PETRI TOIVIAINEN
BIRGITTA BURGER
2015

RSION 1.5

MoCap Toolbox Manual

Copyright © Petri Toiviainen
Birgitta Burger
2008-2015

University of Jyvéaskyla, Finland

(vers. 07 Oct 2015)

MoCap Toolbox Manual

Table of Contents

MoCap Toolbox Manual

Foreword 5
ACKNOWIEAGMENTS ... e aaaans 5
Release Notes 7
RV =T 7T o i P TS SSPPRPRN 7

NEW FUNCLIONS ...ttt oottt e e e e e e e e e e e bbbt e e e e eea e e e e e e e e aannbnbeeeeaaaaaaaaeas 7
Introduction 9
General 12
U] o 1[0 o - PR 13
D E 1= RS (0 (o1 (0] (=T PP 17
Parameter SITUCTUIESooeeeeeee e e e e e e e e eae s 18
Yo [0 Ko] g S F=Tg o [= (=] <L) o < TP 19

Periodic quantity Of MOIONcoiuiiiiiii e 19

Realtime streaming of MOCAP dat@...........eeiiiiiiiiiii e 19
Examples 21
Reading, Editing, and Visualizing MoCap Data (mcdemot)........ccccoiimiiiiiiiiiiiiieeneenne 22
Transforming MoCap data (MCAEMO2)cceeiiiiiiiiiiire s 32
Kinematic analysisS (MCAEMOS3).......cccoiuuiiiiiiiiiiie e 36
Time-series analysiS (MCAEMOA)uuuuiiiiiieee e e e e e e e e 42
Kinetic analysis (MCAEIMOD)..... .o e e e e e e 45
Creating animations (Mcdemo6 - MCAEMO9)ccocciiiiiiiiiiiiiiieeeeee e 51

= F T oo (g Tee (=10 0]) SRR 51

Merging data for animations (MCAEMOT)....ccciicuriiiiiiiiiiie et e e e s ennaeee s 52

Colored animations (MCAEMOB)ceuiiiiiiiiiiiiiiieeee e e e e e e e e e e e s ae e e e e eaaeeseesaaanenes 53

Perspective Projection (MCAEMOI)cueiiiiiiiiiii et 55
Principal Components Analysis (MCAemMOT0)couvveeeriiiiiieiiiiciieeeeeeee e 58
Analyzing Wii data (MCAEMOTT)uuiiiiiiiiiiiiiiee e 59
Data and Parameter Structure Reference 63
MOCAP data SHUCIUIEccei i ee s 64
NOIM data SITUCTUE ...t e e e e e e e e e e e eeeeeennees 65
SEQM dALA STIUCTUIE.......euiiiiiiiiie et e e e e e e e e e e e e e 66
M2jpar parameter STTUCIUIEooi it e e e eeeeeenees 67
j2spar parameter STTUCTUIEoooi it e e e e e e e e e e eeeeeenees 68
animpar parameter SITUCIUIEooiiii i 69
Function Reference 71
[To723 i £0] o1 = | PP 72
MCAAAITAMES. ...t e e e e e e e e e e e e e e et e e e e ae s aaeeeeaaaaeeeeeeeeesnnnens 73
[Toz=T a5 T (= PP 74

MoCap Toolbox Manual

ggTed o= T gl =1 ST PPPPPPPRP 75
LT3 0o 0 [o [(=T o S U RRPPPPPTPRTTRRRTPI 76
Lo 2 T P2 £33 U UPPPPPPPRRRRPRRPPN 77
L0707 =T g1 (=T PP 78
agTeteTo] o 0] o] (5] PP PPPPPPP 79
ggTeleTo] gler=1 (=] g F= | (TP PPPPPPPPP 80
MCCIEAECONNMMALIIX ...ttt ettt et e rereneee s 81
MCCUMIST ...ttt e e e e e e e e e e e e e e e eeeeeaesasa e e e e eeeeaeeeaeeeeeeeennnes 82
007 0 1 PP 83
MNCAECOMPOSEcceeeettittiiiiaa e e e e et e e e e e e eeeeeeeaeeeesa e e e e e e e e eeeeeeeeeeeeesas s e e e e e eeeeeeeeeeeeeennnnnnes 84
(agTer=T o =T o g lo Y /=T o 41T o | TP OPPPPPTP 85
00 Te3 1] 1o =T o ST TPPPPPPPPP 86
L00To3 111 (=T =10 ¢ o [PPSR TTPPPPPPPTP 87
MCTIUIAITY <. e e e e e e e e e e nnnneeeeas 88
MNCGETMAIKEY ...ttt e e et e e e e e e e e e e e e e e e e e e e r e e eee s 89
MCGEIMAIKEINAMIE ...t e e e e e et et e e et e e e e e e e e e e eeeeeeeennnnee 90
070 =] £57 =T [0 0101 o PP 91
T2 11 =T o R EPRPPRRPRRR 92
MCNIIDEITAUBNG ...t 93
L gTeT0=T o] (o] [P PPUPPTTTTTRPRTPI 94
MCINIEANIMPA ... eeeeeeetet e et ettt s e e e e e e e e e e eeeeeeeeaesss s a e e e e eeeeeeeeeeeeeeeennnnns 95
Lo LT P2] o= | TP PRPPPPPPPPRPPPPRPPN 97
L0 gTod 010 V21 o = PP OPPPPPP 98
L7111 €3 {1 o PRSPPI 99
1010122 PP TP PP PPPOPPPPRPI 101
MNCKINENEIGY ...ttt e e e et ettt e e e e e e e et e e e e e e s e n s e e e reeeees 102
IMNCKUITOSIS. ..ottt e e e e e e e e e e e e e e et e e eeesbe s e e e e e e eeeeeaeeeeeennnenes 103
T 0 = PR 104
[T 4 F= T T o 1 PRSP 105
77 .01 = o PSPPI 106
L1070 01T o = TR 107
101070 011517 o o TP TP PPPOPPPPRP 108
[gaTedppTeTez=ToTe] £=T s o HR PP PPOPPRRTR 109
(373 0o o £ PSP 110
017 oToz= T o] (o] 1P PPPPPPPPPPRPR 111
497 o= T T PP PPPPPPPPP 112
MCPIOTTTAMIE .. e e e e e e e e e e e e e e aaaeeeeeas 113
MCPIOLPNASEPIANE 114
MCPIOTHIMESEIIES ... e e e e e e e et e et e b e e e e e e e eaeas 115
[0 00] (=T g T=T o)PP 117
77 == Vo 118
[gTe3 1= To [T o 4 To PP PPPPPPPPP 119

MoCap Toolbox Manual

el =To] (o =T o 110 o 1TSS 120
IMNCTEPOVIZZ. ...ttt e e e e e e e et e ettt eet et e s e e e e e e e e e eeeeeeeeeeeesssnaa e e s eeeeeeaeaeaeeeennnnnes 121
MCIESAMIPIE ... e e e e e e et e e et e et bbb e e e e e e e e e e e e aeeeeennenes 122
Lo 21T T 123
Lo {0 7= | (=SSP 124
[gaTelgo] e=1iTe] ol = g o= TP TP PPPOPPPPRP 125
01072 PP TP PP POPPPRRPI 126
[T01cT2d 01011 (U | (PP 127
[010zS]=Te] 4 F= T o o | [P PPPPPPRRI 128
ST 1 F= U= 129
MCSEHENGIN ...t e e 130
eSS 4 F= 1 =] N 131
0 xs] 10 0 0 1= TR 132
IMCSKEWIIESS ... ittt e et e et e e ettt e e et et e e e eat e e e eaan e s eaaneeesanaesesanaeesnnersnnneerennn 133
[Texs] g ToTo] | 1= o 1SS 134
0700 S 135
L0027 07T o3 U0 PN 136
[To1SY 2= 11 aT0] 0 0 1=T o £ 137
0002 (o [P RRN 138
(o310 1 T=To [T GO PSP 139
(010111 41T 0] (=T | TP PPOPRRRRI 141
o3 =1 1S =1 (= 142
0o 11 0 N 143
[0 003 7= T SN 144
0103V =Tex 21 | o E PP PPPOPPPPRP 145
00311V o Vo [0 1 PSRN 146
LoV (Y £ N 147

MoCap Toolbox Manual

Foreword

This manual provides an introduction and a reference to the MoCap Toolbox, a Matlab® toolbox
for the analysis and visualization of Motion Capture data. The toolbox is mainly aimed for the
analysis of music-related movement, but might be useful in other areas of study as well. I wrote
most of the toolbox and this manual during my sabbatical at the Center for Advanced Study in the

Behavioral Sciences at Stanford University in 2007-8.

This manual requires that the user be familiar with the basic features of the Matlab software.
Novices in this programming platform are advised to consult the cornucopia of Matlab tutorials
available on the Internet. The reader should also be familiar with the basics of mechanics and calcu-

lus.

I would like to thank the Academy of Finland and the Center for Advanced Study in the Behavioral

Sciences at Stanford University for their support.

Stanford, June 1, 2008

Petri Toiviainen

Acknowledgments

Thanks to Dominique de Beul for the providing the bvh parser.

Thanks to JJ Loh for providing a faster version for reading in .c3d files.

Thanks to Kristian Nymoen for providing the function mcmocapgram and the real-time streaming.
Thanks to Roberto Rovegno for contributing to the mcwritetsv function.

Thanks to Erwin Schoonderwaldt for providing the function to read in .mat files (exported from

QTM).

Thanks to Federico Visi for providing the mcpgom, mcplotpqom, and mcrepovizz functions and

contributing to the mcsort function.

MoCap Toolbox Manual

Thanks to Dominique de Beul, Michiel Demey, Frank Desmet, Tommi Himberg, Herbert Jéger,
Alexander Refsum Jensenius, Luiz Naveda, Kristian Nymoen, and Erwin Schoonderwaldt for re-

porting bugs in the toolbox and suggesting improvements.

MoCap Toolbox Manual

Release Notes

For new features and bug fixes done in previous versions, please refer to the releasenotes v1.5.txt

included in the toolbox release.
Version 1.5
New functions

mcaddframes: duplicates frames

mccomplexity: calculates the complexity of movement based on entropy of the first principal com-

ponent

mcfluidity: calculates the fluidity/circularity of mocap data
mcrepovizz: exports MoCap structure as repoVizz files

mcreverse: reverses dimensions of motion-capture data
mcrotationrange: calculates the rotation range between two markers
mcsetlength: sets mocap data to the length given

mcsort: sorts mocap data according to marker names

Bug fixes

mcanimate, mcplotframe, mcinitanimpar: direct video file making; changing use of projection pa-

rameters; returning from function with setting video parameters, but without creating video
mcdemodata: updated animpar variables to fit new animation parameter structure
mcdemo6-mecdemo9: fit new animation parameter structure

mcgetmarkername: now for norm data as well

mchilbert: keep data structure same as input file, added flag for indicating phase wrap
mcinitstruct: fixed inconsistency in naming in the manual

mcmerge: fixing animation parameter structure merging

MoCap Toolbox Manual

mcmocapgram: norm data included

mcplotframe: move axes definition outside the main plotting loop for efficiancy
mcread: added bvh support, added potential troubleshoot for c3d data
mcreadc3d: check for matching frame no and data size (Optitrack issue)

mcs2j: runtime efficiency

mctimeintegr: for norm data as well

readc3d: changed machinetype parameter - change back as indicated in script if you run into issues

reading in c3d files

MoCap Toolbox Manual

Introduction

MoCap Toolbox Manual

The MoCap Toolbox is a Matlab® toolbox that contains functions for the analysis and visualization
of motion capture data. It supports the generic .c3d file format, the .tsv data format produced by the
Qualisys motion capture system, the .mat file format produced by the Qualisys motion capture sys-

tem, and the .wii format produced by the WiiDataCapture software (available at www.jyu.fi/music/

coe/materials/mocaptoolbox).

To use the toolbox, you need the Matlab software (www.mathworks.com). Before using it, the tool-

box has to be added in the Matlab path variable. The toolbox should be compatible with most ver-
sions of Matlab and most platforms. The latest implementations and developments have been made

on Matlab version 8.4 (R2014b) running on Macintosh OS X v10.10.

To use all the functions in the MoCap Toolbox, the following toolboxes must be included in Mat-

lab's path:

. Signal Processing Toolbox

. FastICA Package, available at http://www.cis.hut.fi/projects/ica/fastica/ (for mcicaproj)

. Periodicity Toolbox, available at http://eceserv0.ece.wisc.edu/~sethares/downloadper.html

(for mcsethares)

. For reading in .bvh files: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mocap/ (mocap

and ndlutil toolboxes — also the github versions work)

Register to the MoCap Toolbox mailing list: www.jyu.fi/music/coe/materials/mocaptoolbox
to stay informed about new releases, bug reports, and bug fixes. It also serves as a general discus-
sion board for users, so feel free to post anything motion capture- and toolbox-related that might be

of interest to other users and developers. The email address to send messages to the list is mocap-

toolbox(@freelists.org (requires registration to send).

The MoCap Toolbox comes with no warranty. It is free software, and you are welcome to redistrib-
ute it under certain conditions. See the file License.txt provided with the toolbox for details of GNU

General Public License.

10

http://www.jyu.fi/music/coe/materials/mocaptoolbox
http://www.mathworks.com
http://www.cis.hut.fi/projects/ica/fastica/
http://eceserv0.ece.wisc.edu/~sethares/downloadper.html
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mocap/
http://www.jyu.fi/music/coe/materials/mocaptoolbox
mailto:mocaptoolbox@freelists.org

11

MoCap Toolbox Manual

MoCap Toolbox Manual

12

MoCap Toolbox Manual

Functions
The MoCap Toolbox contains 64 functions for the analysis and visualization of motion capture data.
The functions can be divided into nine categories:
+ Data input and edit functions
* Coordinate transformation functions
» Coordinate system conversion functions
» Kinematic analysis functions
* Kinetic analysis functions
* Time-series analysis functions
* Visualization functions
* Projection functions
* Other functions

The following table provides an overview of the functions available in the MoCap Toolbox. De-

tailed descriptions of each function are provided in the Chapter Function Reference.

13

MoCap Toolbox Manual

Function Synopsis
mcread read MoCap data files
mcreademg read emg files in tsv format
mcmissing report missing frames and markers
mctrim extract a temporal segment from MoCap data
mecut cut two MoCap structures to the length of the
shorter one
mcaddframes duplicate frames
mcsetlength set MoCap data to the length given
mcsmoothen smoothen MoCap data
mcmerge merge two MoCap data structures
mcsort sorts MoCap data according to marker names
mcgetmarker extract a subset of markers from MoCap data
INPUT & EDIT mcsetmarker replace a subset of markers
meconcatenate concatenate markers from different MoCap or
norm data structure
mcgetmarkername get names of markers from MoCap data
mcfillgaps fill missing data
mcinitstruct initialize MoCap or norm data structure
mereorderdims reorder the Euclidean dimensions in the MoCap
data
mcreverse reverse dimensions of MoCap data
mcresample resample MoCap data
mcrepovizz export MoCap structure as repoVizz files
mcc3d2tsv convert a c3d file into a tsv file
mcwritetsv save MoCap structure as tsv file
COORDINATE mccenter center MoCap data to have a mean of [0 0 0]
TRANSFORMATIO
N mctranslate translate MoCap data
mcrotate rotate MoCap data

14

MoCap Toolbox Manual

rotate MoCap data to have a frontal view with

mc2frontal)
respect to a pair of markers
. convert a MoCap structure vector to a MoCap
mcvect2grid i .
structure with three orthogonal views
o . initialize parameters for marker-to-joint
mcinitm2jpar)
mapping
mcm2 perform a marker-to-joint mapping
COORDINATE ivio initialize parameters for joint-to-segment
SYSTEM mcinitj2spar (e
CONVERSION
mcj2s perform a joint-to-segment mapping
mcs2j perform a segment-to-joint mapping
mcsZposture create a posture representation form segm data
mcnorm calculate the norms of Euclidean MoCap data
mctimeder estimate time derivatives of MoCap data
mctimeintegr estimate time integrals of MoCap data
i calculate the cumulative distance traveled by
mccumdist
each marker
mcmarkerdist calculate the distance of a marker pair
mcboundrect calculate the bounding rectangle
SNELANTE mccomplexit Iculate th lexity of t
ANALYSIS p y calculate the complexity of movemen
mcfluidity calculate the fluidity/circularity of MoCap data
mcrotationrange calculates rotation range between two markers
mcsegmangle calculate the angles between two markers
mcperiod estimate period of MoCap data
decompose kinematic variable into tangential
mcdecompose
and normal components
mcspectrum calculate amplitude spectrum of MoCap data
mcgetsegmpar return segment parameters of a body model
KINETIC S e e Estclimate instantaneous kinetic energy of the
ANALYSIS o

15

MoCap Toolbox Manual

estimate instantaneous potential energy of the

mcpotener
P gy body
mcmean calculate mean of MoCap data
mcstd calculate std of MoCap data
mcvar calculate variance of MoCap data
TIME-SERIES
mcskewness
ANALYSIS calculate skewness of MoCap data
mckurtosis calculate kurtosis of MoCap data
mcstatmoments calculate first four statistical moments
mcwindow perform windowed time-series analysis
mcplottimeseries plot time series data
mcplotphaseplane create phase plane plot
mcinitanimpar initialize animation parameters
. | create connection matrix for plotting and
mccreateconnmatrix .
VISUALIZATION S
mcplotframe plot frames from MoCap data
mcanimate make an animation
mcsimmat calculate similarity matrix
mcmocapgram plot mocapgram
mcpcaproj perform a PCA on MoCap data
mcicaproj perform an ICA on MoCap data
PROJECTION perform either an m-best or a small-to-large
mcsethares
Sethares transform
mceigenmovement generate eigenmovements from PCA
mcbandpass band pass filter MoCap data
mchilbert perform a Hilbert transform
OTHER
mchilberthuang perform a Hilbert-Huang transform
mcfilteremg filter emg data

16

MoCap Toolbox Manual

Data Structures

The MoCap Toolbox uses three kinds of data structures: the MoCap data structure, the norm data
structure and the segm data structure. An instance of a MoCap data structure is created by the func-
tion mcread, when motion capture data is read from a file to the workspace. The MoCap data
structure contains the recorded locations of the markers as well as some basic information, such as
the name of the file from which the data were read, the number of frames in the data, the number of
cameras used in the capture session, the number of markers in the data, the sampling frequency, or
frame rate, of the data, the names of the markers. The .data field of the MoCap data structure is a
matrix containing the locations of the markers. It has three columns for each marker, corresponding
to the two horizontal dimensions (1st and 2nd column) and the vertical dimension (3rd column). For
instance, column 1 contains the x coordinates of marker 1, column 2 contains the y coordinates of
marker 1, column 3 contains the z (vertical) coordinates of marker 1, column 4 contains the x coor-
dinates of marker 2 etc. Each row in the matrix corresponds to a frame. Additionally, the MoCap
data structure contains a field that indicates the order of time differentiation of the data, with zero
corresponding to location, one to velocity, two to acceleration etc. The value of this field is changed
by the functions mctimeder and mctimeintegr that perform temporal derivation and integration,
respectively. Finally, the MoCap data structure contains fields that can hold data captured from ana-

log devices, such as EEG, GSR, etc.

An instance of a MoCap data structure is also created when the function mcm2j is called. This
function performs a transformation from a marker representation to a joint. While these two repre-
sentations use the same data structure, they are conceptually different in the sense that the marker
representation is related to actual marker locations, whereas the joint representation is related to lo-
cations derived from marker locations. This representation is helpful when we wish to calculate the
location of a body part where it is impossible to attach a marker. For instance the midpoint of a joint

can be derived as the centroid of four markers located around the joint.

The norm data structure, created by the function mcnorm, is similar to the MoCap data structure,
except that its .data field contains only one column per marker. This column holds the Euclidean
norm of the vector data from which it was derived. If, for instance, the function mcnorm is applied
to velocity data, the resulting norm data structure holds the magnitudes of velocities, or speeds, of

each marker.

17

MoCap Toolbox Manual

While the MoCap and norm data structures are related to points in space (markers or joints), the
segm data structure contains data about segments of the body. The function mcj2s, which carries
out a transformation from a joint representation to a segment representation, produces as output an
instance of the segm data structure. The segm data structure contains most of the fields of the Mo-
Cap data structure. The .data field of the MoCap data structure is however replaced by a few
other fields. The .parent field contains information about the kinematic chains of the body, in
other words, how the joints are connected to each others to form segments, and how these segments
are connected to each other. The location and orientation of the center of the body (the root) is con-
tained in the fields .roottrans and .rootrot. The .segm field contains several subfields that
store the orientation of the body segments in various forms. The .eucl subfield contains for each
segment the euclidean vector pointing from proximal to distal joint of the segment. The .r sub-
field contains the length of each segment. The .quat subfield contains the rotation of each seg-
ment as a quaternion representation (to learn about the use of quaternions to represent 3D rotations,

see for instance http://en.wikipedia.org/wiki/Quaternion). Finally, the .angle subfield holds the

angle between each segment and its proximal segment.

A more detailed description of the data structures used in the MoCap Toolbox can be found in the

Chapter Data and Parameter Structure Reference.

Parameter structures

To facilitate the converting between different representations (marker, joint, and segment) and the
producing of certain visualizations, the MoCap Toolbox uses three different parameter structures:

the m2jpar, j2spar, and animpar structures.

The m2jpar structure is used by the function mcm2j and contains information needed to carry out a
transformation from a marker representation to a joint representation. Among other things, it con-
tains a field that holds, for each joint, the numbers of the markers whose centroid defines the loca-

tion of that joint.

The j2spar structure is used by the function mcj2s and contains information needed to carry out a
transformation from a joint representation to a segment representation. Among other things, it con-
tains the number of the joint that is the center (root) of the body. It also contains the numbers of

three joints that define the frontal plane of the body. Finally, it contains a vector that indicates the

18

http://en.wikipedia.org/wiki/Quaternion

MoCap Toolbox Manual

parent segment (the segment proximal in the kinematic chain) for each segment and a cell array

with the segment names.

The animpar structure is used by the functions mcplotframe and mcanimate, and holds informa-
tion needed to create frame plots and animations. These include, for both frame plots and anima-
tion, the limits of the plotted area, screen size, viewing angle, plotting colors, marker size, line
widths, and connections between markers. Additionally, the structure holds the possibility to plot

traces and the frames per second used when creating animations.

A more detailed description of the parameter structures used in the MoCap Toolbox can be found in

the Chapter Data and Parameter Structure Reference

Add-ons and extensions

Periodic quantity of motion

Functions that estimate and plot the periodic quantity of motion have been implemented by Federi-
co Visi and Rodrigo Schramm. These functions can be downloaded from the mocap toolbox down-
load page, section “Extensions”. To use the function, download the zip-folder and extract it either to
the toolbox folder or to another folder that your Matlab distribution can access. A demo explaining
the use of the functions is included in the package. For more information and support please contact

Federico or Rodrigo and have a look at the following publication:

Visi, Federico, Schramm, Rodrigo and Miranda, Eduardo. Gesture in Performance with Traditional Musical
Instruments and Electronics: Use of Embodied Music Cognition and Multimodal Motion Capture to Design
Gestural Mapping Strategies. Proceedings of the International Workshop on Movement and Computing.
MOCO '14, p. 100-105, ACM, Paris, 2014.

Realtime streaming of mocap data
A solution for realtime streaming of mocap data from the mocap toolbox has been implemented by
Kristian Nymoen. It allows playback of synchronized sound and motion capture data, as well as

looping, scrubbing, etc. You can visualise the data in 3D while interacting with the visualisation.

The visualisation and GUI is implemented in Max 6, and a standalone application for Mac is also

included (meaning that it is not necessary to have Max installed). The files can be downloaded from

http://www.fourms.uio.no/software/mertanimate/.

If somebody wants to have this running on Windows, it should work in theory, but you will have to

have Max installed, and download the necessary dependencies (listed in the readme file).

19

mailto:federico.visi@plymouth.ac.uk?subject=
mailto:rodrigo.schramm@gmail.com?subject=
http://www.fourms.uio.no/software/mcrtanimate/

MoCap Toolbox Manual

The implementation requires the Instrument Control Toolbox for Matlab (http://www.mathworks.se/
products/instrument/). A workaround without this Toolbox is under development and will be pro-

vided soon.

This is still a prototype implementation, so please provide feedback (suggestions, new features, ...)

to Kristian.

20

http://livepage.apple.com/
mailto:kristian.nymoen@imv.uio.no?subject=

MoCap Toolbox Manual

21

MoCap Toolbox Manual

This chapter contains a number of examples that are intended to serve as an introduction to the use
of the MoCap Toolbox. The examples illustrate how MoCap data can be read into Matlab, edited,
visualized, and transformed. They also explain how kinematic, kinetic, as well as time-series analy-
sis can be performed and how animations can be created. Finally the chapter contains an example of

the analysis and visualization of data captured using the Nintendo Wii remote controller.

The examples presented in this chapter can also be found in the function mcdemo. Just type mcdemo

in the Matlab Command Window and follow the instructions.
Reading, Editing, and Visualizing MoCap Data (mcdemol)

This example shows how you can read MoCap files into Matlab as well as how you can edit and
visualize the data. Motion capture data can be imported into Matlab and stored as a MoCap data
structure using the function mcread. Currently the function supports the generic .c3d format,
the .zsv format produced by the Qualisys motion capture system, the .mat format produced by the
Qualisys motion capture system, and the .wii file format. produced by the WiiDataCapture software

(available at www.jyu.fi/music/coe/materials/mocaptoolbox)

The MoCap toolbox folder includes the .mat file mcdemodata.mat that contains motion capture
data and associated parameter structures as Matlab variables. These data are used in the examples of

this manual. The commands used in the demo files are marked in dark green.

load mcdemodata

whos
Name Size Bytes C(lass Attributes
dancel 1x1 1013572 struct
dance2 1x1 1013572 struct
j2spar 1x1 2168 struct
japar 1x1 2530 struct
m2jpar 1x1 3464 struct
mapar 1x1 2914 struct
walkl 1x1 241862 struct
walk2 1x1 275474 struct
wiidata 1x1 45560 struct

Variable walkl is a MoCap data structure:

walkl

22

http://www.jyu.fi/music/coe/materials/mocaptoolbox

walkl =
type:
filename:
nFrames:
nCameras:
nMarkers:
freq:
nAnalog:
anafFreq:
timederOrder:
markerName :
data:
analogdata:

other:

Let us look if there are any missing data in the variable walk1:

[mf, mm, mgrid] =

figure, set(gcf, 'Position',[40 200 560 420])

'MoCap data’
'28-Karolien-Walking.tsv'
351

8

28

60

0

0

0

{28x1 cell}
[351x84 double]

]
[1x1 struct]

mcmissing(walkl);

MoCap Toolbox Manual

subplot(3,1,1), bar(mf), xlabel('Marker'), ylabel('Num. of Missing frames')

subplot(3,1,2), bar(mm), xlabel('Frame'), ylabel('Num. of Missing markers')

subplot(3,1,3), imagesc(-mgrid'), colormap gray, xlabel('Frame'),

ylabel('Marker"')

zzo
&

Mo of Marng maten ju. of

-
“
T

t s i is i n
Mot o
14 5‘. ". ".. N 2“0 ‘5‘. “an
Frwne
—
) T b i)))
Frave

Markers 2 and 6 have missing frames. The missing data can be filled using the function mcfill-

gaps:

23

MoCap Toolbox Manual

walkl = mcfillgaps(walkl, 100);

[mf, mm, mgrid] = mcmissing(walkl);

subplot(3,1,1), bar(mf), xlabel('Marker'), ylabel('Num. of Missing frames')
subplot(3,1,2), bar(mm), xlabel('Frame'), ylabel('Num. of Missing markers')
subplot(3,1,3), imagesc(-mgrid'), colormap gray, xlabel('Frame'),...
ylabel('Marker"')

!l

!o

§ s 0 “E; i F3 W
il v v v

!o

& W T) ha'i o N —T)
:

The variable walkl has no more missing frames.

Marker location data can be plotted as a function of time using the function mcplottimeseries:

mcplottimeseries(walkl, 3, ‘dim’, 3) % marker 3, dimension 3

Marker 3, dm 3

- S
e s
i

1550 +

24

mcplottimeseries(walkl, [4 8 12], ‘dim’, 3, ‘timetype’, 'frame')

% markers 4,8, & 12, dimension 3, frames on x-axis
] v’ , -
DRSNS

AT ATV,

mcplottimeseries(walkl, [4 8 12], ‘dim’, 3, ‘plotopt’, ‘comb’)

% markers 4, 8, & 12, dimension 3, combined into one plot

mcplottimeseries(walkl, [4 8 12], 'dim', 3, 'label', 'mm', 'names', 1)
% markers 4, 8, & 12, dimensions 1:3, label on y-axis set, marker names in-

stead of numbers

25

MoCap Toolbox Manual

mcplottimeseries(walkl, {'Head_BR', 'Sternum', 'Hip_BR'}, ‘dim’, 1:3)

% using marker names instead of numbers in function call, dimensions 1:3

Marker locations in single frames can be plotted using the function mcplotframe. This function

plots the (x,z) projection of the markers:

mcplotframe(walkl, 160);

26

MoCap Toolbox Manual

Because the parameter structure was not given in the previous call, the function used the default set-

tings for the animation parameters:

mcinitanimpar

ans =

type:
scrsize:
limits:

az:

el:

msize:
colors:
markercolors:
conncolors:
tracecolors:
numbercolors:
cwidth:
twidth:

conn:

conn2:

trm:

trl:
showmnum:

numbers:

"animpar’
[800 600]
[]
0
0
12

kwwww '

L]
L]
[

L]
1

1
[]
[]

L]
0

0
[

27

showfnum:
animate:

fps:

output:
videoformat:
createframes:
getparams:
perspective:

pers:

0
0
30

[1x1 struct]

MoCap Toolbox Manual

To obtain a visualisation that is easier to understand, the markers should be connected. The variable

mapar contains, among other things, the connection matrix:

mapar

mapar =

type:
scrsize:
limits:

az:

el:

msize:
colors:
markercolors:
conncolors:
tracecolors:
numbercolors:
cwidth:
twidth:

conn:

conn2:

trm:

trl:
showmnum:
numbers:

showfnum:

'animpar’
[400 300]
[

0

0

6

" kwwww '
L]

[

[]

L]
1

1
[43x2 double]
L]

L]
0

0

[
0

28

videoformat:

animate: 0

fps: 30
output: ‘tmp

createframes: 0

getparams: @

perspective: 0

The connection matrix is in the field .conn:

pers: [1x1 struct]

mapar.conn'

ans =
Columns
1
2
Columns
8
10
Columns
7
6
Columns
18
20
Columns
24
27

It also has a smaller screen size than the default:

1 through 10

2 3 3 5
4 4 1 6
11 through 20

8 8 5 5
5 6 9 11
21 through 30

5 13 13 16
13 15 16 19
31 through 40

9 11 10 12
21 21 22 22

41 through 43
27 28
28 24

mapar.scrsize

ans =

400

300

10

10

15
19

21
23

10
12

12

14

23
25

11

12

11

14
17

25
26

11

12

14
18

26
23

MoCap Toolbox Manual

17
20

22
24

For the purpose of making the frame plots look nicer on this manual, let us increase the screen size:

mapar.scrsize = [800 600];

Using the parameter structure mapar, we get the following visualization:

29

MoCap Toolbox Manual

mcplotframe(walkl, 160, mapar);

We can add marker numbers to the plot by setting the field .showmnum to have the value 1:

mapar . showmnum = 1;

mcplotframe(walkl, 160Q, mapar);

Different colors can be used by changing the value of the field .colors:

mapar.colors="wbgcr';
mcplotframe(walkl, 160, mapar);
Changing individual marker, connector, and number colors is explained in section Colored anima-

tions.

30

MoCap Toolbox Manual

The connector widths and marker sizes can be adjusted by changing the values of the

fields .cwidth and .msize, respectively:

mapar.cwidth = 3;
mapar.msize=6;

mcplotframe(walkl, 160, mapar);

The viewing azimuth and elevation can be changed by changing the values of the fields .az

and .el, respectively:

mapar . az

45;

mapar.el = 20;

mcplotframe(walkl, 160, mapar);

31

MoCap Toolbox Manual

Transforming MoCap data (mcdemo?2)

This example shows how you can do various coordinate transformations to MoCap data and merge

data collected at different motion capture sessions. Let us plot a motion-capture frame:

load mcdemodata
mapar.scrsize=[800 600];
mapar.colors = "wkkkk";

mcplotframe(dancel, 50, mapar);

|
K
| ‘-.
[k
.
' ’s

Let us next rotate the data contained in the variable dancel by 90 degrees counterclockwise

around the z (vertical) axis and plot the same frame:

32

MoCap Toolbox Manual

dlrotl = mcrotate(dancel, 90, [0 0 1]);
mcplotframe(dlrotl, 50, mapar);

..

—¢

<
N A\
’ -
. o
b .

Next, let us rotate the data in dancel by 90 degrees counterclockwise around the x axis:

dlrot2 = mcrotate(dancel, 90, [1 0 @]);
mcplotframe(dlrot2, 50, mapar);

Finally, let us rotate the data in dancel by 90 degrees counterclockwise around the y axis:

dlrot3 = mcrotate(dancel, 90, [0 1 0]);
mcplotframe(dlrot3, 50, mapar);

33

MoCap Toolbox Manual

To add data from several MoCap data structures to one visualization, the functions mctranslate

and mcmerge are useful:

all = dancel;

% translate 'dlrotl' 2000 mm to the right and merge with 'all’

% merge also the parameter structures

Lall, allparams] = mcmerge(all, mctranslate(dlrotl, [2000 @ 0]),...
mapar, mapar);

% Same with 'dlrot2' and 'dlrot3', but with different translations
[all, allparams] = mcmerge(all, mctranslate(dlrot2, [0 @ 2000]),...
allparams, mapar);

Lall, allparams] = mcmerge(all, mctranslate(dlrot3, [2000 @ 2000]),...
allparams, mapar);

Next, let us plot one frame from the merged data:

allparams.msize=6;

mcplotframeCall, 50, allparams);

34

dl = mctrim(dancel, 0, 2);
d2 = mctrim(dance2, 0, 2);
d2 = mctranslate(d2, [2000 @ 0]);

[d, par] =
mcplotframe(d, 6@, par);

i

mcplotframe(d, 1:10:71, par);

35

MoCap Toolbox Manual

Let us now take excerpts from the variables dancel and dance2 and merge them for visualization

mcmerge(dl, d2, mapar, mapar);

-
- ..D

Several frames can be plotted with one command by using a vector as the second parameter

MoCap Toolbox Manual

‘. e .4 e . . ‘. ‘“

-t - o - - 2 - - - - O
3 e % e % ke - re
R W R e W, & i

. 103 } -
lru ‘: n‘ }lf. ‘:l j.n ‘. .r. ‘?n
- - - v - - - - - o

(In Matlab the frames will be plotted as separate figures.)

Chapter Creating Animations explains how these frames can be used to create an animation.

Kinematic analysis (mcdemo3)

This example shows how you can estimate kinematic variables from MoCap data and visualize

them.

Time derivatives of motion-capture data can be estimated using the function mctimeder:

load mcdemodata
d2v
d2a

mctimeder(dance2, 1); % velocity

mctimeder(dance2, 2); % acceleration
Let us have a look at the vertical velocity component of markers 1, 19, and 25 (left front head, left
hand, and left foot):

mcplottimeseries(d2v, [1 19 25], ‘dim’, 3)

36

MoCap Toolbox Manual

“'I.-.S

Plsl."‘ﬂr\hﬂ fv wm‘r I 1'“! f\l f&l\ﬂlﬂlrhﬂﬁ(l”ll “NJMHJ

mll‘)

A] b
\A \\ | r“ I A A [\l A f,f ' Ly AR I
A Vv L S l')'! Lu»u’q_," i~ \ 'IJr"n.p'\uI“ V1l

aom | L v Vi {

i % it)
;41. \,,f,««, e a \‘ J;, w«,u-

The subplots display the vertical velocities of markers 1, 19, and 25, from top to bottom.
Next, let us plot the vertical acceleration components of the same markers:

mcplottimeseries(d2a, [1 19 25], ‘dim’, 3)

"“.:,r.;,;v\g‘u il um W' ! ’i h!,JlrU\r. il M

-
T

2t) . f -
'~'\~'""4‘.,J'LI |"‘|‘ \r’fl J‘Jm\‘r "' l\‘ I' Jl{l\rwl_f)'nrlj“' ‘(l"w' J \|J‘,1l J'b“.'f‘\l‘ “ fu
-2

3 % it 3
Mader 2% dm 3

Wn%w N'M %ww‘»

The phase plane plots for velocity and acceleration can be produced as follows:

figure, set(gcf, 'Position',[40 40 200 800])
% change the shape of the figure to make the subplots rectangular
mcplotphaseplane(d2v, d2a, [1 19 25], 3)

This figure is below on the left.

The same phase plane plot, but for the interval between 5 and 7 seconds can be produced as fol-

lows:

37

MoCap Toolbox Manual

mcplotphaseplane(mctrim(d2v,5,7), mctrim(d2a,5,7), [1 19 25], 3)

This figure is below on the right.

s&‘ -
gg_ 88

- - N -

L

100
15000
W4N-\N. 200 400

The cumulative distance tavelled by a marker can be calculated with the function mccumdist.

d2dist=mccumdist(dance2);
Let us have a look at the distance travelled by markers 1, 19, and 25 (left front head, left hand, and

left foot):

mcplottimeseries(d2dist, [1 19 25])

38

MoCap Toolbox Manual

Mt !
10000 -
som -
T s 0 3 3
0 Matw 15
of — — — —
S
] +
0% : 13 " o
Nacter 2%
10000 -
)
% 3 M e R

As we can see, the head has travelled ca. 13 meters, the hand ca. 33 meters, and the foot ca. 11 me-

ters.

Periodicity of movement can be estimated using the function mcperiod. Let us estimate the period-

icity of the movement of marker 1 (left front head) in the three dimensions.

d2ml = mcgetmarker(dancez, 1);

[per, ac, eac, lag] = mcperiod(d2ml, 2); % maximal period=2 sec

per
per =
NaN NaN 0.5167

There is thus no periodic movement along the horizontal dimensions (dimensions 1 and 2), but a

period of 0.51 seconds in the vertical direction.
The autocorrelation function for the vertical location of marker 1 looks like this:

plot(lag, ac(:,3)), xlabel('Period / secs')

39

MoCap Toolbox Manual

5

(L]

45

Pernod ! secs

The first maximum at non-zero lag can be found at 0.51 secs, corresponding to the previous result.

The enhanced autocorrelation function for the same data looks like this:

plot(lag, eac(:,3)), xlabel('Period / secs')

L

s

LA S

L] S | \‘

02

Perod ! secs

Again, there is a clear maximum at the period of 0.51 secs.

More accurate periodicity analysis can be done using windowed autocorrelation:

[per, ac, eac, lags, wtime] = mcwindow(@mcperiod, d2ml, 2, 0.25);
Let us plot the periodicity estimates for the vertical dimension for each of the windows

plot(wtime, per(:,3))

xLlabel('Time / secs')

ylabel('Period /secs')

40

MoCap Toolbox Manual

(L)

"
«

After displaying some initial transients, the period settles at the vicinity of 0.5 secs.

The enhanced autocorrelation matrix can be plotted as an image to allow visual inspection of the
time development of periodicity. The colors provide an indication of the regularity of periodic

movement, with warm colors corresponding to regions of highly regular periodic movement.

imagesc(eac(:,:,3)), axis xy

set(gca, 'XTick',0:4:46)

set(gca, 'XTickLabel',0.5*%(0:4:46))
set(gca, 'YTick',[@ 30 60 90 120])
set(gca, 'YTickLabel',[0 0.5 1 1.5 2.0])
xLlabel('Time / secs')

ylabel('Period /secs')

Yo ! sacs

41

MoCap Toolbox Manual

Time-series analysis (mcdemo4)

This example shows how you can perform various statistical analyses on time-series data using the

functions provided in the MoCap toolbox.

The first statistical moments, mean, standard deviation, skewness, and kurtosis, can be calculated
using the functions mcmean, mcstd, mcskewness, and mckurtosis, respectively. These func-
tions ignore eventual missing frames. The function mcstatmoments can be used to calculate these

statistical moments with one function call.

Standard deviations provides a measure for the extent of movement. Let us calculate the standard
deviations for the markers 1, 19, and 25 (left front head, left hand, and left foot) in the MoCap data

structures dancel and dance2:

load mcdemodata

stdl = mcstd(mcgetmarker(dancel, [1 19 25]));

std2 = mcstd(mcgetmarker(dance2, [1 19 251));

figure, set(gcf, 'Position',[40 200 560 4207])
subplot(2,1,1)

bar(reshape(stdl,3,3)), xlabel('Dimension")
legend('Head', 'Hand', 'Foot'), axis([-Inf Inf @ 400])
title('dancel')

subplot(2,1,2)

bar(reshape(std2,3,3)), xlabel('Dimension")
legend('Head', 'Hand', 'Foot'), axis([-Inf Inf @ 400])
title('dance2')

42

MoCap Toolbox Manual

darcel

- 3
Ownension
el
x» H -
. H]
v ensen

The standard deviations for the dimensions 1 and 2 are larger for dancel than for dance2, sug-

@

gesting that dancer 1 occupies a larger area horizontally. The standard deviation for dimension 3 for
the hand marker is larger for dancel, suggesting that dancer 1 uses larger vertical hand movements

than dancer 2.

Let us calculate and plot the skewness values for the vertical dimension of selected markers in vari-

ables dancel, dance2, walkl and walk2.

marker = [1 9 19 21 25];

dlskew = mcskewness(mcgetmarker(dancel, marker));
wlskew = mcskewness(mcgetmarker(walkl, marker));
d2skew = mcskewness(mcgetmarker(dance2, marker));
w2skew = mcskewness(mcgetmarker(walk2, marker));

mn = mcgetmarkername(dancel);

subplot(2,2,1)

bar(dlskew(3:3:end)), set(gca, 'XTickLabel', [mn{marker}])
title('dancel’), axis([-Inf Inf -2 3])

subplot(2,2,2)

bar(d2skew(3:3:end)), set(gca, 'XTickLabel', [mn{marker}])
title('dance2'), axis([-Inf Inf -2 3])

subplot(2,2,3)

bar(wlskew(3:3:end)), set(gca, 'XTickLabel', [mn{marker}])
title('walkl'), axis([-Inf Inf -2 31)

subplot(2,2,4)

43

MoCap Toolbox Manual

bar(w2skew(3:3:end)), set(gca, 'XTickLabel', [mn{marker}])
title('walk2'), axis([-Inf Inf -2 3])

darxel tarcel

3 }

2 2

‘ ' .

B — [

-1 1

54 2

MI_'LN'JL Peger_LEnee_LPrkoe L ‘kou_unp_n Freger_LEnee_LPrioe L
okt wab2

:__--‘ A=l

PR FL Frger_ L L Prise_L Hen UM FL Frger_Lines L Prise_L

There are some differences between dancing and walking with respect to the skewness values. The

interpretation of these differences will be left to the user.

Windowed analysis of the statistical time-series descriptors can be carried out using the mcwindow
command. Let us compute the windowed standard deviation of markers 1, 19, and 25 (left front

head, left hand, and left foot) in the variable dancel:

marker = [1 19 25];
dlstd=mcwindow(@mcstd, mcgetmarker(dancel, marker), 2, 0.25);
for k=1:9
subplot(3,3,k), plot(dlstd(:,k)),
title(['Marker ' numZ2str(marker(1+floor((k-1)/3)))...
',odim. " numZ2str(1+rem(k-1,3))1)

end

44

MoCap Toolbox Manual

Maker 1, & | Maker |, dm 2 Maker 1, & 3
1% b “w
A
‘ ']
1% 4 \" bad |] “ “‘
aal 1A e / » (|
S ANUEY TV [I/ ‘
T A e Y ¥ 2 Ak
% w w % 0
Mader 19, 3 1 Marter 19, Gen 2 Mader 19, g 3
m 150 w
af il
1% 1] el A 40 Yl "\-I ‘
A A f LA ol VYl Yy
v\ i) \ N i ¥] |
b :\ '\‘ | 10 ‘.I ‘ | »l/ . ’
)
% w % - ()
Madar 25, @ 4 Masker 25, o 2 Mador 25, dn)
b0 150 "
|
i W el r "
19 “ \‘ | ‘ | I\ A -"
“ ‘ [| ° ‘] (1 [‘ s ‘ | J' .1 l| ‘ [
| ¥ \ \ ’
% w % w %)

High values in these graph correspond to temporal regions where the particular marker shows wide

movements for the respective dimension.

Kinetic analysis (mcdemo5)

This example shows how the toolbox can be used to calculate kinetic variables from MoCap data

using Dempster's body-segment model.

Let us estimate various forms of mechanical energy in walking movement (variable walkl). To

start with, we plot a MoCap frame with marker numbers:

load mcdemodata
mapar.colors = 'wkkkk';
mapar . showmnum = 1;
mapar.msize=6;
mapar.az=90;

mcplotframe(walk2,16@, mapar);

45

MoCap Toolbox Manual

. ‘:
r\» 4 1
1
/ \
I ‘
A T
b ¥ T\
} -
5
ol
'5
& &

The first thing to do is to reduce the set of markers to make the data compatible with Dempster's
model. This can be accomplished using the marker-to-joint transformation, implemented in function
mcm2j. The parameters needed for this conversion are in the variable m2jpar:

m2jpar
m2jpar =

type: 'm2jpar’
nMarkers: 20
markerNum: {1x20 cell}
markerName: {1x20 cell}

The information concerning which markers correspond to each joint is contained in the field m2j-

par.markerNum. The names of the new joints are in m2jpar.markerName. For instance, ...

m2jpar.markerName{1}
ans =

root

m2jpar.markerNum{1}
ans =

9 10 11 12

... the joint 'root' is obtained by calculating the centroid of markers 9, 10, 11 and 12
The marker-to-joint conversion is carried out as follows:

walk2j = mem2j(walk2, m2jpar)

46

walk2j =

type:
filename:
nFrames:
nCameras:
nMarkers:
freq:
nAnalog:
anafFreq:
timederOrder:
markerName :
data:
analogdata:

other:

'"MoCap data'
'25-Walking.tsv'
401

8

20

60

0

0

0

{1x20 cell}
[401x60 double]

]
[1x1 struct]

MoCap Toolbox Manual

The parameters for the visualization of the joint representation are in the variable japar:

japar

japar =

type:
scrsize:
limits:

az:

el:

msize:
colors:
markercolors:
conncolors:
tracecolors:
numbercolors:
cwidth:
twidth:

conn:

conn2:

trm:

trl:

"animpar'
[400 300]
[

0

0

6

" kewwww '
[

L]

[

L]
1

1
[19x2 double]
L]

L]
0

47

MoCap Toolbox Manual

showmnum: @
numbers: []
showfnum: @
animate: 0
fps: 30
output: ‘tmp’
videoformat: ‘avi’
createframes: 0
getparams: 0
perspective: 0
pers: [1x1 struct]

Let us visualize a frame from the new variable walk2j with marker numbers visible:

japar.colors = "wkkkk';
japar.scrsize = [800 600];
japar.showmnum = 1;
japar.msize=6;
japar.az=90;

mcplotframe(walk2j,160, japar);

L

.

The next step is to make a joint-to-segment transformation. The parameters needed for the trans-

formation are in the variable j2spar:

j2spar =
type: 'j2spar'

rootMarker: 1

48

MoCap Toolbox Manual

frontalPlane: [6 2 10]
parent: [0 1234167 8110 11 11 13 14 15 11 17 18 19]
segmentName: {1x19 cell}

The transformation can be accomplished using the function mcj2s:

walk2s = mcj2s(walk2j, j2spar)

The parameters for each body segment can be obtained using the function mcgetsegmpar:

segmindex = [0 0 8 76 08 76 13 12 10 11 3 2 1 11 3 2 1];

spar = mcgetsegmpar('Dempster', segmindex);
The second argument in the function call, segmindex, associates each joint in walklj and
walkls with a segment type. The numbers refer to the distal joint of the respective segment. Joints
that are not distal to any segment have zero values. Segment number values for model 'Dempster’
are as follows: no parameter=0, hand=1, forearm=2, upper arm=3, forearm and hand=4, upper ex-
tremity=5, foot=6, leg=7, thigh=8, lower extremity=9, head=10, shoulder=11, thorax=12, ab-
domen=13, pelvis=14, thorax and abdomen=15, abdomen and pelvis=16, trunk=17, head, arms and
trunk (to glenohumeral joint)=18, head, arms and trunk (to mid-rib)=19. For instance, the third

component, 8, tells that the body segment whose distal joint is joint number 3, is a 'thigh'.

Now that we have a body-segment representation of the movement, we can estimate various kinetic

variables. The potential energy for each body segment can now be calculated as follows:

pot = mcpotenergy(walk2j, walk2s, spar);
The resulting variable pot is a matrix where each column corresponds to one of the body seg-
ments. Let us plot the total potential energy as a function of time:

time = (1:walk2.nFrames)/walk2.freq;

plot(time, sum(pot,2))

xLlabel('Time / s')

ylabel('Potential energy / W')

49

MoCap Toolbox Manual

n

L O

“ v
\]
“s
|
M. [H 3 4 § L !
Tt ! s

We can see a relatively regularly oscillating pattern, with the exception of the region between 3.0

and 4.5 seconds, where the walker turns around.
The translational and rotational energy for each body segment can be calculated as follows:

[trans, rot] = mckinenergy(walk2j, walk2s, spar);

Let us plot the total translational energy:

plot(time, sum(trans,2))
xlabel('Time / s')
ylabel('Translational energy / W')

Tourdnbon e et eegy (W
b4

2

We can observe a region of low translational energy in the region between 3.0 and 4.5 seconds,

where the walker is turning.

50

MoCap Toolbox Manual

Creating animations (mcdemo6 - mcdemo9)

Basics (mcdemo6)

This example shows how you can create animations with the MoCap toolbox.

You can either produce an animation video (.avi or .mp4 format) or animation frames (single .png
files) with the MoCap toolbox. The frames would have to be compiled into a movie using some
other software. On a Macintosh you can use, for instance, the QuickTime Pro software. Should you

happen to use the Windows operating system, you can use, for instance the Movie Maker software.

Let us create an animation from the variable walk2. The animpar structure mapar contains the

connector information for this variable:

load mcdemodata
mapar
mapar =
type: 'animpar'

scrsize: [400 300]

limits: []
az: @
el: 0
msize: 6

colors: "kwwww'
markercolors: []
conncolors: []
tracecolors: []

numbercolors: []

cwidth: 1
twidth: 1
conn: [43x2 double]
conn2: []
trm: []
trl: @

showmnum: @
numbers: []

showfnum: 0

51

MoCap Toolbox Manual

animate: @
fps: 30
output: ‘tmp’
videoformat: ‘avi’

createframes: 0

getparams: @

perspective: 0
pers: [1x1 struct]

Let us change the frames-per-second value to 15

mapar.fps = 15;
The animation will be stored into the current directory with the filename tmp.avi. If needed, the

current directory should be changed before creating the animation.
The animation is produced as follows:

newpar = mcanimate(walk2, mapar);
If you wish to plot consecutive frames (png files) instead of creating a video file, set the animation

parameter createframes to 1:

mapar.createframes = 1;

You will then find the png files in a folder called tmp in the current directory.

Merging data for animations (mcdemo?7)

The next example shows how MoCap data from different sessions can be combined into the same
animation. It also shows how the viewing angle can be changed dynamically. Let us create a 10-
second animation with two dancers and a dynamically moving viewing angle. The variable dancel

has some missing frames, so we shall fill them first.

dancel = mcfillgaps(dancel);
Next, we extract the first ten seconds from the variables dancel and dance2:

dl = mctrim(dancel, 0, 10);
d2 = mctrim(dance2, 0, 10);

We make the viewing azimuth change dynamically from zero to 180 degrees and the elevation an-

gle from 45 to -45 degrees during the animation:

mapar.az = [0 180];

mapar . el [45 -45];

52

MoCap Toolbox Manual

We set the movie to have 15 frames per second and give a name for the file:

mapar.fps = 15;

mapar.output = 'twodancers';
The next step is to translate the data in d2 by two meters to the right and merge this with the data
in di:

[d, par] = mcmerge(dl, mctranslate(d2, [2000 @ @]), mapar, mapar);

Next, if needed, we change the current directory. Now we are ready to create the animation frames.

newpar = mcanimate(d, par);

There should be now a file called twodancers.avi in the current directory.

Colored animations (mcdemo8)

This example shows how to color plots and animations.

We will create a colored animation from the variable dance2. The animpar structure mapar looks

like this:

load mcdemodata
mapar
mapar =
type: 'animpar'

scrsize: [400 300]

limits: []
az: @
el: 0
msize: 6

colors: "kwwww'
markercolors: []
conncolors: []
tracecolors: []

numbercolors: []

cwidth: 1
twidth: 1
conn: [43x2 double]
connZ: []
trm: []

53

trl:
showmnum:
numbers:
showfnum:
animate:
fps:
output:

videoformat:

createframes:
getparams:
perspective:

pers:

Let us change the frames-per-second value to 15

mapar.fps = 15;

b

[1x1 struct]

MoCap Toolbox Manual

Let us set individual colors for six markers (head front left, head back right, shoulder left, hip left

back, finger right, knee left, knee right, heel left)

mapar .markercolors="bwwgwrwwwwwywwwwwwmwcbwg ' ;

and let us have a look at the new colors:

mcplotframe(dance2, 150, mapar);

Now let us set the markers that we want to trace and the trace length (in seconds):

mapar.trm=[1 6 12 19 21 24];

MoCap Toolbox Manual
mapar.trl=3;
And let us set individual colors for the traces:

mapar.tracecolors="grymcb';

We rotate the figure to be frontal on average

dance2=mc2frontal(dance2,9,10);

Now we make the animation:

newpar = mcanimate(dance2, mapar);
For plotting a figure with traces, just select one frame that was calculated during the animation, for

instance frame number 100 of dance?2:

Perspective Projection (mcdemo9)

Next, the possibility of creating an animation with a perspective (three-dimensional) effect will be
explained. We will create a couple of animations of the walk2 data, with and without the perspec-
tive projection to see the differences. Let us load the mcdemodata and change a couple of parame-

ters of the animpar structure mapar

load mcdemodata
mapar.scrsize=[600 400];
mapar.msize=8§;
mapar . fps=15;

mapar.colors="wkkkk";

55

MoCap Toolbox Manual

And we also set the azimuth parameter in the animpar structure mapar, so that the walker will walk

towards us

mapar .az=270;
We do not want to create a video this time, but have a look at the separate frames (to better see the
differences in the projection), we set the createframes parameter accordingly and re-name the de-
fault file name, which will serve as the folder name now, into which the frames (i.e., png files) are

saved

mapar.createframes = 1;
mapar.output = ‘pers@’;

Now we create an animation out of that:

mcanimate(walk2, mapar);
If we have a look at the animation frames, the figure appears to walk on the spot, although she is

actually walking forwards. As an example, have a look at the 10th, 20th, and 40th frame:

e $3) .’."0
":!? Q’\? h,\/?
A1t LN a
¢ .i)| {4
ol ” a P

The idea of the perspective projection is to visualize that the figure is actually walking forward. To
activate the perspective projection, we set the perspective parameter in the animpar structure to 1
and call the mcanimate function again:

mapar.perspective = 1;

mapar.output = ‘persl’;

mcanimate(walk2, mapar);

This animation looks far more natural regarding the movement direction of the walker

56

MoCap Toolbox Manual

w 20 “©

il / 1
{ I ! .

The parameters for the perspective projection are set in the pers part of the animpar structure ma-

par

mapar.pers

mapar.pers =

c: [0 -4000 0]
th: [0 0 @]
e: [0 -2000 @]

The field c sets the 3D position of the camera, th is the orientation of the camera, and e stores
the viewer's position relative to the display surface. We can now change, for example, the camera

position and create another animation to see what happens.

mapar.pers.c = [1000 -4000 1000];
mapar.output = 'pers2';

mcanimate(walk2, mapar, 1);

10 20 40

57

MoCap Toolbox Manual

Principal Components Analysis (mcdemol0)

Principal components analysis can be used to decompose Motion Capture data into components that

are orthogonal to each other.
Let us extract the first four seconds from the structure dance2,

load mcdemodata
d=mctrim(dance2,0,4);
and convert it into a joint representation
j=mcm2j(d, m2jpar);
Next, we calculate the first three principal component projections of the structure j,

[pc,pl=mcpcaproj(j,1:3);

and plot the amount of variance contained in these principal components.

bar(p.1(1:3))

We see that the first PC contains ca. 85% of the variance, while the next two components contain

only 9% and 2%.
The PC projections can be investigated, for instance, by creating animations:

mcanimate(pc(l), japar);
The animations show that the principal component distort the body segment relations, in particular,
the lengths of certain body segments vary. Often better results can be obtained by performing the

PCA on the segment representation

s=mcj2s(j,Jj2spar); % convert to segment structure

58

MoCap Toolbox Manual
[pcs,ps]=mcpcaproj(s,1:3); % perform PCA
for k=1:3 % convert PC projections back to joint structures

pcj(k) = mcs2j(pcs(k), j2spar);

end

Next, let us plot the first three PC projections:

plot(ps.c(1:3,:)"), legend('PC1','PC2",'PC3")

(2] v v v ———
| !
e
(75 a)
4amt
00
o
200
400
A A A A
—-f- w0 100 1% m 2%

The plot reveals that the first PC correspond to non-periodic motion, while PCs 2 and 3 correspond
to (almost) periodic motion. Animation of pcj(k) shows that the first three PCs correspond to

translation of the body, periodic anti-phase movement of arms, and periodic rotation of torso.

Analyzing Wii data (mcdemoll)

The Nintendo Wiimote provides an inexpensive means for simple motion capture. This example
shows how movement data collected with the Nintendo Wii controller can be analyzed using the

MoCap Toolbox.

The MoCap Toolbox supports the file format used by the WiiDataCapture software, available at

www.]yu.fi/music/coe/materials.

In the file mcdemodata, the variable wiidata contains acceleration data captured using the Nin-

tendo Wii controller and the WiiDataCapture software:

load mcdemodata

59

http://www.jyu.fi/music/coe/materials

wiidata

wiidata =

type: 'MoCap data’

filename: 'data.wii'

nFrames: 1826
nCameras: []

nMarkers: 1

freq: 100
nAnalog: @
anafFreq: []

timederOrder: 2

markerName: {}

data: [1826x3 double]

analogdata: []
other: []

MoCap Toolbox Manual

As the field .timederOrder indicates, this variable holds acceleration data. Let us plot the third

(vertical) component of the acceleration data:

mcplottimeseries(wiidata,1l, ‘dim’, 3)

e AM'” |
2 [fe¥ | H b

.,‘ ’l l|]\ll c
ol JH |
| I ! . L N 3

The data is somewhat noisy, so we smoothen it a bit:

wd2 = mcsmoothen(wiidata,?25);

mcplottimeseries(wd2,1, ‘dim’,3)

60

MoCap Toolbox Manual

~II “!

\\” |nn

’M Il|"v |1|H
I

,Il' |I

;‘_"/JL\ . ”“w J

3 C R TR

Let us do a windowed analysis of the period of this acceleration component using a window length
of two seconds and a hop factor of 0.25:

[per, ac, eac, lags, wstart] = mcwindow(@mcperiod, wd2, 2, 0.25);
Next, let us plot the estimated period of the third component as a function of the starting point of
the window:

plot(wstart,per(:,3))

set(gcf, 'Position',[40 200 560 4207])

xLlabel('Time / s')
ylabel('Period / s')

1

LS

Percd [0

LAl

(233

L)

n

Tene ! s

We observe a periodic motion that starts with a period of ca. 0.2 seconds, slows down to a period of

ca. 1 second, and speeds again up to a period of ca. 0.2 seconds.

61

MoCap Toolbox Manual
A similar representation can be obtained by plotting the enhanced autocorrelation image:

imagesc(eac(:,:,3)), axis xy

set(gcf, 'Position',[40 200 560 420])
set(gca, 'XTick',0:2:32)

set(gca, 'XTickLabel',0.5*%(0:2:32))
set(gca, 'YTick',[1 51 101 151 2011)
set(gca, 'YTickLabel',[0 0.5 1 1.5 2.0])
xLlabel('Time / secs')

ylabel('Period /secs')

L L | 19 11 12 15 4 15 %
Yo ! sacs

62

MoCap Toolbox Manual

Data and Parameter
Structure Reference

63

MoCap Toolbox Manual

MoCap data structure

synopsis
Data structure for motion capture data. Created by the function mcread.

structure
type: structure type ('MoCap data')
filename: name of the file from where the data were read
nFrames: number of frames
nCameras: number of cameras
nMarkers: number of markers
freq: sampling frequency (frame rate) of motion data
nAnalog: number of analog devices
anaFreq: sampling frequency of analog data
timederOrder: order of time differentiation of data (0 = location, 1 = velocity, 2 = accelera-
tion, 3 = jerk/jolt/surge/lurch, 4 = jounce/snap, 5 = crackle, 6 = pop, 7 = you-name-it)
markerName: marker names (cell structure)
data: motion capture data (nFrames x 3nMarkers matrix)
analogdata: analog data (nFrames x nAnalog matrix)
other: other data read from the file (depends on equipment and file format used)
for mocap data read from a .tsv file, the fields are:
other.descr: some description string
other.timeStamp: some time stamp string
other.datalncluded: '3D'

comments

see also
mcread

64

MoCap Toolbox Manual

norm data structure

synopsis

Data structure for vector norms. Created by mcnorm.

structure

type: structure type ('norm data')

filename: name of the file from where the data were read

nFrames: number of frames

nCameras: number of cameras

nMarkers: number of markers

freq: sampling frequency (frame rate) of motion data

nAnalog: number of analog devices

anaFreq: sampling frequency of analog data

timederOrder: order of time differentiation of data (0 = location, 1 = velocity, 2 = accelera-
tion, 3 = jerk/jolt/surge/lurch, 4 = jounce/snap, 5 = crackle, 6 = pop, 7 = you-name-it)

markerName: marker names (cell structure)

data: motion capture data (nFrames x nMarkers matrix)

analogdata: analog data (nFrames x nAnalog matrix)

other: other data read from the file (depends on equipment and file format used)

comments

The data structure is identical to MoCap data structure, except that the data field contains only
one column per marker.

see also

mcnorm

65

MoCap Toolbox Manual

segm data structure

synopsis
Data structure for body segment data. Created by mcj2s.

structure

type: structure type (‘'segm data')

filename: name of the file from where the data were read

nFrames: number of frames

nCameras: number of cameras

nMarkers: number of markers

freq: sampling frequency (frame rate) of motion data

nAnalog: number of analog devices

anaFreq: sampling frequency of analog data

timederOrder: order of time differentiation of data (0 = location, 1 = velocity, 2 = accelera-
tion, 3 = jerk/jolt/surge/lurch, 4 = jounce/snap, 5 = crackle, 6 = pop, 7 = you-name-it)

analogdata: []

other: [1x1 struct]

parent: vector containing the number of the parent joint (proximal joint in kinematic chain) of
each joint; zero means no parent joint

roottrans: matrix (nFrames x 3) containing the coordinates of body root

rootrot: [1x1 struct]
rootrot.az: azimuth angle of the normal vector of the frontal plane (see the j2spar structure)
rootrot.el: elevation angle of the normal vector of the frontal plane (see the j2spar
structure)

segm: [1 x nMarkers struct]
segm(k).eucl: euclidean vector pointing from proximal to distal joint of the segment
segm(k).r: length of the segment (averaged over time)
segm(k).quat: quaternion representing rotation from (0 -1 0) to segm(k).eucl
segm(k).angle: angle between segments k and k-1

segmentName: cell structure containing the names of the segments

comments
The number of each segment is identical to the number of the marker representing the distal
joint of the segment in the MoCap data structure from which the segm data structure was
derived. That means the first segment is empty.

see also
mcj2s

66

MoCap Toolbox Manual

m2jpar parameter structure

synopsis
Parameters for conversion from markers to joints.

structure
type: structure type (‘'m2jpar’)
nMarkers: number of joints
markerNum: cell structure containing, for each joint, the numbers of the markers whose cen-
troid defines the location of that joint; for instance, if markerNum{k} = [m1 m2 m3 m4],
the location of joint k is calculated as the centroid of markers m1, m2, m3, and m4
markerName: cell structure containing the names of the joints

comments

see also
mcinitm2jpar

67

MoCap Toolbox Manual

2spar parameter structure

synopsis
Parameters for conversion from joints to segments.

structure
type: structure type ('j2spar’)
rootMarker: number of the root joint
frontalPlane: numbers of three joints that define the frontal plane
parent: vector containing the number of the parent joint (proximal joint in kinematic chain) of
each joint; zero means no parent joint
segmentName: cell structure containing the names of each segment

comments
The parent number of the root joint is zero.

see also
mcinitj2spar

68

MoCap Toolbox Manual

animpar parameter structure

synopsis
Parameters for creating frame plots and animations.

structure
type: structure type (‘animpar')
scrsize: two-component vector containing the size of frames in pixels [width height]
limits: four-component vector containing the limits of x and z coordinates for plotting [xmin
Xmax zmin zmax |
az: azimuth angle (in degrees) of viewing point
el: elevation angle (in degrees) of viewing point
msize: size of markers
colors: five-character string or RGB triple (5x3) containing the colors of background, mark-
ers, connections, traces, and marker numbers, respectively
markercolors: string or RGB triple (nx3) containing the individual colors for the markers
conncolors: string or RGB triple containing the individual colors for the connector lines
tracecolors: string or RGB triple containing the individual colors for the trace lines
numbercolors: string or RGB triple containing the individual colors for numbers
cwidth: width of connection lines
twidth: width of trace lines
conn: matrix (nMarkers x 2) indicating the connections between markers; each row represents
one connection, with the numbers indicating the markers to be connected
conn2: matrix (nMarkers x 4) indicating the connections between midpoints of two marker
pairs; each row represents one connection, with the first two numbers and the last two
numbers indicating the markers whose midpoints are to be connected
trm: vector indicating the markers with a trace
trl: length of trace in seconds
showmnum: flag indicating whether marker numbers are shown (1=yes, 0=no)
numbers: array indicating the markers for which number is to be shown
showfnum: flag indicating whether frame numbers are shown (1=yes, 0=no)
animation: flag indicating whether animation is created (1=yes, 0=no); this is set by the mcan-
imate function before it calls the mcplotframe function
fps: frames per second used in animation
output: either file name for video file, of folder for pgn frames (‘tmp’)
videoformat: specifies video file format, either 'avi' or 'mpeg4' ('avi')
createframes: create png frames instead of video file, I=frames, O=video file (0)
getparams: return animation parameters, without plotting or animating frames, 1=yes, 0=no
(0)
perspective: perform perspective projection, 0 = orthographic (default), 1 = perspective (0)
pers: perspective projection parameters:
pers.c: 3D position of the camera [0 -4000 0]
pers.th: orientation of the camera [0 0 0]
pers.e: viewer's position relative to the display surface [0 -2000 0]

69

MoCap Toolbox Manual

see also
mcinitanimpar

70

MoCap Toolbox Manual

Function Refer-

71

MoCap Toolbox Manual

mc2frontal

synopsis
Rotates MoCap data to have a frontal view with respect to a pair of markers.

syntax
d2 = mc2frontal(d, ml, m2);

d2 = mc2frontal(d, ml, m2, method);

input parameters
d: MoCap data structure or data matrix
ml, m2: numbers of the markers that define the frontal plane
method: rotation method, possible values:
'mean’' (default) rotates data in all frames with the same angle to have a frontal view with
respect to the mean locations of markers m1 and m2
'frame' rotates each frame separately to have a frontal view with respect to the instanta-
neous locations of markers m1 and m2; with this method, each individual frame is cen-
tered as well

output
d2: MoCap data structure or data matrix

examples
d2 = mc2frontal(d, 3, 7);

d2 = mc2frontal(d, 3, 7, 'frame');

comments . S
The frontal plane is defined by the temporal mean
of markers m1 and m2. right side, ¢
mc2frontal(d, 1, 2) would rotate to that view: LK
f .h"! ke
see also ' *
mcrotate o

72

MoCap Toolbox Manual

mcaddframes

synopsis
Duplicates frames in a given mocap structure; either last frame in the end, first frames in the
beginning, or at a given position in the middle.

syntax
d2 = mcaddframes(d, add);
d2 = mcaddframes(d, add, 'timetype', 'frame', 'location', 'beginning');
d2 = mcaddframes(d, add, 'location', 'middle', 'position', n);

input parameters
d: MoCap or norm data structure
add: total amount of frames to be added
timetype: amount of frames given in frames (‘frame') or seconds ('sec') (default: sec)
location: location where frames are added: 'beginning', 'middle’, or 'end' (default: end)
position: position where frames are added — only needed when using 'middle' as location. The
timetype parameter applies to both add and position.

output
d2: MoCap or norm data structure

examples
d2 = mcaddframes(d, 60);

d2 = mcaddframes(d, 60, 'location', 'middle', 100);

comments
timetype, location, and position are optional. Default values are used if not specified.

see also

73

MoCap Toolbox Manual

mcanimate

synopsis

Creates animation of mocap data and saves it to file (.avi or mpeg-4) or as consecutive frames
(.png). Matlab's VideoWriter function is used to create the video file.

COMPATIBILITY NOTES (v. 1.5): The 'folder'-field (animpar structure, v. 1.4) has been
changed to 'output' and is used as file name for the animation (and stored to the current di-
rectory) or as folder name in case frames are to be plotted.

Please use the function without the projection input argument, but specify it in the
animation structure instead.

syntax
par = mcanimate(d);
par = mcanimate(d, par);

input parameters
d: MoCap data structure
par: animpar structure (optional)

output
par: animpar structure used for plotting the frames

examples
mcanimate(d, par);

comments
If the animpar structure is not given as input argument, the function creates it by calling the
function mcinitanimpar and setting the .limits field of the animpar structure auto-
matically so that all the markers fit into all frames.
If the par.pers field (perspective projection) is not given, it is created internally for back-
wards compatibility. For explanation of the par.pers field, see help mcinitanimpar

see also
mcplotframe, mcinitanimpar

74

MoCap Toolbox Manual

mcbandpass

synopsis
Band pass filters data in a MoCap or norm structure using an FFT filter.

syntax
d2 = mcbandpass(d, f1l, f2);

d2 = mcbandpass(d, f1, f2, method);

input parameters
d: MoCap or norm data structure
fl: lower frequency in Hz of passband
2: higher frequency in Hz of passband
method: filtering window, ‘rect’ (default) or ‘gauss’

output
d2: MoCap or norm data structure containing band bass filtered data

examples
d2 = mcbandpass(d, 0.5, 3);

comments

see also

75

MoCap Toolbox Manual

mcboundrect

synopsis
Calculates the bounding rectangle (the smallest rectangular area that contains the projection of
the trajectory of each marker on the horizontal plane (i.e., floor).

syntax
br = mcboundrect(d);
br = mcboundrect(d, mnum);
br = mcboundrect(d, mnum, w, hop);

input parameters
d: MoCap data structure
mnum: marker numbers (optional; if no value given, all markers are used)
w: length of analysis window (optional; default: 4 sec)
hop: overlap of analysis windows (optional; default: 2 sec)

output
br: data matrix (windows x nMarkers)

examples
br = mcboundrect(d);

br = mcboundrect(d, [1 3 5]);
br = mcboundrect(d, [1:d.nMarkers], 3, 1);
comments

If the function is called with the mocap data structure as the only input parameter, the calcula-
tion is performed for all markers with the default parameters. If the window and overlap
length are to be changed, the markers have to be always specified (e.g., all markers by
[1:d.nMarkers]).

see also

references
Burger, B., Saarikallio, S., Luck, G., Thompson, M. R. & Toiviainen, P. (2013). Relationships

between perceived emotions in music and music-induced movement. Music Perception
30(5), 519-535.

76

MoCap Toolbox Manual

mcc3d2tsv

synopsis
Converts a c3d file into a tsv file.

syntax
mcc3d2tsv(fn, path);

input parameters
fn: name of c3d file
path: path to save the tsv file (optional). If no path is given, file is saved to current directory

output
tsv file, saved in the current or in the specified directory

examples
% mcc3d2tsv('file.c3d")

% mcc3d2tsv('file.c3d', 'folder')
% mcc3d2tsv('file.c3d', '/path/folder') %(Mac)

comments

see also
mcread

77

MoCap Toolbox Manual

mccenter

synopsis
Translates motion capture data to have a centroid of [0 0 0] across markers and over time.

syntax
d2 = mccenter(d);

input parameters
d: MoCap data structure or data matrix

output
d2: MoCap data structure or data matrix

examples
comments
Missing data (NaN's) is ignored when calculating the centroid.

see also

78

MoCap Toolbox Manual

mccomplexity

synopsis
Calculates the complexity of movement based on entropy of the proportion of variance con-
tained in the principal components. A high value indicates a high complexity, whereas a
low value indicated low complexity.

syntax
c = mccomplexity(d, mnum);

input parameters
d: MoCap data structure
mnum: marker numbers (optional; if no value given, all markers are used)

output
c: complexity value, between 0 and 1

examples
¢ = mccomplexity(d);
¢ = mccomplexity(d, 4:7);

comments
Data will be filled in case of missing frames.

see also
mcpcaproj

references
Burger, B., Saarikallio, S., Luck, G., Thompson, M. R. & Toiviainen, P. (2013). Relationships

between perceived emotions in music and music-induced movement. Music Perception
30(5), 519-535.

79

MoCap Toolbox Manual

mcconcatenate

synopsis
Concatenates markers from different MoCap or norm data structure.

syntax
d2 = mcconcatenate(dl, mnuml, d2, mnum2, d3, mnum3, ...);

input parameters
dl1, d2, d3, ...: MoCap or norm data structure
mnuml, mnum2, mnum3, ...: vector containing the numbers of markers to be extracted from
the preceding MoCap structure

output
d2: MoCap or norm data structure

examples
d2 = mcconcatenate(dl, [1 3 5], d2, [2 4 6]);

d2 = mcconcatenate(dl, 1, d2, 2, d1, 3, d3, 4, d2, 5);

comments
Each mocap structure must have a corresponding marker number or number array.
All mocap structures must have identical frame rates.
If the numbers of frames are not equal, the output MoCap structure will be as long as the
shortest input MoCap structure.

see also
mcgetmarker, mcmerge

80

MoCap Toolbox Manual

mccreateconnmatrix

synopsis
Creates a connection matrix for the animation parameters (. conn field) by using the "bones"
connections saved as a label list of the Qualisys track manager software (QTM).

syntax
par = mccreateconnmatrix(fn, par);

input parameters
fn: text file (ending: .txt) that contains the "bones" (connections) made in QTM
par: animpar structure

output
par: animpar structure with connection matrix

examples
par = mccreateconnmatrix('labellist.txt', par);

comments
This function works only with label list files created by Qualisys Track Manager.
This function works for marker representations (before any marker reduction or joint trans-
formation has been applied). The markers in the MoCap structure must resemble the struc-
ture of the marker connections in the label list file.

see also
mcinitanimpar

81

MoCap Toolbox Manual

mccumdist

synopsis
Calculates the cumulative distance traveled by each marker.

syntax
d2 = mccumdist(d);

input parameters
d: MoCap data or norm data structure

output
d2: norm data structure

examples
comments
If the input consists of one-dimensional data (i.e., norm data), the cumulative distance to the

origin of the reference space/coordination system is calculated, which is not (necessarily)
the cumulated distance traveled by the marker.

see also

82

MoCap Toolbox Manual

mccut

synopsis
Cuts two MoCap structures to the length of the shorter one.

syntax
[d11l, d22] = mccut(dl, d2);

input parameters
dl1, d2: MoCap or norm structures

output
d11, d22: MoCap or norm structures, one shortened and one original (both with same number
of frames)
examples

comments

see also

83

MoCap Toolbox Manual

mcdecompose

synopsis
Decomposes a kinematic variable into tangential and normal components.

syntax
[dt, dn] = mcdecompose(d, order);

input parameters
d: MoCap data structure containing either location or velocity data (timederorder = 0 or 1)
order: time derivative order of the variable, must be at least 2 (2 = acceleration, 3 = jerk, etc.)

output
dt: norm data structure containing the tangential components
dn: norm data structure containing the normal components

examples
[dt, dn]

[dt, dn] = mcdecompose(d, 3); % jerk

mcdecompose(d, 2); % acceleration

[dt, dn] = mcdecompose(d, 4); % jounce / snap
[dt, dn] = mcdecompose(d, 5); % crackle

[dt, dn] = mcdecompose(d, 6); % pop

[dt, dn] = mcdecompose(d, 7); % you-name-it

comments

see also

84

MoCap Toolbox Manual

mceigenmovement

synopsis

Constructs eigenmovements using PCA and a scaled sinusoidal projection.
syntax

e = mceigenmovement(d);

e = mceigenmovement(d, eigind);

e = mceigenmovement(d, eigind, len);

e = mceigenmovement(d, eigind, len, per);

input parameters
d: MoCap or segm data structure
eigind (optional): selected eigenmovements (if not given, projections onto the first PCs that
contain a total of 90% of the variance are returned)
len (optional): length in seconds (default 0.5 sec)
per (optional): period in seconds (default 0.5 sec)

output
e: vector of MoCap or segm data structures

examples

e = mceigenmovement(d);

e = mceigenmovement(d, 1:3);

e = mceigenmovement(d, 1:4, 2);

e = mceigenmovement(d, 1:2, 1.2, 0.6);
comments

The sinusoidal projections are scaled to match the RMS amplitudes of the PC projections of
respective degrees of freedom.

see also
mcpcaproj

85

MoCap Toolbox Manual
mcfillgaps

synopsis
Fills gaps in motion capture data.

syntax
d2 = mcfillgaps(d);
d2 = mcfillgaps(d, maxfill);
d2 = mcfillgaps(d, method);
d2 = mcfillgaps(d, maxfill, method);

input parameters
d: MoCap, norm, or segm data structure
maxfill: maximal length of gap to be filled in frames (optional, default = 1000000)
method: three different options for filling missing frames in the beginning and/or end of a
recording:
default (parameter empty): missing frames in the beginning and/or in the end are set to 0;
'fillall": fills missing frames in the beginning and end of the data with the first actual
(recorded) value or the last actual (recorded) value respectively;
'nobefill': fills all the gap in the data, but not missing frames in the beginning or end of the
data, but sets them to NaN instead.

output
d2: MoCap, norm, or segment data structure

examples
d2 = mcfillgaps(d);

d2 = mcfillgaps(d, 120);

d2 = mcfillgaps(d, 'nobefill');

d2 = mcfillgaps(d, 60, 'fillall');
comments

Uses linear interpolation. More sophisticated algorithms will be implemented in the future.

see also

86

MoCap Toolbox Manual

mcfilteremg

synopsis
Filters EMG data.

syntax

out = mcfilteremg(emgdata);

out = mcfilteremg(emgdata, filterfreqgs);

input parameters
emgdata: norm data structure containing EMG data
filterfreqs: cutoff frequencies (in Hz) for the Butterworth filters; first value for high-pass fil-
ter, second value for low-pass filter (default: [20 24])

output
out: norm data structure containing filtered data

examples
out = mcfilteremg(emgdata);

out = mcfilteremg(emgdata, [18 217]);

comments
Filters the data using a 4th order Butterworth high-pass filter (default cutoff frequency: 20
Hz), then full-wave rectifies it, then filters it using a 4th order Butterworth low-pass filter
(default cutoff frequency: 24 Hz).

see also
mcreademg

87

MoCap Toolbox Manual

mcfluidity

synopsis
Calculates the fluidity/circularity of mocap data, defined as the ratio between velocity and ac-
celeration of the normed and averaged mocap data.

syntax
f = mcfluidity(d, mnum);

input parameters
d: MoCap data structure
mnum: marker numbers (optional; if no value given, all markers are used)

output
f: fluidity value (the higher the value, the higher the smoothness/fluidity)

examples
f = mcfluidity(d, 4:6);

comments

see also

references
Burger, B., Saarikallio, S., Luck, G., Thompson, M. R. & Toiviainen, P. (2013). Relationships

between perceived emotions in music and music-induced movement. Music Perception
30(5), 519-535.

88

mcgetmarker

synopsis
Extracts a subset of markers.

syntax
d2 = mcgetmarker(d, mnum);

input parameters
d: MoCap or norm data structure
mnum: vector containing the numbers of markers to be extracted

output
d2: MoCap or norm data structure

examples
d2 = mcgetmarker(d, [1 3 5]);

comments

see also
mcsetmarker, mcconcatenate

89

MoCap Toolbox Manual

mcgetmarkername

synopsis
Returns the names of markers.

syntax
mn = mcgetmarkernames(d);

input parameters
d: MoCap data or norm structure

output
mn: cell structure containing marker names
examples

comments

see also

90

MoCap Toolbox Manual

MoCap Toolbox Manual

mcgetsegmpar

synopsis
Get parameters for body segments.

syntax
spar = mcgetsegmpar(model, segmnum);

input parameters
model: string indicating the body-segment model used (possible value: 'Dempster’, more to be
added in the future)
segmnum: vector indicating numbers for each segment

output
spar: segmpar structure

examples
segmnum = [0 0 8 760 8 7613 12 10 11 3 2 1 11 3 2 1];

spar = mcgetsegmpar('Dempster', segmnum);

comments

Returns the mass relative to total body mass (spar.m), relative distance of center of mass
from proximal joint (spar.comprox) and distal joint (spar.comdist), and radius of gyra-
tion relative to center of gravity (spar.rogcg), proximal joint (spar.rogprox) and distal
joint (spar.rogdist) of for body segments indicated in segmnum according to given
body-segment model.

Segment number values for model 'Dempster': no parameter=0, hand=1, forearm=2, upper
arm=3, forearm and hand=4, upper extremity=5, foot=6, leg=7, thigh=8, lower
extremity=9, head=10, shoulder=11, thorax=12, abdomen=13, pelvis=14, thorax and ab-
domen=15, abdomen and pelvis=16, trunk=17, head, arms and trunk (to glenohumeral
joint)=18, head, arms and trunk (to mid-rib)=19.

Note that the root needs its own segment being 0, so segmnum is of size segments+1. (The
first zero in the segmnum vector above).

See the description of the segmpar structure.

see also

references
Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesley, S. N. (2004). Re-
search methods in biomechanics. Champaign, IL: Human Kinetics.

91

MoCap Toolbox Manual

mchilbert

synopsis
Calculates the Hilbert transform of data in a MoCap or norm structure.

syntax
[Lamp, phase, h] = mchilbert(d, wrap);

input parameters
d: MoCap or norm data structure
wrap: flag to indicate if phase is returned as wrapped or unwrap (default: unwrapped); 0 or
empty: unwrap, 1: wrap

output
amp: amplitude of analytic function derived from zero-mean signal
phase: (unwrapped or wrapped) phase of analytic function derived from zero-mean signal
h: analytic function

examples
amp = mchilbert(d);
[amp, phase, h] = mchilbert(d, 1);

comments
See help hilbert

see also

92

MoCap Toolbox Manual

mchilberthuang

synopsis
Performs a Hilbert-Huang transform of order N on MoCap, norm or segm data.

syntax
hh = mchilberthuang(d, N);

input parameters
d: MoCap, norm or segm data structure
N: order of the H-H transform

output
hh: vector of MoCap, norm or segm data structures containing H-H transforms

examples
comments
See help hilberthuang

see also

93

MoCap Toolbox Manual
mcicaproj

synopsis
Performs an Independent Components analysis on MoCap, norm or segm data, using the
FastICA algorithm, and projects the data onto selected components.

syntax
[di, p] = mcicaproj(d, pc, ic);

input parameters
d: MoCap, norm or segm data structure
pc: number of PCs entered into ICA
ic: number of ICs estimated

output
di: vector of MoCap, norm or segm data structures
p: structure containing the following fields:
icasig: independent components
A: mixing matrix
W: separation matrix
meanx: mean vector of variables

examples
[di, p] = mcicaproj(d, 6, 3);

comments
Uses the fastICA algorithm, implemented in the FastICA Package, which is available at http://
www.cis.hut.fi/projects/ica/fastica/

see also
mcpcaproj, mcsethares

94

http://www.cis.hut.fi/projects/ica/fastica/

MoCap Toolbox Manual
mcinitanimpar

synopsis
Initializes an animation parameter (animpar) structure.

syntax
ap = mcinitanimpar;

input parameters
(none)

output
ap: animation parameter (animpar) structure

examples

comments
See also description of the animpar structure (default values given in parentheses:)

scrsize: frame size in pixels ([800 600])

limits: plot limits [xmin xmax zmin zmax] ([])

az: azimuth vector in degrees (0)

el: elevation vector in degrees (0)

msize: marker size (12)

colors: [background marker connection trace markernumber] ('kwwww') or RGB triplet
(5x3)

markercolors: String holding marker colors ([]) or RGB triplet

conncolors: String holding connector (line) colors ([]) or RGB triplet

tracecolors: String holding trace colors (only animations) ([]) or RGB triplet

numbercolors: String holding number colors (indicated in the numbers array) ([]) or
RGB triplet

cwidth: width of connectors (either single value or vector with entries for different
widths) (1)

twidth: width of traces (either single value or vector with entries for different widths)
(1)

conn: marker-to-marker connectivity matrix (M x 2) - mccreateconnmatrix() can be
used for creating the connection matrix ([])

conn2: midpoint-to-midpoint connectivity matrix (M x 4) ([])

trm: vector indicating markers for which traces are added ([])

trl: length of traces in seconds (0)

showmnum: show marker numbers, 1=yes, 0=no (0)

numbers: array indicating the markers for which number is to be shown ([])

showfnum: show frame numbers, 1=yes, 0=no (0)

animation: create animation, 1=yes, 0=no (0)

fps: frames per second for animation (30)

output: either file name for video file, of folder for pgn frames (‘tmp')

95

MoCap Toolbox Manual

videoformat: specifies video file format, either 'avi' or 'mpeg4' (‘avi')
createframes: create png frames instead of video file, I=frames, O=video file (0)
getparams: return animation parameters, without plotting or animating frames, 1=yes,
0=no (0)
perspective: perform perspective projection, 0 = orthographic (default), 1 = perspective
(0)
pers: perspective projection parameters:
pers.c: 3D position of the camera [0 -4000 0]
pers.th: orientation of the camera [0 0 0]
pers.e: viewer's position relative to the display surface [0 -2000 0]

Colors can be given as strings if only the MATLAB string color options are used. However,
any color can be specified by using RGB triplets - for example, plotting the first two mark-
ers in gray: par.markercolors=[.5 .5 .5; .5 .5 .5];

see also
mccreateconnmatrix, mcplotframe, mcanimate

96

MoCap Toolbox Manual

mcinitj2spar

synopsis
Initialises the parameter structure for joint-to-segment mapping.

syntax
par = mcinitj2spar;

input parameters
(none)

output
par: j2spar structure

examples

comments

See explanation about the j2spar structure. The initialized values are as follows:
type: 'j2spar’
rootMarker: 0
frontalPlane: [1 2 3]
parent: []
segmentName: {}

The fields par.parent and par.segmentName have to be entered manually.

see also
mcj2s

97

MoCap Toolbox Manual

mcinitm2jpar

synopsis
Initialises the parameter structure for marker-to-joint mapping.

syntax
par = mcinintm2jpar;

input parameters
(none)

output
par: m2jpar structure

examples

comments
See the explanation of the m2jpar structure. The initialized values are as follows:
type: 'm2jpar’
nMarkers: 0
markerNum: {}
markerName: {}
The fields par.nMarkers, par.markerNum and par.markerName have to be entered man-

ually.

see also
mcm2 j

98

MoCap Toolbox Manual

mcinitstruct

synopsis
Initializes MoCap or norm data structure.

syntax
dl = mcinitstruct;

dl = mcinitstruct(type);

dl = mcinitstruct(type, data);

dl = mcinitstruct(type, data, freq);

dl = mcinitstruct(type, data, freq, markerName);

dl = mcinitstruct(type, data, freq, markerName, fn);
dl = mcinitstruct(data, freq);

dl = mcinitstruct(data, freq, markerName);

dl = mcinitstruct(data, freq, markerName, fn);

input parameters
type: 'MoCap data' or 'norm data' (default: 'MoCap data')
data: data to be used in the .data field of the mocap structure (default: [])
freq: frequency / capture rate of recording (default: NaN)
markerName: cell array with marker names (default: {})
fn: filename (default: ' ")

output
d1: mocap or norm data structure with default parameters or parameter adjustment according
to the parameter input.

examples
dl =mcinitstruct;
dl =mcinitstruct('norm data', data);
dl =mcinitstruct(data, 120, markernames, 'mydatal.tsv');

comments
default parameters (for ' MoCap data '):

type: 'MoCap data'
filename: "
nFrames: 0
nCameras: NaN
nMarkers: 0
freq: NaN
nAnalog: 0
anaFreq: 0
timederOrder: 0

99

MoCap Toolbox Manual

markerName: {}

data: []

analogdata: []

other:
other.descr: 'DESCRIPTION --!
other.timeStamp: '"TIME_STAMP--'
other.datalncluded: '3D'

see also

100

mcj2s

synopsis
Performs a joint-to-segment mapping.

syntax
d2 = mcj2s(d, par);

input parameters
d: MoCap data structure
par: j2spar structure

output
d2: segm data structure

examples

comments
See explanation of the j2spar structure.

see also
mcinitj2spar, mcs2j

101

MoCap Toolbox Manual

MoCap Toolbox Manual

mckinenergy

synopsis
Estimates the instantaneous kinetic energy of each body segment.

syntax
[te, re] = mckinenergy(d, segd, spar);

input parameters
d: MoCap data structure
segd: segm data structure calculated from d
spar: segmpar structure (see mcgetsegmpar)

output
te: matrix containing translational energy values for each body segment
re: matrix containing rotational energy values for each body segment

examples
segd = mcj2s(d, j2spar);

spar = mcgetsegmpar('Dempster', segmnum);

[te, re] = mckinenergy(d, segd, spar);

comments
The energy for a given segment is in the column corresponding to the number of the distal
joint of the respective segment.

see also
mcj2s, mcgetsegmpar, mcpotenergy

102

MoCap Toolbox Manual

mckurtosis

synopsis
Calculates the kurtosis of data, ignoring missing values.

syntax
m = mckurtosis(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix.

output
m: row vector containing the kurtosis values of each data column
examples

comments

see also
mcmean, mcstd, mcvar, mcskewness

103

MoCap Toolbox Manual

mcm2)j

synopsis
Performs a marker-to-joint mapping.

syntax
d2 = mem2j(d, par);

input parameters
d: MoCap data structure
par: m2jpar structure

output
d2: MoCap data structure

examples

comments
The fields the fields par.nMarkers, par.markerNum and par.markerName have to be en-

tered manually.
See the explanation of the m2jpar structure.

see also
mcinitm2jpar

104

MoCap Toolbox Manual

mcmarkerdist

synopsis
Calculates the frame-by-frame distance of a marker pair.

syntax
dist = mcmarkerdist(d, ml, m2);

input parameters
d: MoCap data structure
m1, m2: marker numbers

output
dist: column vector

examples
dist = mcmarkerdist(d, 1, 5);

comments

see also

105

MoCap Toolbox Manual

mcmean

synopsis
Calculates the temporal mean of data, ignoring missing values.

syntax
m = mcmean(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix.

output
m: row vector containing the means of each data column
examples

comments

see also
mcstd, mcvar, mcskewness, mckurtosis

106

MoCap Toolbox Manual

mcmerge

synopsis
Merges two MoCap data structures and optionally the corresponding animation parameter
files.

syntax
d3 = mcmerge(dl, d2);

[d3, p3] = mcmerge(dl, d2, pl, p2);

input parameters
dl1, d2: MoCap or norm data structures
pl, p2: animpar structures for d1 and d2

output
d3: MoCap or norm data structure
p3: animpar structure

examples

comments
d1 and d2 must have identical frame rates. If the numbers of frames are not equal, the MoCap
data structure with the higher number of frames will be cut before merging.
All animation parameters will be taken from the first animpar file, apart from any color,
marker, trace definition, and connection matrices.

see also
mcconcatenate

107

mcmissing

synopsis

Reports missing data per marker and frame.

syntax
[mf, mm, mgrid] = mcmissing(d);

input parameters
d: MoCap or norm data structure.

output
mf: number of missing frames per marker
mm: number of missing markers per frame

MoCap Toolbox Manual

mgrid: matrix showing missing data per marker and frame (rows correspond to frames and

columns to markers

examples

comments

see also

108

MoCap Toolbox Manual

mcmocapgram

synopsis
Plots mocapgram (shows positions of a large number of markers as projection onto a color-
space).

syntax
h = mcmocapgram(d);

mcmocapgram(d) ;

mcmocapgram(d, timetype);

input parameters
d: MoCap or norm data structure.
timetype: time type used in the plot ('sec' (default) or 'frame’)

output
h: figure handle

examples
mcmocapgram(d, 'frame');

h = mcmocapgram(d);

comments

see also

109

MoCap Toolbox Manual

mcnorm

synopsis

Calculates the norms of kinematic vectors.
syntax

n = mcnorm(d);

n = mcnorm(d, comps);

input parameters
d: MoCap data structure

comps: components included in the calculation (optional, default = 1:3)

output

n: norm data structure

examples
n = mcnorm(d);
n = mcnorm(d, 1:2); % calculates norm of horizontal projection

comments

see also

110

MoCap Toolbox Manual
mcpcaproj
synopsis

Performs a Principal Components analysis on MoCap, norm or segm data and projects the
data onto selected components.

syntax
[dp, p] = mcpcaproj(d);
[dp, p] = mcpcaproj(d, pc);
[dp, p] = mcpcaproj(d, pc, proj);

input parameters
d: MoCap, norm or segm data structure
pc (optional): selected Principal Components (if not given, projections onto the first PCs that
contain a total of 90% of the variance are returned)
proj (optional): projection function (if not given, the PC projections of the data in d are used)

output
dp: vector of MoCap, norm or segm data structures
p: structure containing the following fields:
1: proportion of variance contained in each PC
q: PC vectors (columns)
c: PC projections (rows)
meanx: mean vector of variables

examples

[dp, p] = mcpcaproj(d);

[dp, p] = mcpcaproj(d, 1:3);

[dp, p] = mcpcaproj(d, 1:3, sin(2*pi*0:60/60);
comments
see also

mcicaproj, mcsethares

references
Burger, B., Saarikallio, S., Luck, G., Thompson, M. R., & Toiviainen, P. (2012). Emotions
Move Us: Basic Emotions in Music Influence People's Movement to Music. In Proceedings
of the 12th International Conference on Music Perception and Cognition (ICMPC) / 8th
Triennial Conference of the European Society for the Cognitive Sciences of Music (ES-
COM). Thessaloniki, Greece.

111

MoCap Toolbox Manual

mcperiod

synopsis
Estimates the period of movement for each marker and each dimension.

syntax
[per, ac, eac, lag]

mcperiod(d);

[per, ac, eac, lag] = mcperiod(d, maxper);

[per, ac, eac, lag] = mcperiod(d, method);

[per, ac, eac, lag] = mcperiod(d, maxper, method);

input parameters
d: MoCap or norm data structure
maxper: maximal period in seconds (optional, default = 2 secs)
method: sets if 'first' or 'highest' maximal value of the autocorrelation function is taken as pe-
riodicity estimation (optional, default: 'first')

output
per: row vector containing period estimates for each column
ac: matrix containing autocorrelation functions for each column
eac: matrix containing enhanced autocorrelation functions for each column
lag: vector containing lag values for the (normal and enhanced) autocorrelation functions

examples
[per, ac, eac, lag] = mcperiod(d, 3);

per = mcperiod(d, 'highest');

comments
In ac and eac, each column corresponds to a dimension of a marker (or in case of norm data to
a marker), and each row corresponds to a time lag.

see also

references
Eerola, T., Luck, G., & Toiviainen, P. (2006). An investigation of pre-schoolers' corporeal
synchronization with music. Paper presented at the 9th International Conference on Music
Perception and Cognition, Bologna, Italy.

112

MoCap Toolbox Manual

mcplotframe

synopsis
Plots frames of motion capture data.
COMPATIBILITY NOTES (v. 1.5): Please use the function without the projection input ar-
gument, but specify it in the animation structure instead.

syntax
par = mcplotframe(d, n);
par = mcplotframe(d, n, par);

input parameters
d: MoCap data structure
n: vector containing the numbers of the frames to be plotted
par: animpar structure (optional)

output
par: animpar structure used for plotting the frames (if color strings were used, they will con-
verted to RGB triplets)

examples
par = mcplotframe(d, 1);

mcplotframe(d, 500:10:600, par);

comments
If the animpar structure is not given as input argument, the function creates it by calling the
function mcinitanimpar and setting the .limits field of the animpar structure auto-
matically so that all the markers fit into all frames.

see also
mcanimate, mcinitanimpar

113

MoCap Toolbox Manual

mcplotphaseplane

synopsis
Plots motion capture data on a phase plane.

syntax
mcplotphaseplane(dl, d2, marker, dim) % for MoCap data structure
mcplotphaseplane(nl, n2, marker) % for norm data structure

mcplotphaseplane(sl, s2, segm, var) % for segm data structure

input parameters
dl, d2, nl, n2, s1, s2: MoCap data structure, norm data structure, or segm data structure
marker: vector containing marker numbers to be plotted (for MoCap and norm data structure)
dim: vector containing dimensions to be plotted (for MoCap data structure)
segm: body segment number (for segm data structure)
var: variable to be plotted for segment segm (for segm data structure)

output
Figure.

examples
mcplotphaseplane(dl, d2, 1:3, 3) % for MoCap data structure
mcplotphaseplane(nl, n2, 5) % for norm data structure
mcplotphaseplane(sl, s2, [3 5 7], 'angle') % for segm data structure
mcplotphaseplane(sl, s2, 5:10, 'eucl') % for segm data structure

mcplotphaseplane(sl, s2, [12 14], 'quat') % for segm data structure

comments

see also

114

MoCap Toolbox Manual

mcplottimeseries

synopsis
Plots motion capture data as time series. NEW SYNTAX IN VERSION 1.3.1

syntax
mcplottimeseries(d, marker) % for MoCap or norm data structure

mcplottimeseries(d, marker, 'dim', dim) % specifying dimensions
mcplottimeseries(d, marker, 'timetype', timetype) % axis unit
mcplottimeseries(d, marker, 'plotopt', plotopt) % combined or separate
plots

mcplottimeseries(d, marker, 'label', label) % y-axis label

mcplottimeseries(d, marker, 'names', names) % marker names

mcplottimeseries(s, segm, 'var', var) % for segm data structure

input parameters
d/s: MoCap data structure, norm data structure, or segm data structure
marker: vector containing marker numbers or cell array containing marker names (for MoCap
or norm data structure)
segm: body segment numbers or cell array containing segment names (for segm data struc-
ture)
dim: dimensions to be plotted (for MoCap data structure - default: 1)
var: variable to be plotted for segment segm (for segm data structure - default: 1)
timetype: time type used in the plot ('sec' (seconds - default) or 'frame')
plotopt: plotting option (for MoCap or norm data structure); 'sep' (default) or 'comb':
sep: all time series are plotted in separate subplots
comb: all time series will be plotted into the same plot using different colors)
label: y-axis label (default: no y-axis label). X-axis label is always set, according to timetype
(however, for plotting neither x-axis nor y-axis labels: 'label', 0)
names: if marker names (instead of numbers) are plotted in title and legend (0: numbers (de-
fault), 1: names)

output
Figure.

examples
mcplottimeseries(d, 2) % MoCap or norm data structure, marker 2, dim 1
mcplottimeseries(d, {'Head_FL','Finger_L'}) %marker names instead of num-
bers (works for segments as well)
mcplottimeseries(d, 1:3, 'dim', 1:3) % markers 1 to 3, dimensions 1 to 3
mcplottimeseries(d, 1:3, 'dim', 3, 'timetype', 'frame') % frames as x axis

unit

115

MoCap Toolbox Manual
mcplottimeseries(d, 5, 'dim', 1:3, 'plotopt', 'comb') % all in one plot,
different colors per dim

mcplottimeseries(d, 5, 'dim', 1:3, 'plotopt', 'comb', 'label', 'mm') % y-
axis label: mm

mcplottimeseries(d, 5, 'dim', 1:3, 'timetype', 'frame', 'label', @) % no x-
axis (and no y-axis) label

mcplottimeseries(d, 5, 'names', 1) % marker names (instead of numbers)

plotted in title and legend

mcplottimeseries(s, [3 6 20], 'var', 'angle') % for segm data structure

mcplottimeseries(s, 5:10, 'var', 'eucl', 'timetype', 'frame') % frames as x

axis unit

mcplottimeseries(s, [12 14], 'var', 'quat', 'dim', 2, 'plotopt', 'comb') %

all in one plot, component 2

comments

see also

116

mcpotenergy

synopsis
Estimates the instantaneous potential energy of each body segment.

syntax
pe = mcpotenergy(d, segd, segmpar)

input parameters
d: MoCap data structure
segd: segm data structure calculated from d
segmpar: segmpar structure (see mcgetsegmpar)

output
pe = matrix containing potential energy values for each body segment

examples
segd = mcj2s(d, j2spar);

spar = mcgetsegmpar('Dempster', segmnum);

pe = mckinenergy(d, segd, spar);

comments

MoCap Toolbox Manual

The energy for a given segment is in the column corresponding to the number of the distal

joint of the respective segment.

see also
mcj2s, mcgetsegmpar, mckinenergy

117

MoCap Toolbox Manual

mcread

synopsis
Reads a motion capture data file and returns a MoCap data structure.

syntax
d = mcread(fn);

d = mcread;

input parameters
fn: file name, tsv, c3d, bvh, mat, or wii format. If no input parameter is given, a file open dia-
log opens.

output
d: MoCap data structure containing parameter values and data

examples
d = mcread('filename.tsv');
d = mcread(‘filename.c3d");
d = mcread('filename.bvh');
d = mcread('filename.mat');
d = mcread('filename.wit');
d = mcread;

comments

Currently the .c3d, .tsv (as exported by QTM), .bvh, .mat (as exported by QTM), and .wii
(WiiDataCapture software) formats are supported. The file names must have postfixes
'.c3d', ".tsv', “.bvh', "mat', or .wii', respectively. For reading .c3d files, the function provid-
ed at http://www.c3d.org/download apps.html is used.

For exporting in .tsv format from Qualisys QTM, recommended export parameter are:
3D data and Include TSV header ticked
Export time data for every frame and write column headers will be ignored by
mcread if ticked.

The .c3d format does not support more than 65535 frames per file (see www.c3d.org/HTML/
default.htm — The C3D file format — Limitations). Therefore, if you happen to have
longer recordings, export them either in .tsv or .mat, or in more than one c3d file. If
further problems occur when reading in .c3d files, try to adapt the ‘machinetype' parame-
ters as indicated in the readc3d.m (in the folder “private’).

Reading in .bvh files requires additional toolboxes available here: http://staffwww.dcs.she-
f.ac.uk/people/N.Lawrence/mocap/ (mocap and ndlutil).

see also

118

http://www.c3d.org/download_apps.html
http://www.c3d.org/HTML/default.htm
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/mocap/

MoCap Toolbox Manual

mcreademg

synopsis
Reads emg files in .tsv format recorded with the Mega EMG system using QTM.

syntax
d = mcreademg(fn);

input parameters
fn: File name; tsv format (norm data structure)

output
d: norm data structure

examples
d = mcreademg('filename.tsv');

comments

see also
mcfilteremg

119

mcreorderdims

synopsis

Reorders the Euclidean dimensions in motion capture data.

syntax
d2 = mcreorderdims(d, dims);

input parameters
d: MoCap data structure
dims: vector containing the new order of dimensions

output
d2: MoCap data structure

examples
d2 = mcreorderdims(d, [1 3 2]);

comments

see also

120

MoCap Toolbox Manual

MoCap Toolbox Manual

mcrepovizz

synopsis
Exports MoCap structure as valid repoVizz .csv files, .xml repoVizz struct and
optional .bones file.

syntax
mcrepovizz(d, path, p);

input parameters
d: MoCap data structure
path: path to save the .csv files (optional). If no path is given, files are saved in the current
directory. If the chosen directory does not exist, it will be created.
p: animpar parameter structure (optional)

output
.csv files and repoVizz struct .xml file saved in the current or in the specified directory.
Optional .bones file saved as well if animpar structure specified in the third argument

examples
mcrepovizz(d)
mcrepovizz(d, 'folder')
mcrepovizz(d, '/path/folder') %(only Mac)
mcrepovizz(d, 'folder', p)

mcrepovizz(d, p)

comments
For info about repoVizz: http://repovizz.upf.edu/

see also
mcread, mcwritetsv

121

MoCap Toolbox Manual

mcresample

synopsis
Resamples motion capture data using interpolation.

syntax
d2 = mcresample(d, newfreq, method);

input parameters
d: MoCap data structure
newfreq: new frame rate
method: interpolation method (optional, default 'linear'; for other options, see help interpl)

output
d2: MoCap data structure

examples
d2 = mcresample(d, 240);

d2 = mcresample(d, 360, 'spline');

comments

see also

122

mcreverse

synopsis
Reverses dimensions of motion-capture data.

syntax
d2 = mcreverse(d, x);

input parameters
d: MoCap structure or data matrix
x: reverse vector (set 1 for each dimension to be reversed, otherwise 0)

output
d2: MoCap structure or data matrix

examples
d2 = mcreverse(d, [0 0 1]);

comments

see also

123

MoCap Toolbox Manual

MoCap Toolbox Manual

mcrotate

synopsis
Rotates motion-capture data.

syntax
d2 = mcrotate(d, theta);
d2 = mcrotate(d, theta, axis);
d2 = mcrotate(d, theta, point);
d2 = mcrotate(d, theta, axis, point);

input parameters
d: MoCap data structure or data matrix
theta: rotation angle (in degrees)
axis: rotation axis (optional, default =[0 0 1])
point: point through which the rotation axis goes (optional, default is the centroid of markers
over time)

output
d2: MoCap data structure or data matrix

examples
d2 = mcrotate(d, 130); % rotate 130 degrees counterclockwise around the
vertical axis
d2
d2

mcrotate(d, 90, [1 @ @]); % rotate around the x axis

mcrotate(d, 45, [0 1 @], [0 @ 500]); % rotate around the axis parallel

to y axis going through point [0 © 500]
d2 = mcrotate(d, 20, [], [@ 1000 @]); % rotate around the z (vertical) axis
going through point [0 1000 @]

comments
If theta is a vector, its values are used as evenly-spaced break points in interpolation. This al-
lows the creation of dynamic rotation of the data.
Rotation is performed according to the right-hand rule. For instance, if the rotation axis is
pointing vertically upwards, positive rotation angle means counterclockwise rotation when
viewed from up.

see also
mc2frontal

124

mcrotationrange

synopsis
Calculates the rotation range between two markers.

syntax
f = mcrotationrange(d, ml, m2);

input parameters
d: MoCap data structure
m1: marker one
m2: marker two

output
r: rotation range (the higher the value, the more rotation)

examples
r = mcrotation(d, 13, 17);

comments
see also

references

MoCap Toolbox Manual

Burger, B., Saarikallio, S., Luck, G., Thompson, M. R. & Toiviainen, P. (2013). Relationships
between perceived emotions in music and music-induced movement. Music Perception

30(5), 519-535.

125

MoCap Toolbox Manual

mcs2j

synopsis
Performs a segment-to-joint mapping.

syntax
d2 = mcj2s(d, par);

input parameters
d: segm data structure
par: j2spar structure

output
d2: MoCap data structure

examples
comments
See the description of the j2spar structure.

see also
mcinitj2spar, mcjZs

126

MoCap Toolbox Manual

mcs2posture

synopsis
Creates a posture representation from segm data by setting root transition and root rotation to
zero values.

syntax
p = mcs2posture(d);

input parameters
d: segm data structure

output
p: segm data structure

examples

comments

see also
mcj2s

127

mcsegmangle

synopsis
Calculates the angles between two markers.

syntax
dn = mcsegmangle(d, ml, m2);

input parameters
d: MoCap data structure
m1: marker one
m2: marker two

output
dn: norm data structure containing the three angles

examples
dn = mcsegmangle(d, 1, 2);

comments

see also

128

MoCap Toolbox Manual

MoCap Toolbox Manual

mcsethares

synopsis
Performs either an m-best or a small-to-large Sethares transform on MoCap, norm or segm
data.
Returns the basis functions for each DOF for given periods and, with the m-best transform,
also the powers for the respective periods.

syntax
ds = mcsethares(d, per); %small-to-large Sethares transform

[ds, pers, pows] = mcsethares(d, per, nbasis);%m-best Sethares transform

input parameters
d: MoCap, norm or segm data structure
per: period in frames in case of small-to-large Sethares transform
maximum period in frames in case of m-best Sethares transform
nbasis: number of basis functions estimated (only for m-best Sethares transform)

output
ds: MoCap, norm or segm data structure - the only output in case of small-to-large Sethares
transform
in case of m-best Sethares transform also:
per: best periods for each degree of freedom
pow: powers of respective periods

examples

comments
Dependent on the given input parameter, either the m-best or the small-to-large Sethares
transform is chosen. See syntax above about in- and output argument structure.
Uses the Periodicity Toolbox downloadable at http://eceserv0.ece.wisc.edu/~sethares/down-

loadper.html

see also
mcpcaproj, mcicaproj

129

http://eceserv0.ece.wisc.edu/~sethares/downloadper.html

MoCap Toolbox Manual

mcsetlength

synopsis
Sets mocap data to the length given.

syntax
d2 = mcsetlength(d, n)
d2 = mcsetlength(d, n, 'timetype', 'sec')
d2 = mcsetlength(d, n, 'position', 'location')

input parameters
d: MoCap or norm data structure
n: new length of mocap data
timetype: length given in frames ('frame') or seconds ('sec') (default: sec)
location: position where to add or trim frames ('beginning' or 'end' — default: end)

output
d2: MoCap or norm data structure

examples
d2 = mcsetlength(d, 1200);
d2 = mcsetlength(d, n, 'timetype', 'sec');
d2 = mcsetlength(d, 1200, 'location', 'beginning');

comments
If the given length is less than the number of frames in the mocap data, the data will be
trimmed to the given length from either beginning or end. If the given length is more than
the number of frames in the mocap data, data will be added by replicating with first or last
frame.

see also
mcaddframes, mctrim

130

MoCap Toolbox Manual

mcsetmarker

synopsis
Replaces a subset of markers in an existing mocap or norm structure.

syntax
d2 = mcsetmarker(d_orig, d_repl, mnum);

input parameters
d orig: MoCap or norm data structure (the one to be changed)
d_repl: MoCap or norm data structure (the one that contains the replacement data). The data
set must have the same amount of markers as indicated in mnum.
mnum: vector containing the marker numbers to be replaced in the original data set (order as
in replacement mocap structure)

output
d2: MoCap structure

examples
d2 = mcsetmarker(d, di1, [1 3 5]);

comments
Use mcgetmarker to shorten the replacing data set to fit the mnum vector.
If the resulting mocap structure shall contain more markers than the original, the data will be
appended at the specified marker number. Possible in-between markers will be set to NaN.
Empty marker names will be set to EMPTY and can be adapted manually if desired.

see also
mccombine, mcgetmarker

131

MoCap Toolbox Manual

mcsimmat

synopsis
Calculates self-similarity matrix from MoCap or segm data.

syntax
sm = mcsimmat(d);

sm = mcsimmat(d, metric);

input parameters
d: MoCap or segm data structure
metric: distance metric used, see help pdist (default: cityblock)

output
sm: self-similarity matrix

examples
sm = mcsimmat(d);

sm = mcsimmat(d, 'corr');

comments

see also

132

MoCap Toolbox Manual

mcskewness

synopsis
Calculates the skewness of data, ignoring missing values.

syntax
m = mcskewness(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix

output
m: row vector containing the skewness values of each data column
examples

comments

see also
mcmean, mcstd, mcvar, mckurtosis

133

MoCap Toolbox Manual

mcsmoothen

synopsis
Smoothens motion capture data using a Butterworth (fast) or a Savitzky-Golay FIR (accurate)
smoothing filter.

syntax
d2 = mcsmoothen(d);
d2 = mcsmoothen(d, filterparams);
d2 = mcsmoothen(d, method);
d2 = mcsmoothen(d, window);

input parameters

d: MoCap data structure or segm data structure

filterparams: order and cutoff frequency for Butterworth filter (optional, default [2, 0.2])

method: Butterworth filtering is default - if Savitzky-Golay filtering is to be used, use 'acc' as
method argument

window: window length (optional, default = 7) for Savitzky-Golay FIR smoothing filter

(if input is scalar or a string, Savitzky-Golay filter is chosen - if input is vector, it is consid-
ered as parameters for Butterworth filter)

output
d2: MoCap data structure or segm data structure

examples
d2 = mcsmoothen(d); % Butterworth filter smoothing with default parameters
d2 = mcsmoothen(d, [2 .1]); % second order Butterworth filter with 0.1 Hz

cutoff frequency

d2 = mcsmoothen(d, 'acc'); % S-G filter smoothing with default frame length
d2 = mcsmoothen(d, 9); % S-G filter smoothing using a 9-frame window
comments

The default parameters for the Butterworth filter create a second-order zero-phase digital But-
terworth filter with a cutoff frequency of 0.2 Hz.
For information about the Savitzky-Golay filter, see help sgolayfilt.

see also
mctimeder

134

MoCap Toolbox Manual

mcsort

synopsis
sorts mocap data according to marker names (alphanumerical or according to given numeric
or cell array indicating marker numbers or markers names as to how the output data is to
be sorted).

syntax
d2=mcsort(d)
d2=mcsort(d, srt)

input parameters
d: MoCap data structure
srt: numeric or cell array containing markers numbers or marker names (optional)

output
d2: reordered mocap data structure

examples
d2=mcsort(d)

d2=mcsort(d, [1:5 7 6 9 8 10:20]);

d2=mcsort(d, dl.markerName);

comments
If the sort variable is not given, the data will be sorted alphanumerical according to the mark-
er names.
The number of items in the sort array has to match the number of markers in the input mocap
data structure.

see also

135

mcspectrum

synopsis

Calculates the amplitude spectrum of mocap time series.

syntax
s = mcspectrum(d);

[s f] = mcspectrum(d);

input parameters
d: MoCap structure, norm structure, or segm structure

output

MoCap Toolbox Manual

s: MoCap structure, norm structure, or segm structure containing amplitude spectra in

the .data field

f: frequencies in Hz for the frequency channels in the spectra

examples

comments

see also

136

MoCap Toolbox Manual

mcstatmoments

synopsis
Calculates the first four statistical moments (mean, standard deviation, skewness, and kurto-
sis) of data, ignoring missing values.

syntax
mom = mcstatmoments(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix.

output
mom: structure containing the fields .mean, .std, .skewness, and .kurtosis

examples
comments
Calls the functions mcmean, mcstd, mcskewness, and mckurtosis

see also
mcmean, mcstd, mcskewness, mckurtosis

137

MoCap Toolbox Manual

mcstd

synopsis
Calculates the temporal standard deviation of data, ignoring missing values.

syntax
m = mcstd(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix.

output
m: row vector containing the standard deviations of each data column
examples

comments

see also
mcmean, mcvar, mcskewness, mckurtosis

138

MoCap Toolbox Manual

mctimeder

synopsis
Estimates time derivatives of motion capture data. Two options are available, the fast version
uses differences between two successive frames and a Butterworth smoothing filter,
whereas the accurate version uses derivation with a Savitzky-Golay FIR smoothing filter.

syntax
d2 = mctimeder(d);

d2 = mctimeder(d, order);

d2 = mctimeder(d, filterparams);

d2 = mctimeder(d, method);

d2 = mctimeder(d, order, filterparams);
d2 = mctimeder(d, order, method);

d2 = mctimeder(d, order, window, method);

input parameters

d: MoCap structure, norm structure, or segm structure

order: order of time derivative (optional, default = 1).

filterparams: order and cutoff frequency for Butterworth smoothing filter (optional, default [2,
0.2])

method: fast or accurate version; fast version is default, use 'acc' for accurate version (if no
window length is given, the default lengths are used, see comment)

window: window length for Savitzky-Golay FIR smoothing filter (optional, default =7 for
first-order derivative)

output
d2: MoCap data structure or segm data structure

examples
d2 = mctimeder(d); % first-order time derivative using the fast method
(Butterworth filter with default parameters)
d2 = mctimeder(d, [2 .1]); % first-order time derivative using fast version
(second order Butterworth filter with @.1 Hz cutoff frequency)
d2 = mctimeder(d, 'acc'); % first-order time derivative using the accurate
version (Savitzky-Golay filter)
d2 = mctimeder(d, 2, 9, 'acc'); % second-order time derivative with 9-frame

window using the accurate version (Savitzky-Golay filter)

139

MoCap Toolbox Manual

comments

The default parameters for the Butterworth smoothing filter create a second-order zero-phase
digital Butterworth filter with a cutoff frequency of 0.2 Hz.

The window length is dependent on the order of the time derivative and the given window
length. It is calculated by 4*n+w-4. Thus, if the default window length of 7 is used, the
window length for the second-order derivative will be 11, and the window length for the
third-order derivative will be 15.

For information about the Savitzky-Golay filter, see help sgolayfilt.

The function updates the d.timederorder field as follows: d2.timederorder = d.-
timederorder + order.

see also
mcsmoothen, mctimeintegr

140

mctimeintegr

synopsis

Estimates time integrals of motion capture data using the rectangle rule.

syntax
d2 = mctimeder(d);

d2 = mctimeintegr(d, order);

input parameters
d: MoCap data structure or segm data structure
order: order of time integral (optional, default = 1)

output
d2: MoCap data structure or segm data structure

examples
d2 = mctimeintegr(d, 2); % second-order time integral

comments

MoCap Toolbox Manual

The function updates the d.timederorder field as follows: d2.timederorder = d.-

timederorder - order.

see also
mctimeder

141

MoCap Toolbox Manual

mctranslate

synopsis
Translates motion-capture data by a vector.

syntax
d2 = mctranslate(d, transvect);

input parameters
d: MoCap data structure or data matrix
transvect: translation vector

output
d2: MoCap data structure or data matrix

examples
d2 = mctranslate(d, [0 1000 @]);

comments

see also

142

MoCap Toolbox Manual

mctrim

synopsis
Extracts a temporal section from a MoCap, norm, or segm data structure.

syntax
d2 = mctrim(d, t1, t2);

d2 = mctrim(d, tl1, t2, timetype);

input parameters
d: MoCap data, norm, or segm data structure
t1: start of extracted section
t2: end of extracted section
timetype: either 'sec' (default) or 'frame'

output
d2: MoCap, norm, or segm data structure containing frames from tl to t2 (if timetype ==
"frame') or frames between t1 and t2 seconds (if timetype == 'sec') of MoCap data
structure d.
examples

d2 = mctrim(d, 305, 1506, 'frame');
d2 = mctrim(d, 3, 5, 'sec');

comments

see also

143

MoCap Toolbox Manual

mcevar

synopsis
Calculates the variance of data, ignoring missing values.

syntax
m = mcvar(d);

input parameters
d: MoCap data structure, norm data structure, or data matrix.

output
m: row vector containing the variance of each data column
examples

comments

see also
mcmean, mcstd, mcskewness, mckurtosis

144

MoCap Toolbox Manual

mcvect2grid

synopsis
Converts a MoCap structure vector to a MoCap structure with three orthogonal views for each
component.

syntax
[g, gpar] = mcvect2grid(c, par, dx, dy);

input parameters
c: MoCap structure vector
par: animpar structure
dx: horizontal offset between components (default: 2000)
dy: vertical offset between orthogonal views (default: 2000)

output
g: MoCap structure

gpar: animpar structure

examples
[g, gpar] = mcvect2grid(c, par, 1000, 2000);

comments

see also

145

MoCap Toolbox Manual

mcwindow

synopsis

Performs a windowed time series analysis with a given function.
syntax

varargout = mcwindow(functionhandle, d);

varargout = mcwindow(functionhandle, d, wlen, hop);

varargout = mcwindow(functionhandle, d, wlen, hop, timetype);

input parameters
functionhandle: handle to function with which the windowed analysis is performed
d: MoCap data structure or norm data structure
wlen: length of window (optional, default = 2 sec)
hop: hop factor (optional, default = 0.5)
timetype: time type {'sec', 'frame'} (optional, default = 'sec')

output

When used with the functions mcmean, mcstd, mcvar, mcskewness, and mckurtosis,
the output is a two-dimensional matrix where the first index corresponds to window num-
ber and the second index to marker/dimension.

When used with mcperiod, the function returns four output parameters [per, ac, eac,
lag], where per is a two-dimensional matrix with the first index corresponding to win-
dow number and the second to marker/dimension. Output parameters ac and eac are
three-dimensional matrices, with the first index corresponding to window number, the sec-
ond to lag, and the third to marker/dimension. The output parameter lag is a vector con-
taining the lag values for the autocorrelations.

examples
stds = mcwindow(@mcstd, d, 3, 0.5);
[per, ac, eac, lags] = mcwindow(@mcperiod, d);

comments

see also
mcmean, mcstd, mcvar, mcskewness, mckurtosis, mcperiod

146

MoCap Toolbox Manual

mcwritetsv

synopsis
Saves mocap structure as a tsv file.

syntax
mcwritetsv(d, path)

input parameters
d: MoCap data structure
path: path to save the tsv file (optional). If no path is given, file is saved to current directory

output
tsv file, saved in the current or in the specified directory

examples
mcwritetsv(d)

mcwritetsv(d, 'folder')

mcwritetsv(d, '/path/folder') %(Mac)

comments

see also
mcread

147

MoCap Toolbox Manual

Never confuse motion with action.

— Benjamin Franklin —

148

