Precise Register Allocation for Irregular Architectures

Timothy Kong and Kent D. Wilken
Dept. of Electrical & Computer Engineering
University of California, Davis
Davis, CA 95616-5294, U.SA.
{kong,wilken} @ece.ucdavis.edu

Abstract

This paper proposes a precise approach to register al-
location for irregular-register architectures which is based
on 0-1 integer programming (IP). Prior work showsthat | P
register allocation isfeasiblefor RISC architectures, which
have uniformregisters and register usage. Extensionstothe
prior work are proposed that precisely model register irreg-
ularities including combined source/destination specifiers,
memory operands, and variationsin the cost of register us-
age. The x86 architecture is selected as a representative
irregular-register architecture for experimental study. An
IP register allocator isbuilt for the x86 architecture within
the Ghu C Compiler (GCC), and is compared experimen-
tally with GCC's graph-coloring register allocator. Exper-
imental results show that the IP allocator reduces regis-
ter allocation overhead by 61% compared with the graph-
coloring allocator. Theresults also show that thex86 P al-
locator isdramaticallyfaster thanthe prior RISC IP alloca-
tor, because of the smaller number of registersin thex86 ar-
chitecture and because of the register irregularities. These
results suggest that IP register allocationis well suited for
irregular-register architectures.

1. Introduction

A compiler initially generates code assuming an infinite
number of symbolic registers. Inalater compiler phase, the
register allocator maps these symbolic registers to a ma
chine's real registers. Because the number of real regis-
tersis small, not all symbolic registers may get red regis-
ter assignments, and those symbolic registers must then re-
sidein memory. Spill code is generated to move those sym-
bolic registers to and from memory. The register allocation
problemisto create aregister assignment that minimizesthe
amount of spill code. Global register allocation analyzes
the entire function at once and attempts to produce an as-
signment for al symbolic registers in the function. Since

global register alocation is NP-complete [8], most alloca
tors use heuristic techniques to produce a sol ution.

Traditiona alocators perform global register allocation
using a graph coloring approach originaly developed by
Chaitin et a. [1]. This approach builds an interfer-
ence graph whose vertices represent symbolic registers, and
edges connect vertices for symbolic registers that cannot be
assigned the same redl register. The graph is then colored
with the same number of colors as there are redl registers.
For vertices that did not receive a color, the corresponding
symbolic register is spilled. The alocator relies on heuris-
tics to decide on the order of symbolic registersto spill and
the placement of the spill code.

Goodwinand Wilken proposed afundamentally new reg-
ister alocation approach based on integer programming [3].
The Optimal Register Allocation (ORA) approach buildsan
integer program (1P) representation of the allocation prob-
lem, using integer program variables to represent possible
register allocation actions at each point in the computer pro-
gram. Each of these actions has an associated cost. Anin-
teger program solver solves the IP problem, generating a
solution that minimizes total allocation cost. A set of con-
straintslimitsthe solver to choose only actionsthat lead to a
valid alocation. Although globa register alocation is NP-
complete, in practice ORA consi stently producesoptimal al-
locationsin O(n?) time[3].

The basic ORA model described in[3] focuseson proces-
sorswith uniformregister architectures. This paper presents
an |P formulation for irregular register architectures, ar-
chitectures that place restrictions on register usage. Effi-
cient register allocation for irregular architectures is diffi-
cult. However, efficient register allocation isimportant be-
cause many rea-world processors have irregular registers.
For many embedded and specialized applications, low hard-
ware cost often drives design decisions, forcing designers
to trade uniformity in register architecture for reduced cost.
Furthermore, the Intel x86 architecture, the most widely
used desktop processor, has an irregular register architec-
ture. Better register alocation for the x86 architecture will

Presented at the 31st International Microarchitecture Conference, December 1998.
Copyright (©1998 Association for Computing Machinery, Inc.

ORA Analysis ORA Solver ORA Rewrite

| Module Module Module |
! I
! 52 l
: y Read Write :
I T \
| Write ™. ~Read

I “._ | Decision-[.-~ Reac :
: | Variable |~ I
, Table :
! I

Figure 1. ORA top level modules and data
structures.

potentially benefit a wide range of users.

The rest of this paper is organized as follows. Section 2
gives abrief background on ORA. Section 3 describes fea
tures of an irregular register architecture and discusses their
effect on register allocation. Section 4 presentsa cost model
suitable for integer programming. Section 5 presents an |IP
formulation for irregular register architectures. Section 6
givesexperimental resultsfor thex86 architecture, followed
by a conclusion and discussion on futurework in Section 7.

2. ORA Background

This section gives a brief overview of the Optima Reg-
ister Allocation approach to global register alocation pro-
posed in [3]. The ORA register alocator consists of three
top level modules. the analysis, solver, and rewrite mod-
ules, as illustrated in Figure 1. The ORA anaysis module
analyzes a function to determine the pointsin the function
where decisions must be made about various register alo-
cation actions. Each register-allocation decision is a binary
decision: at a specific point in the function a certain reg-
ister alocation action is either performed (1) or is not per-
formed (0). Register-allocation decisions include whether a
symbolic register should be defined into a specific red reg-
ister, whether the assignment of asymbolic register toaspe-
cific rea register should continue, whether a symbolic reg-
ister should be stored to or loaded from memory, etc. The
ORA analysis module produces a binary decision variable
for each register-all ocation decision that must be made, and
records the decision variable and the corresponding register
alocation actioninthe decision-variabletable, asillustrated
inFigure 1.

The ORA solver modul e uses the information about de-
cision variables, register alocation overheads, and condi-
tions to construct a 0-1 integer program [7], alinear pro-
gram with the added requirement that each variable must be
assigned an integer solution value that is either O or 1. Af-
ter constructing the 0-1 integer program, an optimal solution

is found using a commercial integer program solver. The
solver determines avalue of either O or 1 for each decision
variable so the conditions are satisfied and the total register
allocation overhead is optimally reduced. The ORA solver
modul e then records in the decision-variabl e table the solu-
tion valuefor each decision variable.

Finally, the ORA rewrite modul e examines the decision-
variable table to determine each decision variable that was
set to 1 by the solver, and to determine the corresponding
register allocation action. The intermediate instructionsare
then rewritten based on the register allocation actions deter-
mined by thesolver, with each symbolicregister replaced by
the assigned real register, and with spill code inserted at the
prescribed locations.

3. Irregular Register Architectures

A register architecture is regular in the programming
modél if all registerscan beused interchangeably ineachin-
struction without affecting the instruction’s execution time
or theinstruction’ssize. A register architectureisirregular
if the choice of registers affects instruction execution time,
instructionsize, or both. For aregister architecturetobereg-
ular, al registers must appear homogeneousin structureand
usage. A register structure is homogeneous if all registers
can hold the same datatypes, and the content of one register
does not interfere with the content of another register. Reg-
isters are homogeneous in usage if any register can be used
as an operand whenever aregister operand is alowed, and
there is no advantage in choosing one register over another.
Whenever the homogeneity in structure or usage is broken,
theregister architecture becomes irregular. This section de-
scribes these irregularities and their effect on register dlo-
cation.

3.1. Irregularities in Register Structure

A register architecture can become irregular due to ir-
regularitiesin the structure of the register file. Theseirreg-
ularities limit the generality of the registers. Examples of
theseirregularitiesincludethe partitioningof theregister file
based on datatype, and the sharing of bit fieldsamong regis-
ters. In partitioningbased on datatype, registersare grouped
into sets with each set capable of only holding data of cer-
tain types. For example, the Motorola680x0 processor has
16 general purpose registers, which are divided into sets of
8 “data’ and 8 “address’ registers[6]. Althoughdl are 32-
bit registers, values in the data registers are not considered
memory addresses and cannot serve as the base address in
effective address cal culations.

In bit field-sharing, theregister architecture specifiesthat
certain registers must have certain bits in common, mak-
ing the registers physically overlap. Such registers are no

longer independent. Storingavaluein one precludes storing
avaueinthe overlapping registers. An example of bit field
sharingisfound inthex86. The 8-bit AL register sharesthe
same bitsas the least significant half of the 16-bit AX regis-
ter, which in turn shares the same bitsas the least significant
half of the 32-bit EAX register [5].

3.2. Irregularities in Register Usage

The second cause of irregularitiesintheregister architec-
ture are irregularitiesin register usage found in theinstruc-
tion set. Regarding register usage, an instruction set is regu-
larif all instructionscan specify any general purposeregister
as source and destination operands, and there is no advan-
tage in selecting one register over another. Although areg-
ular instruction set iseasier for theregister allocator to han-
dle, in practice sometimes an instruction set is made irregu-
lar toreduceinstructionsizeandto alow for al theencoding
needs of the instruction set. This subsection describes these
instruction set irregularities and their effects on register us-
age.

One way to reduce instruction size isto reduce the num-
ber of operand specifiers. The reduction is often accom-
plished by overloading one operand specifier to specify both
a source operand and a destination operand. This requires
the source and destination operands to be in the same rea
register, thus restricting register usage. An example of this
combi ned source/destination specifier isfound inthe x86 ar-
chitecture, which uses the 2-specifier format for most of the
instructions. Theinstruction ADD EAX, EBX adds the con-
tents of the EAX and EBX registers, and placestheresult in
EAX.

A second way to reduceinstruction sizeisto specify reg-
ister operands implicitly, rather than explicitly enumerating
them in the instruction word. This instruction format re-
stricts register usage because the operands must aways be
assigned to theseimplicit registers. The x86 architecture of -
fers many examples of this format: the 32-bit multiply in-
struction uses the EDX register implicitly to store the most
significant half of the 64-bit product; shift/rotateinstructions
usethe CX register implicitly to store the shift/rotate count;
and push/pop instructions use the ESP register implicitly as
the stack pointer.

A third way to reduce instruction size is to offer more
compact forms of frequently used instructions. A compact
form may represent one opcode/regi ster combination, eimi-
nating the need to specify theregister operand separately. In
the compact instruction, the register is specified implicitly.
Although the instruction can use all registers as operands,
thecompact form reduces code size, and the compiler should
use thisform whenever possible. For example, the x86 of -
fers compact versions of many frequently used instructions
involving the AL/AX/EAX register. These compact forms

reduce the instruction size by one byte.

Finally, an instruction set can be made irregular to sat-
isfy the encoding needs of theinstructionset. Thissituation
happens when an encoding pattern that should be used for
an opcode/register combination isused for some other pur-
pose, making the register unavailable for use with the op-
code. To amend this deficiency, sometimes a different en-
coding is given to the opcode/register combination, but the
encoding is larger, resulting in increased instruction size.
The end effect is nonuniform register usage cost. As an ex-
ample, inthex86, if the base register used in an indexed ad-
dressing mode specification is the ESP register, the address
specification requiresan extrabytein theinstruction. Thisis
because the encoding that should be used for ESPisusedin-
stead to indicatethe presence of more bytesin theaddressing
mode specification. Asaresult, irregular instruction encod-
ing causes register usage to appear irregular.

4. Cost Mod€

A precise register alocator must have an accurate model
of the costs associated with register allocation. An accu-
rate cost model isespecially important for irregular architec-
tures, where costs are nonuniformand can arise from many
different sources. In particular, a precise treatment of code
size cost isimportant because instructionscan have variable
size, and the size can depend on the choice of operand reg-
isters. Changesin program sizein turn affect program exe-
cution time because of memory hierarchy effects.

A precise cost moddl for register allocation can be ob-
tained by dividingthe cost of each register alocation action
into its component costs. For each action, there are three
types of costs if the action istaken: (1) the processor cycle
cost, (2) theinstruction memory cost, and (3) thedatamem-
ory cost. The processor cycle cost models the time spent by
the processor executing instructions resulting from the a-
location action. For example, a memory load action intro-
duces aload instruction, and the processor cycle cost of the
load action isthe number of processor cycles needed to exe-
cute the load instruction. The second cost component mod-
elsthe effect of increased instructionsize. An allocation ac-
tion may change the code size of an instruction. A larger
code size increases program execution time because of de-
lays in the memory hierarchy in supplying instructions. In
particular, there will be more instruction cache misses and
more instruction page faults. Finaly, the last cost compo-
nent models the effects of increased data memory access
generated by an allocation action. For example, astore spill
of a 32-hit value accesses the data cache to store the four
bytes of data. Increased data memory access causes more
data cache misses and more data memory page faults.

The cost model can be expressed mathematically for each
integer program decision variable. As described in Section

2, each register alocation action is represented by such a
variable. Thecost coefficient for avariable z isgiven by this
equation:

cost(z) = A * cycle(x)
+ B *instruction size(z)
+ C x datasize(x) Q)

Each term corresponds to the cost component described
above. Thefactors A, B, and C are the relative weightings
of thecost components. These factorsdepend ontheinstruc-
tion at which the alocation action applies. For an action at
instruction ¢, A isthe execution count of ¢ and can be ob-
tained through profiling. The factor B gives the additional
memory hierarchy delay caused by each 1-byte increase in
codesizeat ¢, and C' givesasimilar delay dueto each 1-byte
increase in data memory access at :. B can be obtained by
profilinginstruction cache misses and instructionpage faults
a i. C can be obtained by profiling data cache misses and
data page faults for data accesses originating from spill in-
structions near i. Some decision variables do not have al
three cost components, and the corresponding cost term is
zero in the cost moddl.

The main advantage of the model isthe ability to account
for diverse alocation costs easily and precisely. Aswill be
shown in Section 5, unique cycle and memory costs arising
fromanirregular register architecture can be calcul ated pre-
cisely using equation (1). Furthermore, the factors A, B,
and C' provide aconvenient way to adjust the relative effect
of each cost component. For example, if the god isto opti-
mize purely for program size, the cycle and the data mem-
ory components of the cost can be excluded entirely from
the cost model. This type of optimization is useful, for in-
stance, in embedded applicationswhere the main concernis
to reduce hardware cost, and asmaller program size reduces
hardware cost by requiring less memory for storage.

5. IP Mode for Irregular Register Architec-
tures

The IP model for register alocation in [3] can be ex-
tended so that register irregularities are precisely modeled.
This section describes the IP modd extensions for some
common register irregularities.

5.1. Combined Source/Destination Speci-

fier

Various architectures include instructions that use the
same register specifier for one of the source operands and
for theresult’sdestination. Theregister alocator isrequired
to dlocate the corresponding source and destination sym-
bolicregisterstothesamered register. If the source operand

islive after the instruction, the register allocator must copy
that symbolic register into another real register or spill the
symbolicregister to memory. In contrast, the three-specifier
format typically found in RISC architectures has no restric-
tion on the assignment of source and destination registers.
Combined source/destination specifiers commonly occur in
architecturesthat have small instructionsizes(e.g., 16 bitsor
less) such asthe x86 architecture and the 68000 architecture,
to minimize the number of instruction bits that the register
specifiers consume. This register irregularity also occursin
some RISC architectures such as the PA-RISC which com-
bine a branch and an arithmetic operation into the same in-
struction.

For combined source/destination specifiers, register
alocation is problematic for instructions with two source
operands that are commutative, eg., S1 = S2 + S3.
In the traditional approach to handling the combined
source/destination specifiers for such instructions, a com-
piler phase prior to register alocation uses a heuristic to
select one of the two source operands to share the combined
specifier. The intermediate representation is then rewrit-
ten with a copy inserted that copies the selected source
symbolic register, say S2, to the instruction’s destination
symbolic register, S1. The instruction is then rewritten by
replacing S2 with S1, asillustrated bel ow.

Copy S1 <- S2
S1 =S1 + S3

The register alocator will then alocate the two defini-
tionsand use of S1 to the same real register, and may eimi-
nate the copy instruction, if appropriate. Thistraditiona ap-
proach to handling combined specifiers is problematic be-
cause the choice of which source operand will be combined
with the destination is made outside the context of register
allocation, and thus may often be a poor decision.

The IP dlocator can precissdly model combined
source/destination specifiers. First, the IP modd is ex-
tended to allow copies to be inserted. The IP model in [3]
only alows copies to be deleted. For an instruction with
commutative source operands, for each source operand S
a copy insertion transformation is applied that produces
a decision variable 7, o for each real register r which
allows S to be copied to » just prior to the instruction, as
shown inFig. 2. Each 27, . variableis given the cost of
the corresponding copy instruction. S can only be copied if
Sislivein aregister just prior to the instruction. Also, it
is necessary to select at most one of the 27, ¢ variables.
These two facts are captured in the following constraint
produced by the copy insertion transformation:

Z xZOPyS < Z

rereal regs rereal regs

r
xpreS

preS loadS
/ r
X copyS
r
useof S use-endS
r
use-contS

Figure 2. Potential copy before use of sym-
bolic register S.

where z; ., o isthe variable produced by a preceding trans-
formation which representswhether Sisallocated (not alo-
cated) to r just prior to theinstruction [3].

Also a an ingtruction with commutative source
operands, a condition is added that enforces the combined
source/destination specifier requirement. For instruction
S1 = S2 op S3, S1 can be dlocated to rea register r
only if S2 isalocated to » just prior to the instruction and
the alocation of S2 to » ends at the instruction or S3 is
allocated to r just prior to the instruction and the alocation
of S3 to » ends at the instruction. This fact is captured by
applying a combined specifier transformation which for
each » produces the constraint:

r r r
xdefSl S Luse—endS2 + Lyse—endS3

wherethez], ., ., .- islif Sisalocatedtor at theinstruc-
tion and the allocation ends at theinstruction [3]. Note that
the left-hand side is less than or equa rather than equa be-
causeitispossiblefor theall ocation of both source operands
to end at the instruction, one ending in real register r2 and
the other ending in real register ry. Because S1 isonly de-
fined into oneregister, either 237, ¢, or x77; 5, Will bezero,
which isless than the corresponding right-hand side.

Although the proposed IP modd will optimaly in-
sert copies prior to instructions with commutative source
operands, the problem of optimal copy insertion at any pro-
gram|locationisbeyond the scope of this paper (thisproblem
will be considered in a forthcoming paper.) Thus under the
assumption that theallocator can insert copies, the proposed
IP model for irregular register architecturesis precise but it
isnot optimal.

5.2. Memory Operands

In[3] Goodwin and Wilken consider one aspect of regis-
ter irregularity, non-load/store architectures which directly

use memory operands. The IP model in [3] appliesto in-
structions that allow a separate memory specifier for each
memory source operand and/or each memory destination.
However various non-load store architectures include in-
structions that use combined source/destination memory
specifiers. Here we describe an extension to the IP model
for combined source/destination memory specifiers. This
model makes optimal use of combined source/destination
memory specifiers under the traditional register-allocation
assumption that each symbolicregister hasauniquespill lo-
cation. With this assumption, the source/destination mem-
ory operands that have a combined specifier must be the
same symbolic register.

At an indgruction that alows a combined
source/destination memory specifier and that has symbolic
register S as a source operand and as a destination, a com-
bined memory specifier transformation is applied that pro-
duces a decision variable = .ompincd—mem—use/defs Which
representsthe use of S from memory and the definition of S
tomemory. Thevariablez .ompinecd—mem—use/dess ISQiVEN
a cost that represents the overhead that occurs for reading
from and writing to memory, and the overhead for code size
increase caused by the memory specifier. The combined
memory specifier can only be used if S isin memory just
prior to the instruction. Thus the transformation produces
the condition Leombined—mem—use/defS < 0%, where

reS

xp,%5 is the variable produced by a precgding trans-
formation which represents whether S is alocated (not
allocated) to memory just prior to the instruction. The
variable = compined—mem—use/defs 1S included in the must
allocate condition [3] for the use, which ensures that S is
either alocated to aregister or to memory at the use. The
variable T ompined—mem—use/defs 1S SO included in the
must alocate condition for the definition. The variable
Tcombined—mem—use/defs CaN beused in combinationwith
the & memory—uses AN Zppemory—defs Variables described
in [3], so that the definition and use of S are optimaly
allocated both to registers, to a register and to memory
using a separate memory specifier, or both to memory using
a combined specifier.

5.3. Overlapping Registers

Some architectures have registers that physicaly over-
lap. Storing a value in one register necessarily means that
avalue cannot be stored in the overlapped register. The x86
architecture is such an example. The x86 architecture de-
fines certain registers as bit fields of larger-sized registers.
In particular, 16-bit registers are defined as the least signifi-
cant 16 bitsof 32-bit general purposeregisters, and 8-bitreg-
isters are defined as the two least significant 8-bit fields of
the EAX, EBX, ECX, and EDX registers. Fig. 3 showsthe
mapping for the 32-bit EAX register and the registers con-

Figure 3. Mapping between EAX, AX, AH, and
AL registers.

tained within EAX. For register alocation, bit field sharing
impliesthat the registersinvolved can together hold at most
onevaueat atime.

Register allocation for registers with common bit fields
can be modeled as follows. All rea registers that share a
common bit field are grouped into a set. Each register ina
set isalocated as a distinct, individua register, with there-
gtriction that a most one register in the set can be allocated
toany symbolicregister at any given programlocation. This
restriction enforcesthefact that thereisonly oneunderlying
bit field in the register set, and thisbit field isin use when
any register in the set isin use. A register can be a mem-
ber of more than one set. For example, EAX isin the sets
{EAX, AX, AL} and {EAX, AX, AH}. EAX isinthefirst
set because it shares the least significant 8 bitswith AX and
AL, anditisinthesecond set becauseit sharesthe next | east
significant 8 bitswith AX and AH.

To model bit-field sharing between registers, a general-
ized single-symbolic constraint [3] is generated after each
define that involves any register in aregister set. A single-
symbolic constraint limits to one the number of symbolic
registersthat areal register can hold. A generalized single-
symbolic constraint encompasses al registersin a register
set, and limitsthe total number of symbolic registersthat all
registersintheset can holdtogether to one. Itispossiblethat
not all registersin aset are needed for register all ocation be-
cause thereare no live symbolic registers of the correspond-
ing size. At these program locations, the unneeded registers
inthe set are excluded from the generalized single-symbolic
constraint.

Asan example, consider symbolic registers S1, S2, and
S3, where S1 is 32-hit, S2 is 16-bit, and S3 is 8-bit. The
following is the generalized single-symbolic constraint for
rea register EAX at aprogram location where S1, S2, and
S3 aredl live:

EAX | _AX , _AL
rgr " tasy tagy <1
EAX | _AX , _AH
rgr T tasy +agy <1

zEAX isthe0-1 decision variablethat indicateswhether S1
is assigned to EAX, and similarly for 245" and 4L, The
first constraint applies to the register set {EAX, AX, AL},
and the second applies to {EAX, AX, AH}. Now assume

at another program location only S1 and S3 are live. The
generalized single-symbolic constraint becomes:

EAX | _AL
rsi T sy <1
EAX | AH

rsi T twsy <1

The z45* term is missing because the AX register is not
needed for register allocation.

5.4. Instruction Encoding Irregularities

In some architectures, the instruction size can vary de-
pending on the register specified in the instruction. For cer-
tain instructions, using a specific register as an operand will
resultin smaller code size, whileotherswill cause code size
to increase. Furthermore, not all registers may appear in all
addressing modes. Theseinstruction encodingirregularities
can be modeled precisdly in the IP alocator, leading to an
allocation that takes into account these diverse effects. This
subsection presents cases in the x86 architecture.

5.4.1. Short Opcodes with AL/AX/EAX Registers

The x86 instruction set allows smaller code size for certain
instructionsif the register operand is AL, AX, or EAX. In
particular, the instruction size is shorter by one byte if the
instruction uses the AL/AX/EAX register and an immedi-
ate operand. The shorter instruction size is available for
these commonly used instructions: ADC, ADD, AND, CVP,
OR, SUB, TEST, XCHG, and XOR. For this reason, signifi-
cant code size reduction is possible if the register alocator
assignsthe AL/AX/EAX register totheseinstructionswhen-
ever these instructions appear with an immediate operand.
Theshorter instructionismodeled inthe | P allocator by a
reduced cost on the decision variables corresponding to the
allocation of symbolicregisterstothe AL/AX/EAX register.
Specifically, for aninstructionthat uses symbolic register A,
if theinstruction has ashorter sizewhenthe EAX register is
allocated to A, then the decision variable that describes the
allocation of EAX to A would have alower memory cost:

instruction size(x54%) = M —

where M isthememory cost of alocating Ato any real reg-
ister besides EAX.

5.4.2. Long Addressing M ode Specifications

Thex86 usesan additional one or two bytes after theinstruc-
tion opcodeto specify the addressing mode and theregisters
used intheeffectiveaddress cal culation. Six of theeight x86
genera purposeregisters can participatein these addressing
modes. The other two, ESP and EBP, can participate with
the following penalties.

The ESP register, which isthe architectural stack pointer
register, requires two bytes in the addressing mode spec-
ification when used as a base address register. Specify-
ing [ESP] requires two bytes, and dsp8[ESP] requires
2 bytes plus an additional byte for the displacement dsp8.
In contrast, using any other genera purpose register as the
base register requires only one byte. Hence, thereisaone
byte penalty for using ESP as the base register.

The EBP register, which isthe frame pointer register, re-
quirestwo bytesin the addressing mode specification when
used as an index register without an offset. The addressing
mode [EBP] requires two bytes. In contrast, this address-
ing mode requiresonly onebyteif itinvolvesany other gen-
eral purposeregister. Hence, there isaone byte pendty for
using EBP in this manner.

The additional cost of using ESP and EBP in address
mode specification can be represented inthe | P model asfol-
lows. To mode the one byteincrease, adecision variableis
generated to represent the use of a symbolic register from
each of these registers. The variable has a higher relative
cost, and the variable can be set to 1 only if thereal regis-
ter is allocated to the symbolic register at that program lo-
cation. The variable is entered into the must-allocate con-
straint, which ensures that at least one redl register is allo-
cated to the symbolic register at that program location.

Fig. 4 showsan example. Thesymbolicregister Aisused
toindirectly addressmemory. If AresidesinEBPandisused
from EBP, then the instruction would incur one extra byte
in the address specification. Thevariable xZ2% mode sthis
use with a higher memory cost:

EBP EBP

TusedA = xpreA

instructionsize(x 285y = M + 1

useA
M isthe memory cost of using the symbolic register from

any real register besidesEBP. « 7} isset to 1if EBPisal-

located to A just beforetheinstruction. 2Z58% issetto 1if A
resides in EBP and is used from EBP. The condition allows
for the possibility of alocating EBPto A (]2} = 1) with-
out using the value of A from EBP (zZ8% = 0). This can
occur if the solver finds it beneficial to put multiple copies
of A into different real registers. In this case, the use of A
with the higher cost will not be chosen, i.e., =225 would be

useA

0. The must-allocate constraint for A is as follows:

EBP E : r
Tyused + xpreA Z 1
rereal regs, r2EBP

+PBE isentered into the must-allocate constraint instead of

useA

"1 to correctly account for the higher memory cost.

5.4.3. Exclusion from Addressing M ode

The ESP register cannot be used in al addressing modes.
Specifically, while it can serve as the index register, it can

symbolic register networks for A
EBP EAX . ESP

EBP EAX ESP
preA preA preA

o= [A]

Figure 4. Higher cost of addressing mode
specification using EBP.

symbolic register networks for A
ESP EAX A EBP

ESP EAX X EBP
preA preA preA

=27 A

Figure 5. ESP cannot be used in scaled-index
addressing mode.

not be scaled by the constants 2, 4, or 8, e.g., cannot have[2
* ESP] .In contrast, al other genera purposeregisterscan
be used as index registerswith scaling by these constants.
The fact that ESP cannot be used in the scaled-indexed
addressing mode can be modeled as follows. At an instruc-
tion that uses symbolic register A for such an addressing
mode, the IP variable corresponding to the allocation of A
to ESP is excluded from the must-all ocate constraint for A.
Thus, A must reside in some real register besides ESP. For
the examplein Fig. 5, the must-allocate constraint is as fol -

lows:
r
E xpreA Z 1
réreal regs, rZESP

The constraint forces the |P solver to put A in another rea
register besides ESP.

5.5. Predefined Memory Symbolic Regis-
ters

A predefined memory valueisavauethat existsin mem-
ory at function entry. For symbolic registers that are de-
fined by the loading of a predefined memory value, it may
be possible to coalesce the home memory locations of the

symbolic
liverange memX register

X A network of A
original define I X
of A, can A = load(memX) - - _
be removed ! portion
' that
A ' canbe
spill load of A A = load(memX) | deleted
.=AoO0p..

A: symbolic register
X: predefined memory value

[[[

[[[
) . [[[
memX: home location of X in memory | | |

Figure 6. Removing symbolic register net-
work segment for a predefined memory sym-
bolic register.

symbolic register and the predefined memory value. If co-
alescing isperformed, the symbolic register becomes a pre-
defined memory symbolic register. Fig. 6 shows an example
of a predefined memory value X and a predefined memory
symbolic register A that is associated with X. The symbolic
register A shares the same memory location as X, which is
labeled menmX.

The coaescing of home memory locations has several
benefits. First, the coalescing alowstheremoval of theload
instruction that originally defines the symbolic register. Be-
cause the symbolic register now has the same home mem-
ory location as the predefined memory value, the symbolic
register is considered to exist initially in memory, and no
instruction is required to define it. Second, since the sym-
bolic register and the predefined memory veaue share the
same memory location, the program’s runtime memory re-
quirement is reduced. Third, the IP formulation is simpli-
fied. For a predefined memory symbolic register, the sym-
bolicregister network from the original defineinstructionto
the symbolic register’'sfirst use can be removed, as shown
inFig. 6. In thisregion, the symbolic register’svalue exists
only in memory, making the symbolic register network un-
necessary. The symbolicregister network beginsjust before
thesymbolic register’sfirst use, where the symbolic register
may beloaded into area register.

A symbolic register becomes a predefined memory sym-
bolicregister through associ ation with a predefined memory
value. A symbolic register can be associated with a prede-
fined memory valueif (1) the symbolicregister isdefined by
aload instruction that |oads the predefined memory value,
(2) the live ranges of the symbolic register and the prede-
fined memory value do not interfere, and (3) the predefined
memory valueis not aliased. Thefirst condition asserts that

liverange memX

X A -
define of A A =load(memX) T
e X
A=Aop..
spill store of A store A +
last use of X, ... = load(memX) L A
wrong value |loaded

A: symbolic register ‘ ‘
X: predefined memory value : :
memX: home location of X inmemory |

Figure 7. Overwriting of predefined memory
value by symbolic register.

theinitia value of the symbolic register and the predefined
memory value are identical. The only effect of the defin-
ing instructionisto transfer the value from memory to aresl
register. When the instruction is deleted, the value of the
symbolic register is unchanged, but the value now resides
in memory instead of in area register.

The second condition preventsthe overwriting of either’s
memory value by the other. It is easy to show that this con-
dition is necessary using counter examples. Fig. 7 shows
the symbolic register A and the predefined memory value X
sharing the same home memory location, but theliveranges
of Aand X intersect. The figure shows A spilling within the
liverange of X, overwritingthevalue of Xin memory. When
X is later used, the wrong value of X isloaded. Similarly,
changing the predefined memory value may ater the value
of asymbolic register. Fig. 8 showsthe same symbolicreg-
ister A and the same predefined memory value X. Xis mod-
ified within the liverange of A. When Aiislater loaded from
memory, the wrong value of A isreturned.

The third condition requires that the predefined memory
valueisnot aliased. Aliasing alows the predefined mem-
ory value to be modified or used beyond the program loca-
tionwhere the predefined memory valueisexplicitly loaded.
Consider the following example, where X is a predefined
memory vaue residing in memory location menX:

A: [oad (menX)
call foo (menX)

The subroutine f 0o isinvoked with the address of nemX.
Since the subroutine can potentially modify X, Xisaiased,

liverange memX

XA

define of A A =load(memX) | T

X

A=Ao0p..

spill store of A store A -+

A
X ismodified memX = ... -+
last use of X ... = memX 1 X
spill load of A B
wrong value loaded A = 10ad(memX)
last use of A e =A -

X: predefined memory value
memX: home location of X in memory

!
A: symbolic register :
!

Figure 8. Overwriting of symbolic register by
changing the predefined memory value.

and A cannot be assigned the same memory home location
as X.

6. Experimental Results

An|P alocator for the x86 architecture has been builtin-
sidethe Gnu C compiler [9]. The x86 architecture was cho-
sen because it includes alarge variety of register irregulari-
ties and because of itswidespread use. The integer program
generated by the IP alocator is sent to a CPLEX 6.0 inte-
ger program solver [4]. The solver runs on a HP 9000/780
workstationwith a160MHz PA-8000 processor and 256M B
of main memory. The SPEC92 [2] integer benchmarks are
used astest inputs. The benchmarks consist of six programs:
compress, egntott, xlisp, sc, espresso, and ccl. For each
function in a benchmark, a maximum solver time limit of
1024 seconds is allowed.

The experiment assumes a simplified version of the cost
model described in Section 4. In the simplified model, the
factor A isobtained through instruction execution profiling
asdescribed. Thefactors B and €' are estimated. B isset to
1000to model theeffect of increased code size. Specifically,
it takes on the order of 1000 processor cycles to read in a
byte of program code from disk storage. C' is set to zero.

The experiment assumes a Pentium implementation of
the x86 architecture. Each instruction requires the same

number of processor cycles to execute as on the Pentium
[5]. Table 1 gives the cycle and memory cost for instruc-
tions used by the register alocator. Cycle cost in the table
isthe number of processor cycles required to execution the
instruction. Memory cost istheinstruction’ssize in bytes.

instruction cyclecost | memory cost
load 1 3
store 1 3
rematerialization 1 3
copy 1 2

Table 1. Spill code cost.

Table 2 shows the number of functions solved. The col-
umn total showsthe number of functionsin the benchmark.
Of these functions, attempted i sthe number of functionsthat
are passed to the IP alocator for alocation. Some functions
are not passed to the IP alocator because they operate on
64-bit integer values, which the |P alocator currently does
not handle. The solved column liststhe number of function
for which the IP solver is able to generate afeasible aloca
tion. The optimal column lists the number of functionsfor
whichthel P solver generated an optimal solution. Although
the IP solution is optimal relative to the model, the alloce-
tion solution is not optimal because the present |P model
does not insert copies optimally, as discussed in Section 5.1.
Of the functions that are attempted by the IP alocator, the
I P solver generated afeasible alocation for 98.1% of them.
The solver was ableto generate optimal solutionsfor 97.6%
of the functionsit attempted, within the time limit of 1024
seconds.

SPECint92 Functions

Benchmark | Total | Attempted | Solved | Optimal
compress 16 16 16 16
eqgntott 62 62 62 62
xlisp 357 357 357 357
C 154 146 146 142
espresso 361 361 361 360
ccl 1450 1421 1412 1405
Tota 2400 2363 2354 2342

Table 2. Number of functions solved with a
solver time limit of 1024 seconds.

Fig. 9 shows the size of the IP program against the num-
ber of GCC intermediate instructions. Constraints growth
rateisonly dightly higher than linear relative to the number
of intermediateinstructions. Fig. 10 shows optimal solution
time against the number of constraints. The optimal solu-
tion timeis the time the solver takes to produce an optimal

o H 8 LI v
. gégg ot solved
PR B A
1 10 100 1000
Intermediate Instructions

Figure 9. Number of constraints vs. number
of intermediate instructions.

1000.00
100.00
10.00
1.00

0.10

Optimal Solution Time (secs.)

0.01 e il .
100 1000 10000
Integer Program Constraints

Figure 10. Optimal solution time vs. number
of constraints.

solution, for those functionsthat the solver was able to find
optimal solutions. The growth rate of the optimal solution
timeisroughly O(n?-%) with respect to the number of con-
straints.

The IP alocator produced significantly less spill code
than the GCC dlocator. Table 3 shows the amount of dy-
namic spill intermediate instructions produced by both the
IPdlocator and GCC. The IP alocator produced fewer load
and stores, and eliminated more copies. However, GCC
deleted more rematerialization instructionsthan it inserted.
Overdl, the IP allocator produced only 36% of the tota
amount of spill instructions as produced by GCC. Changes
in execution time can be calculated by substituting values
from Tables 1 and 3 into equation (1). The IP alocator
produced 551M cycles of overhead, while GCC produced
1410M cycles. The IP alocator reduces execution time

%)
= 100000

9 F LI

7 I, A

c

8 10000 E

IS

g

= 1000

a o solved optimally

— x solved non-optimally
9 100 g

Q

£

overhead due to register allocation by 61%.

Overhead Type P GCC | IP/GCC
Spill Load 373M | 902M 0.41
Spill Store 317M | 565M 0.56
Remateridization | 144M | -5.0M -29
Copy -331M | -53M 6.3

| Total | 503M | 1410M | 0.36 |

Table 3. Components of dynamic spill code
overhead.

The IP solution times for the x86 architecture is signifi-
cant faster thanthetimesfor the RISC architecture presented
in[3]. Thex86 IPmode hasonly about aquarter of the con-
straints found in the RISC model. The simplificationisdue
to the fewer number of rea registers available for register
allocation; the x86 has 6, whereas the RISC has 24. Since
IP solution time is roughly O(n?) relative to the number
of congtraints, a four times decrease in the number of con-
straintstrang ates to a sol ution time speedup of 32. Further-
more, a newer version of the CPLEX solver is used, yield-
ing aspeedup of about 2, and afaster solver machineisused,
giving a speedup of about 3. Total 1P solution time speedup
isroughly 192. Furthermore, theirregular cost nature of the
x86 |P model helps to reduce solver time. Irregular costs
break up the symmetry of the integer program, decreasing
the time spent by the solver in searching through equivalent
solutions.

7. Conclusion and Future Work

The paper described an |P-based register alocator for ir-
regular architectures. Previous work showed that an IP al-
locator is feasible for a RISC architecture, where registers
are uniform and can be treated identically. The work pre-
sented here showsthe | P approach for an irregular architec-
ture, where registers have distinctivefeatures and should be
trested separately. Furthermore, the | P approach isshownto
beparticularly well suited toirregular architectures, because
individua costs can be modeled precisely and accurately in
the IP model. These costs, on the other hand, make alloce-
tion using heuristics difficult.

The paper discussed severa irregular architecture fea-
tures, but there are others that remain to be modeled. For
example, instruction selection can be integrated into regis-
ter alocation to further reduce spill code. The IP alocator
can be extended to use other instructions, such as the x86's
XCHG, which exchanges the contents of two registers. Fi-
nally, the current paper does not address the issue of op-
timally inserting copy instructions, which are important in
processors with combined source/destination operand spec-
ifiers.

Work isunder way to port the IP allocator to a commer-
cial x86 compiler. Theresulting setup will allow acompari-
son between the P alocator and an aggressive industrid al-
locator. The result will be reported in afuture paper.

Acknowledgements

This research was sponsored by Microsoft Research and
by the University of Californiaunder the UC MICRO pro-
gram.

References

[1] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins,
and P. Markstein. Register allocation via coloring. Computer
Languages, 6:47-57, 1981.

[2] K.Dixit. New CPU benchmark suitesfrom SPEC. In Digest of
Papers Compcon, Spring 1992, pages 305-310. |EEE, 1992.

[3] D. Goodwinand K. Wilken. Optimal and near-optimal global
register allocation using 0-1 integer programming. Software—
Practice and Experience, 26(8):929-965, 1996.

[4] ILOG, Inc., CPLEX Division. CPLEX 6.0 Documentation
Supplement, 1998.

[5] Intel. Pentium Processor Family Developer’'sManual, Volume
3: Architectureand Programming Manual. Intel Corporation,
19095.

[6] Motorola. MC68020 32-Bit Microprocessor User’s Manual.
Prentice-Hall, Inc., 1985.

[7] G.Nemhauserand L. Wolsey. Integer and Combinatorial Op-
timization. John Wiley & Sons, 1988.

[8] R. Sethi. Complete register allocation problems. SSAM Jour-
nal on Computing, 4(3):226—248, September 1975.

[9] R. Stallman. Using and Porting GNU CC. Free Software
Foundation, Inc., 1995.

