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Abstract

This report considers the real-time implementation approach of an integra-
tion between an Inertial Navigation System (INS) and a Global Positioning
System (GPS). The integration has been performed, using a GlobalSat EM�
411 GPS receiver and a Microstrain 3DM�GX1 Inertial Measurement Unit
(IMU). This has been performed by incorporating a Kalman �lter, and aiding
the INS estimates through GPS measurements.

The goal of this thesis is to create an integrated application able to achieve
performance of existing solutions three times the cost.

The implementation has been made in real-time in c++, and o�-line in Mat-
lab. However the c++ code has not been su�ciently tested due to computer
processing problems. Also the code has not been tested on an actual un-
manned surface vehicle.

The integrated solution worked su�cently when the GPS was online. How-
ever, during GPS droupout, the result is subject to high position drift, re-
sulting in position errors of up to 400 meters after 20 seconds. Although it is
unknown quite how large the position deviation of other, existing solutions
are. However, high drift during GPS dropouts renders the IMU estimates
quite useless for navigation. Thus this experiment has been unsuccessful.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Surface Vehicles (USV) has been in used in service of the military
since World War II, but has not become largely popular until the 1990s. It is
still commonly found in military applications, but is also increasingly found
in research vessels.

USVs are commonly used to search for underwater mines or underwater activ-
ities, investigate the sea bottom, rescue vessels, reconnaissance and surveil-
lance vessels or as a support vehicle for, e.g., an autonomous underwater
vehicles.

Unmanned surface vehicles are usually relatively small, often the size of a
recreational watercraft (below 15 meters), and so far, a USV exceeding 100
tons has yet to be found [1]. As USVs are usually quite small, they are also
somewhat inexpensive compared to larger vessels. Furthermore, as they are
autonomous or remotely operated, proper navigation systems are neccesary
to be able to implement successful control algorithms. As proper navigation
systems usually also has a high price, they are concidered to be un�t for
these applications, as they will drastically increase the price of the USV.

1.2 Background

The Global Positioning System (GPS) represents an inexpensive and global
method of obtaining the position of a vessel. Although the measurements

1
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are highly subjected to noise, the accuracy can be improved by applying
the principle of di�erential GPS. However, the system gives a low bandwith,
especially when it comes to acceleration and speed, which can be calculated
by di�erentiating the position measurements.

As a contrast, an Inertial Navigation System (INS) only measures the forces
acting on an Inertial Measurement Unit (IMU), and can thus be used to cal-
culate both speed and position estimates without di�erentiating. In addition
to achieving higher bandwiths on the measurements than GPS, this approach
gives the estimates the same bandwith as the acceleration measurements1.
Furthermore, the INS does not rely on external signals and is therefore not
susceptible to jamming nor the problem of areas lacking satellite coverage.
Using an INS isn't problem free however, as it su�ers from problems with
drift of speed and position and is also signi�cantly more expensive than GPS
equipment.

IMUs are placed on a platform inside/on the vessel, referred to as IMU
platform. This will be discussed later in the report.

There are several reasons why an integration of GPS and an INS is desirable.
Generally, an INS gives several advantages that the GPS-system lacks, and
vice versa. Several sources approaches this problem, e.g., [4], [8], [9] and [11].
The main reasons for performing such an integration is:

• The INS results are available whenever the GPS measurements are un-
available due to, e.g., interference or jamming, and can also be applied
to underwater vehichles

• The INS measurements are obtained without signi�cant time delays

• The INS provides acceleration and speed measurements without di�er-
entiation, and is thus less susceptible to noise

• Integration provides real time estimates, as opposed to di�erentation

• The GPS corrects the integration error from a stand-alone INS system

• The GPS allows on-line calibration of IMU errors and alignment of the
IMU platform

1In other words, by integrating the measurements, position and speed can be obtained
at the same bandwith as the measurement unit.
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1.2.1 Survey of Existing Solutions

As of this date, several integrated solutions between GPS and INS already
exists, but are in general known to be relatively expensive. For use in low cost
applications, like for a small Unmanned Surface Vehicle (USV), a commercial,
existing integrated solution can easilly exceed the price of the USV itself.
Thus, it is desirable to develop a low-cost integrated solution between a
GPS and an INS, using low-cost components in order to keep the total cost
down. One state-of-the-art integrated navigation system is the Kongsberg

Figure 1.1: Statistics of commercial INS/GPS solutions.

Seatex Seapath series. As can be seen from Figure 1.1, both the Seapath
100 and 200 is very expensive, but has very little deviation. The Crossbow
NAV420CA�100 is far cheaper, almost 1

10
of the price of the Seapath 200,

but in return has a signi�cantly reduced accuracy. This system is one of the
less expensive products on the marked, but still about 3 times the cost of
the hardware considered for our purposes. Thus a performance close to the
NAV420 will be considered satisfactory.

All the data presented in Figure 1.1 has been obtained from the respective
manufacturers by Maritime Robotics. Most data is presented as Root Mean
Square (RMS) error, with the exceptance of the position accuracy of the
Crossbow solution, which is given in Circular Error Propable (CEP). CEP is
a common measure of the accuracy of weapons, giving the radius of a circle
whence the projectile will land 50% of the time. Thus the Crossbow will
have a position estimate of less than 3 meters 50% of the time.

Despite all e�orts, deviation data for solutions when the GPS is disabled
has not been obtained. This makes it somewhat di�cult to come a de�nite
conclution when comparing two di�erent solutions, as this is one of the key
attributes of usch an integrated solution.

An approximate relationship between performance and price is shown in Fig-
ure 1.2, beginning at 40 000 NOK. It is unsure whether this will be accurate
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Figure 1.2: Accuracy versus price for commercial INS/GPS solutions.

for prices below 60 000, since RMS position deviation for di�erential GPS
range as low as 3 meters.
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1.3 Outline

Chapter 1 discusses the motivation for the assignment and shows data for
existing integrated solutions.

Chapter 2 presents di�erent reference frames and di�erent equations used in
order to transform a vector from one frame to another.

Chapter 3 looks at the history behind the Global Positioning System and
inertial navigation. It also discusses potential errors they are suspectible to
and gives equations for estimating position and speed based on acceleration
measurements.

Chapter 4 outlines the system equations used for integrating the two navi-
gational systems and the approach to estimate attitude, velocity and accel-
eration.

Chapter 5 shows the results of the integration and compares them with prop-
erties from existing solutions

Chapter 6 concludes the report, and also contains a discussion regarding the
concidered product and future work.
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Chapter 2

Reference Frames and

Transformations

2.1 Reference Frames

In navigation, several reference frames can be used to present the data. De-
pending on what navigational system is used to obtain the measurements,
di�erent reference systems are usually required.

2.1.1 Inertial Frame

For the inertial frame, Newton's law's of motion applies. This means that
the frame itself can not accelerate, but is either stationary or travels with
constant speed. Its origin can be chosen anywhere.

2.1.2 Earth Centered � Earth Fixed

The Earth Centered, Earth Fixed (ECEF) frame has, as the name suggests,
its center in the center of the Earth, and the frame is stationary relative to
the surface. Of all the possible combinations of ECEF coordinate systems,
two are of particular importance.

The �rst representation frame gives its position in cartesian coordinates,
based on its distance from the center according to each axis. This is named
the ECEF rectangular system but is usually just referred to as the ECEF

7
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Figure 2.1: The Earth with both ECEF frames and the local geodetic frame.

system. Its x-axis points through the intersection of the prime median (0◦

longitude), and equator (0◦ latitude), its z-axis towards the true north pole,
and the y-axis to complete the right hand rule through the intersection of
90◦ longitude and equator.

The other representation is called ECEF geodetic frame. This system ex-
presses position in latitude, longitude and height, [Φ, λ, h] and is given in the
spherical coordinates. The system takes its basis in the ECEF rectangular
frame. The latitude is found by rotating around the z-axis until the x-axis
crosses the projection from the position on to the x-y-plane. The longitude
is then found by rotating around the y-axis until the x-axis coincides with
the vector from the center of the Earth to the position. The height is the
distance from the nearest point normal on the assumed altitude.

The altitude is assumed to be at the surface of the WGS-84 ellipsoid. WGS-
84, or the World Geodetic System, is an estimate of Earth dating back to
1984. This ellipsiod will be concidered furter upon developing a gravity model
in Section 3.1.6.

Both ECEF frames are depicted in Figure 2.1, as well as the ENU-frame,
which will be presented later.
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Geographic Frame

The geographic frame is dependent on its origin and is only locally correct.
It is earth �xed and has its origin at the ellipsoid used to describe the surface
of the Earth. The x-axis points north, the y-axis towards east and the z-axis
points down, normal onto the ellipsoid.

Geosentric Frame

This frame is equal to the geographic frame, with the di�erence that its z-axis
is pointing towards the center of the Earth.

2.1.3 Local Geodetic or Tangent Plane

The local geodetic frame is the frame most people consider when orienting
themselves. It takes basis of making a �ctional tangent plane at the origin,
just like presenting the globe as a map. The x-axis points north, the y-axis
towards east and the z-axis points down, normal onto the ellipsoid, there-
fore also widely known as the NED-frame (north-east-down). This frame
coincides with the geographic frame for a stationary target. The di�erence
between the two is that in the latter frame, the origin is a projection of the
platform origin onto the Earth's geoid.

Another version of this frame is the east, north, up-frame (ENU).

2.1.4 Body Frame

In the body frame, the origin is usually in the center of gravity of the body
of the object in question. Its x-axis points towards the de�ned front of the
object, the z-axis points down and the y-axis points right to complete the
right hand rule. This frame is, together with the NED-frame, widely used
for control purposes.

The frame represents the vessel states in 6 degrees of freedom (6 DOF) known
as surge, sway and heave (u, v, w), and roll, pitch and yaw (φ, θ, ψ). Surge,
sway and heave is the speed in x, y and z respectively, and roll, pitch and
yaw is the vehicle's angular displacement from the NED-frame.
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2.2 Rotation Matrices and Transformations

In order to transform states from one frame to another, rotation matrices
can be used. For a rotation matrix, subscripted letters indicate the frame it
is being transformed from, while superscripted letters denote the frame the
states are being transformed to. Thus,

Rb
p

means the states are transformed from the platform to the body frame.

2.2.1 ECEF Geodetic to ECEF Rectangular

The geodetic coordinates, given in latitude and longitude, (Φ, λ) only gives
coordinates in two directions, namely north and east. The height is then
assumed zero, unless stated otherwise, according to the ellipsoid model of the
Earth's geoid being used. In particular, the WGS-84 ellipsoid is commonly
used. As already stated, the model parameters will be considered further
when discussing the gravity model in Section 3.1.6, but for now only a few
parameters is of importance.

The ellipsoid has two constants needed to de�ne the model. These are the
semimajor and semiminor axis, noted as a and b respectively. The semimajor
axis is the longest of the two, going horizontally from the center of the Earth,
along the xy-plane in Figure 2.1. The semiminor axis is thus the one pointing
vertically along the z-axis. The length of the semimajor axis is

a = 6378137.0,

while the semiminor axis is only needed to calculate the �atness of the ellip-
soid, de�ned as

f =
a− b

a
=

1

298.257223563
.

Since [15] already has provided f , an explicit value of b is not needed. Fur-
thermore, the eccentricity of the ellipsoid is de�ned as

e =
√
f(2− f) = 8.1819190842622 · 10−2.

Finally, the length of the normal of the ellipsoid, from the surface of the
ellipsoid to the intersection with the ECEF z-axis is given as

N(φ) =
a√

1− e2sin(Φ)2
, (2.1)
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which is used for the transformation between the two frames. To calculate
rectangular coordinates,

x = (N + h)cos(Φ)cos(λ) (2.2)

y = (N + h)cos(Φ)sin(λ) (2.3)

z = [N(1− e2) + h]sin(Φ) (2.4)

The transformation the other way around is a bit trickier, and is not very
relevant for this report. It will thus not be discussed here.

2.2.2 ECEF-to-Tangent-Plane Transformation

The transformation from ECEF- to tangent-plane coordinates, starts by sub-
tracting the tangent-plane origin, given in the ECEF-frame, from the ECEF
coordinates,

δx = (x, y, z)T − (x0, y0, z0)T , (2.5)

leaving the two planes with the same origin. The next step is performing
a rotation around the ECEF z-axis until the y-axis is aligned with tangent-
plane east:

R1 =

 cos(λ) sin(λ) 0
−sin(λ) cos(λ) 0

0 0 1

 , (2.6)

where λ is the longitude.

By performing a new rotation, this time around the aligned y-axis until the
new z-axis is aligned with the tangent-plane down:

R2 =

 cos(Φ + π
2
) 0 sin(Φ + π

2
)

0 1 0
−sin(Φ + π

2
) 0 cos(Φ + π

2
)


=

 −sin(Φ) 0 cos(Φ)
0 1 0

−cos(Φ) 0 −sin(Φ)

 , (2.7)

where φ is the latitude. Please note that this notation is opposite than that
of [9], as the notation used in this report is believed to be more commonly
used. By combining the two, the complete rotation matrix is obtained,

Rt
E =

 −sin(Φ)cos(λ) −sin(Φ)sin(λ) cos(Φ)
−sin(λ) cos(λ) 0

−cos(Φ)cos(λ) −cos(Φ)sin(λ) −sin(Φ)

 . (2.8)
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2.2.3 Body-to-Tangent-Plane Transformation

This transformation is performed by using the Euler angles derived from the
body frame and transforming via one axis at a time. By chosing to start with

the rotation around the z-axis the new coordinates
[
x′ y′ z′

]T
is obtained x′

y′

z′

 =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 x
y
z

 . (2.9)

The same method is applied to the two remaining axes x′′

y′′

z′′

 =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 x′

y′

z′

 (2.10)

 u
v
w

 =

 1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 x′′

y′′

z′′

 , (2.11)

and thus having obtained the body frame coordinates. These can be com-
bined by multiplication, yielding

vb =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

vt

=

[
cos(ψ)cos(θ) sin(ψ)cos(θ) −sin(θ)

−sin(ψ)cos(θ) + cos(ψ)sin(θ)sin(φ) cos(ψ)cos(φ) + sin(ψ)sin(θ)sin(φ) cos(θ)sin(φ)
sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ) −cos(ψ)sin(φ) + sin(ψ)sin(θ)cos(φ) cos(θ)cos(φ)

]
vt

= Rb
tv

t (2.12)

2.2.4 Platform-to-Body Transformation

Assume a rigidly attached point on the vessel where the measurement sensors
are placed. The center of this platform is usually chosen as the origin of the
platform frame. As the placement of this platform will di�er from each
vessel, no standard transformation can be performed. For inertial sensors
the platform is adviced to be placed near the center of inertia of the vessel
while stationary relative to Earth1.

1The center of inertia will shift whenever in motion, particularly for maritime vessels.
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First, assume the IMU being placed at the center of inertia, but with an-
gles relative to the body frame noted as [φr, θr, ψr]. The rotation to the
body frame is then performed by multiplying with (2.12), substituting the
respective angles with the ones relative to the body frame. Rotation to the
tangent-plane can be performed by adding the body-frame Euler angles to
the relative angles.

Second, should the platform be positioned elsewhere, the �rst step is needed
to align the axis. Assume rb is a vector denoting the correct displacement
from the center, given in body-frame coordinates. As the IMU will detect
accelerations of the given point, regardless of position relative to the object
it is placed on, the position can be calculated as usual, and the position
displacement subtracted from the position,

pb = Rb
pp

p + rb. (2.13)

For speed and accelerations, the equation needs to be di�erentiated. First,
considering speed,

vb = ṗb =
d

dt
[Rb

pp
p + rb] (2.14)

= Rb
pv

p + Ṙb
pp

p (2.15)

Since the rotation matrix is constant, its derivative is equal to zero. The
same can be done for the acceleration, yielding

ab = Rb
pa

p (2.16)

vb = Rb
pv

p (2.17)
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Chapter 3

System Consept

3.1 Inertial Measurement Units

As opposed to the GPS, which relies on external synchronization to achieve an
estimate of the position, an Inertial Navigation System measures acceleration
using the physical laws of nature. A pure INS consists only of accelerometers
and gyros, and is based on the principle that estimates of the position and
velocity is obtained by integrating the acceleration.

When re�ering to Inertial Measurement Units, it is assumed to consist of
a total of three accelerometers and three gyros. Proper IMUs are generally
very expensive, due to need for very accurate measurements. The reason why
accurate measurents are needed, is that the acceleration is integrated twice to
obtain the position. Any error in the acceleration measurement will also be
integrated, and cause a bias on the estimated velocity and a continous drift
on the position estimate, unless corrected. Correcting this error is impossible
on a pure INS', unless recalibrated or reset.

An INS is commonly aided by magnetometers, being able to detect attitude,
and GPS to measure position. For aviation applications, hydroaltimeters are
common to detect altitude. As a single GPS receiver is unable to detect drift
in attitude, it relies on external aiding to correct the error, through, e.g.,
GPS compass1 or magnetometer.

Originally, INS was developed for missiles, but is today also commonly found
in airplanes, submarines, spacecraft and ships.

1Two or more GPS receivers placed on two previously known locations, used to estimate
the heading or other Euler angles.

15
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3.1.1 Accelerometers

An ideal accelerometer can be viewed as an ideal mass spring damper system,
where the position, p, relative to the casing is assumed perfectly measured
[9]. Then

p̈ = − k

m
p− b

m
ṗ, (3.1)

where k is the spring constant, b is the damping constant and m is the
mass. δp denotes the positional displacement from the equilibrium. The
force measured from the accelerometers is de�ned as

f = p̈. (3.2)

Should the system also be a�ected by gravity, the equation becomes

p̈ = − k

m
p− b

m
ṗ + g(p), (3.3)

where g(p) denotes the position-relative gravity. By comparing with (3.1)
and (3.2), it is trivial to see that

f = p̈− g(p). (3.4)

In the case of the accelerometers being within the earth's �eld of gravity and
rotating around the earth's rate of rotation, i.e., resting on the surface of the
earth, the equation is adjusted into

0 = − k

m
δp− b

m
δṗ + g(p)−ΩieΩiep, (3.5)

where Ωie is the skew symmetric form of the earth's rate of rotation vector2.
This equation shows that in case of the accelerometer being stationary rela-
tive to the earth's surface, f = −g + ΩieΩiep. When operating in free fall3,
the accelerometers will read 0. This means that the user needs to compensate
for the forces of gravity when operating an accelerometer. For the future,
the local gravity vector, g, will be de�ned as -f, or

g = g(p)−ΩieΩiep. (3.6)

The INS measures the forces in its current position, denoted as fa, which has
the following properties

fp = Rp
af
a, (3.7)

2The equivalent of S(ωi
ie) or (ωi

ie×)
3Assuming no rotation.



3.1. INERTIAL MEASUREMENT UNITS 17

where

Rp
a
4
=

 1 −auw auv
avw 1 −avu
−awv awu 1

 (3.8)

represents the accelerometer displacement where auw is to be read as the posi-
tive rotation angle about platform w-axis from the uw-plane to accelerometer
u-axis.

3.1.2 System Equations

The system can be put on �rst order form,

ṗ =vn (3.9)

v̇ =an. (3.10)

Furthermore, the theorem of Coriolis [9] gives

Ṙb
a = Rb

aΩ
a
ba. (3.11)

(3.10) can be rewritten as

Mv̇n = fn − gn = Rn
p f
p − gn, (3.12)

where gn is the gravity vector, and f is the total force acting on the system.

3.1.3 Velocity Dynamics

Inertial Frame

The di�erential equation for the position vector in an inertial frame is given
in (3.4),

p̈ = f + G(p). (3.13)

As previously stated, this measurementcan be integrated once to obtain iner-
tial speed, and twice for inertial position. The force in a given inertial frame
can be written as a rotation from the body frame,

f i = Ri
bf
b, (3.14)

where Ri
b is the rotation matrix from the body frame to the inertial frame.

This can be used to �nd the di�erential equation for the rotation matrix in
accordance with the theorem of Coriolis stated in (3.11):

Ṙi
b = Ri

bΩ
b
ib, (3.15)
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where

Ωb
ib
4
=

 0 −r q
r 0 −p
−q p 0

 ,
i.e., Ωb

ib is the skew symmetric form of ωbib =4 [p, q, r]T .

This di�erential equation is more straight-forward than when using any other
reference frame. However, it is not very commonly used, due to the di�culty
in calculating the gravity G(R).

Inertial Position, Earth-Relative Velocity

This representation of variables is not very commonly used, as they are im-
practical to work with. However, it is useful as a means to derive the di�er-
ential equations of other, more common representations, and is therefore of
importance. Here, p is de�ned as the position vector relative to the center
of earth, and for simplicity, the inertial and ECEF orgins are coincident the
center of the earth.

pe = Re
ip

i. (3.16)

Furthermore, the di�erentiated earth-relative position is the same as the
earth-relative speed, ṗe = ve. By using the theorem of Coriolis, this rela-
tionship can be written as

d

dt
pi = vi + Ωi

iep
i, (3.17)

which is di�erentiated into

d2

dt2
pi =

d

dt
vi +

d

dt
Ωi
iep

i

=
d

dt
vi + (

d

dt
Ωi
ie)p

i + Ωi
ie

d

dt
pi

=
d

dt
vi + Ωi

ie(v
i + Ωi

iep
i)

d

dt
vi =

d2

dt2
pi −Ωi

ieΩ
i
iep

i −Ωi
iev

i. (3.18)

In this equation, d2

dt2
pi represents inertial acceleration, −Ωi

ieΩ
i
iep

i is the local
centrifugal acceleration, while Ωi

iev
i
e denotes the Coriolis acceleration. The

centrifugal acceleration is the same as the gravity, resulting in

d

dt
vi = f i + gi −Ωi

iev
i, (3.19)

where the calculation of f i is shown in (3.13) � (3.15).
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ECEF

Since the GPS estimates of the position usually are given in the ECEF frame,
it can be convinient to also present the inertial measurements using the same
coordinates. One drawback with using this conversion is the complicated
gravity calculations.

The position p and the earth-relative velocity, v, is given as

pe = Re
ip

i (3.20)

ve = Re
iv

i. (3.21)

The relative velocity is given as in the previous example. The di�erential
equation is given by applying the theorem of Coriolis,

v̇e = Re
i (v̇

i −Ωi
iev

i). (3.22)

By inserting 3.19 into 3.22, the complete expression is obtained.

v̇e = Re
i (f

i + gi − 2Ωi
iev

i)

= f e + ge − 2Ωe
iev

e. (3.23)

The speci�c force in ECEF coordinates is given as

f e = Re
bf
b, (3.24)

where Ṙe
b = Re

bΩ
b
eb is valid, using ω

b
eb = ωbib −Rb

eω
e
ie.

Local Geodetic

Local geodetic coordinates are the most trivial coordinates for most people,
and corresponds with the coordinates most commonly used in daily life. The
frame is also known as the NED frame, since the coordinates are the same
as north, east and down. Furthermore, the coordinates are fairly easy to
convert from GPS coordinates, and are also practical with regard to control
purposes.

The geodetic velocity is related to the inertial velocity through

vn = Rn
i v

i. (3.25)

and is di�erentiated using the theorem of Coriolis

v̇n = Rn
i (Ωi

niv
i + v̇i). (3.26)
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By inserting (3.19), the result yields

v̇n = Rn
i (Ωi

niv
i + f i + gi −Ωi

iev
i)

= fn + gn + (Ωn
ni −Ωn

ie)v
n

= fn + gn + (Ωne − 2Ωn
ie)v

n, (3.27)

where Ωni = Ωne −Ωie, giving the speci�c force as

fn = Rn
b f
b, (3.28)

and Ṙn
b = Rn

bΩ
b
nb are valid, using

Ωb
nb = Ωb

ib −Rb
n(Ωn

ie + Ωn
en), (3.29)

where ωbib is measured by the gyros, ωnie = ωie[cos(Φ), 0,−sin(Φ)] is the rate
of inertial rotation of Earth, and ωnen is the transport rate of the navigation
frame relative to earth.

3.1.4 Position Dynamics

By assuming the velocity vector has been found, like in the previous section,
the position can be found by integrating,

p(t) =

∫ t

0

v(τ)dτ + p(0), (3.30)

where p(0) is the initial position.

To obtain geodetic position from tangent plane velocity coordinates, the fol-
lowing di�erential equation can be used Φ̇

λ̇

ḣ

 =

 1
RΦ+h

0 0

0 1
(Rλ+h)cos(λ)

0

0 0 −1

 vN
vE
vD

 , (3.31)

where Rλ is the radius of curvature in a meridian at a given latitude, and Rφ

is the transverse radius of curvature,

RΦ =
a(1− e2)√

1− e2sin2(Φ)
3 (3.32)

Rλ =
a√

1− e2sin2(Φ)
, (3.33)

a being the radius at equator, and e being the eccentricity.
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3.1.5 Gyros

The equations obtained in the previous section applies for both strap-down
and stabilized platform systems. The di�erence between the two lies in the
stabilized being actuated to maintain its alignment with a given reference
system, while the strap-down system is, as its name suggests, rigidly attached
to the body of the vessel.

Mathematically, the di�erence lies in the rotation matrix, Rn
p . The strap-

down system is the easiest to implement4, and is also the one being imple-
mented in this report, and is therefore considered. Regardless, both systems
requires information of the rotational vector

ωpnp = ωpip − ω
p
in. (3.34)

The gyros experience ωpip and ω
p
in = Rp

nω
n
in. For tangent-plane navigation,

ωnin =

 (λ̇+ ωie)cos(Φ)

Φ̇

−(λ̇+ ωie)sin(Φ)

 = ωie

 cos(Phi)
0

−sin(Φ)

+


vE

Rλ+h
−vN
RΦ+h

−vEtan(Φ)
Rλ+h

 (3.35)

is valid. For obtaining the attitude, φ̇

θ̇

ψ̇

 =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 p
q
r

 (3.36)

can be used.

3.1.6 Gravity Model

For use in a geographic reference system, the gravity is calculated based on
the WGS-84 ellipsoid model [15]. The vector is de�ned as

gn
4
=

 0
0

γ(Φ, h)

+

 ζg
−ηg
δg

 , (3.37)

4With regard to hardware.
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Constant Value
a 6378137.0 [m]
f 1

298.257223563

e 8.1819190842622 · 10−2

γa 9.78049000 [m/s2]
ω 7292115.0 · 10−11 [rad/s]
m 0.00344978650684
f2 −f + 5

2
m+ 1

2
f 2 − 26

7
fm+ 15

4
m2

f4 −1
2

+ 5
2
fm

Table 3.1: WGS-84 ellipsoid properties [15].

with

γ(Φ) = γa

[
1 + (f2 + f4)sin2(λ)− 1

4
f4sin

2(2Φ)

]
(3.38)

γ(Φ, h) = γ(Φ)− 2γh
2

[
1 + f +m+ (−3f +

5

2
m)sin2(Φ)

]
h+

3γa
a2
h2.

(3.39)

The parameter values for the gravity model are given in Table 3.1. For
maritime applications, (3.39) is not considered, since the height is close to
constant at h = 0.
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3.2 Global Positioning System

When talking about the Global Positioning System (GPS), people usually
refer to the NAVSTAR GPS, which was originally developed by the United
States Department of Defense for use in military applications [13].

In 1983, a Korean airliner was shot down by the Soviet air force. Since the
disaster could have been avoided with access to a proper navigation system,
Ronald Reagan decided to open the NAVSTAR project for the public. GPS
has since then become very popular due to its low cost, availability and
accuracy.

Russia also has a similar global positioning system, called the GLONASS, and
the European Union's Galileo is to be completed around 2011. In addition,
China's regional satellite system, Beidou, has been proposed extended to
a global system called COMPASS. Some GPS receivers make use of both
GLONASS and NAVSTAR data to increase accuracy.

GPS can be divided into space, control and user segments [9]:

• The space segment is the satellites orbiting the earth. It consists of
six planes with four satellites on each plane for a total of 24 satellites.
These planes are arranged in such a way that gives at least six satellites
line of sight to almost any given point at all times.

• The control segment monitors the health and status of the satellites. It
consists of six monitoring stations located in Cape Canaveral, Ascen-
sion Island, Kwajalein, Diego Garcia, Hawaii, and Colorado Springs.
The four �rst also have each its ground antenna. These stations send
clock corrections and orbital model to the satellites via the antennas.

• The user segment is the GPS reciever. In order to work, it needs
an antenna tuned in to the frequencies used by the satellites. The
reciever also has a high accuracy clock, usually being driven by a quarts
oscillator.

The GPS transmits data signal over two main carrier frequencies, called L1
and L2, transmitting on 1575.42 and 1227.60 MHz respectively. All data is
trasmitted using the Coarse/Acquisition (C/A) code, which is available to
the public, and the Precise (P) code used by the military. L1 transmits both
the C/A and the P code, while L2 transmits the P code. Both frequencies
are available for all users, but due to encryption of the P code, only the C/A
is usable by the public.
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Figure 3.1: Concept art of the Global Positioning System [3].

3.2.1 Error Sources

As the GPS signals travel with the speed of light5, an error of 1
1000

ms will lead
to a measurement error of 300 m. Thus the timing needs to be highly accurate
in order to give an acceptable measurement. The time bias can be assumed
equal for all satellites and accounted for by using the measurement from
three satellites simultaneously (solving four equations with four unknown
variables). In other words, a minimum of four satellites are needed in order
to achieve position.

However, several factors still contribute to the GPS error. It is appropriate
to separate the error sources into two main groups; common mode and non-
common mode errors [9]. Common mode errors are errors that occur within
a limited geographic region and are equal for all recievers within the region.
As opposed to common mode, non-common mode errors refer to reciever
individual errors that can occur independent of location.

Receiver Clock Bias

Table 3.2 shows a list of errors, divided into common mode and non-common
mode. One error that is not included in this list is the receiver clock bias.
This error is equal for all signals, and can therefore be estimated if signals
from four satellites are available by:

5Approximately 3 · 108m/s
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Errors Standard Deviation

Common Mode
Selective Availability 24.0
Ionosphere 7.0
Clock and ephemeris 63.6
Troposphere 0.7
Noncommon Mode
Reciever Noise 0.1-0.7
Multipath 0.1-3.0

Table 3.2: GPS Error Sources, reproduced from [9].

1. Di�erentiating two simoultaneous measurements from the same receiver

2. Calculating an estimate at each time step

3. Estimating the error as a state using a dynamic model and Kalman
�ltering

Although not in Table 3.2, this error is receiver individual, and can be viewed
as non-common mode.

Atmospheric E�ects

One problem with calculating the distance from the satellite based on the
time a signal uses on its journey from the satellite to the receiver is that the
signal has di�erent speed based on the substance it travels through. This
also applies for the Earth's atmosphere, and particularly the ionosphere.
However, as the speed of signals in this layer is dependent on frequency6, a
two-frequency receiver can estimate this error easily. For a single-frequency
receiver, the estimate is dependent on atmospheric modelling.

The di�erent layers of the atmosphere can be viewed in Figure 3.2

The ionosphere is the upmost part of the atmosphere, and is ionized by solar
radiation. From the display given in Figure 3.2, it is located within the
Thermosphere.

As atmospheric errors are dependent on the distance the signal travels through
the atmosphere, they are smallest when the satellite is positioned straight

6This phenomenon is also known as dispersion
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above the receiver. The more correct the estimated position is, the more
accurately the atmospheric error can be calculated.

Another atmospheric error is the tropospheric delay, which is dependent on
atmospheric pressure, temperature, humidity and satellite elevation. This
delay is usually separated into a wet and a dry component, where the dry
component contributes to approximately 90 % of the delay. This component
is relatively well modelled, while the wet one is more complicated due to
many local factors. There are several di�erent models for the tropospheric
delay, which are good or bad depending on the angle of the satellite. As
opposed to the ionospheric error, the tropospheric delay is not frequency
dependent and more locally varying, making it di�cult to estimate.

Figure 3.2: Illustration of Earth and its atmosphere [6].

Selective Availability

Selective Availability (SA) is an arti�cial feature designed by the U.S. De-
partment of Defense. Its purpose is to introduce slowly changing random
errors to avoid the GPS being used for military purposes (by other than the
U.S.) or terrorist activites. However, this feature is currently disabled (since
2000), and will therefore not be discussed further.

Multipath

Multipath errors are a result of signals re�ected o� surfaces on the way to or
in the vincinity of the receiver, causing the signal to travel further than the
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direct path, thus causing it to use a longer time to the receiver or the same
signal to arrive twice. C/A multipath errors are usually from 0.1 - 3 m, but
errors up to 100 m have been reported. For L1 carrier phase, the error is
assumed to be less than 5 cm.

Should a signal arrive either twice after a newer signal due to multipath,
the old signal will simply be neglected. However, if the signal simply is
delayed and no other signals arrive at the receiver in the mean time, it is
nearly impossible to separate the error from other errors. However, some
precautions can be made:

• Using an antenna with low gain at low and negative elevations, due to
most re�ecting surfaces being below the receiver

• If possible, place the receiver higher than the highest re�ector

• Do not accept signals from satellites at low elevation, as these travel
nearly parallell to the surface and are thus more error-prone to re�ec-
tions

Avoiding multipath is extremely important when choosing sites for DGPS
reference stations, as multipath errors are non-common mode errors, and
will manifest themselves in the error estimate sent from the station.

Receiver Noise

The receiver noise is assumed to be white, and is a result of error in measuring
transit time. The error is due to factors such as nonlinearity and thermal
noise. It is highly dependent on hardware selection in the receiver, and will
therefore vary with the quality of the GPS receiver.

3.2.2 Di�erential GPS

As seen from Table 3.2, the most signi�cant contribution to the error on
the estimated position comes from the common-mode errors. By setting up
a stationary reciever at a known position, the readings will be a�ected by
the same common-mode errors as any other reciever in the area. Since the
position is already known, the error can be calculated by subtracting the
measurement from the receiver by the known position. This error can be
broadcasted together with the corresponding clock readings. Thus, every
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receiver in the vicinity can obtain the error and adjust for it. The error
calculated by the reference station will be assumed to be the common-mode
error and is subtracted from the measurement.

The disadvantage of using DGPS is the lack of global coverage.

Figure 3.3: Graphical presentation of di�erential GPS [14].

The United Stated Federal Aviation Administration (FAA) and the United
States Department of Transportation (DoT) has constucted a feature called
the Wide Area Augmentation System (WAAS) [7]. Described shortly, WAAS
is similar to the DGPS system, but only accessible in North-America and is
mainly designed for aerial applications. WAAS is not certi�ed for maritime
navigation, and it is claimed that DGPS has a higher accuracy whenever
close to the reference station. Due to WAAS being unavailable outside North-
America, and the fact that it has not yet been certi�ed for marine applications
[7], it will not be discussed further.

3.2.3 Velocity Measurements

Navigational charts and other tools such as GPS measurements are usually
given in an ECEF geodetic reference frame, using latitude, longitude and
altitude, denoted as [Φ, λ, h] respectively. For presentation or using as aid to
an INS, both ECEF and a local geodetic frame can be used. The local geodic
frame is usually preferred whenever operating within a small area. For larger
areas of operation, ECEF is concidered inertial.

There are several ways to perform the integration between GPS and INS,
depending on the frame desired. In this report, integration is performed in
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two di�erent frames, depending on the measurement. For position, ECEF
geodetic (Φ, λ, h) is used, while for speed, the tangent-plane (NED) has been
chosen.

In order to transform the GPS data, the position, already given in ECEF
geodetic coordinates, is di�erentiated. To transform the speed, (3.31) is used, Φ̇

λ̇

ḣ

 =

 1
RΦ+h

0 0

0 1
(Rλ+h)cos(Φ)

0

0 0 −1

 vN
vE
vD

 (3.40)

 vN
vE
vD

 =

 RΦ + h 0 0
0 (Rλ + h)cos(Φ) 0
0 0 −1

 Φ̇

λ̇

ḣ

 , (3.41)

where RΦ and Rλ is given in (3.32)�(3.33).
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3.3 Hardware Selection

As this report will consider the implementation of an integrated navigation
system, hardware is needed. The IMU has been chosen mainly according to
price, while the GPS module has been recycled from an earlier Unmanned
Aerial Vehicle (UAV) project at NTNU [8].

3.3.1 IMU

The IMU chosen is the Microstrain 3DM�GX1. This consists of three ac-
celerometers, three gyros and three magnetometers, thus giving acceleration
in 6 degrees of freedom (6 DOF) and position in 3 DOF.

Figure 3.4: Microstrain 3DM�GX1 IMU [12].

The 3DN�GX1 guarantees an accelerometer bias stability of 0.010 G, where
G is the Earth's gravitational constant, and 0.7◦/sec for the gyros. To correct
the gyro error, the magnetometers can be used, operating at a bias stability
of 0.010 gauss. The sensors have a bandwidth of 100 Hz, and are able to
detect accelerations up to 500 G.

The IMU transmits data over an RS�232 serial line, depending on the com-
mand sent to the device. As a standard, the 3DN�GX1 transmits a message
each time the given command byte is sent, but continuous mode can be
enabled, making the IMU transmit a given message continuously.
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3.3.2 GPS Receiver

The GPS module, as mentioned earlier, has been recycled from a UAV project
detailed in [8]. The GPS consists of a GlobalSat EM�411 receiver mounted
on a RS�232 interface, as shown in Figure 3.5.

Figure 3.5: GlobalSat EM�411 GPS receiver with the RS�232 interface.

The module has no internal power, and thus needs external powering to
function. It operates at 4.5 � 6.5 V, but the RS�232 board contains a voltage
converter, making it able to operate at 9 V, meaning it can be powered by an
external 9 V power supply or a PP3 battery, most commonly used in smoke
detectors.

This receiver has a position accuracy of 10 meters, or 5 meters with Wide
Area Augmentation System (WAAS) enabled. The EM�411 module does
support DGPS, but its manual does not list the accuracy for DGPS. However,
the accuracy can be assumed close to that of WAAS.

The EM-411 receiver supportes NMEA 0183 protocol, which is also the stan-
dard setting, discussed in Section 3.3.3.

The price of the EM�411 is less than 500 NOK. More data on the module is
provided in Appendix A. For hardware-interested readers, the full EM�411
manual is available at [5].
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3.3.3 NMEA 0183

The NMEA 0183 is a standard developed by the National Marine Electronics
Association and uses ASCII communication over the serial line. The standard
is commonly used in marine measurement devices like GPS receivers. The
message header can be divided in three parts; �rst, a $-sign implying the
start of a message followed by a pre�x containing a device identi�er speci�ed
by the protocol. The �nal three letters contain the type of message being
sent, however only two are particularly relevant for obtaining the position,
hence GGA and RMC. Only these two will be explained in the following text.
More information can be found in [2].

The GGA su�x denotes the �Global Positioning System Fix Data�. It con-
tains time, position and �x related data for a GPS receiver. Table 3.3 shows
a GGA message with a description of each message part. For messages using
the NMEA 0183 standard, each part of the message are separated with the
',' delimiter.

The RMC su�x indicates the contents of the message being the �Recom-
mended Minimum Navigation Information�. An example message is shown
in Table 3.5.

Name Example Description
Message ID $GPGGA Message header
Time (UTC) 123456.123 [hhmmss.sss]
Latitude 6325.0840 [ddmm.mmmm]

N/S Indicator N North (N) or South (S)
Longitude 01024.1304 [dddmm.mmmm]

E/W Indicator E East (E) or West (W)
GPS Quality Indicator 1 See Table 3.4
Number of satellites 09 00 - 12

HDOP 2.1 Horizontal dilution of precision
Altitude 56.1 Altitude relative to geoid
Units M Units of antenna altitude

Geoidal separation 10.1 WGS-84 height deviation
Units M Units of geoidal separation

Age of di�. GPS data Null �eld without DGPS
Di�. ref. station ID 0000 0000-1023

Checksum *6B

Table 3.3: The NMEA GGA message [2].
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Value Description
0 Fix not available or invalid
1 GPS SPS Mode, �x valid
2 Di�erential GPS, SPS mode, �x valid
3 GPS PPS Mode, �x valid

Table 3.4: GPS Quality Indicator Values [2].

Name Example Description
Message ID $GPRMC Message header
Time (UTC) 123456.123 [hhmmss.sss]

Status A A = data valid, V = data invalid
Latitude 6325.0840 [ddmm.mmmm]

N/S Indicator N North (N) or South (S)
Longitude 01024.1304 [dddmm.mmmm]

E/W Indicator E East (E) or West (W)
SOG 0.16 Speed over ground [knots]
COG 46.98 North relative to north [deg]
Date 220508 [ddmmyy]

Magnetic variation E East or West [deg]
Checksum *6B

Table 3.5: The NMEA RMC message [2].
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Chapter 4

Integrating GPS and INS

4.1 Approaches

There are several ways to implement a GPS/INS integration. First of all, we
di�er between the direct-�ltering and the complementary-�ltering approach
[9].

4.1.1 Direct-Filtering

Direct-�ltering is perhaps the most intuitive of the two. It uses position
and velocity as states in a state space representation, with GPS data as
measurements (y) and the inertial measurements as input (u) in a Kalman
�lter. While this seems straight forward, it has three major drawbacks:

1. The Kalman �lter covariance equations have to be calulated at the rate
of the inertial measurements. As these equations require much CPU,
the bandwith of the inertial measurements are highly restricted

2. The measurements have highly deterministic components that will be
represented by ad hoc models in the state space representation.

3. The states can change dramatically between iterations, which require
high �lter bandwith.

Complementary-�ltering considers the inertial measurements and mechaniza-
tion equations as two separate systems, giving the Kalman �lter a reference

35



36 CHAPTER 4. INTEGRATING GPS AND INS

trajectory. When new GPS measurements arrive, the INS states are com-
pared to the GPS data. By running the di�erence between the two sets of
data through a second Kalman �lter, a set of error equations can be esti-
mated.

This implementation enables the covariance update equations to be calcu-
lated only at each GPS measurement, reducing the total computational load.

4.1.2 Complementary-Filtering

For the complementary-�ltering approach, there are three di�erent solutions,
loosely coupled GPS position and range aided INS, plus a tightly coupled
approach.

The loosely coupled GPS position aided INS is shown in Figure 4.1. This
method uses the position from the GPS to calculate the INS error, which is
fed back to the INS system. This method is very simple and requires little
processing of the GPS output.

Figure 4.1: GPS position aided INS [9].

A similar method is the GPS range aided INS, shown in Figure 4.2. This
method uses a range predictor to transform the INS measurements to a range
prediction, while comparing these to the GPS range measurements. This
approach gives a better system performance than the position aided system,
but requires the understanding and processing of GPS data, which may be
unavailable for o�-the-shelf hardware.

Finally, the tightly coupled solution uses INS data as feedback also to the
GPS. This decreases the bandwith of the tracking loop, and makes the system
less prone to interference and jamming. However, this approach requires not
only access to the range data, but also to the hardware and Kalman �lter
design in the GPS. Thus, this approach is generally not available when using
an o�-the-shelf receiver.
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Figure 4.2: GPS range aided INS [9].

Figure 4.3: Tightly coupled GPS aided INS [9].
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4.2 GPS Position Aided INS

The GPS position aided INS is de�ned as an INS using the GPS position to
adjust for the drifting due to INS acceleration error [9]. It is useful to put
the system equations on state space form

ẋ = Ax + Bu + f(x,u) + Dν (4.1)

y = Cx + w, (4.2)

where x is the states, u is the input, f(x,u) is the non linear parts of the
di�erential equation, ν is the process noise and w is the measurement noise.

Combining (3.27) with (4.1), using x =
[

p v
]T
, the system can be written

as

ẋt =

[
0 I
0 0

]
xt +

[
0

Rt
p(f̄

p + bp)− gt

]
+

[
0

(Ωt
et − 2Ωt

ie)v
t

]
(4.3)

where bp is the accelerometer bias, calculated in the Kalman �lter and

ωtet + 2ωtie =

 (Φ̇ + 2ωie)cos(λ)

−λ̇
−(Φ̇ + 2ωie)sin(λ)

 (4.4)

For simplicity, I and 0 is used throughout this document, meaning I3×3 and 03×3

unless stated otherwise1. The input, u, is the measured force from the INS,
f̄ = f + f̃ .

For a simpler transition between GPS and INS states, (4.3) can be rewritten
to give its position in ECEF geodetic coordinates (Φ, λ, h). This is easilly

achieved using R
Eg
t given in (3.31), yielding

ẋn =

[
0 R

Eg
t

0 0

]
x +

[
0

Rn
p (f̄p − bp)− gn

]
+

[
0

(Ωt
et − 2Ωt

ie)v
t

]
(4.5)

y =
[

I 0
]
x + w, (4.6)

Combining these equations, the resulting equations yields

v̇t =f̄ t − bt + gt +

 −(Φ̇ + 2ωie)sin(λ)vE + λ̇vD
(Φ̇ + 2ωie)sin(λ)vN + (Φ̇ + 2ωie)cos(λ)vD

−(Φ̇ + 2ωie)cos(λ)vE + λ̇vN

 (4.7)

ṗEg = R
Eg
t vt =

 1
Rλ+h

0 0

0 1
(RΦ+h)cos(λ)

0

0 0 −1

vt (4.8)

1This applies only for the boldfaced notation.
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The bias calculation will be discussed later in this chapter.

The relationship between the measured and true output from the INS can
be written as

f̄p = fp + f̃p (4.9)

ω̄pnp = ωpnp + ω̃pnp, (4.10)

where the the error equation is given as [9]

f̃p = Ãaf
p + δba + δnla + νa (4.11)

ω̃pip = δAgω
g
ip + δbg + δnlg + νg. (4.12)

These equations are also known as the truth model, where

• δb is a random walk variable, e.g. δḃ = νb where Pb(ν) = 0

• δnl represents all the non linear errors

• ν is the measurement noise

• δA is due to misalignment of the IMU

The misalignment matrix is given as

δAa =

 δSFu −δauw δauv
δavw δSFv −δavu
−δawv δawu δSFw


δAg =

 δSFp −δapr δapq
δaqr δSFq −δaqp
−δarq δarp δSFr

 ,
and δnl is the nonlinear error, given as

δnla =

 kx1f
2
u + kx2f

2
v + kx3f

2
w + kx4fufv + kx5fvfw + kx6fwfx

ky1f
2
u + ky2f

2
v + ky3f

2
w + ky4fufv + ky5fvfw + ky6fwfx

kz1f
2
u + kz2f

2
v + kz3f

2
w + kz4fufv + kz5fvfw + kz6fwfx


δnlg =

 kp1f
2
p + kp2f

2
q + kp3f

2
r + kp4fufv + kp5fvfw + kp6fwfu

kq1f
2
p + kq2f

2
q + kq3f

2
r + kq4fufv + kq5fvfw + kq6fwfu

kr1f
2
p + kr2f

2
q + kr3f

2
r + kr4fufv + kr5fvfw + kr6fwfu

 .
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Since the truth model gives a lot of parameters to be estimated, both the
alingment error matrix A, and the nonlinear errors tend to be neglected to
ensure proper observability. Furthermore, acceptable results are achieved
using an error model of only slowly varying bias and white noise.

The bias di�erential equation should be modelled as

ṗ = ν, (4.13)

where ν is white noise.

It is also worth noting that since the IMU chosen in this experiment includes a
magnetometer, leading to the unit internally calculating position and angular
velocity. Thus, the above equations regarding angular motion has not been
used, as the IMU angular output was used directly.

4.2.1 GPS

Since the IMU position is already given in the ECEF geodetic frame, no trans-
formation is required. However, the velocity vector needs to be transformed
into the tangent-plane. This is an easy process, starting with di�erentiating
two position measurements, obtaining the ECEF geodetic speed. By multi-
plying this with the matrix gained in (3.31), tangent-plane speed is achieved,
For the GPS, its equations are already given in (3.41), vN

vE
vD

 =

 RΦ + h 0 0
0 (Rλ + h)cos(Φ) 0
0 0 −1

 Φ̇

λ̇

ḣ

 . (4.14)

Thus the esimation error can be calculated as

x̃ = xGPS − xIMU (4.15)

4.3 Kalman Filter

The Kalman �lter is an optimal, linear state estimator, able to estimate the
full system state, depending on incomplete and noisy measurement series.
The theory of the �lter dates back to 1960, when Rudolf Kalman proposed
the �lter to NASA for the Apollo Program. The �lter comes in many di�erent
forms, but the one most relevant for this work is the discrete Kalman Filter,
which also will be the one most thoroughly investigated.
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4.3.1 Discrete Kalman Filter

The dicrete �lter takes its basis in a system written on state-space form,

xk+1 = Akxk + Bkuk + Dkωk (4.16)

yk = Ckxk + νk (4.17)

with

Qk = E[ωkω
T
k ] (4.18)

Rk = E[νkν
T
k ] (4.19)

as covariant matrices for the process and measurement noise, respectively. It
is assumed that both Q and R are known. As there are no input, u, in the
system, this can be neglected.

Should the system be observable, the Kalman �lter can be used. To ensure
observability, the observability matrix,

O =


C

CkAk

·
·
·

An−1
k Ck

 , (4.20)

needs to have rank n, n being the number of states.

Should observability be obtained, the �ter process can begin, starting with
estimation of the state variables,

x−k = Ak−1xk−1, (4.21)

where xk−1 is the previously calculated state estimate. As the bias calculated
in the �lter is subtracted from the INS states, this previously calculated
estimate needs to be reset every interation.

The process is repeated for the covariance matrix,

P−k = Ak−1Pk−1A
T
k−1 + Qk−1. (4.22)

With the estimated values in place, the Kalman gain and the covariance
update can be calculated,

Kk = P−k CT
k [CkP

−
k CT

k + Rk]
−1 (4.23)

Pk = I−KkCkP−k , (4.24)
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using the previously calculated estimates.

The Kalman gain are used to calculate the �nal estimate of the states

xk = Kk[yk −Ckx
−
k ] (4.25)

Proper derivation of the �lter equations can be found in [9], [10] or several
other sources.

4.3.2 Integration Kalman Equations

The Kalman �lter input, y, is already given in (4.15). This can be used
together with the knowledge of the error of the GPS and the INS data to
derive the state space error equations.

As the Globalsat EM�411 fails to deliver sudo ranges, the GPS error is as-
sumed only to be white noise, although not correct. For the IMU, it is
already stated that the bias should be estimated as integrated white noise in
addition to a white noise component directly on the signal to correspond to
the measurement noise.

Using these assumptions together with the INS equations derived in 4.5, the
model takes form as

˜̇p
Eg

= R
Eg
t vt (4.26)

˜̇v
t

= −bt + νta, (4.27)

which can be rewritten as

ẋ =

 0 R
Eg
t 0

0 0 −I
0 0 0

x +

 0 0
I 0
0 I

ν (4.28)

y =

[
I 0 0
0 I 0

]
x +

[
I 0
0 I

]
w, (4.29)

where x =
[

p̃Eg ṽt bt
]T
.

The estimated position and speed error are then subtracted from the original
states calculated from the IMU measurements. As the bias is likely to be
following each of the accelerometers, it needs to be transformed back to the
platform frame immediatetly after calculated. This transformation is to be
performed using the mean value of the attitude measurements, dating back
to the previous �lter update.
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4.4 Equations Summary

To give a quick summary of the equations given earlier in the report to be
used in the actual integration process. This section is reccomended to be
read after having obtained an understanding of what has been written in the
previous sections of this report, and is meant to be used as a reference for
implementation. Furthermore, it will only assess the equations used in the
actual implementation of the total system.

4.4.1 IMU

v̇t =Rt
p(f̄

p + bp) + gt +

 −(Φ̇ + 2ωie)sin(λ)vE + λ̇vD
(Φ̇ + 2ωie)sin(λ)vN + (Φ̇ + 2ωie)cos(λ)vD

−(Φ̇ + 2ωie)cos(λ)vE + λ̇vN


(4.30)

ṗEg = R
Eg
t vt =

 1
Rλ+h

0 0

0 1
(RΦ+h)cos(λ)

0

0 0 −1

vt (4.31)

which is to be computed at each iteration.

4.4.2 GPS

For the GPS measurements, the speed needs to be derived and transformed
to the tangent plane,

vt = Rt
Egv

Eg =

 Rλ + h 0 0
0 (RΦ + h)cos(λ) 0
0 0 −1

vEg . (4.32)

4.4.3 Kalman Filtering

Kalman �ltering is applied whenever a GPS measurement arrives. The �l-
tering is done with regard to the error equations,

˜̇p
Eg

= R
Eg
t vt (4.33)

˜̇v
t

= −bt + νna , (4.34)
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which can be written on state space form

ẋ =

 0 R
Eg
t 0

0 0 −I
0 0 0

x +

 0 0
I 0
0 I

ν (4.35)

y =

[
I 0 0
0 I 0

]
x +

[
I 0
0 I

]
w (4.36)

using x =
[

p̃Eg ṽt bt
]T
.

These equations are put on discrete form and fed into the Kalman �lter
equations, given in (4.20)�(4.25),

x−k = Ak−1xk−1 (4.37)

P−k = Ak−1Pk−1A
T
k−1 + Qk−1 (4.38)

Kk = P−k CT
k [CkP

−
k CT

k + Rk]
−1 (4.39)

Pk = I−KkCkP−k (4.40)

xk = Kk[yk −Ckx
−
k ]. (4.41)

Furthermore, as the bias is subtracted from the respective states, the esti-
mated bias needs to be set zero every iteration.



Chapter 5

Results

All simulations and tests have been performed in Matlab, using Runge-Kutta
4 for solving the di�erential equations. A c++ implementation has also been
made for real time implementation, based on the existing code at Maritime
Robotics, but this code had performance issues due to only using an old
laptop with insu�cient computation capabilities.

Also, due to this thesis being somewhat delayed, all results have been ob-
tained during the summer vacation, meaning that any tests on a boat was
hard to perform. Thus, all tests have been made within a small area, while
attempting to simulate a USV-like environment.

At the Microstrain IMU, the z-axis is pointing upwards (despite the drawing
on the IMU, telling it points down), meaning that the z-axis needs to be
inverted. The other axis are correct as they are marked on the IMU, com-
pleting the right hand rule. Also the yaw angle seems to be measured against
west instead of north, meaning 90◦ has to be subtracted from the yaw angle.
Both the z-axis correction and the yaw angle correction are contrary to what
stands in the manual, and it is unknown whether this is a manufacturing
error.

Covarianse matrices has been found by sampling GPS and IMU measure-
ments, and calculating the covariance o�ine.

All test results shown are taken from several samples in an attempt to capture
the worst-case results. This is due to some of the tests results being result of
pure luck, leading to a better performance then what can really be expected.
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5.1 Stationary Tests

Figure 5.1: Stationary position wih GPS dropout.

For preliminary tests, both the IMU and the GPS receiver were kept station-
ary and the measurements were logged in Matlab. By using these measure-
ments as input into the model found in the previous chapter, the equations
were tested to determine any errors. At 40 to 60 seconds, the GPS discon-
nects.

This process were not done in real-time, solving another problem, hence the
lack of proper computational hardware.

As can be seen from Figure 5.3 the acceleration estimates manage to converge
towards 0, resulting in a maximum deviation of less than 10 meters after 40
seconds without GPS-aid in the east direction, the result shown in Figure
5.1.

Although these �gures shows promising results, they should not be taken
into to high regard however, as the system is stationary. However, they do
show that the simpli�cations of the IMU equations is close to that of the
truth model, and that the system performs satisfactory so far, as long as the
GPS measurements are credible.
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Figure 5.2: Stationary speed deviation with GPS dropout.

Figure 5.3: Stationary acceleration deviation with GPS dropout.
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Table 5.1 shows the root mean square values of the deviation in acceleration,
speed and position with the GPS being online.

North/East Down
Acceleration (RMS) 0.05 0.02
Velocity (RMS) 0.09 0.01
Position (RMS) 3 0.005

Table 5.1: RMS values, integrated INS/GPS in static conditions.

Calculating RMS values during GPS dropout would be pointless, as this will
increase exponentially over time.

Comparing Table 5.1 with Figure 1.1, it is clear to see that the low cost
application range within the speci�cations of the Crossbow NAV420, and
is about twice to that of the Kongsberg Seatex Seapath 100 while being
stationary, meaning that the success of the low cost application is feasible. It
is worth noting however, that the down-component has such low Root Mean
Square readings due to the altitude of the USV being assumed 0 whenever
GPS measurements arrive.

5.2 Dynamic Tests

Next, it's time to test the system in motion. As no proper system were
availiable for benchmarking, a previously known path were set up in order
to test the performance.

After approximately 40 seconds, the IMU is assumed to be proper calibrated,
and is moved in a square-like path of about 5×5 meters, always moving in
the direction of IMU's x-axes. During the �rst run, the GPS is constantly
online. The results is shown in Figures 5.4 � 5.6.

As can be seen from Figure 5.4, the position deviation is not that large. The
measurements from the GPS are a bit to low according to the real path,
whereas the true position lies somewhere in between the two. Regardless,
the Kalman �lter corrects the INS estimates quite conciderably, which can
easily be seen from the speed estimates in Figure 5.5.

The estimated bias is shown in Figure 5.7

It may also be worth taking a look at Figure 5.8, showing the yaw angle
measurement, which is quite accurate.
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Figure 5.4: Dynamic postion estimate with GPS coverage.

Figure 5.5: Dynamic speed estimate with GPS coverage.
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Figure 5.6: Dynamic acceleration estimate with GPS coverage.

Figure 5.7: Bias estimate during dynamic conditions.
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Figure 5.8: Measured yaw angle during dynamic conditions.

Figure 5.9: Dynamic postion estimate with GPS dropout.
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Due to uncertainties on true position, it is hard to calculate the RMS cor-
rectly. By wrongfully using the GPS measurements as the correct position,
the RMS values for the deviation can be calculated. The results are shown in
Table 5.2. As can be seen, the position RMS is actually lower in north/east
direction than it was during static conditions. This is merely due to the
subtraction of the GPS position.

North East Down
Velocity (RMS) 2.0428 1.4548 0.6307
Position (RMS) 2.1724 1.3248 0.3350

Table 5.2: RMS values, integrated INS/GPS while in motion

Figure 5.10: Dynamic speed estimate with GPS dropout.

It is also worth noting what happens when the GPS is o�ine during when
moving through the course. As can be seen from Figures 5.9 and 5.10, the
results are somewhat positive despite a high magnitude on the position, and
a high drift downwards. Regardless, the deviation north and down are very
large compared to what is really acceptable.

As the IMU is also supposed to be placed on a USV, it will also become
subject to waves and vibrations. To simulate this, the IMU was kept nearly
stationary, while being rotated and moved back and forth in small circles.
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Figure 5.11: Position deviation during external in�uence, with GPS.

Figure 5.12: Speed deviation during external in�uence, with GPS.
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Figure 5.13: Acceleration during external in�uence, with GPS.

As seen from Figure 5.11 and 5.12, the estimate is able to follow the GPS
relatively good, but struggles more than in the previous experiments. How-
ever, when GPS dropout is introduced, as seen in Figure 5.14 and 5.15, the
estimate drifts o� fast.

The RMS values for position and speed can be seen in Table 5.3.

North East Down
Velocity (RMS) 1.3686 1.5217 1.3715
Position (RMS) 2.8322 2.8322 0.5399

Table 5.3: RMS values, integrated INS/GPS with external disturbances
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Figure 5.14: Position deviation during external in�uence, with GPS dropout.

Figure 5.15: Velocity deviation during external in�uence, with GPS dropout.
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Chapter 6

Discussion and Summary

6.1 Discussion

The low-cost application proved to work more or less satisfactory whenever
GPS coverage were availiable. In static conditions it were also able to sustain
long periods without GPS-aid, but whenever in motion of basically any kind,
it starts to drift fast, even capable of obtaining several hundred meters devi-
ation in just 20 seconds. With this kind of performance, it would be pointless
to rely on the IMU delivering decent position estimates during GPS dropout.
It could deliver satisfactory results when the vessel is subject only to small
accelerations, but on a USV this is hardly ever the case.

However, when reviewing the deviation statistics and data plots from the
previous chapter with the speci�cations of the Crossbow NAV420CA�100, a
comparison can be made. As no drift characteristics are given, it is hard to
draw any conclusions. The crossbow has a circular error of propability of 3,
which actually is higher than using di�erential GPS, which usually operates
at around 5 RMS1. The Crossbow velocity accuracy however, is about a
third of the average RMS obtained in dynamic conditions, implying the IMU
is of a higher standard which can also be seen directly from the acceleration
accuracy on the IMU datasheet listed in Appendix A.

So, if any conclusion is to be made, the IMU is clearly not performing at such
a level that any successful integration can be made, at least not for a USV.
The application works satisfactory whenever GPS coverage is availiable, but
during dropouts the IMU starts to drift fast and uncontrolled. The solution

1when assuming normal distribution, a CEP of 3 equals approximately 5 RMS.
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could work to some extent in a car or similar, where the external noise on the
vehicle is reduced, and there exists a set of feasable positions based on road
networks, in addition to continously obtaining speed measurements from the
vehicle.

The angular measurements are pretty accurate, and can be used directly
as a compass. However, there has not been performed any corrections for
position in the vincinity of the north pole to correct for the displacement of
the magnetic north pole.

6.2 Future Work

First of all, if any further work is to be performed, it would be absolutely
neccesary to invest in a more expensive IMU, since this lacks the performance
to yield good results. Regardless of hardware, there are a few things that
has not been implemented due to insu�ceint time on the schedule:

• Quaternions should be used in stead of rotation matrices. This will
lead to a lower computational load, as well as avoiding the singularity
present at 90◦ pitch, even though this is as good as impossible on a
USV.

• Temperature tests should be performed to determine the ratio between
temperature and bias. IMUs are known to be more temperature depen-
dant than time dependant, meaning the change in bias will be larger
whenever there is a change in temperature than it will just over time.

• Obtaining a GPS receiver able to deliver pseudoranges, leading to the
possibility of designing a tightly coupled integrated solution

• Using another, state of the art system, in order to benchmark the
system properly



Appendix A

Data Sheets

The data sheets listed in this Appendix is taken from the speci�cations listed
at the manufacturers' websites, and reproduced here in this report.

A.1 Microstrain 3DM�GX1

59



60 APPENDIX A. DATA SHEETS

Orientation Range: 360◦ full scale (FS), all axes
(Matrix, Quaternion modes)

Sensor Range
Gyros: 300◦/sec FS;
Accelerometers: 5 G's FS
Magnetometers: 1.2 gauss FS

A/D Resolution: 16 bits

Nonlinearity
Accelerometer: 0.2%
Gyro 0.2%
Magnetometer: 0.4%

Bias Stability
Accelerometer: 0.010 G's
Gyro: 0.7◦/sec
Magnetometer: 0.010 gauss

Orientation Resolution: < 0.1◦ minimum
Repeatability: 0.20◦

Accuracy: 0.5◦ typical for static test conditions,
2◦ typical for dynamic test conditions
and for arbitrary orientation angles

Output Modes: Matrix, Quaternion, Euler angles and
9 scaled sensors with temperature

Digital Outputs: Serial RS-232, RS-485 optional
Analog Output Option: 0-5 volts FS for Euler angles

(pitch ±90◦, roll ±180◦, yaw ±180◦)
Digital Output Rates: 100 Hz for Euler, Matrix, Quaternion

350 Hz for nine orthogonal sensors only
Serial Data Rate: 19.2/38.4/115.2 Kbaud, programmable

Supply Voltage: 5.2 VDC min, 12 VDC max
Supply Current: 65 milliamps
Connectors: One keyed LEMO, two for RS-485

Operating Temperature: -40◦ to +70◦ C with enclosure
-40◦ to +85◦ C without enclosure

Size: 65×90×25 mm with enclosure
42×40×15 mm without enclosure

Weight: 74.6 g with enclosure
25.8 g without enclosure

Shock Limit: 1000 G's (unpowered)
500 G's (powered)

Table A.1: Microstrain 3DM-GX1 speci�cations [12].
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A.2 GlobalSat EM�411

General
Chipset: SiRF StarIII
Frequency: L1, 1575.42 MHz
C/A code: 1.023 MHz chip rate
Channels: 20 channel all-in-view tracking
Sensitivity: -159 dBm
Position: 10 m, 2D RMS

5 m, 2D RMS, WAAS enabled

Accuracy
Velocity: 0.1 m/s
Time: 1µs synchronized to GPS time

Datum
Default: WGS-84

Acquisition Time
Reacquisition: 0.1 s, average
Hot start : 1 s, average
Warm start: 38 s, average
Cold start: 42 s, average

Dynamic Conditions
Altitude: 18,000 m max
Velocity: 515 m/s max
Acceleration: Less than 4g
Jerk: 20m/sec3

Power
Main power input: 4.5V � 6.5V DC input
Power consumption: 60mA

Protocol
Electrical level: TTL level, Output voltage level:

0V � 2.85V ,RS-232 level
Baud rate: 4,800 bps
Output message: NMEA 0183

GGA, GSA, GSV, RMC, VTG, GLL

Physical Characteristics
Dimension: 30mm×30mm×10.5mm ± 0.3mm
Operating temperature: -40◦ to +85◦

Table A.2: GlobalSat EM�411 speci�cations [5].
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Appendix B

Source Code

B.1 Matlab

B.1.1 gpsopen.m

% name: imuopen.m

% Author: Haakon Ellingsen

% Created: 10/03-2008

% Last modified: 21/05-2008

% Description: Opens the port for the GPS.

% Opening the serial port, the first command is

% platform/computer specific. For a stationary COM port on

% the windows platform, COM1 is usually correct. If in doubt,

% check the device manager. For linux systems, try e.g.

%'/dev/ttyCOM1' or '/dev/ttyUSB0'

fclose(instrfind)

s_gps = serial('COM13', 'baudrate', 4800);

fopen(s_gps);

B.1.2 gpsreader.m

i = 1;

text = fopen('gps.txt', 'w');

gpsTime = clock;

save gpsTime;
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while(1)

[data, n] = fscanf(s_gps);

clear GPS;

if(max(size(data))>6)

GPS.name = data(2:6);

else

GPS.name = 0;

end

% Testing the data received

if (max(find(data=='$')) ~= 1)

GPS.name = 0;

end

% Only interested in the GPS data if GPRMC or GPGGA

if(GPS.name == 'GPRMC')

commas = find(data == ',');

star = find(data == '*');

if numel(commas)== 11

GPS.time = data(commas(1)+1:commas(2)-1);

GPS.status = data(commas(2)+1:commas(3)-1);

GPS.lat = data(commas(3)+1:commas(4)-1);

GPS.NS = data(commas(4)+1:commas(5)-1);

GPS.long = data(commas(5)+1:commas(6)-1);

GPS.EW = data(commas(6)+1:commas(7)-1);

GPS.SOG = data(commas(7)+1:commas(8)-1);

GPS.COG = data(commas(8)+1:commas(9)-1);

GPS.date = data(commas(9)+1:commas(10)-1);

GPS.magVar = data(commas(10)+1:star(1)-1);

GPS.chksm = data(star(1)+1:star(1)+2);

fprintf(text, '%s;%s;%s;%s;%s;%s;%s;\n',

GPS.lat(1:2),GPS.lat(3:numel(GPS.lat)),

GPS.long(1:2), GPS.long(3:numel(GPS.long)),

GPS.SOG, GPS.COG, GPS.time);

end

elseif(GPS.name == 'GPGGA')

commas = find(data == ',');

star = find(data == '*');

if numel(commas) == 14

GPS.time = data(commas(1)+1:commas(2)-1);

GPS.lat = data(commas(2)+1:commas(3)-1);

GPS.NS = data(commas(3)+1:commas(4)-1);

GPS.long = data(commas(4)+1:commas(5)-1);

GPS.EW = data(commas(5)+1:commas(6)-1);
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GPS.posFix = data(commas(6)+1:commas(7)-1);

GPS.nSat = data(commas(7)+1:commas(8)-1);

GPS.HDOP = data(commas(8)+1:commas(9)-1);

GPS.h = data(commas(9)+1:commas(10)-1);

GPS.AltUnit = data(commas(10)+1:commas(11)-1);

GPS.GeoSep = data(commas(11)+1:commas(12)-1);

GPS.GeoSepUnit = data(commas(12)+1:commas(13)-1);

GPS.diffAge = data(commas(13)+1:commas(14)-1);

GPS.diffRefId = data(commas(14)+1:star(1)-1);

GPS.chksm = data(star(1)+1:star(1)+2);

fprintf(text, '%s;%s%s%s;%s;%s;%s;\n',

GPS.lat(1:2), GPS.lat(3:numel(GPS.lat)), GPS.long(1:2),

GPS.long(3:numel(GPS.long)), GPS.h, GPS.posFix, GPS.time);

end

end

end

B.1.3 imuopen.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% name: imuopen.m

% Author: Haakon Ellingsen

% Created: 13/05-2008

% Last modified: 16/05-2008

% Description: Opens a connection to the IMU

% Opening the serial port, the first command is

% platform/computer specific. For a stationary COM port on

% the windows platform, COM1 is usually correct. If in doubt,

% check the device manager. For linux systems, try e.g.

%'/dev/ttyCOM1' or '/dev/ttyUSB0'

s_imu = serial('COM13', 'baudrate', 115200,'DataBits',8);

fopen(s_imu);

% Creating and sending "enter continous mode" command to the IMU,

% meaning it will send data all the time.

% Is this wise in matlab, due to bad reading methods?

%cmd = hex2dec(['10';'00';'31'])';

%fwrite(s_imu,cmd,'uint8');
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B.1.4 imureader.m

% name: imureader.m

% Author: Haakon Ellingsen

% Created: 13/05-2008

% Last modified:

% Description: Reads data from the IMU, and processes the data

% received, making it

%cmd = hex2dec(['10'; '00'; '31'])';

cmd = hex2dec(['31']);

% Telling the IMU to write its data

fwrite(s_imu, cmd ,'uint8');

% Reading the IMU data

out = dec2hex(fread(s_imu, 23, 'uint8'));

% Processing the data

if(size(out) == [23 2])

imu.header= hex2dec(out(1,:));

imu.roll = hex2dec([out(2,:) out(3,:)]);

imu.pitch = hex2dec([out(4,:) out(5,:)]);

imu.yaw = hex2dec([out(6,:) out(7,:)]);

imu.a_x = hex2dec([out(8,:) out(9,:)]);

imu.a_y = hex2dec([out(10,:) out(11,:)]);

imu.a_z = hex2dec([out(12,:) out(13,:)]);

imu.omega_x = hex2dec([out(14,:) out(15,:)]);

imu.omega_y = hex2dec([out(16,:) out(17,:)]);

imu.omega_z = hex2dec([out(18,:) out(19,:)]);

imu.timer = hex2dec([out(20,:) out(21,:)]);

imu.chksm = [out(22,:) out(23,:)];

% Calculating checksum

calc_chksm = dec2hex(imu.header+imu.roll+imu.pitch

+imu.yaw+imu.a_x+imu.a_y+imu.a_z+imu.omega_x

+imu.omega_y+imu.omega_z+imu.timer);

n_byt = size(calc_chksm);

% Setting valid flag

if (prev_time == Inf)

imu_isValid = 0;

prev_time = imu.timer;

display('Can''t integrate without previous time. Run again')

else
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imu_isValid = 1;

end

else

% Resetting valid flag

imu_isValid = 0;

display('Size received is wrong');

end

if imu_isValid

if(imu.chksm == calc_chksm(n_byt(2)-3: n_byt(2)))

% Means that the checksums matches, scaling the measurements

imu.roll = imu.roll*g_gyro;

imu.pitch = imu.pitch*g_gyro;

imu.yaw = imu.yaw*g_gyro;

if(imu.a_x>32768) % Overflow, meaning negative number.

imu.a_x = (imu.a_x-65536)*g_acc;

else

imu.a_x = imu.a_x*g_acc;

end

if(imu.a_y>32768) % Overflow, meaning negative number.

imu.a_y = (imu.a_y-65536)*g_acc;

else

imu.a_y = imu.a_y*g_acc;

end

if(imu.a_z>32768) % Overflow, meaning negative number, correcting

imu.a_z = (imu.a_z-65536)*g_acc;

else

imu.a_z = imu.a_z*g_acc;

end

if(imu.omega_x>32768) % Overflow, meaning negative number.

imu.omega_x = (imu.omega_x-65536)*g_rate;

else

imu.omega_x = imu.omega_x*g_rate;

end

if(imu.omega_y>32768) % Overflow, meaning negative number.

imu.omega_y = (imu.omega_y-65536)*g_rate;

else

imu.omega_y = imu.omega_y*g_rate;

end

if(imu.omega_z>32768) % Overflow, meaning negative number.

imu.omega_z = (imu.omega_z-65536)*g_rate;

else

imu.omega_z = imu.omega_z*g_rate;

end
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imu_isValid = 1;

else

% Means that the two checksums are different, rejecting the data

imu_isValid = 0;

display('Checksum calculation failed')

end

end

if imu_isValid

% Evaluating the timer

delta_t = imu.timer-prev_time;

if (delta_t < 0)

delta_t = delta_t + 65536;

end

prev_time = imu.timer;

% The rollover is accounted for, scaling the measurement

delta_t = delta_t * 0.0065536;

fprintf(text, '%i;%i;%i;%i;%i;%i;%i\n', imu.a_x, imu.a_y,

imu.a_z, imu.roll, imu.pitch, imu.yaw, delta_t);

end

% % Updating the rotation matrix

% Rb2n = updateR(imu.roll, imu.pitch, imu.yaw);

% % Solving the differential equation

% prev_imu = imu;

% imu.a = Rb2n*([imu.a_x; imu.a_y; imu.a_z]-bias)+[0; 0; g_const]+

%[boat.v(2)*2*omega_ie*sind(boat.long);

%boat.v(1)*2*omega_ie*sind(boat.long)

%+boat.v(3)*2*omega_ie*cosd(boat.long);

%-boat.v(2)*2*omega_ie*cosd(boat.long)];

% imu.v = imu.v + imu.a*delta_t;

% imu.p = imu.p + imu.v*delta_t;

% figure(1)

% plot([prev_imu.p(2);imu.p(2)], [prev_imu.p(1);imu.p(1)]);

% drawnow();

% % figure(2)

% % % Euler angles

% % for i = 1:3

% % if i == 1

% % hold off;

% % plot3([0;Rb2n(i,1)],[0;Rb2n(i,2)],[0;Rb2n(i,3)]);

% % hold on;

% % grid on

% % end
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% % plot3([0;Rb2n(i,1)],[0;Rb2n(i,2)],[0;Rb2n(i,3)]);

% % axis([-1,1,-1,1,-1,1]);

% % end

%

% figure(3)

% % Acceleration

% total_t = total_t + delta_t;

% for i = 1:3

% subplot(3,1,i)

% plot([total_t-delta_t;total_t],[prev_imu.a(i), imu.a(i)]);

% plot([total_t-delta_t;total_t],[prev_bias(i),bias(i)],'r--')

% plot([total_t-30, total_t],[0 0],'b')

% axis([total_t-30, total_t, -5, 5])

% ylim('auto')

% end

% prev_bias = bias;

% drawnow();

% GPS.time = GPS.time+delta_t;

% end

%

%

%

%

B.1.5 IMU_f.m

function ret = IMU_f(x, u, a, e)

R_phi = a*(1-e^2)/(1-(e*sin(x(1,1))^2)^1.5);

R_lambda = a/sqrt(1-(e*sin(x(1,1))^2));

omega_ie = 7.292115E-5;

% x = [phi, lambda, h, v_n, v_e, v_d]

out(1, 1) = 1 / (R_phi + x(3,1)) * x(4,1); % dPhi/dt

out(2, 1) = 1 / (R_lambda + x(3,1)) * cos(x(1,1)) * x(5,1); % dlambda/dt

out(3, 1) = -x(6,1); % dh/dt

out(4, 1) = u(1,1) - (out(1,1) + 2 * omega_ie) * sin(x(2,1))

* x(5,1) + out(2,1) * x(3,1);

out(5, 1) = u(2,1) + (out(1,1) + 2 * omega_ie) * sin(x(2,1))

* x(4,1) + (out(1,1) + 2 * omega_ie) * cos(x(2,1)) * x(6,1);

out(6, 1) = u(3,1) - (out(1,1) + 2 * omega_ie) * cos(x(2,1))

* x(5,1) + out(2,1) * x(1,1);

ret = out;
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B.1.6 sysinit.m

clear all;

close all;

global omega_ie;

global Q;

global R;

lat = 10+32/60+20/60/60;

long = 63+25/60+46/60/60;

text = fopen('imu.txt', 'w');

total_t = 0;

prev_bias = [0, 0, 0]';

R = diag([5*ones(1,3), ones(1,3)]);

Q = eye(9);

omega_ie = 7292115e-11;

I3 = eye(3);

O3 = zeros(3,3);

A = [O3 I3 O3;

O3 O3 I3

O3 O3 O3];

%B = [O3; I3];

D = [O3 O3; I3 O3; O3 I3];

C = [I3 O3 O3];

bias = zeros(3,1);

% Calculating gravity

lambda = 63.36;

gamma_a = 9.78049;

f = 1/298.257223563;

m = 0.00344978650684;

f_2 = -f+5/2*m+1/2*f^2-26/7*f*m+15/4*m^2;

f_4 = -1/2*f^2+5/2*f*m;

g_const = gamma_a*(1+(f_2+f_4)*sind(lambda)^2-1/4*f_4*sind(2*lambda)^2);

% This is the gravity calculated using the gravity model

% Flag to denote that imu measurement passes all tests

imu_isValid = 0;

prev_time = Inf;

fclose(instrfind)

delete(instrfind)

imuopen;
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% Defining gain constants for accelerometer and gyro.

g_acc = 9.81*7000/32768000;

g_gyro = 360/65536;

g_rate = 8500/32768000;

%cmd = hex2dec(['10'; '00'; '31'])';

% Telling the IMU to write its data

%fwrite(s_imu, cmd ,'uint8');

%out = fread(s_imu, 7, 'uint8');

while(1)

imureader;

end

B.1.7 kalman.m

function [bias, P] = KalmanFilter(kalm_y, P, Rt2E, dt)

kalm_I = eye(9);

kalm_Q = [zeros(3,9);

zeros(3,3) 0.025*eye(3) zeros(3,3);

zeros(3,6) 0.1*eye(3)];

kalm_R = [eye(3)*1E-10 zeros(3,3);

zeros(3,3) 1*eye(3)];

kalm_A = -eye(9);

kalm_A(1,4) = Rt2E(1)*dt;

kalm_A(2,5) = Rt2E(2)*dt;

kalm_A(3,6) = Rt2E(3)*dt;

kalm_A(4,7) = -dt;

kalm_A(5,8) = -dt;

kalm_A(6,9) = -dt;

kalm_C = [eye(3), zeros(3,6);

zeros(3,3) eye(3) zeros(3,3)];

P_pre = kalm_A*P*kalm_A'+kalm_Q;

kalm_K = P_pre*kalm_C'*inv(kalm_C*P_pre*kalm_C'+kalm_R);

P = (kalm_I-kalm_K*kalm_C)*P_pre;

x = kalm_K*kalm_y;

bias = x;

B.1.8 proc.m

clear all;
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close all;

count = 1;

load imu.txt

load gps.txt

id_gps = false;

posoffs = [0.10, 0, 0]';

numit = 0;

totatt = [0 0 0]';

%count = 1;

count2 = 0;

roll = imu(:,4);

pitch = imu(:,5);

yaw = imu(:,6)-90;

a.x = imu(:,1);

a.y = imu(:,2);

a.z = -imu(:,3);

gps_data.lat = (gps(:,1)+gps(:,2)/60)*pi/180;

gps_data.long = (gps(:,3)+gps(:,4)/60)*pi/180;

gps_data.SOG = gps(:,5);

gps_data.COG = gps(:,6);

gps_data.time = gps(:,7);

gps_data.time(1:39) = gps_data.time(1:39)+40;

startTime = gps_data.time(1);

% for i = 1:numel(mat(:,1))

% mat(i,:) = mat(i,:)*(diag(1.2-0.4*rand(1,3)));

%

% end

% a.x = mat(:,1)+a.x(1:numel(mat(:,1)));

% a.y = mat(:,2)+a.y(1:numel(mat(:,1)));

% a.z = mat(:,3)+a.z(1:numel(mat(:,1)));

dt = imu(:,7);

WGS_a = 6378137;

WGS_e = 0.08181979099211;

x = [gps_data.lat(1) gps_data.long(1) 0 0 0 0]';

prevAccel = [0, 0, 0]';

totalTime = 0;

biasAcc = [-0.2 0.5 0]';

%biasAcc = [0 0 0]';
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P=eye(9);

alltime = 0;

prevtime = 0;

prevX = x;

figure(1);

subplot(3,1,1)

hold on;

xlabel('Time [s]')

ylabel('Pos N [m]')

subplot(3,1,2)

hold on;

legend('\Phi', '\lambda', 'h')

xlabel('Time [s]')

ylabel('Pos E [m]')

subplot(3,1,3)

hold on;

legend('\Phi', '\lambda', 'h')

xlabel('Time [s]')

ylabel('Pos D [m]')

figure(2);

hold on;

figure(3)

hold on;

legend('a_x', 'a_y', 'a_z')

start = x;

for i = 1:size(a.x)

prevX = x;

dt(i) = 0.1;

prevtime = alltime;

Rb2t = updateR(roll(i), pitch(i), yaw(i));

accel = Rb2t*([a.x(i), a.y(i), a.z(i)]'+biasAcc)-[0 0 9.9506]';

c1 = 0.5;

c2 = 0.5;

c3 = 1.0;

b1= 1/6;

b4 = 1/6;

b2 = 1/3;

b3 = 1/3;

a21 = 0.5;

a32 = 0.5;
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a43 = 1.0;

k1 = IMU_f(x, prevAccel, WGS_a, WGS_e);

k2 = IMU_f(x+dt(i)*a21*k1,(1-c1)*prevAccel+c1*accel, WGS_a, WGS_e);

k3 = IMU_f(x+dt(i)*a32*k2, (1-c2)*prevAccel+c2*accel, WGS_a, WGS_e);

k4 = IMU_f(x+dt(i)*a43*k3,(1-c3)*prevAccel+c3*accel, WGS_a, WGS_e);

x = x + dt(i)*(b1*k1+b2*k2+b3*k3+b4*k4);

prevAccel = accel;

totalTime = totalTime + dt(i);

alltime = alltime +dt(i);

totatt = totatt + [roll(i), pitch(i), yaw(i)]';

numit = numit +1;

%if false

if count <= numel(gps_data.time)

if totalTime >= gps_data.time(count)-gps_data.time(1)

% && (count < 40 || totalTime > 60)

count2 = count2 +1;

if totalTime>60 && count < 50

count = 60;

end

R_phi = WGS_a*(1-WGS_e^2)/(1-(WGS_e*sin(x(1,1)))^2)^1.5;

R_lambda = WGS_a/sqrt(1-(WGS_e*sin(x(1,1)))^2);

Rt2E = [1/(R_phi+x(3,1)); 1/(R_lambda+x(3,1))/cos(x(1,1)); -1];

% Transferring the offset to ECEF

tmpoff = diag(Rt2E)*Rb2t*posoffs;

% Only used for calculating RMS values

gps_speed = gps_data.SOG(count)*[cosd(gps_data.COG(count))

sind(gps_data.COG(count))

0];

tmp(count,:) = gps_speed-x(4:6)';

x_tilde = [gps_data.lat(count)

, gps_data.long(count)

, 0, gps_speed]'-[tmpoff; 0; 0; 0] - x;

if id_gps

% Using ideal gps, test purposes only

gps_speed = gps_speed*0;

x_tilde = [gps_data.lat(1), gps_data.long(1), 0, gps_speed]'-x;

end

est_s(count, :) = [gps_speed, gps_data.time(count)];

if count2 >10

P = eye(9);

count2 = 0;
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end

[bias, P] = kalman(x_tilde, P, Rt2E, totalTime);

x = x + bias(1:6);

if numit < 50

Rb2t = updateR(totatt(1)/numit, totatt(2)/numit, totatt(3)/numit);

else

x(1:3) = [gps_data.lat(count), gps_data.long(count), 0]';

end

biasAcc = biasAcc + inv(Rb2t)*bias(7:9);

biascount(count, :) = biasAcc;

gpspos(count,:) = [(gps_data.lat(count)-gps_data.lat(1))/Rt2E(1),

(gps_data.long(count)-gps_data.long(1))/Rt2E(2),

0];

count = count + 1;

totatt = [0 0 0]';

numit = 0;

% x(3) = 0;

end

else

break

end

%end

accel2(i,:) = ([a.x(i), a.y(i), a.z(i)]'+biasAcc)-inv(Rb2t)*[0 0 9.9506]';

R_phi = WGS_a*(1-WGS_e^2)/(1-(WGS_e*sin(x(1,1)))^2)^1.5;

R_lambda = WGS_a/sqrt(1-(WGS_e*sin(x(1,1)))^2);

data(i,:) = [totalTime, (R_phi+x(3,1))*(x(1)-gps_data.lat(1))

(R_lambda+x(3,1))*cos(x(1,1))*(x(2)-gps_data.long(1))

-x(3), x(4:6)', accel'];

end

figure(1)

subplot(3,1,1)

hold on;

plot(data(:,1), data(:,2));

plot(gps_data.time(1:numel(gpspos(:,3)))-gps_data.time(1),

gpspos(:,1), '--r')

legend('Estimated','GPS');

% plot(0:70,0, '--b')

axis([0 55 -1 1])

axis 'auto y';

subplot(3,1,2)

hold on;

plot(data(:,1), data(:,3));
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plot(gps_data.time(1:numel(gpspos(:,3)))-gps_data.time(1),

gpspos(:,2), '--r')

legend('Estimated','GPS');

% plot(0:70,0, '--b')

axis([0 55 -1 1])

axis 'auto y';

subplot(3,1,3)

hold on;

plot(data(:,1), data(:,4));

plot(gps_data.time(1:numel(gpspos(:,3)))-gps_data.time(1),

gpspos(:,3), '--r')

legend('Estimated','GPS');

axis([0 55 -1 1])

axis 'auto y';

figure(2)

subplot(3,1,1)

hold on;

% plot(0:70,0, '--b')

plot(data(:,1), data(:,5));

xlabel('Time [s]')

ylabel('Speed N [m/s]')

axis([0 55 -1 1])

axis 'auto y';

subplot(3,1,2)

hold on;

% plot(0:70,0, '--b')

plot(data(:,1), data(:,6));

xlabel('Time [s]')

ylabel('Speed E [m/s]')

axis([0 55 -10 25])

% axis 'auto y';

subplot(3,1,3)

hold on;

% plot(0:70,0, '--b')

plot(data(:,1), data(:,7));

xlabel('Time [s]')

ylabel('Speed D [m/s]')

axis([0 55 -1 2])

axis 'auto y';

figure(3)

subplot(3,1,1)

hold on;

% plot(0:70,0, '--b')
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plot(data(:,1), accel2(:,1));

xlabel('Time [s]')

ylabel('Acc x [m/s^2]')

axis([0 55 -1 1])

axis 'auto y';

subplot(3,1,2)

hold on;

% plot(0:70,0, '--b')

plot(data(:,1), accel2(:,2));

xlabel('Time [s]')

ylabel('Acc y [m/s^2]')

axis([0 55 -1 1])

axis 'auto y';

subplot(3,1,3)

hold on;

% plot(0:70,0, '--b')

plot(data(:,1), accel2(:,3));

xlabel('Time [s]')

ylabel('Acc z [m/s^2]')

axis([0 55 -1 1])

axis 'auto y';

figure(4);

subplot(311)

plot(est_s(:,4)-est_s(1,4), est_s(:,1))

subplot(312)

plot(est_s(:,4)-est_s(1,4), est_s(:,2))

subplot(313)

plot(est_s(:,4)-est_s(1,4), est_s(:,3))

start = 35;

% Calculating RMS values

p_n = sqrt(data(start:numel(data(:,2)),2)'*data(start:numel(data(:,2)),2)/

(numel(data(:,2))-start+1));

p_e = sqrt(data(start:numel(data(:,3)),3)'*data(start:numel(data(:,3)),3)/

(numel(data(:,3))-start+1));

p_d = sqrt(data(start:numel(data(:,4)),4)'*data(start:numel(data(:,4)),4)/

(numel(data(:,4))-start+1));

v_n = sqrt(data(start:numel(data(:,5)),5)'*data(start:numel(data(:,5)),5)/

(numel(data(:,5))-start+1));

v_e = sqrt(data(start:numel(data(:,6)),6)'*data(start:numel(data(:,6)),6)/

(numel(data(:,6))-start+1));

v_d = sqrt(data(start:numel(data(:,7)),7)'*data(start:numel(data(:,7)),7)/

(numel(data(:,7))-start+1));
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a_x = sqrt(accel2(:,1)'*accel2(:,1)/numel(accel2(:,1)));

a_y = sqrt(accel2(:,2)'*accel2(:,2)/numel(accel2(:,2)));

a_z = sqrt(accel2(:,3)'*accel2(:,3)/numel(accel2(:,3)));

figure(5);

plot(biascount)

legend('X', 'Y', 'Z')

xlabel('Time [s]')

ylabel('Bias [m/s^2]'

B.1.9 Rt2eg.m

function [R] = Rt2eg(Phi, lambda, h)

a = 6378137;

e = 8.1819190842622E-2;

R_phi = a*(1-e^2)/sqrt(1-e^2*sind(Phi)^2);

R_lambda = a/sqrt(1-e^2*sind(Phi)^2);

R = [1/(R_phi+h) 0 0;

0 1/((R_lambda+h)*cosd(lambda)) 0;

0 0 -1];

B.1.10 sysinit.m

clear all;

close all;

global omega_ie;

global Q;

global R;

lat = 10+32/60+20/60/60;

long = 63+25/60+46/60/60;

text = fopen('imu.txt', 'w');

total_t = 0;

prev_bias = [0, 0, 0]';

R = diag([5*ones(1,3), ones(1,3)]);

Q = eye(9);

omega_ie = 7292115e-11;

I3 = eye(3);

O3 = zeros(3,3);

A = [O3 I3 O3;

O3 O3 I3
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O3 O3 O3];

%B = [O3; I3];

D = [O3 O3; I3 O3; O3 I3];

C = [I3 O3 O3];

bias = zeros(3,1);

% Calculating gravity

lambda = 63.36;

gamma_a = 9.78049;

f = 1/298.257223563;

m = 0.00344978650684;

f_2 = -f+5/2*m+1/2*f^2-26/7*f*m+15/4*m^2;

f_4 = -1/2*f^2+5/2*f*m;

g_const = gamma_a*(1+(f_2+f_4)*sind(lambda)^2-1/4*f_4*sind(2*lambda)^2);

% This is the gravity calculated using the gravity model

% Flag to denote that imu measurement passes all tests

imu_isValid = 0;

prev_time = Inf;

fclose(instrfind)

delete(instrfind)

imuopen;

% Defining gain constants for accelerometer and gyro.

g_acc = 9.81*7000/32768000;

g_gyro = 360/65536;

g_rate = 8500/32768000;

%cmd = hex2dec(['10'; '00'; '31'])';

% Telling the IMU to write its data

%fwrite(s_imu, cmd ,'uint8');

%out = fread(s_imu, 7, 'uint8');

while(1)

imureader;

end

B.1.11 updateR.m

function [Rb2t] = updateR(phi, theta, psi)

Rb2t = [cosd(psi)*cosd(theta)

-sind(psi)*cosd(phi)+cosd(psi)*sind(theta)*sind(phi)

sind(psi)*sind(phi)+cosd(psi)*sind(theta)*cosd(phi);
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sind(psi)*cosd(theta)

cosd(psi)*cosd(phi)+sind(psi)*sind(theta)*sind(phi)

-cosd(psi)*sind(phi)+sind(psi)*sind(theta)*cosd(phi);

-sind(theta)

cosd(theta)*sind(phi)

cosd(theta)*cosd(phi)];
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