms.ToString());

When running the code on on FEZ (USBizi) we notice that the Garbage Collector had to run 10 times. The garbage collector prints it activity on the
output window. Time taken for the code to run is 1911 ms, which is about 2 seconds! Now, let us modify the code as showing below. We now have the
SPI object created globally and will always be there. We are still allocating the buffer in every loop.

using System.Threading;

using System;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{
static SPI _spi = new SPI(new SPI.Configuration/(
Cpu.Pin.GPIO_NONE, false, 0, 0, false,
true, 1000, SPI.SPI_module.SPIl));

static void WriteRegister (byte register_num, byte value)
{
byte[] buffer = new byte[2];
buffer[0] = register_num;
buffer[1l] = value;
_spi.Write (buffer);
_spi.Dispose();
}
public static void Main()
{
long ms;
long ticks = DateTime.Now.Ticks;
for (int i = 0; i < 1000; i++)
WriteRegister (5, 100);
ticks = DateTime.Now.Ticks - ticks;
ms = ticks / TimeSpan.TicksPerMillisecond;
Debug.Print ("Time = " + ms.ToString());

In the second example, the garbage collector had to run only twice and it took only 448 milliseconds, about half a second to run. We only moved one
line of code and it is 4 times faster. Let us move the buffer globally and see.

using System.Threading;

using System;

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;

namespace MFConsoleApplicationl
{
public class Program
{

static SPI _spi = new SPI(new SPI.Configuration/(
Cpu.Pin.GPIO_NONE, false, 0, 0, false,
true, 1000, SPI.SPI_module.SPIl));

static byte[] buffer = new bytel[2];

static void WriteRegister (byte register_num, byte value)

{
buffer[0] = register_num;
buffer[l] = value;
_spi.Write(buffer);
_spi.Dispose();

}

public static void Main()

{
long ms;
long ticks = DateTime.Now.Ticks;
for (int 1 = 0; i < 1000; i++)

WriteRegister (5, 100);

ticks = DateTime.Now.Ticks - ticks;

ms = ticks / TimeSpan.TicksPerMillisecond;
Debug.Print ("Time = " + ms.ToString());

94

}
We now have 368 milliseconds and garbage collector didn't run at all! One quick check you can do on your device is to check the output to see how

often does the garbage collector run. On systems with large memory like ChipworkX this will not help much so you still need to analyze the code
manually.

34.3 Missing Topics

These are topics not covered by this book. | will give a very quick review to cover what the topic is about. | may expand this book to cover these topics in
future.

34.3.1 WPF

Windows Presentation Foundation is a new and flexible way to create graphical user interface applications. GHI's EMX and ChipworkX support WPF.
USBizi and FEZ do not support this feature.

34.3.2 DPWS

Device Profile for Web Services allows networked devices to be automatically detected and used on the network. DPWS requires full .NET sockets
support. Extended Weak Reference Extended Weak Reference(EWR) allows developers to save little data in nonvolatile memory. EWR is used more
before File System was introduces to NETMF.

34.3.3 Serialization

Serialization is a way to convert an object to a series of bytes that represent that object. An object Mike made from a Human type can be serialized into
a byte array and then this data is transferred to another device. The other device knows what a human type is but doesn't know anything about Mike. It
will take this data to construct a new object based on it and it now has a copy of the object Mike. Using serialization in NETMF is a very bad idea unless
you really needs it. There are few methods that will help you in extract or place values in array. You should be using these methods instead of
serialization which is too slow.

34.3.4 Runtime Loadable Procedures

Runtime Loadable Procedures(RLP) is a GHI exclusive feature that allows users to write native (assembly/C) code for a device then load it and use it
through managed (C#) at runtime. Native code is thousands times faster but it is not easy to manage. Specific tasks like calculating CRC that is a very
processor intensive function are a perfect for for RLP. The complete application is made using manage code (C#) but then only CRC calculating method
is written in native code (assembly/C).

34.3.5 Databases

A database stores data in a way where queering for data is easy. Looking up a product or sorting numbers is very fast because of the indexing
databases do internally.

34.3.6 Touch Screen

NETMF supports touch screens. Touch screens are a good combination with TFT displays. A developer can create a graphical application using WPF
and then the user can control it using the touch screen.

34.3.7 Events

If we have a project that receives data from serial ports, we need to read the serial port continuously. We may not have any data but we do not know will
we check for the data. It will be more efficient if we can be notified if the serial driver had received data. This notification comes from an event that fires
when the serial driver receives data. The same applies to interrupt ports covered before. This book doesn't cover the creation of events but we already
seen how they are used in interrupt ports and used in using a mouse with USB host support.

34.3.8 USB Host Raw

We have learned how to access some USB devices using the GHI exclusive USB host support. GHI allows users to write managed drivers for almost
any USB device. Accessing USB directly is considered a very advanced feature and is left out of this book.

This is a project that uses USB raw access to read an XBOX Controller: http://www.microframeworkprojects.com/index.php?tittle=Xbox_Controller

Another interesting project is the NXT drivers allowing users to control LEGO NXT Mindstorm right from C# and Visual Studio.
http://www.microframeworkprojects.com/index.php?title=NXT_Mindstorm

95

http://www.microframeworkprojects.com/index.php?title=Xbox_Controller
http://www.microframeworkprojects.com/index.php?title=NXT_Mindstorm

35 Final Words

If you found this book useful and it saved you few minutes of research then | have accomplished what | had in mind. | very much thank you for your
downloading and reading this book.

35.1 Further Reading

This book only covers the basics of C# and .NET Micro Framework. This is a list of some resources to learn more:

¢ My blog is always a good place to visit
http://tinyclr.blogspot.com/

¢ The Micro Framework Project website is an excellent resource
http://www.microframeworkprojects.com/

¢ A good and free eBook to continue learning about C# is available at
http://www.programmersheaven.com/2/CSharpBook

¢ Jens Kuhner excellent book on .NET Micro Framework
http://www.apress.com/book/view/9781430223870

¢ USB complete is an excellent book on USB
http://www.lvr.com/usbc.htm

¢ Wikipedia is my favorite place for information about everything!
http://en.wikipedia.org/wiki/.NET_Micro_Framework

¢ .NET Micro Framework main page on Microsoft's website

http://www.microsoft.com/netmf

96

http://tinyclr.blogspot.com/
http://www.microframeworkprojects.com/
http://www.programmersheaven.com/2/CSharpBook
http://www.apress.com/book/view/9781430223870
http://www.lvr.com/usbc.htm
http://en.wikipedia.org/wiki/.NET_Micro_Framework
http://www.microsoft.com/netmf

36 License & Disclaimer

This is a free book only if you download it directly from GHI Electronics. Use it for your own knowledge and at your own risk. Neither the writer nor GHI

Electronics is responsible for any damage or loss caused by this free eBook or by any information supplied by it. There is no guarantee any information
in this book is valid.

USBizi, Embedded Master, EMX, ChipworkX, RLP and FEZ are trademarks of GHI Electronics, LLC Visual Studio and .NET Micro Framework are
trademarks or registered trademarks of Microsoft Corporation.

97

	Table of Contents
	1 About the Book
	1.1 Change Log
	1.2 Wiki? What Wiki?
	1.3 Intended Audience
	1.4 Translating the Book

	2 Introduction
	2.1 Advantages

	3 Porting vs GHI's Offers
	3.1 Features
	3.2 Support
	3.3 Maintenance
	3.4 Robustness
	3.5 Time-to-Market

	4 Selecting a Device
	5 Getting Started
	5.1 System Setup
	5.2 The Emulator
	5.3 Expert Settings
	5.4 Running on Hardware

	6 Component Drivers
	7 C-Sharp Level1
	7.1 What is .NET?
	7.2 What is C#?
	7.3 ?Main? is the Starting Point
	7.4 Comments
	7.5 What Assemblies to Add?

	8 Digital Input & Output
	8.1 Digital Outputs
	8.2 Digital Inputs

	9 C-Sharp Level2
	9.1 Boolean Variables
	9.2 if-statement
	9.3 if-else-statements
	9.4 Methods and Arguments
	9.5 Classes
	9.6 Public vs. Private
	9.7 Static vs. non-static
	9.8 Constants
	9.9 Enumeration

	10 Assembly/Firmware Matching
	10.1 Boot-up Messages

	11 Pulse Width Modulation
	11.1 Simulating PWM
	11.2 Servo Motors and Pulse Control

	12 Piezo
	13 Glitch filter
	14 Analog input & output
	14.1 Analog Inputs
	14.2 Analog Outputs

	15 Garbage Collector
	15.1 Dispose
	15.2 GC Output Messages

	16 C-Sharp Level3
	16.1 Byte
	16.2 Char
	16.3 Array
	16.4 String
	16.5 For-Loop

	17 Serial Interfaces
	17.1 UART
	17.2 SPI
	17.3 I2C
	17.4 One Wire
	17.5 CAN

	18 Loading Resources
	19 Output Compare
	20 Displays
	20.1 Character Displays
	20.2 Graphical Displays

	21 Time Services
	21.1 Real Time Clock
	21.2 Timers

	22 USB Host
	22.1 HID Devices
	22.2 Serial Devices
	22.3 Mass Storage

	23 File System
	23.1 SD Cards
	23.2 USB Mass Storage
	23.3 File System Considerations

	24 Networking
	24.1 USBizi Network Support
	24.2 Raw TCP/IP vs. Sockets
	24.3 Standard .NET Sockets
	24.4 Wi-Fi (802.11)
	24.5 GPRS and 3G Mobile Networks

	25 Cryptography
	25.1 XTEA
	25.2 RSA

	26 XML
	26.1 XML in Theory
	26.2 Creating XML
	26.3 Reading XML

	27 Expanding IOs
	27.1 Digital
	27.2 Analog

	28 USB Client
	28.1 Serial (COM) Debugging
	28.2 The Setup
	28.3 Mouse, the Perfect Prank
	28.4 Keyboard
	28.5 CDC - Virtual Serial
	28.6 USB Debugging with Virtual COM Channel
	28.7 Mass Storage
	28.8 Custom Devices

	29 Low Power
	30 Watchdog
	30.1 System Execution Recovery

	31 Objects in Custom Heap
	31.1 Management of Custom Heap
	31.2 Large Bitmaps
	31.3 LargeBuffer

	32 Wireless
	32.1 Zigbee (802.15.4)
	32.2 Bluetooth
	32.3 Nordic

	33 Managed Drivers
	33.1 Pulse counter

	34 Thinking Small
	34.1 Memory Utilization
	34.2 Object Allocation
	34.3 Missing Topics

	35 Final Words
	35.1 Further Reading

	36 License & Disclaimer

