

SmartMesh User’s Manual

Version 1.0.0127

January 2015

2

Legal Notice

The software described in this document is furnished under a license agreement agreement, and the

software may be used or copied only in accordance with that agreement. No part of this document may

be reproduced or transmitted in any form or by any means, electronic or mechanical, including

photocopying and recording, for any purpose other than as permitted in the license or nondisclosure

agreement. Information in this document is subject to change without notice.

EXCEPT AS SPECIFICALLY AGREED BETWEEN THE PARTIES IN A LICENSE

AGREEMENT, CINTOO 3D, INC. SHALL NOT BE LIABLE FOR EDITORIAL ERRORS OR

OMISSIONS MADE HEREIN NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES

RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL.

Copyright © 2014 by Cintoo3D.

All rights reserved.

SmartMesh SDK is trademark of Cintoo3D. Trademarked names, logos, and images may appear in

this document. Rather than use a trademark symbol with every occurrence we use them in editorial

fashion and to the benefit of trademark owner, with no intention of infringement of the trademark.

OpenCL, OpenCV and OpenGL are trademarks or registered trademarks of Apple Inc. COMPANY,
Intel Corporation, and Silicon Graphics, Inc. in the United States and other countries.

3

TABLE OF CONTENTS

About this document .. 4

Purpose.. 4

Audience ... 4

Prerequisites ... 4

Documentation conventions... 4

Terminology .. 5

Product overview ... 6

System configuration ... 6

Data flows ... 6

User Access Levels .. 6

Contingencies .. 6

Installation .. 7

Prerequisites ... 7

Supported Compilers ... 7

Graphical User Interface Installer .. 7

Environment variable.. 8

Files Tree .. 8

Updating or Changing Your SmartMesh SDK Installation .. 9

Getting started .. 10

General rules .. 10

OpenCL layer .. 10

The global process ... 11

Data Initialization ... 12

Multi-LOD generation ... 14

Compression... 15

Saving .. 16

Decompression .. 16

Memory Buffers initialization and usage ... 18

Frequently Asked Questions .. 21

Known issues .. 23

Support .. 24

4

ABOUT THIS DOCUMENT

This is a technical document and is intended for use by engineers with experience in various
aspects of 3D computer graphics and the ‘C’ programming language.

PURPOSE

This document provides the user documentation for Cintoo3D SmartMesh SDK Release version
1.0

AUDIENCE

This document is for application developers.

PREREQUISITES

The developer must have knowledge in 3D computing, OpenCL, OpenGL or DirectX and C
language.

DOCUMENTATION CONVENTIONS

Manual text uses the following conventions

Convention Description

Italic Dot-Underlined Keywords
Courier Bold Commands and keywords that are entered

literally as shown.

Terminal output as shown in examples use the following conventions:

Convention

Description

Courier Example of information displayed on the

terminal

Courier Underlined Example of information displayed that

depends on the configuration (actual value

may be different)

Courier Bold Examples of text that must be typed in by

the operator.

Courier Bold Underlined Examples of text that must be entered but

depends on the configuration.

password A gray background is applied to text that

is not printed to the screen but must be

entered by the operator, such as passwords.

5

The following conventions are used to attract the attention of the reader:

Means “reader: be careful”. In this situation, the user might do something that could

result in equipment damage or loss of data. ! Caution

Note Means “reader: take note”. Notes contain helpful suggestions or references to

material not covered in the manual. Note

Some functionality is considered more advanced, for example because it is relatively low-

level, or requires special care to be properly used.

TERMINOLOGY

SDK: Software Development Kit

LoD: Level of Detail

Patch: a triangle at the coarser LoD

Advanced

Such functionality is identified like so in the manual.

6

PRODUCT OVERVIEW

Cintoo3D SmartMesh is a SDK that includes different algorithms to process, compress and
decompress 3D triangle meshes. The API interface is plain C coding.
The document describes the so-called SmartMesh Release 1.0 API.

SYSTEM CONFIGURATION

The SDK operates on PC and mobile devices equipped with Microsoft Windows Operating
System. It is compatible with Windows Vista and higher versions.

DATA FLOWS

The further chapters of the document describe functionalities of each module. But first, make
sure to get familiar with the common API concepts used thoroughly in the library.
SmartMesh has a modular structure, which means that the package includes several shared or
static libraries. The following modules are available:

- LOD_generator : a module allowing the Multi-LOD meshes generation
- Compression: a module allowing the compression of the Multi-LOD mesh
- Decompression: a module allowing the decompression of the Multi-LOD mesh

USER ACCESS LEVELS

The SmartMesh SDK Trial is limited to a 30 days trial period. It handles only meshes composed
by less than 1 Million triangles and having texture images not exceeding 4096*4096 pixels.

CONTINGENCIES

In case of power outage data are not saved in internal memory of the operating device.

7

INSTALLATION

This section describes how to install SmartMesh SDK on Windows systems.

PREREQUISITES

Installing SmartMesh SDK requires:

- a 64bits Windows operating system. The supported operating systems are Windows
Vista, Seven and 8/8.1.

- a 12 megabytes free space on the hard disk drive

After the SmartMesh installation on the device, the SDK can be used immediately without any
further configuration but requires a few components to be preinstalled.

- a supported compiler (see Section Supported Compilers)
- an OpenCL compatible device with OpenCL 1.1 or higher versions

The viewer sample requires for the visualization purposes:
- OpenGL 2.0 or higher versions

SUPPORTED COMPILERS

In order to build the SmartMesh libraries, you need a C compiler. SmartMesh is supported for

the following compilers/operating systems:

Compiler Operating System

MINGW MS Windows Vista x64, 7
x64, 8/8.1 x64

MS Visual C++ 10.0, 11.0, 12.0 (VISUAL STUDIO

2010, 2012, and 2013)
MS Windows Vista x64, 7
x64, 8/8.1 x64

GRAPHICAL USER INTERFACE INSTALLER

An automated GUI installer wizard called SmartMeshSDK.msi is the preferred method for first
time installation. This will guide you through the setup of the SmartMesh SDK installer. You will
then use this to manage your installation and to perform further package installations.

To perform your first time SmartMesh SDK installation, you should proceed as follows:

1- download latest available version of the SmartMesh_SDK.msi from the website
www.cintoo3d.com

2- Locate the file you have downloaded, and double click on it to start the installer. (Note:
depending on your version of Windows, and on your local security policies, you may
need to grant administrator permissions for this application to run)

http://www.cintoo3d.com/

8

3- When you have set the installation options to suit your preferences, click the Continue
button to initiate the installation of SmartMesh SDK

4- When you have completed the foregoing procedure to the point where SmartMesh SDK is
installed, you may click the Finish button, to terminate SmartMesh_SDK.msi properly.

ENVIRONMENT VARIABLE

Two new system environment variables %SMSDKROOT% and %SMSDKSAMPLESROOT% are

created pointing respectively to the installation root path and the samples path. To get the value

of these variables, enter the following at a command prompt :
echo %SMSDKROOT%

The installation updates also the windows PATH environment variables by adding
%SMSDKROOT%bin. It allows you to conveniently run any application using the SDK from any

directory without having to copy the required dll libraries.

FILES TREE

The SmartMesh SDK installation creates 2 main folders. The first one associated to the

environment variable %SMSDKROOT% is created by default on the 64bits programs folder.

The second one associated to the environment variable %SMSDKSAMPLESROOT% is created

by default on the user personal folder. The following figure shows the main files and

folders installed:

%SMSDKROOT% %SMSDKSAMPLESROOT%

%

bin

smCompress.dll

smDecompress.dll

doc

User_Guide.pdf

Html documentation

include

Header files *.h

lib

smCompress.lib

smDecompress.lib

bin

Dependencies *.dll

Samples *.exe

include

Header files *.h

lib

Dependencies *.lib

src

Microsoft Visual Studio

sample projects

9

UPDATING OR CHANGING YOUR SMARTMESH SDK INSTALLATION

To uninstall the SmartMesh SDK use the Windows Installer Manager located the Control panel.

To update the SmartMesh SDK with a new version please uninstall the old one first.

10

GETTING STARTED

GENERAL RULES

All the SmartMesh type, data structures and functions are prefixed by the keyword sm
SM_RUNNER_LOD_GENERATOR // sm macros
sm_error status; // sm type
smLodGenerateParamCreate(); // sm function

OPENCL LAYER

The Smartmesh SDK offers a smart layer to simplify the interactions and the manipulation of
OpenCL. Indeed, it defines the sm_runner_id structure which is a high level structure taking as
input the OpenCL Command Queue and the set of tasks that could be processed and creates a
“runner”. The application has to create the OpenCL Command Queue using OpenCL standard API
before creating the runner.

The different tasks that a “runner” can do are:
- LOD generation,
- Compression
- Decompression

The application can create the runner using the smRunnerCreate function by giving three
parameters. The first one is the OpenCL Command queue. The second argument is a bitfield
flag to specify the the task to do which can be:

- SM_GENERATE
- SM_COMPRESS
- SM_DECOMPRESS
- or a mix of any of them.

Finally, the last argument permits to verify if an error is occurred.

This code sample shows how to create through the same existing OpenCL Command Queue
called my_command_queue, two runners: the first one called comp_runner for the generation and the
compression of the multi-lod mesh and the second one called decomp_runner for its
decompression.

#include "compress.h"

...

sm_error status;
sm_runner_id comp_runner = smRunnerCreate (my_command_queue, SM_GENERATE|SM_COMPRESS,
 &status);
if (status != SM_SUCCESS)
 return status;

sm_runner_id decomp_runner = smRunnerCreate (my_command_queue, SM_DECOPRESS, &status);
if (status != SM_SUCCESS)
 return status;
...

11

THE GLOBAL PROCESS

The global process is given by the following flowchart:

It consists of two independent parts. The first one allows generating the compressed bitstream
by computing the multi-lod mesh then compressing it. The second part allows the
decompression of the compressed mesh.

The SDK provides two libraries:

- Compression library: It allows the generation of the multi-LOD mesh and its
compression.

- Decompression library: It provides functions to decompress the binary file.

We will detail here four steps of the global process:
- Data initialization
- Muti-LOD generation
- Compression
- Decompression

For all these steps the application manipulates the same variable called for example “my_mesh” of
type sm_mesh_id. After each step “my_mesh” will get a new status. The application can check the
step status in the mesh info structure using the function smMeshInfoGet.

The following figure shows the different possible steps for a mesh and their descriptions.

- ERR: "init not done or major failure";
- NODATA: "no data owned or empty";
- DATA: "data owned";
- LOD: "smLodGenerate called successfully";
- CMPR: "smMeshCompress called successfully ";
- SAVED: "smMeshsave called successfully";
- DECOMP: "smMeshDecompress called successfully";

ERR NODATA DATA LOD CMPR SAVED DECOMP

Load
data

Multi-LOD
generation

Compression

Decompression

3D
rawdata

Export
data

HDD

Mesh_id Mesh_id Mesh_id

Data
Buffer Mesh_id

Binary
file

12

DATA INITIALIZATION

SmartMesh handles its own memory automatically but provides functions and methods

having destructors that free the underlying memory buffers when needed.

The initialization of the data begins by instantiating a variable of type sm_mesh_id and then
initializes it with the return of the function smMeshCreate. Then, the 3D data is filled using
smMeshSet_fu32 (see the API Reference) where f is 32 bits floating point type and u32 is 32 bits
unsigned integer type.

The following code sample shows how to initialize data:

#include "compress.h"
...

sm_error status;
sm_mesh_id my_mesh = smMeshCreate(&status);
if (status != SM_SUCCESS)
 return status;
status = smMeshSet_fu32(my_mesh,
 nb_vertex,
 nb_texcoords,
 nb_normals,
 vertices_array,
 texcoords_array,
 normals_array,
 nb_triangle,
 index_vertex_array,
 index_tex_coord_array,
 index_normal_array,
 nb_material,
 material_array,
 NULL,
 material_map_kad);
if (status != SM_SUCCESS)
 return status;
...

if the mesh has no normal vertex attributes for example, the application has to set
nb_normals to 0 and normals_array to NULL.

The created mesh has different accessible information that will be filled in as the different steps
are achieved. By specifying the information to query using the type sm_mesh_info, the function
smMeshInfoGet returns the actual value of the queried mesh. The supported information are
given by the following table:

Create a
sm_mesh_id

variable

Add data to
sm_mesh_id

3D rawdata

my_mesh my_mesh

1
2

ERROR NODATA DATA LOD COMPR SAVED DECOMP

13

sm_mesh_info Return type Info. returned

SM_MESH_INFO_NB_VERTEX size_t Number of vertices

SM_MESH_INFO_NB_FACE size_t Number of faces

SM_MESH_INFO_HAS_TEXTURE int 1 if mesh is textured and 0 if not

SM_MESH_INFO_HAS_NORMAL int 1 if mesh has normals and 0 if not

SM_MESH_INFO_NB_VERTEX_ATTRIB size_t Number of vertex attributes

SM_MESH_INFO_NB_FACE_ATTRIB size_t Number of face attributes

SM_MESH_INFO_NB_LOD size_t Number of LODs

SM_MESH_INFO_NB_PATCH size_t Number of patchs (base level triangles)

SM_MESH_INFO_STATUS sm_mesh_status Most advanced step validated

SM_MESH_INFO_BOUNDING_BOX float* Bounding box : 6*float (XYZminXYZmax)

SM_MESH_INFO_CENTER float* Center point of the mesh : 3*float

SM_MESH_INFO_DIAG_BOUNDING_BOX float The distance of the bounding box
diagonal

To get the value of a given sm_mesh_info, the application has to create a variable of the
corresponding return type (see last table). Then allocate it with the right size if necessary. The
size can be retrieved using the same function smMeshInfoGet. The following code sample shows
how to get the value of the Center point of the mesh which is an array of three floats.

float *mesh_center = NULL;
size_t mesh_center_size = 0;
sm_error status;
 /* get the size in bytes of the array to store the center of the mesh */
status = smMeshInfoGet(mesh, SM_MESH_INFO_CENTER, 0, NULL,
 &mesh_center_size);
if (status != SM_SUCCESS)
 return status;

/* allocate the needed ressources */
mesh_center = (float*)malloc(g_mesh_center_size);
/* get the coordinates of the center of mesh */
status = smMeshInfoGet(mesh,
 SM_MESH_INFO_CENTER,
 mesh_center_size,
 mesh_center, NULL);
if (status != SM_SUCCESS)
 return status;

printf("Mesh center: %f %f %f\n", mesh_center[0], mesh_center[1], mesh_center[2]);

14

MULTI-LOD GENERATION

The next step after the data initialization consists of generating the multi-lod mesh. To reduce
the computation time, this process is implemented using OpenCL. The application creates a
“runner” and specifies the device that will run the task through the given OpenCL Command
Queue. For more details about runner creation please see section OpenCL layer.

This code sample shows how to generate a multi-lod mesh using the default remeshing
parameters. In this case the SmartMesh SDK computes the optimal parameters depending on the
input mesh.
#include "compress.h"
...

sm_error status;
sm_lod_generate_param default_ param = smLodGenerateParamCreate();
sm_runner_id my_runner = smRunnerCreate (my_cl_command_queue, SM_GENERATE, &status);
if (status != SM_SUCCESS)
 return status;
status = smLodGenerate(my_mesh, default_ params, my_runner, my_callback);
if (status != SM_SUCCESS)
 return status;
...

my_mesh status has to be at least DATA (SM_MESH_STATUS_DATA)

The runner must contains the task SM_GENERATE

The application can specify its own parameters by modifying the variable default_params using
the parameters setter smLodGeneratorParamSet. The application can set for example: the
numbers of LOD, the number of patches, the total number of triangles…
This code sample shows how the application can set its own remeshing parameters and then call
the function smLodGenerate. The parameters to modify are SM_LOD_GENERATE_INFO_NB_PATCH_MIN
and SM_LOD_GENERATE_INFO_NB_LOD_MAX
#include "compress.h"
...

sm_error status;
uint8_t lodMax = 5;
size_t nb_patches = 1000;
sm_lod_generate_param my_lod_param = smLodGenerateParamCreate();
/* setting the max number of lod param */
status = smLodGenerateParamSet(my_lod_param,
 SM_LOD_GENERATE_INFO_NB_LOD_MAX,
 &lodMax,
 sizeof(uint8_t));

Create a
sm_lod_generate_param

variable
 Generate

multi-lod mesh

my_mesh

default_params
my_mesh

Create a sm_runner_id
variable default_runner

1

2

3

ERROR NODATA DATA LOD COMPR SAVED DECOMP

15

if (SM_SUCCESS != status)
 return status;
/* setting the minimum patch number param */
status = smLodGenerateParamSet(my_lod_param,
 SM_LOD_GENERATE_INFO_NB_PATCH_MIN,
 &nb_patches,
 sizeof(size_t));
if (SM_SUCCESS != status)
 return status;
...
status = smLodGenerate(my_mesh, my_lod_param, my_runner, my_callback);
if (SM_SUCCESS != status)
 return status;
...

COMPRESSION

The compression step allows generating the final bitstream to save. It can be applied only when
the multi-lod generation step is called successfully. It requires a mesh with a status at least equal
to SM_MESH_STATUS_LOD. This task requires also a valid runner.

This code sample shows how to compress a multi-lod mesh using the default compression
parameters and a custom OpenCL runner. The runner is initialized with a valid OpenCL
Command Queue provided by the application.

#include "compress.h"
...

sm_error status;
sm_mesh_compress_param default_comp_param = smCompressParamCreate();
sm_runner_id my_opencl_runner= smRunnerCreate(my_command_queue, SM_RUNNER_COMPRESS,
&status);
if (SM_SUCCESS != status)
 return status;
status = smMeshCompress(my_mesh, default_comp_param, my_opencl_runner);

 The application can specify its own compression parameters by modifying the variable
default_comp_param using the function smCompressParamSet.

my_mesh status has to be at least LOD (SM_MESH_STATUS_LOD)
The runner must contains the task SM_COMPRESS

Create a
sm_compress_param

variable

Compress my_mesh

default_comp_options

my_mesh

Create a sm_runner_id
variable my_opencl_runner

1

2

3

ERROR NODATA DATA LOD COMPR SAVED DECOMP

16

SAVING

At this step you can save the compressed data by using smMeshSave. This function generates a
binary file with .i3sc extension. If the input is textured a binary i3st file is generated containing
the new compressed texture images.

This code sample shows how to save the compressed multi-lod mesh.

#include "compress.h"
...

sm_error status;
status = smMeshSave(my_mesh, filename);
if (SM_SUCCESS != status)
 return status;

...

 my_mesh status has to be at least at COMPR step (SM_MESH_STATUS_COMPR)

DECOMPRESSION

The decompression process is detailed by the following flowchart:

Create a
sm_mesh_id

 my_mesh

Create a
sm_mesh_decompress_param

default_decomp_param
OpenCL Buffers

Set the patches to
decode

Create a
sm_runner_id

my_runner

Create a sm_memory_id for
each buffer : vertices,

faces, tex_img

my_buffer_vertices
my_buffer_faces
my_buffer_tex_img

OpenCL Command Queue

Decompression

my_buffer_vertices
my_buffer_faces
my_buffer_tex_img

1

2

3 4 5

6

ERROR NODATA DATA LOD COMPR SAVED DECOMP

17

The decompression step begins with the creation of a valid variable sm_mesh_id by calling
smMeshCreateFromFile. Then the application has to create and set the decompression parameters.
It specifies for examples the different patchs to decode and the desired lod for each one. These
values can be, for example, the result of the culling process. After that, the application has to
create a valid runner and a valid sm_memory_id for each vertex attribute to decode and store the
result). The size of the sm_memory_id is determined by the function smMeshDecompressParamGet
and depends on the params currently set using smMeshDecompressParamSet.

This code sample shows how to decompress all triangles of a non textured mesh at the second
lod following the last flowchart. A complete decoding sample can be found at this location:
%SMSDKROOT%sample\viewer.c (c.f. Environment variable)

#include "decompress.h"
...

sm_error status;
size_t vertex_size;
size_t face_size;
size_t nbr_patchs;
uint8_t *my_patchs_lod;
sm_mesh_id my_mesh = smMeshCreateFromFile(file_name, &status); // i3sc file
if (SM_SUCCESS != status)
 return status;
/* Get the number of patches of the mesh */
status = smMeshInfoGet(g_mesh,
 SM_MESH_INFO_NB_PATCH,
 sizeof(size_t),
 &nbr_patchs, NULL);
if (SM_SUCCESS != status)
 return status;

/* initialize the patch lod array to set in decompress param */
my_patchs_lod = (uint8_t*)malloc(nbr_patchs);
/* decode the entire mesh at the second level*/
memset(my_patchs_lod, 2, nbr_patchs * sizeof(uint8_t));
sm_mesh_decompress_param decomp_param = smMeshDecompressParamCreate(my_mesh, &status);
if (SM_SUCCESS != status)
 return status;
status = smMeshDecompressParamSet(decomp_param,
 SM_DECOMPRESS_PARAM_PATCH,
 nbr_patch* sizeof(uint8_t),
 (void*) my_patchs_lod);
if (SM_SUCCESS != status)
 return status;

// once the patchs have been set, use smMeshDecompressParamGet to get the
// corresponding sizes of buffers
/* get the size of vertex and face buffers (related to the last param set) */
status = smMeshDecompressParamGet(g_mesh_param,
 SM_DECOMPRESS_PARAM_VERTEX_SIZE,
 sizeof(size_t),
 &vertex_size,
 NULL);
if (status!= SM_SUCCESS)
 return status;
status = smMeshDecompressParamGet(decomp_param,
 SM_DECOMPRESS_PARAM_FACE_SIZE,
 sizeof(size_t),
 &face_size,
 NULL);

18

if (status!= SM_SUCCESS)
 return status;
// after creating the opencl buffers (my_cl_buffer_vertices and my_cl_buffer_faces)
using face_size and vertex_size we create the corresponding sm_memory_id
sm_memory_id my_buffer_vertices = smMemoryCreate(my_cl_buffer_vertices, 0, &status);
if (status!= SM_SUCCESS)
 return status;
sm_memory_id my_buffer_faces = smMemoryCreate(my_cl_buffer_faces, 0, &status);
if (status!= SM_SUCCESS)
 return status;
sm_runner my_runner= smRunnerCreate(my_command_queue, SM_DECOMPRESS, &status);
if (status!= SM_SUCCESS)

return status;

/* run async decompression */
status = smMeshDecompress(my_mesh,
 decomp_param,
 my_runner,
 my_buffer_vertices,
 my_buffer_faces,
 NULL);
if (status!= SM_SUCCESS)

return status;
...

The following table details each step of the decompression process.

step

1 The application call smMeshCreateFromFile to get a valid

sm_mesh_id from a i3sc file

call smMeshClear if a previous
mesh exist on this variable

3 To set the patches to decode, the application gives an array of type
uint8_t having the same number of element as number of
patches. The value of each element corresponds to the LoD to be
decoded at. The 0 value means that the patch will not be decoded.

If the value corresponding to a patch
is superior to the number of levels,
the patch will be decoded at the
higher level.

The version 1 of SmartMesh can only
decode patches at the same level

4 my_runner defines the device and the set of tasks to be
performed.

the application has to initialize the
runner with the SM_DECOMPRESS

flag

5 The application creates its own sm_memory_id buffers using the
OpenCL memory buffers and offsets.
All the vertex attributes are stored on the first sm_memory_id
buffer, the second buffer is dedicated to face indices and the third
one for the texture image.
See MEMORY BUFFERS INITIALISATION AND USAGE below for
details on how to initialize and use the sm_memory_id buffers.

The application cannot call the
decompression using the same
sm_memory_id for the different
buffers

6 The application may decode only the vertex attributes by setting
to null the other sm_memory_id buffers.
The choice of the vertex attributes to be decoded is done using a
flag. The available flags are SM_DECOMPRESS_POSITION,
SM_DECOMPRESS_TEXCOORD and SM_DECOMPRESS_NORMAL

The decompression requires at least
one sm_memory_id buffer.
Otherwise it returns
SM_ERROR_INVALID_PARAMETER

19

MEMORY BUFFERS INITIALIZATION AND USAGE

The decompression function takes 3 buffers of type sm_memory_id. The first one to store the
vertex attributes, the second one to store face indices and the third one for the texture image.
The application can use the same OpenCL buffer to store the vertex attributes and the face
indices using different offsets. The following code sample shows how to use the same OpenCL
buffer to create these 2 sm_memory_id buffers.

#include "decompress.h"
...

sm_error status;
sm_memory_id my_buffer_vertex_attributes = smMemoryCreate(my_cl_buffer, 0, &error);
if (status!= SM_SUCCESS)
 return error;
sm_memory_id my_buffer_faces = smMemoryCreate(my_cl_buffer, Offset1, &error);
if (status!= SM_SUCCESS)
 return error;
...

The first buffer is reserved to store the vertex attributes which can be:
- SM_VERTEX_ATTRIB_POSITION
- SM_VERTEX_ATTRIB_TEXTURE
- SM_VERTEX_ATTRIB_NORMAL

These attributes can be interleaved or not by specifying for each attribute the parameters: stride
and offset. The following figure shows the two ways of formatting attributes

The following table gives for the two cases the values of the different parameters. By default the
parameters are initialized to 0:

Parameter Non-interleaved interleaved
SM_MEM_ATTRIB_POSITION_OFFSET 0 0
SM_MEM_ATTRIB_POSITION_STRIDE 0 0
SM_MEM_ATTRIB_TEXCOORD_OFFSET Offset1 0
SM_MEM_ATTRIB_TEXCOORD_STRIDE 0 3*sizeof(float) (position xyz)
SM_MEM_ATTRIB_NORMAL_OFFSET Offset2 0
SM_MEM_ATTRIB_NORMAL_STRIDE 0 3*sizeof(float) + 2*sizeof(float)

(position xyz + texture coord uv)

Interleaved buffer

VERTEX POSITION ATTRIB VERTEX NORMAL ATTRIB

VERTEX TEXTURE ATTRIB

Non Interleaved buffer

my_buffer_vertex_attributes my_buffer_faces my_cl_buffer

0 Offset1

20

The following code sample shows how to interleave the vertex attributes on the vertex buffer

#include "decompress.h"
...

sm_error status;
sm_memory_id my_buffer_vertices = smMemoryCreate(my_cl_buffer, 0, & status);
if (status!= SM_SUCCESS)
 return status;
unsigned int stride = 0;
status = smMemoryAttribSet(my_buffer_vertices, SM_MEM_ATTRIB_POSITION_STRIDE,
sizeof(unsigned int), &stride);
if (status!= SM_SUCCESS)
 return status;
stride = 3*sizeof(float); /* position(xyz) */
status = smMemoryAttribSet(my_buffer_vertices, SM_MEM_ATTRIB_TEXCOORD_STRIDE,
sizeof(unsigned int), &stride);
if (status!= SM_SUCCESS)
 return status;
stride = 3*sizeof(float) + 2*sizeof(float);/* position(xyz)+texture coordinates (uv)*/
status = smMemoryAttribSet(my_buffer_vertices, SM_MEM_ATTRIB_NORMAL_STRIDE,
sizeof(unsigned int), &stride);
if (status!= SM_SUCCESS)
 return status;
...

21

FREQUENTLY ASKED QUESTIONS

1- What is SmartMesh SDK?
SmartMesh is a SDK that provides different algorithms to process, compress and
decompress 3D triangle meshes.

2- How can I compile and execute the demos and examples on Debian / Ubuntu?
SmartMesh SDK is now only available for Microsoft windows platforms but we welcome
enquiries from companies working on other Operating systems and interested in adding
or integrating our technologies with their products and solutions.

3- What is a runner?
The Smartmesh SDK offers a smart layer to simplify the interactions and the
manipulation of OpenCL. Indeed, it defines the sm_runner_id structure which is a high
level structure taking as input the OpenCL Command Queue and the set of tasks that
could be processed and creates a “runner”. For more details please see section OpenCL
layer.

4- What is a sm_memory_id?
The sm_memory_id buffer is created from an OpenCL Buffer. Like the runner, it allows
easy manipulation of OpenCL buffers (c.f. section OpenCL layer).

5- How can I choose the device to do the decompression of the mesh?
The smMeshDecompress function requires a valid runner to decompress the mesh. The
application will create a “runner” and choose through the given OpenCL Command
Queue, the device that will run the process. For more detail about runner creation please
see section OpenCL layer.

6- How can I compress a quadrangular mesh ?
The SmartMesh SDK process only triangular meshes. You have to convert the mesh into
triangula mesh before processing it.

7- Can I use the SmartMesh SDK to simplify a mesh ?
Yes, to simplify a mesh you have to call the function smLodGenerate with the values 1 for
the parameter SM_LOD_GENERATE_INFO_NB_LOD_MAX and the desired number of final
triangles for the parameter SM_LOD_GENERATE_INFO_NB_PATCH_MIN.

8- Can I decompress only the position attributes of a mesh ?
The choice of the vertex attributes to be decoded is done using the function
smMeshDecompressParamSet. The application set the parameter
SM_DECOMPRESS_PARAM_VERTEX_ATTRIB using the SM_DECOMPRESS_POSITION as value.

9- Why the size of the i3st file is bigger than the jpeg ?
The trial version of the SmartMesh SDK compresses texture images using a lossless
algorithm. With the full version, the application can choose between the lossy and the
lossless algorithm.

22

10- Why the decompression and visualization is slow?
The visualization should be smooth. For optimal performance:
- Use the gpu as device for the decompression;
- The application should choose the optimal level of detail depending on available

resources and viewpoint;
- A culling techniques can be used to reduce the number of patchs to decode.

11- Why the given obj file loader does not load my file?

The given obj file loader is just a sample code and it’s given for didactic purposes. The
application shall handle mesh data loading. We welcome enquiries from companies
interested by specific developments.

12- Why the number of levels of the output mesh is inferior to the asked one?
The parameter SM_LOD_GENERATE_INFO_NB_LOD_MAX sets the maximum number of LoD of
the output mesh. When the number of triangles of the input mesh is not sufficient to get
the asked number of levels, the SmartMesh SDK uses an inferior value.

13- Why some connected components are not present on the output file?
Some connected components will be ignored when an error occurred during the Lod
generation step. Mostly when there is not enough memory to fulfill the process.

14- Why the number of triangles of the output mesh is different from the input
mesh

The number of triangles of the output mesh depends essentially on the number of LoD
and the number of triangles of the coarser level (number of patchs). The LoD generation
tolerates up to 5 times more triangles on the last LoD than the input mesh.

15- Why the number of patchs of the output mesh is different from the asked one?
The number of patchs (coarser level triangles) depends on the topological complexity of
the input mesh. The coarser level preserves the holes and the genus of the input mesh
which may requires additional patchs.

16- Can the input mesh be non-manifold?
The SmartMesh SDK cleans the input meshes by removing topological artifacts such as:
- Duplicated vertices;
- Degenerated triangles;
- Non-manifoldenss (vertices and edges);
- …

23

KNOWN ISSUES

Environment variable
If the SmartMesh SDK is installed from a standard user having no administrator rights
you may have some issues with the environment variable. In this case a simple
logoff/logon on the session of the current user should fix it.

Range of the texture coordinates
The SmartMesh SDK handles texture coordinates within the range [0, 1] where (0,0) is

conventionally the bottom-left corner and (1,1) is the top-right corner of the texture

image.

If coordinates outside the range limits are detected, a SM_ERROR_INVALID_INPUT error is
returned by smLodGenerate.

Texture images
The list below gives the different supported texture image format by the SmartMesh
SDK:

 Windows bitmaps - *.bmp, *.dib ,

 JPEG files - *.jpeg, *.jpg, *.jpe ,

 JPEG 2000 files - *.jp2,

 Portable Network Graphics - *.png

 Portable image format - *.pbm, *.pgm, *.ppm

 TIFF files - *.tiff, *.tif

The other formats like tga are not supported and a SM_ERROR_FILE_CORRUPTED is returned.

Compressed output Files
The trial version of the SmartMesh SDK compresses texture images using a lossless
algorithm. With the full version, the application can be choose between the lossy and the
lossless algorithm

Out of memory error during LoD generation
If you get an out of memory error during the LoD generation step, the application should
use a device with more memory. For example switching from a gpu based device having
1GB of memory to a CPU device having 8 GB may fix the problem. The application can
also reduce the number of levels requested.

24

SUPPORT

Feel free to contact us at support@cintoo3d.com

