
Precise Register Allocation for Irregular Architectures

Timothy Kong and Kent D. Wilken
Dept. of Electrical & Computer Engineering

University of California, Davis
Davis, CA 95616-5294, U.S.A.
fkong,wilkeng@ece.ucdavis.edu

Abstract

This paper proposes a precise approach to register al-
location for irregular-register architectures which is based
on 0-1 integer programming (IP). Prior work shows that IP
register allocation is feasible for RISC architectures, which
have uniform registers and register usage. Extensions to the
prior work are proposed that precisely model register irreg-
ularities including combined source/destination specifiers,
memory operands, and variations in the cost of register us-
age. The x86 architecture is selected as a representative
irregular-register architecture for experimental study. An
IP register allocator is built for the x86 architecture within
the Gnu C Compiler (GCC), and is compared experimen-
tally with GCC’s graph-coloring register allocator. Exper-
imental results show that the IP allocator reduces regis-
ter allocation overhead by 61% compared with the graph-
coloring allocator. The results also show that the x86 IP al-
locator is dramatically faster than the prior RISC IP alloca-
tor, because of the smaller number of registers in the x86 ar-
chitecture and because of the register irregularities. These
results suggest that IP register allocation is well suited for
irregular-register architectures.

1. Introduction

A compiler initially generates code assuming an infinite
number of symbolic registers. In a later compiler phase, the
register allocator maps these symbolic registers to a ma-
chine’s real registers. Because the number of real regis-
ters is small, not all symbolic registers may get real regis-
ter assignments, and those symbolic registers must then re-
side in memory. Spill code is generated to move those sym-
bolic registers to and from memory. The register allocation
problem is to create a register assignment that minimizes the
amount of spill code. Global register allocation analyzes
the entire function at once and attempts to produce an as-
signment for all symbolic registers in the function. Since

global register allocation is NP-complete [8], most alloca-
tors use heuristic techniques to produce a solution.

Traditional allocators perform global register allocation
using a graph coloring approach originally developed by
Chaitin et al. [1]. This approach builds an interfer-
ence graph whose vertices represent symbolic registers, and
edges connect vertices for symbolic registers that cannot be
assigned the same real register. The graph is then colored
with the same number of colors as there are real registers.
For vertices that did not receive a color, the corresponding
symbolic register is spilled. The allocator relies on heuris-
tics to decide on the order of symbolic registers to spill and
the placement of the spill code.

Goodwin and Wilken proposed a fundamentally new reg-
ister allocation approach based on integer programming [3].
The Optimal Register Allocation (ORA) approach builds an
integer program (IP) representation of the allocation prob-
lem, using integer program variables to represent possible
register allocation actions at each point in the computer pro-
gram. Each of these actions has an associated cost. An in-
teger program solver solves the IP problem, generating a
solution that minimizes total allocation cost. A set of con-
straints limits the solver to choose only actions that lead to a
valid allocation. Although global register allocation is NP-
complete, in practice ORA consistentlyproduces optimal al-
locations in O(n3) time [3].

The basic ORA model described in [3] focuses on proces-
sors with uniform register architectures. This paper presents
an IP formulation for irregular register architectures, ar-
chitectures that place restrictions on register usage. Effi-
cient register allocation for irregular architectures is diffi-
cult. However, efficient register allocation is important be-
cause many real-world processors have irregular registers.
For many embedded and specialized applications, low hard-
ware cost often drives design decisions, forcing designers
to trade uniformity in register architecture for reduced cost.
Furthermore, the Intel x86 architecture, the most widely
used desktop processor, has an irregular register architec-
ture. Better register allocation for the x86 architecture will

Presented at the 31st International Microarchitecture Conference, December 1998.
Copyright c
1998 Association for Computing Machinery, Inc.

ORA Analysis

Module

ORA Solver

Module

ORA Rewrite

Module

Decision-

Variable

Table

Write

WriteRead

Read

Figure 1. ORA top level modules and data
structures.

potentially benefit a wide range of users.
The rest of this paper is organized as follows. Section 2

gives a brief background on ORA. Section 3 describes fea-
tures of an irregular register architecture and discusses their
effect on register allocation. Section 4 presents a cost model
suitable for integer programming. Section 5 presents an IP
formulation for irregular register architectures. Section 6
gives experimental results for the x86 architecture, followed
by a conclusion and discussion on future work in Section 7.

2. ORA Background

This section gives a brief overview of the Optimal Reg-
ister Allocation approach to global register allocation pro-
posed in [3]. The ORA register allocator consists of three
top level modules: the analysis, solver, and rewrite mod-
ules, as illustrated in Figure 1. The ORA analysis module
analyzes a function to determine the points in the function
where decisions must be made about various register allo-
cation actions. Each register-allocation decision is a binary
decision: at a specific point in the function a certain reg-
ister allocation action is either performed (1) or is not per-
formed (0). Register-allocation decisions include whether a
symbolic register should be defined into a specific real reg-
ister, whether the assignment of a symbolic register to a spe-
cific real register should continue, whether a symbolic reg-
ister should be stored to or loaded from memory, etc. The
ORA analysis module produces a binary decision variable
for each register-allocation decision that must be made, and
records the decision variable and the corresponding register
allocation action in the decision-variable table, as illustrated
in Figure 1.

The ORA solver module uses the information about de-
cision variables, register allocation overheads, and condi-
tions to construct a 0-1 integer program [7], a linear pro-
gram with the added requirement that each variable must be
assigned an integer solution value that is either 0 or 1. Af-
ter constructing the 0-1 integer program, an optimal solution

is found using a commercial integer program solver. The
solver determines a value of either 0 or 1 for each decision
variable so the conditions are satisfied and the total register
allocation overhead is optimally reduced. The ORA solver
module then records in the decision-variable table the solu-
tion value for each decision variable.

Finally, the ORA rewrite module examines the decision-
variable table to determine each decision variable that was
set to 1 by the solver, and to determine the corresponding
register allocation action. The intermediate instructions are
then rewritten based on the register allocation actions deter-
mined by the solver, with each symbolic register replaced by
the assigned real register, and with spill code inserted at the
prescribed locations.

3. Irregular Register Architectures

A register architecture is regular in the programming
model if all registers can be used interchangeably in each in-
struction without affecting the instruction’s execution time
or the instruction’s size. A register architecture is irregular
if the choice of registers affects instruction execution time,
instructionsize, or both. For a register architecture to be reg-
ular, all registers must appear homogeneous in structure and
usage. A register structure is homogeneous if all registers
can hold the same data types, and the content of one register
does not interfere with the content of another register. Reg-
isters are homogeneous in usage if any register can be used
as an operand whenever a register operand is allowed, and
there is no advantage in choosing one register over another.
Whenever the homogeneity in structure or usage is broken,
the register architecture becomes irregular. This section de-
scribes these irregularities and their effect on register allo-
cation.

3.1. Irregularities in Register Structure

A register architecture can become irregular due to ir-
regularities in the structure of the register file. These irreg-
ularities limit the generality of the registers. Examples of
these irregularities include the partitioningof the register file
based on data type, and the sharing of bit fields among regis-
ters. In partitioningbased on data type, registers are grouped
into sets with each set capable of only holding data of cer-
tain types. For example, the Motorola 680x0 processor has
16 general purpose registers, which are divided into sets of
8 “data” and 8 “address” registers [6]. Although all are 32-
bit registers, values in the data registers are not considered
memory addresses and cannot serve as the base address in
effective address calculations.

In bit field-sharing, the register architecture specifies that
certain registers must have certain bits in common, mak-
ing the registers physically overlap. Such registers are no

longer independent. Storing a value in one precludes storing
a value in the overlapping registers. An example of bit field
sharing is found in the x86. The 8-bit AL register shares the
same bits as the least significant half of the 16-bit AX regis-
ter, which in turn shares the same bits as the least significant
half of the 32-bit EAX register [5].

3.2. Irregularities in Register Usage

The second cause of irregularities in the register architec-
ture are irregularities in register usage found in the instruc-
tion set. Regarding register usage, an instruction set is regu-
lar if all instructionscan specify any general purpose register
as source and destination operands, and there is no advan-
tage in selecting one register over another. Although a reg-
ular instruction set is easier for the register allocator to han-
dle, in practice sometimes an instruction set is made irregu-
lar to reduce instructionsize and to allow for all the encoding
needs of the instruction set. This subsection describes these
instruction set irregularities and their effects on register us-
age.

One way to reduce instruction size is to reduce the num-
ber of operand specifiers. The reduction is often accom-
plished by overloading one operand specifier to specify both
a source operand and a destination operand. This requires
the source and destination operands to be in the same real
register, thus restricting register usage. An example of this
combined source/destination specifier is found in the x86 ar-
chitecture, which uses the 2-specifier format for most of the
instructions. The instruction ADD EAX,EBX adds the con-
tents of the EAX and EBX registers, and places the result in
EAX.

A second way to reduce instruction size is to specify reg-
ister operands implicitly, rather than explicitly enumerating
them in the instruction word. This instruction format re-
stricts register usage because the operands must always be
assigned to these implicit registers. The x86 architecture of-
fers many examples of this format: the 32-bit multiply in-
struction uses the EDX register implicitly to store the most
significant half of the 64-bit product; shift/rotateinstructions
use the CX register implicitly to store the shift/rotate count;
and push/pop instructions use the ESP register implicitly as
the stack pointer.

A third way to reduce instruction size is to offer more
compact forms of frequently used instructions. A compact
form may represent one opcode/register combination, elimi-
nating the need to specify the register operand separately. In
the compact instruction, the register is specified implicitly.
Although the instruction can use all registers as operands,
the compact form reduces code size, and the compiler should
use this form whenever possible. For example, the x86 of-
fers compact versions of many frequently used instructions
involving the AL/AX/EAX register. These compact forms

reduce the instruction size by one byte.
Finally, an instruction set can be made irregular to sat-

isfy the encoding needs of the instruction set. This situation
happens when an encoding pattern that should be used for
an opcode/register combination is used for some other pur-
pose, making the register unavailable for use with the op-
code. To amend this deficiency, sometimes a different en-
coding is given to the opcode/register combination, but the
encoding is larger, resulting in increased instruction size.
The end effect is nonuniform register usage cost. As an ex-
ample, in the x86, if the base register used in an indexed ad-
dressing mode specification is the ESP register, the address
specification requires an extra byte in the instruction. This is
because the encoding that should be used for ESP is used in-
stead to indicate the presence of more bytes in the addressing
mode specification. As a result, irregular instruction encod-
ing causes register usage to appear irregular.

4. Cost Model

A precise register allocator must have an accurate model
of the costs associated with register allocation. An accu-
rate cost model is especially important for irregular architec-
tures, where costs are nonuniform and can arise from many
different sources. In particular, a precise treatment of code
size cost is important because instructions can have variable
size, and the size can depend on the choice of operand reg-
isters. Changes in program size in turn affect program exe-
cution time because of memory hierarchy effects.

A precise cost model for register allocation can be ob-
tained by dividing the cost of each register allocation action
into its component costs. For each action, there are three
types of costs if the action is taken: (1) the processor cycle
cost, (2) the instruction memory cost, and (3) the data mem-
ory cost. The processor cycle cost models the time spent by
the processor executing instructions resulting from the al-
location action. For example, a memory load action intro-
duces a load instruction, and the processor cycle cost of the
load action is the number of processor cycles needed to exe-
cute the load instruction. The second cost component mod-
els the effect of increased instruction size. An allocation ac-
tion may change the code size of an instruction. A larger
code size increases program execution time because of de-
lays in the memory hierarchy in supplying instructions. In
particular, there will be more instruction cache misses and
more instruction page faults. Finally, the last cost compo-
nent models the effects of increased data memory access
generated by an allocation action. For example, a store spill
of a 32-bit value accesses the data cache to store the four
bytes of data. Increased data memory access causes more
data cache misses and more data memory page faults.

The cost model can be expressed mathematically for each
integer program decision variable. As described in Section

2, each register allocation action is represented by such a
variable. The cost coefficient for a variable x is given by this
equation:

cost(x) = A � cycle(x)

+B � instruction size(x)

+C � data size(x) (1)

Each term corresponds to the cost component described
above. The factors A, B, and C are the relative weightings
of the cost components. These factors depend on the instruc-
tion at which the allocation action applies. For an action at
instruction i, A is the execution count of i and can be ob-
tained through profiling. The factor B gives the additional
memory hierarchy delay caused by each 1-byte increase in
code size at i, andC gives a similar delay due to each 1-byte
increase in data memory access at i. B can be obtained by
profiling instructioncache misses and instructionpage faults
at i. C can be obtained by profiling data cache misses and
data page faults for data accesses originating from spill in-
structions near i. Some decision variables do not have all
three cost components, and the corresponding cost term is
zero in the cost model.

The main advantage of the model is the ability to account
for diverse allocation costs easily and precisely. As will be
shown in Section 5, unique cycle and memory costs arising
from an irregular register architecture can be calculated pre-
cisely using equation (1). Furthermore, the factors A, B,
and C provide a convenient way to adjust the relative effect
of each cost component. For example, if the goal is to opti-
mize purely for program size, the cycle and the data mem-
ory components of the cost can be excluded entirely from
the cost model. This type of optimization is useful, for in-
stance, in embedded applications where the main concern is
to reduce hardware cost, and a smaller program size reduces
hardware cost by requiring less memory for storage.

5. IP Model for Irregular Register Architec-
tures

The IP model for register allocation in [3] can be ex-
tended so that register irregularities are precisely modeled.
This section describes the IP model extensions for some
common register irregularities.

5.1. Combined Source/Destination Speci-
�er

Various architectures include instructions that use the
same register specifier for one of the source operands and
for the result’s destination. The register allocator is required
to allocate the corresponding source and destination sym-
bolic registers to the same real register. If the source operand

is live after the instruction, the register allocator must copy
that symbolic register into another real register or spill the
symbolic register to memory. In contrast, the three-specifier
format typically found in RISC architectures has no restric-
tion on the assignment of source and destination registers.
Combined source/destination specifiers commonly occur in
architectures that have small instructionsizes (e.g., 16 bits or
less) such as the x86 architecture and the 68000 architecture,
to minimize the number of instruction bits that the register
specifiers consume. This register irregularity also occurs in
some RISC architectures such as the PA-RISC which com-
bine a branch and an arithmetic operation into the same in-
struction.

For combined source/destination specifiers, register
allocation is problematic for instructions with two source
operands that are commutative, e.g., S1 = S2 + S3.
In the traditional approach to handling the combined
source/destination specifiers for such instructions, a com-
piler phase prior to register allocation uses a heuristic to
select one of the two source operands to share the combined
specifier. The intermediate representation is then rewrit-
ten with a copy inserted that copies the selected source
symbolic register, say S2, to the instruction’s destination
symbolic register, S1. The instruction is then rewritten by
replacing S2 with S1, as illustrated below.

Copy S1 <- S2
S1 = S1 + S3

The register allocator will then allocate the two defini-
tions and use of S1 to the same real register, and may elimi-
nate the copy instruction, if appropriate. This traditional ap-
proach to handling combined specifiers is problematic be-
cause the choice of which source operand will be combined
with the destination is made outside the context of register
allocation, and thus may often be a poor decision.

The IP allocator can precisely model combined
source/destination specifiers. First, the IP model is ex-
tended to allow copies to be inserted. The IP model in [3]
only allows copies to be deleted. For an instruction with
commutative source operands, for each source operand S
a copy insertion transformation is applied that produces
a decision variable xrcopyS for each real register r which
allows S to be copied to r just prior to the instruction, as
shown in Fig. 2. Each xrcopyS variable is given the cost of
the corresponding copy instruction. S can only be copied if
S is live in a register just prior to the instruction. Also, it
is necessary to select at most one of the xrcopyS variables.
These two facts are captured in the following constraint
produced by the copy insertion transformation:

X

r2real regs

xrcopyS �
X

r2real regs

xrpreS

r
copyS

x r
use-contS

x

use-endSuse of S

x r
preS

x r
loadS

x r

Figure 2. Potential copy before use of sym-
bolic register S.

where xrpreS is the variable produced by a preceding trans-
formation which represents whether S is allocated (not allo-
cated) to r just prior to the instruction [3].

Also at an instruction with commutative source
operands, a condition is added that enforces the combined
source/destination specifier requirement. For instruction
S1 = S2 op S3, S1 can be allocated to real register r
only if S2 is allocated to r just prior to the instruction and
the allocation of S2 to r ends at the instruction or S3 is
allocated to r just prior to the instruction and the allocation
of S3 to r ends at the instruction. This fact is captured by
applying a combined specifier transformation which for
each r produces the constraint:

xrdefS1 � xruse�endS2+ xruse�endS3

where the xruse�endS is 1 if S is allocated to r at the instruc-
tion and the allocation ends at the instruction [3]. Note that
the left-hand side is less than or equal rather than equal be-
cause it is possible for the allocation of both source operands
to end at the instruction, one ending in real register rx and
the other ending in real register ry. Because S1 is only de-
fined into one register, either xrxdefS1 or xrxdefS1 will be zero,
which is less than the corresponding right-hand side.

Although the proposed IP model will optimally in-
sert copies prior to instructions with commutative source
operands, the problem of optimal copy insertion at any pro-
gram location is beyond the scope of this paper (this problem
will be considered in a forthcoming paper.) Thus under the
assumption that the allocator can insert copies, the proposed
IP model for irregular register architectures is precise but it
is not optimal.

5.2. Memory Operands

In [3] Goodwin and Wilken consider one aspect of regis-
ter irregularity, non-load/store architectures which directly

use memory operands. The IP model in [3] applies to in-
structions that allow a separate memory specifier for each
memory source operand and/or each memory destination.
However various non-load store architectures include in-
structions that use combined source/destination memory
specifiers. Here we describe an extension to the IP model
for combined source/destination memory specifiers. This
model makes optimal use of combined source/destination
memory specifiers under the traditional register-allocation
assumption that each symbolic register has a unique spill lo-
cation. With this assumption, the source/destination mem-
ory operands that have a combined specifier must be the
same symbolic register.

At an instruction that allows a combined
source/destination memory specifier and that has symbolic
register S as a source operand and as a destination, a com-
bined memory specifier transformation is applied that pro-
duces a decision variable xcombined�mem�use=defS which
represents the use of S from memory and the definition of S
to memory. The variablexcombined�mem�use=defS is given
a cost that represents the overhead that occurs for reading
from and writing to memory, and the overhead for code size
increase caused by the memory specifier. The combined
memory specifier can only be used if S is in memory just
prior to the instruction. Thus the transformation produces
the condition xcombined�mem�use=defS � xmem

preS , where
xmem
preS is the variable produced by a preceding trans-

formation which represents whether S is allocated (not
allocated) to memory just prior to the instruction. The
variable xcombined�mem�use=defS is included in the must
allocate condition [3] for the use, which ensures that S is
either allocated to a register or to memory at the use. The
variable xcombined�mem�use=defS is also included in the
must allocate condition for the definition. The variable
xcombined�mem�use=defS can be used in combination with
the xmemory�useS and xmemory�defS variables described
in [3], so that the definition and use of S are optimally
allocated both to registers, to a register and to memory
using a separate memory specifier, or both to memory using
a combined specifier.

5.3. Overlapping Registers

Some architectures have registers that physically over-
lap. Storing a value in one register necessarily means that
a value cannot be stored in the overlapped register. The x86
architecture is such an example. The x86 architecture de-
fines certain registers as bit fields of larger-sized registers.
In particular, 16-bit registers are defined as the least signifi-
cant 16 bits of 32-bit general purpose registers, and 8-bit reg-
isters are defined as the two least significant 8-bit fields of
the EAX, EBX, ECX, and EDX registers. Fig. 3 shows the
mapping for the 32-bit EAX register and the registers con-

EAX

AL

AX

AH

Figure 3. Mapping between EAX, AX, AH, and
AL registers.

tained within EAX. For register allocation, bit field sharing
implies that the registers involved can together hold at most
one value at a time.

Register allocation for registers with common bit fields
can be modeled as follows. All real registers that share a
common bit field are grouped into a set. Each register in a
set is allocated as a distinct, individual register, with the re-
striction that at most one register in the set can be allocated
to any symbolic register at any given program location. This
restriction enforces the fact that there is only one underlying
bit field in the register set, and this bit field is in use when
any register in the set is in use. A register can be a mem-
ber of more than one set. For example, EAX is in the sets
fEAX, AX, ALg and fEAX, AX, AHg. EAX is in the first
set because it shares the least significant 8 bits with AX and
AL, and it is in the second set because it shares the next least
significant 8 bits with AX and AH.

To model bit-field sharing between registers, a general-
ized single-symbolic constraint [3] is generated after each
define that involves any register in a register set. A single-
symbolic constraint limits to one the number of symbolic
registers that a real register can hold. A generalized single-
symbolic constraint encompasses all registers in a register
set, and limits the total number of symbolic registers that all
registers in the set can hold together to one. It is possible that
not all registers in a set are needed for register allocation be-
cause there are no live symbolic registers of the correspond-
ing size. At these program locations, the unneeded registers
in the set are excluded from the generalized single-symbolic
constraint.

As an example, consider symbolic registers S1, S2, and
S3, where S1 is 32-bit, S2 is 16-bit, and S3 is 8-bit. The
following is the generalized single-symbolic constraint for
real register EAX at a program location where S1, S2, and
S3 are all live:

xEAXS1 + xAXS2 + xALS3 � 1

xEAXS1 + xAXS2 + xAHS3 � 1

xEAXS1 is the 0-1 decision variable that indicates whether S1
is assigned to EAX, and similarly for xAXS2 and xALS3 . The
first constraint applies to the register set fEAX, AX, ALg,
and the second applies to fEAX, AX, AHg. Now assume

at another program location only S1 and S3 are live. The
generalized single-symbolic constraint becomes:

xEAXS1 + xALS3 � 1

xEAXS1 + xAHS3 � 1

The xAXS2 term is missing because the AX register is not
needed for register allocation.

5.4. Instruction Encoding Irregularities

In some architectures, the instruction size can vary de-
pending on the register specified in the instruction. For cer-
tain instructions, using a specific register as an operand will
result in smaller code size, while others will cause code size
to increase. Furthermore, not all registers may appear in all
addressing modes. These instruction encoding irregularities
can be modeled precisely in the IP allocator, leading to an
allocation that takes into account these diverse effects. This
subsection presents cases in the x86 architecture.

5.4.1. Short Opcodes with AL/AX/EAX Registers

The x86 instruction set allows smaller code size for certain
instructions if the register operand is AL, AX, or EAX. In
particular, the instruction size is shorter by one byte if the
instruction uses the AL/AX/EAX register and an immedi-
ate operand. The shorter instruction size is available for
these commonly used instructions: ADC, ADD, AND, CMP,
OR, SUB, TEST, XCHG, and XOR. For this reason, signifi-
cant code size reduction is possible if the register allocator
assigns the AL/AX/EAX register to these instructionswhen-
ever these instructions appear with an immediate operand.

The shorter instruction is modeled in the IP allocator by a
reduced cost on the decision variables corresponding to the
allocation of symbolic registers to the AL/AX/EAX register.
Specifically, for an instruction that uses symbolic register A,
if the instruction has a shorter size when the EAX register is
allocated to A, then the decision variable that describes the
allocation of EAX to A would have a lower memory cost:

instruction size(xEAXA) =M � 1

where M is the memory cost of allocatingA to any real reg-
ister besides EAX.

5.4.2. Long Addressing Mode Specifications

The x86 uses an additional one or two bytes after the instruc-
tion opcode to specify the addressing mode and the registers
used in the effective address calculation. Six of the eight x86
general purpose registers can participate in these addressing
modes. The other two, ESP and EBP, can participate with
the following penalties.

The ESP register, which is the architectural stack pointer
register, requires two bytes in the addressing mode spec-
ification when used as a base address register. Specify-
ing [ESP] requires two bytes, and dsp8[ESP] requires
2 bytes plus an additional byte for the displacement dsp8.
In contrast, using any other general purpose register as the
base register requires only one byte. Hence, there is a one
byte penalty for using ESP as the base register.

The EBP register, which is the frame pointer register, re-
quires two bytes in the addressing mode specification when
used as an index register without an offset. The addressing
mode [EBP] requires two bytes. In contrast, this address-
ing mode requires only one byte if it involves any other gen-
eral purpose register. Hence, there is a one byte penalty for
using EBP in this manner.

The additional cost of using ESP and EBP in address
mode specification can be represented in the IP model as fol-
lows. To model the one byte increase, a decision variable is
generated to represent the use of a symbolic register from
each of these registers. The variable has a higher relative
cost, and the variable can be set to 1 only if the real regis-
ter is allocated to the symbolic register at that program lo-
cation. The variable is entered into the must-allocate con-
straint, which ensures that at least one real register is allo-
cated to the symbolic register at that program location.

Fig. 4 shows an example. The symbolic register A is used
to indirectlyaddress memory. IfA resides in EBP and is used
from EBP, then the instruction would incur one extra byte
in the address specification. The variable xEBPuseA models this
use with a higher memory cost:

xEBPuseA � xEBPpreA

instruction size(xEBPuseA) =M + 1

M is the memory cost of using the symbolic register from
any real register besides EBP. xEBPpreA is set to 1 if EBP is al-
located to A just before the instruction. xEBPuseA is set to 1 if A
resides in EBP and is used from EBP. The condition allows
for the possibility of allocating EBP to A (xEBPpreA = 1) with-
out using the value of A from EBP (xEBPuseA = 0). This can
occur if the solver finds it beneficial to put multiple copies
of A into different real registers. In this case, the use of A
with the higher cost will not be chosen, i.e., xEBPuseA would be
0. The must-allocate constraint for A is as follows:

xEBPuseA +
X

r2real regs; r 6=EBP

xrpreA � 1

xEBPuseA is entered into the must-allocate constraint instead of
xEBPpreA to correctly account for the higher memory cost.

5.4.3. Exclusion from Addressing Mode

The ESP register cannot be used in all addressing modes.
Specifically, while it can serve as the index register, it can

EAX

x EAX
preA

symbolic register networks for A

. . . ESP

x ESP
preA

EBP

x EBP
preA

... = ...,[A]

Figure 4. Higher cost of addressing mode
specification using EBP.

EAX

x EAX
preA

... = ...,[2 * A]

. . . EBP

x EBP
preA

ESP

x ESP
preA

symbolic register networks for A

Figure 5. ESP cannot be used in scaled-index
addressing mode.

not be scaled by the constants 2, 4, or 8, e.g., cannot have[2
* ESP]. In contrast, all other general purpose registers can
be used as index registers with scaling by these constants.

The fact that ESP cannot be used in the scaled-indexed
addressing mode can be modeled as follows. At an instruc-
tion that uses symbolic register A for such an addressing
mode, the IP variable corresponding to the allocation of A
to ESP is excluded from the must-allocate constraint for A.
Thus, A must reside in some real register besides ESP. For
the example in Fig. 5, the must-allocate constraint is as fol-
lows: X

r2real regs; r 6=ESP

xrpreA � 1

The constraint forces the IP solver to put A in another real
register besides ESP.

5.5. Prede�ned Memory Symbolic Regis-
ters

A predefined memory value is a value that exists in mem-
ory at function entry. For symbolic registers that are de-
fined by the loading of a predefined memory value, it may
be possible to coalesce the home memory locations of the

A = load(memX)

...

A = load(memX)

... = A op ...

memX
symbolic

X

A

AX

of A, can

spill load of A

live range register
network of A

deleted
can be
that
portion

memX: home location of X in memory
X: predefined memory value

original define

be removed

A: symbolic register

Figure 6. Removing symbolic register net-
work segment for a predefined memory sym-
bolic register.

symbolic register and the predefined memory value. If co-
alescing is performed, the symbolic register becomes a pre-
defined memory symbolic register. Fig. 6 shows an example
of a predefined memory value X and a predefined memory
symbolic register A that is associated with X. The symbolic
register A shares the same memory location as X, which is
labeled memX.

The coalescing of home memory locations has several
benefits. First, the coalescing allows the removal of the load
instruction that originally defines the symbolic register. Be-
cause the symbolic register now has the same home mem-
ory location as the predefined memory value, the symbolic
register is considered to exist initially in memory, and no
instruction is required to define it. Second, since the sym-
bolic register and the predefined memory value share the
same memory location, the program’s runtime memory re-
quirement is reduced. Third, the IP formulation is simpli-
fied. For a predefined memory symbolic register, the sym-
bolic register network from the original define instruction to
the symbolic register’s first use can be removed, as shown
in Fig. 6. In this region, the symbolic register’s value exists
only in memory, making the symbolic register network un-
necessary. The symbolic register network begins just before
the symbolic register’s first use, where the symbolic register
may be loaded into a real register.

A symbolic register becomes a predefined memory sym-
bolic register through association with a predefined memory
value. A symbolic register can be associated with a prede-
fined memory value if (1) the symbolic register is defined by
a load instruction that loads the predefined memory value,
(2) the live ranges of the symbolic register and the prede-
fined memory value do not interfere, and (3) the predefined
memory value is not aliased. The first condition asserts that

store A

A = A op ...

A = load(memX)

...

...

... = load(memX)

A: symbolic register

spill store of A

define of A

live range

last use of X,
wrong value loaded

X

memX

A

X

A

memX: home location of X in memory
X: predefined memory value

Figure 7. Overwriting of predefined memory
value by symbolic register.

the initial value of the symbolic register and the predefined
memory value are identical. The only effect of the defin-
ing instruction is to transfer the value from memory to a real
register. When the instruction is deleted, the value of the
symbolic register is unchanged, but the value now resides
in memory instead of in a real register.

The second condition prevents the overwritingof either’s
memory value by the other. It is easy to show that this con-
dition is necessary using counter examples. Fig. 7 shows
the symbolic register A and the predefined memory value X
sharing the same home memory location, but the live ranges
of A and X intersect. The figure shows A spilling within the
live range ofX, overwriting the value ofX in memory. When
X is later used, the wrong value of X is loaded. Similarly,
changing the predefined memory value may alter the value
of a symbolic register. Fig. 8 shows the same symbolic reg-
ister A and the same predefined memory value X. X is mod-
ified within the live range of A. When A is later loaded from
memory, the wrong value of A is returned.

The third condition requires that the predefined memory
value is not aliased. Aliasing allows the predefined mem-
ory value to be modified or used beyond the program loca-
tion where the predefined memory value is explicitly loaded.
Consider the following example, where X is a predefined
memory value residing in memory location memX:

...
A = load (memX)
call foo (memX)
...

The subroutine foo is invoked with the address of memX.
Since the subroutine can potentially modify X, X is aliased,

A = load(memX)

A = A op ...

store A
...

memX = ...

... = memX

...

...

A = load(memX)

A: symbolic register

... = A

X A

X

X

A

...

memX

spill store of A

define of A

last use of X

X is modified

X: predefined memory value
memX: home location of X in memory

live range

spill load of A
wrong value loaded

last use of A

Figure 8. Overwriting of symbolic register by
changing the predefined memory value.

and A cannot be assigned the same memory home location
as X.

6. Experimental Results

An IP allocator for the x86 architecture has been built in-
side the Gnu C compiler [9]. The x86 architecture was cho-
sen because it includes a large variety of register irregulari-
ties and because of its widespread use. The integer program
generated by the IP allocator is sent to a CPLEX 6.0 inte-
ger program solver [4]. The solver runs on a HP 9000/780
workstation with a 160MHz PA-8000 processor and 256MB
of main memory. The SPEC92 [2] integer benchmarks are
used as test inputs. The benchmarks consist of six programs:
compress, eqntott, xlisp, sc, espresso, and cc1. For each
function in a benchmark, a maximum solver time limit of
1024 seconds is allowed.

The experiment assumes a simplified version of the cost
model described in Section 4. In the simplified model, the
factor A is obtained through instruction execution profiling
as described. The factorsB and C are estimated. B is set to
1000 to model the effect of increased code size. Specifically,
it takes on the order of 1000 processor cycles to read in a
byte of program code from disk storage. C is set to zero.

The experiment assumes a Pentium implementation of
the x86 architecture. Each instruction requires the same

number of processor cycles to execute as on the Pentium
[5]. Table 1 gives the cycle and memory cost for instruc-
tions used by the register allocator. Cycle cost in the table
is the number of processor cycles required to execution the
instruction. Memory cost is the instruction’s size in bytes.

instruction cycle cost memory cost
load 1 3
store 1 3

rematerialization 1 3
copy 1 2

Table 1. Spill code cost.

Table 2 shows the number of functions solved. The col-
umn total shows the number of functions in the benchmark.
Of these functions, attempted is the number of functions that
are passed to the IP allocator for allocation. Some functions
are not passed to the IP allocator because they operate on
64-bit integer values, which the IP allocator currently does
not handle. The solved column lists the number of function
for which the IP solver is able to generate a feasible alloca-
tion. The optimal column lists the number of functions for
which the IP solver generated an optimal solution. Although
the IP solution is optimal relative to the model, the alloca-
tion solution is not optimal because the present IP model
does not insert copies optimally, as discussed in Section 5.1.
Of the functions that are attempted by the IP allocator, the
IP solver generated a feasible allocation for 98.1% of them.
The solver was able to generate optimal solutions for 97.6%
of the functions it attempted, within the time limit of 1024
seconds.

SPECint92 Functions
Benchmark Total Attempted Solved Optimal
compress 16 16 16 16
eqntott 62 62 62 62
xlisp 357 357 357 357
sc 154 146 146 142
espresso 361 361 361 360
cc1 1450 1421 1412 1405
Total 2400 2363 2354 2342

Table 2. Number of functions solved with a
solver time limit of 1024 seconds.

Fig. 9 shows the size of the IP program against the num-
ber of GCC intermediate instructions. Constraints growth
rate is only slightly higher than linear relative to the number
of intermediate instructions. Fig. 10 shows optimal solution
time against the number of constraints. The optimal solu-
tion time is the time the solver takes to produce an optimal

1 10 100 1000
Intermediate Instructions

10

100

1000

10000

100000

In
te

ge
r

P
ro

gr
am

 C
on

st
ra

in
ts

solved optimally
solved non-optimally
not solved

Figure 9. Number of constraints vs. number
of intermediate instructions.

100 1000 10000
Integer Program Constraints

0.01

0.10

1.00

10.00

100.00

1000.00

O
pt

im
al

 S
ol

ut
io

n
T

im
e

(s
ec

s.
)

n

n

3

2

Figure 10. Optimal solution time vs. number
of constraints.

solution, for those functions that the solver was able to find
optimal solutions. The growth rate of the optimal solution
time is roughlyO(n2:5) with respect to the number of con-
straints.

The IP allocator produced significantly less spill code
than the GCC allocator. Table 3 shows the amount of dy-
namic spill intermediate instructions produced by both the
IP allocator and GCC. The IP allocator produced fewer load
and stores, and eliminated more copies. However, GCC
deleted more rematerialization instructions than it inserted.
Overall, the IP allocator produced only 36% of the total
amount of spill instructions as produced by GCC. Changes
in execution time can be calculated by substituting values
from Tables 1 and 3 into equation (1). The IP allocator
produced 551M cycles of overhead, while GCC produced
1410M cycles. The IP allocator reduces execution time

overhead due to register allocation by 61%.

Overhead Type IP GCC IP / GCC
Spill Load 373M 902M 0.41
Spill Store 317M 565M 0.56
Rematerialization 144M -5.0M -29
Copy -331M -53M 6.3

Total 503M 1410M 0.36

Table 3. Components of dynamic spill code
overhead.

The IP solution times for the x86 architecture is signifi-
cant faster than the times for the RISC architecture presented
in [3]. The x86 IP model has only about a quarter of the con-
straints found in the RISC model. The simplification is due
to the fewer number of real registers available for register
allocation; the x86 has 6, whereas the RISC has 24. Since
IP solution time is roughly O(n2:5) relative to the number
of constraints, a four times decrease in the number of con-
straints translates to a solution time speedup of 32. Further-
more, a newer version of the CPLEX solver is used, yield-
ing a speedup of about 2, and a faster solver machine is used,
giving a speedup of about 3. Total IP solution time speedup
is roughly 192. Furthermore, the irregular cost nature of the
x86 IP model helps to reduce solver time. Irregular costs
break up the symmetry of the integer program, decreasing
the time spent by the solver in searching through equivalent
solutions.

7. Conclusion and Future Work

The paper described an IP-based register allocator for ir-
regular architectures. Previous work showed that an IP al-
locator is feasible for a RISC architecture, where registers
are uniform and can be treated identically. The work pre-
sented here shows the IP approach for an irregular architec-
ture, where registers have distinctive features and should be
treated separately. Furthermore, the IP approach is shown to
be particularly well suited to irregular architectures, because
individual costs can be modeled precisely and accurately in
the IP model. These costs, on the other hand, make alloca-
tion using heuristics difficult.

The paper discussed several irregular architecture fea-
tures, but there are others that remain to be modeled. For
example, instruction selection can be integrated into regis-
ter allocation to further reduce spill code. The IP allocator
can be extended to use other instructions, such as the x86’s
XCHG, which exchanges the contents of two registers. Fi-
nally, the current paper does not address the issue of op-
timally inserting copy instructions, which are important in
processors with combined source/destination operand spec-
ifiers.

Work is under way to port the IP allocator to a commer-
cial x86 compiler. The resulting setup will allow a compari-
son between the IP allocator and an aggressive industrial al-
locator. The result will be reported in a future paper.

Acknowledgements

This research was sponsored by Microsoft Research and
by the University of California under the UC MICRO pro-
gram.

References

[1] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins,
and P. Markstein. Register allocation via coloring. Computer
Languages, 6:47–57, 1981.

[2] K. Dixit. New CPU benchmarksuites from SPEC. In Digest of
Papers Compcon, Spring 1992, pages 305–310. IEEE, 1992.

[3] D. Goodwin and K. Wilken. Optimal and near-optimal global
register allocation using 0-1 integer programming. Software–
Practice and Experience, 26(8):929–965, 1996.

[4] ILOG, Inc., CPLEX Division. CPLEX 6.0 Documentation
Supplement, 1998.

[5] Intel. Pentium ProcessorFamily Developer’sManual, Volume
3: Architectureand Programming Manual. Intel Corporation,
1995.

[6] Motorola. MC68020 32-Bit Microprocessor User’s Manual.
Prentice-Hall, Inc., 1985.

[7] G. Nemhauserand L. Wolsey. Integer and Combinatorial Op-
timization. John Wiley & Sons, 1988.

[8] R. Sethi. Complete register allocation problems. SIAM Jour-
nal on Computing, 4(3):226–248, September 1975.

[9] R. Stallman. Using and Porting GNU CC. Free Software
Foundation, Inc., 1995.

